[go: up one dir, main page]

WO2022163472A1 - Sensor cover and sensor - Google Patents

Sensor cover and sensor Download PDF

Info

Publication number
WO2022163472A1
WO2022163472A1 PCT/JP2022/001886 JP2022001886W WO2022163472A1 WO 2022163472 A1 WO2022163472 A1 WO 2022163472A1 JP 2022001886 W JP2022001886 W JP 2022001886W WO 2022163472 A1 WO2022163472 A1 WO 2022163472A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifouling layer
depth position
sensor cover
fluorine
group
Prior art date
Application number
PCT/JP2022/001886
Other languages
French (fr)
Japanese (ja)
Inventor
優樹 中川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2022163472A1 publication Critical patent/WO2022163472A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/26Windows; Cover glasses; Sealings therefor

Definitions

  • the present invention relates to sensor covers and sensors.
  • Patent Document 1 discloses a composition for forming a hard coat layer capable of forming a hard coat layer having excellent scratch resistance.
  • the sensor cover can be easily removed from insect stains.
  • the sensor cover may be hit by a stone or the like, and there is a demand for the sensor cover to be excellent in removing insect stains even after going through such a situation. Therefore, even after the sensor cover is subjected to the abrasion test, it is required to have excellent insect stain removability.
  • the present inventors investigated the properties of the substrate having the hard coat layer described in Patent Document 1, and found that the hard coat layer had insufficient insect stain removability after being subjected to a scratch test. found that further improvements were needed.
  • the sensor cover is required to have scratch resistance as described above, and it is also required that the sensor cover does not curl when left standing in a predetermined environment.
  • the present invention provides a sensor cover that is excellent in insect stain removability and scratch resistance, is also excellent in insect stain removability after conducting a scratch test, and further suppresses curling.
  • the task is to provide Another object of the present invention is to provide a sensor.
  • a sensor cover having a substrate and an antifouling layer,
  • the ratio of fluorine atoms on the surface of the antifouling layer opposite to the base material is 20 atomic% or more, 50 nm depth position, 100 nm depth position, 150 nm depth position, 200 nm depth position, and 250 nm depth along the thickness direction from the surface of the antifouling layer opposite to the substrate side.
  • the ratio of fluorine atoms at each position of the position is 20 atomic% or more
  • a sensor cover, wherein the antifouling layer has a thickness of 500 nm to 20 ⁇ m.
  • a sensor cover having a substrate and an antifouling layer,
  • the surface of the antifouling layer opposite to the substrate has a contact angle of 70° or more with respect to water and a contact angle of 40° or more with respect to methylene iodide, 50 nm depth position, 100 nm depth position, 150 nm depth position, 200 nm depth position, and 250 nm depth along the thickness direction from the surface of the antifouling layer opposite to the substrate side.
  • the contact angle to water at each position of the position is 70 ° or more, and the contact angle to methylene iodide is 40 ° or more
  • a sensor cover, wherein the antifouling layer has a thickness of 500 nm to 20 ⁇ m.
  • a sensor comprising the sensor cover according to any one of (1) to (9).
  • a sensor cover that is excellent in insect stain removability and scratch resistance, is also excellent in insect stain removability after conducting a scratch test, and further suppresses curling.
  • a sensor can also be provided according to the present invention.
  • a first embodiment of the sensor cover of the present invention is a sensor cover having a substrate and an antifouling layer, wherein the ratio of fluorine atoms on the surface of the antifouling layer opposite to the substrate is 20 atomic % or more. , along the thickness direction from the surface of the antifouling layer on the side opposite to the base material, at a depth of 50 nm, a depth of 100 nm, a depth of 150 nm, a depth of 200 nm, and The ratio of fluorine atoms at each position at a depth of 250 nm is 20 atomic % or more, and the antifouling layer has a thickness of 500 nm to 20 ⁇ m.
  • the ratio of fluorine atoms from the surface to the predetermined inside of the antifouling layer is within the predetermined range, so that the insect stain removability and scratch resistance, and the insect stain after the scratch test Excellent removability. Moreover, since the antifouling layer has a thickness within a predetermined range, it is excellent in scratch resistance and curl suppression.
  • a sensor cover 10 shown in FIG. 1 has a base material 12 and an antifouling layer 14 .
  • the substrate 12 and the antifouling layer 14 are in direct contact with each other.
  • Each member will be described in detail below.
  • the substrate plays a role of supporting the antifouling layer.
  • a transparent substrate is preferable as the substrate.
  • the transparent substrate is intended to be a substrate having a visible light and near-infrared light transmittance of 60% or more, preferably 80% or more, more preferably 90% or more. Note that visible light refers to light of 380 to 780 nm. Near-infrared light refers to light above 780 nm and 2500 nm.
  • the shape of the substrate is not particularly limited, and examples thereof include a flat plate shape and a hemispherical shape.
  • the type of base material is not particularly limited, and known base materials can be used, including plastic base materials and glass base materials.
  • a polymer is preferable as the material constituting the base material.
  • Examples of polymer films that can be used as a substrate include cellulose acylate films (e.g., cellulose triacetate film (refractive index: 1.48), cellulose diacetate film, cellulose acetate butyrate film, and cellulose acetate propionate film).
  • polyolefin films such as polyethylene and polypropylene
  • polyester films such as polyethylene terephthalate and polyethylene naphthalate
  • polyethersulfone films polyacrylic films such as polymethyl methacrylate, polyurethane films, polycarbonate films, polysulfone films, polyether films, poly Methylpentene film, polyether ketone film, (meth)acrylonitrile film
  • polymer film having an alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR, amorphous polyolefin (Zeonex: trade name) , manufactured by Zeon Corporation))).
  • the base material may contain various additives (for example, fine particles, plasticizers, UV inhibitors, deterioration inhibitors, release agents, etc.).
  • the thickness of the substrate is not particularly limited, but is preferably 10 to 5000 ⁇ m, more preferably 50 to 1000 ⁇ m.
  • the thickness of the base material is obtained by measuring the thickness of the base material at arbitrary 20 points with a contact-type film thickness meter (manufactured by Mitutoyo) and averaging the measured values. That is, the thickness of the substrate is the average thickness.
  • a contact-type film thickness meter manufactured by Mitutoyo
  • the measurement pressure is 0.1N.
  • the antifouling layer is a layer arranged on the substrate, and is preferably arranged as the outermost layer of the sensor cover.
  • the ratio of fluorine atoms on the surface of the antifouling layer opposite to the base material is 20 atomic % or more. More specifically, the ratio of fluorine atoms on the surface 14S of the antifouling layer 14 opposite to the substrate 12 side shown in FIG. 1 is 20 atomic % or more.
  • the fluorine atom ratio is preferably 30 atomic % or more, more preferably 36 atomic % or more, from the viewpoint that at least one of insect stain removability, scratch resistance, and insect stain removal after a scratch test is superior.
  • the upper limit is not particularly limited, it is often 55 atomic % or less, and more often 50 atomic % or less, from the viewpoint of handleability of the materials used.
  • the ratio of fluorine atoms is the ratio to the total amount of carbon atoms, fluorine atoms, oxygen atoms and nitrogen atoms on the surface of the antifouling layer.
  • the ratio of fluorine atoms on the surface of the antifouling layer can be confirmed by analysis by X-ray photoelectron spectroscopy (XPS). Specific analysis conditions are as follows. X-ray source: monochromatic Al- ⁇ Measurement area: F1s, C1s, O1s, N1s Take-off angle: 45°
  • the depth position of 50 nm along the thickness direction from the surface of the antifouling layer on the side opposite to the substrate side, the depth position of 50 nm, the depth position of 100 nm, the depth position of 150 nm, the depth position of 200 nm, and the depth position of 250 nm.
  • the ratio of fluorine atoms at each position of the depth position is 20 atomic % or more. More specifically, as shown in FIG.
  • a position of 100 nm is defined as a depth position D1
  • a position of 100 nm is defined as a depth position D2
  • a position of 150 nm is defined as a depth position D3
  • a position of 200 nm is defined as a depth position D4
  • a depth of 250 nm is defined as a depth position D4.
  • the depth position is defined as a depth position D5
  • the ratio of fluorine atoms at each depth position is 20 atomic % or more.
  • the ratio of the fluorine atoms , 20 atomic % or more is preferable, and 32 atomic % or more is more preferable, because at least one of the removal of insect stains after the abrasion test is superior.
  • the upper limit is not particularly limited, it is often 55 atomic % or less, and more often 50 atomic % or less, from the viewpoint of handleability of the materials used.
  • an etching process is performed from the surface of the antifouling layer to a predetermined depth position, and when the predetermined depth position is reached, at that position
  • a method of calculating the ratio of fluorine atoms by performing analysis by the above-mentioned X-ray photoelectron spectroscopy may be used.
  • the conditions for X-ray photoelectron spectroscopy are the same as those described above.
  • an etching process implements an Ar etching process.
  • the antifouling layer has a thickness of 500 nm to 20 ⁇ m, preferably 4 ⁇ m or more and less than 18 ⁇ m, more preferably 8 ⁇ m or more and less than 16 ⁇ m, from the viewpoint of the balance between scratch resistance and curl suppression.
  • the thickness of the antifouling layer is obtained by measuring the thickness of the entire sensor cover at 20 arbitrary positions with a contact-type film thickness meter (manufactured by Mitutoyo), and subtracting the thickness of the base material from the average value of these. Ask for it.
  • a contact terminal a cylindrical terminal having a bottom surface with a diameter of 0.5 cm is used. The measurement pressure is 0.1N.
  • the thickness of a base material is the thickness calculated by the method mentioned above.
  • the material contained in the antifouling layer is not particularly limited as long as it satisfies the above-mentioned requirements, but a fluorine-containing resin having a fluorine atom can be used because it easily satisfies the predetermined requirements.
  • a fluorine-containing resin having a repeating unit derived from a fluorine-containing monomer is particularly preferred.
  • the fluororesin may have repeating units derived from one type of fluoromonomer, or may have repeating units derived from two or more types of fluoromonomers.
  • the content of the repeating unit derived from the fluorine-containing monomer in the fluorine-containing resin is not particularly limited, but at least one of insect stain removability, scratch resistance, and insect stain removal after the scratch test is superior, so the fluorine-containing It is preferably 0.1 to 100% by mass, more preferably 5% by mass or more and less than 95% by mass, based on the total repeating units of the resin.
  • a fluorine-containing monomer has a polymerizable group.
  • the type of polymerizable group is not particularly limited, and examples thereof include a polymerizable unsaturated group, an epoxy group, an oxetane group, and the like, and a polymerizable unsaturated group is preferable from the viewpoint of reactivity.
  • Examples of the polymerizable unsaturated group include vinyl group, allyl group, styryl group, acryloyl group, and methacryloyl group, and from the viewpoint of reactivity, acryloyl group or methacryloyl group is more preferable.
  • the number of polymerizable groups (in particular, polymerizable unsaturated groups) possessed by the fluorine-containing monomer is not particularly limited, and is often 1 to 10. Two or more are preferred, three to six are more preferred, and five to six are even more preferred because at least one of the removals is superior.
  • the content of fluorine atoms in the fluorine-containing monomer is not particularly limited, and is often 20.0 to 60.0% by mass. From the point that one is superior, 35.0% by mass or more and less than 55.0% by mass is preferable, and 38.0 to 50.0% by mass is more preferable.
  • a compound represented by the formula (1) is preferable as the fluorine-containing monomer.
  • Formula (1) Rf ⁇ (L) m ⁇ Y ⁇ n
  • Rf represents an n-valent group containing at least a carbon atom and a fluorine atom.
  • Rf may further contain at least one of an oxygen atom and a hydrogen atom.
  • the group represented by Rf may be chain (linear or branched) or cyclic.
  • the number of carbon atoms contained in Rf is not particularly limited, but is preferably 1-10, more preferably 1-6.
  • Rf may have an oxygen atom, is preferably an n-valent hydrocarbon group having a fluorine atom, more preferably an n-valent hydrocarbon group having a fluorine atom.
  • Rf groups represented by formulas (2) to (7) are preferable.
  • p in formula (2) represents an integer of 1-5.
  • * represents a bonding position.
  • Each Y independently represents a polymerizable group.
  • Each L independently represents a divalent linking group.
  • the divalent linking group includes an alkylene group (preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms), an arylene group (preferably an arylene group having 6 to 10 carbon atoms). , —O—, —S—, —N(R)—, or combinations thereof.
  • Examples of the combined group include, for example, a group obtained by combining an alkylene group having 1 to 10 carbon atoms and -O-, -S- or N(R)-, an arylene group having 6 to 10 carbon atoms and -O Groups obtained by combining -, -S- or N(R)- can be mentioned.
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the alkylene group and arylene group represented by L are preferably substituted with a halogen atom, preferably with a fluorine atom.
  • L may contain an oxygen atom and is preferably an alkylene group having a fluorine atom, and may contain an oxygen atom and is more preferably an alkylene group having 1 to 6 carbon atoms and a fluorine atom.
  • fluorine-containing monomers examples include the following M-1 to M-16 described in paragraphs 0062 to 0065 of JP-A-2006-284761.
  • Cf in the following structural formula represents the content (% by mass) of fluorine atoms in the compound.
  • the fluorine-containing resin may have repeating units other than the repeating units derived from the fluorine-containing monomer (hereinafter also simply referred to as "other repeating units").
  • the fluororesin may have only one type of other repeating unit, or may have two or more types of other repeating units.
  • the content of other repeating units in the fluororesin is not particularly limited, but at least one of the insect stain removability, scratch resistance, and insect stain removal after the scratch test is superior, so that the total amount of the fluororesin is It is preferably 1 to 99.9% by mass, more preferably 5% by mass or more and less than 95% by mass, based on the repeating unit.
  • the other repeating unit is a polyfunctional monomer, which will be described later, the content of the repeating unit derived from the polyfunctional monomer is set to Therefore, 30% by mass or less is preferable.
  • repeating units include three or more polymerizable unsaturated groups that do not have fluorine atoms and are excellent in at least one of insect stain removability, scratch resistance, and insect stain removal after a scratch test.
  • a repeating unit derived from a polyfunctional monomer (hereinafter also simply referred to as "polyfunctional monomer") having a
  • Examples of the polymerizable unsaturated group possessed by the polyfunctional monomer include polymerizable unsaturated groups which the fluorine-containing monomer may possess.
  • the number of polymerizable unsaturated groups possessed by the polyfunctional monomer is 3 or more, and at least one of insect stain removability, scratch resistance, and insect stain removal after a scratch test is superior, and 3 to 6 are preferred. preferable.
  • An acryloyl group or a methacryloyl group is more preferred.
  • polyfunctional monomers examples include alkylene glycol (meth)acrylic acid diesters, polyoxyalkylene glycol (meth)acrylic acid diesters, polyhydric alcohol (meth)acrylic acid diesters, ethylene oxide or propylene oxide adducts ( meth)acrylic acid diesters, epoxy (meth)acrylates, urethane (meth)acrylates, polyester (meth)acrylates, and the like.
  • esters of polyhydric alcohol and (meth)acrylic acid are preferred.
  • pentaerythritol tetra(meth)acrylate pentaerythritol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, EO-modified trimethylolpropane tri(meth)acrylate, PO-modified trimethylolpropane tri(meth)acrylate, EO Modified phosphoric acid tri(meth)acrylate, trimethylolethane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate ) acrylate, dipentaerythritol hexa(meth)acrylate, pentaerythritol hexa(meth)acrylate, 1,2,3-chlorohexanet
  • the content of the fluorine-containing resin in the antifouling layer is not particularly limited, but at least one of insect stain removability, scratch resistance, and insect stain removal after the scratch test is superior, so that the total mass of the antifouling layer is On the other hand, 1 to 100% by mass is preferable, and 5% by mass or more and less than 95% by mass is more preferable.
  • the antifouling layer may contain materials other than the fluorine-containing resin described above.
  • the antifouling layer may contain inorganic particles.
  • inorganic particles include metal particles and metal oxide particles, and metal oxide particles are preferred from the viewpoint of transparency and scratch resistance.
  • Materials constituting the metal oxide particles include, for example, silica (silicon oxide), titanium oxide, and zirconium oxide, with silica being preferred.
  • the average particle size of the inorganic particles is not particularly limited, it is preferably 5 nm or more and less than 500 ⁇ m, more preferably 10 nm or more and 300 ⁇ m, from the viewpoint of transparency.
  • the content of the inorganic particles in the antifouling layer is not particularly limited, but at least one of insect stain removability, scratch resistance, and insect stain removal after the scratch test is superior, so that the total mass of the antifouling layer is 1% by mass or more and less than 50% by mass, and more preferably 10% by mass or more and less than 40% by mass.
  • other materials include, for example, surface modifiers, UV inhibitors, and deterioration inhibitors.
  • the surface modifier is used for the purpose of improving the leveling property during application of the antifouling layer-forming composition described below, and for the purpose of enhancing the slip resistance of the antifouling layer to improve scratch resistance.
  • surface modifiers include various additives that modify surface physical properties and are commercially available under the names of surface conditioners, leveling agents, smoothness imparting agents, antifouling agents, and the like. Among them, fluorine-based surface modifiers and silicone-based surface modifiers are preferred.
