[go: up one dir, main page]

WO2022158034A1 - Cathode unit for magnetron sputtering device, and magnetron sputtering device - Google Patents

Cathode unit for magnetron sputtering device, and magnetron sputtering device Download PDF

Info

Publication number
WO2022158034A1
WO2022158034A1 PCT/JP2021/033475 JP2021033475W WO2022158034A1 WO 2022158034 A1 WO2022158034 A1 WO 2022158034A1 JP 2021033475 W JP2021033475 W JP 2021033475W WO 2022158034 A1 WO2022158034 A1 WO 2022158034A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
target
central magnet
central
magnetron sputtering
Prior art date
Application number
PCT/JP2021/033475
Other languages
French (fr)
Japanese (ja)
Inventor
僚也 北沢
弘敏 阪上
辰徳 磯部
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020237019750A priority Critical patent/KR20230104957A/en
Priority to JP2022576965A priority patent/JP7543448B2/en
Priority to CN202180090208.5A priority patent/CN117044403A/en
Publication of WO2022158034A1 publication Critical patent/WO2022158034A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a cathode unit for a magnetron sputtering device and a magnetron sputtering device for forming a predetermined thin film on a substrate to be processed by magnetron sputtering.
  • a magnetron sputtering apparatus is generally provided with a magnet unit on the side opposite to the sputtering surface of a target arranged (facing) a substrate to be processed in a vacuum chamber. Then, when a rare gas such as argon gas is introduced into a vacuum chamber having a vacuum atmosphere, and a DC voltage or an AC voltage having a negative potential is applied to the target to sputter the sputtering surface of the target, ionization occurs in front of the sputtering surface.
  • the plasma density is increased by capturing electrons and secondary electrons generated by sputtering to increase the electron density and increasing the probability of collision between the electrons and rare gas molecules.
  • the magnet unit When forming a film on a substrate to be processed (hereinafter referred to as "substrate") with a rectangular contour such as a glass substrate, a target with the same contour as the substrate is usually used.
  • the magnet unit includes a central magnet linearly arranged on one side of a rectangular support plate (yoke) provided parallel to the target, and linear portions extending parallel to each other at equal intervals on both sides of the central magnet. and a bridging portion bridging both free ends of both linear portions, respectively, and a peripheral magnet surrounding the periphery of the central magnet with opposite polarities on the target side.
  • the longitudinal direction of the central magnet is the X-axis direction
  • the width direction of the central magnet orthogonal to the X-axis direction is the Y-axis direction.
  • the electrons in the plasma are bent by the electromagnetic field at both ends of the magnet unit in the X-axis direction to change direction, and move clockwise or halfway along the racetrack depending on the magnetism of the upper side of the central magnet and the peripheral magnets. move in a clockwise orbit.
  • the region near the center magnet is defined as the central region, and the region in the opposite direction is defined as the peripheral region.
  • a simulation of the density distribution of orbiting electrons in the plasma shows that in the initial magnet unit, the density of orbiting electrons in the peripheral region before being bent by the electromagnetic field and changing direction is locally high in the XY plane. It is found that the density of orbiting electrons in the peripheral region becomes locally low after changing . From this, when focusing on the trajectory of the circulating electrons on the XZ plane, it is found that the circulating electrons scatter toward the substrate to be processed (upward in the Z-axis direction) in the central region after the orientation is changed. rice field.
  • the correction magnet unit on the XY plane, there is not much difference in the density of circulating electrons in the peripheral region before and after changing the direction. It was confirmed that scattering to the magnet unit is suppressed (in other words, it is trapped by the leakage magnetic field) compared to the initial magnet unit.
  • a predetermined length range extending inwardly adjacent to both longitudinal ends of the magnet unit (the interval between the central magnet and each straight line portion is the central region of the magnet unit). It was confirmed that the density of circulating electrons in the peripheral region increases and spreads in the Y-axis direction in the range of a predetermined length starting from the position where it was returned to the same position as the original.
  • the present invention has been made based on the above findings, and is capable of making the erosion region of the target substantially uniform as the sputtering progresses without local disappearance of the plasma, thereby increasing the utilization efficiency of the target. It is an object of the present invention to provide a cathode unit for a magnetron sputtering apparatus and a magnetron sputtering apparatus capable of
  • a cathode unit for a magnetron sputtering apparatus of the present invention includes a magnet unit provided on the side opposite to the sputtering surface of a target arranged in a vacuum chamber, the magnet unit having a linear shape. and a peripheral magnet surrounding the central magnet, which has a central magnet arranged on both sides of the central magnet, straight portions extending parallel to each other at equal intervals, and bridging portions bridging both free ends of the straight portions, respectively.
  • the length of both ends of the central magnet to be shifted is appropriately set according to the length of the magnet unit in the X-axis direction, the distance between the sputtering surface and the substrate to be processed, and the power supplied to the target during sputtering. For example, it is set to be at least twice the distance between the two straight portions.
  • the peripheral region before and after changing the orientation can be used. can make the density difference of orbiting electrons at .
  • a magnet unit is arranged below the target arranged facing the substrate to be processed in the vacuum chamber with the sputtering surface side of the target facing upward, a power source for supplying power to the target,
  • the magnetron sputtering apparatus of the present invention which is provided with a gas introducing means for introducing an inert gas into a vacuum chamber having a vacuum atmosphere, comprises a central magnet arranged linearly, and a magnet unit arranged parallel to and equidistantly on both sides of the central magnet. and a bridge portion bridging both free ends of the two straight portions.
  • a driving means is further provided for reciprocating the magnet unit at least in the Y-axis direction with a predetermined stroke length, with the direction perpendicular to the X-axis direction and the direction from the central magnet to the straight line portion of the peripheral magnet as the Y-axis direction.
  • a racetrack-shaped plasma is generated in the space above the sputtering surface.
  • an electron diffusion suppressing means for suppressing upward diffusion of electrons is provided.
  • both end portions of the central magnet are shifted to different linear portions of the peripheral magnet in accordance with the polarity of the central magnet on the target side to suppress electron divergence.
  • a permanent magnet or an electromagnet is provided at a position in the vacuum chamber where the sputtered particles do not scatter or outside the vacuum chamber, and a magnetic field is applied, and when the direction is changed, the electrons tend to diverge upward (toward the substrate to be processed). may be trapped in the original trajectory.
  • FIG. 2 is a schematic partial cross-sectional view of a magnetron sputtering apparatus including the cathode unit of this embodiment.
  • (a) is a partially omitted plan view of the magnet unit used in the cathode unit of the present embodiment
  • (b) is a diagram for explaining the density distribution of orbiting electrons in the plasma in the XY plane
  • (c). 4 is a diagram for explaining the density distribution of orbiting electrons in plasma on the XZ plane
  • FIG. (a) is a diagram for explaining the density distribution of orbiting electrons in the plasma on the XY plane of the conventional magnet unit
  • (b) is a diagram for explaining the density distribution of orbiting electrons in the plasma on the XZ plane.
  • (a) is a diagram for explaining the density distribution of orbiting electrons in the plasma on the XY plane of another conventional magnet unit
  • (b) is a diagram for explaining the density distribution of orbiting electrons in the plasma on the XZ plane.
  • the substrate to be processed is a large-area glass substrate (hereinafter referred to as "substrate Sw") used for manufacturing flat panel displays, and a plurality of targets having rectangular contours in one direction are provided.
  • substrate Sw a large-area glass substrate
  • An embodiment of a cathode unit for a magnetron sputtering apparatus and a magnetron sputtering apparatus according to the present invention will be described by taking a so-called multi-target type magnetron sputtering apparatus arranged side by side at regular intervals as an example.
  • terms indicating directions such as up and down refer to the direction from the sputtering surface of the target toward the substrate Sw with respect to FIG. 1, which is the installation posture of the magnetron sputtering apparatus SM.
  • the direction is the X-axis direction
  • the width direction of the central magnet orthogonal to the X-axis direction is the Y-axis direction.
  • magnetron sputtering apparatus SM of this embodiment includes a vacuum chamber 1 defining a film forming chamber 11 .
  • An exhaust port 12 is opened in the wall surface of the vacuum chamber 1, and an exhaust pipe 13 from a vacuum exhaust unit Pu composed of a rotary pump, a dry pump, a turbomolecular pump, etc. is connected to the exhaust port 12, and a film forming chamber is formed.
  • 11 can be evacuated and maintained at a predetermined pressure (eg, 1 ⁇ 10 ⁇ 5 Pa).
  • Gas supply ports 21a and 21b are also provided on the wall surface of the vacuum chamber 1, and gas pipes 23a and 23b having mass flow controllers 22a and 22b are connected to the gas supply ports 21a and 21b, respectively, to form a film.
  • a rare gas (inert gas) such as argon gas whose flow rate is controlled into the chamber 11 and, if necessary, a reaction gas such as oxygen gas can be introduced. do.
  • a substrate transfer means 3 is provided in the upper space within the vacuum chamber 1 .
  • the substrate transport means 3 includes a carrier 31 that holds the substrate Sw with its lower surface (film formation surface) open, and a drive source (not shown) capable of freely transporting the carrier 31 in the Y-axis direction. Note that a known device can be used as the substrate transfer means 3, so detailed description thereof will be omitted here.
