WO2022166144A1 - 偏航控制方法、装置、电子设备和存储介质 - Google Patents
偏航控制方法、装置、电子设备和存储介质 Download PDFInfo
- Publication number
- WO2022166144A1 WO2022166144A1 PCT/CN2021/111713 CN2021111713W WO2022166144A1 WO 2022166144 A1 WO2022166144 A1 WO 2022166144A1 CN 2021111713 W CN2021111713 W CN 2021111713W WO 2022166144 A1 WO2022166144 A1 WO 2022166144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yaw
- brake
- motor
- hydraulic brake
- overload protection
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000008859 change Effects 0.000 claims description 28
- 238000004590 computer program Methods 0.000 claims description 13
- 230000001934 delay Effects 0.000 claims description 13
- 238000010248 power generation Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0204—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0244—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/321—Wind directions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/60—Control system actuates through
- F05B2270/602—Control system actuates through electrical actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/60—Control system actuates through
- F05B2270/604—Control system actuates through hydraulic actuators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present application relates to the technical field of wind power generation, and in particular, to a yaw control method, device, electronic device and storage medium.
- Wind power refers to converting the kinetic energy of wind into electrical energy.
- the principle of wind power generation is to use the wind to drive the blades of the windmill to rotate, and then increase the speed of rotation through the speed increaser to promote the generator to generate electricity.
- Wind turbines include nacelles, rotor blades, shafts, gearboxes, generators, yaw devices, and hydraulic systems.
- the yaw device is used to turn the nacelle by means of an electric motor to control the rotor to face the wind.
- the conventional control method is currently used.
- the hardware relies on the acquisition of common control variables such as wind direction and twist cable switch to control the yaw.
- the present application provides a yaw control method, device, electronic device and storage medium to solve the defect that the yaw control cannot be accurately performed in the prior art.
- the present application provides a yaw control method, including:
- the yaw motor is controlled to start yaw
- the yaw motor After the yaw motor starts yaw, if the yaw current is greater than the second threshold, the yaw motor is controlled to stop yaw.
- controlling the yaw motor to start the yaw includes:
- the electromagnetic brake is controlled to start the brake release
- the yaw motor is controlled to start yaw.
- the method further includes:
- the hydraulic brake is controlled to hold the brake.
- a yaw control method provided by the present application, after the hydraulic brake is released, if the yaw pressure is not less than a first threshold value, the hydraulic brake is controlled to hold the brake, and after a preset period of time, the brake is controlled. The hydraulic brake is released.
- a yaw control method provided by the present application, after the yaw motor is turned on for yaw, if the yaw current is not greater than a second threshold value and the wind direction change meets a preset condition for wind direction change, the yaw current is controlled.
- the avionics stop yaw.
- controlling the hydraulic brake to release the brake includes:
- the hydraulic brake is controlled to release the brake .
- the second threshold is determined based on the rated current of the yaw motor.
- the application also provides a yaw control device, comprising:
- a first control unit configured to control the hydraulic brake to release the brake if the yaw overload protection state of the wind turbine meets the preset overload protection condition when a change in the wind direction is detected
- a second control unit configured to control the yaw motor to start yaw if the yaw pressure is less than the first threshold after the hydraulic brake is released;
- the third control unit is configured to control the yaw motor to stop yaw if the yaw current is greater than the second threshold after the yaw motor is turned on for yaw.
- the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor, where the processor executes the computer program to achieve any of the above The steps of the yaw control method.
- the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of any of the above yaw control methods.
- the yaw control method, device, electronic device and storage medium provided by this application can quickly and accurately determine whether the yaw system needs to be relieved based on the yaw pressure, and control the yaw motor to start the yaw; Judging the yaw load condition and controlling the yaw motor to stop the yaw, so as to avoid tripping under special conditions, resulting in the failure of the yaw system and reducing the cost of manual operation and maintenance.
- FIG. 1 is a schematic flowchart of a yaw control method provided by the present application.
- FIG. 2 is a schematic flowchart of another yaw control method provided by the present application.
- FIG. 3 is a schematic diagram of a yaw loop provided by the present application.
- FIG. 4 is a schematic structural diagram of a yaw control device provided by the present application.
- FIG. 5 is a schematic structural diagram of an electronic device provided by the present application.
- the conventional control method is currently used.
- the hardware relies on the acquisition of common control variables such as wind direction and knob switch to control the yaw.
- yaw control it is easy to make the yaw load too large to cause yaw failure, which in turn affects the power generation of the wind turbine.
- the load on the windward side is larger.
- the yaw can only be turned off by controlling the switch when the yaw overload protection is turned on, so it is impossible to judge whether the yaw load is too large in advance.
- the cables of the generator set may be excessively twisted and the cables will break and fail, or the system may trip, thereby affecting the normal power generation of the wind turbine.
- FIG. 1 is a schematic flowchart of a yaw control method provided by the present application. As shown in FIG. 1 , the method includes the following steps:
- Step 110 When the wind direction change is detected, if the yaw overload protection state of the wind turbine satisfies the preset overload protection condition, control the hydraulic brake to release the brake.