  • perfluoroalkyl group-containing compounds such as perfluoroalkyl group-containing carboxylic acids or salts thereof, perfluoroalkyl group-containing sulfonic acids or salts thereof, perfluoroalkyl group-containing phosphoric acids or phosphoric acid esters thereof, A perfluoroalkenyl group-containing compound in which the perfluoroalkyl group is replaced with a perfluoroalkenyl group, a perfluoroether group-containing compound in which the above perfluoroalkyl group is replaced with a perfluoroether group, a fluorine-containing group/lipophilic group-containing oligomer, Oligomer containing fluorine group/hydrophilic group, oligomer containing fluorine group/hydrophilic group/lipophilic group, oligomer containing fluorine group/hydrophilic group/lipophilic group, fluorine group/UV reactive group containing oligomer Examples include oligo
  • Specific products include perfluorobutanesulfonate (product name “Megafac F-114”, manufactured by DIC Corporation), perfluoroalkyl group-containing carboxylate (product name “Megafac F-410”, DIC Co., Ltd.), perfluoroalkyl group/phosphoric acid group-containing phosphate ester (product name “Megafac F-510”, DIC Corporation), modified perfluoropolyether (product name “OPTOOL DAC-HP”) , manufactured by Daikin Industries, Ltd., product names "KY-108", “KY-164", "X-71-195", "KY-1900", manufactured by Shin-Etsu Chemical Co., Ltd.), fluorine-containing group, parent Oily group-containing oligomers (product names “Megaface F-281”, “Megaface F-253”, “Megaface F-251” manufactured by DIC Corporation), fluorine-containing group/hydrophilic group-containing oligomers (product names "Megafac
  • the first embodiment of the sensor cover of the present invention may have layers other than the substrate and antifouling layer described above.
  • an adhesion layer may be provided between the substrate and the antifouling layer to improve adhesion between the two.
  • the manufacturing method of the first embodiment of the sensor cover of the present invention is not particularly limited, and known methods can be used. Among them, a method of applying a composition for forming an antifouling layer containing a fluorine-containing monomer onto a substrate and subjecting the obtained coating film to a curing treatment is preferable. The above method will be described in detail below.
  • the antifouling layer-forming composition contains a fluorine-containing monomer.
  • the fluorine-containing monomer is as described above.
  • the antifouling layer-forming composition may contain materials other than the fluorine-containing monomer. Other materials include, for example, the polyfunctional monomers described above.
  • the contents of the fluorine-containing monomer and the polyfunctional monomer in the antifouling layer-forming composition are not particularly limited, and may be appropriately adjusted so that the content of the fluorine-containing resin in the antifouling layer is within the preferred range. is preferred.
  • the antifouling layer-forming composition may contain a polymerization initiator.
  • Polymerization initiators include known polymerization initiators, including photopolymerization initiators and thermal polymerization initiators, with photopolymerization initiators being preferred.
  • Photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins.
  • the content of the polymerization initiator in the antifouling layer-forming composition is not particularly limited, but is preferably 0.1% by mass or more and less than 15% by mass with respect to the total mass of the monomers in the antifouling layer-forming composition. 1 mass % or more and less than 10 mass % is more preferable.
  • the antifouling layer-forming composition may contain a solvent.
  • the type of solvent is not particularly limited, and includes water and organic solvents.
  • organic solvents include ketone-based solvents, alcohol-based solvents, ester-based solvents, and fluorine-based solvents.
  • the content of the solvent in the antifouling layer-forming composition is not particularly limited, it is preferably 10% by mass or more and less than 95% by mass based on the total mass of the antifouling layer-forming composition from the viewpoint of coating properties. % by mass or more and less than 80% by mass is more preferable.
  • the coating method is not particularly limited, and examples thereof include spin coating, spray coating, brush coating, roller coating, bar coating, and dip coating.
  • a treatment for drying the coating film applied on the base material may be performed.
  • the solvent can be removed from the coating film by performing a drying treatment.
  • the procedure of curing treatment applied to the coating film is not particularly limited, and includes photocuring treatment and heat curing treatment. Among them, light irradiation treatment is preferable, and ultraviolet irradiation treatment is more preferable.
  • a light source such as an ultraviolet lamp is used for ultraviolet irradiation.
  • the irradiation amount of light eg, ultraviolet rays
  • the atmosphere for the light irradiation is not particularly limited, and the light irradiation may be carried out in the air, or the light irradiation may be carried out in an inert atmosphere.
  • a second embodiment of the sensor cover of the present invention is a sensor cover having a base material and an antifouling layer, wherein the contact angle to water on the surface of the antifouling layer opposite to the base material side is 70°. and a contact angle to methylene iodide of 40° or more, and a depth of 50 nm and a depth of 100 nm along the thickness direction from the surface of the antifouling layer opposite to the substrate side.
  • 150 nm depth position, 200 nm depth position, and 250 nm depth position the contact angle to water at each position is 70° or more, and the contact angle to methylene iodide is 40° or more.
  • the antifouling layer has a thickness of 500 nm to 20 ⁇ m.
  • the base material of the second embodiment of the sensor cover of the present invention is the same as the base material in the above-described first embodiment, so the description is omitted.
  • the surface of the antifouling layer opposite to the substrate has a contact angle to water of 70° or more and a contact angle to methylene iodide of 40° or more.
  • the contact angle with water is preferably 80° or more, more preferably 85° or more, in that at least one of insect stain removability, scratch resistance, and insect stain removal after a scratch test is superior.
  • the upper limit of the contact angle with water is not particularly limited, and is often 150° or less, more often 120° or less.
  • a contact angle meter (“CA-X” type contact angle meter, manufactured by Kyowa Interface Science Co., Ltd.) , in a dry state (20 ° C./65% RH), using pure water as a liquid, a droplet with a diameter of 1.0 mm is made at the tip of the needle, and this is brought into contact with the surface of the antifouling layer to form the antifouling layer Make a droplet on top.
  • an angle formed by a tangent line to the surface of the antifouling layer and the surface of the antifouling layer at the point where the antifouling layer and the liquid contact is defined as a contact angle, which is the angle on the side containing the liquid, and is measured.
  • the contact angle with respect to methylene iodide is preferably 55° or more from the viewpoint that at least one of insect stain removability, scratch resistance, and insect stain removal after a scratch test is superior.
  • the upper limit of the contact angle to methylene iodide is not particularly limited, and is often 140° or less, more often 100° or less.
  • the contact angle to water is 70° or more
  • the contact angle to methylene iodide is 40° or more. More specifically, from the surface 14S of the antifouling layer on the side opposite to the substrate side, along the thickness direction (toward the substrate side), the depth position of 50 nm is defined as the depth position D1, and the depth position is 100 nm.
  • a depth position of 150 nm is defined as a depth position D2, a depth position of 150 nm is defined as a depth position D3, a depth position of 200 nm is defined as a depth position D4, and a depth position of 250 nm is defined as a depth position D5.
  • the contact angle to water at each depth position is 70° or more, and the contact angle to methylene iodide is 40° or more.
  • the water contact angle , 80° or more is preferable, and 82° or more is more preferable, because at least one of the removal of insect stains after the abrasion test is more excellent.
  • the upper limit of the contact angle with water is not particularly limited, and is often 150° or less, more often 120° or less. Further, at any of the above positions (depth position D1, depth position D2, depth position D3, depth position D4, depth position D5), the contact angle to the methylene iodide was An angle of 55° or more is preferable in that at least one of abrasion resistance and removal of insect stains after the abrasion test is superior.
  • the upper limit of the contact angle to methylene iodide is not particularly limited, and is often 140° or less, more often 100° or less.
  • the thickness of the antifouling layer is 500 nm to 20 ⁇ m, preferably 4 ⁇ m or more and less than 18 ⁇ m, and more preferably 8 ⁇ m or more and less than 16 ⁇ m, in terms of the balance between scratch resistance and curl suppression. more preferred.
  • the thickness of the antifouling layer is obtained by measuring the thickness of the entire sensor cover at 20 arbitrary positions with a contact-type film thickness meter (manufactured by Mitutoyo), and subtracting the thickness of the base material from the average value. Ask for it.
  • a contact terminal a cylindrical terminal having a bottom surface with a diameter of 0.5 cm is used. The measurement pressure is 0.1N.
  • the thickness of a base material is the thickness calculated by the method mentioned above.
  • the materials contained in the antifouling layer and the manufacturing method of the antifouling layer of the second embodiment of the sensor cover of the present invention are the same as the materials contained in the antifouling layer and the manufacturing method of the antifouling layer of the first embodiment described above. Therefore, the description is omitted.
  • the sensor cover of the present invention (first and second embodiments described above) can be suitably used as a cover for protecting a light-emitting element such as a laser and a camera.
  • the sensor cover of the present invention may have a three-dimensional shape.
  • the manufacturing method of the sensor cover includes a method of manufacturing a flat sensor cover and then molding it so as to have a three-dimensional shape, and a method of forming an antifouling layer on a base material having a three-dimensional shape. There is a method of pasting.
  • the antifouling layer may be formed by applying the antifouling layer-forming composition onto a substrate having a three-dimensional shape by spray coating or dip coating.
  • the senor includes a light emitting element and a light receiving element.
  • the type of light-emitting element included in the sensor is not particularly limited, and an optimum light-emitting element is selected according to the intended use.
  • Examples of light-emitting devices include semiconductor light-emitting devices such as laser diodes and light-emitting diodes.
  • the light-receiving element is configured to output a light-receiving signal corresponding to the amount of incident light. Examples of light-receiving elements include photodiodes, phototransistors, and photoresistors.
  • the sensor may also include other components (eg, a processor), if desired.
  • a sensor including the sensor cover of the present invention can be used in a variety of applications.
  • a sensor including the sensor cover of the present invention is mounted on a vehicle as a moving body, irradiates a laser beam in front of the moving body by two-dimensional scanning, and emits laser light from the moving body to the front of the moving body. can measure the distance to an object in
  • the sensor cover of the present invention is preferably used for sensors containing lasers with emission wavelengths of 800 to 2000 nm, and more preferably for sensors containing lasers with emission wavelengths of 905 nm or 1550 nm.
  • the sensor to which the sensor cover of the present invention is applied is not limited to a vehicle sensor. can also be used for
  • Example 1 The following compound M-1 (the numerical value in the structural formula represents the content of fluorine atoms in the compound.) 94 parts by mass, and the initiator (Irgacure (registered trademark) 127 (manufactured by BASF Corporation)) 6 mass and the resulting mixture was mixed with methyl ethyl ketone to prepare composition 1 for forming an antifouling layer.
  • the content of methyl ethyl ketone in the composition for forming an antifouling layer was 95% by mass with respect to the total mass of the composition for forming an antifouling layer.
  • a composition 1 for forming an antifouling layer was applied onto a polycarbonate film (Technolloy C000 (registered trademark), film thickness 125 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd.) as a transparent substrate using a wire bar.
  • the resulting coating film on the transparent substrate was dried at 100°C. Thereafter, while purging with nitrogen to create an atmosphere with an oxygen concentration of 1.0% by volume or less, an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W/cm was used with an illuminance of 400 mW/cm 2 and an irradiation amount.
  • the coating film was cured by irradiating ultraviolet rays of 500 mJ/cm 2 to form an antifouling layer having a thickness of 10 ⁇ m, and a sensor cover 1 was obtained.
  • Examples 2 to 14, Comparative Examples 1 to 4 As shown in Table 1, which will be described later, the type and amount of the fluorine-containing monomer used were changed, other materials were used, and the thickness of the formed antifouling layer was adjusted. According to the same procedure, sensor covers 2 to 14 and sensor covers C1 to C4 were obtained. The content of methyl ethyl ketone in the antifouling layer-forming composition prepared in each of Examples and Comparative Examples was 95% by mass with respect to the total mass of the antifouling layer-forming composition.
  • Compound M-12 (see the structural formula below. The numerical value in the structural formula represents the content of fluorine atoms in the compound.)
  • Compound M-16 (see the structural formula below. The numerical value in the structural formula represents the content of fluorine atoms in the compound.)
  • Megafac RS-90 Megafac RS-90 (manufactured by DIC Corporation)
  • DPHA KAYARAD DPHA (mixture of dipentaerythritol hexaacrylate/dipentaerythritol pentaacrylate) (manufactured by Nippon Kayaku Co., Ltd.)
  • PET-30 KAYARAD PET-30 (mixture of pentaerythritol triacrylate/pentaerythritol tetraacrylate) (manufactured by Nippon Kayaku Co., Ltd.)
  • Particles Organosilica sol (registered trademark) MEK-AC-2140Z (manufactured by Nissan Chemical Industries, Ltd.)
  • the "number of polymerizable groups” column represents the number of polymerizable groups in the fluorine-containing monomer.
  • the "fluorine content” column represents the content (% by mass) of fluorine atoms in the fluorine-containing monomer.
  • the “Thickness ( ⁇ m)” column represents the thickness ( ⁇ m) of the antifouling layer. A method for measuring the thickness of the antifouling layer will be described in detail later.
  • ⁇ Measurement> (Ratio of fluorine atoms on the surface of the antifouling layer opposite to the substrate side)
  • the ratio of fluorine atoms on the surface opposite to the transparent substrate side of the antifouling layer of the sensor cover obtained in each example and comparative example was confirmed by analysis by X-ray photoelectron spectroscopy. Specific analysis conditions are as follows. The results are collectively shown in Table 2, which will be described later.
  • the ratio of fluorine atoms is the ratio (atomic %) to the total amount of fluorine atoms, carbon atoms, oxygen atoms and nitrogen atoms on the surface of the antifouling layer opposite to the transparent substrate.
  • X-ray source monochromatic Al- ⁇ Measurement area: F1s, C1s, O1s, N1s Take-off angle: 45°
  • Predetermined depth positions from the surface opposite to the transparent substrate side of the antifouling layer of the sensor cover obtained in each example and comparative example depths from the surface of 50 nm, 100 nm, 150 nm, 200 nm, and 250 nm each position, and when it reaches a predetermined depth position, at that position (ratio of fluorine atoms on the surface opposite to the base material side of the antifouling layer).
  • Analysis by X-ray photoelectron spectroscopy was performed under the conditions of , and the ratio of fluorine atoms was calculated.
  • the etching process implemented Ar etching process. The results are collectively shown in Table 2, which will be described later.
  • the contact angle was defined as the angle formed by the tangent to the liquid surface and the surface of the antifouling layer at the point where the antifouling layer and the liquid were in contact, and the angle on the side containing the liquid was taken as the contact angle.
  • the contact angle to methylene iodide on the surface of the antifouling layer of the sensor cover opposite to the transparent base material side was measured in the same manner except that methylene iodide was used instead of water. The results are collectively shown in Table 3, which will be described later.
  • the thickness of the antifouling layer of the sensor cover obtained in each example and comparative example was measured by measuring the thickness of the entire sensor cover at 20 arbitrary positions with a contact-type film thickness meter (manufactured by Mitutoyo). It was obtained by subtracting the thickness of the transparent substrate from the averaged value.
  • a contact terminal a cylindrical terminal having a bottom surface with a diameter of 0.5 cm is used. The measurement pressure is 0.1N.
  • the thickness (average thickness) of the transparent base material was obtained by measuring the thickness of the transparent base material at 20 arbitrary positions with a contact-type film thickness meter (manufactured by Mitutoyo) and averaging the results.
  • Example 5 As shown in Table 4, it was confirmed that the sensor cover of the present invention exhibited the desired effect. Further, from a comparison between Example 5 and other examples, it was confirmed that when the number of polymerizable groups (polymerizable unsaturated groups) in the fluorine-containing monomer is 5 or more, the scratch resistance is more excellent. Further, from the comparison of Examples 12 to 14, it was confirmed that when the content of the inorganic particles was 10% by mass or more, the scratch resistance was more excellent. Further, from comparison with Examples 8 to 10, it was confirmed that when the content of the polyfunctional monomer was 30% by mass or less, the curl was more excellent.
  • the sensor cover obtained in each example was placed in front of an optical system sensor such as a commercially available camera or LiDAR with the antifouling layer facing outward to fabricate the sensor.
  • the resulting sensor was confirmed to be functional.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention provides a sensor cover and a sensor that have excellent bug stain removal properties and scratch resistance properties, have excellent bug stain removal properties after performing a scratch test, and suppress the generation of curling. This sensor cover has a base material and an antifouling layer. The percentage of fluorine atoms on the surface of the antifouling layer opposite the base material side is 20 atomic% or more. The percentages of fluorine atoms is 20 atomic% or more at each of a 50 nm depth position, a 100 nm depth position, a 150 nm depth position, a 200 nm depth position, and a 250 nm depth position, from the surface of the antifouling layer opposite the base material side, and along the thickness direction. The thickness of the antifouling layer is 500 nm to 20 μm.

