[go: up one dir, main page]

WO2022144955A1 - Heat dissipation substrate and method for manufacturing same - Google Patents

Heat dissipation substrate and method for manufacturing same Download PDF

Info

Publication number
WO2022144955A1
WO2022144955A1 PCT/JP2020/049094 JP2020049094W WO2022144955A1 WO 2022144955 A1 WO2022144955 A1 WO 2022144955A1 JP 2020049094 W JP2020049094 W JP 2020049094W WO 2022144955 A1 WO2022144955 A1 WO 2022144955A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
heat
heating element
conductive pattern
heat radiating
Prior art date
Application number
PCT/JP2020/049094
Other languages
French (fr)
Japanese (ja)
Inventor
雅明 杉本
英明 横山
雄一 老田
清 藤巻
Original Assignee
エレファンテック株式会社
タカハタプレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エレファンテック株式会社, タカハタプレシジョン株式会社 filed Critical エレファンテック株式会社
Priority to PCT/JP2020/049094 priority Critical patent/WO2022144955A1/en
Priority to JP2021531260A priority patent/JP6963269B1/en
Publication of WO2022144955A1 publication Critical patent/WO2022144955A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a heat dissipation substrate and a method for manufacturing the same.
  • a heat spreader that is provided through the flexible wiring board and mounts a light emitting diode die is provided, and the connection part where the die and the flexible wiring board are connected.
  • Patent Document 1 A light emitting diode lighting module in which a heat spreader is extended to the extent is known (Patent Document 1).
  • a base substrate having a first surface and a second surface, a conductive path formed on the first surface, a through hole penetrating from the first surface to the second surface, and insertion into the through hole.
  • a base substrate having a first surface and a second surface, a conductive path formed on the first surface, a through hole penetrating from the first surface to the second surface, and insertion into the through hole.
  • the present invention provides a three-dimensional heat-dissipating substrate that has stable adhesion and can be made thinner as a whole while reducing costs, and a method for manufacturing the same.
  • the heat dissipation substrate according to claim 1 is used.
  • a base material made of resin and having a conductive pattern arranged on it,
  • a heating element arranged through the base material and A heating element that releases heat transferred from the heating element to the outside,
  • a resin body that covers one surface of the base material and integrally fixes the heat radiating element to the base material so as to be in close contact with the heating element.
  • a bonding element that electrically joins the heating element and the conductive pattern. It is characterized by that.
  • the invention according to claim 2 is the heat radiation substrate according to claim 1.
  • the radiator is arranged on a surface of the substrate opposite to the surface on which the conductive pattern is arranged. It is characterized by that.
  • the invention according to claim 3 is the heat dissipation substrate according to claim 1.
  • the radiator is arranged on the surface of the substrate on which the conductive pattern is arranged. It is characterized by that.
  • the invention according to claim 4 is the heat radiation substrate according to claim 1.
  • the radiator is arranged on the side surface of the resin body. It is characterized by that.
  • the heat dissipation substrate according to claim 5 is used.
  • a base material made of resin and having a conductive pattern arranged on it,
  • a radiator arranged through the base material and
  • a resin body that covers one surface of the base material and integrally fixes the heat radiating body to the base material so that one side of the heat radiating body is exposed from the base material.
  • a heating element that is in close contact with one surface of the heat radiating body and is electrically bonded to the conductive pattern. It is characterized by that.
  • the invention according to claim 6 is the heat dissipation substrate according to any one of claims 1 to 5.
  • the substrate is a deformable film and is shaped into a three-dimensional shape. It is characterized by that.
  • the invention according to claim 7 is the heat dissipation substrate according to any one of claims 1 to 6.
  • the resin body has a light transmissive property. It is characterized by that.
  • the invention according to claim 8 is the heat dissipation substrate according to any one of claims 1 to 7.
  • a heat conductive adhesive layer is arranged between one surface of the base material and the radiator. It is characterized by that.
  • the invention according to claim 9 is the heat dissipation substrate according to any one of claims 1 to 8.
  • a binder layer is provided between one surface of the base material and the resin body. It is characterized by that.
  • the invention according to claim 10 is the heat dissipation substrate according to any one of claims 1 to 9.