  • a cathode unit CU of the present embodiment is provided in the lower part of the vacuum chamber 1 so as to face the substrate Sw held by the carrier 31 transported to a predetermined position in the film forming chamber 11 .
  • the cathode unit CU includes four targets 4 1 to 4 4 arranged in parallel in the Y-axis direction at equal intervals so that the upper surface (sputtering surface) when not in use is positioned within the XY plane. and magnet units 5 1 to 5 4 respectively arranged in the lower space (outside the vacuum chamber) of 4 4 .
  • Each of the targets 4 1 to 4 4 manufactured according to the composition of the film to be deposited on the lower surface of the substrate Sw has the same substantially rectangular parallelepiped shape and is arranged side by side when facing the substrate Sw.
  • each of the targets 4 1 to 4 4 are set so that the outline of each of the targets 4 1 to 4 4 is one size larger than the substrate Sw.
  • a backing plate 41 made of copper is bonded to the lower surface of each of the targets 4 1 to 4 4 via a bonding material (not shown) such as indium, so that the targets 4 1 to 4 4 can be cooled during sputtering.
  • a bonding material such as indium
  • Adjacent targets 4 1 , 4 2 and 4 3 , 4 4 are paired, and each pair of targets 4 1 to 4 4 is connected to an output 61 from an AC power supply 6 as a power supply.
  • AC power of a predetermined frequency (for example, 1 kHz to 100 kHz) can be applied between the targets 4 1 , 4 2 and 4 3 , 4 4 which are paired with each other.
  • DC power having a negative potential can be applied to each of the targets 4 1 to 4 4 .
  • each of the magnet units 5 1 to 5 4 has the same form, is provided parallel to the backing plate 41, and includes a support plate 51 (yoke) made of a flat plate made of a magnetic material. .
  • a central magnet 52 is linearly arranged in the X-axis direction, and straight portions 53a and 53b extend parallel to each other at equal intervals on both sides of the central magnet 52, and both of the straight portions 53a and 53b.
  • the polarities of the target side of the peripheral magnet 53 surrounding the central magnet 52 are changed (for example, the central magnet 52 is the S pole and the peripheral magnet 53 is the N pole). Pole) prepare.
  • the central magnet 52 and the peripheral magnets 53 are integrally made of a neodymium magnet or the like, or arranged by arranging magnet pieces of the neodymium magnet or the like. It is designed so that the volume when converted to magnetization is about the same. As a result, a line passing through the position where the vertical component of the magnetic field is zero is drawn in the X-axis direction in the space in the deposition chamber 11 between the upper surface (sputtering surface) of each of the targets 4 1 to 4 4 and the lower surface of the substrate Sw. A magnetic field Mf that leaks from the sputter surface that extends and closes like a racetrack is generated, respectively.
  • a nut member 54 is protruded from the lower surface of the support plate 51 of each of the magnet units 5 1 to 5 4 , and a feed screw Fs connected to the motor Mt is screwed into each nut member 54 .
  • the magnet units 5 1 to 5 4 can be reciprocated in the Y-axis direction with a predetermined stroke length, and these constitute the drive means of this embodiment. It should be noted that each magnet unit 5 1 to 5 4 may be reciprocated in the X-axis direction with a predetermined stroke length.
  • the substrate Sw is transported by the substrate transport means 3 to a predetermined position in the film deposition chamber 11 facing the targets 4 1 to 4 4 ,
  • the film forming chamber 11 is evacuated to a predetermined pressure.
  • a rare gas reactant gas if necessary
  • AC power is supplied between Then, a racetrack-shaped plasma PL is generated above the sputtering surface of each of the targets 4 1 to 4 4 .
  • the electrons in the plasma PL are bent by the electromagnetic field at both ends of each of the magnet units 5 1 to 5 4 in the X-axis direction, and change their directions according to the magnetism of the upper side of the central magnet 52 and the peripheral magnet 53. Move in a clockwise or counterclockwise orbit around the racetrack. Then, the sputtering surface is sputtered by rare gas ions ionized by the plasma PL, and sputtered particles scattered from the sputtering surface adhere to and accumulate on the lower surface of the substrate Sw in accordance with a predetermined cosine law to form a film. At this time, each of the targets 4 1 to 4 4 is eroded substantially uniformly in the Y-axis direction by integrally reciprocating the magnet units 5 1 to 5 4 with a predetermined stroke length in the Y-axis direction.
  • straight portions 530a and 530b extending parallel to each other at equal intervals on both sides of the central magnet 520 provided on the support plate 510 and both free ends of the straight portions 530a and 530b are respectively
  • a conventional magnet unit having a bridging portion 530c is referred to as an initial magnet unit Mu1.
  • linear portions 531a and 531b extending parallel to each other at equal intervals on both sides of a central magnet 521 provided on the support plate 511, and both free ends of the linear portions 531a and 531b are bridged.
  • the density of orbiting electrons in the peripheral region Pp1 before being bent by the electromagnetic field and changing direction is locally high, while the density of orbiting electrons in the peripheral region Pp2 after changing direction is locally low.
  • the orbiting electrons scatter upward in the Z-axis direction in the central region Pc after the orientation is changed. 2 to 4, the orbits of the orbiting electrons are represented by thin curves, and the density of the orbiting electrons on the orbits is indicated by shading.
  • the density of circulating electrons in the peripheral region Pp2 increases and spreads in the Y-axis direction. It is considered that this causes local disappearance of the plasma when the correction magnet unit Mu2 is reciprocated in the Y-axis direction with a predetermined stroke length.
  • each of the magnet units 5 1 to 5 4 of the present embodiment while maintaining the attitude of the peripheral magnet 53, according to the polarity of the central magnet 52 on the target side (in other words, A configuration is employed in which both end portions 52a and 52b of the central magnet 52 are shifted to different linear portions 53a and 53b of the peripheral magnet 53, respectively, depending on the direction in which the electrons circulate.
  • the length L1 of both end portions 52a and 52b of the central magnet 52 to be shifted is the length of the magnet units 51 to 54 in the X - axis direction, the distance between the sputtering surface and the substrate Sw, and the target during sputtering.
  • both end portions 52a and 52b of the central magnet 52 can be shifted (stepwise) so that the distance between them and the linear portions 53a and 53b becomes smaller step by step toward the central magnet end.
  • both end portions 52a and 52b of the central magnet 52 move toward the ends of the central magnet, the distance between them and the linear portions 53a and 53b can be shifted so as to continuously decrease (for example, the Both end portions 52a and 52b are installed at an angle with respect to the X-axis direction).
  • the film can be formed with a good distribution of film thickness and film quality over the entire surface.
  • the stroke length of the reciprocating motion in the Y-axis direction by the drive means Mt and Fs can be set long, the utilization efficiency of each of the targets 4 1 to 4 4 can be improved.
  • the central magnet 52 is fixed, and both ends (and bridging portions) of the straight portions 53a and 53b of the peripheral magnet 53 are connected to the central magnet 52. Shifting in a different direction is also conceivable, but it has been confirmed that this cannot suppress the spread of orbiting electrons in the peripheral region after the direction is changed.
  • the electron divergence suppressing means is configured by shifting both end portions 52a and 52b of the central magnet 52 toward the different straight portions 53a and 53b of the peripheral magnet 53, respectively. It is not limited to this as long as it can suppress scattering of circulating electrons to the substrate Sw side in the central region Pc after the above.
  • a permanent magnet or an electromagnet is provided at a position in the vacuum chamber 1 where the sputtered particles do not scatter or outside the vacuum chamber 1 to apply a magnetic field, and when the direction is changed, the direction is changed upward (to the substrate side). ) may be trapped in their original trajectories.
  • a so-called multi-target type magnetron sputtering apparatus SM in which a plurality of targets 4 1 to 4 4 are arranged side by side at regular intervals has been described as an example, but the present invention is not limited to this.
  • the present invention can also be applied to a magnetron sputtering apparatus in which a single magnet unit is arranged on a single target, or a so-called multi-magnet type magnetron sputtering apparatus in which a plurality of magnet units are arranged side by side at equal intervals for a single target. can be applied.
  • SM... magnetron sputtering apparatus CU... cathode unit, 1... vacuum chamber, 21a, 21b... gas supply ports (components of gas introduction means), 22a, 22b... mass flow controllers (components of gas introduction means), 23a, 23b ... gas pipe (component of gas introducing means) 4 1 - 4 4 ... target 5 1 - 5 4 ... magnet unit 52 ... central magnet 52a, 52b ... both ends of central magnet 52 (electron diffusion suppressing means) , 53 Peripheral magnets 53a, 53b Linear portion 53c Bridging portion Mf Magnetic field 6 AC power source (power source) Mt Motor (component of drive means) Fs Feed screw (structure of drive means element), 54 ... nut member (constituent element of the driving means).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided is a cathode unit CU for a magnetron sputtering device SM with which it is possible to achieve substantial uniformity in the region of the target that is corroded with the progression of sputtering, and increase the target utilization efficiency, without causing a localized disappearance of plasma. Magnet units 51-54 provided on the side opposite the sputtering surface of a target 41-44 disposed inside a vacuum chamber 1 are equipped with a linear center magnet 52 and a peripheral magnet 53 that surrounds the periphery of the center magnet and that has linear parts 53a, 53b and a bridging part 53c bridging between the two free ends of the two linear parts, in such a manner that the polarities on the target side are changed. There is generated a magnetic field Mf leaking from the sputtering surface so that a line passing through positions at which the vertical component of the magnetic field is zero extends in the longitudinal direction of the center magnet and closes in a racetrack shape. In a state in which the attitude of the peripheral magnet is maintained, the two end portions of the center magnet are respectively shifted to the sides of mutually different linear parts of the peripheral magnet in accordance with the target-side polarity of the center magnet.