Description

センサーカバー、センサーsensor cover, sensor
 本発明は、センサーカバー、および、センサーに関する。 The present invention relates to sensor covers and sensors.
 自動車および自動二輪車などの車両の運転支援技術を実現するためには、車両の外部の情報を検出するためのセンサーを車体に搭載する必要がある。そのようなセンサーとしては、例えば、LiDAR(Light Detection and Ranging)システムが挙げられる。
 上記のようなセンサーは、各種汚れによって検知性能が低下してしまう恐れがあるため、レーザーなどの発光素子を保護するセンサーカバーが発光素子の前面に配置される場合が多い。
 このようなセンサーカバーとしては、耐擦傷性に優れることが求められる。例えば、特許文献1においては、耐擦傷性に優れるハードコート層を形成できるハードコート層形成用組成物が開示されている。
In order to realize driving support technology for vehicles such as automobiles and motorcycles, it is necessary to mount a sensor on the vehicle body for detecting information outside the vehicle. Such sensors include, for example, LiDAR (Light Detection and Ranging) systems.
Since there is a risk that the detection performance of the sensors described above may be degraded by various types of contamination, a sensor cover that protects the light-emitting element such as a laser is often placed in front of the light-emitting element.
Such a sensor cover is required to have excellent scratch resistance. For example, Patent Document 1 discloses a composition for forming a hard coat layer capable of forming a hard coat layer having excellent scratch resistance.
特許5651921号Patent No. 5651921
 一方で、車両などへの適用を考慮すると、センサーカバーには虫汚れが容易に除去できることが望まれている。つまり、高速で移動する車両のセンサーが配置される先頭部には、昆虫などが衝突して「虫汚れ」が生じやすい。そのため、この虫汚れが容易に除去されることが求められている。つまり、虫汚れ除去性に優れることが求められている。
 また、車両が高速移動する際にセンサーカバーには石などがぶつかることがあり、このような状況を経た後でも虫汚れ除去性に優れることが求められている。そのため、センサーカバーに擦傷試験を施した後においても、虫汚れ除去性に優れることが求められている。
 本発明者らは、特許文献1に記載されているハードコート層を有する基材の特性に関して検討を行ったところ、ハードコート層に擦傷試験を施した後の虫汚れ除去性が不十分であり、さらなる改良が必要であることを知見した。
On the other hand, considering the application to vehicles and the like, it is desired that the sensor cover can be easily removed from insect stains. In other words, insects collide with the head of a vehicle moving at high speed, where the sensor is located, and "insect stains" are likely to occur. Therefore, it is demanded that this insect stain be easily removed. In other words, it is required to be excellent in insect stain removability.
In addition, when the vehicle moves at high speed, the sensor cover may be hit by a stone or the like, and there is a demand for the sensor cover to be excellent in removing insect stains even after going through such a situation. Therefore, even after the sensor cover is subjected to the abrasion test, it is required to have excellent insect stain removability.
The present inventors investigated the properties of the substrate having the hard coat layer described in Patent Document 1, and found that the hard coat layer had insufficient insect stain removability after being subjected to a scratch test. found that further improvements were needed.
 なお、上述した虫汚れ除去性と共に、さらに、センサーカバーに関しては、上述したように耐擦傷性が求められると共に、所定の環境に静置した際にセンサーカバーがカールしないことも求められている。 In addition to the above-mentioned insect stain removability, the sensor cover is required to have scratch resistance as described above, and it is also required that the sensor cover does not curl when left standing in a predetermined environment.
 本発明は、上記実情に鑑みて、虫汚れ除去性および耐擦傷性に優れ、かつ、擦傷試験を実施した後の虫汚れ除去性にも優れ、さらに、カールの発生が抑制される、センサーカバーを提供することを課題とする。
 また、本発明は、センサーも提供することを課題とする。
In view of the above circumstances, the present invention provides a sensor cover that is excellent in insect stain removability and scratch resistance, is also excellent in insect stain removability after conducting a scratch test, and further suppresses curling. The task is to provide
Another object of the present invention is to provide a sensor.
 本発明者らは、以下の構成により上記課題が解決できることを見出した。 The inventors have found that the above problems can be solved by the following configuration.
(1) 基材と、防汚層とを有するセンサーカバーであって、
 防汚層の基材側とは反対側の表面のフッ素原子の比率が20atomic%以上であり、
 防汚層の基材側とは反対側の表面から、厚み方向に沿って、50nmの深さ位置、100nmの深さ位置、150nmの深さ位置、200nmの深さ位置、および、250nmの深さ位置のそれぞれの位置におけるフッ素原子の比率が、いずれも20atomic%以上であり、
 防汚層の厚みが500nm~20μmである、センサーカバー。
(2) 基材と、防汚層とを有するセンサーカバーであって、
 防汚層の基材側とは反対側の表面での水に対する接触角が70°以上であり、かつ、ヨウ化メチレンに対する接触角が40°以上であり、
 防汚層の基材側とは反対側の表面から、厚み方向に沿って、50nmの深さ位置、100nmの深さ位置、150nmの深さ位置、200nmの深さ位置、および、250nmの深さ位置のそれぞれの位置における水に対する接触角が70°以上であり、かつ、ヨウ化メチレンに対する接触角が40°以上であり、
 防汚層の厚みが500nm~20μmである、センサーカバー。
(3) 防汚層が、含フッ素モノマー由来の繰り返し単位を有する含フッ素樹脂を含む、(1)または(2)に記載のセンサーカバー。
(4) 含フッ素モノマーが重合性不飽和基を有する、(3)に記載のセンサーカバー。
(5) 含フッ素モノマーが、3~6つの重合性不飽和基を有する、(3)または(4)に記載のセンサーカバー。
(6) 含フッ素モノマー中のフッ素原子の含有量が、38.0~50.0質量%である、(3)~(5)のいずれかに記載のセンサーカバー。
(7) 含フッ素樹脂が、フッ素原子を有さず、重合性不飽和基を3つ以上有する多官能モノマー由来の繰り返し単位を有する、(3)~(6)のいずれかに記載のセンサーカバー。
(8) 防汚層が、無機粒子を含む、(1)~(7)のいずれかに記載のセンサーカバー。
(9) 無機粒子が、シリカ粒子である、(8)に記載のセンサーカバー。
(10) (1)~(9)のいずれかに記載のセンサーカバーを含む、センサー。
(1) A sensor cover having a substrate and an antifouling layer,
The ratio of fluorine atoms on the surface of the antifouling layer opposite to the base material is 20 atomic% or more,
50 nm depth position, 100 nm depth position, 150 nm depth position, 200 nm depth position, and 250 nm depth along the thickness direction from the surface of the antifouling layer opposite to the substrate side. The ratio of fluorine atoms at each position of the position is 20 atomic% or more,
A sensor cover, wherein the antifouling layer has a thickness of 500 nm to 20 μm.
(2) A sensor cover having a substrate and an antifouling layer,
The surface of the antifouling layer opposite to the substrate has a contact angle of 70° or more with respect to water and a contact angle of 40° or more with respect to methylene iodide,
50 nm depth position, 100 nm depth position, 150 nm depth position, 200 nm depth position, and 250 nm depth along the thickness direction from the surface of the antifouling layer opposite to the substrate side. The contact angle to water at each position of the position is 70 ° or more, and the contact angle to methylene iodide is 40 ° or more,
A sensor cover, wherein the antifouling layer has a thickness of 500 nm to 20 μm.
(3) The sensor cover according to (1) or (2), wherein the antifouling layer contains a fluorine-containing resin having a repeating unit derived from a fluorine-containing monomer.
(4) The sensor cover according to (3), wherein the fluorine-containing monomer has a polymerizable unsaturated group.
(5) The sensor cover according to (3) or (4), wherein the fluorine-containing monomer has 3 to 6 polymerizable unsaturated groups.
(6) The sensor cover according to any one of (3) to (5), wherein the fluorine atom content in the fluorine-containing monomer is 38.0 to 50.0% by mass.
(7) The sensor cover according to any one of (3) to (6), wherein the fluorine-containing resin has repeating units derived from a polyfunctional monomer having no fluorine atoms and having three or more polymerizable unsaturated groups. .
(8) The sensor cover according to any one of (1) to (7), wherein the antifouling layer contains inorganic particles.
(9) The sensor cover according to (8), wherein the inorganic particles are silica particles.
(10) A sensor comprising the sensor cover according to any one of (1) to (9).
 本発明によれば、虫汚れ除去性および耐擦傷性に優れ、かつ、擦傷試験を実施した後の虫汚れ除去性にも優れ、さらに、カールの発生が抑制される、センサーカバーを提供できる。
 また、本発明によれば、センサーも提供できる。
According to the present invention, it is possible to provide a sensor cover that is excellent in insect stain removability and scratch resistance, is also excellent in insect stain removability after conducting a scratch test, and further suppresses curling.
A sensor can also be provided according to the present invention.
センサーカバーの第1実施形態の一例を示す模式図である。It is a schematic diagram which shows an example of 1st Embodiment of a sensor cover.
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。まず、本明細書で用いられる用語について説明する。 The present invention will be described in detail below. In this specification, the numerical range represented by "-" means a range including the numerical values described before and after "-" as lower and upper limits. First, terms used in this specification will be explained.
<<第1実施形態>>
 本発明のセンサーカバーの第1実施形態は、基材と、防汚層とを有するセンサーカバーであって、防汚層の基材側とは反対側の表面のフッ素原子の比率が20atomic%以上であり、防汚層の基材側とは反対側の表面から、厚み方向に沿って、50nmの深さ位置、100nmの深さ位置、150nmの深さ位置、200nmの深さ位置、および、250nmの深さ位置のそれぞれの位置におけるフッ素原子の比率が、いずれも20atomic%以上であり、防汚層の厚みが500nm~20μmである。
 上記第1実施形態においては、防汚層の表面から所定の内部に渡ってフッ素原子の比率が所定の範囲であることにより、虫汚れ除去性および耐擦傷性、並びに、擦傷試験後の虫汚れ除去性にも優れる。また、防汚層の厚みが所定の範囲であることにより、耐擦傷性およびカール抑制に優れる。
 以下、図面を用いて、上記形態について説明する。なお、以下に示す図においては、発明の内容が理解しやすいように実際のデータとは縮尺などが異なる形で記載してある。
<<First Embodiment>>
A first embodiment of the sensor cover of the present invention is a sensor cover having a substrate and an antifouling layer, wherein the ratio of fluorine atoms on the surface of the antifouling layer opposite to the substrate is 20 atomic % or more. , along the thickness direction from the surface of the antifouling layer on the side opposite to the base material, at a depth of 50 nm, a depth of 100 nm, a depth of 150 nm, a depth of 200 nm, and The ratio of fluorine atoms at each position at a depth of 250 nm is 20 atomic % or more, and the antifouling layer has a thickness of 500 nm to 20 μm.
In the first embodiment, the ratio of fluorine atoms from the surface to the predetermined inside of the antifouling layer is within the predetermined range, so that the insect stain removability and scratch resistance, and the insect stain after the scratch test Excellent removability. Moreover, since the antifouling layer has a thickness within a predetermined range, it is excellent in scratch resistance and curl suppression.
The above embodiment will be described below with reference to the drawings. It should be noted that the figures shown below are shown in a form different in scale from actual data so that the contents of the invention can be easily understood.
 図1に示す、センサーカバー10は、基材12と、防汚層14とを有する。図1においては、基材12と防汚層14とは直接接しているがこの態様に限定されず、両者の間に他の層が配置されていてもよい。
 以下、それぞれの部材について詳述する。
A sensor cover 10 shown in FIG. 1 has a base material 12 and an antifouling layer 14 . In FIG. 1, the substrate 12 and the antifouling layer 14 are in direct contact with each other.
Each member will be described in detail below.
<基材>
 基材は、防汚層を支持する役割を果たす。
 基材としては、透明基材が好ましい。なお、透明基材とは、可視光および近赤外光の透過率が60%以上である基材を意図し、その透過率は80%以上が好ましく、90%以上がより好ましい。
 なお、可視光とは、380~780nmの光のことをいう。近赤外光とは、780nm超2500nmの光のことをいう。
<Base material>
The substrate plays a role of supporting the antifouling layer.
A transparent substrate is preferable as the substrate. The transparent substrate is intended to be a substrate having a visible light and near-infrared light transmittance of 60% or more, preferably 80% or more, more preferably 90% or more.
Note that visible light refers to light of 380 to 780 nm. Near-infrared light refers to light above 780 nm and 2500 nm.
 基材の形状は特に制限されず、例えば、平板状、および、半球状などが挙げられる。 The shape of the substrate is not particularly limited, and examples thereof include a flat plate shape and a hemispherical shape.
 基材の種類は特に制限されず、公知の基材を使用でき、プラスチック基材、および、ガラス基材などが挙げられる。 The type of base material is not particularly limited, and known base materials can be used, including plastic base materials and glass base materials.
 基材を構成する材料としては、ポリマーが好ましい。
 基材として用いることのできるポリマーフィルムとしては、例えば、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、および、セルロースアセテートプロピオネートフィルム)、ポリエチレンおよびポリプロピレンなどのポリオレフィンフィルム、ポリエチレンテレフタレートおよびポリエチレンナフタレートなどのポリエステルフィルム、ポリエーテルスルホンフィルム、ポリメチルメタクリレートなどのポリアクリルフィルム、ポリウレタンフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、並びに、脂環式構造を有するポリマーのフィルム(ノルボルネン系樹脂(アートン:商品名、JSR社製、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)))が挙げられる。
A polymer is preferable as the material constituting the base material.
Examples of polymer films that can be used as a substrate include cellulose acylate films (e.g., cellulose triacetate film (refractive index: 1.48), cellulose diacetate film, cellulose acetate butyrate film, and cellulose acetate propionate film). films), polyolefin films such as polyethylene and polypropylene, polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyethersulfone films, polyacrylic films such as polymethyl methacrylate, polyurethane films, polycarbonate films, polysulfone films, polyether films, poly Methylpentene film, polyether ketone film, (meth)acrylonitrile film, and polymer film having an alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR, amorphous polyolefin (Zeonex: trade name) , manufactured by Zeon Corporation))).
 基材には、種々の添加剤(例えば、微粒子、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、など)が含まれていてもよい。 The base material may contain various additives (for example, fine particles, plasticizers, UV inhibitors, deterioration inhibitors, release agents, etc.).
 基材の厚みは特に制限されないが、10~5000μmが好ましく、50~1000μmがより好ましい。
 基材の厚みは、接触式の膜厚計(ミツトヨ社製)にて基材の任意の20点の厚みを測定し、これらを平均して求める。つまり、基材の厚みは、平均厚みである。接触端子は、底面が直径0.5cmの円柱状の端子を用いる。測定圧は0.1Nとする。
The thickness of the substrate is not particularly limited, but is preferably 10 to 5000 μm, more preferably 50 to 1000 μm.
The thickness of the base material is obtained by measuring the thickness of the base material at arbitrary 20 points with a contact-type film thickness meter (manufactured by Mitutoyo) and averaging the measured values. That is, the thickness of the substrate is the average thickness. As the contact terminal, a columnar terminal having a bottom surface of 0.5 cm in diameter is used. The measurement pressure is 0.1N.
<防汚層>
 防汚層は、基材上に配置される層であり、センサーカバーの最外層として配置されることが好ましい。
<Anti-fouling layer>
The antifouling layer is a layer arranged on the substrate, and is preferably arranged as the outermost layer of the sensor cover.
 防汚層の基材側とは反対側の表面のフッ素原子の比率は、20atomic%以上である。より具体的には、図1に示す、防汚層14の基材12側とは反対側の表面14Sにおけるフッ素原子の比率が、20atomic%以上である。
 上記フッ素原子の比率は、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、30atomic%以上が好ましく、36atomic%以上がより好ましい。上限は特に制限されないが、使用される材料の取り扱い性の点から、55atomic%以下の場合が多く、50atomic%以下の場合がより多い。
 なお、上記フッ素原子の比率は、防汚層表面の炭素原子、フッ素原子、酸素原子、および、窒素原子の合計量に対する割合である。
 上記防汚層の表面におけるフッ素原子の比率は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)による分析で確認できる。具体的な分析条件は、以下のとおりである。
X線源:単色化Al-α
測定領域:F1s、C1s、O1s、N1s
取り出し角:45°
The ratio of fluorine atoms on the surface of the antifouling layer opposite to the base material is 20 atomic % or more. More specifically, the ratio of fluorine atoms on the surface 14S of the antifouling layer 14 opposite to the substrate 12 side shown in FIG. 1 is 20 atomic % or more.
The fluorine atom ratio is preferably 30 atomic % or more, more preferably 36 atomic % or more, from the viewpoint that at least one of insect stain removability, scratch resistance, and insect stain removal after a scratch test is superior. Although the upper limit is not particularly limited, it is often 55 atomic % or less, and more often 50 atomic % or less, from the viewpoint of handleability of the materials used.
The ratio of fluorine atoms is the ratio to the total amount of carbon atoms, fluorine atoms, oxygen atoms and nitrogen atoms on the surface of the antifouling layer.