  • a thermally conductive adhesive layer is provided between the heating element and the radiator. It is characterized by that.
  • the invention according to claim 11 is the heat dissipation substrate according to any one of claims 1 to 10.
  • the radiator is made of a heat conductive resin having a thermal conductivity of 1 W / m ⁇ K or more. It is characterized by that.
  • the method for manufacturing a heat dissipation substrate according to claim 12 is described.
  • a method for manufacturing a heat-dissipating substrate comprising the heating element and a joining body for electrically joining the conductive pattern.
  • the method for manufacturing a heat dissipation substrate according to claim 13 is The base material on which the conductive pattern is placed and A radiator arranged through the base material and A resin body that covers one surface of the base material and integrally fixes the heat radiating body to the base material so that one side of the heat radiating body is exposed from the base material.
  • a method for manufacturing a heat-dissipating substrate comprising a heating element that is in close contact with one surface of the heat-dissipating body and is electrically bonded to the conductive pattern.
  • the invention according to claim 14 is the heat dissipation substrate according to any one of claims 1 to 13.
  • the heating element includes any of a light emitting element, a semiconductor device, a capacitor, and a resistance chip. It is characterized by that.
  • the radiator can be mounted on the side opposite to the heating element with high positional accuracy to improve the adhesion and reduce the overall thickness.
  • the heating element and the heat radiating element can be mounted on the same side as the conductive pattern with high positional accuracy, and the thickness can be reduced while suppressing the cost.
  • the number of parts and the number of assembly steps can be reduced to reduce the cost, the position accuracy and the adhesion of the parts can be improved, and the whole can be made thinner.
  • the heating element and the heat radiating element can be mounted on the deformable base material on which the conductive pattern is formed with high position accuracy, and the thickness can be reduced while suppressing the cost.
  • the number of parts can be reduced by integrating other parts with the resin body.
  • the radiator can be stably fixed to the substrate and the heat conduction from the radiator to the substrate can be enhanced.
  • the adhesive strength between the base material and the resin body can be increased.
  • heat conduction from the heating element to the radiator can be enhanced.
  • the cost of the radiator can be reduced.
  • the number of parts and the number of assembly steps can be reduced to reduce the cost, the adhesion can be improved, and the whole can be made thinner.
  • the number of parts and the number of assembly steps can be reduced to reduce the cost, the position accuracy and the adhesion of the parts can be improved, and the whole can be made thinner.
  • heat from various mounted heating elements and conductive patterns can be dissipated.
  • FIG. 1A is a perspective view showing the heat radiating substrate according to the first embodiment with a viewpoint on the heating element side
  • FIG. 1B is a schematic cross-sectional view showing an example of the heat radiating substrate according to the first embodiment.
  • FIG. 2A is a schematic plan view showing an example of a heating element
  • FIG. 2B is a schematic cross-sectional view.
  • FIG. 3A is a perspective view showing the heat radiating substrate according to the modified example 1 with a viewpoint on the heating element side
  • FIG. 3B is a schematic cross-sectional view showing an example of the heat radiating substrate according to the modified example 1.
  • FIG. 4A is a perspective view showing the heat radiating substrate according to the modified example 2 with a viewpoint on the heating element side
  • FIG. 4B is a schematic cross-sectional view showing an example of the heat radiating substrate according to the modified example 2.
  • FIG. 5A is a perspective view showing the heat radiating substrate according to the modified example 3 with a viewpoint on the heating element side
  • FIG. 5B is a schematic cross-sectional view showing an example of the heat radiating substrate according to the modified example 3.
  • It is sectional drawing which shows an example of the heat dissipation substrate which concerns on modification 4.
  • It is a flowchart which shows an example of the outline procedure of the manufacturing method of a heat dissipation board. It is sectional drawing which shows the state which set the base material, the heating element and the heat radiating body which arranged the conductive pattern in the mold which fills the resin body.
  • FIG. 11A is a perspective view showing the heat radiating substrate according to the second embodiment with a viewpoint on the heating element side
  • FIG. 11B is a schematic cross-sectional view showing an example of the heat radiating substrate according to the second embodiment.