- a wind turbine is a power device that converts wind energy into mechanical work, which drives the rotor to rotate, and finally outputs alternating current.
- the wind turbine includes a yaw system, which is used to keep the rotor of the wind turbine always in the windward state.
- the yaw overload protection is used to prevent the yaw system from malfunctioning due to excessive yaw load.
- the yaw overload protection status refers to whether the yaw system is in the yaw overload protection. If the hydraulic brake is released, the yaw load will be increased, so the hydraulic brake needs to be in the brake state; if not, it means that the yaw circuit is not under overload protection, and the hydraulic brake can be controlled to release the brake.
- Step 120 After the hydraulic brake is released, if the yaw pressure is less than the first threshold, control the yaw motor to start yaw.
- the yaw generator can start to yaw.
- the first threshold may be specifically set according to the actual situation, which is not specifically limited in this embodiment of the present application.
- the embodiment of the present application can quickly and accurately determine whether the yaw system needs to be relieved of pressure, and control the yaw motor to start the yaw.
- the embodiment of the present application can directly determine whether the pressure relief of the system is completed according to the yaw pressure, which not only has higher accuracy, but also avoids the need for traditional methods. Wait for a preset time before judging the problem that causes lower efficiency.
- Step 130 After the yaw motor is turned on, if the yaw current is greater than the second threshold, the yaw motor is controlled to stop the yaw.
- the yaw motor runs, and there will be current in the yaw loop. If the yaw current is too large, it indicates that the yaw load is too large, and the yaw motor needs to be stopped at this time. Therefore, when the yaw current is greater than the second threshold, the yaw motor is controlled to stop yaw.
- the second threshold may be determined according to the rated current of the yaw motor, and may also be specifically set according to the actual situation, which is not specifically limited in this embodiment of the present application.
- the embodiment of the present application can determine in advance whether the yaw load is too large, and if so, the yaw motor is controlled to stop the yaw, so as to avoid system tripping caused by special conditions such as excessive load on the windward surface, reducing the Labor operation and maintenance costs.
- the yaw operation can be counted based on the yaw current, so that it is convenient to judge whether the yaw structure is abnormal in advance.
- the yaw control method provided by the embodiment of the present application can quickly and accurately determine whether the yaw system needs to be relieved based on the yaw pressure, and control the yaw motor to start the yaw; based on the yaw current, the yaw load can be judged in advance, And control the yaw motor to stop the yaw, so as to avoid tripping under special conditions, resulting in the failure of the yaw system and reducing the cost of labor operation and maintenance.
- the yaw motor is controlled to start the yaw, including:
- the electromagnetic brake is controlled to start the brake release
- the yaw motor is controlled to start yaw.
- the electromagnetic brake starts to release and delay the brake.
- the second preset time it indicates that the release action of the electromagnetic brake is completed, and the yaw motor can be started to start yaw.
- the first preset time and the second preset time may be specifically set according to actual conditions, which are not specifically limited in this embodiment of the present application.
- the embodiment of the present application can quickly and accurately determine whether the yaw system needs to be relieved of pressure, and control the yaw motor to start the yaw.
- the embodiment of the present application can directly determine whether the pressure relief of the system is completed according to the yaw pressure, which not only has higher accuracy, but also avoids the need for traditional methods. Wait for a preset time before judging the problem that causes lower efficiency.
- the embodiment of the present application controls the electromagnetic brake to release the brake after a first preset time delay after the hydraulic brake starts to release, and controls the electromagnetic brake after a delay of the second preset time after the electromagnetic brake starts to release the brake.
- the yaw motor starts to yaw, so as to ensure that the hydraulic brake and the electromagnetic brake can perform the next yaw control after the corresponding release action is completed, ensuring the yaw accuracy.
- the method further includes:
- the hydraulic brake is controlled to hold the brake.
- the yaw system needs to be turned off. Since there is a response time for the yaw motor to stop yaw, after controlling the yaw motor to stop yaw and delaying the third preset time, it indicates that the yaw motor has stopped yaw, and the next step of yaw control can be performed, that is, to control the electromagnetic brake Brake. Similarly, the electromagnetic brake has a response time. After the electromagnetic brake starts to brake and delays the fourth preset time, it indicates that the electromagnetic brake has completed the brake action, and the hydraulic brake can be controlled to close the yaw system.
- the third preset time and the fourth preset time may be specifically set according to actual conditions, which are not specifically limited in this embodiment of the present application.
- the hydraulic brake is controlled to hold the brake, and the hydraulic brake is controlled to be released after a preset time period.
- the hydraulic brake is controlled to release the pressure so that the yaw system can release pressure to the normal pressure range.
- the hydraulic brake can be controlled to release the brake, and then it is further judged whether the yaw pressure is less than the first threshold, and if so, according to The method of the above embodiment controls the yaw motor to start yaw.
- the protection logic should continuously protect the fan operation.
- the yaw motor After the yaw motor starts yaw, if the yaw current is not greater than the second threshold and the wind direction change amount satisfies the wind direction change preset condition, the yaw motor is controlled to stop yaw.
- the load on the windward side can also represent the yaw load, and the load on the windward side is related to the change in the wind direction.