Description

マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置Cathode unit for magnetron sputtering equipment and magnetron sputtering equipment
 本発明は、マグネトロンスパッタリング方式で被処理基板上に所定の薄膜を形成するためのマグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置に関する。 The present invention relates to a cathode unit for a magnetron sputtering device and a magnetron sputtering device for forming a predetermined thin film on a substrate to be processed by magnetron sputtering.
 マグネトロンスパッタリング装置は、一般に、真空チャンバ内で被処理基板に(対向)配置されるターゲットのスパッタ面と背向する側に磁石ユニットを備える。そして、真空雰囲気の真空チャンバ内にアルゴンガスなどの希ガスを導入し、ターゲットに負の電位を持つ直流電圧や交流電圧を印加してターゲットのスパッタ面をスパッタリングする際、スパッタ面前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉して電子密度を高め、電子と希ガスのガス分子との衝突確率を高めることでプラズマ密度を高めている。 A magnetron sputtering apparatus is generally provided with a magnet unit on the side opposite to the sputtering surface of a target arranged (facing) a substrate to be processed in a vacuum chamber. Then, when a rare gas such as argon gas is introduced into a vacuum chamber having a vacuum atmosphere, and a DC voltage or an AC voltage having a negative potential is applied to the target to sputter the sputtering surface of the target, ionization occurs in front of the sputtering surface. The plasma density is increased by capturing electrons and secondary electrons generated by sputtering to increase the electron density and increasing the probability of collision between the electrons and rare gas molecules.
 ガラス基板などの矩形の輪郭を持つ被処理基板(以下、「基板」という)に成膜するような場合、通常は、ターゲットとして基板と同等の輪郭を持つものが利用される。このときの磁石ユニットとしては、ターゲットに平行に設けられる矩形の支持板(ヨーク)の一方の面に線状に配置される中央磁石と、この中央磁石両側に等間隔で且つ平行に延びる直線部及び両直線部の両自由端を夫々橋渡す橋渡し部とを有して中央磁石の周囲を囲う周辺磁石とをターゲット側の極性をかえて備えるものが一般に利用される(以下、スパッタ面から基板に向かう方向をZ軸方向上方、中央磁石の長手方向をX軸方向、X軸方向に直交する中央磁石の幅方向をY軸方向とする)。これにより、磁場の垂直成分がゼロとなる位置を通る線がX軸方向にのびてレーストラック状に閉じるようにスパッタ面から漏洩する磁場が作用し、スパッタ面と基板との間の空間(スパッタ面の上方空間)にレーストラック状のプラズマが発生する。このとき、プラズマ中の電子は、磁石ユニットのX軸方向両端部で電磁場によって曲げられて向きを変えながら、中央磁石及び周辺磁石の上側の磁性に応じて、レーストラックに沿って時計周りまたは半時計回りの周回軌道で運動する。 When forming a film on a substrate to be processed (hereinafter referred to as "substrate") with a rectangular contour such as a glass substrate, a target with the same contour as the substrate is usually used. At this time, the magnet unit includes a central magnet linearly arranged on one side of a rectangular support plate (yoke) provided parallel to the target, and linear portions extending parallel to each other at equal intervals on both sides of the central magnet. and a bridging portion bridging both free ends of both linear portions, respectively, and a peripheral magnet surrounding the periphery of the central magnet with opposite polarities on the target side. , the longitudinal direction of the central magnet is the X-axis direction, and the width direction of the central magnet orthogonal to the X-axis direction is the Y-axis direction). As a result, the magnetic field leaking from the sputtering surface acts so that the line passing through the position where the vertical component of the magnetic field is zero extends in the X-axis direction and closes in a racetrack shape, and the space between the sputtering surface and the substrate (sputtering A racetrack-like plasma is generated in the space above the surface). At this time, the electrons in the plasma are bent by the electromagnetic field at both ends of the magnet unit in the X-axis direction to change direction, and move clockwise or halfway along the racetrack depending on the magnetism of the upper side of the central magnet and the peripheral magnets. move in a clockwise orbit.
 ここで、上記マグネトロンスパッタリング装置を用いて基板に所定の薄膜を成膜すると、対角線上に位置する基板の角部領域で膜厚や膜質の分布が悪くなることが知られている。これは、プラズマ中の電子が電磁場によって曲げられて向きを変える際に惰性的な運動が残ることで、特に磁石ユニットのX軸方向両端部(即ち、レーストラックのコーナー部)にてプラズマがY軸方向外方に局所的に拡がることに起因すると考えられていた。このため、スパッタリングの進行に伴うターゲットの侵食領域を均一にするために、磁石ユニットをY軸方向に所定のストローク長で往復動させる際に、上記電子の惰性的な運動を考慮すると、ストローク長を短く設定せざるを得ず、却って、非侵食領域が大きくなってターゲットの利用効率が悪くなる。そこで、中央磁石と周辺磁石の各直線部とが等間隔で、かつ、磁石ユニットの長手方向両端部で直線部の一方及び中央磁石の両端部を他方の直線部側に移動させて中央磁石と各直線部との間隔をその中央領域におけるものより狭くなるように構成することが提案されている(例えば、特許文献1参照)。 Here, it is known that when a predetermined thin film is formed on a substrate using the magnetron sputtering apparatus, the distribution of film thickness and film quality deteriorates in corner regions of the substrate located on the diagonal line. This is because the electrons in the plasma remain in inertial motion when they are bent by the electromagnetic field and change their direction. It was thought to be due to local expansion axially outward. For this reason, when the magnet unit is reciprocated in the Y-axis direction with a predetermined stroke length in order to make the erosion region of the target uniform as the sputtering progresses, considering the inertial movement of the electrons, the stroke length is has to be set short, and on the contrary, the non-erosion area becomes large, resulting in poor utilization efficiency of the target. Therefore, the linear portions of the central magnet and the peripheral magnets are equidistant, and one of the linear portions and both ends of the central magnet are moved toward the other linear portion at both ends in the longitudinal direction of the magnet unit. It has been proposed to configure the distance between each straight portion to be narrower than that in its central region (see, for example, Patent Document 1).
 ところで、フラットパネルディスプレイの製造に利用されるガラス基板のように大面積の基板に成膜するような場合、ターゲットも長く製作せざるを得ず、これに伴い、磁石ユニットの中央磁石や周辺磁石の長さも長くなる。このような場合に、上記特許文献1の磁石ユニットを用い、磁石ユニットをY軸方向に往復動させながらスパッタ面をスパッタリングすると、磁石ユニットの長手方向両端部に夫々隣接してその内方に向かう所定長さの範囲でプラズマが不安定になり、または、消失する場合があることが判明した。 By the way, when depositing a film on a large substrate such as a glass substrate used in the manufacture of a flat panel display, it is necessary to manufacture a long target. is also longer. In such a case, if the magnet unit of Patent Document 1 is used and the sputtered surface is sputtered while reciprocating the magnet unit in the Y-axis direction, the sputtered surface will be adjacent to both ends of the magnet unit in the longitudinal direction and directed inward thereof. It has been found that the plasma may become unstable or extinguish within a certain length range.
 そこで、本願発明者らは、レーストラックに沿って周回運動するプラズマ中の電子や二次電子(以下、「周回電子」という)の軌道や密度に着目して鋭意研究を重ね、次のことを知見するのに至った。即ち、中央磁石両側に等間隔で且つ平行に延びる直線部及び両直線部の両自由端を夫々橋渡す橋渡し部を有する従来の磁石ユニットを初期磁石ユニット、上記特許文献1のように直線部の一方及び中央磁石の両端部を他方の直線部側に移動させて中央磁石と各直線部との間隔をその中央領域におけるものより狭くした磁石ユニットを補正磁石ユニットとする。また、スパッタ面と被処理基板との間の空間に発生させたレーストラック状のプラズマのうち中央磁石寄りの領域を中央領域、その逆方向の領域を周辺領域とする。そして、プラズマ中の周回電子の密度分布をシミュレーションすると、初期磁石ユニットでは、XY平面にて、電磁場によって曲げられて向きを変える前の周辺領域での周回電子の密度が局所的に高くなり、向きを変えた後の周辺領域での周回電子の密度が局所的に低くなることが判った。このことから、XZ平面にて周回電子の軌道を着目してみると、向きを変えた後の中央領域で周回電子が被処理基板側(Z軸方向上方)へと飛散していることが判った。 Therefore, the inventors of the present application focused on the trajectories and densities of electrons and secondary electrons (hereinafter referred to as "orbiting electrons") in the plasma that circulates along the racetrack, and conducted intensive research, and found the following. I came to know. That is, a conventional magnet unit having linear portions extending parallel to each other at equal intervals on both sides of the central magnet and a bridging portion bridging both free ends of the two linear portions is the initial magnet unit, and the linear portions as in Patent Document 1 are referred to as the initial magnet units. A magnet unit in which both ends of one and the central magnet are moved toward the other linear portion so that the distance between the central magnet and each linear portion is narrower than that in the central region is defined as a correction magnet unit. Further, in the racetrack-shaped plasma generated in the space between the sputtering surface and the substrate to be processed, the region near the center magnet is defined as the central region, and the region in the opposite direction is defined as the peripheral region. A simulation of the density distribution of orbiting electrons in the plasma shows that in the initial magnet unit, the density of orbiting electrons in the peripheral region before being bent by the electromagnetic field and changing direction is locally high in the XY plane. It is found that the density of orbiting electrons in the peripheral region becomes locally low after changing . From this, when focusing on the trajectory of the circulating electrons on the XZ plane, it is found that the circulating electrons scatter toward the substrate to be processed (upward in the Z-axis direction) in the central region after the orientation is changed. rice field.