  • FIG. 1A is a perspective view showing the heat radiating board 1 according to the present embodiment from a viewpoint on the heating element side
  • FIG. 1B is a schematic cross-sectional view showing an example of the heat radiating board 1 according to the present embodiment
  • FIG. 2A is a schematic plan view showing an example of the heating element 4
  • FIG. 2B is a schematic cross-sectional view.
  • the heat radiating substrate 1 is transmitted from a base material 2 made of resin and having a conductive pattern 3 arranged, a heating element 4 arranged so as to penetrate the base material 2, and a heating element 4.
  • a heating element 5 that releases heat to the outside, a resin body 6 that covers one surface of the base material 2 and integrally fixes the heat radiating element 5 to the heating element 4 so as to be in close contact with the heating element 4, and a heating element 4
  • a joining body 7 for electrically joining the conductive pattern 3 are provided.
  • the base material 2 on which the conductive pattern 3 used in the present embodiment is formed is preferably a base material having insulating properties and adhesiveness to the resin body 6 described later, and is a base material made of a resin (hereinafter referred to as a resin group). Material) can be used.
  • the resin base material also includes the following deformable film base material.
  • polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), nylon 6-10, polyamide (PA) such as nylon 46, polyether ether ketone (PEEK), and acrylonitrile butadiene styrene ( Examples include thermoplastic resins such as ABS), polymethyl methacrylate (PMMA), and polyvinyl chloride.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyamide
  • PEEK polyether ether ketone
  • PEEK polyether ether ketone
  • acrylonitrile butadiene styrene examples include thermoplastic resins such as ABS), polymethyl methacrylate (PMMA), and polyvinyl chloride.
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PA polyamide
  • PEEK polyether ether ketone
  • PEEK polyether ether ketone
  • the base material 2 may be a deformable film base material, or may be a deformable film substrate by arranging a conductive pattern 3 on the film base material.
  • the "deformable film substrate” can be deformed after the conductive pattern 3 is placed, that is, from a substantially flat two-dimensional shape to a substantially three-dimensional shape by thermoforming, vacuum forming, pneumatic forming, or the like.
  • the melting point Tm when the melting point Tm is present, it is preferably 150 ° C. or higher, and more preferably 200 ° C. or higher.
  • the range of the glass transition point Tg is preferably 20 ° C to 250 ° C, more preferably 50 ° C to 200 ° C, and most preferably 70 ° C to 150 ° C. If the glass transition point Tg is too low, the strain of the base material 2 may increase when the conductive pattern 3 is formed.
  • the thickness (mm) of the base material 2 is not particularly limited, but the resin base material is preferably 0.01 to 3 mm, more preferably 0.02 to 1 mm, and 0.03 to 0.03 to be in terms of balance between handleability and thinning. 0.1 mm is more preferable. In particular, for the film substrate, 0.005 to 0.25 mm is preferable, 0.01 to 0.2 mm is more preferable, and 0.05 to 0.188 mm is most preferable. If the thickness of the base material 2 is too thin, the strength may be insufficient and the strain of the base material 2 may be increased during the plating process of the conductive pattern 3.
  • a surface treatment to the surface of the base material 2 in order to uniformly apply the catalyst ink such as metal nanoparticles.
  • the surface treatment for example, corona treatment, plasma treatment, solvent treatment, and primer treatment can be used.
  • a base layer (not shown) made of a catalyst such as metal nanoparticles that triggers the growth of metal plating is first formed in a predetermined pattern.
  • the base layer is formed by applying a catalyst ink such as metal nanoparticles on the base material 2 and then drying and firing.
  • the thickness ( ⁇ m) of the base layer is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 5 ⁇ m, and most preferably 0.5 to 2 ⁇ m. If the base layer is too thin, the strength of the base layer may decrease. Further, if the base layer is too thick, the metal nanoparticles are more expensive than ordinary metals, which may increase the manufacturing cost.
  • Gold, silver, copper, palladium, nickel and the like are used as the catalyst material, and gold, silver and copper are preferable from the viewpoint of conductivity, and copper, which is cheaper than gold and silver, is most preferable.
  • the particle size (nm) of the catalyst is preferably 1 to 500 nm, more preferably 10 to 100 nm. If the particle size is too small, the reactivity of the particles becomes high, which may adversely affect the storage stability and stability of the ink. If the particle size is too large, it becomes difficult to form a thin film uniformly, and there is a risk that ink particles are likely to precipitate.