- the wind direction change meets the preset requirements, such as
- controlling the hydraulic brake to release the brake includes:
- the hydraulic brake is controlled to release the brake.
- the yaw overload protection status is that the overload protection is not turned on, it indicates that the current yaw load is normal and the yaw can be turned on; if the yaw overload protection status is that the overload protection has been turned on and the delay is greater than
- the preset protection time indicates that although the yaw load is too large when the overload protection is turned on, after a delay, the yaw load is already in the normal range, so the yaw can continue.
- the second threshold is determined based on the rated current of the yaw motor.
- the "yaw load avoidance" trigger threshold (ie, the second threshold) is set according to X times In, and the yaw current transformer monitors the yaw current value of a channel with a larger driving load.
- an embodiment of the present application also provides a yaw control method, which includes the following steps:
- the electromagnetic brake is controlled to release the brake, and the yaw motor is started after the electromagnetic brake release delay of 1s.
- the controller collects the yaw current and the yaw pressure, judges the yaw load in advance, and then formulates relevant strategies to accurately perform the yaw control, so as to avoid the failure of the yaw system and the failure of the wind turbine to generate electricity normally.
- the problem As shown in FIG. 3 , in the embodiment of the present application, the controller collects the yaw current and the yaw pressure, judges the yaw load in advance, and then formulates relevant strategies to accurately perform the yaw control, so as to avoid the failure of the yaw system and the failure of the wind turbine to generate electricity normally. The problem.
- the yaw control device provided by the present application will be described below, and the yaw control device described below and the yaw control method described above may refer to each other correspondingly.
- a yaw control device which includes:
- the first control unit 410 is configured to control the hydraulic brake to release the brake if the yaw overload protection state of the wind turbine meets the preset overload protection condition when the wind direction change is detected;
- the second control unit 420 is configured to control the yaw motor to start yaw if the yaw pressure is less than the first threshold after the hydraulic brake is released;
- the third control unit 430 is configured to control the yaw motor to stop yaw if the yaw current is greater than the second threshold after the yaw motor is turned on for yaw.
- the second control unit 420 is configured to:
- the electromagnetic brake is controlled to start the brake release
- the yaw motor is controlled to start yaw.
- a shutdown unit is also included for:
- the hydraulic brake is controlled to hold the brake.
- the second control unit 420 is further configured to: after the hydraulic brake is released, if the yaw pressure is not less than the first threshold, control the hydraulic brake to hold the brake, and in a pre-release After a set time period, the hydraulic brake is controlled to be released.
- the third control unit 430 is further configured to, after the yaw motor is turned on for yaw, if the yaw current is not greater than the second threshold value and the wind direction change amount satisfies the wind direction change preset condition, The yaw motor is controlled to stop yaw.
- the first control unit 410 is configured to:
- the hydraulic brake is controlled to release the brake .
- the second threshold is determined based on the rated current of the yaw motor.
- FIG. 5 is a schematic structural diagram of an electronic device provided by the present application.
- the electronic device may include: a processor (processor) 510, a communication interface (Communications Interface) 520, a memory (memory) 530 and a communication bus 540,
- the processor 510 , the communication interface 520 , and the memory 530 communicate with each other through the communication bus 540 .
- the processor 510 can call the logic instruction in the memory 530 to execute the yaw control method, the method includes: when the wind direction change is detected, if the yaw overload protection state of the wind turbine meets the preset overload protection condition, controlling the hydraulic pressure The brake is released; after the hydraulic brake is released, if the yaw pressure is less than the first threshold, the yaw motor is controlled to start the yaw; after the yaw motor is turned on, if the yaw current is greater than the second threshold , the yaw motor is controlled to stop yaw.
- the above-mentioned logic instructions in the memory 530 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
- the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .
- the present application also provides a computer program product, the computer program product comprising a computer program stored on a non-transitory computer-readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer
- the computer can execute the yaw control method provided by the above methods, and the method includes: when a change in the wind direction is detected, if the yaw overload protection state of the wind turbine meets the preset overload protection condition, controlling the hydraulic brake to release.
- the yaw motor After the hydraulic brake is released, if the yaw pressure is less than the first threshold, the yaw motor is controlled to turn on the yaw; after the yaw motor is turned on, if the yaw current is greater than the second threshold, the The yaw motor is controlled to stop yaw.
- the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored, the computer program being implemented by a processor to execute the yaw control methods provided above, the method comprising: When the wind direction change is detected, if the yaw overload protection state of the wind turbine meets the preset overload protection conditions, the hydraulic brake is controlled to release the brake; after the hydraulic brake is released, if the yaw pressure is less than the first threshold, the The yaw motor is controlled to start the yaw; after the yaw motor is turned on, if the yaw current is greater than the second threshold, the yaw motor is controlled to stop the yaw.