The ratio of fluorine atoms on the surface of the antifouling layer can be confirmed by analysis by X-ray photoelectron spectroscopy (XPS). Specific analysis conditions are as follows.
X-ray source: monochromatic Al-α
Measurement area: F1s, C1s, O1s, N1s
Take-off angle: 45°
 また、防汚層の基材側とは反対側の表面から、厚み方向に沿って、50nmの深さ位置、100nmの深さ位置、150nmの深さ位置、200nmの深さ位置、および、250nmの深さ位置のそれぞれの位置におけるフッ素原子の比率が、いずれも20atomic%以上である。より具体的には、図1に示すように、防汚層14の基材12側とは反対側の表面14Sから、厚み方向に沿って(基材12側に向かって)、50nmの深さの位置を深さ位置D1とし、100nmの深さの位置を深さ位置D2とし、150nmの深さの位置を深さ位置D3とし、200nmの深さの位置を深さ位置D4とし、250nmの深さ位置を深さ位置D5とした際に、それぞれの深さ位置におけるフッ素原子の比率が、いずれも20atomic%以上である。
 上記いずれの位置(深さ位置D1、深さ位置D2、深さ位置D3、深さ位置D4、深さ位置D5)においても、上記フッ素原子の比率は、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、20atomic%以上が好ましく、32atomic%以上がより好ましい。上限は特に制限されないが、使用される材料の取り扱い性の点から、55atomic%以下の場合が多く、50atomic%以下の場合がより多い。
In addition, along the thickness direction from the surface of the antifouling layer on the side opposite to the substrate side, the depth position of 50 nm, the depth position of 100 nm, the depth position of 150 nm, the depth position of 200 nm, and the depth position of 250 nm. The ratio of fluorine atoms at each position of the depth position is 20 atomic % or more. More specifically, as shown in FIG. 1, along the thickness direction (toward the substrate 12 side) from the surface 14S on the side opposite to the substrate 12 side of the antifouling layer 14, a depth of 50 nm A position of 100 nm is defined as a depth position D1, a position of 100 nm is defined as a depth position D2, a position of 150 nm is defined as a depth position D3, a position of 200 nm is defined as a depth position D4, and a depth of 250 nm is defined as a depth position D4. When the depth position is defined as a depth position D5, the ratio of fluorine atoms at each depth position is 20 atomic % or more.
At any of the above positions (depth position D1, depth position D2, depth position D3, depth position D4, depth position D5), the ratio of the fluorine atoms , 20 atomic % or more is preferable, and 32 atomic % or more is more preferable, because at least one of the removal of insect stains after the abrasion test is superior. Although the upper limit is not particularly limited, it is often 55 atomic % or less, and more often 50 atomic % or less, from the viewpoint of handleability of the materials used.
 上記各深さ位置におけるフッ素原子の比率の算出方法としては、まず、防汚層の表面から所定の深さ位置にまでエッチング処理を行い、所定の深さ位置まで到達した際に、その位置において上述したX線光電子分光法による分析を実施してフッ素原子の比率を算出する方法が挙げられる。X線光電子分光法の条件は、上述した条件と同じである。
 また、エッチング処理は、Arエッチング処理を実施する。
As a method for calculating the ratio of fluorine atoms at each depth position, first, an etching process is performed from the surface of the antifouling layer to a predetermined depth position, and when the predetermined depth position is reached, at that position A method of calculating the ratio of fluorine atoms by performing analysis by the above-mentioned X-ray photoelectron spectroscopy may be used. The conditions for X-ray photoelectron spectroscopy are the same as those described above.
Moreover, an etching process implements an Ar etching process.
 防汚層の厚みは、500nm~20μmであり、耐擦傷性とカール抑制とのバランスの点から、4μm以上18μm未満が好ましく、8μm以上16μm未満がより好ましい。
 上記防汚層の厚みは、接触式の膜厚計(ミツトヨ社製)にてセンサーカバー全体の厚みを任意の位置にて20点測定し、これらを平均した値から、基材の厚みを差し引くことで求める。接触端子は底面が直径0.5cmの円柱状の端子を用いる。測定圧は0.1Nとする。
 なお、基材の厚みは、上述した方法により算出される厚みである。
The antifouling layer has a thickness of 500 nm to 20 μm, preferably 4 μm or more and less than 18 μm, more preferably 8 μm or more and less than 16 μm, from the viewpoint of the balance between scratch resistance and curl suppression.
The thickness of the antifouling layer is obtained by measuring the thickness of the entire sensor cover at 20 arbitrary positions with a contact-type film thickness meter (manufactured by Mitutoyo), and subtracting the thickness of the base material from the average value of these. Ask for it. As the contact terminal, a cylindrical terminal having a bottom surface with a diameter of 0.5 cm is used. The measurement pressure is 0.1N.
In addition, the thickness of a base material is the thickness calculated by the method mentioned above.
 防汚層に含まれる材料は、上述した要件を満たせば特に制限されないが、所定の要件を満たしやすい点から、フッ素原子を有する含フッ素樹脂が挙げられる。特に、含フッ素モノマー由来の繰り返し単位を有する含フッ素樹脂が好ましい。
 含フッ素樹脂は、1種の含フッ素モノマー由来の繰り返し単位のみを有していてもよいし、2種以上の含フッ素モノマー由来の繰り返し単位を有していてもよい。
The material contained in the antifouling layer is not particularly limited as long as it satisfies the above-mentioned requirements, but a fluorine-containing resin having a fluorine atom can be used because it easily satisfies the predetermined requirements. A fluorine-containing resin having a repeating unit derived from a fluorine-containing monomer is particularly preferred.
The fluororesin may have repeating units derived from one type of fluoromonomer, or may have repeating units derived from two or more types of fluoromonomers.
 含フッ素樹脂中における含フッ素モノマー由来の繰り返し単位の含有量は特に制限されないが、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、含フッ素樹脂の全繰り返し単位に対して、0.1~100質量%が好ましく、5質量%以上95質量%未満がより好ましい。 The content of the repeating unit derived from the fluorine-containing monomer in the fluorine-containing resin is not particularly limited, but at least one of insect stain removability, scratch resistance, and insect stain removal after the scratch test is superior, so the fluorine-containing It is preferably 0.1 to 100% by mass, more preferably 5% by mass or more and less than 95% by mass, based on the total repeating units of the resin.
 含フッ素モノマーは、重合性基を有する。
 重合性基の種類は特に制限されず、例えば、重合性不飽和基、エポキシ基、および、オキセタン基などが挙げられ、反応性の点から、重合性不飽和基が好ましい。
 重合性不飽和基としては、例えば、ビニル基、アリル基、スチリル基、アクリロイル基、および、メタクリロイル基が挙げられ、反応性の点から、アクリロイル基、または、メタクリロイル基がより好ましい。
A fluorine-containing monomer has a polymerizable group.
The type of polymerizable group is not particularly limited, and examples thereof include a polymerizable unsaturated group, an epoxy group, an oxetane group, and the like, and a polymerizable unsaturated group is preferable from the viewpoint of reactivity.
Examples of the polymerizable unsaturated group include vinyl group, allyl group, styryl group, acryloyl group, and methacryloyl group, and from the viewpoint of reactivity, acryloyl group or methacryloyl group is more preferable.
 含フッ素モノマーが有する重合性基(特に、重合性不飽和基)の数は特に制限されず、1~10つの場合が多く、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、2つ以上が好ましく、3~6つがより好ましく、5~6つがさらに好ましい。 The number of polymerizable groups (in particular, polymerizable unsaturated groups) possessed by the fluorine-containing monomer is not particularly limited, and is often 1 to 10. Two or more are preferred, three to six are more preferred, and five to six are even more preferred because at least one of the removals is superior.
 含フッ素モノマー中のフッ素原子の含有量は特に制限されず、20.0~60.0質量%の場合が多く、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、35.0質量%以上55.0質量%未満が好ましく、38.0~50.0質量%がより好ましい。 The content of fluorine atoms in the fluorine-containing monomer is not particularly limited, and is often 20.0 to 60.0% by mass. From the point that one is superior, 35.0% by mass or more and less than 55.0% by mass is preferable, and 38.0 to 50.0% by mass is more preferable.
 含フッ素モノマーとしては、式(1)で表される化合物が好ましい。
 式(1) Rf-{(L)-Y}
 Rfは、少なくとも炭素原子およびフッ素原子を含むn価の基を表す。
 Rfは、さらに、酸素原子および水素原子の少なくともいずれかを含んでもよい。
 Rfで表される基は、鎖状(直鎖状、または、分岐状)であってもよいし、環状であってもよい。
 Rfに含まれる炭素数は特に制限されないが、1~10が好ましく、1~6がより好ましい。
 Rfとしては、酸素原子を有していてもよく、フッ素原子を有するn価の炭化水素基が好ましく、フッ素原子を有するn価の炭化水素基がより好ましい。
A compound represented by the formula (1) is preferable as the fluorine-containing monomer.
Formula (1) Rf−{(L) m −Y} n
Rf represents an n-valent group containing at least a carbon atom and a fluorine atom.
Rf may further contain at least one of an oxygen atom and a hydrogen atom.
The group represented by Rf may be chain (linear or branched) or cyclic.
The number of carbon atoms contained in Rf is not particularly limited, but is preferably 1-10, more preferably 1-6.
Rf may have an oxygen atom, is preferably an n-valent hydrocarbon group having a fluorine atom, more preferably an n-valent hydrocarbon group having a fluorine atom.
 Rfで表される基としては、例えば、式(2)~(7)で表される基が好ましい。式(2)中のpは、1~5の整数を表す。式(2)~(7)中、*は結合位置を表す。 As the group represented by Rf, for example, groups represented by formulas (2) to (7) are preferable. p in formula (2) represents an integer of 1-5. In formulas (2) to (7), * represents a bonding position.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 Yは、それぞれ独立に、重合性基を表す。重合性基としては、重合性不飽和基が好ましく、アクリロイル基、メタクリロイル基、アリル基、α-フルオロアクリロイル基、および、-C(O)OCH=CHからなる群から選ばれる基が好ましく、アクリロイル基またはメタクリロイル基がより好ましい。 Each Y independently represents a polymerizable group. The polymerizable group is preferably a polymerizable unsaturated group, preferably a group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, an α-fluoroacryloyl group, and -C(O)OCH= CH2 , An acryloyl group or a methacryloyl group is more preferred.
 Lは、それぞれ独立に、2価の連結基を表す。2価の連結基としては、アルキレン基(好ましくは炭素数1~10のアルキレン基、より好ましくは炭素数1~6のアルキレン基)、アリーレン基(好ましくは、炭素数6~10のアリーレン基)、-O-、-S-、-N(R)-、または、これらを組み合わせた基が挙げられる。上記組み合わせた基としては、例えば、炭素数1~10のアルキレン基と-O-、-S-またはN(R)-とを組み合わせて得られる基、炭素数6~10のアリーレン基と-O-、-S-またはN(R)-とを組み合わせて得られる基が挙げられる。Rは、水素原子または炭素数1~5のアルキル基を表す。
 Lで表されるアルキレン基およびアリーレン基はハロゲン原子で置換されていることが好ましく、フッ素原子で置換されていることが好ましい。
 Lとしては、酸素原子を含んでいてもよく、フッ素原子を有するアルキレン基が好ましく、酸素原子を含んでいてもよく、フッ素原子を有する炭素数1~6のアルキレン基がより好ましい。
Each L independently represents a divalent linking group. The divalent linking group includes an alkylene group (preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms), an arylene group (preferably an arylene group having 6 to 10 carbon atoms). , —O—, —S—, —N(R)—, or combinations thereof. Examples of the combined group include, for example, a group obtained by combining an alkylene group having 1 to 10 carbon atoms and -O-, -S- or N(R)-, an arylene group having 6 to 10 carbon atoms and -O Groups obtained by combining -, -S- or N(R)- can be mentioned. R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
The alkylene group and arylene group represented by L are preferably substituted with a halogen atom, preferably with a fluorine atom.
L may contain an oxygen atom and is preferably an alkylene group having a fluorine atom, and may contain an oxygen atom and is more preferably an alkylene group having 1 to 6 carbon atoms and a fluorine atom.
 mは、0または1を表す。
 nは、3以上の整数を表す。なかでも、3~10が好ましく、3~6がより好ましく、5~6がさらに好ましい。
m represents 0 or 1;
n represents an integer of 3 or more. Of these, 3 to 10 are preferred, 3 to 6 are more preferred, and 5 to 6 are even more preferred.
 含フッ素モノマーとしては、例えば、特開2006-284761号公報の段落0062~0065に記載の下記M-1~M-16が挙げられる。なお、以下の構造式中のCfは、化合物中のフッ素原子の含有量(質量%)を表す。 Examples of fluorine-containing monomers include the following M-1 to M-16 described in paragraphs 0062 to 0065 of JP-A-2006-284761. In addition, Cf in the following structural formula represents the content (% by mass) of fluorine atoms in the compound.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 含フッ素樹脂は、上述した含フッ素モノマー由来の繰り返し単位以外の他の繰り返し単位(以下、単に「他の繰り返し単位」ともいう。)を有していてもよい。
 含フッ素樹脂は、1種の他の繰り返し単位のみを有していてもよいし、2種以上の他の繰り返し単位を有していてもよい。
The fluorine-containing resin may have repeating units other than the repeating units derived from the fluorine-containing monomer (hereinafter also simply referred to as "other repeating units").
The fluororesin may have only one type of other repeating unit, or may have two or more types of other repeating units.
 含フッ素樹脂中における他の繰り返し単位の含有量は特に制限されないが、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、含フッ素樹脂の全繰り返し単位に対して、1~99.9質量%が好ましく、5質量%以上95質量%未満がより好ましい。
 なお、他の繰り返し単位が後述する多官能モノマーの場合、センサーカバーのカールの発生がより抑制される点で、多官能モノマー由来の繰り返し単位の含有量が、含フッ素樹脂の全繰り返し単位に対して、30質量%以下が好ましい。
The content of other repeating units in the fluororesin is not particularly limited, but at least one of the insect stain removability, scratch resistance, and insect stain removal after the scratch test is superior, so that the total amount of the fluororesin is It is preferably 1 to 99.9% by mass, more preferably 5% by mass or more and less than 95% by mass, based on the repeating unit.
In the case where the other repeating unit is a polyfunctional monomer, which will be described later, the content of the repeating unit derived from the polyfunctional monomer is set to Therefore, 30% by mass or less is preferable.
 他の繰り返し単位としては、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、フッ素原子を有さず、重合性不飽和基を3つ以上有する多官能モノマー(以下、単に「多官能モノマー」ともいう。)由来の繰り返し単位が好ましい。 Other repeating units include three or more polymerizable unsaturated groups that do not have fluorine atoms and are excellent in at least one of insect stain removability, scratch resistance, and insect stain removal after a scratch test. A repeating unit derived from a polyfunctional monomer (hereinafter also simply referred to as "polyfunctional monomer") having a
 上記多官能モノマーが有する重合性不飽和基としては、含フッ素モノマーが有していてもよい重合性不飽和基が挙げられる。
 多官能モノマーが有する重合性不飽和基の数は3つ以上であり、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、3~6つが好ましい。
Examples of the polymerizable unsaturated group possessed by the polyfunctional monomer include polymerizable unsaturated groups which the fluorine-containing monomer may possess.
The number of polymerizable unsaturated groups possessed by the polyfunctional monomer is 3 or more, and at least one of insect stain removability, scratch resistance, and insect stain removal after a scratch test is superior, and 3 to 6 are preferred. preferable.
 多官能モノマーが有する重合性不飽和基は特に制限されず、アクリロイル基、メタクリロイル基、アリル基、α-フルオロアクリロイル基、および、-C(O)OCH=CHからなる群から選ばれる基が好ましく、アクリロイル基またはメタクリロイル基がより好ましい。 The polymerizable unsaturated group possessed by the polyfunctional monomer is not particularly limited, and a group selected from the group consisting of an acryloyl group, a methacryloyl group, an allyl group, an α-fluoroacryloyl group, and -C(O)OCH= CH2 . An acryloyl group or a methacryloyl group is more preferred.
 多官能モノマーとしては、アルキレングリコールの(メタ)アクリル酸ジエステル類、ポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類、多価アルコールの(メタ)アクリル酸ジエステル類、エチレンオキシドまたはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類、エポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、および、ポリエステル(メタ)アクリレート類などが挙げられる。
 なかでも、多価アルコールと(メタ)アクリル酸とのエステル類が好ましい。例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-クロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート、および、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレートなどが挙げられる。
 上記(メタ)アクリレートは、アクリレートとメタアクリレートとを含む総称である。
Examples of polyfunctional monomers include alkylene glycol (meth)acrylic acid diesters, polyoxyalkylene glycol (meth)acrylic acid diesters, polyhydric alcohol (meth)acrylic acid diesters, ethylene oxide or propylene oxide adducts ( meth)acrylic acid diesters, epoxy (meth)acrylates, urethane (meth)acrylates, polyester (meth)acrylates, and the like.
