[go: up one dir, main page]

WO2022145480A1 - 歯科用硬化性リン酸カルシウムセメント - Google Patents

歯科用硬化性リン酸カルシウムセメント Download PDF

Info

Publication number
WO2022145480A1
WO2022145480A1 PCT/JP2021/048984 JP2021048984W WO2022145480A1 WO 2022145480 A1 WO2022145480 A1 WO 2022145480A1 JP 2021048984 W JP2021048984 W JP 2021048984W WO 2022145480 A1 WO2022145480 A1 WO 2022145480A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium phosphate
dental curable
phosphate cement
curable calcium
acid
Prior art date
Application number
PCT/JP2021/048984
Other languages
English (en)
French (fr)
Inventor
諒 藤牧
Original Assignee
クラレノリタケデンタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレノリタケデンタル株式会社 filed Critical クラレノリタケデンタル株式会社
Priority to EP21915338.4A priority Critical patent/EP4268794A1/en
Priority to JP2022573123A priority patent/JPWO2022145480A1/ja
Priority to US18/269,981 priority patent/US20240065945A1/en
Publication of WO2022145480A1 publication Critical patent/WO2022145480A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/849Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
    • A61K6/864Phosphate cements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • C04B28/344Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders the phosphate binder being present in the starting composition solely as one or more phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • C04B28/346Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders the phosphate binder being present in the starting composition as a mixture of free acid and one or more phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications

Definitions

  • the present invention relates to dental curable calcium phosphate cement.
  • a method of coating a polymer-based material or a method of alternately applying two kinds of materials to precipitate an inorganic salt and forming a physical barrier to seal an ivory canaliculus has been done.
  • these methods only cover the shallow portion and the surface near the opening of the dentinal tubule, and have a problem that they are easily destroyed by being worn by a toothbrush or the like.
  • the material has a high biocompatibility, there is also a problem that plaque adheres due to the application of the material and causes inflammation or root surface caries.
  • Patent Document 1 discloses a dentin remineralizing agent containing a specific amount of an alkali metal salt of phosphate with respect to tetracalcium phosphate particles. It is stated that a dense hydroxyapatite layer is formed on the surface of dentin, and hydroxyapatite is deposited deep in the dentin tubules to block the dentin tubules.
  • Patent Document 1 discloses a calcium phosphate cement containing a fluorine compound, and describes that the inclusion of the fluorine compound imparts acid resistance to the dentin and promotes calcification.
  • Sodium fluoride is used as a specific fluorine compound, and it is suggested that acid resistance is imparted to the dentin by forming fluoroapatite.
  • calcium phosphate cement In such calcium phosphate cement, operability when used clinically is very important in addition to the clinical effectiveness as described above. Specifically, calcium phosphate cement is generally used by mixing two materials, a powder material and a liquid material, immediately before use, and when the curing time, which is the time from the start of mixing to the completion of curing, is too long. It is necessary to hold the calcium phosphate cement until the cured product is fixed in the desired position, which is not practically preferable. On the other hand, when the curing time is short, the curing progresses during the kneading operation, so that a uniform kneaded product cannot be obtained, the curing reaction becomes non-uniform, and the strength of the calcium phosphate cement cured product may be locally reduced. be.
  • Patent Document 1 also has a specific effect of improving the sealing property of the dentinal tubule even in the deep part of the dentin tubule by adding disodium monohydrogen phosphate (Na 2 HPO 4 ) as an alkali metal salt of phosphoric acid. It is described as.
  • disodium monohydrogen phosphate Na 2 HPO 4
  • Patent Document 2 discloses a calcium phosphate cement containing an organic acid (for example, succinic acid) or a salt of an organic acid, and has an operation time as compared with a calcium phosphate cement containing no organic acid or a salt of an organic acid. There is a description that the curing time is increased, that is, the curing time is delayed.
  • an organic acid for example, succinic acid
  • a salt of an organic acid for example, succinic acid
  • Patent Document 3 discloses a material composition for dental restoration and implants and restoration, which comprises a powdered calcium compound containing one or more specific calcium phosphate salts and a specific acidic calcium phosphate solution. Has been done. Further, in Patent Document 3, disodium phosphate (disodium monohydrogen phosphate; Na 2 HPO 4 ) is cemented as a pore-increasing agent capable of forming an effective diameter (about 30 to 500 ⁇ m) for causing angiogenesis. It is also disclosed to be blended with the paste.
  • disodium phosphate disodium monohydrogen phosphate; Na 2 HPO 4
  • a pore-increasing agent capable of forming an effective diameter (about 30 to 500 ⁇ m) for causing angiogenesis. It is also disclosed to be blended with the paste.
  • Patent Document 3 when sodium fluoride is mixed with the powder of calcium phosphate cement, the concentration of the free anionic component and the calcium concentration in the solution decrease as a result of complex formation or precipitation, and the phosphate ion is relatively relative. It is stated that the concentration increases and the increase in phosphate ion concentration promotes the cement setting reaction, that is, the inclusion of sodium fluoride shortens the curing time.
  • Patent Document 1 the curing time of calcium phosphate cement containing a fluorine compound is long, and even if the amount of an alkali metal salt of phosphoric acid (for example, disodium monohydrogen phosphate) is adjusted.
  • the curing time could not be shortened to within a certain time, and there was room for further improvement.
  • the calcium phosphate cement of Patent Document 2 does not contain a fluorine compound, not only the formation of fluoroapatite for imparting acid resistance to the dentin cannot be expected, but also the curing time can be increased by containing an organic acid or a salt thereof. It is disclosed that the delay is made, and it is also disclosed in Examples that the operation time becomes longer as the concentration of citric acid increases.
  • the present invention has been made to solve the above problems, and is a dental curable calcium phosphate cement which is excellent in sealing property of dentinal tubules, is expected to form fluoroapatite, and has a curing time suitable for clinical use.
  • the purpose is to provide.
  • the present invention includes the following inventions.
  • It is composed of a first material which is a powder or a non-aqueous paste and a second material which is a liquid or an aqueous paste.
  • the first material contains tetracalcium phosphate (A), an alkali metal salt of phosphoric acid (B), and acidic calcium phosphate (C).
  • the second material contains water (D) and contains A dental curable calcium phosphate cement containing a fluorine compound (E) and an organic acid (F) having a molecular weight of 10,000 or less in at least one of the first material and the second material.
  • the organic acid (F) having a molecular weight of 10,000 or less is at least one selected from the group consisting of citric acid, malonic acid, succinic acid, oxalic acid, malic acid, and tartaric acid, [1] to [ 5]
  • a dental curable calcium phosphate cement which is excellent in sealing property of dentinal tubules, is expected to form fluoroapatite, and has a curing time suitable for clinical use.
  • the dental curable calcium phosphate cement of the present invention is composed of a first material which is a powder or a non-aqueous paste and a second material which is a liquid or an aqueous paste, and the first material is tetracalcium phosphate (A).
  • A tetracalcium phosphate
  • B alkali metal salt of phosphoric acid
  • C acidic calcium phosphate
  • the second material contains water (D)
  • at least one of the first material or the second material contains a fluorine compound (E).
  • an organic acid (F) having a molecular weight of 10,000 or less.
  • the "non-aqueous" of the "non-aqueous paste” is a paste in which the water content in the paste is 5% or less, preferably 3% or less, and more preferably 1% or less.
  • the dental curable calcium phosphate cement of the present invention further contains a specific organic acid, it is considered that the precipitated calcium fluoride is dissolved by the organic acid.
  • the ion ratio is suitable for the curing reaction without lowering the calcium ion concentration in the system, a dental curable calcium phosphate cement having an appropriate curing time even if it contains a fluorine compound can be obtained. I presume.
  • the fluorine compound reacts with the organic acid before it reacts with the calcium ion to form a complex of the fluorine compound and the organic acid, thereby delaying the production of calcium fluoride when the fluorine compound and the calcium salt are mixed. It is presumed that this is also one of the factors that can shorten the curing time.
  • Tetracalcium phosphate (A)
  • the dental curable calcium phosphate cement of the present invention contains tetracalcium phosphate (Ca 4 (PO 4 ) 2 O; TTCP) (A) in the powder or non-aqueous paste which is the first material.
  • Tetracalcium phosphate (A) is preferably in the form of particles.
  • the average particle size of the tetracalcium phosphate (A) particles is not particularly limited, but when the average particle size is 0.5 ⁇ m or more, the pH in the aqueous solution is high because the tetracalcium phosphate (A) is not excessively dissolved. It does not become excessively high, and the precipitation of hydroxyapatite becomes smooth.
  • the average particle size of the tetracalcium phosphate (A) particles is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more, still more preferably 1 ⁇ m or more.
  • the average particle size is 40 ⁇ m or less, the paste obtained by mixing with a liquid or water-based paste which is a second material described later exhibits sufficient viscosity, and thus has preferable paste properties.
  • the feeling of roughness during paste kneading is reduced, and good operability can be maintained. Therefore, the average particle size of tetracalcium phosphate (A) is preferably 40 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the average particle size of the tetracalcium phosphate (A) particles used in the present invention is measured and calculated using a laser diffraction type particle size distribution measuring device. For example, it can be calculated by the method described in the examples described later.
  • the content of tetracalcium phosphate (A) in the dental curable calcium phosphate cement of the present invention is not particularly limited, but is preferably 1 to 80 parts by mass in 100 parts by mass of the total amount of the dental curable calcium phosphate cement. It is more preferably 1 to 70 parts by mass, and even more preferably 1 to 60 parts by mass.
  • the content of tetracalcium phosphate (A) is 1 part by mass or more, the ivory tubule sealing property of the dental curable calcium phosphate cement is improved.
  • the content of tetracalcium phosphate (A) is 80 parts by mass or less, the viscosity of the dental curable calcium phosphate cement is in an appropriate range, and a paste having good operability can be obtained.
  • the method for producing tetracalcium phosphate (A) used in the present invention is not particularly limited.
  • Commercially available tetracalcium phosphate particles may be used as they are, or may be appropriately pulverized to adjust the particle size before use.
  • As the pulverization method the same method as the pulverization method of acidic calcium phosphate (C) described later can be adopted.
  • the dental curable calcium phosphate cement of the present invention contains an alkali metal salt (B) of phosphoric acid in a powder or a non-aqueous paste as a first material.
  • the alkali metal salt (B) of phosphoric acid is preferably in the form of particles.
  • the alkali metal salt (B) of phosphoric acid is not particularly limited, and is disodium monohydrogen phosphate (Na 2 HPO 4 ), dipotassium monohydrogen phosphate (K 2 HPO 4 ), and monolithium dihydrogen phosphate (LiH).
  • the alkali metal salt (B) of phosphoric acid is disodium monohydrogen phosphate and / or monosodium dihydrogen phosphate. Further, from the viewpoint of safety, it is preferable that the alkali metal ion in the alkali metal salt (B) of phosphoric acid used in the present invention is sodium ion.
  • the average particle size of the alkali metal salt (B) particles of phosphoric acid used in the present invention is not particularly limited, but when the average particle size of the alkali metal salt (B) particles of phosphoric acid is 0.5 ⁇ m or more, remarkable aggregation is performed.
  • the average particle size of the alkali metal salt (B) particles of phosphoric acid is preferably 0.5 ⁇ m or more, more preferably 4 ⁇ m or more, and further preferably 8 ⁇ m or more.
  • the average particle size of the alkali metal salt (B) particles of phosphoric acid is 20 ⁇ m or less
  • the dental curable calcium phosphate cement of the present invention is converted to hydroxyapatite
  • no pores are formed in the hydroxyapatite, which is high.
  • the blockage rate of dentin tubules can be maintained, and hypersensitivity can be suppressed.
  • the average particle size of the alkali metal salt (B) of phosphoric acid is preferably 20 ⁇ m or less, more preferably 16 ⁇ m or less, and further preferably 12 ⁇ m or less.
  • the average particle size of the alkali metal salt (B) particles of phosphoric acid can be calculated by the same method as the method for measuring the average particle size of the tetracalcium phosphate (A) particles.
  • the dental curable calcium phosphate cement of the present invention preferably contains 5 to 98 parts by mass of an alkali metal phosphate salt (B) with respect to 100 parts by mass of tetracalcium phosphate (A).
  • an alkali metal phosphate salt (B) with respect to 100 parts by mass of tetracalcium phosphate (A).
  • hydroxyapatite is more effectively deposited deep in the dentinal tubules, which is a dental curability.
  • Calcium phosphate cement can be provided.
  • the precipitation of hydroxyapatite may be inhibited, and it is preferably 5 parts by mass or more, preferably 7 parts by mass or more. More preferably, it is more preferably 10 parts by mass or more.
  • the content of the alkali metal salt (B) of phosphoric acid exceeds 98 parts by mass, the precipitation of hydroxyapatite may be inhibited, and it is preferably 98 parts by mass or less, preferably 95 parts by mass or less. More preferably, it is more preferably 90 parts by mass or less.
  • the method for producing the alkali metal salt (B) of phosphoric acid used in the present invention is not particularly limited.
  • Commercially available alkali metal salt particles of phosphoric acid may be used as they are, or may be appropriately pulverized to adjust the particle size before use.
  • As the pulverization method the same method as the pulverization method of acidic calcium phosphate (C) described later can be adopted.
  • the dental curable calcium phosphate cement of the present invention contains acidic calcium phosphate (C) in the powder or non-aqueous paste which is the first material.
  • the acidic calcium phosphate (C) is preferably in the form of particles. By containing the acidic calcium phosphate (C), the calcification effect can be further enhanced.
  • the acidic calcium phosphate (C) used in the present invention is not particularly limited, and is anhydrous calcium monohydrogen phosphate (CaHPO 4 ; DCPA), anhydrous calcium dihydrogen phosphate (Ca ( H2 PO 4 ) 2 ), and triphosphate phosphate.
  • One type of acidic calcium phosphate (C) may be used alone, or two or more types may be used in combination.
  • the tricalcium phosphate may be either ⁇ -TCP or ⁇ -TCP.
  • At least one selected from the group consisting of anhydrous calcium monohydrogen phosphate, anhydrous calcium dihydrogen phosphate, calcium monohydrogen phosphate dihydrate, and calcium dihydrogen phosphate monohydrate is more suitable. It is preferably used, and in particular, at least one selected from the group consisting of anhydrous calcium monohydrogen phosphate and anhydrous calcium dihydrogen phosphate is more preferably used.
  • the average particle size of the acidic calcium phosphate (C) particles used in the present invention is not particularly limited, but when the average particle size is 0.1 ⁇ m or more, the dissolution in the liquid agent becomes excessive and the supply balance of calcium ions and phosphate ions is balanced. It is possible to prevent the particles from collapsing and to maintain an appropriate viscosity of the paste obtained by mixing with the liquid agent.
  • the average particle size of the acidic calcium phosphate (C) particles is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1 ⁇ m or more.
  • the average particle size of the acidic calcium phosphate (C) particles is preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less.
  • the average particle size of the acidic calcium phosphate (C) particles can be calculated by the same method as the method for measuring the average particle size of the tetracalcium phosphate (A) particles.
  • the method for producing acidic calcium phosphate (C) having such an average particle size is not particularly limited, and if a commercially available product is available, it may be used, but it may be preferable to further pulverize the commercially available product. many.
  • a crushing device such as a ball mill, a raikai machine, or a jet mill can be used.
  • acidic calcium phosphate (C) can also be obtained by pulverizing the acidic calcium phosphate raw material powder together with a liquid medium such as alcohol using a raikai machine, a ball mill or the like to prepare a slurry, and drying the obtained slurry. ..
  • a ball mill is preferably used as the crushing device, and alumina, zirconia, or the like is preferably used as the material of the pot and the ball.
  • the blending ratio (A / C) of tetracalcium phosphate (A) and acidic calcium phosphate (C) is not particularly limited, and is used in a blending ratio in the range of 40/60 to 60/40 in terms of molar ratio.
  • the blending ratio (A / C) is preferably 45/55 to 55/45.
  • the dental curable calcium phosphate cement of the present invention is a liquid or water-based paste in which the second material contains water (D).
  • the second material is a liquid whose main component is water (D).
  • the main component is a component having the highest content, and may be, for example, 50% by mass or more, 60% by mass or more, or 70% by mass or more.
  • the liquid containing water (D) as a main component may be pure water or a liquid containing water (D) as a main component and containing other components, and has water (D) as a main component.
  • the water-based paste refers to a paste-like liquid containing water (D) as a main component and containing other components.
  • the other components are not particularly limited, and examples thereof include polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol, and diglycerin, sugar alcohols such as xylitol, sorbitol, and erythritol, and polyethers such as polyethylene glycol and polypropylene glycol. ..
  • the dental curable calcium phosphate cement of the present invention contains a fluorine compound (E) in at least one of the first material and the second material.
  • fluorine compound (E) fluoroapatite is formed, it becomes possible to impart acid resistance to the dentin, and calcification is also promoted.
  • the second material contains a fluorine compound (E) for dental curing.
  • Calcium phosphate cement can be mentioned.
  • the fluorine compound (E) used in the present invention is not particularly limited, and is limited to sodium fluoride, potassium fluoride, ammonium fluoride, lithium fluoride, cesium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, and fluorine.
  • One type of the fluorine compound (E) may be used alone, or two or more types may be used in combination.
  • the content of the fluorine compound (E) is not particularly limited, and the converted fluoride ion amount of the fluorine compound (E) is preferably 0.01 to 3% with respect to the total amount of the dental curable calcium phosphate cement. It is more preferably 0.05 to 1%, and even more preferably 0.10 to 0.90%. If the converted fluoride ion amount of the fluorine compound (E) exceeds 3%, safety may be impaired, and it is more preferably 1% or less. When the converted fluoride ion amount of the fluorine compound (E) is 0.01% or more, the formation of fluoroapatite is expected.
  • the converted fluoride ion amount of the fluorine compound (E) can be calculated by the method described in Examples described later.
  • the dental curable calcium phosphate cement of the present invention contains an organic acid (F) having a molecular weight of 10,000 or less (hereinafter, may be simply referred to as "organic acid (F)") in at least one of the first material and the second material.
  • organic acid (F) organic acid
  • the second material is organic because it does not reduce calcium ions in the system and it is less likely to delay the curing time. Examples thereof include dental curable calcium phosphate cement containing an acid (F).
  • the molecular weight of the organic acid (F) of the present invention needs to be 10,000 or less. When the molecular weight is larger than 10,000, the paste after kneading becomes a highly viscous gel due to the reaction with calcium ions, which lowers the operability and also to the water of the organic acid itself having a molecular weight of more than 10,000.
  • the molecular weight of the organic acid (F) of the present invention is preferably 5000 or less, and more preferably 2500 or less because a more appropriate curing time can be obtained.
  • the lower limit of the molecular weight is not particularly limited, but may be, for example, 45 or more, and may be 100 or more.
  • the organic acid (F) is a compound having no polymer skeleton, the molecular weight means the total atomic weight contained in the molecule.
  • the molecular weight means the weight average molecular weight.
  • the weight average molecular weight means a polystyrene-equivalent weight average molecular weight determined by gel permeation chromatography.
  • any organic acid having a molecular weight of 10,000 or less can be used without any limitation, and for example, an acidic group selected from a carboxyl group, a sulfonic acid group, a phenol group and the like can be used.
  • Examples include organic acids containing one or more.
  • the organic acid (F) of the present invention is preferably a polyvalent organic acid from the viewpoint of calcium solubility.
  • the polyvalent organic acid is an acid having two or more acidic groups, and specifically, an organic acid having a plurality of acidic groups selected from a carboxyl group, a sulfonic acid group, a phenol group and the like, or an acidic group thereof.
  • Examples thereof include organic acids provided by combining a plurality of organic acids.
  • the acidic group a carboxyl group, a sulfonic acid group and a phenol group are preferable, a carboxyl group and a sulfonic acid group are more preferable, and a carboxyl group is further preferable.
  • the polyvalent organic acid having a plurality of carboxyl groups include an organic acid having two carboxyl groups (dicarboxylic acid) such as citric acid, malonic acid, succinic acid, oxalic acid, phthalic acid, malic acid, and tartaric acid; diethylenetriamine-5.
  • organic acids having three or more such as acetic acid (DTPA) and ethylenediamine tetraacetic acid (EDTA).
  • DTPA acetic acid
  • EDTA ethylenediamine tetraacetic acid
  • One type of organic acid (F) may be used alone, or two or more types may be used in combination.
  • gentisic acid can be mentioned as a combination of a carboxyl group and a phenol group.
  • water-soluble organic acids are preferably used from the viewpoint of further shortening the curing time, and at least one selected from citric acid, malonic acid, succinic acid, oxalic acid, malic acid and tartaric acid is more preferable. It is used, and citric acid is most preferably used.
  • the content of the organic acid (F) is preferably 0.001 part by mass or more, and 0.002 part by mass or more, based on 100 parts by mass of the total amount of the dental curable calcium phosphate cement, from the viewpoint of shortening the curing time. Is more preferable, and 0.005 part by mass or more is further preferable. Further, from the viewpoint of ivory capillary tube sealing property, storage stability, operability and the like, the dental curable calcium phosphate cement is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 10 parts by mass or less.
  • the dental curable calcium phosphate cement of the present invention contains a fluorine compound (E) and an organic acid (F) in at least one of the first material and the second material.
  • X-1 includes dental curable calcium phosphate cement in which the first material contains a fluorine compound (E) and an organic acid (F).
  • Another embodiment includes dental curable calcium phosphate cement in which the second material contains a fluorine compound (E) and an organic acid (F).
  • Yet another embodiment (X-3) includes dental curable calcium phosphate cement in which the first material contains a fluorine compound (E) and the second material contains an organic acid (F).
  • the first material contains an organic acid (F) and the second material contains a fluorine compound (E).
  • the first material contains a fluorine compound (E) and an organic acid (F)
  • the second material contains a fluorine compound (E) and an organic acid (F).
  • examples include curable calcium phosphate cement.
  • the first material contains a fluorine compound (E) and an organic acid (F)
  • the second material contains an organic acid (F), which is a dental curable calcium phosphate cement.
  • the first material contains a fluorine compound (E) and an organic acid (F), and the second material contains a fluorine compound (E), which is a dental curable calcium phosphate cement.
  • a dental curable calcium phosphate cement containing a fluorine compound (E) in the first material and a fluorine compound (E) and an organic acid (F) in the second material.
  • the first material contains an organic acid (F)
  • the second material contains a fluorine compound (E) and an organic acid (F), which is a dental curable calcium phosphate cement.
  • the dental curable calcium phosphate cement of the present invention is a salt (G) of an organic acid having a molecular weight of 10,000 or less on at least one of the first material and the second material as long as the effect of the present invention is not impaired (hereinafter, simply "organic”. It may also contain (sometimes referred to as an acid salt (G)”).
  • the organic acid salt (G) may be used alone or in combination of two or more.
  • the organic acid salt (G) is a salt of the organic acid (F) having a molecular weight of 10,000 or less (for example, an alkali metal salt, an alkaline earth metal, an ammonium salt).
  • the organic acid salt (G) is preferably contained in the same material as the organic acid (F).
  • a precipitate may be formed during storage, but the formation of the precipitate is suppressed by further containing the organic acid salt (G). can do.
  • the content of the organic acid salt (G) is preferably 0.1 to 50 parts by mass, more preferably 0.5 to 25 parts by mass, still more preferably 1 to 10 parts by mass with respect to 100 parts by mass of calcium phosphate cement. ..
  • the second material If a precipitate is generated during storage of the second material, the second material must be shaken immediately before use, which reduces operability, but it can be used by shaking the container containing the second material. Therefore, it can be used as a material for the dental curable calcium phosphate cement of the present invention. Therefore, even when a precipitate is formed, the effect of the present invention is not impaired.
  • the salt (G) of the organic acid may be partially liberated in the first material, the second material, or the paste after kneading, and may exist as the organic acid (F).
  • the total content of the organic acid (F) having a molecular weight of 10,000 or less and the salt (G) of the organic acid is preferably 0.001 part by mass or more in 100 parts by mass of the total amount of the dental curable calcium phosphate cement. It is more preferably 0.01 part by mass or more, and further preferably 0.1 part by mass or more. From the viewpoint of dentinal tubule sealing, storage stability, and operability, the total content of the organic acid (F) and the organic acid salt (G) of the dental curable calcium phosphate cement is 100 parts by mass. In, 50 parts by mass or less is preferable, 30 parts by mass or less is more preferable, and 10 parts by mass or less is further preferable.
  • the dental curable calcium phosphate cement of the present invention contains tetracalcium phosphate (A), an alkali metal salt of phosphoric acid (B), acidic calcium phosphate (C), water (D), and fluorine as long as the effects of the present invention are not impaired.
  • a component other than the compound (E), the organic acid (F) having a molecular weight of 10,000 or less, and the salt (G) of the organic acid having a molecular weight of 10,000 or less may be contained.
  • the thickener (H) can be blended within a range that does not affect the effect of the present invention.
  • thickener (H) examples include carboxymethyl cellulose, sodium carboxymethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, polyvinyl alcohol, poly-L-lysine, poly-L-lysine salt, starches other than cellulose, carrageenan, and the like.
  • Polysaccharides such as guar gum, xanthan gum, cellulose gum, pectin, pectin salt, chitin, chitosan; polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol, diglycerin; sugar alcohols such as xylitol, sorbitol, erythritol; polyethylene glycol, polypropylene Polyethers such as glycol; Acidic polysaccharide esters such as propylene glycol alginate; Proteins such as hyaluronic acid and its salts, collagen, gelatin and derivatives thereof; Polyglutamic acid and its salts, polyaspartic acid and its salts, polystyrene, etc.
  • polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol, diglycerin
  • sugar alcohols such as xylitol, sorbitol, erythritol
  • the thickener (H) may be used alone or in combination of two or more. When the thickener (H) is added to the paste, at least one selected from sodium carboxymethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose and chitosan is preferable from the viewpoint of solubility in water and viscosity.
  • the thickener (H) may be blended in the first material or the second material.
  • the thickener (H) When the thickener (H) is blended into the powder, it is preferable to contain an inorganic filler, and the powder is selected from the group consisting of light anhydrous silicic acid and a metal oxide having an average particle size of 0.002 to 20 ⁇ m. It is more preferable to contain at least one kind of particles, and it is further preferable to contain light anhydrous silicic acid particles having an average particle size of 0.002 to 20 ⁇ m.
  • artificial sweeteners such as aspartame, acesulfame potassium, licorice extract, saccharin, and sodium saccharin may be added.
  • any pharmacologically acceptable drug or the like can be blended.
  • Antibacterial agents such as cetylpyridinium chloride, disinfectants, anticancer agents, antibiotics, blood circulation improving agents such as actin and PEG1, growth factors such as bFGF, PDGF and BMP, osteoblasts, ivory blasts, and undifferentiated cells.
  • Artificial pluripotent stem (iPS: inverted Pluripotent Stem) cells obtained by dedifferentiating and producing differentiated cells such as bone marrow-derived stem cells, embryonic stem (ES) cells, and fibroblasts by gene transfer, and cells differentiated from these are hard. It can be blended with cells that promote tissue formation.
  • a powder or non-aqueous paste containing tetracalcium phosphate (A), an alkali metal salt of phosphoric acid (B) and acidic calcium phosphate (C), and a liquid or aqueous paste containing water (D) are kneaded.
  • A tetracalcium phosphate
  • B alkali metal salt of phosphoric acid
  • C acidic calcium phosphate
  • D liquid or aqueous paste containing water
  • This paste-like hardened calcium phosphate cement containing water is prepared by kneading immediately before use in the medical field because the reaction of converting to hydroxyapatite begins to occur immediately.
  • the kneading operation is not particularly limited, and hand kneading, kneading using a static mixer, or the like is preferably adopted.
  • the solvent other than water used for the non-aqueous paste is not particularly limited, and examples thereof include polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol and diglycerin, and polyethers such as polyethylene glycol and polypropylene glycol. Will be done.
  • the kneading ratio of the first material and the second material directly affects the operability at the time of kneading, so that the mass ratio of the water in the first material and the second material is set as a reference. be able to.
  • the mixing ratio of the first material and the second material is not particularly limited, but when the mass ratio of water (D) in the first material / the second material is 0.5 or more, the paste after kneading is used. It is preferable because the fluidity of the paste is not too high and the paste does not become too loose, 0.8 or more is more preferable, and 1.1 or more is further preferable.
  • the mass ratio of water (D) in the first material / the second material is 1.9 or less, the fluidity of the paste after kneading is too low and the paste does not become too hard, which is preferable. It is more preferably 0.8 or less, further preferably 1.6 or less, and most preferably 1.3 or less.
  • the dental curable calcium phosphate cement in the present invention preferably contains a powder containing tetracalcium phosphate (A), an alkali metal salt of phosphoric acid (B) and acidic calcium phosphate (C) in advance.
  • A tetracalcium phosphate
  • B alkali metal salt of phosphoric acid
  • C acidic calcium phosphate
  • the dentin capillary tube sealing property becomes better, so that the effect of suppressing hypersensitivity is enhanced, and the effect as a material for suppressing dentin hypersensitivity is improved.
  • a ball mill a raikai machine, a high-speed rotary mill, and a jet mill.
  • the second material of the present invention contains a fluorine compound (E) and an organic acid (F)
  • the second material further contains a salt (G) of an organic acid for dental curing from the viewpoint of storage stability of the second material.
  • sexual calcium phosphate cement is preferred.
  • the storage stability is high, the labor of shaking the container containing the second material and then using it is reduced, so that the operability is improved.
  • the container containing the second material can be used after shaking, and the effects other than operability are not deteriorated.
  • the organic acid salt (G) makes it easier to keep the second material in the neutral region, so that the precipitation of the acidic fluoride salt is suppressed.
  • the pH of the second material is preferably 3.0 or higher, more preferably 4.0 or higher, further preferably 5.0 or higher, and most preferably 6.0 or higher.
  • the pH of the dental curable calcium phosphate cement (paste immediately after kneading the first material and the second material) of the present invention is not particularly limited, but is 5.5 or more in order to prevent the dissolution of teeth.
  • 6.0 or more is more preferable, and 6.5 or more is further preferable.
  • the upper limit is not particularly limited, but may be, for example, 11 or less.
  • the dental curable calcium phosphate cement of the present invention is used in a paste state.
  • the dental curable calcium phosphate cement of the present invention may be packaged as a product form.
  • the dental curable calcium phosphate cement of the present invention may be in the form of a kit packaged as a combination of the first material and the second material.
  • the dental curable calcium phosphate cement of the present invention is a filling restoration material, a backing material, a binder, a temporary sealing material, a root canal filling material, a temporary bonding material, which is used by filling a cavity or a defect of dentin. It can be used as a coating material, a sealant material, a dentin material, a dentin hypersensitivity inhibitor, and the like, and is particularly suitable for a dentin material and a dentin hypersensitivity inhibitor.
  • the dentifrice containing dental curable calcium phosphate cement is not particularly limited and may contain known additives.
  • Known additives include foaming agents, abrasives (cleaning agents (excluding calcium hydrogen phosphate)), moisturizers, binders (thickeners), pH regulators, surfactants, preservatives, and sweeteners. Fees (artificial sweeteners, etc.), fragrances, etc. may be mentioned.
  • the dental curable calcium phosphate cement of the present invention undergoes a reaction in which tetracalcium phosphate (A) is dissolved and gradually converted to hydroxyapatite in the presence of water. To mix. Further, the dental curable calcium phosphate cement of the present invention can seal the dentinal tubule by precipitating hydroxyapatite deep into the dentinal tubule as described above. Therefore, the dentin hypersensitivity inhibitor containing the dental curable calcium phosphate cement of the present invention can self-harden after a predetermined time and seal the dentin tubules.
  • the dentin hypersensitivity inhibitor containing the dental curable calcium phosphate cement of the present invention has excellent biocompatibility, less skin irritation, and excellent safety.
  • the dentin hypersensitivity inhibitor of the present invention is not particularly limited and may contain a known additive. Examples of known additives include those similar to those exemplified for dentifrices.
  • the average particle size of the tetracalcium phosphate (A) particles, the alkali metal phosphate (B) particles, and the acidic calcium phosphate (C) particles is determined by the laser diffraction type particle size distribution measuring device (Shimazu Seisakusho Co., Ltd.). The median diameter calculated from the measurement results was taken as the average particle diameter.
  • tetracalcium phosphate (A) The tetracalcium phosphate particles (average particle size d 50 : 4.4 ⁇ m) used in this example as tetracalcium phosphate (A) are obtained by pulverizing crude tetracalcium phosphate prepared as follows. rice field. Equal moles of commercially available anhydrous calcium monohydrogen phosphate particles (Product No. 1430, JT Baker Chemical Co., NJ) and calcium carbonate (Product No. 1288, JT Baker Chemical Co., NJ). The cake-like equimolar mixture obtained by adding to water and stirring for 1 hour, filtering and drying is heated at 1500 ° C.
  • the tetracalcium phosphate mass was prepared by cooling to room temperature in a desiccator. Further, it was roughly crushed in a mortar and then sieved to remove fine powder and tetracalcium phosphate lumps, and the particle size was adjusted to the range of 0.5 to 1.0 mm to obtain crude tetracalcium phosphate.
  • the particles of disodium monohydrogen phosphate used in this example as the alkali metal salt (B) of phosphoric acid are commercially available particles of disodium monohydrogen phosphate (Fujifilm). Wako Junyaku Co., Ltd. 50g, 95% ethanol (Fujifilm Wako Junyaku Co., Ltd.
  • the particles of anhydrous calcium monohydrogen phosphate used in this example as acidic calcium phosphate (C) are commercially available particles of anhydrous calcium monohydrogen phosphate (Product No. 1430, J.). .T. Baker Chemical Co., NJ, average particle size 10.2 ⁇ m) 50 g, 95% ethanol (“Ethanol (95)” manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 240 g, and 1000 ml of zirconia balls with a diameter of 10 mm.
  • alumina crushing pot (“HD-B-104 pot mill” manufactured by Nikkato Co., Ltd.)
  • ethanol was distilled off from the slurry obtained by performing wet vibration crushing at a rotation speed of 1500 rpm for 15 hours using a rotary evaporator. Then, the particles were vacuum-dried at 60 ° C. for 6 hours to obtain anhydrous calcium monohydrogen phosphate particles (average particle diameter d 50 : 1.4 ⁇ m).
  • Fluorine compound (E) As the fluorine compound (E) used in this example, the following compound was used as it was. Sodium fluoride (manufactured by Sigma-Aldrich Co. LLC.)
  • Organic acid (F) As the organic acid (F) used in this example, the following compound was used as it was.
  • Acetic acid manufactured by Wako Pure Chemical Industries, Ltd.
  • Citric acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • EDTA ⁇ 2Na Ethylenediaminetetraacetic acid disodium solution (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Organic acids other than (F) The following compounds were used as they were for the organic acids other than (F) used in this example. 85% phosphoric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) Alginic acid (molecular weight: over 10,000, manufactured by Tokyo Chemical Industry Co., Ltd.) The molecular weight is a polystyrene-equivalent weight average molecular weight determined by gel permeation chromatography (GPC method) measurement.
  • Organic acid salt (G) As the organic acid salt (G) used in this example, the following compound was used as it was. Trisodium citrate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Thickener (H) As the thickener (H) used in this example, the following compound was used as it was.
  • Light anhydrous silicic acid manufactured by Nippon Aerosil Co., Ltd., Aerosil (registered trademark) 130, average particle size: 16 ⁇ m
  • Glycerin manufactured by Tokyo Chemical Industry Co., Ltd.
  • Macrogol 400 manufactured by Yoshida Pharmaceutical Co., Ltd.
  • Macrogol 4000 manufactured by Yoshida Pharmaceutical Co., Ltd.
  • Second Material Liquid, Water-based Paste
  • Table 1 The compositions described as the second material of Examples 1 to 8 shown in Table 1 and Comparative Examples 1 to 7 shown in Table 2 are stirred with a stirrer. To obtain a liquid or water-based paste as the second material.
  • the mass ratio of the first material obtained in (1) or (2) to the water in the second material obtained in (3) is 1.20: 1.
  • the first material and the second material were collected so as to be 00 parts by mass, and mixed and kneaded with a spatula for 30 seconds to prepare a dental curable calcium phosphate cement paste.
  • the composition of the obtained dental curable calcium phosphate cement is shown in Table 1.
  • the first material and the second material are mixed so that the mass ratio of the first material and the water in the second material (mass ratio of water (D) in the first material / the second material) is 1.20.
  • the mixture was mixed and kneaded with a spatula for 30 seconds.
  • the paste after kneading was filled in a mold having a diameter of 10 mm and a thickness of 1 mm to the extent that it slightly overflowed, a cover glass was placed on the mold, and the paste was pressed with a flat plate. Then, the cover glass was removed, and the mixture was placed under 37 ° C. and 95% RH conditions within 4 minutes from the start of kneading.
  • the curing time is required to be 5 minutes or more in consideration of rubbing into the dentin tubules. As the curing time, it is necessary to hold the calcium phosphate cement until the cured product is fixed at a desired position, and from a practical point of view, it is necessary to be within 45 minutes, preferably 40 minutes or less.
  • the dental curable calcium phosphate cement (Examples 1 to 8) according to the present invention contains a fluorine compound (E) which can be expected to improve acid resistance, and has ivory capillary tube sealing property.
  • the curing time could be adjusted within 40 minutes.
  • the dental curable calcium phosphate cement (Examples 1 to 8) according to the present invention has an ivory capillary tube sealing property of 40% or more and does not contain alkali metal salt particles of phosphoric acid. It was found that the ivory tubule sealing property was higher than that in Comparative Example 5) with the ivory tubule sealing rate of less than 40%.
  • Example 5 in which the organic acid salt (G) was added to the second material and the pH of the second material was 6.0 or more, a precipitate was formed after 24 hours at 25 ° C. It was found that it had excellent storage stability.
  • the dental curable calcium phosphate cement (Example 3) containing an organic acid (F) having a molecular weight of 10,000 or less is hardened as compared with the dental curable calcium phosphate cement (Comparative Example 6) containing an organic acid having a molecular weight of more than 10,000. It turns out that the time will be faster.
  • the dental curable calcium phosphate cement according to the present invention can significantly shorten the curing time, and further, ivory. It had an advantageous effect in that it was excellent in sealing the thin tube. Furthermore, since the dental curable calcium phosphate cement according to the present invention is expected to form fluoroapatite, improvement in acid resistance can be expected.
  • Patent Document 3 when sodium fluoride is mixed with calcium phosphate cement powder, the free calcium concentration in the solution decreases and the phosphate ion concentration increases relatively, and the increase in phosphate ion concentration increases the cement. It has been suggested that the curing time is shortened by promoting the caking reaction, that is, by including sodium fluoride. However, unlike the suggestion of Patent Document 3, as shown in Comparative Examples 1 to 4 and 6 to 7, when the first material which is a powder of calcium phosphate cement and the second material containing sodium fluoride are mixed, It was confirmed that calcium fluoride was produced and the calcium concentration decreased in the whole system, which delayed the curing reaction and lengthened the curing time.
  • the dental curable calcium phosphate cement according to the present invention is suitably used as a dentin hypersensitivity inhibitor and a toothpaste material in the field of dentistry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dental Preparations (AREA)

Abstract

本発明は、象牙細管の封鎖性に優れるとともに、フルオロアパタイトの形成が見込まれ、かつ臨床使用上好適な硬化時間を有する歯科用硬化性リン酸カルシウムセメントを提供する。本発明は、粉体又は非水系ペーストである第1材と、液体又は水系ペーストである第2材から構成され、前記第1材が、リン酸四カルシウム(A)、リン酸のアルカリ金属塩(B)、及び酸性リン酸カルシウム(C)を含み、前記第2材が、水(D)を含み、前記第1材又は前記第2材の少なくとも一方に、フッ素化合物(E)及び分子量1万以下の有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメントに関する。

Description

歯科用硬化性リン酸カルシウムセメント
 本発明は歯科用硬化性リン酸カルシウムセメントに関する。
 80歳になっても20本以上自分の歯を保とうとする、いわゆる8020運動(口腔衛生の向上、歯質の保存(MI:Minimal Intervention))に伴い、高齢者の歯の残存率が飛躍的に高まった。しかしながら、これに伴い新たな歯科疾患(歯の磨耗、歯周病による歯槽骨喪失等)による象牙質露出の問題が発生している。露出象牙質は、エナメル質と異なり象牙質を構成する組織のミネラル濃度が低いため、耐う蝕性が良好ではなく、また、直径約1μm以下から約3μmの象牙細管が口腔内の酸による作用で開孔して知覚過敏症が発病するなどの原因となる。これを改善する方法として、ポリマー系の材料を被覆する方法や、2種類の材料を交互に塗布して無機塩を析出させ、物理的な障壁を形成させることにより象牙細管を封鎖させる方法が知られている。しかしながら、これらの方法では象牙細管開口部付近の浅い部分や表面が覆われるのみであり、歯ブラシ等で磨耗されることにより容易に破壊されてしまう問題があった。また、生体親和性の高い材料とは言え、材料の塗布によりプラークが付着して炎症又は根面う蝕の原因となる問題もあった。
 一方、硬化性を有するリン酸カルシウム組成物として、リン酸四カルシウムと無水リン酸一水素カルシウムとを組み合わせたリン酸カルシウムセメントが知られており、生体内や口腔内において生体吸収性のヒドロキシアパタイト(Ca10(PO(OH))へ徐々に転化し、さらに形態を保ったままで生体硬組織と一体化し得るとされている。このようなリン酸カルシウムセメントを象牙細管の封鎖に用いた例の一つとして、特許文献1にはリン酸四カルシウム粒子に対してリン酸のアルカリ金属塩を特定量含む象牙質再石灰化剤が開示されており、象牙質表面に緻密なヒドロキシアパタイト層が形成されるとともに、象牙細管の深部にまでヒドロキシアパタイトが析出して象牙細管を封鎖することができるとの記載がある。
 さらに、特許文献1には、フッ素化合物を含むリン酸カルシウムセメントが開示されており、フッ素化合物を含むことにより、歯質に耐酸性が付与されるとともに石灰化も促進されることが記載されている。具体的なフッ素化合物としては、フッ化ナトリウムが用いられており、フルオロアパタイトが形成されることで歯質に耐酸性が付与されることが示唆されている。
 このようなリン酸カルシウムセメントにおいては、上記のような臨床的有効性と併せて臨床で使用する際の操作性も非常に重要視される。具体的には、リン酸カルシウムセメントは、一般的に粉材と液材の2材を使用直前に混和して使用するものであり、混和開始から硬化完了までの時間である硬化時間が長すぎる場合、硬化物が望む位置に定着するまで、リン酸カルシウムセメントを保持する必要があり、実用的に好ましくない。一方、硬化時間が短い場合、混練操作中に硬化が進行するため、均一な混練体とすることができず、硬化反応が不均一となり、リン酸カルシウムセメント硬化体の強度が局所的に低下することがある。
 また、特許文献1には、リン酸のアルカリ金属塩として、リン酸一水素二ナトリウム(NaHPO)を添加することにより、象牙細管の深部においても象牙細管封鎖性が向上する効果も具体的に記載されている。
 また、特許文献2には、有機酸(例えば、コハク酸)又は有機酸の塩を含むリン酸カルシウムセメントが開示されており、有機酸又は有機酸の塩を含まないリン酸カルシウムセメントと比較して、操作時間が増大する、すなわち硬化時間が遅くなるとの記載がある。
 特許文献3には、歯科修復用ならびにインプラントおよび修復向けの物質組成物であって、1種又は複数の特定のリン酸カルシウム塩を含む粉末状カルシウム化合物と、特定の酸性リン酸カルシウム溶液を含む組成物が開示されている。また、特許文献3では、血管新生をもたらすために有効な直径(約30~500μm)を形成できる増孔剤として、リン酸二ナトリウム(リン酸一水素二ナトリウム;NaHPO)を、セメントペーストに配合することも開示されている。さらに、特許文献3では、フッ化ナトリウムをリン酸カルシウムセメントの粉末と混合すると、錯体生成又は析出の結果、溶液中の遊離の、アニオン成分の濃度と、カルシウム濃度が減少し、相対的にリン酸イオン濃度が増加し、リン酸イオン濃度の増加がセメント凝結反応を促進する、すなわち、フッ化ナトリウムを含むことによって硬化時間が短くなるとの記載がある。
国際公開第2010/113800号 米国特許第8557038号明細書 特表2007-522113号公報
 しかしながら、本発明者が検討したところ、特許文献1においてフッ素化合物を含むリン酸カルシウムセメントの硬化時間は長く、さらにリン酸のアルカリ金属塩(例えば、リン酸一水素二ナトリウム)の量を調整しても硬化時間を一定時間以内にまで短くすることはできず、更なる改善の余地があった。
 また、特許文献2のリン酸カルシウムセメントはフッ素化合物を含んでいないため、歯質に耐酸性を付与するためのフルオロアパタイトの形成が期待できないのみならず、有機酸又はその塩を含むことで硬化時間を遅延させることが開示されており、クエン酸の濃度が上昇すると、操作時間も長くなることも実施例に開示されている。
 さらに、本発明者が検討したところ、特許文献3のリン酸カルシウムセメントは、その硬化物が緻密にならず象牙細管の封鎖性が低下することがわかった。また、特許文献3のリン酸カルシウムセメントに単純にリン酸一水素二ナトリウム(NaHPO)を添加すると硬化時間が遅くなることがわかった。
 本発明は上記課題を解決するためになされたものであり、象牙細管の封鎖性に優れるとともに、フルオロアパタイトの形成が見込まれ、かつ臨床使用上好適な硬化時間を有する歯科用硬化性リン酸カルシウムセメントを提供することを目的とする。
 本発明者が鋭意検討を重ねた結果、リン酸四カルシウム粒子、リン酸のアルカリ金属塩粒子、酸性リン酸カルシウム粒子、水、及びフッ素化合物を含む歯科用硬化性リン酸カルシウムセメントに、特定の有機酸を添加した組成物が上記課題を解決できることを見出し、さらに検討を重ねて本発明を完成するに至った。
 すなわち、本発明は以下の発明を包含する。
[1]粉体又は非水系ペーストである第1材と、液体又は水系ペーストである第2材から構成され、
 前記第1材が、リン酸四カルシウム(A)、リン酸のアルカリ金属塩(B)、及び酸性リン酸カルシウム(C)を含み、
 前記第2材が、水(D)を含み、
 前記第1材又は前記第2材の少なくとも一方に、フッ素化合物(E)及び分子量1万以下の有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメント。
[2]フッ素化合物(E)が、フッ化ナトリウム、フッ化カリウム、モノフルオロリン酸ナトリウム、及びフッ化スズからなる群から選択される少なくとも1種である、[1]に記載の歯科用硬化性リン酸カルシウムセメント。
[3]フッ素化合物(E)が、フッ化ナトリウム、又はフッ化カリウムである、[1]又は[2]に記載の歯科用硬化性リン酸カルシウムセメント。
[4]フッ素化合物(E)の換算フッ化物イオン量が、歯科用硬化性リン酸カルシウムセメントの全量において、0.01~3%である、[1]~[3]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[5]分子量1万以下の有機酸(F)が、2つ以上の酸性基を有する多価有機酸である、[1]~[4]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[6]分子量1万以下の有機酸(F)が、クエン酸、マロン酸、コハク酸、シュウ酸、リンゴ酸、及び酒石酸からなる群から選択される少なくとも1種である、[1]~[5]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[7]分子量1万以下の有機酸(F)が、クエン酸である、[1]~[6]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[8]分子量1万以下の有機酸(F)の含有量が、歯科用硬化性リン酸カルシウムセメントの全量100質量部において、0.005質量部以上である、[1]~[7]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[9]さらに、前記第1材又は前記第2材の少なくとも一方に、分子量1万以下の有機酸の塩(G)を含む、[1]~[8]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[10]さらに、前記第1材又は前記第2材の少なくとも一方に、平均粒子径が0.002~20μmである、軽質無水ケイ酸及び金属酸化物からなる群から選択される少なくとも1種の粒子を含む、[1]~[9]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[11]前記第2材のpHが6.0以上である、[1]~[10]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[12]前記第1材と前記第2材とを練和した直後のペーストのpHが5.5以上である、[1]~[11]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[13]前記第2材に、フッ素化合物(E)及び分子量1万以下の有機酸(F)を含む、[1]~[12]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[14]前記第1材が粉体であり、前記第2材が液体である、[1]~[13]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[15]リン酸四カルシウム(A)が粒子の形態であり、平均粒子径が0.5~40μmである、[1]~[14]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[16]リン酸のアルカリ金属塩(B)が粒子の形態であり、平均粒子径が0.5~20μmである、[1]~[15]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[17]酸性リン酸カルシウム(C)が粒子の形態であり、平均粒子径が0.1~7μmである、[1]~[16]のいずれかに記載の歯科用硬化性リン酸カルシウムセメント。
[18][1]~[17]のいずれかに記載の歯科用硬化性リン酸カルシウムセメントを含む、歯磨材。
[19][1]~[17]のいずれかに記載の歯科用硬化性リン酸カルシウムセメントを含む、象牙質知覚過敏抑制材。
 本発明によれば、象牙細管の封鎖性に優れるとともに、フルオロアパタイトの形成が見込まれ、かつ臨床使用上好適な硬化時間を有する歯科用硬化性リン酸カルシウムセメントを提供することができる。
 以下、本発明を詳細に説明する。本発明の歯科用硬化性リン酸カルシウムセメントは、粉体又は非水系ペーストである第1材と、液体又は水系ペーストである第2材から構成され、前記第1材が、リン酸四カルシウム(A)、リン酸のアルカリ金属塩(B)、及び酸性リン酸カルシウム(C)を含み、前記第2材が、水(D)を含み、前記第1材又は第2材の少なくとも一方に、フッ素化合物(E)及び分子量1万以下の有機酸(F)を含む。「非水系ペースト」の「非水系」とはペースト中に水の含有量が5%以下であるペーストであり、3%以下が好ましく、1%以下がより好ましい。
 上記の構成とすることにより、象牙細管の封鎖性に優れるとともに、フルオロアパタイトの形成が見込まれ、かつ臨床使用上好適な硬化時間を有する歯科用硬化性リン酸カルシウムセメントとなる。
 なお、本明細書において、数値範囲(各成分の含有量等)の上限値及び下限値は適宜組み合わせ可能である。
 本発明を何ら限定するものではないが、上記のような優れた効果が奏される理由としては、次のようなことが考えられる。まず、リン酸四カルシウム、リン酸のアルカリ金属塩、及び酸性リン酸カルシウムを含むリン酸カルシウムセメントにフッ素化合物を導入した場合、硬化時間の著しい遅延が生じる。この原因は、リン酸イオンに対してカルシウムイオンが不足している中、カルシウム化合物と水とを混合した際に生成するカルシウムイオンとフッ化物イオンとの反応によりフッ化カルシウムが析出するため、系中のカルシウムイオン量が低下し、硬化反応に適していたイオン比からそのバランス崩れるためと推定している。本発明の歯科用硬化性リン酸カルシウムセメントは、さらに特定の有機酸を含むことから、析出したフッ化カルシウムが有機酸により溶解されるものと考えられる。その結果、系中のカルシウムイオン濃度を低下させることなく、硬化反応に適したイオン比となるため、フッ素化合物を含んでいたとしても適切な硬化時間を有する歯科用硬化性リン酸カルシウムセメントが得られるものと推定している。さらにはフッ素化合物がカルシウムイオンと反応する前に有機酸と反応し、フッ素化合物と有機酸との複合体を形成することで、フッ素化合物とカルシウム塩と混合したときのフッ化カルシウムの生成を遅らせていることも硬化時間を短縮できる一因となっていると推定している。
・リン酸四カルシウム(A)
 本発明の歯科用硬化性リン酸カルシウムセメントは、第1材である粉体又は非水系ペースト中にリン酸四カルシウム(Ca(POO;TTCP)(A)を含む。リン酸四カルシウム(A)は粒子の形態であることが好ましい。リン酸四カルシウム(A)粒子の平均粒子径は、特に限定されないが、平均粒子径が0.5μm以上の場合、リン酸四カルシウム(A)の溶解が過度にならないため、水溶液中のpHが過度に高くならず、ヒドロキシアパタイトの析出が円滑になる。したがって、リン酸四カルシウム(A)粒子の平均粒子径は、0.5μm以上が好ましく、0.7μm以上がより好ましく、1μm以上がさらに好ましい。一方、平均粒子径が40μm以下の場合、後述する第2材である液体又は水系ペーストとの混合により得られるペーストが十分な粘性を示すため好ましいペースト性状となる。また、ペースト練和時のざらつき感が小さくなり、良好な操作性を保つことができる。したがって、リン酸四カルシウム(A)の平均粒子径は、40μm以下が好ましく、20μm以下がより好ましく、10μm以下がさらに好ましい。ここで、本発明で使用するリン酸四カルシウム(A)粒子の平均粒子径とは、レーザー回折式粒度分布測定装置を用いて測定し、算出したものである。例えば、後記する実施例に記載の方法で算出できる。
 本発明の歯科用硬化性リン酸カルシウムセメント中のリン酸四カルシウム(A)の含有量は、特に限定されないが、歯科用硬化性リン酸カルシウムセメント全量100質量部において、1~80質量部であることが好ましく、1~70質量部であることがより好ましく、1~60質量部であることがさらに好ましい。リン酸四カルシウム(A)の含有量が1質量部以上である場合、歯科用硬化性リン酸カルシウムセメントの象牙細管封鎖性が向上する。一方、リン酸四カルシウム(A)の含有量が80質量部以下である場合、歯科用硬化性リン酸カルシウムセメントの粘度が適正な範囲となり、操作性のよいペーストを得ることができる。
 本発明で使用されるリン酸四カルシウム(A)の製造方法は特に限定されない。市販されているリン酸四カルシウム粒子をそのまま用いてもよいし、適宜粉砕して粒子径を整えて使用してもよい。粉砕方法としては、後に説明する酸性リン酸カルシウム(C)の粉砕方法と同様の方法を採用できる。
・リン酸のアルカリ金属塩(B)
 本発明の歯科用硬化性リン酸カルシウムセメントは、第1材である粉体又は非水系ペースト中にリン酸のアルカリ金属塩(B)を含む。リン酸のアルカリ金属塩(B)は粒子の形態であることが好ましい。リン酸のアルカリ金属塩(B)としては特に限定されず、リン酸一水素二ナトリウム(NaHPO)、リン酸一水素二カリウム(KHPO)、リン酸二水素一リチウム(LiHPO)、リン酸二水素一ナトリウム(NaHPO;MSP)、リン酸二水素一カリウム(KHPO;KDP)、リン酸三ナトリウム(NaPO;TSP)、リン酸三カリウム(KPO)等が挙げられ、1種又は2種以上を併用して用いることができる。中でも、安全性や純度の高い原料が容易に入手できる観点から、リン酸のアルカリ金属塩(B)がリン酸一水素二ナトリウム及び/又はリン酸二水素一ナトリウムであることが好ましい。また、安全性の観点から、本発明で用いられるリン酸のアルカリ金属塩(B)におけるアルカリ金属イオンがナトリウムイオンであることが好ましい。
 本発明で用いられるリン酸のアルカリ金属塩(B)粒子の平均粒子径は特に限定されないが、リン酸のアルカリ金属塩(B)粒子の平均粒子径が0.5μm以上の場合、顕著な凝集が起こらず、ペースト又は粉体中に均一に分散させることができ、本発明の歯科用硬化性リン酸カルシウムセメントがヒドロキシアパタイトに転化した際に、当該ヒドロキシアパタイトに孔を生じさせず、高い象牙細管封鎖率を保つことができる。したがって、リン酸のアルカリ金属塩(B)粒子の平均粒子径は0.5μm以上であることが好ましく、4μm以上であることがより好ましく、8μm以上であることがさらに好ましい。一方、リン酸のアルカリ金属塩(B)粒子の平均粒子径が20μm以下の場合、本発明の歯科用硬化性リン酸カルシウムセメントがヒドロキシアパタイトに転化した際に、当該ヒドロキシアパタイトに孔が生じず、高い象牙細管封鎖率を保つことができ、知覚過敏を抑制することができる。さらに、象牙質表面にすり込んで象牙質知覚過敏を抑制する際に未溶解のリン酸のアルカリ金属塩(B)がペースト中に残存することによる、ざらつき感の増大と操作性の低下を防ぐことができる。したがって、リン酸のアルカリ金属塩(B)の平均粒子径は20μm以下であることが好ましく、16μm以下であることがより好ましく、12μm以下であることがさらに好ましい。リン酸のアルカリ金属塩(B)粒子の平均粒子径は、リン酸四カルシウム(A)粒子の平均粒子径の測定方法と同様の記載の方法で算出できる。
 本発明の歯科用硬化性リン酸カルシウムセメントは、リン酸四カルシウム(A)100質量部に対してリン酸のアルカリ金属塩(B)を5~98質量部含むことが好ましい。このように、リン酸四カルシウム(A)に加えてリン酸のアルカリ金属塩(B)を一定量含有することにより、象牙細管の深部にまでヒドロキシアパタイトがより効果的に析出する歯科用硬化性リン酸カルシウムセメントを提供することができる。リン酸のアルカリ金属塩(B)の含有量が5質量部未満の場合、ヒドロキシアパタイトの析出が阻害されるおそれがあり、5質量部以上であることが好ましく、7質量部以上であることがより好ましく、10質量部以上であることがさらに好ましい。一方、リン酸のアルカリ金属塩(B)の含有量が98質量部を超える場合、ヒドロキシアパタイトの析出が阻害されるおそれがあり、98質量部以下であることが好ましく、95質量部以下であることがより好ましく、90質量部以下であることがさらに好ましい。
 本発明で使用されるリン酸のアルカリ金属塩(B)の製造方法は特に限定されない。市販されているリン酸のアルカリ金属塩粒子をそのまま用いてもよいし、適宜粉砕して粒子径を整えて使用してもよい。粉砕方法としては、後に説明する酸性リン酸カルシウム(C)の粉砕方法と同様の方法を採用できる。
・酸性リン酸カルシウム(C)
 本発明の歯科用硬化性リン酸カルシウムセメントは、第1材である粉体又は非水系ペースト中に酸性リン酸カルシウム(C)を含む。酸性リン酸カルシウム(C)は粒子の形態であることが好ましい。酸性リン酸カルシウム(C)を含むことにより、石灰化効果をより高めることができる。本発明で用いられる酸性リン酸カルシウム(C)としては特に限定されず、無水リン酸一水素カルシウム(CaHPO;DCPA)、無水リン酸二水素カルシウム(Ca(HPO)、リン酸三カルシウム(Ca(PO;TCP)、非晶質リン酸カルシウム(Ca(PO・nHO、ACP)、酸性ピロリン酸カルシウム(CaH)、リン酸一水素カルシウム2水和物(CaHPO・2HO)、及びリン酸二水素カルシウム1水和物(Ca(HPO・HO)からなる群から選択される少なくとも1種であることが好ましい。酸性リン酸カルシウム(C)は1種を単独で使用してもよく、2種以上を併用してもよい。リン酸三カルシウムは、α-TCP、β-TCPのいずれであってもよい。これらの中でも、無水リン酸一水素カルシウム、無水リン酸二水素カルシウム、リン酸一水素カルシウム2水和物、及びリン酸二水素カルシウム1水和物からなる群から選択される少なくとも1種がより好適に使用され、特に無水リン酸一水素カルシウム、及び無水リン酸二水素カルシウムからなる群から選択される少なくとも1種がさらに好適に使用される。
 本発明で用いられる酸性リン酸カルシウム(C)粒子の平均粒子径は、特に限定されないが、平均粒子径が0.1μm以上の場合、液剤への溶解が過多となり、カルシウムイオンとリン酸イオンの供給バランスが崩れることを防ぎ、また、液剤との混合により得られるペーストの粘度を適正に保つことができる。酸性リン酸カルシウム(C)粒子の平均粒子径は、0.1μm以上が好ましく、0.5μm以上がより好ましく、1μm以上がさらに好ましい。一方、平均粒子径が7μm以下である場合、酸性リン酸カルシウム(C)が第1材と第2材の練和物へ溶解しにくくなるためリン酸四カルシウム(A)の溶解が過度となることを防ぐ。その結果、カルシウムイオンとリン酸イオンの供給バランスが崩れることを防ぎ、水溶液のpHが過度に高くなりすぎず、ヒドロキシアパタイトの析出が円滑になる。酸性リン酸カルシウム(C)粒子の平均粒子径は、7μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。酸性リン酸カルシウム(C)粒子の平均粒子径は、リン酸四カルシウム(A)粒子の平均粒子径の測定方法と同様の記載の方法で算出できる。
 このような平均粒子径を有する酸性リン酸カルシウム(C)の製造方法は特に限定されず、市販品を入手できるのであればそれを使用してもよいが、市販品をさらに粉砕することが好ましい場合が多い。その場合、ボールミル、ライカイ機、ジェットミルなどの粉砕装置を使用することができる。また、酸性リン酸カルシウム原料粉体をアルコールなどの液体の媒体とともにライカイ機、ボールミル等を用いて粉砕してスラリーを調製し、得られたスラリーを乾燥させることにより酸性リン酸カルシウム(C)を得ることもできる。このときの粉砕装置としては、ボールミルを用いることが好ましく、そのポット及びボールの材質としては、好適にはアルミナ、ジルコニア等が採用される。
 リン酸四カルシウム(A)と酸性リン酸カルシウム(C)の配合割合(A/C)は特に限定されず、モル比で40/60~60/40の範囲となる配合割合で使用される。上記配合割合(A/C)は、好適には45/55~55/45である。
・水(D)
 本発明の歯科用硬化性リン酸カルシウムセメントは、第2材が水(D)を含む液体又は水系ペーストである。ある実施形態では、第2材は、水(D)を主成分とする液体である。主成分とは、含有量が一番多い成分であり、例えば、50質量%以上であってもよく、60質量%以上であってもよく、70質量%以上であってもよい。水(D)を主成分とする液体とは、純水であっても、水(D)を主成分とし他の成分を含有する液体であってもよく、水(D)を主成分とする水系ペーストとは、水(D)を主成分とし他の成分を含有するペースト状の液体を示す。他の成分としては特に限定されず、グリセリン、エチレングリコール、プロピレングリコール、ジグリセリン等の多価アルコール、キシリトール、ソルビトール、エリスリトール等の糖アルコール、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテルなどが例示される。
・フッ素化合物(E)
 本発明の歯科用硬化性リン酸カルシウムセメントは、第1材又は第2材の少なくとも一方にフッ素化合物(E)を含む。フッ素化合物(E)を含むことにより、フルオロアパタイトが形成され歯質に耐酸性を付与させることが可能となり、石灰化も促進される。ある好適な実施形態では、フッ化カルシウムを生成させないため、系内のカルシウムイオンを低下させず、硬化時間をより遅延させにくい点から、第2材がフッ素化合物(E)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。
 本発明で用いられるフッ素化合物(E)としては特に限定されず、フッ化ナトリウム、フッ化カリウム、フッ化アンモニウム、フッ化リチウム、フッ化セシウム、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化バリウム、フッ化銅、フッ化ジルコニウム、フッ化アルミニウム、フッ化スズ、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、フッ化水素酸、フッ化チタンナトリウム、フッ化チタンカリウム、ヘキシルアミンハイドロフルオライド、ラウリルアミンハイドロフルオライド、グリシンハイドロフルオライド、アラニンハイドロフルオライド、フルオロシラン類、フッ化ジアミン銀等が挙げられる。中でもフッ化ナトリウム、フッ化カリウム、モノフルオロリン酸ナトリウム、フッ化スズが好適に用いられ、フッ化ナトリウム、フッ化カリウムがより好適に用いられる。フッ素化合物(E)は1種を単独で使用してもよく、2種以上を併用してもよい。
 フッ素化合物(E)の含有量は、特に限定されず、歯科用硬化性リン酸カルシウムセメントの全量に対してフッ素化合物(E)の換算フッ化物イオン量が0.01~3%であることが好ましく、0.05~1%であることがより好ましく、0.10~0.90%であることがさらに好ましい。フッ素化合物(E)の換算フッ化物イオン量が3%を超える場合、安全性が損なわれるおそれがあり、1%以下であることがより好ましい。フッ素化合物(E)の換算フッ化物イオン量が0.01%以上である場合、フルオロアパタイトの形成が見込まれる。フッ素化合物(E)の換算フッ化物イオン量は後述する実施例に記載の方法で算出することができる。
・分子量1万以下の有機酸(F)
 本発明の歯科用硬化性リン酸カルシウムセメントは、第1材又は第2材の少なくとも一方に分子量1万以下の有機酸(F)(以下、単に「有機酸(F)」と称することがある)を含む。有機酸(F)を含むことにより、ある好適な実施形態では、フッ化カルシウムを生成させないため、系内のカルシウムイオンを低下させず、硬化時間をより遅延させにくい点から、第2材が有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。歯科用硬化性リン酸カルシウムセメントにフッ素化合物(E)が配合されてフッ化カルシウムが形成されたとしても、カルシウムイオン濃度を回復でき、結果的に本発明の歯科用硬化性リン酸カルシウムセメントの硬化時間が短縮されることから、臨床使用上好適な硬化時間を有する歯科用硬化性リン酸カルシウムセメントを得ることができる。本発明の有機酸(F)の分子量は1万以下である必要がある。分子量が1万より大きい場合、カルシウムイオンとの反応により練和後のペーストが高粘度のゲル状となることから操作性が低くなることに加えて、分子量1万超の有機酸自体の水への溶解性が悪いこと、また分子量1万超の有機酸のカルシウム塩の溶解性が低いことによって、本発明の効果を奏しにくくなるものと推察している。本発明の有機酸(F)の分子量は5000以下が好ましく、より適切な硬化時間が得られることから、2500以下がより好ましい。分子量の下限は特に限定されないが、例えば45以上とすることができ、100以上であってもよい。有機酸(F)が、ポリマー骨格を有さない化合物である場合、分子量は分子中に含まれる原子量の総和を意味する。有機酸(F)が、ポリマー骨格を有する化合物である場合、分子量は重量平均分子量を意味する。重量平均分子量とは、ゲル浸透クロマトグラフィーで求めたポリスチレン換算の重量平均分子量を意味する。
 本発明の有機酸(F)としては、分子量が1万以下の有機酸であれば何ら制限なく用いられることができ、例えば、カルボキシル基、スルホン酸基及びフェノール基等から選択される酸性基を1つ以上含む有機酸が挙げられる。本発明の有機酸(F)としては、カルシウムの溶解性の観点から多価有機酸であることが好ましい。多価有機酸とは2つ以上の酸性基を有する酸であり、具体的にはカルボキシル基、スルホン酸基及びフェノール基等から選択される酸性基を複数備える有機酸、又は、これらの酸性基を組み合せて複数備える有機酸が挙げられる。酸性基としては、カルボキシル基、スルホン酸基及びフェノール基が好ましく、カルボキシル基、及びスルホン酸基がより好ましく、カルボキシル基がさらに好ましい。カルボキシル基を複数備える多価有機酸としては、例えば、クエン酸、マロン酸、コハク酸、シュウ酸、フタル酸、リンゴ酸、酒石酸等のカルボキシル基を2つ有する有機酸(ジカルボン酸);ジエチレントリアミン五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)等の3つ以上有する有機酸が挙げられる。有機酸(F)は1種を単独で使用してもよく、2種以上を併用してもよい。また、カルボキシル基とフェノール基とを組み合わせて備えるものとしてゲンチジン酸が挙げられる。これらの中でも、硬化時間がより短縮される観点から、水溶性の有機酸が好ましく用いられ、クエン酸、マロン酸、コハク酸、シュウ酸、リンゴ酸及び酒石酸から選択される少なくとも1種がより好ましく用いられ、クエン酸が最も好ましく用いられる。
 有機酸(F)の含有量は、硬化時間が短縮される観点から、歯科用硬化性リン酸カルシウムセメントの全量100質量部において、0.001質量部以上であることが好ましく、0.002質量部以上がより好ましく、0.005質量部以上がさらに好ましい。また歯科用硬化性リン酸カルシウムセメントの、象牙細管封鎖性、保存安定性、操作性等の観点から、50質量部以下が好ましく、30質量部以下がより好ましく、10質量部以下がさらに好ましい。
 本発明の歯科用硬化性リン酸カルシウムセメントは、第1材又は第2材の少なくとも一方に、フッ素化合物(E)及び有機酸(F)を含む。例えば、ある実施形態(X-1)としては、第1材がフッ素化合物(E)及び有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。他の実施形態(X-2)としては、第2材がフッ素化合物(E)及び有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。さらに他の実施形態(X-3)としては、第1材がフッ素化合物(E)を含み、第2材が有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。また、ある実施形態(X-4)としては、第1材が有機酸(F)を含み、第2材がフッ素化合物(E)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。さらに他の実施形態(X-5)としては、第1材がフッ素化合物(E)及び有機酸(F)を含み、第2材がフッ素化合物(E)及び有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。また、他の実施形態(X-6)としては、第1材がフッ素化合物(E)及び有機酸(F)を含み、第2材が有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。また、他の実施形態(X-7)としては、第1材がフッ素化合物(E)及び有機酸(F)を含み、第2材がフッ素化合物(E)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。また、他の実施形態(X-8)としては、第1材がフッ素化合物(E)を含み、第2材がフッ素化合物(E)及び有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。また、他の実施形態(X-9)としては、第1材が有機酸(F)を含み、第2材がフッ素化合物(E)及び有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメントが挙げられる。
・分子量1万以下の有機酸の塩(G)
 本発明の歯科用硬化性リン酸カルシウムセメントは、第1材又は第2材の少なくとも一方に、本発明の効果を阻害しない範囲で分子量1万以下の有機酸の塩(G)(以下、単に「有機酸の塩(G)」と称することがある)を含んでもよい。有機酸の塩(G)は1種を単独で使用してもよく、2種以上を併用してもよい。有機酸の塩(G)とは、前記分子量1万以下の有機酸(F)の塩(例えばアルカリ金属塩、アルカリ土類金属、アンモニウム塩)である。有機酸の塩(G)は有機酸(F)と同じ材に含まれることが好ましい。フッ素化合物(E)と有機酸(F)と共存させたとき、保管中に析出物が生成することがあるが、有機酸の塩(G)をさらに含有させることにより前記析出物の生成を抑制することができる。有機酸の塩(G)を共存させることにより、前記問題が解決される原因は定かでないが、有機酸(F)と有機酸の塩(G)を共存させることにより第2材が中性領域となるため、酸性下で生成される酸性フッ化物塩の析出が抑制されるものと推定している。有機酸の塩(G)の含有量は、リン酸カルシウムセメント100質量部に対して、0.1~50質量部が好ましく、0.5~25質量部がより好ましく、1~10質量部がさらに好ましい。
 第2材を保管中に析出物が生成した場合、使用直前に第2材を振ってから使用しなければならないため、操作性が低下するが、第2材を収容した容器を振れば使用できるため、本発明の歯科用硬化性リン酸カルシウムセメントの材料として、使用することは可能である。そのため、析出物の生成した場合にも、本発明の効果を損なうものではない。
 また、有機酸の塩(G)は、第1材、第2材、又は練和後のペースト中で、一部が遊離し、有機酸(F)として存在することもある。分子量1万以下の有機酸(F)と有機酸の塩(G)の含有量の総和は、歯科用硬化性リン酸カルシウムセメントの全量100質量部において、0.001質量部以上であることが好ましく、0.01質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。また、歯科用硬化性リン酸カルシウムセメントの、象牙細管封鎖性、保存安定性、操作性の観点から、有機酸(F)と有機酸の塩(G)の含有量の総和は、前記全量100質量部において、50質量部以下が好ましく、30質量部以下がより好ましく、10質量部以下がさらに好ましい。
 本発明の歯科用硬化性リン酸カルシウムセメントは、本発明の効果を阻害しない範囲でリン酸四カルシウム(A)、リン酸のアルカリ金属塩(B)、酸性リン酸カルシウム(C)、水(D)、フッ素化合物(E)、分子量1万以下の有機酸(F)、及び分子量1万以下の有機酸の塩(G)以外の成分を含有しても構わない。例えば、必要に応じて、本発明の効果に影響を与えない範囲で、増粘剤(H)を配合することができる。
 増粘剤(H)の具体例としては、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール、ポリ-L-リジン、ポリ-L-リジン塩、セルロース以外のデンプン、カラギーナン、グアーガム、キサンタンガム、セルロースガム、ペクチン、ペクチン塩、キチン、キトサン等の多糖類;グリセリン、エチレングリコール、プロピレングリコール、ジグリセリン等の多価アルコール;キシリトール、ソルビトール、エリスリトール等の糖アルコール;ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル;アルギン酸プロピレングリコールエステル等の酸性多糖類エステル;ヒアルロン酸及びその塩、コラーゲン、ゼラチン及びこれらの誘導体などのタンパク質類等;ポリグルタミン酸及びその塩、ポリアスパラギン酸及びその塩、ポリスチレンスルホン酸及びその塩、ポリアクリル酸の高分子、又は軽質無水ケイ酸、金属酸化物等に代表される無機フィラーなどが挙げられる。増粘剤(H)は1種を単独で使用してもよく、2種以上を併用してもよい。増粘剤(H)をペーストに配合する場合は、水への溶解性及び粘性の面からはカルボキシメチルセルロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、キトサンから選択される少なくとも1つが好ましい。増粘剤(H)は、第1材に配合してもよいし第2材に配合してもよい。粉体へ増粘剤(H)を配合する場合は、無機フィラーを含有させることが好ましく、平均粒子径が0.002~20μmである軽質無水ケイ酸及び金属酸化物からなる群から選択される少なくとも1種の粒子を含有させることがより好ましく、平均粒子径が0.002~20μmである軽質無水ケイ酸粒子を含有させることがさらに好ましい。
 また、必要に応じて、アスパルテーム、アセスルファムカリウム、カンゾウ抽出液、サッカリン、サッカリンナトリウム等の人工甘味料などを加えてもよい。
 さらに、薬理学的に許容できるあらゆる薬剤等を配合することができる。セチルピリジニウムクロリド等に代表される抗菌剤、消毒剤、抗癌剤、抗生物質、アクトシン、PEG1などの血行改善薬、bFGF、PDGF、BMPなどの増殖因子、骨芽細胞、象牙芽細胞、さらに未分化な骨髄由来幹細胞、胚性幹(ES)細胞、線維芽細胞等の分化細胞を遺伝子導入により脱分化・作製した人工多能性幹(iPS:induced Pluripotent Stem)細胞ならびにこれらを分化させた細胞など硬組織形成を促進させる細胞などを配合させることができる。
 本発明では、リン酸四カルシウム(A)、リン酸のアルカリ金属塩(B)及び酸性リン酸カルシウム(C)を含む粉体又は非水系ペーストと、水(D)を含む液体又は水系ペーストとを練和することにより、ペースト状の歯科用硬化性リン酸カルシウムセメントを得ることができる。水を含むこのペースト状の歯科用硬化性リン酸カルシウムセメントは、直ちにヒドロキシアパタイトに転化する反応が起こり始めるため、医療現場で使用する直前に練和して調製するものである。練和操作としては特に限定されず、手練和、スタティックミキサーを用いた練和等が好ましく採用される。しかしながら、リン酸のアルカリ金属塩(B)の水に対する溶解度がそれ程高くないため、リン酸のアルカリ金属塩(B)を粉体で加える上記練和方法が好ましく採用される。また、非水系ペーストに使用される水以外の溶媒としては特に限定されず、例えば、グリセリン、エチレングリコール、プロピレングリコール、ジグリセリン等の多価アルコール、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテルなどが例示される。
 本発明において、第1材と第2材との練和比は、練和時の操作性に直接影響することから、第1材と第2材中の水との質量比を基準に設定することができる。第1材と第2材との混合比は特に限定されるものではないが第1材/第2材中の水(D)の質量比が0.5以上であると、練和後のペーストの流動性が高すぎて、ペーストが緩くなりすぎないため好ましく、0.8以上がより好ましく、1.1以上がさらに好ましい。一方、第1材/第2材中の水(D)の質量比は1.9以下であると、練和後のペーストの流動性が低すぎて、ペーストが固くなりすぎないため好ましく、1.8以下がより好ましく、1.6以下がさらに好ましく、1.3以下が最も好ましい。
 本発明における歯科用硬化性リン酸カルシウムセメントは、リン酸四カルシウム(A)、リン酸のアルカリ金属塩(B)及び酸性リン酸カルシウム(C)を含む粉体を予め混合することが好ましい。このことにより、象牙細管封鎖性がより良好となるため、知覚過敏を抑制する効果が高くなり、象牙質知覚過敏抑制材としての効果が向上する。ここで、前記混合の際には、ジェットミル、ライカイ機、ボールミル、高速回転ミル、遊星ミル、ハイブリダイザー、メカノフュージョン又は混合押出し機から選択される少なくとも1種を用いることが好ましい。象牙細管封鎖性をより高める観点から、ボールミル、ライカイ機、高速回転ミル、ジェットミルから選択される少なくとも1種を用いることが好ましい。
 本発明の第2材がフッ素化合物(E)及び有機酸(F)を含む場合、第2材の保存安定性の観点から、第2材がさらに有機酸の塩(G)を含む歯科用硬化性リン酸カルシウムセメントが好ましい。保存安定性が高いと、第2材を収容した容器を振ってから使用する手間が減るため、操作性が向上する。一方、保存安定性が悪く、沈殿が生じたとしても、第2材を収容した容器を振ってから使用することができ、操作性以外の効果を悪化させることはない。有機酸の塩(G)により、第2材が中性領域に保たれやすくなるため、酸性フッ化物塩の析出が抑制されると推察している。第2材のpHは3.0以上が好ましく、4.0以上がより好ましく、5.0以上がさらに好ましく、6.0以上が最も好ましい。
 本発明の歯科用硬化性リン酸カルシウムセメント(第1材と第2材とを練和した直後のペースト)のpHは、特に限定されるものではないが、歯牙の溶解を防ぐために5.5以上が好ましく、6.0以上がより好ましく、6.5以上がさらに好ましい。上限値は特に限定されないが、例えば11以下とすることができる。
 本発明の歯科用硬化性リン酸カルシウムセメントはペースト状態で使用される。本発明の歯科用硬化性リン酸カルシウムセメントは、製品形態として、分包されていてもよい。例えば、本発明の歯科用硬化性リン酸カルシウムセメントは、第1材と第2材の組み合わせとして分包されたキットの製品形態であってよい。
 本発明の歯科用硬化性リン酸カルシウムセメントは、歯質の窩洞や欠損部に充填して使用される充填修復材、裏層材、合着材、仮封材、根管充填材、仮着材、コーティング材、シーラント材、歯磨材、象牙質知覚過敏抑制材等として用いることができ、特に歯磨材、象牙質知覚過敏抑制材に好適である。歯科用硬化性リン酸カルシウムセメントを含む歯磨材は、特に限定されず、公知の添加剤を含有してもよい。公知の添加剤としては、発泡剤、研磨剤(清掃剤(ただし、リン酸水素カルシウムを除く))、保湿剤、結合剤(増粘剤)、pH調整剤、界面活性剤、防腐剤、甘味料(人口甘味料等)、香料等が挙げられる。
 本発明の歯科用硬化性リン酸カルシウムセメントは、水の存在下ではリン酸四カルシウム(A)が溶解して徐々にヒドロキシアパタイトに転化する反応が起こるため、使用直前に第1材と第2材とを混合する。また、本発明の歯科用硬化性リン酸カルシウムセメントは、上記説明のように象牙細管の深部にまでヒドロキシアパタイトが析出して象牙細管を封鎖することが可能である。そのため、本発明の歯科用硬化性リン酸カルシウムセメントを含む象牙質知覚過敏抑制材によって、所定時間後に自己硬化し、象牙細管を封鎖することが可能である。本発明の歯科用硬化性リン酸カルシウムセメントを含む象牙質知覚過敏抑制材は、生体親和性に優れ、皮膚刺激も少なく、安全性に優れる。さらに、象牙細管内に象牙質知覚過敏抑制材を擦りこむように、擦り塗りした後に、余剰ペーストを水洗で簡便に除去でき、特別な使用方法も不要であるため、使用性に優れる。本発明の象牙質知覚過敏抑制材は、特に限定されず、公知の添加剤を含有してもよい。公知の添加剤としては、歯磨材で例示したものと同様のものが挙げられる。
 以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明はこれらに制限されるものではない。なお、リン酸四カルシウム(A)の粒子、リン酸のアルカリ金属塩(B)の粒子、及び酸性リン酸カルシウム(C)の粒子の平均粒子径は、レーザー回折式粒度分布測定装置(株式会社島津製作所製「SALD-2300型」)を用いて体積基準で測定し、測定の結果から算出されるメディアン径を平均粒子径とした。
[リン酸四カルシウム(A)の調製]
 リン酸四カルシウム(A)として本実施例で使用するリン酸四カルシウムの粒子(平均粒子径d50:4.4μm)は、以下の通りに調製した粗リン酸四カルシウムを粉砕することにより得た。市販の無水リン酸一水素カルシウムの粒子(Product No. 1430, J.T.Baker Chemical Co., NJ)及び炭酸カルシウム(Product No.1288,J.T.Baker Chemical Co.,NJ)を等モルとなるように水中に加え、1時間撹拌した後、ろ過、乾燥することで得られたケーキ状の等モル混合物を電気炉(FUS732PB,アドバンテック東洋株式会社製)中で1500℃、24時間加熱し、その後デシケータ中で室温まで冷却することでリン酸四カルシウム塊を調製した。さらに、乳鉢中で荒く砕き、その後篩がけを行うことで微粉ならびにリン酸四カルシウム塊を除き、0.5~1.0mmの範囲に粒度を整え、粗リン酸四カルシウムを得た。この粗リン酸四カルシウム50g、直径が10mmのジルコニアボール200g、及び99.5%脱水エタノール(富士フイルム和光純薬株式会社製「Ethanol,Dehydrated(99.5)」)100gを1000mlのアルミナ製粉砕ポット(株式会社ニッカトー製「HD-B-104ポットミル」)中に加え、1500rpmの回転速度で20時間湿式振動粉砕を行うことで得られたスラリーを、ロータリーエバポレータでエタノールを留去した後、60℃で6時間真空乾燥することでリン酸四カルシウム(A)の粒子(平均粒子径d50:4.4μm)を得た。
[リン酸のアルカリ金属塩(B)の調製]
 リン酸のアルカリ金属塩(B)として本実施例で使用するリン酸一水素二ナトリウムの粒子(平均粒子径d50:8.0μm)は、市販のリン酸一水素二ナトリウムの粒子(富士フイルム和光純薬株式会社製)50g、95%エタノール(富士フイルム和光純薬株式会社製「Ethanol(95)」)240g、及び直径が10mmのジルコニアボール480gを1000mlのアルミナ製粉砕ポット(株式会社ニッカトー製「HD-B-104ポットミル」)中に加え、1500rpmの回転速度で1時間湿式振動粉砕を行うことで得られたスラリーを、ロータリーエバポレータでエタノールを留去した後、60℃で6時間真空乾燥することで、リン酸一水素二ナトリウムの粒子(平均粒子径d50:8.0μm)を得た。
[酸性リン酸カルシウム(C)の調製]
 酸性リン酸カルシウム(C)として本実施例で使用する無水リン酸一水素カルシウムの粒子(平均粒子径d50:1.4μm)は、市販の無水リン酸一水素カルシウムの粒子(Product No.1430,J.T.Baker Chemical Co.,NJ、平均粒子径10.2μm)50g、95%エタノール(富士フイルム和光純薬株式会社製「Ethanol(95)」)240g、及び直径が10mmのジルコニアボール480gを1000mlのアルミナ製粉砕ポット(株式会社ニッカトー製「HD-B-104ポットミル」)中に加え、1500rpmの回転速度で15時間湿式振動粉砕を行うことで得られたスラリーを、ロータリーエバポレータでエタノールを留去した後、60℃で6時間真空乾燥することで無水リン酸一水素カルシウムの粒子(平均粒子径d50:1.4μm)を得た。
[フッ素化合物(E)]
 本実施例で使用するフッ素化合物(E)は下記の化合物をそのまま使用した。
 フッ化ナトリウム(Sigma-Aldrich Co. LLC.製)
[有機酸(F)]
 本実施例で使用する有機酸(F)は下記の化合物をそのまま使用した。
 酢酸(富士フイルム和光純薬株式会社製)
 クエン酸(東京化成工業株式会社製)
 EDTA・2Na:エチレンジアミン四酢酸二ナトリウム溶液(東京化成工業株式会社製)
[(F)以外の有機酸]
 本実施例で使用する(F)以外の有機酸は下記の化合物をそのまま使用した。
 85%リン酸(東京化成工業株式会社製)
 アルギン酸(分子量:10000超、東京化成工業株式会社製)
 分子量はゲル浸透クロマトグラフ法(GPC法)測定により求めたポリスチレン換算の重量平均分子量である。
[有機酸の塩(G)]
 本実施例で使用する有機酸の塩(G)は下記の化合物をそのまま使用した。
 クエン酸三ナトリウム(東京化成工業株式会社製)
[増粘剤(H)]
 本実施例で使用する増粘剤(H)は下記の化合物をそのまま使用した。
 軽質無水ケイ酸(日本アエロジル株式会社製、アエロジル(登録商標)130、平均粒子径:16μm)
 グリセリン(東京化成工業株式会社製)
 マクロゴール400(吉田製薬株式会社製)
 マクロゴール4000(吉田製薬株式会社製)
[歯科用硬化性リン酸カルシウムセメントの調製]
<実施例1~8、比較例1~7>
(1)第1材(粉体)の調製
 表1に示す実施例1~6、及び表2に示す比較例1~7、の第1材として記載された組成物を、ハイスピードミキサー(深谷工業株式会社製)を用いて、アジテーター回転数750rpm、チョッパー回転数300rpmにて、10分回転させることで、第1材である粉体を得た。
(2)第1材(非水系ペースト)の調製
 表1に示す実施例7、8の第1材として記載された組成物を、ハイスピードミキサー(深谷工業株式会社製)を用いて、アジテーター回転数750rpm、チョッパー回転数300rpmにて、20分回転させ、第1材である非水系ペーストを得た。
(3)第2材(液体、水系ペースト)の調製
 表1に示す実施例1~8、及び表2に示す比較例1~7、の第2材として記載された組成物をスターラーで撹拌して溶解させることで、第2材である液体又は水系ペーストを得た。
(4)歯科用硬化性リン酸カルシウムセメントペーストの調製
 (1)又は(2)で得た第1材と、(3)で得た第2材中の水との質量比が1.20:1.00質量部となるように第1材と第2材とを採取し、30秒間ヘラで混合練和することで歯科用硬化性リン酸カルシウムセメントペーストを調製した。得られた歯科用硬化性リン酸カルシウムセメントの組成を表1に示す。
[換算フッ化物イオン量の算出]
 第1材と、第2材中の水との質量比(第1材/第2材中の水(D)の質量比)が1.20となるように第1材と第2材とを混合したときの合計質量に対する換算フッ化物イオンの質量を算出し、換算フッ化物イオン量とした(%)。換算フッ化物イオン量を表1及び表2に示す。フッ化物濃度が0.1%未満のフッ化物を含む歯磨材でフルオロアパタイトが形成するとされ、市販されている。換算フッ化物イオン量が0.2%以上である場合、市販歯磨材よりも濃度が高い点から、フルオロアパタイトの形成が見込まれる。
(換算フッ化物イオン量)[%]=第1材と第2材を練和したペーストに含まれるフッ化物イオンの質量/(第1材の質量+第2材の質量)×100
[第2材のpH測定]
 第2材を撹拌しながら、pHメーター(LAQUA pH/IONMETER F-72;株式会社堀場製作所製)を用いて、pHを測定した。得られた評価結果を表1及び表2に示す。
[歯科用硬化性リン酸カルシウムセメントペーストのpH測定]
 第1材と第2材とを混合練和し、練和開始から30秒後に、pH試験紙(MACHEREY NAGEL社製)を接触させ、pHを測定した。得られた評価結果を表1及び表2に示す。
[硬化時間の測定]
 第1材と、第2材中の水との質量比(第1材/第2材中の水(D)の質量比)が1.20となるように第1材と第2材とを採取した後、30秒間ヘラで混合練和した。練和後のペーストをφ10mm、厚さ1mmの型に少し溢れる程度に満たし、カバーガラスを載せ、平板で圧接した。その後、カバーガラスを取り除き、練和開始から4分以内に37℃、95%RH条件下に置いた。練和開始から10分毎に練和物表面にインデンター(質量:100g、針:φ1mm)をゆっくりと下ろし、押し込んだ。このとき、第1材と第2材との混合練和開始から測定して、練和物表面に圧痕が確認できなかった最も短い時間を硬化時間とした(n=1)。得られた評価結果を表1及び表2に示す。硬化時間は、知覚過敏抑制材として使用する場合に象牙細管内に擦りこむように擦り塗りをすることも考慮し、5分以上必要となる。硬化時間としては、硬化物が望む位置に定着するまでリン酸カルシウムセメントを保持する必要があり、実用的な観点から、45分以内にする必要があり、40分以内が好ましい。
[象牙細管封鎖性の評価]
(1)象牙細管封鎖性評価用牛歯の作製
 健全牛歯切歯の頬側中央を#80,#1000研磨紙を用いて回転研磨機により研磨してトリミングし、頬側象牙質が露出した厚さ2mmの象牙質板を作製した。この頬側象牙質表面をさらにラッピングフィルム(#1200,#3000,#8000,住友スリーエム株式会社製)を用いて研磨し、平滑とした。この頬側象牙質部分に歯に対して縦軸方向及び横軸方向に各2mm試験部分の窓を残した。この牛歯をEDTA3%溶液に浸漬させながら、超音波を10分かけ、象牙質窓の脱灰を行った後、水洗することで象牙細管封鎖性評価に用いる牛歯を調製した。上記牛歯の頬側象牙質表面に対して、前記の通り調製した本発明の歯科用硬化性リン酸カルシウムセメントペーストを十分量付着させ、マイクロブラシ(MICROBRUSH INTERNATIONAL製「REGULAR SIZE(2.0mm),MRB400」)を用いて象牙質窓全面に対して30秒間すり込みを行った。その後、象牙質表面のペーストを蒸留水で除去した(n=3)。
(2)SEM観察用サンプルの作製
 上記処理後、牛歯をエアブロー、乾燥し、象牙細管観察用サンプルとした。
(3)SEM観察
 SEM観察にはSU-3500(株式会社日立ハイテクノロジーズ製)を使用した。加速電圧は5kVの条件で、歯科用硬化性リン酸カルシウムセメントペーストの塗布前の象牙質表面とペースト塗布時の牛歯表面の形態観察を行った(n=3)。一つのSEM観察用サンプルにつき任意の3点を観察し、象牙細管封鎖性は次式で表される。
  象牙細管封鎖率(%)=封鎖された象牙細管(本)/観察される象牙細管(本)×100
3つのサンプルの象牙細管封鎖率の平均について、以下の基準で評価した。得られた評価結果を表1及び表2に示す。
 ◎:象牙細管封鎖率が80%以上
 〇:象牙細管封鎖率が40%以上80%未満
 ×:象牙細管封鎖率が40%未満
[保存安定性]
 実施例5について、第2材の調製後、ポリエチレン製ボトルに入れ、速やかに25℃条件下に保管し、24時間後に沈殿の有無を目視で確認した(n=1)。沈殿は確認できず、保存安定性に優れることが確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記の結果からも明らかなように、本発明に係る歯科用硬化性リン酸カルシウムセメント(実施例1~8)は、耐酸性の向上が期待できるフッ素化合物(E)を含み、象牙細管封鎖性を有し、かつ硬化時間を40分以内に調整できることがわかった。また、本発明に係る歯科用硬化性リン酸カルシウムセメント(実施例1~8)は象牙細管封鎖性が40%以上であり、リン酸のアルカリ金属塩粒子が含まれていない歯科用硬化性リン酸カルシウムセメント(比較例5)の象牙細管封鎖率40%未満と比較して、象牙細管封鎖性が高いことがわかった。さらに、第2材に有機酸の塩(G)を添加し、第2材のpHを6.0以上とした本発明に係る実施例5の第2材は、25℃24時間後に沈殿が生成しておらず、優れた保存安定性を有することがわかった。分子量1万以下の有機酸(F)を含む歯科用硬化性リン酸カルシウムセメント(実施例3)は、分子量1万超の有機酸を含む歯科用硬化性リン酸カルシウムセメント(比較例6)と比べて、硬化時間が早くなることがわかった。
 上記のように、特許文献1に相当する比較例6と、実施例3との対比から、本発明に係る歯科用硬化性リン酸カルシウムセメントは、硬化時間を顕著に短縮することができ、さらに、象牙細管封鎖性に優れる点で、有利な効果を奏していた。さらに、本発明に係る歯科用硬化性リン酸カルシウムセメントでは、フルオロアパタイトの形成が見込まれたことから、耐酸性の向上が期待できる。
 特許文献3では、フッ化ナトリウムをリン酸カルシウムセメントの粉末と混合すると、溶液中の遊離の、カルシウム濃度が減少し、相対的にリン酸イオン濃度が増加することなり、リン酸イオン濃度の増加がセメント凝結反応を促進する、すなわち、フッ化ナトリウムを含むことによって硬化時間が短くなるとの示唆がされていた。しかしながら、特許文献3の示唆とは異なり、比較例1~4及び6~7に示されるように、リン酸カルシウムセメントの粉末である第1材と、フッ化ナトリウムを含む第2材とを混合すると、フッ化カルシウムが生成され、系全体においてカルシウム濃度が減少したことによって、硬化反応が遅延し、硬化時間が長くなることが確認された。
 本発明に係る歯科用硬化性リン酸カルシウムセメントは、歯科医療の分野において、象牙質知覚過敏抑制材、歯磨材として好適に用いられる。

Claims (19)

  1.  粉体又は非水系ペーストである第1材と、液体又は水系ペーストである第2材から構成され、
     前記第1材が、リン酸四カルシウム(A)、リン酸のアルカリ金属塩(B)、及び酸性リン酸カルシウム(C)を含み、
     前記第2材が、水(D)を含み、
     前記第1材又は前記第2材の少なくとも一方に、フッ素化合物(E)及び分子量1万以下の有機酸(F)を含む、歯科用硬化性リン酸カルシウムセメント。
  2.  フッ素化合物(E)が、フッ化ナトリウム、フッ化カリウム、モノフルオロリン酸ナトリウム、及びフッ化スズからなる群から選択される少なくとも1種である、請求項1に記載の歯科用硬化性リン酸カルシウムセメント。
  3.  フッ素化合物(E)が、フッ化ナトリウム、又はフッ化カリウムである、請求項1又は2に記載の歯科用硬化性リン酸カルシウムセメント。
  4.  フッ素化合物(E)の換算フッ化物イオン量が、歯科用硬化性リン酸カルシウムセメントの全量において、0.01~3%である、請求項1~3のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  5.  分子量1万以下の有機酸(F)が、2つ以上の酸性基を有する多価有機酸である、請求項1~4のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  6.  分子量1万以下の有機酸(F)が、クエン酸、マロン酸、コハク酸、シュウ酸、リンゴ酸、及び酒石酸からなる群から選択される少なくとも1種である、請求項1~5のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  7.  分子量1万以下の有機酸(F)が、クエン酸である、請求項1~6のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  8.  分子量1万以下の有機酸(F)の含有量が、歯科用硬化性リン酸カルシウムセメントの全量100質量部において、0.005質量部以上である、請求項1~7のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  9.  さらに、前記第1材又は前記第2材の少なくとも一方に、分子量1万以下の有機酸の塩(G)を含む、請求項1~8のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  10.  さらに、前記第1材又は前記第2材の少なくとも一方に、平均粒子径が0.002~20μmである、軽質無水ケイ酸及び金属酸化物からなる群から選択される少なくとも1種の粒子を含む、請求項1~9のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  11.  前記第2材のpHが6.0以上である、請求項1~10のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  12.  前記第1材と前記第2材とを練和した直後のペーストのpHが5.5以上である、請求項1~11のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  13.  前記第2材に、フッ素化合物(E)及び分子量1万以下の有機酸(F)を含む、請求項1~12のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  14.  前記第1材が粉体であり、前記第2材が液体である、請求項1~13のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  15.  リン酸四カルシウム(A)が粒子の形態であり、平均粒子径が0.5~40μmである、請求項1~14のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  16.  リン酸のアルカリ金属塩(B)が粒子の形態であり、平均粒子径が0.5~20μmである、請求項1~15のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  17.  酸性リン酸カルシウム(C)が粒子の形態であり、平均粒子径が0.1~7μmである、請求項1~16のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメント。
  18.  請求項1~17のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメントを含む、歯磨材。
  19.  請求項1~17のいずれか1項に記載の歯科用硬化性リン酸カルシウムセメントを含む、象牙質知覚過敏抑制材。
PCT/JP2021/048984 2020-12-28 2021-12-28 歯科用硬化性リン酸カルシウムセメント WO2022145480A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21915338.4A EP4268794A1 (en) 2020-12-28 2021-12-28 Curable calcium phosphate dental cement
JP2022573123A JPWO2022145480A1 (ja) 2020-12-28 2021-12-28
US18/269,981 US20240065945A1 (en) 2020-12-28 2021-12-28 Curable calcium phosphate dental cement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-219718 2020-12-28
JP2020219718 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145480A1 true WO2022145480A1 (ja) 2022-07-07

Family

ID=82260823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048984 WO2022145480A1 (ja) 2020-12-28 2021-12-28 歯科用硬化性リン酸カルシウムセメント

Country Status (4)

Country Link
US (1) US20240065945A1 (ja)
EP (1) EP4268794A1 (ja)
JP (1) JPWO2022145480A1 (ja)
WO (1) WO2022145480A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283348A (ja) * 1985-10-08 1987-04-16 株式会社アドバンス 医療用硬化性組成物
JP2007522113A (ja) 2004-01-16 2007-08-09 エイディーエイ ファウンデーション 急硬性リン酸カルシウムセメント組成物
WO2010113800A1 (ja) 2009-03-30 2010-10-07 クラレメディカル株式会社 象牙質石灰化剤及びその製造方法
US8557038B2 (en) 2009-04-22 2013-10-15 American Dental Association Foundation Dual-phase calcium phosphate cement composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283348A (ja) * 1985-10-08 1987-04-16 株式会社アドバンス 医療用硬化性組成物
JP2007522113A (ja) 2004-01-16 2007-08-09 エイディーエイ ファウンデーション 急硬性リン酸カルシウムセメント組成物
WO2010113800A1 (ja) 2009-03-30 2010-10-07 クラレメディカル株式会社 象牙質石灰化剤及びその製造方法
US8557038B2 (en) 2009-04-22 2013-10-15 American Dental Association Foundation Dual-phase calcium phosphate cement composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAWAMURA TAKENORI: "Improving the setting properties of calcium phosphate cements", NAGOYA INSTITUTE OF TECHNOLOGY REPOSITORY SYSTEM, 1 January 2016 (2016-01-01), XP055948029, DOI: 10.20602/00003239 *
WANG XIUPENG, ET AL.: "Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material", J BIOMED MATER RES B APPL BIOMATER., vol. 78B, no. 2, 16 December 2005 (2005-12-16), pages 259 - 264, XP055948028, DOI: 10.1002/jbm.b.30481 *

Also Published As

Publication number Publication date
EP4268794A1 (en) 2023-11-01
JPWO2022145480A1 (ja) 2022-07-07
US20240065945A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
JP5838524B2 (ja) 象牙質知覚過敏抑制材及びその製造方法
JP5816352B2 (ja) 象牙質知覚過敏抑制剤の製造方法
JP5501346B2 (ja) 歯牙石灰化剤の製造方法
EP3031442B1 (en) Dentinal tubule sealing material
EP3053570B1 (en) One-component-type dentinal tubule sealant
WO2022145480A1 (ja) 歯科用硬化性リン酸カルシウムセメント
JP6550395B2 (ja) 1材型の象牙細管封鎖材
JP6316296B2 (ja) 生体硬組織修復用硬化性リン酸カルシウム組成物並びに骨修復材料及び各種歯科材料
JP2012097075A (ja) 歯牙石灰化剤及びその製造方法
JP5834355B2 (ja) 知覚過敏抑制剤及びその製造方法
JP6114962B2 (ja) 歯科修復用キット
JP5665465B2 (ja) 象牙細管封鎖剤
JP6035608B2 (ja) 歯牙石灰化剤及びその製造方法
JP6083742B2 (ja) 象牙細管封鎖材キット
JP2012077024A (ja) 歯牙石灰化剤及びその製造方法
JP2024005110A (ja) 歯科用硬化性リン酸カルシウムセメント
JP2025059714A (ja) 高いコラーゲン分解抑制率を有する歯科用硬化性組成物
JP2023067089A (ja) 歯科用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573123

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18269981

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021915338

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915338

Country of ref document: EP

Effective date: 20230728