- the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
- each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
- the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments or some parts of the embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
一种偏航控制方法、装置、电子设备和存储介质,方法包括:在检测到风向变化时,若风力发电机的偏航过载保护状态满足预设条件,则控制液压制动器松闸;在液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航;在偏航电机开启偏航后,若偏航电流大于第二阈值,则控制偏航电机停止偏航。
Description
本申请涉及风力发电技术领域,尤其涉及一种偏航控制方法、装置、电子设备和存储介质。
风力发电是指把风的动能转为电能。风力发电的原理,是利用风力带动风车叶片旋转,再通过增速机将旋转的速度提升,来促使发电机发电。
风力发电机包括机舱、转子叶片、轴心、齿轮箱、发电机、偏航装置以及液压系统等。其中,偏航装置用于借助电动机转动机舱,以控制转子正对着风。对偏航装置来说,目前多采用常规的控制方法,硬件上依靠采集风向与扭缆开关等常用的控制量来控制偏航,但该方法无法全面采集信号,从而无法准确进行偏航控制,进而在偏航控制过程中易使偏航载荷过大导致偏航故障,进而影响风力发电机发电。
发明内容
本申请提供一种偏航控制方法、装置、电子设备和存储介质,用以解决现有技术中无法准确进行偏航控制的缺陷。
本申请提供一种偏航控制方法,包括:
在检测到风向变化时,若风力发电机的偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸;
在所述液压制动器松闸后,若偏航压力小于第一阈值,则控制偏 航电机开启偏航;
在所述偏航电机开启偏航后,若偏航电流大于第二阈值,则控制所述偏航电机停止偏航。
根据本申请提供的一种偏航控制方法,所述在所述液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航,包括:
在所述液压制动器开始松闸并延时第一预设时间后,若所述偏航压力小于第一阈值,则控制电磁制动器开始松闸;
在所述电磁制动器开始松闸并延时第二预设时间后,控制所述偏航电机开始偏航。
根据本申请提供的一种偏航控制方法,在控制所述偏航电机停止偏航之后,还包括:
在控制所述偏航电机停止偏航并延时第三预设时间后,控制电磁制动器抱闸;
在所述电磁制动器开始抱闸并延时第四预设时间后,控制所述液压制动器抱闸。
根据本申请提供的一种偏航控制方法,在所述液压制动器松闸后,若所述偏航压力不小于第一阈值,则控制所述液压制动器抱闸,并在预设时间段后控制所述液压制动器松闸。
根据本申请提供的一种偏航控制方法,在所述偏航电机开启偏航后,若所述偏航电流不大于第二阈值,且风向变化量满足风向变化预设条件,控制所述偏航电机停止偏航。
根据本申请提供的一种偏航控制方法,所述在检测到风向变化时,若偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸,包括:
在检测到风向变化时,若所述偏航过载保护状态为未开启过载保护或所述偏航过载保护状态为已开启过载保护且延时大于预设保护时间,则控制所述液压制动器松闸。
根据本申请提供的一种偏航控制方法,所述第二阈值是基于所述偏航电机的额定电流确定的。
本申请还提供一种偏航控制装置,包括:
第一控制单元,用于在检测到风向变化时,若风力发电机的偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸;
第二控制单元,用于在所述液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航;
第三控制单元,用于在所述偏航电机开启偏航后,若偏航电流大于第二阈值,则控制所述偏航电机停止偏航。
本申请还提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述任一种所述偏航控制方法的步骤。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述偏航控制方法的步骤。
本申请提供的偏航控制方法、装置、电子设备和存储介质,基于偏航压力可以实现快速准确判断偏航系统是否需要泄压,并控制偏航电机开启偏航;基于偏航电流,可以提前判断偏航载荷情况,并控制偏航电机停止偏航,从而避免特殊工况跳闸,导致偏航系统故障,减少人工运维成本。
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的偏航控制方法的流程示意图;
图2是本申请提供的又一偏航控制方法的流程示意图;
图3是本申请提供的偏航回路示意图;
图4是本申请提供的偏航控制装置的结构示意图;
图5是本申请提供的电子设备的结构示意图。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
对于偏航装置,目前多采用常规的控制方法,硬件上依靠采集风向与纽揽开关等常用的控制量来控制偏航,但该方法无法全面采集信号,从而无法准确进行偏航控制,进而在偏航控制过程中易使偏航载荷过大导致偏航故障,进而影响风力发电机发电。例如,当风力过大时,迎风面的载荷越大,由于传统方法中只能在偏航过载保护开启时,才会通过控制纽揽开关关闭偏航,无法提前判断偏航载荷是否过大,从而可能会导致在迎风面载荷过大时发电机组电缆产生过度的纽绞而使电缆断裂失效,或者可能会导致系统跳闸,进而影响风力发电机的正常发电。
对此,本申请提供一种偏航控制方法。图1是本申请提供的偏航控制方法的流程示意图,如图1所示,该方法包括如下步骤:
步骤110、在检测到风向变化时,若风力发电机的偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸。