Among them, esters of polyhydric alcohol and (meth)acrylic acid are preferred. For example, pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, EO-modified trimethylolpropane tri(meth)acrylate, PO-modified trimethylolpropane tri(meth)acrylate, EO Modified phosphoric acid tri(meth)acrylate, trimethylolethane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate ) acrylate, dipentaerythritol hexa(meth)acrylate, pentaerythritol hexa(meth)acrylate, 1,2,3-chlorohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate, and caprolactone-modified tris(acryloxyethyl) isocyanate nurate and the like.
The (meth)acrylate is a generic term including acrylate and methacrylate.
 防汚層中における含フッ素樹脂の含有量は特に制限されないが、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、防汚層全質量に対して、1~100質量%が好ましく、5質量%以上95質量%未満がより好ましい。 The content of the fluorine-containing resin in the antifouling layer is not particularly limited, but at least one of insect stain removability, scratch resistance, and insect stain removal after the scratch test is superior, so that the total mass of the antifouling layer is On the other hand, 1 to 100% by mass is preferable, and 5% by mass or more and less than 95% by mass is more preferable.
 防汚層は、上述した含フッ素樹脂以外の他の材料を含んでいてもよい。
 例えば、防汚層は、無機粒子を含んでいてもよい。
 無機粒子としては、例えば、金属粒子、および、金属酸化物粒子が挙げられ、透明性および耐擦傷性の点から、金属酸化物粒子が好ましい。金属酸化物粒子を構成する材料としては、例えば、シリカ(酸化ケイ素)、酸化チタン、および、酸化ジルコニウムなどが挙げられ、シリカが好ましい。
 無機粒子の平均粒子径は特に制限されないが、透明性の点から、5nm以上500μm未満が好ましく、10nm以上300μmがより好ましい。
The antifouling layer may contain materials other than the fluorine-containing resin described above.
For example, the antifouling layer may contain inorganic particles.
Examples of inorganic particles include metal particles and metal oxide particles, and metal oxide particles are preferred from the viewpoint of transparency and scratch resistance. Materials constituting the metal oxide particles include, for example, silica (silicon oxide), titanium oxide, and zirconium oxide, with silica being preferred.
Although the average particle size of the inorganic particles is not particularly limited, it is preferably 5 nm or more and less than 500 μm, more preferably 10 nm or more and 300 μm, from the viewpoint of transparency.
 防汚層中における無機粒子の含有量は特に制限されないが、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、防汚層全質量に対して、1質量%以上50質量%未満が好ましく、10質量%以上40質量%未満がより好ましい。 The content of the inorganic particles in the antifouling layer is not particularly limited, but at least one of insect stain removability, scratch resistance, and insect stain removal after the scratch test is superior, so that the total mass of the antifouling layer is 1% by mass or more and less than 50% by mass, and more preferably 10% by mass or more and less than 40% by mass.
 他の材料としては、上述した無機粒子以外に、例えば、表面改質剤、紫外線防止剤、および、劣化防止剤などが挙げられる。 In addition to the inorganic particles described above, other materials include, for example, surface modifiers, UV inhibitors, and deterioration inhibitors.
 表面改質剤は、後述する防汚層形成用組成物の塗布時のレベリング性を高める目的や、防汚層の滑り性を高めて耐擦傷性を高める目的などのために用いられる。
 表面改質剤としては、表面調整剤、レベリング剤、スベリ性付与剤、および、防汚性付与剤などの名称で市販されている、表面物性を改質する各種添加剤が挙げられる。それらのうち、フッ素系表面改質剤およびシリコーン系表面改質剤が好適である。
 具体例としては、パーフルオロアルキル基含有カルボン酸若しくはその塩、パーフルオロアルキル基含有スルホン酸若しくはその塩、パーフルオロアルキル基含有リン酸若しくはそのリン酸エステルなどのパーフルオロアルキル基含有化合物、上記のパーフルオロアルキル基をパーフルオロアルケニル基に置き換えたパーフルオロアルケニル基含有化合物、上記のパーフルオロアルキル基をパーフルオロエーテル基に置き換えたパーフルオロエーテル基含有化合物、含フッ素基・親油性基含有オリゴマー、含フッ素基・親水性基含有オリゴマー、含フッ素基・親水性基・親油性基含有オリゴマー、含フッ素基・親水性基・親油性基・カルボキシル基含有オリゴマー、含フッ素基・UV反応性基含有オリゴマー、シリコーン鎖とポリアルキレンオキサイド鎖を有するシリコーン系ポリマーおよびオリゴマー、並びに、シリコーン鎖とポリエステル鎖とを有するシリコーン系ポリマーおよびオリゴマーが挙げられる。
 具体的な製品として、パーフルオロブタンスルホン酸塩(製品名「メガファックF-114」、DIC(株)製)、パーフルオロアルキル基含有カルボン酸塩(製品名「メガファックF-410」、DIC(株)製)、パーフルオロアルキル基・リン酸基含有リン酸エステル(製品名「メガファックF-510」、DIC(株)製)、変性パーフルオロポリエーテル(製品名「オプツールDAC-HP」、ダイキン工業(株)製、製品名「KY-108」、「KY-164」、「X-71-195」、「KY-1900」、信越化学工業(株)製)、含フッ素基・親油性基含有オリゴマー(製品名「メガファックF-281」、「メガファックF-253」、「メガファックF-251」、DIC(株)製)、含フッ素基・親水性基含有オリゴマー(製品名「メガファックF-430」、「メガファックF-551」、「メガファックF-552」、DIC(株)製)、含フッ素基・親水性基・親油性基含有オリゴマー(製品名「メガファックF-477」、DIC(株)製)、含フッ素基・親水性基・親油性基・カルボキシル基含有オリゴマー(製品名「メガファックF-570」、DIC(株)製)、含フッ素基・UV反応性基含有オリゴマー((製品名「メガファックRS-56」、「メガファックRS-90」、「メガファックRS-75」、DIC(株)製)、(製品名「KY-1203」、信越化学工業(株)製))が挙げられる。
 後述する防汚層形成用組成物中における表面改質剤の含有量は特に制限されないが、防汚層の耐擦傷性に優れる点から、防汚層形成用組成物全質量に対して、0.05~10質量%が好ましく、0.1~10質量%がより好ましい。
The surface modifier is used for the purpose of improving the leveling property during application of the antifouling layer-forming composition described below, and for the purpose of enhancing the slip resistance of the antifouling layer to improve scratch resistance.
Examples of surface modifiers include various additives that modify surface physical properties and are commercially available under the names of surface conditioners, leveling agents, smoothness imparting agents, antifouling agents, and the like. Among them, fluorine-based surface modifiers and silicone-based surface modifiers are preferred.
Specific examples include perfluoroalkyl group-containing compounds such as perfluoroalkyl group-containing carboxylic acids or salts thereof, perfluoroalkyl group-containing sulfonic acids or salts thereof, perfluoroalkyl group-containing phosphoric acids or phosphoric acid esters thereof, A perfluoroalkenyl group-containing compound in which the perfluoroalkyl group is replaced with a perfluoroalkenyl group, a perfluoroether group-containing compound in which the above perfluoroalkyl group is replaced with a perfluoroether group, a fluorine-containing group/lipophilic group-containing oligomer, Oligomer containing fluorine group/hydrophilic group, oligomer containing fluorine group/hydrophilic group/lipophilic group, oligomer containing fluorine group/hydrophilic group/lipophilic group/carboxyl group, fluorine group/UV reactive group containing oligomer Examples include oligomers, silicone-based polymers and oligomers having silicone chains and polyalkylene oxide chains, and silicone-based polymers and oligomers having silicone chains and polyester chains.
Specific products include perfluorobutanesulfonate (product name “Megafac F-114”, manufactured by DIC Corporation), perfluoroalkyl group-containing carboxylate (product name “Megafac F-410”, DIC Co., Ltd.), perfluoroalkyl group/phosphoric acid group-containing phosphate ester (product name “Megafac F-510”, DIC Corporation), modified perfluoropolyether (product name “OPTOOL DAC-HP”) , manufactured by Daikin Industries, Ltd., product names "KY-108", "KY-164", "X-71-195", "KY-1900", manufactured by Shin-Etsu Chemical Co., Ltd.), fluorine-containing group, parent Oily group-containing oligomers (product names “Megaface F-281”, “Megaface F-253”, “Megaface F-251” manufactured by DIC Corporation), fluorine-containing group/hydrophilic group-containing oligomers (product names "Megafac F-430", "Megafac F-551", "Megafac F-552", manufactured by DIC Corporation), fluorine-containing group-hydrophilic group-lipophilic group-containing oligomer (product name "Megafac F-477", manufactured by DIC Corporation), fluorine-containing group-hydrophilic group-lipophilic group-carboxyl group-containing oligomer (product name "Megafac F-570" manufactured by DIC Corporation), fluorine-containing group- UV-reactive group-containing oligomers ((product names “Megafac RS-56”, “Megafac RS-90”, “Megafac RS-75”, manufactured by DIC Corporation), (product name “KY-1203”, manufactured by Shin-Etsu Chemical Co., Ltd.).
The content of the surface modifier in the composition for forming an antifouling layer, which will be described later, is not particularly limited. 0.05 to 10% by mass is preferred, and 0.1 to 10% by mass is more preferred.
 本発明のセンサーカバーの第1実施形態は、上述した基材および防汚層以外の他の層を有していてもよい。
 例えば、基材と防汚層との間に、両者の密着性を向上させるための密着層を有していてもよい。
The first embodiment of the sensor cover of the present invention may have layers other than the substrate and antifouling layer described above.
For example, an adhesion layer may be provided between the substrate and the antifouling layer to improve adhesion between the two.
 本発明のセンサーカバーの第1実施形態の製造方法は特に制限されず、公知の方法が挙げられる。なかでも、含フッ素モノマーを含む防汚層形成用組成物を基材上に塗布して、得られた塗膜に硬化処理を施す方法が好ましい。
 以下、上記方法について詳述する。
The manufacturing method of the first embodiment of the sensor cover of the present invention is not particularly limited, and known methods can be used. Among them, a method of applying a composition for forming an antifouling layer containing a fluorine-containing monomer onto a substrate and subjecting the obtained coating film to a curing treatment is preferable.
The above method will be described in detail below.
 防汚層形成用組成物には、含フッ素モノマーが含まれる。含フッ素モノマーは、上述した通りである。
 防汚層形成用組成物は、含フッ素モノマー以外の他の材料を含んでいてもよい。他の材料としては、例えば、上述した多官能モノマーが挙げられる。
 防汚層形成用組成物中における含フッ素モノマーおよび多官能モノマーの含有量は特に制限されず、上述した防汚層中における含フッ素樹脂の含有量の好適範囲となるように適宜調整されることが好ましい。
The antifouling layer-forming composition contains a fluorine-containing monomer. The fluorine-containing monomer is as described above.
The antifouling layer-forming composition may contain materials other than the fluorine-containing monomer. Other materials include, for example, the polyfunctional monomers described above.
The contents of the fluorine-containing monomer and the polyfunctional monomer in the antifouling layer-forming composition are not particularly limited, and may be appropriately adjusted so that the content of the fluorine-containing resin in the antifouling layer is within the preferred range. is preferred.
 防汚層形成用組成物は、重合開始剤を含んでいてもよい。
 重合開始剤としては公知の重合開始剤が挙げられ、光重合開始剤、および、熱重合開始剤が挙げられ、光重合開始剤が好ましい。
 光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、および、クマリン類などが挙げられる。
 防汚層形成用組成物中における重合開始剤の含有量は特に制限されないが、防汚層形成用組成物中のモノマー全質量に対して、0.1質量%以上15質量%未満が好ましく、1質量%以上10質量%未満がより好ましい。
The antifouling layer-forming composition may contain a polymerization initiator.
Polymerization initiators include known polymerization initiators, including photopolymerization initiators and thermal polymerization initiators, with photopolymerization initiators being preferred.
Photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins.
The content of the polymerization initiator in the antifouling layer-forming composition is not particularly limited, but is preferably 0.1% by mass or more and less than 15% by mass with respect to the total mass of the monomers in the antifouling layer-forming composition. 1 mass % or more and less than 10 mass % is more preferable.
 防汚層形成用組成物は、溶媒を含んでいてもよい。溶媒の種類は特に制限されず、水および有機溶媒が挙げられる。
 有機溶媒としては、例えば、ケトン系溶媒、アルコール系溶媒、エステル系溶媒、および、フッ素系溶媒などが挙げられる。
 防汚層形成用組成物中における溶媒の含有量は特に制限されないが、塗布性の点から、防汚層形成用組成物全質量に対して、10質量%以上95質量%未満が好ましく、20質量%以上80質量%未満がより好ましい。
The antifouling layer-forming composition may contain a solvent. The type of solvent is not particularly limited, and includes water and organic solvents.
Examples of organic solvents include ketone-based solvents, alcohol-based solvents, ester-based solvents, and fluorine-based solvents.
Although the content of the solvent in the antifouling layer-forming composition is not particularly limited, it is preferably 10% by mass or more and less than 95% by mass based on the total mass of the antifouling layer-forming composition from the viewpoint of coating properties. % by mass or more and less than 80% by mass is more preferable.
 塗布方法は特に制限されず、例えば、スピンコート、スプレー塗布、刷毛塗布、ローラー塗布、バー塗布、および、ディップ塗布が挙げられる。
 なお、必要に応じて、防汚層形成用組成物の塗布後に、基材上に塗布された塗膜を乾燥する処理を実施してもよい。乾燥処理を実施することにより、塗膜から溶媒を除去できる。
The coating method is not particularly limited, and examples thereof include spin coating, spray coating, brush coating, roller coating, bar coating, and dip coating.
In addition, if necessary, after applying the antifouling layer-forming composition, a treatment for drying the coating film applied on the base material may be performed. The solvent can be removed from the coating film by performing a drying treatment.
 塗膜に施される硬化処理の手順は特に制限されず、光硬化処理および熱硬化処理が挙げられる。なかでも、光照射処理が好ましく、紫外線照射処理がより好ましい。
 紫外線照射には、紫外線ランプなどの光源が利用される。
 光(例えば、紫外線)の照射量は特に制限されないが、一般的には、100~800mJ/cmが好ましい。
 光照射の際の雰囲気は特に制限されず、光照射は空気下で実施されてもよいし、光照射は不活性雰囲気下で実施されてもよい。
The procedure of curing treatment applied to the coating film is not particularly limited, and includes photocuring treatment and heat curing treatment. Among them, light irradiation treatment is preferable, and ultraviolet irradiation treatment is more preferable.
A light source such as an ultraviolet lamp is used for ultraviolet irradiation.
Although the irradiation amount of light (eg, ultraviolet rays) is not particularly limited, it is generally preferably 100 to 800 mJ/cm 2 .
The atmosphere for the light irradiation is not particularly limited, and the light irradiation may be carried out in the air, or the light irradiation may be carried out in an inert atmosphere.
<<第2実施形態>>
 本発明のセンサーカバーの第2実施形態は、基材と、防汚層とを有するセンサーカバーであって、防汚層の基材側とは反対側の表面での水に対する接触角が70°以上であり、かつ、ヨウ化メチレンに対する接触角が40°以上であり、防汚層の基材側とは反対側の表面から、厚み方向に沿って、50nmの深さ位置、100nmの深さ位置、150nmの深さ位置、200nmの深さ位置、および、250nmの深さ位置のそれぞれの位置における水に対する接触角が70°以上であり、かつ、ヨウ化メチレンに対する接触角が40°以上であり、防汚層の厚みが500nm~20μmである。
<<Second Embodiment>>
A second embodiment of the sensor cover of the present invention is a sensor cover having a base material and an antifouling layer, wherein the contact angle to water on the surface of the antifouling layer opposite to the base material side is 70°. and a contact angle to methylene iodide of 40° or more, and a depth of 50 nm and a depth of 100 nm along the thickness direction from the surface of the antifouling layer opposite to the substrate side. 150 nm depth position, 200 nm depth position, and 250 nm depth position, the contact angle to water at each position is 70° or more, and the contact angle to methylene iodide is 40° or more. and the antifouling layer has a thickness of 500 nm to 20 μm.
 本発明のセンサーカバーの第2実施形態の基材は、上述した第1実施形態中の基材と同じであるため、説明を省略する。 The base material of the second embodiment of the sensor cover of the present invention is the same as the base material in the above-described first embodiment, so the description is omitted.
 本発明のセンサーカバーの第2実施形態において、防汚層の基材側とは反対側の表面での水に対する接触角が70°以上であり、かつ、ヨウ化メチレンに対する接触角が40°以上である。
 上記水に対する接触角は、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、80°以上が好ましく、85°以上がより好ましい。水に対する接触角の上限は特に制限されず、150°以下の場合が多く、120°以下の場合がより多い。
 上記防汚層の基材側とは反対側の表面での水に対する接触角の測定方法としては、まず、接触角計(“CA-X”型接触角計、協和界面科学(株)製)を用い、乾燥状態(20℃/65%RH)で、液体として純水を使用して直径1.0mmの液滴を針先に作り、これを防汚層の表面に接触させて防汚層上に液滴を作る。次に、防汚層と液体とが接する点における、液体表面に対する接線と防汚層表面がなす角で、液体を含む側の角度を接触角とし、測定する。
In the second embodiment of the sensor cover of the present invention, the surface of the antifouling layer opposite to the substrate has a contact angle to water of 70° or more and a contact angle to methylene iodide of 40° or more. is.