  • the conductive pattern 3 is formed on the base layer by electrolytic plating or electroless plating.
  • the plating metal copper, nickel, tin, silver, gold and the like can be used, but copper is most preferable from the viewpoint of extensibility, conductivity and price.
  • the thickness ( ⁇ m) of the plating layer is preferably 0.03 to 100 ⁇ m, more preferably 1 to 35 ⁇ m, and most preferably 3 to 18 ⁇ m. If the plating layer is too thin, the mechanical strength may be insufficient and the conductivity may not be sufficiently obtained for practical use. If the plating layer is too thick, the time required for plating becomes long, and the manufacturing cost may increase.
  • the heating element to be radiated is not particularly limited, but is, for example, an LED as a light emitting element, a semiconductor device, a display, an electric lamp, an automobile power module and an industrial power module, and a capacitor mounted on the radiating substrate 1.
  • a resistance chip or the like can be mentioned.
  • a power LED with a heat dissipation base material (hereinafter, simply referred to as LED) 4A is mounted.
  • the LED 4A is exposed by a metal base 41 which is a metal substrate, an enclosure 42 formed on the surface of the metal base 41 so as to have an opening in the center, and an opening of the enclosure 42.
  • a plurality of LED chips 43 mounted on the surface of the metal base 41, formed on the surface of the metal base 41, one end side 44a is electrically bonded to the conductive pattern 3, and the other end side 44b is the LED chip 43. It includes a metal wiring 44 electrically joined by a wire 45, and a sealing resin 48 covering an opening surrounded by the enclosure 42.
  • the radiator 5 is arranged on one surface 2a side opposite to the surface on which the conductive pattern 3 of the base material 2 is arranged.
  • Examples of the radiator 5 include a heat sink using aluminum or copper fins, a plate or the like, an aluminum or copper block connected to a heat pipe, and an aluminum or copper block in which a cooling liquid is circulated by a pump inside. , And a Pelche element and an aluminum or copper block equipped with the element.
  • the radiator 5 has a base 51 and a base 51 that come into contact with the metal base 41 of the LED 4A as the heating element 4 and receive the heat generated by the LED 4A by heat conduction.
  • It is a metal heat sink made of aluminum, copper, etc., which is composed of heat radiating fins 42 erected in a strip shape.
  • the radiator 5 may be a heat sink made of a heat conductive resin having a thermal conductivity of 1 (W / m ⁇ K) or more.
  • a heat conductive resin for example, a highly heat conductive material made of a carbon-based material in the form of particles or a filler is used as a predetermined base resin, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycarbonate (PC).
  • thermoplastic elastomer TPE
  • PA Polypropylene
  • PP polypropylene
  • PPS polyphenylene sulfide
  • ABS acrylonitrile butadiene styrene
  • LCP liquid crystal polymer
  • TPE thermoplastic elastomer
  • These thermally conductive resins have a thermal conductivity of approximately 1 W / m ⁇ K to 10 W / m ⁇ K, which is lower than that of metal materials such as aluminum and copper, but the radiator 5 is lower than that of metal. It can be costly.
  • a heat conductive adhesive layer 8 is provided between the heating element 4 and the radiator 5. When the heating element 4 and the heating element 5 come into contact with each other via the heat conductive adhesive layer 8, the heat from the heating element 4 can be efficiently conducted to the heating element 5.
  • the high thermal conductive adhesive forming the thermally conductive adhesive layer 8 is based on epoxy resin, polyimide resin, silicone resin, acrylic resin, phenol resin, bismaleimide triazine resin, various engineering plastics, etc., and silver powder, carbon, copper. , Aluminum, iron, ceramic, and other materials with high thermal conductivity mixed with powder or fiber can be used.
  • the heat conductive adhesive layer 8 is preferably 1 W / m ⁇ K or more. This makes it possible to further enhance the heat conduction from the heating element 4 to the radiator 5.
  • FIG. 3A is a perspective view showing the heat radiating substrate 1 according to the modified example 1 with a viewpoint on the heating element side
  • FIG. 3B is a schematic cross-sectional view showing an example of the heat radiating substrate 1 according to the modified example 1.
  • the radiator 5A may be arranged on the one side 2b side where the conductive pattern 3 of the base material 2 is arranged.
  • the heat radiating body 5A has a base body 51 that comes into contact with the metal base 41 of the LED 4A as a heat generating body and receives heat generated by the LED 4A by heat conduction, and a conductive pattern 3 of the base material 2 extending laterally from the base body 51.
  • It is a metal heat sink made of aluminum, copper, etc., which is composed of heat radiating fins 52A erected in a strip shape so as to project upward from one surface 2b on which the above-mentioned is arranged.
  • the heat radiating element 5A is a resin body 6 that covers one surface 2a of the base material 2 and is integrally fixed to the base material 2 so as to be in close contact with the heating element 4. In this way, by mounting the heating element 4 and the heat radiating element 5A on the same side as the conductive pattern 3, the heat radiating substrate 1 can be made thinner while suppressing the cost.
  • FIG. 4A is a perspective view showing the heat radiating substrate 1 according to the modified example 2 with a viewpoint on the heating element side
  • FIG. 4B is a schematic cross-sectional view showing an example of the heat radiating substrate 1 according to the modified example 2.
  • the heat radiating body 5B may be arranged so that the heat radiating fins 52B project from the side portion 1a of the heat radiating substrate 1.
  • the heat radiating body 5B comes into contact with the metal base 41 of the LED 4A as a heating element and receives the heat generated by the LED 4A by heat conduction, and the heat radiating body 5B extends laterally from the base body 51 and protrudes from the end surface 6a of the resin body 6.
  • It is a metal heat sink made of aluminum, copper, or the like, which is composed of heat radiating fins 52B formed in a strip shape so as to be used.
  • the heat radiating element 5B is a resin body 6 that covers one surface 2a of the base material 2 and is integrally fixed to the base material 2 so as to be in close contact with the heating element 4 via the heat conductive adhesive layer 8. Further, the heat radiating fins 52B, which are the portions of the heat radiating body 5B that come into contact with one surface 2a of the base material 2, are also integrally fixed to the base material 2 via the heat conductive adhesive layer 8. In this way, by mounting the heat radiating body 5B so that the heat radiating fins 52B project from the side portion 1a of the heat radiating board 1, the entire heat radiating board 1 can be made thinner while suppressing the cost.
  • the resin body 6 covers one surface 2a of the base material 2 and integrally fixes the heat radiating body 5 to the base material 2 so as to be in close contact with the heating element 4. Specifically, as shown in FIG. 1B, a hook portion 61 that fits with a flange portion 51a formed so as to project in a direction intersecting the direction of contact with the metal base 41 of the heating element 4 of the base body 51 of the radiator body 5. Is formed so as to cover one side 2a of the base material 2 as a whole.
  • the resin body 6 is made of a thermoplastic resin made of a resin material that can be secondarily molded with respect to the base material 2. Specifically, polycarbonate (PC), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polyamide (PA), acrylic nitrile butadiene styrene (ABS), polyethylene (PE), polypropylene (PP), modified polyphenylene ether ( Examples thereof include thermoplastic resins selected from the group consisting of m-PPE), modified polyphenylene oxide (m-PPO), cyclic olefin copolymers (COC), and cycloolefin polymers (COP).
  • the resin body 6 has mechanical strength and heat resistance, and PET and PC are preferable from the viewpoint of adhesiveness to the base material 2.
  • a binder layer AD on one surface 2a of the base material 2 so that the base material 2 and the resin body 6 are firmly adhered to each other.
  • a binder ink containing a resin compatible with the materials of the base material 2 and the resin body 6 is used.
  • the base material 2 is a PET resin film
  • the secondary molded resin body 6 is selected from the group consisting of PC, PET, PMMA, PA, ABS, PE, PP, m-PPE, m-PPO, COC, and COP.
  • the resin having high compatibility with each resin material is composed of acrylic resin, polyamide resin, polyester resin, polycarbonate resin, polyolefin resin, acrylonitrile butadiene styrene resin, polyurethane resin and the like. It can also be selected from the group and used.
  • the thickness of the binder layer AD is preferably 0.5 to 50 ⁇ m.