具体地,风力发电机是将风能转换为机械功,机械功带动转子旋转,最终输出交流电的电力设备。风力发电机包括偏航系统,用于使 风力发电机组的风轮始终处于迎风状态风轮。当风向变化时,风力发电机组的偏航系统需要控制风轮正对风向,以充分利用风能,提高风力发电机组的发电效率。偏航过载保护是用于防止偏航载荷过大导致偏航系统故障,偏航过载保护状态是指偏航系统是否处于偏航过载保护中,若是,则表明偏航回路正处于过载保护中,若液压制动器松闸,会加大偏航载荷,因此需要使液压制动器处于抱闸状态;若否,则表明偏航回路未处于过载保护中,此时可以控制液压制动器松闸。
步骤120、在液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航。
具体地,在液压制动器松闸后,偏航回路系统会存在压力值,若压力值过大,则表明偏航系统需要泄压处理,此时开启偏航电机会增大偏航载荷。因此,在偏航压力小于第一阈值时,表明此时偏航系统压力正常,可以开始偏航发电机开始偏航。其中,第一阈值可以根据实际情况具体设置,本申请实施例对此不作具体限定。
由此可见,本申请实施例基于偏航压力,可以快速准确判断偏航系统是否需要泄压,并控制偏航电机开启偏航。相较于传统方法中在预设时间后认为偏航系统泄压完成的方法,本申请实施例可以直接根据偏航压力判断系统是否完成泄压,不仅准确度较高,而且避免传统方法中需要等待预设时间后再判断导致效率较低的问题。
步骤130、在偏航电机开启偏航后,若偏航电流大于第二阈值,则控制偏航电机停止偏航。
具体地,在偏航电机开启偏航后,偏航电机运转,偏航回路会存在电流,若偏航电流过大,则表明偏航载荷过大,此时需要停止偏航电机偏航。因此,当偏航电流大于第二阈值时,控制偏航电机停止偏航。其中,第二阈值可以根据偏航电机的额定电流确定,还可以根据实际情况具体设置,本申请实施例对此不作具体限定。
由此可见,本申请实施例基于偏航电流,可以提前判断偏航载荷 是否过大,若是,则控制偏航电机停止偏航,避免特殊工况如迎风面载荷过大时导致系统跳闸,减少人工运维成本。同时,基于偏航电流可以统计偏航运行的情况,从而便于后续提前判断偏航结构是否异常。
本申请实施例提供的偏航控制方法,基于偏航压力可以实现快速准确判断偏航系统是否需要泄压,并控制偏航电机开启偏航;基于偏航电流,可以提前判断偏航载荷情况,并控制偏航电机停止偏航,从而避免特殊工况跳闸,导致偏航系统故障,减少人工运维成本。
基于上述实施例,在液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航,包括:
在所述液压制动器开始松闸并延时第一预设时间后,若偏航压力小于第一阈值,则控制电磁制动器开始松闸;
在电磁制动器开始松闸并延时第二预设时间后,控制偏航电机开始偏航。
具体地,液压制动器松闸时存在响应时间,在液压制动器开始松闸并延时第一预设时间后,表明液压制动器松闸动作完成,可以进行下一步控制。在液压制动器松闸后,偏航回路存在压力,若压力值过大,则表明偏航系统需要泄压处理,此时开启偏航电机会增大偏航载荷。因此,在偏航压力小于第一阈值时,表明此时偏航系统压力正常,可以通过控制电磁制动器松闸,同样,由于电磁制动器松闸时存在响应时间,在电磁制动器开始松闸并延时第二预设时间后,表明电磁制动器松闸动作完成,可以启动偏航电机开始偏航。其中,第一预设时间和第二预设时间可以根据实际情况具体设置,本申请实施例对此不作具体限定。
由此可见,本申请实施例基于偏航压力,可以快速准确判断偏航系统是否需要泄压,并控制偏航电机开启偏航。相较于传统方法中在预设时间后认为偏航系统泄压完成的方法,本申请实施例可以直接根据偏航压力判断系统是否完成泄压,不仅准确度较高,而且避免传统 方法中需要等待预设时间后再判断导致效率较低的问题。同时,本申请实施例在液压制动器开始松闸后延时了第一预设时间后,再控制电磁制动器松闸,以及在电磁制动器开始松闸后延时了第二预设时间后,再控制偏航电机开始偏航,从而保证在液压制动器和电磁制动器能够在完成相应的松闸动作后,再执行下一步偏航控制,确保了偏航精度。
基于上述任一实施例,在控制偏航电机停止偏航之后,还包括:
在控制偏航电机停止偏航并延时第三预设时间后,控制电磁制动器抱闸;
在电磁制动器开始抱闸并延时第四预设时间后,控制液压制动器抱闸。
具体地,在控制偏航电机停止偏航之后,需要关闭偏航系统偏航。由于偏航电机停止偏航存在响应时间,在控制偏航电机停止偏航并延时第三预设时间后,表明偏航电机已停止偏航,可以进行下一步偏航控制,即控制电磁制动器抱闸。同样,电磁制动器抱闸存在响应时间,在电磁制动器开始抱闸并延时第四预设时间后,表明电磁制动器抱闸动作完成,可以控制液压制动器抱闸,以关闭偏航系统。其中,第三预设时间和第四预设时间可以根据实际情况具体设置,本申请实施例对此不作具体限定。
基于上述任一实施例,在液压制动器松闸后,若偏航压力不小于第一阈值,则控制液压制动器抱闸,并在预设时间段后控制液压制动器松闸。
具体地,在液压制动器松闸后,若偏航压力不小于第一阈值,表明偏航系统需要进行泄压,此时控制液压制动器抱闸,使得偏航系统能够泄压至正常压力范围。在液压制动器抱闸后的预设时间段后,可以认为偏航系统的压力已恢复至正常范围,因此可以控制液压制动器松闸,进而进一步判断偏航压力是否小于第一阈值,若是,则按照上述实施例的方法控制偏航电机开启偏航。
举例来说,若液压制动器松闸后,偏航压力一直无法小于设定压力值,则控制液压制动器抱闸,等待一定时间的偏航空白区后按启动条件继续尝试偏航动作,其中由于该期间风向变化快,因此保护逻辑要持续保护风机运行。
基于上述任一实施例,在偏航电机开启偏航后,若偏航电流不大于第二阈值,且风向变化量满足风向变化预设条件,控制偏航电机停止偏航。
具体地,除了偏航电流可以表征偏航载荷外,迎风面的载荷也可以表征偏航载荷,而迎风面的载荷与风向变化量相关,风向变化量越大,迎风面的载荷越大。当风向变化量满足预设要求时,如|10s风向|<2°,或当前10s风向×上一10s风向<0时,控制偏航电机停止偏航。
基于上述任一实施例,在检测到风向变化时,若偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸,包括:
在检测到风向变化时,若偏航过载保护状态为未开启过载保护或偏航过载保护状态为已开启过载保护且延时大于预设保护时间,则控制液压制动器松闸。
具体地,在检测到风向变化时,若偏航过载保护状态为未开启过载保护,则表明当前偏航载荷正常,可以开启偏航;若偏航过载保护状态为已开启过载保护且延时大于预设保护时间,表明虽然在开启过载保护时偏航载荷过大,但经过延时,偏航载荷已处于正常范围,因此可以继续偏航。