The contact angle with water is preferably 80° or more, more preferably 85° or more, in that at least one of insect stain removability, scratch resistance, and insect stain removal after a scratch test is superior. The upper limit of the contact angle with water is not particularly limited, and is often 150° or less, more often 120° or less.
As a method for measuring the contact angle with water on the surface of the antifouling layer opposite to the substrate side, first, a contact angle meter (“CA-X” type contact angle meter, manufactured by Kyowa Interface Science Co., Ltd.) , in a dry state (20 ° C./65% RH), using pure water as a liquid, a droplet with a diameter of 1.0 mm is made at the tip of the needle, and this is brought into contact with the surface of the antifouling layer to form the antifouling layer Make a droplet on top. Next, an angle formed by a tangent line to the surface of the antifouling layer and the surface of the antifouling layer at the point where the antifouling layer and the liquid contact is defined as a contact angle, which is the angle on the side containing the liquid, and is measured.
 また、上記ヨウ化メチレンに対する接触角は、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、55°以上が好ましい。ヨウ化メチレンに対する接触角の上限は特に制限されず、140°以下の場合が多く、100°以下の場合がより多い。
 上記防汚層の基材側とは反対側の表面でのヨウ化メチレンに対する接触角の測定方法としては、上述した水に対する接触角の測定方法における水の代わりにヨウ化メチレンを使用した方法が挙げられる。
Further, the contact angle with respect to methylene iodide is preferably 55° or more from the viewpoint that at least one of insect stain removability, scratch resistance, and insect stain removal after a scratch test is superior. The upper limit of the contact angle to methylene iodide is not particularly limited, and is often 140° or less, more often 100° or less.
As a method for measuring the contact angle to methylene iodide on the surface of the antifouling layer opposite to the substrate side, there is a method using methylene iodide instead of water in the above-described method for measuring the contact angle to water. mentioned.
 本発明のセンサーカバーの第2実施形態において、防汚層の基材側とは反対側の表面から、厚み方向に沿って、50nmの深さ位置、100nmの深さ位置、150nmの深さ位置、200nmの深さ位置、および、250nmの深さ位置のそれぞれの位置における水に対する接触角が70°以上であり、かつ、ヨウ化メチレンに対する接触角が40°以上である。より具体的には、防汚層の基材側とは反対側の表面14Sから、厚み方向に沿って(基材側に向かって)、50nmの深さの位置を深さ位置D1とし、100nmの深さの位置を深さ位置D2とし、150nmの深さの位置を深さ位置D3とし、200nmの深さの位置を深さ位置D4とし、250nmの深さ位置を深さ位置D5とした際に、それぞれの深さ位置における、水に対する接触角が70°以上であり、かつ、ヨウ化メチレンに対する接触角が40°以上である。
 上記いずれの位置(深さ位置D1、深さ位置D2、深さ位置D3、深さ位置D4、深さ位置D5)においても、上記水に対する接触角は、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、80°以上が好ましく、82°以上がより好ましい。水に対する接触角の上限は特に制限されず、150°以下の場合が多く、120°以下の場合がより多い。
 また、上記いずれの位置(深さ位置D1、深さ位置D2、深さ位置D3、深さ位置D4、深さ位置D5)においても、上記ヨウ化メチレンに対する接触角は、虫汚れ除去性、耐擦傷性、および、擦傷試験後の虫汚れ除去の少なくとも1つがより優れる点で、55°以上が好ましい。ヨウ化メチレンに対する接触角の上限は特に制限されず、140°以下の場合が多く、100°以下の場合がより多い。
In the second embodiment of the sensor cover of the present invention, from the surface of the antifouling layer on the side opposite to the substrate side, along the thickness direction, the depth position of 50 nm, the depth position of 100 nm, and the depth position of 150 nm , 200 nm depth, and 250 nm depth, the contact angle to water is 70° or more, and the contact angle to methylene iodide is 40° or more. More specifically, from the surface 14S of the antifouling layer on the side opposite to the substrate side, along the thickness direction (toward the substrate side), the depth position of 50 nm is defined as the depth position D1, and the depth position is 100 nm. A depth position of 150 nm is defined as a depth position D2, a depth position of 150 nm is defined as a depth position D3, a depth position of 200 nm is defined as a depth position D4, and a depth position of 250 nm is defined as a depth position D5. In fact, the contact angle to water at each depth position is 70° or more, and the contact angle to methylene iodide is 40° or more.
At any of the above positions (depth position D1, depth position D2, depth position D3, depth position D4, depth position D5), the water contact angle , 80° or more is preferable, and 82° or more is more preferable, because at least one of the removal of insect stains after the abrasion test is more excellent. The upper limit of the contact angle with water is not particularly limited, and is often 150° or less, more often 120° or less.
Further, at any of the above positions (depth position D1, depth position D2, depth position D3, depth position D4, depth position D5), the contact angle to the methylene iodide was An angle of 55° or more is preferable in that at least one of abrasion resistance and removal of insect stains after the abrasion test is superior. The upper limit of the contact angle to methylene iodide is not particularly limited, and is often 140° or less, more often 100° or less.
 上記各位置(深さ位置D1、深さ位置D2、深さ位置D3、深さ位置D4、深さ位置D5)における水に対する接触角の測定方法としては、まず、防汚層の表面から所定の深さ位置にまでエッチング処理を行い、所定の深さ位置まで到達した際に、露出した表面に対して上記防汚層の基材側とは反対側の表面での水に対する接触角の測定方法と同様の方法で水に対する接触角を測定する。
 なお、エッチング処理は、Arエッチング処理を実施する。
 上記各位置(深さ位置D1、深さ位置D2、深さ位置D3、深さ位置D4、深さ位置D5)におけるヨウ化メチレンに対する接触角の測定方法としては、上述した方法において水の代わりにヨウ化メチレンを使用する方法が挙げられる。
As a method for measuring the contact angle with water at each of the above positions (depth position D1, depth position D2, depth position D3, depth position D4, depth position D5), first, from the surface of the antifouling layer to a predetermined A method of measuring the contact angle of water on the surface of the antifouling layer on the side opposite to the base material side with respect to the exposed surface when the etching process is performed to the depth position and the predetermined depth position is reached. Measure the contact angle with water in the same manner as
In addition, an etching process implements an Ar etching process.
As a method for measuring the contact angle of methylene iodide at each of the above positions (depth position D1, depth position D2, depth position D3, depth position D4, depth position D5), instead of water in the method described above, A method using methylene iodide is mentioned.
 本発明のセンサーカバーの第2実施形態において、防汚層の厚みは、500nm~20μmであり、耐擦傷性とカール抑制とのバランスの点から、4μm以上18μm未満が好ましく、8μm以上16μm未満がより好ましい。
 上記防汚層の厚みは、接触式の膜厚計(ミツトヨ社製)にてセンサーカバー全体の厚みを任意の位置にて20点測定し、これを平均した値から、基材の厚みを差し引くことで求める。接触端子は底面が直径0.5cmの円柱状の端子を用いる。測定圧は0.1Nとする。
 なお、基材の厚みは、上述した方法により算出される厚みである。
In the second embodiment of the sensor cover of the present invention, the thickness of the antifouling layer is 500 nm to 20 μm, preferably 4 μm or more and less than 18 μm, and more preferably 8 μm or more and less than 16 μm, in terms of the balance between scratch resistance and curl suppression. more preferred.
The thickness of the antifouling layer is obtained by measuring the thickness of the entire sensor cover at 20 arbitrary positions with a contact-type film thickness meter (manufactured by Mitutoyo), and subtracting the thickness of the base material from the average value. Ask for it. As the contact terminal, a cylindrical terminal having a bottom surface with a diameter of 0.5 cm is used. The measurement pressure is 0.1N.
In addition, the thickness of a base material is the thickness calculated by the method mentioned above.
 本発明のセンサーカバーの第2実施形態の防汚層に含まれる材料および防汚層の製造方法は、上述した第1実施形態の防汚層に含まれる材料および防汚層の製造方法と同じであるため、説明を省略する。 The materials contained in the antifouling layer and the manufacturing method of the antifouling layer of the second embodiment of the sensor cover of the present invention are the same as the materials contained in the antifouling layer and the manufacturing method of the antifouling layer of the first embodiment described above. Therefore, the description is omitted.
 本発明のセンサーカバー(上述した第1実施形態および第2実施形態)は、レーザーなどの発光素子、および、カメラなどを保護するためのカバーとして好適に用いることができる。
 本発明のセンサーカバーは、立体形状を有していてもよい。
 センサーカバーが立体形状を有する場合、センサーカバーの製造方法としては、平板状のセンサーカバーを製造した後、立体形状を有するように成形する方法、および、立体形状を有する基材に防汚層を貼り付ける方法が挙げられる。また、立体形状を有する基材上にスプレーコートやディップコートで防汚層形成用組成物を塗布して、防汚層を形成してもよい。
 センサーは、発光素子と、受光素子とを含むことが好ましい。
 センサーに含まれる発光素子の種類は特に制限されず、使用される用途に応じて最適な発光素子が選択される。発光素子としては、例えば、レーザダイオード及び発光ダイオード等の半導体発光素子が挙げられる。
 受光素子は、入射した光量に応じた受光信号を出力するように構成されている。受光素子としては、例えば、フォトダイオード、フォトトランジスタ及びフォトレジスタが挙げられる。
 また、必要に応じて、センサーは他の部材(例えば、プロセッサ)を含んでいてもよい。
The sensor cover of the present invention (first and second embodiments described above) can be suitably used as a cover for protecting a light-emitting element such as a laser and a camera.
The sensor cover of the present invention may have a three-dimensional shape.
When the sensor cover has a three-dimensional shape, the manufacturing method of the sensor cover includes a method of manufacturing a flat sensor cover and then molding it so as to have a three-dimensional shape, and a method of forming an antifouling layer on a base material having a three-dimensional shape. There is a method of pasting. Alternatively, the antifouling layer may be formed by applying the antifouling layer-forming composition onto a substrate having a three-dimensional shape by spray coating or dip coating.
Preferably, the sensor includes a light emitting element and a light receiving element.
The type of light-emitting element included in the sensor is not particularly limited, and an optimum light-emitting element is selected according to the intended use. Examples of light-emitting devices include semiconductor light-emitting devices such as laser diodes and light-emitting diodes.
The light-receiving element is configured to output a light-receiving signal corresponding to the amount of incident light. Examples of light-receiving elements include photodiodes, phototransistors, and photoresistors.
The sensor may also include other components (eg, a processor), if desired.
 本発明のセンサーカバーを含むセンサーは、各種用途に適用できる。例えば、赤外線を用いたLiDARが挙げられる。より具体的には、例えば、本発明のセンサーカバーを含むセンサーは、移動体としての車両に搭載され、移動体の前方にレーザー光を2次元走査して照射し、移動体から移動体の前方に存在する物体までの距離を測定できる。本発明のセンサーカバーは、800~2000nmの発光波長を有するレーザーを含むセンサーに用いることが好ましく、905nmや1550nmの発光波長のレーザーを含むセンサーに用いることがより好ましい。
 なお、本発明のセンサーカバーが適用されるセンサーは、車両用のセンサーに限定されず、例えば、監視カメラなどの防犯、警備、異常検知、および、行動解析などの外部情報を検知する用途のセンサーにも使用できる。
A sensor including the sensor cover of the present invention can be used in a variety of applications. For example, there is LiDAR using infrared rays. More specifically, for example, a sensor including the sensor cover of the present invention is mounted on a vehicle as a moving body, irradiates a laser beam in front of the moving body by two-dimensional scanning, and emits laser light from the moving body to the front of the moving body. can measure the distance to an object in The sensor cover of the present invention is preferably used for sensors containing lasers with emission wavelengths of 800 to 2000 nm, and more preferably for sensors containing lasers with emission wavelengths of 905 nm or 1550 nm.
In addition, the sensor to which the sensor cover of the present invention is applied is not limited to a vehicle sensor. can also be used for
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す具体例により制限的に解釈されるべきものではない。 The features of the present invention will be described more specifically below with reference to examples and comparative examples. The materials, amounts used, proportions, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as being restricted by the specific examples shown below.
<実施例1>
 以下の化合物M-1(構造式中の数値は、化合物中のフッ素原子の含有量を表す。)94質量部と、開始剤(Irgacure(登録商標)127(BASF(株)製))6質量部とを混合し、得られた混合物とメチルエチルケトンとを混合して、防汚層形成用組成物1を作製した。
 なお、防汚層形成用組成物中におけるメチルエチルケトンの含有量は、防汚層形成用組成物全質量に対して、95質量%であった。
<Example 1>
The following compound M-1 (the numerical value in the structural formula represents the content of fluorine atoms in the compound.) 94 parts by mass, and the initiator (Irgacure (registered trademark) 127 (manufactured by BASF Corporation)) 6 mass and the resulting mixture was mixed with methyl ethyl ketone to prepare composition 1 for forming an antifouling layer.
The content of methyl ethyl ketone in the composition for forming an antifouling layer was 95% by mass with respect to the total mass of the composition for forming an antifouling layer.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 透明基材であるポリカーボネートフィルム(テクノロイC000(登録商標)、膜厚125μm、住友化学(株)製)上に、ワイヤーバーを用いて防汚層形成用組成物1を塗布した。得られた透明基材上の塗膜を100℃で乾燥した。その後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm、照射量500mJ/cmの紫外線を照射して塗膜を硬化させ、厚さ10μmの防汚層を形成し、センサーカバー1を得た。 A composition 1 for forming an antifouling layer was applied onto a polycarbonate film (Technolloy C000 (registered trademark), film thickness 125 μm, manufactured by Sumitomo Chemical Co., Ltd.) as a transparent substrate using a wire bar. The resulting coating film on the transparent substrate was dried at 100°C. Thereafter, while purging with nitrogen to create an atmosphere with an oxygen concentration of 1.0% by volume or less, an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W/cm was used with an illuminance of 400 mW/cm 2 and an irradiation amount. The coating film was cured by irradiating ultraviolet rays of 500 mJ/cm 2 to form an antifouling layer having a thickness of 10 μm, and a sensor cover 1 was obtained.
<実施例2~14、比較例1~4>
 後述する表1に示すように、使用する含フッ素モノマーの種類および使用量を変更し、さらに、他の材料を使用し、形成される防汚層の厚みを調整した以外は、実施例1と同様の手順に従って、センサーカバー2~14、および、センサーカバーC1~C4を得た。
 なお、各実施例および比較例にて作製した防汚層形成用組成物中のメチルエチルケトンの含有量は、防汚層形成用組成物全質量に対して、95質量%であった。
<Examples 2 to 14, Comparative Examples 1 to 4>
As shown in Table 1, which will be described later, the type and amount of the fluorine-containing monomer used were changed, other materials were used, and the thickness of the formed antifouling layer was adjusted. According to the same procedure, sensor covers 2 to 14 and sensor covers C1 to C4 were obtained.
The content of methyl ethyl ketone in the antifouling layer-forming composition prepared in each of Examples and Comparative Examples was 95% by mass with respect to the total mass of the antifouling layer-forming composition.
 表1に記載される化合物は以下の通りである。
 化合物M-4(以下、構造式参照。構造式中の数値は、化合物中のフッ素原子の含有量を表す。)
The compounds listed in Table 1 are as follows.
Compound M-4 (hereinafter, see the structural formula. The numerical value in the structural formula represents the content of fluorine atoms in the compound.)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 化合物M-9(以下、構造式参照。構造式中の数値は、化合物中のフッ素原子の含有量を表す。) Compound M-9 (see the structural formula below. The numerical value in the structural formula represents the content of fluorine atoms in the compound.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 化合物M-12(以下、構造式参照。構造式中の数値は、化合物中のフッ素原子の含有量を表す。) Compound M-12 (see the structural formula below. The numerical value in the structural formula represents the content of fluorine atoms in the compound.)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 化合物M-16(以下、構造式参照。構造式中の数値は、化合物中のフッ素原子の含有量を表す。) Compound M-16 (see the structural formula below. The numerical value in the structural formula represents the content of fluorine atoms in the compound.)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