  • corona treatment, plasma treatment, solvent treatment, and primer treatment may be performed. As a result, the adhesive strength between the base material 2 and the resin body 6 can be increased.
  • FIG. 5A is a perspective view showing the heat radiating substrate 1 according to the modified example 3 with a viewpoint on the heating element side
  • FIG. 5B is a schematic cross-sectional view showing an example of the heat radiating substrate 1 according to the modified example 3.
  • the resin body 6 may be made of a thermoplastic resin made of a light-transmitting thermoplastic resin material.
  • the LED 4A as a heating element is arranged so that the light emitting surface faces sideways with respect to the base material 2, and the LED 4A receives the light emitted by the LED 4A and emits the light to the outside.
  • the body 6A may be formed integrally with the resin body 6.
  • the lens body 6 that guides the light emitted by the LED 4A to the outside is integrated with the resin body 6 that is integrally fixed to the base material 2 so that the heat radiating body 5 is in close contact with the LED 4A as a heating element.
  • FIG. 5B as the heat radiating body 5, an example in which the heat radiating fins 52B are arranged so as to project from the side portion 1a of the heat radiating board 1 is shown, but as the heat radiating body 5, the heat radiating board 1 is used.
  • the arrangement of the heat radiating fins may be changed depending on the embodiment.
  • FIG. 6 is a schematic cross-sectional view showing an example of the heat dissipation substrate 1 according to the modified example 4.
  • the heat radiating substrate 1 is composed of a base material 2 and a resin body 6 in which a heat radiating body 5 that discharges heat transmitted from the LED 4A as a heating element and the LED 4A to the outside is three-dimensionally shaped. It is connected by a bent portion 1b.
  • the base material 2 is a film made of a thermoplastic resin that can be shaped by thermoforming or the like
  • the base material 2 is shaped into a three-dimensional shape, and the resin body 6 covers one side 2a of the base material 2 and at the same time.
  • Examples of the bonded body 7 include a conductive wire rod 7A. As shown in FIG. 2B, the conductive wire 7A electrically joins one end 44a of the metal wiring 44 of the LED chip 43 as a heating element and the conductive pattern 3 arranged on the base material 2 by wire bonding.
  • a metal wire of gold, copper, silver, platinum, aluminum or an alloy thereof can be used. In particular, a gold wire having excellent thermal resistance is preferable.
  • FIG. 7 is a flowchart showing an example of a schematic procedure of the manufacturing method of the heat dissipation board 1, and FIG. Is a schematic cross-sectional view showing a state in which is set in a mold filled with a resin body 6, and FIG. 9 is a diagram showing each step from the preparation step of the base material 2 to the electrical joining of the heating element 4 and the conductive pattern 3.
  • the base material 2 on which the conductive pattern 3 is arranged, the plurality of heat generating bodies 4 and the heat radiating body 5 are set in a mold filled with the resin body 6, and the connecting portion 2a of the base material 2 has a three-dimensional shape. It is sectional drawing which shows the shaped state.
  • the heat radiating substrate 1 includes a base material 2 preparation step S11, a wiring plating step S12 for forming a conductive pattern 3 on the base material 2, a base material 2, a heating element 4, and a heat radiating body.
  • a resin body 6 is secondary, in which 5 is positioned in a mold for secondary molding, one surface of the base material 2 is covered, and the heat radiating body 5 is integrally fixed to the base material 2 so as to be in close contact with the heat generating body 4. It is manufactured through a resin filling step S13 for molding and an electrical joining step S14 for electrically joining the conductive pattern 3 and the heating element 4 with the joining body 7.
  • Base material preparation step S11 In the base material preparation step S11, first, the base body 51 of the radiator 5 is formed on the substantially flat film-like base material 2 formed into a predetermined shape and size, and the conductive pattern 3 of the base material 2 is formed. A predetermined through hole 2c is formed so as to be exposed on the formed side (see FIG. 9A). Further, in the heat radiating substrate 1 according to the modification 1 shown in FIG. 3, a predetermined through hole (not shown) is formed so that the heat radiating fins 52A penetrate and are exposed.
  • a base layer made of catalyst particles such as metal nanoparticles that triggers the growth of metal plating is formed on the base material 2 in a predetermined pattern.