基于上述任一实施例,第二阈值是基于偏航电机的额定电流确定的。
具体地,根据偏航电机额定电流In,按照X倍In设置“偏航避载”触发门限值(即第二阈值),偏航电流互感器监测驱动载荷较大的一路偏航电流值。
基于上述任一实施例,如图2所示,本申请实施例还提供一种偏 航控制方法,该方法包括如下步骤:
首先基于风速风向判断是否要进行偏航,若是,则判断偏航过载保护状态是否为偏航过载保护=0,或偏航过载保护=1且延时大于60s,若是,则控制液压制动器松闸。
接着,在液压制动器松闸延时一定时间后,判断偏航压力是否小于第一阈值,若是,则控制电磁制动器松闸,并在电磁制动器松闸延时1s后,启动偏航电机。
随即,在偏航电机启动后,判断偏航电流在一定时间的有效值是否大于第二阈值,若是,则停止偏航电机并延时1s后控制电磁制动器抱闸,电磁制动器抱闸延时1s后控制液压制动器抱闸;若否,则判断风向变化量是否满足预设要求,如|10s风向|<2°,或当前10s风向×上一10s风向<0时,若是,则停止偏航电机并延时1s后控制电磁制动器抱闸,电磁制动器抱闸延时1s后控制液压制动器抱闸。
如图3所示,本申请实施例通过控制器采集偏航电流和偏航压力,提前判断偏航载荷,进而制定相关策略准确进行偏航控制,避免偏航系统故障导致风力发电机无法正常发电的问题。
下面对本申请提供的偏航控制装置进行描述,下文描述的偏航控制装置与上文描述的偏航控制方法可相互对应参照。
基于上述任一实施例,如图4所示,本申请提供一种偏航控制装置,该装置包括:
第一控制单元410,用于在检测到风向变化时,若风力发电机的偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸;
第二控制单元420,用于在所述液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航;
第三控制单元430,用于在所述偏航电机开启偏航后,若偏航电流大于第二阈值,则控制所述偏航电机停止偏航。
基于上述任一实施例,所述第二控制单元420,用于:
在所述液压制动器开始松闸并延时第一预设时间后,若所述偏航压力小于第一阈值,则控制电磁制动器开始松闸;
在所述电磁制动器开始松闸并延时第二预设时间后,控制所述偏航电机开始偏航。
基于上述任一实施例,还包括停机单元,用于:
在控制所述偏航电机停止偏航之后,在控制所述偏航电机停止偏航并延时第三预设时间后,控制所述电磁制动器抱闸;
在所述电磁制动器开始抱闸并延时第四预设时间后,控制所述液压制动器抱闸。
基于上述任一实施例,第二控制单元420,还用于:在所述液压制动器松闸后,若所述偏航压力不小于第一阈值,则控制所述液压制动器抱闸,并在预设时间段后控制所述液压制动器松闸。
基于上述任一实施例,第三控制单元430,还用于在所述偏航电机开启偏航后,若所述偏航电流不大于第二阈值,且风向变化量满足风向变化预设条件,控制所述偏航电机停止偏航。
基于上述任一实施例,所述第一控制单元410,用于:
在检测到风向变化时,若所述偏航过载保护状态为未开启过载保护或所述偏航过载保护状态为已开启过载保护且延时大于预设保护时间,则控制所述液压制动器松闸。
基于上述任一实施例,所述第二阈值是基于所述偏航电机的额定电流确定的。
图5是本申请提供的电子设备的结构示意图,如图5所示,该电子设备可以包括:处理器(processor)510、通信接口(Communications Interface)520、存储器(memory)530和通信总线540,其中,处理器510,通信接口520,存储器530通过通信总线540完成相互间的通信。处理器510可以调用存储器530中的逻辑指令,以执行偏航控制方法,该方法包括:在检测到风向变化时,若风力发电机的偏航过载保护状 态满足过载保护预设条件,则控制液压制动器松闸;在所述液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航;在所述偏航电机开启偏航后,若偏航电流大于第二阈值,则控制所述偏航电机停止偏航。
此外,上述的存储器530中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的偏航控制方法,该方法包括:在检测到风向变化时,若风力发电机的偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸;在所述液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航;在所述偏航电机开启偏航后,若偏航电流大于第二阈值,则控制所述偏航电机停止偏航。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的偏航控制方法,该方法包括:在检测到风向变化时,若风力发电机的偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸;在所述液压制动器松闸后,若偏航压力小于第一阈值,则控制 偏航电机开启偏航;在所述偏航电机开启偏航后,若偏航电流大于第二阈值,则控制所述偏航电机停止偏航。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (10)
- 一种偏航控制方法,其特征在于,包括:在检测到风向变化时,若风力发电机的偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸;在所述液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航;在所述偏航电机开启偏航后,若偏航电流大于第二阈值,则控制所述偏航电机停止偏航。
- 根据权利要求1所述的偏航控制方法,其特征在于,所述在所述液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航,包括:在所述液压制动器开始松闸并延时第一预设时间后,若所述偏航压力小于第一阈值,则控制电磁制动器开始松闸;在所述电磁制动器开始松闸并延时第二预设时间后,控制所述偏航电机开始偏航。
- 根据权利要求1所述的偏航控制方法,其特征在于,在控制所述偏航电机停止偏航之后,还包括:在控制所述偏航电机停止偏航并延时第三预设时间后,控制电磁制动器抱闸;在所述电磁制动器开始抱闸并延时第四预设时间后,控制所述液压制动器抱闸。