 補正磁石ユニットでは、XY平面にて、向きを変える前後の周辺領域での周回電子の密度の差は然程なく、XZ平面にて、向きを変えた後の中央領域における周回電子の被処理基板側への飛散は初期磁石ユニットよりも抑制されている(言い換えると、漏洩磁場にトラップされている)ことが確認された。他方、XY平面にて、向きを変えた後、磁石ユニットの長手方向両端部に夫々隣接してその内方に向かう所定長さの範囲(中央磁石と各直線部との間隔をその中央領域のものと同等に戻した位置を起点とする所定長さの範囲)では、周辺領域での周回電子の密度が大きくなると共に、Y軸方向に拡がることが確認された。これに起因して、磁石ユニットをY軸方向に所定のストローク長で往復動させたときにプラズマの局所的な消失などを招来していると考えられる。従って、向きを変えた後の中央領域での周回電子の被処理基板側への飛散を抑制しながら、向きを変えた後の周辺領域での周回電子の拡がりを抑制できれば、スパッタリング時にX軸に略対称で電子密度分布の揃ったレーストラック状のプラズマを発生させることが可能になることを知見するのに至った。 In the correction magnet unit, on the XY plane, there is not much difference in the density of circulating electrons in the peripheral region before and after changing the direction. It was confirmed that scattering to the magnet unit is suppressed (in other words, it is trapped by the leakage magnetic field) compared to the initial magnet unit. On the other hand, on the XY plane, after changing the orientation, a predetermined length range extending inwardly adjacent to both longitudinal ends of the magnet unit (the interval between the central magnet and each straight line portion is the central region of the magnet unit). It was confirmed that the density of circulating electrons in the peripheral region increases and spreads in the Y-axis direction in the range of a predetermined length starting from the position where it was returned to the same position as the original. This is thought to cause local disappearance of plasma when the magnet unit is reciprocated in the Y-axis direction with a predetermined stroke length. Therefore, if it is possible to suppress the spreading of the circulating electrons in the peripheral region after changing the direction while suppressing the scattering of the circulating electrons in the central region after changing the direction to the substrate side to be processed, it is possible to suppress the spread of the circulating electrons in the X-axis during sputtering. We have found that it is possible to generate a racetrack-like plasma having a substantially symmetrical electron density distribution.
特開2008-127601号公報Japanese Patent Application Laid-Open No. 2008-127601
 本発明は、以上の知見を基になされたものであり、プラズマの局所的な消失などを招くことなく、スパッタリングの進行に伴うターゲットの侵食領域を略均一にでき、ターゲットの利用効率を高めることができるマグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置を提供することをその課題とするものである。 The present invention has been made based on the above findings, and is capable of making the erosion region of the target substantially uniform as the sputtering progresses without local disappearance of the plasma, thereby increasing the utilization efficiency of the target. It is an object of the present invention to provide a cathode unit for a magnetron sputtering apparatus and a magnetron sputtering apparatus capable of
 上記課題を解決するために、本発明のマグネトロンスパッタリング装置用のカソードユニットは、真空チャンバ内に配置されるターゲットのスパッタ面と背向する側に設けられる磁石ユニットを備え、磁石ユニットが、線状に配置される中央磁石と、この中央磁石両側に等間隔で且つ平行に延びる直線部及び両直線部の両自由端を夫々橋渡す橋渡し部とを有して中央磁石の周囲を囲う周辺磁石とをターゲット側の極性をかえて備え、磁場の垂直成分がゼロとなる位置を通る線が中央磁石の長手方向に沿ってのびてレーストラック状に閉じるようにスパッタ面から漏洩する磁場を発生させ、前記周辺磁石の姿勢を維持した状態で、前記中央磁石のターゲット側の極性に応じてこの中央磁石の両端部分を周辺磁石の互いに異なる直線部側に夫々シフトさせたことを特徴とする。 In order to solve the above problems, a cathode unit for a magnetron sputtering apparatus of the present invention includes a magnet unit provided on the side opposite to the sputtering surface of a target arranged in a vacuum chamber, the magnet unit having a linear shape. and a peripheral magnet surrounding the central magnet, which has a central magnet arranged on both sides of the central magnet, straight portions extending parallel to each other at equal intervals, and bridging portions bridging both free ends of the straight portions, respectively. is provided by changing the polarity of the target side, and a magnetic field leaking from the sputtering surface is generated so that a line passing through the position where the vertical component of the magnetic field is zero extends along the longitudinal direction of the central magnet and closes in a racetrack shape, While the posture of the peripheral magnet is maintained, both end portions of the central magnet are shifted to different linear portions of the peripheral magnet according to the polarity of the central magnet on the target side.
 これによれば、プラズマ中の周回電子の密度分布をシミュレーションすると、向きを変えた後の中央領域での周回電子の被処理基板側への飛散が抑制されることに加えて、向きを変えた後の周辺領域での周回電子のY軸方向への拡がりも抑制することができる。これにより、本発明のカソードユニットをマグネトロンスパッタリング装置に組み付け、上記のようにしてプラズマを発生させると、磁石ユニットの略全直に亘ってX軸に略対称で電子密度分布の揃ったレーストラック状のプラズマとなる。この場合、シフトさせる中央磁石両端部の長さは、磁石ユニットのX軸方向長さ、スパッタ面と被処理基板との間の距離や、スパッタリング時のターゲットへの投入電力等に応じて適宜設定され、例えば、両直線部間の距離の倍以上に設定される。このとき、前記中央磁石の両端部分は、中央磁石の両端に向かうに従い、前記直線部との間の間隔が段階的に小さくなるようにシフトさせる構成を採用すれば、向きを変える前後の周辺領域での周回電子の密度差をより小さくすることができる。なお、上記とは逆に、中央磁石を固定とし、この中央磁石に対して周辺磁石の両直線部の両端部(及び橋渡し部)を互いに異なる方向にシフトさせることも考えられるが、これでは、向きを変えた後の周辺領域での周回電子の拡がりを抑制できない。 According to this, when simulating the density distribution of orbiting electrons in the plasma, scattering of the orbiting electrons toward the substrate to be processed in the central region after the direction is changed is suppressed, and in addition, the direction is changed. Spreading of circulating electrons in the Y-axis direction in the subsequent peripheral region can also be suppressed. As a result, when the cathode unit of the present invention is assembled in a magnetron sputtering apparatus and plasma is generated as described above, a racetrack shape having a uniform electron density distribution and substantially symmetrical with respect to the X-axis extends substantially along the entire length of the magnet unit. plasma. In this case, the length of both ends of the central magnet to be shifted is appropriately set according to the length of the magnet unit in the X-axis direction, the distance between the sputtering surface and the substrate to be processed, and the power supplied to the target during sputtering. For example, it is set to be at least twice the distance between the two straight portions. At this time, if a configuration is adopted in which both end portions of the central magnet are shifted so that the distance between them and the straight line portion becomes smaller in stages as they go toward both ends of the central magnet, the peripheral region before and after changing the orientation can be used. can make the density difference of orbiting electrons at . Contrary to the above, it is also conceivable to fix the central magnet and shift both ends (and bridging portions) of both linear portions of the peripheral magnets in different directions with respect to the central magnet. Spreading of orbiting electrons in the peripheral region after changing direction cannot be suppressed.
 また、上記課題を解決するために、真空チャンバ内で被処理基板に対向配置されるターゲットのスパッタ面側を上としてこのターゲットの下方に配置される磁石ユニットと、ターゲットに電力投入する電源と、真空雰囲気の真空チャンバに不活性ガスを導入するガス導入手段とを備える本発明のマグネトロンスパッタリング装置は、磁石ユニットが、線状に配置される中央磁石と、この中央磁石両側に等間隔で且つ平行に延びる直線部及び両直線部の両自由端を夫々橋渡す橋渡し部とを有して中央磁石の周囲を囲う周辺磁石とをターゲット側の極性をかえて備え、中央磁石の長手方向をX軸方向、X軸方向に直交して中央磁石から周辺磁石の直線部に向かう方向をY軸方向として磁石ユニットを所定のストローク長で少なくともY軸方向に往復動する駆動手段を更に設け、真空雰囲気の真空チャンバに不活性ガスを導入し、ターゲットに電力投入することで、スパッタ面の上方空間にレーストラック状のプラズマを発生させときにプラズマ中の電子が電磁場によりレーストラックのコーナー部で向きを変える際に、電子の上方への発散を抑止する電子発散抑止手段を設けたことを特徴とする。 In order to solve the above problems, a magnet unit is arranged below the target arranged facing the substrate to be processed in the vacuum chamber with the sputtering surface side of the target facing upward, a power source for supplying power to the target, The magnetron sputtering apparatus of the present invention, which is provided with a gas introducing means for introducing an inert gas into a vacuum chamber having a vacuum atmosphere, comprises a central magnet arranged linearly, and a magnet unit arranged parallel to and equidistantly on both sides of the central magnet. and a bridge portion bridging both free ends of the two straight portions. A driving means is further provided for reciprocating the magnet unit at least in the Y-axis direction with a predetermined stroke length, with the direction perpendicular to the X-axis direction and the direction from the central magnet to the straight line portion of the peripheral magnet as the Y-axis direction. By introducing an inert gas into the vacuum chamber and supplying power to the target, a racetrack-shaped plasma is generated in the space above the sputtering surface. In this case, an electron diffusion suppressing means for suppressing upward diffusion of electrons is provided.