メガファックRS-90:メガファックRS-90(DIC(株)製)
DPHA:KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート/ジペンタエリスリトールペンタアクリレートの混合物)(日本化薬(株)製)
PET-30:KAYARAD PET-30(ペンタエリスリトールトリアクリレート/ペンタエリスリトールテトラアクリレートの混合物)(日本化薬(株)製)
粒子:オルガノシリカゾル(登録商標)MEK-AC-2140Z(日産化学工業(株)製)
Megafac RS-90: Megafac RS-90 (manufactured by DIC Corporation)
DPHA: KAYARAD DPHA (mixture of dipentaerythritol hexaacrylate/dipentaerythritol pentaacrylate) (manufactured by Nippon Kayaku Co., Ltd.)
PET-30: KAYARAD PET-30 (mixture of pentaerythritol triacrylate/pentaerythritol tetraacrylate) (manufactured by Nippon Kayaku Co., Ltd.)
Particles: Organosilica sol (registered trademark) MEK-AC-2140Z (manufactured by Nissan Chemical Industries, Ltd.)
 表1中、「重合性基数」欄は、含フッ素モノマー中の重合性基の数を表す。
 「フッ素含有率」欄は、含フッ素モノマー中のフッ素原子の含有量(質量%)を表す。
 「膜厚(μm)」欄は、防汚層の厚み(μm)を表す。なお、防汚層の厚みの測定方法は、後段で詳述する。
In Table 1, the "number of polymerizable groups" column represents the number of polymerizable groups in the fluorine-containing monomer.
The "fluorine content" column represents the content (% by mass) of fluorine atoms in the fluorine-containing monomer.
The "Thickness (μm)" column represents the thickness (μm) of the antifouling layer. A method for measuring the thickness of the antifouling layer will be described in detail later.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<測定>
(防汚層の基材側とは反対側の表面でのフッ素原子の比率)
 各実施例および比較例にて得られたセンサーカバーの防汚層の透明基材側とは反対側の表面のフッ素原子の比率を、X線光電子分光法による分析で確認した。具体的な分析条件は、以下のとおりである。結果を後述する表2にまとめて示す。
 なお、上記フッ素原子の比率は、防汚層の透明基材側とは反対側の表面におけるフッ素原子、炭素原子、酸素原子および窒素原子の合計量に対する比率(atomic%)である。
X線源:単色化Al-α
測定領域:F1s、C1s、O1s、N1s
取り出し角:45°
<Measurement>
(Ratio of fluorine atoms on the surface of the antifouling layer opposite to the substrate side)
The ratio of fluorine atoms on the surface opposite to the transparent substrate side of the antifouling layer of the sensor cover obtained in each example and comparative example was confirmed by analysis by X-ray photoelectron spectroscopy. Specific analysis conditions are as follows. The results are collectively shown in Table 2, which will be described later.
The ratio of fluorine atoms is the ratio (atomic %) to the total amount of fluorine atoms, carbon atoms, oxygen atoms and nitrogen atoms on the surface of the antifouling layer opposite to the transparent substrate.
X-ray source: monochromatic Al-α
Measurement area: F1s, C1s, O1s, N1s
Take-off angle: 45°
(防汚層内部のフッ素原子の比率)
 各実施例および比較例にて得られたセンサーカバーの防汚層の透明基材側とは反対側の表面から所定の深さ位置(表面から深さ50nm、100nm、150nm、200nm、および、250nmの各位置)にまでエッチング処理を行い、所定の深さ位置まで到達した際に、その位置において上述した(防汚層の基材側とは反対側の表面でのフッ素原子の比率)と同様の条件にてX線光電子分光法による分析を実施してフッ素原子の比率を算出した。なお、エッチング処理は、Arエッチング処理を実施した。結果を後述する表2にまとめて示す。
(Ratio of fluorine atoms inside the antifouling layer)
Predetermined depth positions from the surface opposite to the transparent substrate side of the antifouling layer of the sensor cover obtained in each example and comparative example (depths from the surface of 50 nm, 100 nm, 150 nm, 200 nm, and 250 nm each position), and when it reaches a predetermined depth position, at that position (ratio of fluorine atoms on the surface opposite to the base material side of the antifouling layer). Analysis by X-ray photoelectron spectroscopy was performed under the conditions of , and the ratio of fluorine atoms was calculated. In addition, the etching process implemented Ar etching process. The results are collectively shown in Table 2, which will be described later.
(防汚層の基材側とは反対側の表面での接触角)
 各実施例および比較例にて得られたセンサーカバーの防汚層の透明基材側とは反対側の表面での水に対する接触角の測定方法としては、まず、接触角計(“CA-X”型接触角計、協和界面科学(株)製)を用い、乾燥状態(20℃/65%RH)で、液体として純水を使用して直径1.0mmの液滴を針先に作り、これを防汚層の表面に接触させて防汚層上に液滴を作った。次に、防汚層と液体とが接する点における、液体表面に対する接線と防汚層表面がなす角で、液体を含む側の角度を接触角とし、測定した。
 上記水の代わりに、ヨウ化メチレンを使用した以外は同様の手順に従って、センサーカバーの防汚層の透明基材側とは反対側の表面でのヨウ化メチレンに対する接触角を測定した。結果を後述する表3にまとめて示す。
(Contact angle on the surface opposite to the substrate side of the antifouling layer)
As a method for measuring the contact angle with water on the surface of the antifouling layer of the sensor cover obtained in each example and comparative example opposite to the transparent substrate side, first, a contact angle meter ("CA-X "type contact angle meter, manufactured by Kyowa Interface Science Co., Ltd.), in a dry state (20 ° C. / 65% RH), using pure water as a liquid, make a droplet with a diameter of 1.0 mm on the tip of the needle, This was brought into contact with the surface of the antifouling layer to form droplets on the antifouling layer. Next, the contact angle was defined as the angle formed by the tangent to the liquid surface and the surface of the antifouling layer at the point where the antifouling layer and the liquid were in contact, and the angle on the side containing the liquid was taken as the contact angle.
The contact angle to methylene iodide on the surface of the antifouling layer of the sensor cover opposite to the transparent base material side was measured in the same manner except that methylene iodide was used instead of water. The results are collectively shown in Table 3, which will be described later.
(防汚層内部の接触角)
 各実施例および比較例にて得られたセンサーカバーの防汚層の透明基材側とは反対側の表面から所定の深さ位置(表面から深さ50nm、100nm、150nm、200nm、および、250nmの各位置)にまでエッチング処理を行い、所定の深さ位置まで到達した際に、その位置において上述した(防汚層の基材側とは反対側の表面での接触角)と同様の条件にて水に対する接触角およびヨウ化メチレンに対する接触角を測定した。なお、エッチング処理は、Arエッチング処理を実施した。結果を後述する表3にまとめて示す。
(Contact angle inside antifouling layer)
Predetermined depth positions from the surface opposite to the transparent substrate side of the antifouling layer of the sensor cover obtained in each example and comparative example (depths from the surface of 50 nm, 100 nm, 150 nm, 200 nm, and 250 nm ), and when reaching a predetermined depth position, the same conditions as described above (contact angle on the surface of the antifouling layer on the side opposite to the base material side) at that position The contact angle to water and the contact angle to methylene iodide were measured. In addition, the etching process implemented Ar etching process. The results are collectively shown in Table 3, which will be described later.
(防汚層の厚み)
 各実施例および比較例にて得られたセンサーカバーの防汚層の厚みは、接触式の膜厚計(ミツトヨ社製)にてセンサーカバー全体の厚みを任意の位置にて20点測定し、これを平均した値から、透明基材の厚みを差し引くことで求めた。接触端子は底面が直径0.5cmの円柱状の端子を用いる。測定圧は0.1Nとする。
 なお、透明基材の厚み(平均厚み)は、接触式の膜厚計(ミツトヨ社製)にて透明基材の厚みを任意の位置にて20点測定し、これを平均して求めた。
(Thickness of antifouling layer)
The thickness of the antifouling layer of the sensor cover obtained in each example and comparative example was measured by measuring the thickness of the entire sensor cover at 20 arbitrary positions with a contact-type film thickness meter (manufactured by Mitutoyo). It was obtained by subtracting the thickness of the transparent substrate from the averaged value. As the contact terminal, a cylindrical terminal having a bottom surface with a diameter of 0.5 cm is used. The measurement pressure is 0.1N.
The thickness (average thickness) of the transparent base material was obtained by measuring the thickness of the transparent base material at 20 arbitrary positions with a contact-type film thickness meter (manufactured by Mitutoyo) and averaging the results.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<評価>
(耐擦傷性評価)
 各実施例および比較例にて得られたセンサーカバーの防汚層の透明基材側とは反対側の表面に対して、HEIDON-18Sを用いて、こすりテストを行った。より具体的には、防汚層と接触するテスターのこすり先端部(1cm×1cm)にこすり材を巻いて、バンド固定し、後述する条件にしてこすりテストを行った。
 評価環境条件:25℃、60%RH
 こすり材:スチールウール(日本スチールウール(株)製、ゲレードNo.0000)
 移動距離(片道):10cm、
 こすり速度:100mm/秒、
 荷重:250g/cm
 先端部接触面積:1cm×1cm、
 こすり回数:20000往復。
 こすり終えたセンサーカバーの裏側の表面(透明基材の防汚層側とは反対側の表面)に油性黒インキを塗り、反射光で目視観察して、防汚層のこすり部分の傷を以下の基準に従って評価した。
 A :非常に注意深く見ても、全く傷が見えない。
 B :非常に注意深く見ると僅かに弱い傷が見えるが、実用上許容できる。
 C :弱い傷が見える。
<Evaluation>
(Scratch resistance evaluation)
Using HEIDON-18S, a rubbing test was performed on the surface of the antifouling layer of the sensor cover obtained in each of the examples and comparative examples on the side opposite to the transparent substrate side. More specifically, a rubbing material was wrapped around the rubbing tip (1 cm×1 cm) of the tester that was in contact with the antifouling layer, and the band was fixed, and a rubbing test was performed under the conditions described later.
Evaluation environmental conditions: 25°C, 60% RH
Rubbing material: Steel wool (Nippon Steel Wool Co., Ltd., Gelade No. 0000)
Travel distance (one way): 10 cm,
Scraping speed: 100 mm/sec,
Load: 250 g/cm 2 ,
Tip contact area: 1 cm x 1 cm,
Number of times of rubbing: 20000 reciprocations.
After rubbing, apply oil-based black ink to the back surface of the sensor cover (the surface opposite to the antifouling layer side of the transparent base material), and visually observe with reflected light, and check the following for scratches on the rubbed part of the antifouling layer. was evaluated according to the criteria of
A: No flaws are visible even when viewed very carefully.
B: Slightly weak scratches can be seen when viewed very carefully, but are acceptable for practical use.
C: Weak scratches are visible.
(虫汚れ除去性評価)
 各実施例および比較例にて得られたセンサーカバーの防汚層に載せたコオロギに荷重をかけて完全に潰した後、表面が汚染した防汚層付き透明基材を80℃で30分乾燥させた。次に、エアースプレーガン(W-101-101G、アネスト岩田(株)製)を使って、95mL/分の条件で10分間、水を吹き付けて洗浄し、乾燥させた後、防汚層を目視観察して、汚れの程度を以下の基準に従って評価した。結果を後述する表4にまとめて示す。なお、エアースプレーガンと防汚層付き透明基材との距離は、10cmであった。結果を後述する表4の「虫汚れ除去性」欄の「擦傷試験前」欄にまとめて示す。
A :非常に注意深く見ても、全く汚れが見えない。
B :非常に注意深く見ると僅かにわずかに汚れが見えるが、実用上許容できる。
C :汚れが見える。
(Evaluation of insect stain removability)
After the cricket placed on the antifouling layer of the sensor cover obtained in each example and comparative example was completely crushed by applying a load, the transparent base material with the antifouling layer whose surface was contaminated was dried at 80°C for 30 minutes. let me Next, using an air spray gun (W-101-101G, manufactured by Anest Iwata Co., Ltd.), water is sprayed for 10 minutes at a condition of 95 mL / min, dried, and then the antifouling layer is visually observed. Observations were made and the degree of staining was evaluated according to the following criteria. The results are collectively shown in Table 4, which will be described later. The distance between the air spray gun and the transparent substrate with antifouling layer was 10 cm. The results are collectively shown in the "Before abrasion test" column of the "Insect stain removal" column in Table 4, which will be described later.
A: No dirt can be seen even when viewed very carefully.
B: Stain is slightly visible when viewed very carefully, but acceptable for practical use.
C: Dirt is visible.
(擦傷試験後の虫汚れ除去性評価)
 上述した(耐擦傷性評価)を実施して得られたセンサーカバーの防汚層表面に対して、上述した(虫汚れ除去性評価)を実施した。結果を後述する表4の「虫汚れ除去性」欄の「擦傷試験後」欄にまとめて示す。
(Evaluation of insect stain removability after scratch test)
The above-described (insect stain removability evaluation) was performed on the antifouling layer surface of the sensor cover obtained by performing the above-described (scratch resistance evaluation). The results are collectively shown in the "After Scratch Test" column of the "Insect Stain Removability" column in Table 4, which will be described later.
(カール評価)
 各実施例および比較例にて得られたセンサーカバー1辺10cmの正方形に切り出し、得られた試料を水平面に防汚層面を上にして設置し、23℃、50%RH環境下に48時間保存した。その後、得られた試料の反り立っている4端の水平面からの高さを測定し、その平均値をカール高さとし、以下の基準で評価した。B以上を実用上問題無い範囲とする。結果を後述する表4にまとめて示す。
A :カール高さが5mm未満
B :カール高さが5mm以上15mm未満
C :カール高さが15mm以上
(Curl evaluation)
The sensor cover obtained in each example and comparative example was cut into a square with a side of 10 cm, and the obtained sample was placed on a horizontal surface with the antifouling layer side up and stored in an environment of 23 ° C. and 50% RH for 48 hours. did. After that, the height from the horizontal plane of the four warped ends of the obtained sample was measured, and the average value was taken as the curl height, and evaluated according to the following criteria. A value of B or higher is regarded as a practically acceptable range. The results are collectively shown in Table 4, which will be described later.
A: Curl height of less than 5 mm B: Curl height of 5 mm or more and less than 15 mm C: Curl height of 15 mm or more
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表4に示すように、本発明のセンサーカバーは、所望の効果を示すことを確認した。
 また、実施例5と他の実施例との比較より、含フッ素モノマーの重合性基(重合性不飽和基)の数が5以上の場合、耐擦傷性がより優れることが確認された。
 また、実施例12~14の比較より、無機粒子の含有量が10質量%以上の場合、耐擦傷性がより優れることが確認された。
 また、実施例8~10との比較より、多官能モノマーの含有量が30質量%以下の場合、カールがより優れることが確認された。
 上記実施例の結果より、防汚層の基材側とは反対側の表面のフッ素原子の比率が36atomic%以上の場合、擦傷試験前の虫汚れ除去性がより優れることが確認された。
 上記実施例の結果より、防汚層の各深さ位置のフッ素原子の比率がいずれも32atomic%以上の場合、擦傷試験後の虫汚れ除去性がより優れることが確認された。
 上記実施例の結果より、防汚層の基材側とは反対側の表面での水に対する接触角が85°以上の場合、擦傷試験前の虫汚れ除去性がより優れることが確認された。
 上記実施例の結果より、防汚層の各深さ位置の水に対する接触角がいずれも82°以上の場合、擦傷試験後の虫汚れ除去性がより優れることが確認された。
As shown in Table 4, it was confirmed that the sensor cover of the present invention exhibited the desired effect.
Further, from a comparison between Example 5 and other examples, it was confirmed that when the number of polymerizable groups (polymerizable unsaturated groups) in the fluorine-containing monomer is 5 or more, the scratch resistance is more excellent.
Further, from the comparison of Examples 12 to 14, it was confirmed that when the content of the inorganic particles was 10% by mass or more, the scratch resistance was more excellent.
Further, from comparison with Examples 8 to 10, it was confirmed that when the content of the polyfunctional monomer was 30% by mass or less, the curl was more excellent.
From the results of the above Examples, it was confirmed that when the ratio of fluorine atoms on the surface of the antifouling layer opposite to the substrate side is 36 atomic % or more, the insect stain removability before the scratch test is more excellent.
From the results of the above Examples, it was confirmed that when the ratio of fluorine atoms at each depth position of the antifouling layer was 32 atomic % or more, the insect stain removability after the abrasion test was more excellent.
From the results of the above Examples, it was confirmed that when the contact angle to water on the surface of the antifouling layer opposite to the substrate side is 85° or more, the insect stain removability before the scratch test is more excellent.
From the results of the above Examples, it was confirmed that when the contact angle with respect to water at each depth position of the antifouling layer was 82° or more, the insect stain removability after the scratch test was more excellent.
 なお、各実施例にて得られたセンサーカバーを、市販のカメラやLiDARといった光学系のセンサーの前方に防汚層を外側にして設置して、センサーを作製した。得られたセンサーは、機能することを確認した。 The sensor cover obtained in each example was placed in front of an optical system sensor such as a commercially available camera or LiDAR with the antifouling layer facing outward to fabricate the sensor. The resulting sensor was confirmed to be functional.
 10  センサーカバー
 12  基材
 14  防汚層
 