- 根据权利要求1至3任一项所述的偏航控制方法,其特征在于,在所述液压制动器松闸后,若所述偏航压力不小于第一阈值,则控制所述液压制动器抱闸,并在预设时间段后控制所述液压制动器松闸。
- 根据权利要求1至3任一项所述的偏航控制方法,其特征在于,在所述偏航电机开启偏航后,若所述偏航电流不大于第二阈值, 且风向变化量满足风向变化预设条件,控制所述偏航电机停止偏航。
- 根据权利要求1至3任一项所述的偏航控制方法,其特征在于,所述在检测到风向变化时,若偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸,包括:在检测到风向变化时,若所述偏航过载保护状态为未开启过载保护或所述偏航过载保护状态为已开启过载保护且延时大于预设保护时间,则控制所述液压制动器松闸。
- 根据权利要求1至3任一项至所述的偏航控制方法,其特征在于,所述第二阈值是基于所述偏航电机的额定电流确定的。
- 一种偏航控制装置,其特征在于,包括:第一控制单元,用于在检测到风向变化时,若风力发电机的偏航过载保护状态满足过载保护预设条件,则控制液压制动器松闸;第二控制单元,用于在所述液压制动器松闸后,若偏航压力小于第一阈值,则控制偏航电机开启偏航;第三控制单元,用于在所述偏航电机开启偏航后,若偏航电流大于第二阈值,则控制所述偏航电机停止偏航。
- 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至7任一项所述偏航控制方法的步骤。
- 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述偏航控制方法的步骤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES202290031A ES2923409B2 (es) | 2021-02-03 | 2021-08-10 | Metodo de control de guinada, dispositivo de control de guinada, dispositivo electronico y medio de almacenamiento |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110152516.8 | 2021-02-03 | ||
CN202110152516.8A CN112879222B (zh) | 2021-02-03 | 2021-02-03 | 偏航控制方法、装置、电子设备和存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022166144A1 true WO2022166144A1 (zh) | 2022-08-11 |
Family
ID=76057126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/111713 WO2022166144A1 (zh) | 2021-02-03 | 2021-08-10 | 偏航控制方法、装置、电子设备和存储介质 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN112879222B (zh) |
ES (1) | ES2923409B2 (zh) |
WO (1) | WO2022166144A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112879222B (zh) * | 2021-02-03 | 2022-04-01 | 三一重能股份有限公司 | 偏航控制方法、装置、电子设备和存储介质 |
CN114382645B (zh) * | 2021-12-03 | 2024-12-20 | 重庆海装风电工程技术有限公司 | 风力发电机组侧风偏航电气控制系统、方法及发电机组 |
CN116412071A (zh) * | 2021-12-31 | 2023-07-11 | 北京金风科创风电设备有限公司 | 偏航控制方法、控制器及风力发电机组 |
CN115419550B (zh) * | 2022-08-23 | 2025-03-18 | 中国船舶重工集团海装风电股份有限公司 | 一种偏航电机和偏航驱动的选取方法、装置及介质 |
CN115534904A (zh) * | 2022-10-19 | 2022-12-30 | 湖南星邦智能装备股份有限公司 | 一种电驱制动的方法、装置、设备及计算机存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102635501A (zh) * | 2012-04-27 | 2012-08-15 | 中船重工(重庆)海装风电设备有限公司 | 一种风机偏航控制方法、装置及系统 |
CN108035846A (zh) * | 2017-11-21 | 2018-05-15 | 明阳智慧能源集团股份公司 | 一种解决风力发电机组偏航空开跳闸的偏航控制方法 |
EP3409940A1 (en) * | 2017-05-30 | 2018-12-05 | General Electric Company | System and method for reducing loads during an idling or parked state of a wind turbine via yaw offset |
CN110159483A (zh) * | 2019-06-17 | 2019-08-23 | 三一重能有限公司 | 一种风机偏航控制方法、装置及风电机组 |
CN111749846A (zh) * | 2020-06-09 | 2020-10-09 | 明阳智慧能源集团股份公司 | 一种风力发电机组偏航控制方法 |
CN112879222A (zh) * | 2021-02-03 | 2021-06-01 | 三一重能股份有限公司 | 偏航控制方法、装置、电子设备和存储介质 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307653A (ja) * | 2005-04-26 | 2006-11-09 | Fuji Heavy Ind Ltd | 水平軸風車 |
-
2021
- 2021-02-03 CN CN202110152516.8A patent/CN112879222B/zh active Active
- 2021-08-10 ES ES202290031A patent/ES2923409B2/es active Active
- 2021-08-10 WO PCT/CN2021/111713 patent/WO2022166144A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102635501A (zh) * | 2012-04-27 | 2012-08-15 | 中船重工(重庆)海装风电设备有限公司 | 一种风机偏航控制方法、装置及系统 |
EP3409940A1 (en) * | 2017-05-30 | 2018-12-05 | General Electric Company | System and method for reducing loads during an idling or parked state of a wind turbine via yaw offset |
CN108035846A (zh) * | 2017-11-21 | 2018-05-15 | 明阳智慧能源集团股份公司 | 一种解决风力发电机组偏航空开跳闸的偏航控制方法 |
CN110159483A (zh) * | 2019-06-17 | 2019-08-23 | 三一重能有限公司 | 一种风机偏航控制方法、装置及风电机组 |
CN111749846A (zh) * | 2020-06-09 | 2020-10-09 | 明阳智慧能源集团股份公司 | 一种风力发电机组偏航控制方法 |
CN112879222A (zh) * | 2021-02-03 | 2021-06-01 | 三一重能股份有限公司 | 偏航控制方法、装置、电子设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112879222B (zh) | 2022-04-01 |
ES2923409B2 (es) | 2023-10-27 |
CN112879222A (zh) | 2021-06-01 |
ES2923409A2 (es) | 2022-09-27 |
ES2923409R1 (es) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022166144A1 (zh) | 偏航控制方法、装置、电子设备和存储介质 | |
CN102510946B (zh) | 频率响应风力涡轮机输出控制 | |
CN101009475B (zh) | 风轮机泄放负载系统及方法 | |
US10704534B2 (en) | Fault ride through method for load impact minimization | |
KR101450147B1 (ko) | 풍력발전기의 관성제어 방법 | |
CN107810322B (zh) | 通过风力涡轮机增加有功功率 | |
US8736094B2 (en) | Wind-turbine-generator control system, wind turbine generator, wind farm, and wind-turbine-generator control method | |
CN107630785B (zh) | 一种多种工况下的风电机组保护控制系统 | |
CN112963304B (zh) | 一种包含转矩控制的风电机组超速保护辅助控制方法 | |
CN111794911B (zh) | 风力发电机组偏航启动控制方法 | |
CN112761874B (zh) | 安全停机方法、系统和风力发电机 | |
EP2604854B1 (en) | Control method of a wind turbine generator | |
AU2010276473A1 (en) | Device and method for controlling wind turbine | |
CN103138289B (zh) | 一种高渗透率风电场的实时数字仿真建模的方法 | |
US10113533B2 (en) | System and method for reducing wind turbine oscillations caused by grid faults | |
EP4075628B1 (en) | Method and system for controlling continous high voltage ride-through and low voltage ride-through of permanent magnet direct-driven windturbine | |
CN103174587B (zh) | 风力发电系统及其控制方法 | |
CN106611964B (zh) | 双馈风电机组故障穿越与阻尼控制的协调控制方法及系统 | |
CN213270135U (zh) | 一种风力发电机组预防飞车自动应急偏航控制系统 | |
CN105863745B (zh) | 一种并网发变组出口开关跳闸时联跳汽轮机的控制方法 | |
CN110838724B (zh) | 一种防止风电场孤岛运行的控制方法及系统 | |
CN213870120U (zh) | 一种风电机组的转速失控的应急偏航电路 | |
CN202108661U (zh) | 用于风力发电的偏航控制系统 | |
CN109139370B (zh) | 风力发电机组偏航解缆控制方法及装置 | |
CN112392657A (zh) | 一种风力发电机组偏航电机预励磁控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21924144 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21924144 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/11/2023) |