 本発明においては、前記周辺磁石の姿勢を維持した状態で、前記中央磁石のターゲット側の極性に応じてこの中央磁石の両端部分を周辺磁石の互いに異なる直線部側に夫々シフトさせて電子発散抑止手段を構成すればよい。一方、例えば、真空チャンバ内のスパッタ粒子が飛散しない位置や真空チャンバ外に永久磁石や電磁石を設けて磁場を作用させ、向きを変える際に上方(被処理基板側)への発散しようとする電子を本来の軌道にトラップするようにしてもよい。 In the present invention, while the posture of the peripheral magnet is maintained, both end portions of the central magnet are shifted to different linear portions of the peripheral magnet in accordance with the polarity of the central magnet on the target side to suppress electron divergence. You just have to configure the means. On the other hand, for example, a permanent magnet or an electromagnet is provided at a position in the vacuum chamber where the sputtered particles do not scatter or outside the vacuum chamber, and a magnetic field is applied, and when the direction is changed, the electrons tend to diverge upward (toward the substrate to be processed). may be trapped in the original trajectory.
本実施形態のカソードユニットを備えるマグネトロンスパッタリング装置の模式部分断面図。FIG. 2 is a schematic partial cross-sectional view of a magnetron sputtering apparatus including the cathode unit of this embodiment. (a)は、本実施形態のカソードユニットに用いられる磁石ユニットをその一部を省略した平面図、(b)は、XY平面におけるプラズマ中の周回電子の密度分布を説明する図、(c)は、XZ平面におけるプラズマ中の周回電子の密度分布を説明する図。(a) is a partially omitted plan view of the magnet unit used in the cathode unit of the present embodiment, (b) is a diagram for explaining the density distribution of orbiting electrons in the plasma in the XY plane, and (c). 4 is a diagram for explaining the density distribution of orbiting electrons in plasma on the XZ plane; FIG. (a)は、従来例の磁石ユニットのXY平面におけるプラズマ中の周回電子の密度分布を説明する図、(b)は、XZ平面におけるプラズマ中の周回電子の密度分布を説明する図。(a) is a diagram for explaining the density distribution of orbiting electrons in the plasma on the XY plane of the conventional magnet unit, and (b) is a diagram for explaining the density distribution of orbiting electrons in the plasma on the XZ plane. (a)は、他の従来例の磁石ユニットのXY平面におけるプラズマ中の周回電子の密度分布を説明する図、(b)は、XZ平面におけるプラズマ中の周回電子の密度分布を説明する図。(a) is a diagram for explaining the density distribution of orbiting electrons in the plasma on the XY plane of another conventional magnet unit, and (b) is a diagram for explaining the density distribution of orbiting electrons in the plasma on the XZ plane.
 以下、図面を参照して、被処理基板をフラットパネルディスプレイの製造に利用される大面積のガラス基板(以下、「基板Sw」という)とし、一方向に矩形の輪郭を持つ複数枚のターゲットを等間隔で並設した所謂マルチターゲット式のマグネトロンスパッタリング装置を例に本発明のマグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置の実施形態を説明する。以下において、上、下といった方向を示す用語は、マグネトロンスパッタリング装置SMの設置姿勢である図1を基準にし、ターゲットのスパッタ面から基板Swに向かう方向をZ軸方向上方、後述の中央磁石の長手方向をX軸方向、X軸方向に直交する中央磁石の幅方向をY軸方向とする。 Hereinafter, with reference to the drawings, the substrate to be processed is a large-area glass substrate (hereinafter referred to as "substrate Sw") used for manufacturing flat panel displays, and a plurality of targets having rectangular contours in one direction are provided. An embodiment of a cathode unit for a magnetron sputtering apparatus and a magnetron sputtering apparatus according to the present invention will be described by taking a so-called multi-target type magnetron sputtering apparatus arranged side by side at regular intervals as an example. In the following, terms indicating directions such as up and down refer to the direction from the sputtering surface of the target toward the substrate Sw with respect to FIG. 1, which is the installation posture of the magnetron sputtering apparatus SM. The direction is the X-axis direction, and the width direction of the central magnet orthogonal to the X-axis direction is the Y-axis direction.
 図1を参照して、本実施形態のマグネトロンスパッタリング装置SMは、成膜室11を画成する真空チャンバ1を備える。真空チャンバ1の壁面には排気口12が開設され、排気口12には、ロータリーポンプ、ドライポンプ、ターボ分子ポンプなどで構成される真空排気ユニットPuからの排気管13が接続され、成膜室11内を真空排気して所定圧力(例えば、1×10-5Pa)に保持することができる。真空チャンバ1の壁面にはまた、ガス供給口21a,21bが開設され、ガス供給口21a,21bには、マスフローコントローラ22a,22bが介設されたガス管23a,23bが夫々接続され、成膜室11内に流量制御されたアルゴンガス等の希ガス(不活性ガス)と、必要に応じて酸素ガスなどの反応ガスとを導入することができ、これらが本実施形態のガス導入手段を構成する。 Referring to FIG. 1, magnetron sputtering apparatus SM of this embodiment includes a vacuum chamber 1 defining a film forming chamber 11 . An exhaust port 12 is opened in the wall surface of the vacuum chamber 1, and an exhaust pipe 13 from a vacuum exhaust unit Pu composed of a rotary pump, a dry pump, a turbomolecular pump, etc. is connected to the exhaust port 12, and a film forming chamber is formed. 11 can be evacuated and maintained at a predetermined pressure (eg, 1×10 −5 Pa). Gas supply ports 21a and 21b are also provided on the wall surface of the vacuum chamber 1, and gas pipes 23a and 23b having mass flow controllers 22a and 22b are connected to the gas supply ports 21a and 21b, respectively, to form a film. A rare gas (inert gas) such as argon gas whose flow rate is controlled into the chamber 11 and, if necessary, a reaction gas such as oxygen gas can be introduced. do.
 真空チャンバ1内の上部空間には、基板搬送手段3が設けられている。基板搬送手段3は、基板Swをその下面(成膜面)を開放して保持するキャリア31と、キャリア31をY軸方向に搬送自在な図外の駆動源とを備える。なお、基板搬送手段3としては公知のものを利用できるため、ここでは詳細な説明を省略する。そして、成膜室11内の所定位置に搬送されたキャリア31で保持された基板Swに対向させて、真空チャンバ1内の下部には本実施形態のカソードユニットCUが設けられている。カソードユニットCUは、未使用時の上面(スパッタ面)がXY平面内に位置するようにY軸方向に等間隔で並設される4枚のターゲット4~4と、各ターゲット4~4の(真空チャンバ外)下方空間に夫々配置した磁石ユニット5~5とを備える。基板Swの下面に成膜しようとする膜の組成に応じて製作される各ターゲット4~4は、同一の略直方体形状を有し、基板Swに正対させたときに、並設された各ターゲット4~4の輪郭が基板Swより一回り大きくなるように各ターゲット4~4の寸法(X軸方向の長さとY軸方向の幅)が夫々設定されている。各ターゲット4~4の下面には、銅製のバッキングプレート41がインジウムなどのボンディング材(図示せず)を介して夫々接合され、スパッタリング中、各ターゲット4~4を夫々冷却できる状態で絶縁体42を介して真空チャンバ1の底面に設置される。互いに隣接するターゲット4,4及び4,4を夫々対とし、各対のターゲット4~4には、電源としての交流電源6からの出力61が夫々接続され、交流電源6により夫々対をなすターゲット4,4及び4,4の間に所定周波数(例えば、1kHz~100kHz)の交流電力を投入することができる。なお、ターゲット種によっては、例えば、負の電位を持つ直流電力をターゲット4~4毎に投入することもできる。 A substrate transfer means 3 is provided in the upper space within the vacuum chamber 1 . The substrate transport means 3 includes a carrier 31 that holds the substrate Sw with its lower surface (film formation surface) open, and a drive source (not shown) capable of freely transporting the carrier 31 in the Y-axis direction. Note that a known device can be used as the substrate transfer means 3, so detailed description thereof will be omitted here. A cathode unit CU of the present embodiment is provided in the lower part of the vacuum chamber 1 so as to face the substrate Sw held by the carrier 31 transported to a predetermined position in the film forming chamber 11 . The cathode unit CU includes four targets 4 1 to 4 4 arranged in parallel in the Y-axis direction at equal intervals so that the upper surface (sputtering surface) when not in use is positioned within the XY plane. and magnet units 5 1 to 5 4 respectively arranged in the lower space (outside the vacuum chamber) of 4 4 . Each of the targets 4 1 to 4 4 manufactured according to the composition of the film to be deposited on the lower surface of the substrate Sw has the same substantially rectangular parallelepiped shape and is arranged side by side when facing the substrate Sw. The dimensions (the length in the X-axis direction and the width in the Y-axis direction) of each of the targets 4 1 to 4 4 are set so that the outline of each of the targets 4 1 to 4 4 is one size larger than the substrate Sw. A backing plate 41 made of copper is bonded to the lower surface of each of the targets 4 1 to 4 4 via a bonding material (not shown) such as indium, so that the targets 4 1 to 4 4 can be cooled during sputtering. , is installed on the bottom surface of the vacuum chamber 1 via an insulator 42 . Adjacent targets 4 1 , 4 2 and 4 3 , 4 4 are paired, and each pair of targets 4 1 to 4 4 is connected to an output 61 from an AC power supply 6 as a power supply. AC power of a predetermined frequency (for example, 1 kHz to 100 kHz) can be applied between the targets 4 1 , 4 2 and 4 3 , 4 4 which are paired with each other. Depending on the target species, for example, DC power having a negative potential can be applied to each of the targets 4 1 to 4 4 .
 図2も参照して、 各磁石ユニット5~5は、同一の形態を有し、バッキングプレート41に平行に設けられ、磁性材料製の平板から構成される支持板51(ヨーク)を備える。支持板51上面中央には、X軸方向に線状に配置される中央磁石52と、この中央磁石52両側に等間隔で且つ平行に延びる直線部53a,53b及び両直線部53a,53bの両自由端を夫々橋渡す橋渡し部53c,53cとを有して中央磁石52の周囲を囲う周辺磁石53とをターゲット側の極性をかえて(例えば、中央磁石52がS極、周辺磁石53がN極)備える。この場合、中央磁石52及び周辺磁石53は、ネオジム磁石等で一体に製作されたもの、または、ネオジム磁石等での磁石片を列設して構成され、中央磁石52と周辺磁石53とは同磁化に換算したときの体積が同程度になるように設計される。これにより、各ターゲット4~4の上面(スパッタ面)と基板Swの下面の間の成膜室11内の空間に、磁場の垂直成分がゼロとなる位置を通る線がX軸方向にのびてレーストラック状に閉じるスパッタ面から漏洩する磁場Mfを夫々発生させる。また、各磁石ユニット5~5の支持板51の下面にはナット部材54が夫々突設され、各ナット部材54には、モータMtに連結された送りねじFsが螺合し、スパッタリング時に、各磁石ユニット5~5を所定ストローク長でY軸方向に往復動することができ、これらが本実施形態の駆動手段を構成する。なお、各磁石ユニット5~5を所定ストローク長でX軸方向にも往復動できるようにしてもよい。 Referring also to FIG. 2, each of the magnet units 5 1 to 5 4 has the same form, is provided parallel to the backing plate 41, and includes a support plate 51 (yoke) made of a flat plate made of a magnetic material. . At the center of the upper surface of the support plate 51, a central magnet 52 is linearly arranged in the X-axis direction, and straight portions 53a and 53b extend parallel to each other at equal intervals on both sides of the central magnet 52, and both of the straight portions 53a and 53b. The polarities of the target side of the peripheral magnet 53 surrounding the central magnet 52 are changed (for example, the central magnet 52 is the S pole and the peripheral magnet 53 is the N pole). Pole) prepare. In this case, the central magnet 52 and the peripheral magnets 53 are integrally made of a neodymium magnet or the like, or arranged by arranging magnet pieces of the neodymium magnet or the like. It is designed so that the volume when converted to magnetization is about the same. As a result, a line passing through the position where the vertical component of the magnetic field is zero is drawn in the X-axis direction in the space in the deposition chamber 11 between the upper surface (sputtering surface) of each of the targets 4 1 to 4 4 and the lower surface of the substrate Sw. A magnetic field Mf that leaks from the sputter surface that extends and closes like a racetrack is generated, respectively. A nut member 54 is protruded from the lower surface of the support plate 51 of each of the magnet units 5 1 to 5 4 , and a feed screw Fs connected to the motor Mt is screwed into each nut member 54 . , the magnet units 5 1 to 5 4 can be reciprocated in the Y-axis direction with a predetermined stroke length, and these constitute the drive means of this embodiment. It should be noted that each magnet unit 5 1 to 5 4 may be reciprocated in the X-axis direction with a predetermined stroke length.
 上記マグネトロンスパッタリング装置SMを用いて基板Swの下面に成膜する場合には、基板搬送手段3により各ターゲット4~4に正対する成膜室11内の所定位置に基板Swを搬送し、成膜室11を所定圧力まで真空排気する。成膜室11が所定圧力に達すると、マスフローコントローラ22a,22bで流量制御しながら希ガス(必要に応じて反応ガス)を導入し、交流電源6により夫々対をなす各ターゲット4~4の間に交流電力を投入する。すると、各ターゲット4~4のスパッタ面上方にレーストラック状のプラズマPLが夫々発生する。このとき、プラズマPL中の電子は、各磁石ユニット5~5のX軸方向両端部で電磁場によって曲げられて向きを変えながら、中央磁石52及び周辺磁石53の上側の磁性に応じて、レーストラックに沿って時計周りまたは半時計回りの周回軌道で運動する。そして、プラズマPLで電離した希ガスのイオンによりスパッタ面がスパッタリングされ、所定の余弦則に従いスパッタ面から飛散するスパッタ粒子が基板Swの下面に付着、堆積して成膜される。このとき、各磁石ユニット5~5をY軸方向に所定のストローク長で一体に往復動することで、各ターゲット4~4がY軸方向に略均等に侵食される。 When a film is formed on the lower surface of the substrate Sw using the magnetron sputtering apparatus SM, the substrate Sw is transported by the substrate transport means 3 to a predetermined position in the film deposition chamber 11 facing the targets 4 1 to 4 4 , The film forming chamber 11 is evacuated to a predetermined pressure. When the film forming chamber 11 reaches a predetermined pressure, a rare gas (reactant gas if necessary) is introduced while controlling the flow rate by the mass flow controllers 22a and 22b. AC power is supplied between Then, a racetrack-shaped plasma PL is generated above the sputtering surface of each of the targets 4 1 to 4 4 . At this time, the electrons in the plasma PL are bent by the electromagnetic field at both ends of each of the magnet units 5 1 to 5 4 in the X-axis direction, and change their directions according to the magnetism of the upper side of the central magnet 52 and the peripheral magnet 53. Move in a clockwise or counterclockwise orbit around the racetrack. Then, the sputtering surface is sputtered by rare gas ions ionized by the plasma PL, and sputtered particles scattered from the sputtering surface adhere to and accumulate on the lower surface of the substrate Sw in accordance with a predetermined cosine law to form a film. At this time, each of the targets 4 1 to 4 4 is eroded substantially uniformly in the Y-axis direction by integrally reciprocating the magnet units 5 1 to 5 4 with a predetermined stroke length in the Y-axis direction.
 ここで、図3(a)に示すように、支持板510上に設けた中央磁石520両側に等間隔で且つ平行に延びる直線部530a,530b及び両直線部530a,530bの両自由端を夫々橋渡す橋渡し部530cを有する従来の磁石ユニットを初期磁石ユニットMu1とする。また、図4(a)に示すように、支持板511上に設けた中央磁石521両側に等間隔で且つ平行に延びる直線部531a,531b及び両直線部531a,531bの両自由端を夫々橋渡す橋渡し部531cを有する磁石ユニットを基準に、上記特許文献1の如く、直線部531aの一方及び中央磁石521の両端部を他方の直線部531b側に移動させて中央磁石521と各直線部531a,531bとの間隔をその中央領域におけるものより狭くした磁石ユニットを補正磁石ユニットMu2とする。また、図1中に一点鎖線で示すように、スパッタ面と基板Swとの間の空間に発生させたレーストラック状のプラズマPLのうち中央磁石521寄りの領域を中央領域Pc、その逆方向の領域を周辺領域Pp1,Pp2とする。そして、プラズマPL中の周回電子の軌道や密度分布をシミュレーションすると、初期磁石ユニットMu1では、図3(a)及び(b)に示すように、XY平面にて、(初期磁石ユニットMu1の両端部において)電磁場によって曲げられて向きを変える前の周辺領域Pp1での周回電子の密度が局所的に高くなる一方で、向きを変えた後の周辺領域Pp2での周回電子の密度が局所的に低くなる。また、XZ平面にて周回電子の軌道をみてみると、向きを変えた後の中央領域Pcで周回電子がZ軸方向上方へと飛散している。なお、図2~図4においては、周回電子の軌道を細い曲線で表すと共に、その軌道における周回電子の密集度を濃淡で示している。 Here, as shown in FIG. 3(a), straight portions 530a and 530b extending parallel to each other at equal intervals on both sides of the central magnet 520 provided on the support plate 510 and both free ends of the straight portions 530a and 530b are respectively A conventional magnet unit having a bridging portion 530c is referred to as an initial magnet unit Mu1. Further, as shown in FIG. 4(a), linear portions 531a and 531b extending parallel to each other at equal intervals on both sides of a central magnet 521 provided on the support plate 511, and both free ends of the linear portions 531a and 531b are bridged. With the magnet unit having the bridging portion 531c as a reference, one of the linear portions 531a and both ends of the central magnet 521 are moved toward the other linear portion 531b to , 531b is defined as a correction magnet unit Mu2. In addition, as indicated by the dashed line in FIG. 1, in the racetrack-shaped plasma PL generated in the space between the sputtering surface and the substrate Sw, the region near the central magnet 521 is the central region Pc, and the region in the opposite direction is Pc. The areas are assumed to be peripheral areas Pp1 and Pp2. When simulating the trajectory and density distribution of orbiting electrons in the plasma PL, in the initial magnet unit Mu1, as shown in FIGS. ), the density of orbiting electrons in the peripheral region Pp1 before being bent by the electromagnetic field and changing direction is locally high, while the density of orbiting electrons in the peripheral region Pp2 after changing direction is locally low. Become. Also, looking at the trajectory of the orbiting electrons on the XZ plane, the orbiting electrons scatter upward in the Z-axis direction in the central region Pc after the orientation is changed. 2 to 4, the orbits of the orbiting electrons are represented by thin curves, and the density of the orbiting electrons on the orbits is indicated by shading.
 補正磁石ユニットMu2では、図4(a)及び(b)に示すように、XY平面にて、向きを変える前後の周辺領域Pp1,Pp2での周回電子の密度差は然程なく、XZ平面にて、向きを変えた後の中央領域Pcにおける周回電子の基板Sw側への飛散は、初期磁石ユニットMu1よりも抑制されている(言い換えると、漏洩磁場Mfにトラップされている)。一方、向きを変えた後、長手方向両端部に夫々隣接してその内方に向かう所定長さの範囲Lp(中央磁石521と各直線部531a,531bとの間隔をその中央領域のものと同等に戻した位置を起点とする所定長さの範囲)では、周辺領域Pp2での周回電子の密度が大きくなってY軸方向に拡がっている。これに起因して、補正磁石ユニットMu2をY軸方向に所定のストローク長で往復動させたときにプラズマの局所的な消失などを招来していると考えられる。 In the correction magnet unit Mu2, as shown in FIGS. 4(a) and 4(b), on the XY plane, there is not much difference in circulating electron density between the peripheral regions Pp1 and Pp2 before and after the orientation is changed. , scattering of circulating electrons toward the substrate Sw side in the central region Pc after changing direction is suppressed more than in the initial magnet unit Mu1 (in other words, they are trapped by the leakage magnetic field Mf). On the other hand, after the orientation is changed, a predetermined length range Lp (the interval between the central magnet 521 and the straight portions 531a and 531b is the same as that of the central region) toward the inside adjacent to each of the longitudinal ends. ), the density of circulating electrons in the peripheral region Pp2 increases and spreads in the Y-axis direction. It is considered that this causes local disappearance of the plasma when the correction magnet unit Mu2 is reciprocated in the Y-axis direction with a predetermined stroke length.
 本実施形態の各磁石ユニット5~5では、図2(a)に示すように、周辺磁石53の姿勢を維持した状態で、中央磁石52のターゲット側の極性に応じて(言い換えると、電子が周回する方向に応じて)、中央磁石52の両端部分52a,52bを周辺磁石53の互いに異なる直線部53a,53b側に夫々シフトさせる構成を採用している。この場合、シフトさせる中央磁石52の両端部分52a,52bの長さL1は、磁石ユニット5~5のX軸方向長さ、スパッタ面と基板Swとの間の距離や、スパッタリング時のターゲット4~4への投入電力等に応じて適宜設定され、例えば、両直線部53a,53b間の距離L2の倍以上に設定される。このとき、中央磁石52の両端部分52a,52bは、中央磁石端に向かうに従い、直線部53a,53bとの間の間隔が段階的に小さくなるように(階段状に)シフトさせることができる。他方で、中央磁石52の両端部分52a,52bが中央磁石端に向かうに従い、直線部53a,53bとの間の間隔が連続して小さくなるようにシフトさせることもできる(例えば、中央磁石52の両端部分52a,52bをX軸方向に対して傾けて設置する)。 In each of the magnet units 5 1 to 5 4 of the present embodiment, as shown in FIG. 2(a), while maintaining the attitude of the peripheral magnet 53, according to the polarity of the central magnet 52 on the target side (in other words, A configuration is employed in which both end portions 52a and 52b of the central magnet 52 are shifted to different linear portions 53a and 53b of the peripheral magnet 53, respectively, depending on the direction in which the electrons circulate. In this case, the length L1 of both end portions 52a and 52b of the central magnet 52 to be shifted is the length of the magnet units 51 to 54 in the X - axis direction, the distance between the sputtering surface and the substrate Sw, and the target during sputtering. It is appropriately set according to the power supplied to 4 1 to 4 4 and the like, and for example, it is set to be at least twice the distance L2 between the straight portions 53a and 53b. At this time, both end portions 52a and 52b of the central magnet 52 can be shifted (stepwise) so that the distance between them and the linear portions 53a and 53b becomes smaller step by step toward the central magnet end. On the other hand, as both end portions 52a and 52b of the central magnet 52 move toward the ends of the central magnet, the distance between them and the linear portions 53a and 53b can be shifted so as to continuously decrease (for example, the Both end portions 52a and 52b are installed at an angle with respect to the X-axis direction).
 本実施形態の磁石ユニット5~5を用い、プラズマPL中の周回電子の軌道及び密度分布をシミュレーションすると、図2(b)及び(c)に示すように、XY平面にて、向きを変える前後の周辺領域Pp1,Pp2での周回電子の密度差は然程なく、また、XZ平面にて、向きを変えた後の中央領域Pcにおける周回電子の基板Sw側への飛散も、補正磁石ユニットMu2よりも一層抑制されている(言い換えると、漏洩磁場Mfにトラップされている)ことが確認できた。しかも、向きを変えた後でも、周辺領域Pp2での周回電子の密度はその他の箇所と同等でY軸方向に拡がらないことが確認された。これにより、中央磁石52の両端部分52a,52bを周辺磁石53の互いに異なる直線部53a,53b側に夫々シフトさせる構成が周回する電子の上方への発散を抑止する電子発散抑止手段となることが判る。 When the magnet units 5 1 to 5 4 of this embodiment are used to simulate the trajectory and density distribution of orbiting electrons in the plasma PL, as shown in FIGS. There is not much difference in the density of circulating electrons in the peripheral regions Pp1 and Pp2 before and after the change. It has been confirmed that it is more suppressed than Mu2 (in other words, it is trapped by the leakage magnetic field Mf). Moreover, it was confirmed that even after the orientation was changed, the density of the orbiting electrons in the peripheral region Pp2 was the same as in the other regions and did not spread in the Y-axis direction. As a result, the configuration in which both end portions 52a and 52b of the central magnet 52 are shifted toward the different linear portions 53a and 53b of the peripheral magnet 53 serves as an electron divergence suppressing means for suppressing upward divergence of circulating electrons. I understand.
 本実施形態によれば、磁石ユニット5~5の略全直に亘ってX軸に略対称で電子密度分布の揃ったレーストラック状のプラズマPLを形成することができる。このため、上記磁石ユニット5~5を設けたマグネトロンスパッタリング装置SMを用いて基板Swに所定の薄膜を成膜すると、その全面に亘って膜厚や膜質の分布よく成膜することができ、しかも、駆動手段Mt,FsによるY軸方向の往復動のストローク長を長く設定できることで、各ターゲット4~4の利用効率を向上させることができる。なお、特に図示して説明しないが、上記とは逆に、中央磁石52を固定とし、この中央磁石52に対して周辺磁石53の両直線部53a,53bの両端部(及び橋渡し部)を互いに異なる方向にシフトさせることも考えられるが、これでは、向きを変えた後の周辺領域での周回電子の拡がりを抑制できないことが確認された。 According to this embodiment, it is possible to form a racetrack-shaped plasma PL having an electron density distribution that is substantially symmetrical with respect to the X-axis over substantially the entire length of the magnet units 5 1 to 5 4 . Therefore, when a predetermined thin film is formed on the substrate Sw using the magnetron sputtering apparatus SM provided with the magnet units 5 1 to 5 4 , the film can be formed with a good distribution of film thickness and film quality over the entire surface. Moreover, since the stroke length of the reciprocating motion in the Y-axis direction by the drive means Mt and Fs can be set long, the utilization efficiency of each of the targets 4 1 to 4 4 can be improved. In addition, although not shown and explained, the central magnet 52 is fixed, and both ends (and bridging portions) of the straight portions 53a and 53b of the peripheral magnet 53 are connected to the central magnet 52. Shifting in a different direction is also conceivable, but it has been confirmed that this cannot suppress the spread of orbiting electrons in the peripheral region after the direction is changed.
 以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、中央磁石52の両端部分52a,52bを周辺磁石53の互いに異なる直線部53a,53b側に夫々シフトさせて電子発散抑止手段を構成したものを例に説明したが、向きを変えた後の中央領域Pcでの周回電子の基板Sw側への飛散を抑制できるものであれば、これに限定されるものではない。特に図示して説明しないが、例えば、真空チャンバ1内のスパッタ粒子が飛散しない位置や真空チャンバ1外に永久磁石や電磁石を設けて磁場を作用させ、向きを変える際に上方(被処理基板側)へと発散しようとする電子を本来の軌道にトラップするようにしてもよい。 Although the embodiment of the present invention has been described above, various modifications are possible without departing from the scope of the technical idea of the present invention. In the above embodiment, the electron divergence suppressing means is configured by shifting both end portions 52a and 52b of the central magnet 52 toward the different straight portions 53a and 53b of the peripheral magnet 53, respectively. It is not limited to this as long as it can suppress scattering of circulating electrons to the substrate Sw side in the central region Pc after the above. Although not shown and described, for example, a permanent magnet or an electromagnet is provided at a position in the vacuum chamber 1 where the sputtered particles do not scatter or outside the vacuum chamber 1 to apply a magnetic field, and when the direction is changed, the direction is changed upward (to the substrate side). ) may be trapped in their original trajectories.
 また、上記実施形態では、複数枚のターゲット4~4を等間隔で並設した所謂マルチターゲット式のマグネトロンスパッタリング装置SMを例に説明したが、これに限定されるものではない。一枚のターゲットに単一の磁石ユニットを配置したマグネトロンスパッタリング装置や、一枚のターゲットに対して複数個の磁石ユニットを等間隔で並設した所謂マルチマグネット式のマグネトロンスパッタリング装置にも本発明は適用することができる。 In the above embodiment, a so-called multi-target type magnetron sputtering apparatus SM in which a plurality of targets 4 1 to 4 4 are arranged side by side at regular intervals has been described as an example, but the present invention is not limited to this. The present invention can also be applied to a magnetron sputtering apparatus in which a single magnet unit is arranged on a single target, or a so-called multi-magnet type magnetron sputtering apparatus in which a plurality of magnet units are arranged side by side at equal intervals for a single target. can be applied.
 SM…マグネトロンスパッタリング装置、CU…カソードユニット、1…真空チャンバ、21a,21b…ガス供給口(ガス導入手段の構成要素)、22a,22b…マスフローコントローラ(ガス導入手段の構成要素)、23a,23b…ガス管(ガス導入手段の構成要素)、4~4…ターゲット、5~5…磁石ユニット、52…中央磁石、52a,52b…中央磁石52の両端部分(電子発散抑止手段)、53…周辺磁石、53a,53b…直線部、53c…橋渡し部、Mf…磁場、6…交流電源(電源)、Mt…モータ(駆動手段の構成要素)、Fs…送りねじ(駆動手段の構成要素)、54…ナット部材(駆動手段の構成要素)。

 
SM... magnetron sputtering apparatus, CU... cathode unit, 1... vacuum chamber, 21a, 21b... gas supply ports (components of gas introduction means), 22a, 22b... mass flow controllers (components of gas introduction means), 23a, 23b ... gas pipe (component of gas introducing means) 4 1 - 4 4 ... target 5 1 - 5 4 ... magnet unit 52 ... central magnet 52a, 52b ... both ends of central magnet 52 (electron diffusion suppressing means) , 53 Peripheral magnets 53a, 53b Linear portion 53c Bridging portion Mf Magnetic field 6 AC power source (power source) Mt Motor (component of drive means) Fs Feed screw (structure of drive means element), 54 ... nut member (constituent element of the driving means).

Claims (4)

  1.  真空チャンバ内に配置されるターゲットのスパッタ面と背向する側に設けられる磁石ユニットを備え、磁石ユニットが、線状に配置される中央磁石と、この中央磁石両側に等間隔で且つ平行に延びる直線部及び両直線部の両自由端を夫々橋渡す橋渡し部とを有して中央磁石の周囲を囲う周辺磁石とをターゲット側の極性をかえて備え、磁場の垂直成分がゼロとなる位置を通る線が中央磁石の長手方向に沿ってのびてレーストラック状に閉じるようにスパッタ面から漏洩する磁場を発生させるマグネトロンスパッタリング装置用のカソードユニットにおいて、
     前記周辺磁石の姿勢を維持した状態で、前記中央磁石のターゲット側の極性に応じてこの中央磁石の両端部分を周辺磁石の互いに異なる直線部側に夫々シフトさせたことを特徴とするマグネトロンスパッタリング装置用のカソードユニット。
    A magnet unit is provided on the side opposite to the sputtering surface of the target placed in the vacuum chamber, and the magnet unit includes a central magnet arranged linearly and extending parallel to and at equal intervals on both sides of the central magnet. A peripheral magnet that surrounds the central magnet and has a straight portion and a bridging portion that bridges both free ends of both straight portions is provided with the polarity of the target side changed, and a position where the vertical component of the magnetic field is zero is provided. A cathode unit for a magnetron sputtering apparatus that generates a magnetic field that leaks from the sputtering surface so that a line passing through it extends along the longitudinal direction of the central magnet and closes like a racetrack,
    A magnetron sputtering apparatus characterized in that, while maintaining the posture of the peripheral magnet, both end portions of the central magnet are shifted to different linear portions of the peripheral magnet according to the polarity of the central magnet on the target side. Cathode unit for
  2.  前記中央磁石の両端部分は、中央磁石の両端に向かうに従い、前記直線部との間の間隔が段階的に小さくなるようにシフトさせていることを特徴とする請求項1記載のマグネトロンスパッタリング装置用のカソードユニット。 2. The magnetron sputtering apparatus according to claim 1, wherein the both end portions of said central magnet are shifted so that the distance between them and said straight portion becomes smaller stepwise toward both ends of said central magnet. cathode unit.
  3.  真空チャンバ内で被処理基板に対向配置されるターゲットのスパッタ面側を上としてこのターゲットの下方に配置される磁石ユニットと、ターゲットに電力投入する電源と、真空雰囲気の真空チャンバに不活性ガスを導入するガス導入手段とを備えるマグネトロンスパッタリング装置であって、
     磁石ユニットが、線状に配置される中央磁石と、この中央磁石両側に等間隔で且つ平行に延びる直線部及び両直線部の両自由端を夫々橋渡す橋渡し部とを有して中央磁石の周囲を囲う周辺磁石とをターゲット側の極性をかえて備え、中央磁石の長手方向をX軸方向、X軸方向に直交する中央磁石の幅方向Y軸方向として、磁石ユニットを所定のストローク長で少なくともY軸方向に往復動する駆動手段を更に設けたものにおいて、
     真空雰囲気の真空チャンバに不活性ガスを導入し、ターゲットに電力投入することで、スパッタ面の上方空間にレーストラック状のプラズマを発生させときにプラズマ中の電子が電磁場によりレーストラックのコーナー部で向きを変える際に、電子の上方への発散を抑止する電子発散抑止手段を設けたことを特徴とするマグネトロンスパッタリング装置。
    A magnet unit arranged below the target facing the substrate to be processed in the vacuum chamber with the sputtering surface side of the target facing upward, a power source for supplying power to the target, and an inert gas being supplied to the vacuum chamber having a vacuum atmosphere. A magnetron sputtering apparatus comprising a gas introducing means for introducing,
    The magnet unit has a central magnet arranged linearly, straight portions extending parallel to each other at equal intervals on both sides of the central magnet, and bridging portions bridging both free ends of the straight portions. A peripheral magnet that surrounds the periphery is provided with the polarity of the target side changed, the longitudinal direction of the central magnet is the X-axis direction, the width direction of the central magnet is the Y-axis direction orthogonal to the X-axis direction, and the magnet unit is moved with a predetermined stroke length. In the device further provided with a drive means for reciprocating at least in the Y-axis direction,
    By introducing an inert gas into a vacuum chamber with a vacuum atmosphere and supplying power to the target, a racetrack-shaped plasma is generated in the space above the sputtering surface. 1. A magnetron sputtering apparatus, comprising an electron diffusion suppressing means for suppressing upward diffusion of electrons when the direction of the magnetron is changed.
  4.  前記周辺磁石の姿勢を維持した状態で、前記中央磁石のターゲット側の極性に応じてこの中央磁石の両端部分を周辺磁石の互いに異なる直線部側に夫々シフトさせて電子発散抑止手段を構成したことを特徴とする請求項3記載のマグネトロンスパッタリング装置。
     
     
     

     
    While maintaining the posture of the peripheral magnet, the electron divergence suppressing means is constructed by shifting both end portions of the central magnet toward different linear portions of the peripheral magnet in accordance with the polarity of the central magnet on the target side. 4. The magnetron sputtering apparatus according to claim 3, characterized by:




PCT/JP2021/033475 2021-01-19 2021-09-13 Cathode unit for magnetron sputtering device, and magnetron sputtering device WO2022158034A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237019750A KR20230104957A (en) 2021-01-19 2021-09-13 Cathode unit for magnetron sputtering device and magnetron sputtering device
JP2022576965A JP7543448B2 (en) 2021-01-19 2021-09-13 Cathode unit for magnetron sputtering apparatus and magnetron sputtering apparatus
CN202180090208.5A CN117044403A (en) 2021-01-19 2021-09-13 Cathode unit for magnetron sputtering device and magnetron sputtering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021006574 2021-01-19
JP2021-006574 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022158034A1 true WO2022158034A1 (en) 2022-07-28

Family

ID=82549691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033475 WO2022158034A1 (en) 2021-01-19 2021-09-13 Cathode unit for magnetron sputtering device, and magnetron sputtering device

Country Status (5)

Country Link
JP (1) JP7543448B2 (en)
KR (1) KR20230104957A (en)
CN (1) CN117044403A (en)
TW (1) TWI839638B (en)
WO (1) WO2022158034A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325726A (en) * 1995-05-29 1996-12-10 Hitachi Ltd Cathode electrode
JP2001164362A (en) * 1999-12-06 2001-06-19 Ulvac Japan Ltd Planar magnetron sputtering system
JP2008127601A (en) * 2006-11-17 2008-06-05 Ulvac Japan Ltd Magnetron sputtering electrode, and sputtering system provided with magnetron sputtering electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129437A (en) 1998-10-20 2000-05-09 Matsushita Electric Ind Co Ltd Sputtering device and sputtering method
WO2008059814A1 (en) * 2006-11-17 2008-05-22 Ulvac, Inc. Magnetron sputter electrode, and sputtering device having the magnetron sputter electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325726A (en) * 1995-05-29 1996-12-10 Hitachi Ltd Cathode electrode
JP2001164362A (en) * 1999-12-06 2001-06-19 Ulvac Japan Ltd Planar magnetron sputtering system
JP2008127601A (en) * 2006-11-17 2008-06-05 Ulvac Japan Ltd Magnetron sputtering electrode, and sputtering system provided with magnetron sputtering electrode

Also Published As

Publication number Publication date
TW202229594A (en) 2022-08-01
CN117044403A (en) 2023-11-10
TWI839638B (en) 2024-04-21
JP7543448B2 (en) 2024-09-02
KR20230104957A (en) 2023-07-11
JPWO2022158034A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
US7347919B2 (en) Sputter source, sputtering device, and sputtering method
US8460522B2 (en) Method of forming thin film and apparatus for forming thin film
TWI427170B (en) Film forming method and thin film forming apparatus
JP5004931B2 (en) Sputtering source, sputtering apparatus, and sputtering method
WO2007010798A1 (en) Sputtering apparatus and method for manufacturing transparent conducting film
US9761423B2 (en) Sputtering apparatus and magnet unit
JP5527894B2 (en) Sputtering equipment
JP2000248360A (en) Magnetron sputtering device
WO2022158034A1 (en) Cathode unit for magnetron sputtering device, and magnetron sputtering device
CN113056573B (en) Sputtering apparatus and thin film manufacturing method
JP2010248576A (en) Magnetron sputtering apparatus
JP2617439B2 (en) Sputtering equipment
JP2021001382A (en) Cathode unit for magnetron sputtering apparatus
KR0167384B1 (en) Sputtering device
US20080067063A1 (en) Systems and methods for magnetron deposition
JP2023069659A (en) Magnetron sputtering device and sputtering method
JPS6217175A (en) Sputtering device
JP7256645B2 (en) Sputtering apparatus and film forming method
JPH11350123A (en) Thin film manufacturing apparatus and liquid crystal display substrate manufacturing method
US20060081467A1 (en) Systems and methods for magnetron deposition
WO2016148058A1 (en) Magnetic field generator for magnetron sputtering
JP2023057218A (en) Cathode unit for magnetron sputtering equipment and magnetron sputtering equipment
JP3898318B2 (en) Sputtering equipment
JP2017115215A (en) Organic EL display device manufacturing equipment
JP2020176304A (en) Sputtering apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576965

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237019750

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180090208.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921139

Country of ref document: EP

Kind code of ref document: A1