10 sensor cover 12 base material 14 antifouling layer

Claims (10)

  1.  基材と、防汚層とを有するセンサーカバーであって、
     前記防汚層の前記基材側とは反対側の表面のフッ素原子の比率が20atomic%以上であり、
     前記防汚層の前記基材側とは反対側の表面から、厚み方向に沿って、50nmの深さ位置、100nmの深さ位置、150nmの深さ位置、200nmの深さ位置、および、250nmの深さ位置のそれぞれの位置におけるフッ素原子の比率が、いずれも20atomic%以上であり、
     前記防汚層の厚みが500nm~20μmである、センサーカバー。
    A sensor cover having a base material and an antifouling layer,
    The ratio of fluorine atoms on the surface of the antifouling layer opposite to the base material is 20 atomic% or more,
    From the surface of the antifouling layer opposite to the substrate, along the thickness direction, a depth position of 50 nm, a depth position of 100 nm, a depth position of 150 nm, a depth position of 200 nm, and a depth position of 250 nm. The ratio of fluorine atoms at each position of the depth position is 20 atomic% or more,
    The sensor cover, wherein the antifouling layer has a thickness of 500 nm to 20 μm.
  2.  基材と、防汚層とを有するセンサーカバーであって、
     前記防汚層の前記基材側とは反対側の表面での水に対する接触角が70°以上であり、かつ、ヨウ化メチレンに対する接触角が40°以上であり、
     前記防汚層の前記基材側とは反対側の表面から、厚み方向に沿って、50nmの深さ位置、100nmの深さ位置、150nmの深さ位置、200nmの深さ位置、および、250nmの深さ位置のそれぞれの位置における水に対する接触角が70°以上であり、かつ、ヨウ化メチレンに対する接触角が40°以上であり、
     前記防汚層の厚みが500nm~20μmである、センサーカバー。
    A sensor cover having a base material and an antifouling layer,
    The surface of the antifouling layer opposite to the substrate has a contact angle of 70° or more with respect to water and a contact angle of 40° or more with respect to methylene iodide,
    From the surface of the antifouling layer opposite to the substrate, along the thickness direction, a depth position of 50 nm, a depth position of 100 nm, a depth position of 150 nm, a depth position of 200 nm, and a depth position of 250 nm. The contact angle to water at each position of the depth position is 70 ° or more, and the contact angle to methylene iodide is 40 ° or more,
    The sensor cover, wherein the antifouling layer has a thickness of 500 nm to 20 μm.
  3.  前記防汚層が、含フッ素モノマー由来の繰り返し単位を有する含フッ素樹脂を含む、請求項1または2に記載のセンサーカバー。 The sensor cover according to claim 1 or 2, wherein the antifouling layer contains a fluorine-containing resin having a repeating unit derived from a fluorine-containing monomer.
  4.  前記含フッ素モノマーが重合性不飽和基を有する、請求項3に記載のセンサーカバー。 The sensor cover according to claim 3, wherein the fluorine-containing monomer has a polymerizable unsaturated group.
  5.  前記含フッ素モノマーが、3~6つの重合性不飽和基を有する、請求項3または4に記載のセンサーカバー。 The sensor cover according to claim 3 or 4, wherein the fluorine-containing monomer has 3 to 6 polymerizable unsaturated groups.
  6.  前記含フッ素モノマー中のフッ素原子の含有量が、38.0~50.0質量%である、請求項3~5のいずれか1項に記載のセンサーカバー。 The sensor cover according to any one of claims 3 to 5, wherein the fluorine atom content in the fluorine-containing monomer is 38.0 to 50.0% by mass.
  7.  前記含フッ素樹脂が、フッ素原子を有さず、重合性不飽和基を3つ以上有する多官能モノマー由来の繰り返し単位を有する、請求項3~6のいずれか1項に記載のセンサーカバー。 The sensor cover according to any one of claims 3 to 6, wherein the fluorine-containing resin has repeating units derived from a polyfunctional monomer having no fluorine atoms and having three or more polymerizable unsaturated groups.
  8.  前記防汚層が、無機粒子を含む、請求項1~7のいずれか1項に記載のセンサーカバー。 The sensor cover according to any one of claims 1 to 7, wherein the antifouling layer contains inorganic particles.
  9.  前記無機粒子が、シリカ粒子である、請求項8に記載のセンサーカバー。 The sensor cover according to claim 8, wherein the inorganic particles are silica particles.
  10.  請求項1~9のいずれか1項に記載のセンサーカバーを含む、センサー。 A sensor comprising the sensor cover according to any one of claims 1 to 9.
PCT/JP2022/001886 2021-01-29 2022-01-20 Sensor cover and sensor WO2022163472A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-013866 2021-01-29
JP2021013866 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163472A1 true WO2022163472A1 (en) 2022-08-04

Family

ID=82653386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001886 WO2022163472A1 (en) 2021-01-29 2022-01-20 Sensor cover and sensor

Country Status (1)

Country Link
WO (1) WO2022163472A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318423A (en) * 2000-05-12 2001-11-16 Nippon Sheet Glass Co Ltd Protective cover for camera
WO2009147838A1 (en) * 2008-06-06 2009-12-10 パナソニック株式会社 Organic el display panel and manufacturing method thereof
JP2011043606A (en) * 2009-08-20 2011-03-03 Toppan Printing Co Ltd Hard coat film
WO2016056489A1 (en) * 2014-10-07 2016-04-14 富士フイルム株式会社 Antifouling layer-equipped laminate, protective material for surveillance camera, and surveillance camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318423A (en) * 2000-05-12 2001-11-16 Nippon Sheet Glass Co Ltd Protective cover for camera
WO2009147838A1 (en) * 2008-06-06 2009-12-10 パナソニック株式会社 Organic el display panel and manufacturing method thereof
JP2011043606A (en) * 2009-08-20 2011-03-03 Toppan Printing Co Ltd Hard coat film
WO2016056489A1 (en) * 2014-10-07 2016-04-14 富士フイルム株式会社 Antifouling layer-equipped laminate, protective material for surveillance camera, and surveillance camera

Similar Documents

Publication Publication Date Title
KR102800977B1 (en) Polymer film, and optical member, polarization member and display device employing the polymer film
JP6661286B2 (en) Resin film, optical member and polarizing member
US11548992B2 (en) Antireflection film
JP6704624B2 (en) Anti-reflection film
TWI530707B (en) Method for manufacturing anti-reflection film, anti-reflection film, polarizing plate, and image display device
JP6732015B2 (en) Anti-reflection film
JP2008197320A (en) Antiglare coating composition, antiglare film, and method for manufacturing the same
JP6727574B2 (en) Photocurable coating composition, low refractive layer and antireflection film
US20130258467A1 (en) Polymerizable composition and antireflective film, polarizing plate and image display device using the same
TW201938362A (en) Anti-reflective film, polarizing plate, and display apparatus
JP2022164699A (en) Low reflection member, and display device and article using the same
US11732142B2 (en) Anti-reflective film, polarizing plate, and display apparatus
JP2012150226A (en) Antireflection film, method for manufacturing antireflection film and image display device
JP5663618B2 (en) Polymerizable composition, antireflection film, polarizing plate and image display device using the same
WO2022163472A1 (en) Sensor cover and sensor
KR102257923B1 (en) Anti-reflective film, polarizing plate, and display apparatus
CN109690364B (en) Antifouling film
JP2017097322A (en) Optical film, image display device, and method of manufacturing optical film
KR102337211B1 (en) Anti-reflective film, polarizing plate, and display apparatus
JP5707438B2 (en) Polymerizable composition, antireflection film, polarizing plate and image display device using the same
KR102796052B1 (en) Optical laminate, polarizing plate, and display apparatus
WO2024018938A1 (en) Hard coat film and resin molded article using same
JP2023084663A (en) Low refractive index layer formation coating liquid, low refractive index layer, and reflection prevention film
CN119234164A (en) Optical laminate and image display device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP