[go: up one dir, main page]

WO2022158096A1 - バイポーラ型蓄電池 - Google Patents

バイポーラ型蓄電池 Download PDF

Info

Publication number
WO2022158096A1
WO2022158096A1 PCT/JP2021/041932 JP2021041932W WO2022158096A1 WO 2022158096 A1 WO2022158096 A1 WO 2022158096A1 JP 2021041932 W JP2021041932 W JP 2021041932W WO 2022158096 A1 WO2022158096 A1 WO 2022158096A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
bipolar
adhesive
cover plate
plate
Prior art date
Application number
PCT/JP2021/041932
Other languages
English (en)
French (fr)
Inventor
憲治 廣田
芳延 平
英郎 西久保
健一 須山
広樹 田中
康雄 中島
彰 田中
Original Assignee
古河電池株式会社
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電池株式会社, 古河電気工業株式会社 filed Critical 古河電池株式会社
Priority to JP2022576994A priority Critical patent/JPWO2022158096A1/ja
Publication of WO2022158096A1 publication Critical patent/WO2022158096A1/ja
Priority to US18/356,578 priority patent/US20230361312A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiment of the present invention relates to a bipolar storage battery.
  • a bipolar lead-acid battery includes a bipolar electrode having a positive electrode, a negative electrode, and a substrate (bipolar plate) having a positive electrode on one surface and a negative electrode on the other surface.
  • the positive electrode of a conventional bipolar electrode has a positive electrode lead layer 220 disposed on one side of a resin substrate 210 with an adhesive layer 240 interposed therebetween. It is configured by placing a positive electrode active material layer (not shown) on the layer 220 .
  • the positive electrode lead layer 220 is corroded by the sulfuric acid contained in the electrolyte, and a coating 260 of corrosion products (lead oxide) is formed on the surface of the positive electrode lead layer 220. (see FIG. 6(b)). Then, there is a possibility that growth of the positive electrode lead layer 220 may occur due to the growth of the film 260 of the corrosion product.
  • the electrolytic solution will enter the interface between the positive electrode lead layer 220 and the adhesive layer 240, resulting in sulfuric acid. Corrosion of the positive electrode lead layer 220 could further progress (see (c) in FIG. 6). As a result, if the electrolyte runs along the back surface of the positive electrode lead layer 220 (the surface facing the substrate 210) and reaches the negative electrode lead foil (not shown), a short circuit (liquid junction) may occur. In some cases, the performance of the battery deteriorated.
  • the surface where corrosion of the positive electrode lead layer 220 (positive electrode) by sulfuric acid has progressed due to penetration of the electrolytic solution into the interface between the positive electrode lead layer 220 (positive electrode) and the adhesive layer 240 due to growth is hereinafter referred to as appropriate. Expressed as “creeping”. Further, the distance over which corrosion progresses is appropriately referred to as “creeping distance”.
  • the present invention provides a bipolar storage battery in which even if growth occurs in the positive electrode due to corrosion due to sulfuric acid contained in the electrolytic solution, the electrolytic solution does not easily enter the interface between the positive electrode and the adhesive layer, and battery performance does not easily deteriorate. With the goal.
  • a bipolar storage battery includes: a bipolar plate provided with a pillar that supports adjacent plates when stacked; and a positive electrode current collector adhered to one surface of the bipolar plate with an adhesive. a positive electrode active material layer disposed on the positive electrode current collector; a negative electrode current collector adhered to the other surface of the bipolar plate with an adhesive; and a negative electrode disposed on the negative electrode current collector. It includes an active material layer and a cover plate that covers the peripheral edge of the positive electrode current collector.
  • a bipolar plate provided with supports for mutually supporting adjacent plates when stacked; a positive electrode current collector adhered to one surface of the bipolar plate with an adhesive; and a positive electrode current collector.
  • a positive electrode active material layer disposed on the upper surface of the bipolar plate; a negative electrode current collector adhered to the other surface of the bipolar plate with an adhesive; a negative electrode active material layer disposed on the negative electrode current collector; and a cover plate that covers the peripheral edge of the current collector.
  • FIG. 1 is a cross-sectional view partially showing the structure of a bipolar lead-acid battery according to an embodiment of the present invention
  • FIG. 1 is an enlarged cross-sectional view of a bipolar electrode, which is a main part of a bipolar lead-acid battery according to an embodiment, and shows the structure of a peripheral portion of a positive electrode lead foil.
  • FIG. FIG. 2 is an enlarged cross-sectional view of a bipolar electrode, which is a main part of a bipolar lead-acid battery according to an embodiment, and shows the structure of a peripheral portion of a support.
  • 1 is a plan view of a bipolar electrode showing the structure of a main part of a bipolar lead-acid battery according to an embodiment;
  • FIG. 4 is an enlarged cross-sectional view of a bipolar electrode showing effects in the bipolar lead-acid battery according to the embodiment
  • FIG. 10 is a diagram showing a conventional bipolar lead-acid battery in which sulfuric acid contained in the electrolyte causes growth in the positive electrode lead layer, resulting in penetration of the electrolyte into the interface between the positive electrode lead layer and the adhesive layer. be.
  • FIG. 1 is a cross-sectional view partially showing the structure of a bipolar lead-acid battery 1 according to an embodiment of the present invention.
  • the bipolar lead-acid battery 1 shown in FIG. 1 has a first end plate 11, a bipolar plate 12 and a second end plate 13.
  • the first end plate 11 is formed in a concave shape, and the negative electrode 110 is fixed to the concave portion via an adhesive 140 .
  • the bipolar plate 12 includes a bipolar electrode 130 formed in an H shape and having a positive electrode 120 provided on one surface and a negative electrode 110 provided on the other surface configured in parallel with the concave portion of the first end plate 11 .
  • the second end plate 13 is formed in a concave shape, and the positive electrode 120 is fixed to the concave portion via an adhesive 140 .
  • An electrolytic layer (separator) 105 is provided between the positive electrode active material layer 103 and the negative electrode active material layer 104 and is in contact with both.
  • the electrolytic layer 105 is composed of, for example, a glass fiber mat impregnated with an electrolytic solution containing sulfuric acid.
  • the bipolar lead-acid battery 1 By stacking the bipolar plate 12 between the first end plate 11 and the second end plate 13, for example, the bipolar lead-acid battery 1 having a substantially rectangular parallelepiped shape is configured.
  • FIG. 1 shows the bipolar lead-acid battery 1 in which two bipolar plates 12 are stacked, the number of stacked bipolar plates 12 is determined so that the storage capacity of the bipolar lead-acid battery 1 is a desired value. is set to be
  • a negative terminal (not shown) is fixed to the first end plate 11 , and the negative terminal is electrically connected to the negative electrode 110 fixed to the first end plate 11 .
  • a positive electrode terminal (not shown) is fixed to the second end plate 13 , and the positive electrode terminal is electrically connected to the positive electrode 120 fixed to the second end plate 13 .
  • the first end plate 11 and the second end plate 13 are made of, for example, known molding resin.
  • the first end plate 11, the bipolar plate 12, and the second end plate 13 are fixed to each other by an appropriate method so that the inside is sealed so that the electrolytic solution does not flow out.
  • substantially central portions of the first end plate 11, the bipolar plate 12, and the second end plate 13 are provided with support columns 14 that mutually support adjacent plates when they are stacked.
  • the support 14 is provided only in the substantially central portion, but the support 14 may be provided not only at one place but also at a plurality of places. Also good.
  • the bipolar plate 12 is made of thermoplastic resin, for example.
  • the thermoplastic resin that forms the bipolar plate 12 include acrylonitrile-butadiene-styrene copolymer (ABS resin) and polypropylene. These thermoplastic resins are excellent in moldability and also in sulfuric acid resistance. Therefore, even if the electrolyte comes into contact with the bipolar plate 12, the bipolar plate 12 is unlikely to be decomposed, deteriorated, corroded, or the like.
  • the bipolar plate 12 is provided with a conduction hole 12a that communicates between one surface and the other surface.
  • the two are electrically connected, and a conduction portion between the positive electrode 120 and the negative electrode 110 is formed.
  • the positive electrode 120 is a positive current collector made of lead or a lead alloy, and includes a positive electrode lead foil 101 arranged on one surface of the bipolar plate 12 and a positive electrode arranged on the positive electrode lead foil 101. and an active material layer 103 .
  • This positive electrode lead foil 101 is adhered to one surface of the bipolar plate 12 with an adhesive 140 provided between the one surface of the bipolar plate 12 and the positive electrode lead foil 101 . Therefore, the adhesive 140, the positive electrode lead foil 101, and the positive electrode active material layer 103 are placed on one surface of the bipolar plate 12 (the surface facing upward in the drawings such as FIG. 2 to be described later). They are laminated in this order.
  • the negative electrode 110 is a current collector for negative electrode made of lead or a lead alloy. and an active material layer 104 .
  • This negative electrode lead foil 102 is adhered to the other surface of the bipolar plate 12 with an adhesive 140 provided between the other surface of the bipolar plate 12 and the negative electrode lead foil 102 .
  • the positive electrode 120 and the negative electrode 110 are electrically connected through the above-described conduction hole 12a.
  • cathode active material layer 103 and the electrolytic layer 105 are omitted from the cross-sectional views of the bipolar electrode 130 including FIG. 2 shown below.
  • the illustration of the negative electrode 110 formed on the other surface of the bipolar plate 12 is also omitted.
  • the bipolar plate 12 In the bipolar lead-acid battery 1 according to the embodiment of the present invention having such a configuration, the bipolar plate 12, the positive electrode lead foil 101, the positive electrode active material layer 103, the negative electrode lead foil 102, and the negative electrode active material layer 103 are provided as described above.
  • the material layer 104 constitutes a bipolar electrode 130 .
  • a bipolar electrode is a single electrode that functions as both a positive electrode and a negative electrode.
  • a plurality of cell members each having an electrolytic layer 105 interposed between the positive electrode 120 and the negative electrode 110 are alternately laminated and assembled, thereby separating the cell members. It has a battery configuration connected in series.
  • FIG. 2 is an enlarged cross-sectional view of bipolar electrode 130 showing a peripheral edge portion 101c of positive electrode lead foil 101, showing the structure of the main part of bipolar lead-acid battery 1 according to the embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of bipolar electrode 130, which is a main part of bipolar lead-acid battery 1 according to the embodiment of the present invention and shows the structure of peripheral edge portion 101d of support 14. As shown in FIG.
  • the bipolar plate 12, the adhesive 140, the positive electrode active material layer 103 other than the positive electrode lead foil 101, the negative electrode 110 and the negative electrode lead foil 102 are adhered to the bipolar plate 12. Illustration of the adhesive 140 is omitted.
  • the bipolar plate 12 has a portion extending horizontally in the drawing. 2 and both ends thereof are omitted in FIG. 2 and in FIG. 3, respectively.
  • the positive electrode lead foil 101 is adhered via an adhesive 140 onto the horizontally extending portion forming one surface of the bipolar plate 12 .
  • the adhesive 140 is applied not only between one surface of the bipolar plate 12 and the surface of the positive electrode lead foil 101 facing that surface, but also the end portion 101 a of the positive electrode lead foil 101 .
  • the adhesive 140 is also provided on the surface facing the surface where the positive electrode lead foil 101 is bonded to one surface of the bipolar plate 12 (hereinafter, this surface will be referred to as the "facing surface 101b" as appropriate). .
  • the adhesive 140 configures one surface of the bipolar plate 12 so as to connect one surface of the bipolar plate 12 and the surface of the positive electrode lead foil 101 facing the surface and the opposite surface 101a. It is provided in the form of a flange on a horizontally extending portion of the housing.
  • a cover plate 150 is adhered onto the adhesive 140 provided on the facing surface 101b.
  • cover plate 150 examples include acrylonitrile-butadiene-styrene copolymer (ABS resin) and polypropylene. These thermoplastic resins have excellent moldability and excellent sulfuric acid resistance. Therefore, even if the electrolytic solution contacts the cover plate 150, the cover plate 150 is unlikely to be decomposed, deteriorated, corroded, or the like.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • polypropylene polypropylene
  • the cover plate 150 shown in FIG. 2 is placed on the adhesive 140 that covers the end 101a of the positive electrode lead foil 101 and is provided on the opposing surface 101b. Therefore, the cover plate 150 is fixed to the bipolar plate 12 and the positive electrode lead foil 101 via the adhesive 140 . At this time, it is more preferable that the cover plate 150 is arranged so as to press the positive electrode lead foil 101 .
  • One end 150a of the cover plate 150 includes a position where the adhesive 140 is provided on the facing surface 101b.
  • the end surface of 140 does not exceed (protrudes) one end 150a.
  • the other end 150b of the cover plate 150 is placed on an adhesive 140 provided in a flange shape on a horizontally extending portion forming one surface of the bipolar plate 12 .
  • the cover plate 150 covers the adhesive 140 provided on the peripheral edge 101c of the positive lead foil 101 including the end 101a of the positive lead foil 101, and the entire surface of the cover plate 150 is in contact with the adhesive 140. That is, by providing the cover plate 150 at such a position, the peripheral edge portion 101 c of the positive electrode lead foil 101 is covered with the cover plate 150 .
  • the cover plate 150 When placing the cover plate 150 on the adhesive 140, more preferably, as shown in FIG.
  • the cover plate 150 is arranged so that the ratio of the distance L1 to the distance L2 is 9:4.
  • the bipolar electrode 130 has a cover plate 150 that covers the peripheral edge portion 101c including the four corners of the positive electrode lead foil 101.
  • cover plate 150 partially covers positive electrode lead foil 101 with adhesive 140 interposed therebetween.
  • the region of the positive electrode lead foil 101 covered by the cover plate 150 includes the end 101a, as described above, and is the width (between one end 150a and the other end 150b) of the cover plate 150 (between one end 150a and the other end 150b) and the end indicated by L1. This is an area having a predetermined ratio indicated by the portion 101a.
  • peripheral edge portion of the positive electrode lead foil 101 includes not only the peripheral edge portion 101c including the four corners of the positive electrode lead foil 101 described above, but also the periphery of the support 14. That is, in the embodiment of the present invention, as shown in FIG. 1 and FIG. A cover plate 150 is also provided at 101d.
  • peripheral edge portion 101c of positive electrode lead foil 101 is formed into a frame-like cover plate. covered by 150.
  • the cover plate 150 is provided on the peripheral edge portion 101d of the support 14 so as to be in contact with the periphery of the support 14 and surround the peripheral edge portion 101d.
  • the frame-shaped cover plate 150 provided on the peripheral edge portion 101c of the positive electrode lead foil 101 and the cover plate 150 provided so as to surround the peripheral edge portion 101d of the column 14 have a larger width relationship in the former than in the latter. is preferred.
  • the cover plate 150 provided in a frame shape is larger than the cover plate 150 provided so as to surround it, so that when the growth occurs, the electrolytic solution spreads to the interface between the positive electrode lead foil 101 and the adhesive 140. This is because it is possible to further prevent the two from infiltrating into and separating from each other.
  • the width of the frame-shaped cover plate 150 is preferably three to four times the width of the cover plate 150 provided so as to surround it.
  • the cover plate 150 may be made of a sulfuric acid-resistant metal (for example, stainless steel) or ceramic that is resistant to corrosion by sulfuric acid.
  • the adhesive 140 for adhering the cover plate 150 covers the end portion 101a of the positive electrode lead foil 101, and is between one surface of the bipolar plate 12 and the positive electrode lead foil 101. is integrated with the adhesive 140 disposed on the .
  • this integrated state is the surplus when the positive electrode lead foil 101 is adhered to one surface of the bipolar plate 12. is created by utilizing an adhesive 140 of
  • the adhesive 140 may be provided at the position where the cover plate 150 of the peripheral portion 101c is placed.
  • the adhesive 140 used in the bipolar lead-acid battery 1 of the embodiment of the present invention for example, a reaction-curing adhesive in which a main agent containing an epoxy resin and a curing agent containing an amine compound react to cure A cured product of the agent can be mentioned.
  • this cured product has a property of being resistant to sulfuric acid, and sulfuric acid is less likely to enter the interface between the positive electrode lead foil 101 and the adhesive 140 .
  • sulfuric acid is less likely to enter the interface between the positive electrode lead foil 101 and the adhesive 140 .
  • the positive electrode lead foil 101 and the adhesive 140 are strongly adhered, even if the positive electrode lead foil 101 is corroded by the sulfuric acid contained in the electrolyte, the positive electrode lead foil 101 and the adhesive 140 will not grow. Intrusion of the electrolytic solution into the interface with is suppressed. Further, it is less likely that corrosion due to sulfuric acid will reach the surface of the positive electrode 120 facing the bipolar plate 12, causing a short circuit and degrading the performance of the battery.
  • Examples of the epoxy resin contained in the main agent include at least one of bisphenol A type epoxy resin and bisphenol F type epoxy resin.
  • An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • amine compounds contained in the curing agent include aliphatic polyamine compounds, alicyclic polyamine compounds, and aromatic polyamine compounds. These amine compounds may be used individually by 1 type, and may use 2 or more types together.
  • aliphatic polyamine compound examples include aliphatic primary amines such as triethylenetetramine ( C6H18N4 ) and aliphatic secondary amines such as triethylenetetramine.
  • aliphatic primary amines such as triethylenetetramine ( C6H18N4 )
  • aliphatic secondary amines such as triethylenetetramine.
  • alicyclic polyamine compounds include alicyclic primary amines such as isophoronediamine ( C10H22N2 ).
  • aromatic polyamine compounds include aromatic primary amines such as diaminodiphenylmethane ( C13H14N2 ).
  • FIG. 5 is an enlarged cross-sectional view of bipolar electrode 130 showing the effect of bipolar lead-acid battery 1 according to the embodiment.
  • pillar 14 is abbreviate
  • the positive electrode lead foil 101 is corroded by the sulfuric acid contained in the electrolyte, and a film 160 of corrosion products (lead oxide) is formed on the surface of the positive electrode lead foil 101. ing.
  • the surface of the positive electrode lead foil 101 on which the coating 160 is formed is the creeping surface, and the growth of the coating 160 extends the creeping distance. Then, when the positive electrode lead foil 101 grows due to the growth of the film 160, as indicated by the direction of the dashed arrow in FIG. direction side).
  • the cover plate 150 is provided so as to cover the peripheral edge portion 101c including the end portion 101a of the positive electrode lead foil 101.
  • the positive electrode has been described as an example in the embodiments of the present invention.
  • the cover plate should be provided at least on the positive electrode, but the structure described can also be employed on the negative electrode.
  • Bipolar lead-acid battery 12 Substrate (bipolar plate) DESCRIPTION OF SYMBOLS 101... Positive electrode lead foil 101a... End part 101b... Opposing surface 101c... Peripheral part 101d... Peripheral part 102... Negative electrode lead foil 103... Positive electrode active material layer 104... Negative electrode active material layer 105 Electrolytic layer 110 Negative electrode 120 Positive electrode 130 Bipolar electrode 140 Adhesive 150 Cover plate 150a One end 160 Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

電解液に含有される硫酸による腐食によって正極にグロースが生じても、正極と接着層との界面に電解液が浸入しにくく電池性能の低下が起こりにくいバイポーラ型蓄電池を提供する。積層した際に隣接するプレート同士を互いに支持する支柱を備えるバイポーラプレート(12)と、バイポーラプレート(12)の一方の面に接着剤(140)により接着される正極用集電体(101)と、正極用集電体(101)の上に配置される正極活物質層(103)と、バイポーラプレート(12)の他方の面に接着剤(140)により接着される負極用集電体(102)と、負極用集電体(102)の上に配置される負極活物質層(104)と、正極用集電体(101)の周縁部を覆うカバープレート(150)とを備える。

Description

バイポーラ型蓄電池
 本発明の実施の形態は、バイポーラ型蓄電池に関する。
 バイポーラ型鉛蓄電池は、正極及び負極と、一方の面に正極が設けられて他方の面に負極が設けられた基板(バイポーラプレート)と、を有するバイポーラ電極を備えている。従来のバイポーラ電極の正極は、図6の(a)に示すように、樹脂製の基板210の一方の面の上に接着層240を介して正極用鉛層220が配され、当該正極用鉛層220の上に正極用活物質層(図示せず)が配されることによって構成されている。
特表2014-530450号
 上記のようなバイポーラ型鉛蓄電池においては、電解液に含有される硫酸によって正極用鉛層220が腐食して正極用鉛層220の表面に腐食生成物(酸化鉛)の被膜260が生成されることがある(図6の(b)を参照)。そして、この腐食生成物の被膜260の成長によって正極用鉛層220に伸び(グロース)が生じるおそれがあった。
 また、このグロースによって正極用鉛層220と接着層240が剥離し正極用鉛層220がまくれてしまうと、正極用鉛層220と接着層240との界面に電解液が浸入して、硫酸による正極用鉛層220の腐食がさらに進行するおそれがあった(図6の(c)を参照)。その結果、電解液が例えば正極用鉛層220の裏面(基板210に対向する面)を伝い負極用鉛箔(図示せず)にまで達してしまうと、短絡(液絡)が生じるなどして電池の性能が低下する場合があった。
 なお、ここでグロースによって正極用鉛層220(正極)と接着層240との界面に電解液が浸入して硫酸による正極用鉛層220(正極)の腐食が進んだ面のことを、以下適宜「沿面」と表す。また、腐食が進んだ距離のことを適宜「沿面距離」と表す。
 本発明は、電解液に含有される硫酸による腐食によって正極にグロースが生じても、正極と接着層との界面に電解液が浸入しにくく電池性能の低下が起こりにくいバイポーラ型蓄電池を提供することを目的とする。
 本発明の一態様に係るバイポーラ型蓄電池は、積層した際に隣接するプレート同士を互いに支持する支柱を備えるバイポーラプレートと、バイポーラプレートの一方の面に接着剤により接着される正極用集電体と、正極用集電体の上に配置される正極活物質層と、バイポーラプレートの他方の面に接着剤により接着される負極用集電体と、負極用集電体の上に配置される負極活物質層と、正極用集電体の周縁部を覆うカバープレートとを備える。
 本発明によれば、積層した際に隣接するプレート同士を互いに支持する支柱を備えるバイポーラプレートと、バイポーラプレートの一方の面に接着剤により接着される正極用集電体と、正極用集電体の上に配置される正極活物質層と、バイポーラプレートの他方の面に接着剤により接着される負極用集電体と、負極用集電体の上に配置される負極活物質層と、正極用集電体の周縁部を覆うカバープレートとを備える。このような構成を採用することによって、電解液に含有される硫酸による腐食によって正極にグロースが生じても、カバープレートの存在により正極用集電体の周縁部に電解液が浸入することを可能な限り防止することができる。従って、正極と接着層との界面に電解液が浸入しにくく、当該電解液が負極に到達することを遅らせることができるため、電池性能の低下が起こりにくい。
本発明の実施の形態に係るバイポーラ型鉛蓄電池の構造を部分的に示す断面図である。 実施の形態に係るバイポーラ型鉛蓄電池の要部であって、正極鉛箔の周縁部の構造を示すバイポーラ電極の拡大断面図である。 実施の形態に係るバイポーラ型鉛蓄電池の要部であって、支柱の周縁部の構造を示すバイポーラ電極の拡大断面図である。 実施の形態に係るバイポーラ型鉛蓄電池の要部の構造を示すバイポーラ電極の平面図である。 実施の形態に係るバイポーラ型鉛蓄電池における効果を示すバイポーラ電極の拡大断面図である。 従来のバイポーラ型鉛蓄電池において、電解液に含有される硫酸による腐食によって正極用鉛層にグロースが生じた結果、正極用鉛層と接着層との界面に電解液が浸入する様子を示す図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下に説明する実施の形態は、本発明の一例を示したものである。また、本実施の形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。この実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。なお、以下においては、様々な蓄電池の中から鉛蓄電池を例に挙げて説明する。
 本発明の実施の形態に係るバイポーラ型鉛蓄電池1の構造を、図1を参照しながら説明する。図1は、本発明の実施の形態に係るバイポーラ型鉛蓄電池1の構造を部分的に示す断面図である。
 図1に示すバイポーラ型鉛蓄電池1は、第1のエンドプレート11と、バイポーラプレート12と、第2のエンドプレート13と、を有する。第1のエンドプレート11は、凹状に形成され、その凹部に負極110が接着剤140を介して固定される。バイポーラプレート12は、H状に形成され、第1のエンドプレート11の凹部と平行に構成される一方の面に正極120が設けられて他方の面に負極110が設けられたバイポーラ電極130を備える。第2のエンドプレート13は、凹状に形成され、その凹部に正極120が接着剤140を介して固定される。
 また、正極活物質層103及び負極活物質層104との間には電解層(セパレータ)105が設けられ両者と接触している。この電解層105は、例えば、硫酸を含有する電解液が含浸されたガラス繊維マットによって構成されている。
 そして、バイポーラプレート12が第1のエンドプレート11と第2のエンドプレート13との間に積層されることによって、例えば、略直方体形状をなすバイポーラ型鉛蓄電池1が構成される。なお、図1ではバイポーラプレート12が2つ積層された状態のバイポーラ型鉛蓄電池1を示しているが、積層されるバイポーラプレート12の個数は、バイポーラ型鉛蓄電池1の蓄電容量が所望の数値になるように設定される。
 第1のエンドプレート11には図示しない負極端子が固定されており、当該負極端子は、第1のエンドプレート11に固定された負極110と電気的に接続されている。第2のエンドプレート13には図示しない正極端子が固定されており、当該正極端子は、第2のエンドプレート13に固定された正極120と電気的に接続されている。
 第1のエンドプレート11及び第2のエンドプレート13は、例えば周知の成形樹脂によって形成されている。そして、第1のエンドプレート11、バイポーラプレート12及び第2のエンドプレート13は、電解液の流出が無いように、適宜の方法で内部が密閉状態となるよう互いに固定されている。
 また、第1のエンドプレート11、バイポーラプレート12、及び、第2のエンドプレート13の略中央部には、これらを積層した際に隣接するプレート同士を互いに支持する支柱14が設けられている。
 なお、本発明の実施の形態においては、支柱14は略中央部にのみ設けられていることを前提にしているが、当該支柱14については、1カ所のみならず、複数箇所において設けられていても良い。
 バイポーラプレート12は、例えば、熱可塑性樹脂で形成されている。バイポーラプレート12を形成する熱可塑性樹脂としては、例えば、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリプロピレンが挙げられる。これらの熱可塑性樹脂は、成形性に優れているとともに耐硫酸性にも優れている。よって、バイポーラプレート12に電解液が接触したとしても、バイポーラプレート12に分解、劣化、腐食等が生じにくい。
 またバイポーラプレート12には、一方の面と他方の面とを連通する導通孔12aが設けられている。そして、当該導通孔12aを介して正極鉛箔101と負極鉛箔102とが接合されることによって、両者が電気的に接続され、正極120と負極110との導通部が形成される。
 正極120は、鉛又は鉛合金からなる正極用集電体であり、且つ、バイポーラプレート12の一方の面の上に配置される正極鉛箔101と、正極鉛箔101の上に配置される正極活物質層103と、を備えている。この正極鉛箔101は、バイポーラプレート12の一方の面と正極鉛箔101の間に設けられる接着剤140によってバイポーラプレート12の一方の面に接着されている。従って、バイポーラプレート12の一方の面(後述する図2等の図面においては、紙面における上方を向く面)の上に、接着剤140と、正極鉛箔101と、正極活物質層103とが、この記載順に積層されている。
 負極110は、鉛又は鉛合金からなる負極用集電体であり、且つ、バイポーラプレート12の他方の面の上に配置される負極鉛箔102と、負極鉛箔102の上に配置される負極活物質層104と、を備えている。この負極鉛箔102は、バイポーラプレート12の他方の面と負極鉛箔102の間に設けられる接着剤140によってバイポーラプレート12の他方の面に接着されている。そしてこれら正極120と負極110は、上述した導通孔12aを介して電気的に接続されている。
 なお、以下に示す図2をはじめとするバイポーラ電極130の断面図においては、正極活物質層103、電解層105の図示を省略している。また同様に、バイポーラプレート12の他方の面に形成される負極110についても図示を省略している。
 このような構成を有する本発明の実施の形態に係るバイポーラ型鉛蓄電池1においては、上述したように、バイポーラプレート12、正極鉛箔101、正極活物質層103、負極鉛箔102、及び負極活物質層104によって、バイポーラ電極130が構成されている。バイポーラ電極とは、1枚の電極で正極、負極両方の機能を有する電極である。そして、本発明の実施の形態のバイポーラ型鉛蓄電池1は、正極120と負極110との間に電解層105を介在させてなるセル部材を交互に複数積層して組み付けることにより、セル部材同士を直列に接続した電池構成を有している。
 次に、本発明の実施の形態に係るバイポーラ電極130における正極鉛箔101の端部における構造について、以下図1とともに図2及び図3も用いて説明する。図2は、本発明の実施の形態に係るバイポーラ型鉛蓄電池1の要部の構造であって、正極鉛箔101の周縁部101cを示すバイポーラ電極130の拡大断面図である。また、図3は、本発明の実施の形態に係るバイポーラ型鉛蓄電池1の要部であって、支柱14の周縁部101dの構造を示すバイポーラ電極130の拡大断面図である。
 なお、図2及び図3におけるバイポーラ電極130では、バイポーラプレート12、接着剤140及び正極鉛箔101以外の正極活物質層103、負極110及び負極鉛箔102をバイポーラプレート12に接着する負極側の接着剤140については、その図示を省略している。
 バイポーラプレート12は、例えば、図2に示す通り、図面上水平方向に延びる部分を備えている。また、水平方向に延びる部分は、図2においてはその右側の部分を、図3においてはその両端の部分において図示を省略している。
 図2に示すバイポーラ電極130では、バイポーラプレート12の一方の面を構成する水平方向に延びる部分の上に接着剤140を介して正極鉛箔101が接着されている。また、接着剤140は、バイポーラプレート12の一方の面と当該面に対向する正極鉛箔101の面との間のみならず、正極鉛箔101の端部101aを含み、正極鉛箔101における面であって正極鉛箔101がバイポーラプレート12の一方の面と接着される面に対向する面(以下、この面を適宜「対向面101b」と表す)上にも接着剤140が設けられている。
 さらに接着剤140は、バイポーラプレート12の一方の面と当該面に対向する正極鉛箔101の面との間、及び、対向面101a上とをつなぐように、バイポーラプレート12の一方の面を構成する水平方向に延びる部分の上にフランジ状に設けられている。
 そして本発明の実施の形態におけるバイポーラ電極130においては、さらに対向面101bに設けられた接着剤140の上にカバープレート150が接着されている。
 ここでカバープレート150の素材としては、例えば、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリプロピレンが挙げられる。これらの熱可塑性樹脂は、成形性が優れているとともに耐硫酸性も優れている。よって、カバープレート150に電解液が接触したとしても、カバープレート150に分解、劣化、腐食等が生じにくい。
 図2に示すカバープレート150は、正極鉛箔101の端部101aを覆って対向面101b上に設けられる接着剤140上に載置される。そのため、カバープレート150は、接着剤140を介してバイポーラプレート12及び正極鉛箔101に固定されることとなる。このとき、カバープレート150は、正極鉛箔101を押圧するように配されていることがより好ましい。
 また、カバープレート150は、その一端150aが対向面101bにおいて接着剤140が設けられる位置を含むように配置されているとともに、正極鉛箔101の端部101aからの距離をみた場合に、接着剤140の端面が一端150aを超える(はみ出す)ことはない。
 一方、カバープレート150の他端150bについては、バイポーラプレート12の一方の面を構成する水平方向に延びる部分の上にフランジ状に設けられている接着剤140の上に載置されている。
 従って、カバープレート150が正極鉛箔101の端部101aを含む正極鉛箔101の周縁部101cに設けられた接着剤140に覆い被さる形になり、カバープレート150の全面が接着剤140と接する。すなわちカバープレート150がこのような位置に設けられることによって、正極鉛箔101の周縁部101cがカバープレート150によって覆われることになる。
 そしてカバープレート150を接着剤140の上に載置するに当たっては、より好ましくは、図2に示すように、カバープレート150の一端150aから他端150bの間の距離をL1とし、正極鉛箔101の端部101aからカバープレート150の他端150bまでの間の距離をL2としたとき、距離L1と距離L2との比が9:4となるようにカバープレート150を配置する。
 このようにバイポーラ電極130は、正極鉛箔101の四隅を含む周縁部101cを覆うカバープレート150を備えている。本発明の実施の形態においては、カバープレート150が接着剤140を介して正極鉛箔101の一部を覆っている。カバープレート150が覆っている正極鉛箔101の領域は、上述したように、その端部101aを含み、符号L1で示される、カバープレート150の幅(一端150aと他端150bの間)と端部101aとで示される所定の比率となる領域である。
 また、正極鉛箔101の周縁部としては、上述した正極鉛箔101の四隅を含む周縁部101cだけではなく、支柱14の周りも含まれる。つまり、本発明の実施の形態においては、図1及び図3に示されているように、正極鉛箔101の対向面101b上に設けられる接着剤140上であって、当該支柱14の周縁部101dにもカバープレート150が設けられている。
 すなわち、図4の本発明の実施の形態に係るバイポーラ型鉛蓄電池1の要部の構造を示すバイポーラ電極130の平面図に示すように、正極鉛箔101の周縁部101cが枠形状にカバープレート150によって覆われる。また、支柱14の周縁部101dにも、支柱14の周囲に接触し、周縁部101dを取り囲むように当該カバープレート150が設けられる。なお、正極鉛箔101の周縁部101cに設けられた枠形状のカバープレート150と支柱14の周縁部101dを取り囲むように設けられたカバープレート150との幅の関係は、後者よりも前者が大きい方が好ましい。なぜならば、取り囲むように設けられたカバープレート150よりも枠形状に設けられたカバープレート150の方が大きい方が、グロースが生じた際に電解液が正極鉛箔101と接着剤140との界面に浸入して両者が剥離することをより防止することができるためである。枠形状に設けられたカバープレート150の幅は、取り囲むように設けられたカバープレート150の3倍~4倍設けられていることが好ましい。
 なお、本発明の実施の形態においては、上述したように支柱14は1つのみ設けられている。但し、バイポーラプレート12に複数の支柱14が設けられている場合には、これら全ての支柱14の周縁部101dにカバープレート150が設けられる。
 なお、カバープレート150としては、上述したような材質を例に挙げたが、このような材質に限定しなくても良い。つまり、硫酸に腐食されにくい耐硫酸性を有している、例えば、耐硫酸性を有する金属(例えばステンレス鋼)、セラミックをカバープレート150として使用しても良い。
 このように正極鉛箔101の端部101aを含む領域(周縁部101c)及び支柱14の周縁部101dにカバープレート150を設けることによって、正極鉛箔101での電解液が浸入しやすい部分において電解液の浸入を可能な限り防ぐことができるため、たとえグロースが生じたとしても、電解液が正極鉛箔101と接着剤140との界面に浸入して両者が剥離することを防止することができる。
 なお、ここでは図2に示すように、カバープレート150を接着するための接着剤140は、正極鉛箔101の端部101aを覆い、バイポーラプレート12の一方の面と正極鉛箔101との間に配された接着剤140と一体をなしていることを前提としている。この一体をなす状態は、例えば、カバープレート150を正極鉛箔101の端部101aを覆うように載置する際に、正極鉛箔101をバイポーラプレート12の一方の面に接着する際の余剰分の接着剤140を利用することで作出される。
 但しこの他に、カバープレート150を載置する際に、バイポーラプレート12の一方の面に正極鉛箔101を接着する際に用いる接着剤140とは別の工程として、対向面101bの上であって周縁部101cのカバープレート150が載置される位置に接着剤140を設けるようにしても良い。
 また、本発明の実施の形態のバイポーラ型鉛蓄電池1において用いられる接着剤140としては、例えば、エポキシ樹脂を含有する主剤とアミン化合物を含有する硬化剤とが反応して硬化する反応硬化型接着剤の硬化物を挙げることができる。
 すなわち、この硬化物は、硫酸に侵されにくい性質を有しており、正極鉛箔101と接着剤140との界面に硫酸が浸入しにくい。また、硬化物は、電解液と接触したとしても分解、劣化、腐食等が生じにくい。そのため、正極鉛箔101と接着剤140とが強固に接着しているので、電解液に含有される硫酸による腐食によって正極鉛箔101にグロースが生じたとしても、正極鉛箔101と接着剤140との界面への電解液の浸入が抑制される。さらに、硫酸による腐食が正極120のバイポーラプレート12に対向する面にまで達し短絡が生じるなどして電池の性能が低下するという不具合が生じにくい。
 主剤に含有されるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂の少なくとも一方が挙げられる。エポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 硬化剤に含有されるアミン化合物としては、例えば、脂肪族ポリアミン化合物、脂環族ポリアミン化合物、芳香族ポリアミン化合物が挙げられる。これらのアミン化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 脂肪族ポリアミン化合物の具体例としては、トリエチレンテトラミン(C6184)等の脂肪族第一級アミン、トリエチレンテトラミン等の脂肪族第二級アミンが挙げられる。脂環族ポリアミン化合物の具体例としては、イソホロンジアミン(C10222)等の脂環族第一級アミンが挙げられる。芳香族ポリアミン化合物の具体例としては、ジアミノジフェニルメタン(C13142)等の芳香族第一級アミンが挙げられる。
 図5は、実施の形態に係るバイポーラ型鉛蓄電池1における効果を示すバイポーラ電極130の拡大断面図である。なお、当該図5においては、支柱14の描画を省略している。
 図5に示すバイポーラ電極130では、電解液に含有される硫酸によって正極鉛箔101が腐食して正極鉛箔101の表面に腐食生成物(酸化鉛)の被膜160が生成された状態が示されている。
 すなわち、当該被膜160が生成された正極鉛箔101の表面が沿面であり、被膜160の成長により沿面距離が伸びる。そして、この被膜160の成長によって正極鉛箔101にグロースが生じると、図5に破線で示す矢印の向きが示すように、上側(図5ではその図示を省略している正極活物質層103の方向側)にその力が掛かる。
 しかしながら上述したように、本発明の実施の形態におけるバイポーラ型鉛蓄電池1では、正極鉛箔101の端部101aを含む周縁部101cを覆うようにカバープレート150を設けている。このような構成を採用することによって、たとえグロースが発生したとしても、バイポーラプレート12及びカバープレート150による上下方向(図5で示す実線で描かれる矢印の方向)の力により、正極鉛箔101と接着剤140との間に硫酸が浸入して被膜160が生成されにくくすることができる。
 また、そしてカバープレート150の一端150aないし他端150bの全面が接着剤140に接着されていることから、図5に示されているように正極鉛箔101と正極活物質層103側から、すなわち、カバープレート150の一端150a側からの電解液の浸入のみならず、他端150b側からの電解液の浸入についても生じにくくすることができる。
 これらのことは、グロースの成長を遅延させるとともに沿面距離を稼ぐことにつながり、グロースの成長を遅延させることができれば、電解液が正極鉛箔101と接着剤140との界面に浸入して両者が剥離してまくれることをより抑制することができる。その結果、当該電解液が負極に到達することを遅らせることができるため、電池性能の低下が起こりにくい。
 そして、正極101の周縁部101cに関して説明した上記作用及び効果は、支柱14の周縁部101dに設けられたカバープレート150においても同様の作用、効果を奏することになる。
 なお、上述したように、本発明の実施の形態においては正極を例に挙げて説明を行った。このようにカバープレートは少なくとも正極に設けられていれば良いが、説明した構造は、負極においても採用し得る。
 なお、上述したように、本発明の実施の形態においてはバイポーラ型鉛蓄電池を例に挙げて説明した。但し、集電体に鉛ではなく他の金属を用いるような他の蓄電池においても上記説明内容が当てはまる場合には、当然その適用を排除するものではない。
    1・・・バイポーラ型鉛蓄電池
   12・・・基板(バイポーラプレート)
  101・・・正極鉛箔
  101a・・・端部
  101b・・・対向面
  101c・・・周縁部
  101d・・・周縁部
  102・・・負極鉛箔
  103・・・正極活物質層
  104・・・負極活物質層
  105・・・電解層
  110・・・負極
  120・・・正極
  130・・・バイポーラ電極
  140・・・接着剤
  150・・・カバープレート
  150a・・・一端
  160・・・被膜

Claims (6)

  1.  積層した際に隣接するプレート同士を互いに支持する支柱を備えるバイポーラプレートと、
     前記バイポーラプレートの一方の面に接着剤により接着される正極用集電体と、
     前記正極用集電体の上に配置される正極活物質層と、
     前記バイポーラプレートの他方の面に接着剤により接着される負極用集電体と、
     前記負極用集電体の上に配置される負極活物質層と、
     前記正極用集電体の周縁部を覆うカバープレートと、
     を備えることを特徴とするバイポーラ型蓄電池。
  2.  前記周縁部は、前記支柱の周縁部を含み、前記カバープレートは、前記支柱の前記周縁部を覆うことを特徴とする請求項1に記載のバイポーラ型蓄電池。
  3.  前記カバープレートは、アクリロニトリル-ブタジエン-スチレン共重合体製またはポリプロピレン製であることを特徴とする請求項1または請求項2に記載のバイポーラ型蓄電池。
  4.  前記カバープレートは、少なくとも前記正極に設けられた接着剤上に配置され、前記カバープレートの一端は前記接着剤が設けられている領域を覆うように配置されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載のバイポーラ型蓄電池。
  5.  前記カバープレートは、前記正極の端部を覆い、枠形状をなすことを特徴とする請求項1、3または請求項4のいずれか一項に記載のバイポーラ型蓄電池。
  6.  前記正極用集電体及び前記負極用集電体は、鉛又は鉛合金からなることを特徴とする請求項1ないし請求項5のいずれか一項に記載のバイポーラ型蓄電池。
PCT/JP2021/041932 2021-01-22 2021-11-15 バイポーラ型蓄電池 WO2022158096A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022576994A JPWO2022158096A1 (ja) 2021-01-22 2021-11-15
US18/356,578 US20230361312A1 (en) 2021-01-22 2023-07-21 Bipolar Storage Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021008959 2021-01-22
JP2021-008959 2021-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/356,578 Continuation US20230361312A1 (en) 2021-01-22 2023-07-21 Bipolar Storage Battery

Publications (1)

Publication Number Publication Date
WO2022158096A1 true WO2022158096A1 (ja) 2022-07-28

Family

ID=82548675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041932 WO2022158096A1 (ja) 2021-01-22 2021-11-15 バイポーラ型蓄電池

Country Status (3)

Country Link
US (1) US20230361312A1 (ja)
JP (1) JPWO2022158096A1 (ja)
WO (1) WO2022158096A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004764A1 (ja) * 2022-06-27 2024-01-04 古河電池株式会社 双極型蓄電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB585703A (en) * 1944-07-19 1947-02-20 Wilhelm Georg Schmidt Improvements in electric accumulators
US4098967A (en) * 1973-05-23 1978-07-04 Gould Inc. Electrochemical system using conductive plastic
JPH0757768A (ja) * 1993-06-21 1995-03-03 General Motors Corp <Gm> 二極バッテリー、その組立て方法及びハウジング形成方法
JP2014530450A (ja) * 2011-09-09 2014-11-17 イースト ペン マニュファクチャリング カンパニー インコーポレーテッドEast Penn Manufacturing Co.,Inc. 二極式電池およびプレート
WO2020243093A1 (en) * 2019-05-24 2020-12-03 Advanced Battery Concepts, LLC Battery assembly with integrated edge seal and methods of forming the seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB585703A (en) * 1944-07-19 1947-02-20 Wilhelm Georg Schmidt Improvements in electric accumulators
US4098967A (en) * 1973-05-23 1978-07-04 Gould Inc. Electrochemical system using conductive plastic
JPH0757768A (ja) * 1993-06-21 1995-03-03 General Motors Corp <Gm> 二極バッテリー、その組立て方法及びハウジング形成方法
JP2014530450A (ja) * 2011-09-09 2014-11-17 イースト ペン マニュファクチャリング カンパニー インコーポレーテッドEast Penn Manufacturing Co.,Inc. 二極式電池およびプレート
WO2020243093A1 (en) * 2019-05-24 2020-12-03 Advanced Battery Concepts, LLC Battery assembly with integrated edge seal and methods of forming the seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004764A1 (ja) * 2022-06-27 2024-01-04 古河電池株式会社 双極型蓄電池

Also Published As

Publication number Publication date
US20230361312A1 (en) 2023-11-09
JPWO2022158096A1 (ja) 2022-07-28

Similar Documents

Publication Publication Date Title
JP5363404B2 (ja) 二次電池
US20130065106A1 (en) Bipolar Battery and Plate
US11362338B2 (en) Electric vehicle battery cell with solid state electrolyte
KR20120007508A (ko) 갈바니 전지용 전극 스택
KR101383804B1 (ko) 적층 박막 전지
CN116031364A (zh) 一种极片、电化学装置及电子设备
KR20110000517A (ko) 코인형 2차 전지
WO2022158096A1 (ja) バイポーラ型蓄電池
WO2016121279A1 (ja) 電池モジュール及び電池モジュールの解体方法
KR20040021307A (ko) 버튼형 및 코인형 전지
US11145923B2 (en) Battery structure
KR102473094B1 (ko) 배터리 팩 및 그의 라벨 부착 방법
EP3309857A1 (en) Battery structure
KR102231584B1 (ko) 이차전지용 전극 조립체, 이의 제조 방법 및 이를 포함하는 리튬이차전지
KR102458417B1 (ko) 포케팅 양극체의 제조방법, 포케팅 양극체 및 포케팅 양극체를 포함하는 전극조립체
WO2022070829A1 (ja) バイポーラ型蓄電池
KR102205425B1 (ko) 이차전지용 전극 조립체, 이의 제조 방법 및 이를 포함하는 리튬이차전지
US20230335710A1 (en) Bipolar Electrode and Bipolar Storage Battery
KR20220119476A (ko) 개선된 밀폐 수단을 포함하는 배터리형 전기화학적 장치 및 그 제조 방법
KR20170050445A (ko) 파우치형 이차전지
US20240021883A1 (en) Bipolar Storage Battery
WO2022123956A1 (ja) バイポーラ型蓄電池
KR100553735B1 (ko) 이차전지 및 그 제조방법
US20240072353A1 (en) Pouch-Type Secondary Battery With Excellent Insulation And Heat-Dissipating Properties
WO2022201834A1 (ja) バイポーラ型蓄電池及びバイポーラ型蓄電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576994

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921199

Country of ref document: EP

Kind code of ref document: A1