  • the base material 2 is preferably subjected to surface treatment such as corona treatment, plasma treatment, solvent treatment, primer treatment, etc. in order to uniformly apply the catalyst ink composed of catalyst particles such as metal nanoparticles.
  • an inkjet printing method As a method of applying a catalyst ink composed of catalyst particles such as metal nanoparticles on the base material 2, an inkjet printing method, a silk screen printing method, a gravure printing method, an offset printing method, a flexo printing method, a roller coater method, and a brush coating method are used. Methods, spray method, knife jet coater method, pad printing method, gravure offset printing method, die coater method, bar coater method, spin coater method, comma coater method, impregnation coater method, dispenser method, metal mask method, etc. In this embodiment, an inkjet printing method is used.
  • the solvent is volatilized to leave only metal nanoparticles. Then, the solvent is removed (drying) and the metal nanoparticles are sintered (baking).
  • the firing temperature is preferably 100 ° C to 300 ° C, more preferably 150 ° C to 200 ° C. If the firing temperature is too low, the sintering of the metal nanoparticles will be insufficient, and components other than the metal nanoparticles will remain, so that adhesion may not be obtained. Further, if the firing temperature is too high, the base material 2 may be deteriorated or distorted.
  • plating process for wiring S12 By performing electrolytic plating or electroless plating on the base layer formed on the base material 2, plated metal is deposited on the surface and inside of the base layer, and the conductive pattern 3 is arranged (see FIG. 9B).
  • the plating method is the same as that of known plating solutions and plating treatments, and specific examples thereof include electrolytic copper plating and electrolytic copper plating.
  • (Resin filling step S13) In the resin filling step S13, first, in the wiring plating step S12, depending on the combination of the resin material of the base material 2 and the resin body 6 on one surface 2a on the side opposite to the surface on which the conductive pattern 3 of the base material 2 is arranged. A binder ink forming the binder layer AD is applied (see FIG. 9C).
  • the binder ink contains an adhesive resin and is applied by screen printing, inkjet printing, spray coating, brush painting or the like to improve the adhesiveness between the base material 2 and the resin body 6 to be secondarily molded.
  • the fixed-side mold KA in a state where the base material 2, the heating element 4 and the heating element 5 on which the conductive pattern 3 is arranged are positioned and set on the secondary mold forming die,
  • the movable side type KB is closed and the cavity CA is filled with resin.
  • one surface 41a of the metal base 41 is adhered to the base body 51 of the heat radiating body 5 via the heat conductive adhesive layer 8, and the heat radiating body 5 is fixed to the movable side type KB.
  • a resin body 6 is formed which covers one surface 2b of the base material 2 and integrally fixes the heat radiating element 5 to the base material 2 so as to be in close contact with the heating element 4 (see FIG. 9D).
  • a plurality of base materials 2 on which a conductive pattern 3 is arranged are arranged.
  • the heating element 4 and the heating element 5 of the base material 2 are arranged by closing the fixed side mold KA and the movable side mold KB in a state where the LED 4A and the heating element 5 as the heating element are positioned in the mold for secondary molding.
  • the connecting portion 2a connecting the above regions is shaped into a three-dimensional shape. Then, by filling the cavity CA with the resin, the base material 2 bent in the thickness direction and the resin filled in the cavity CA form a bent portion 1b (see FIG. 6) having a three-dimensional shape.
  • Electrode joining step S14 In the electrical bonding step S14, the conductive pattern 3 and the one end portion 44a (see FIG. 2B) of the metal wiring 44 of the LED chip 43 are electrically connected by a wire bonding method using ultrasonic waves with the conductive wire rod 7A as the bonding body 7. And mechanically join (see FIG. 9E).
  • a gold wire, an aluminum wire, or the like can be used as the conductive wire, but by using an aluminum wire containing aluminum as a main component, the base material 2 is melted or deformed by the heat at the time of wire bonding. It can be suppressed.
  • the method for manufacturing the heat radiating substrate 1 according to the present embodiment it is possible to reduce the number of parts and the number of assembly steps, reduce the cost, improve the adhesion, and reduce the overall thickness.
  • FIG. 11A is a perspective view showing the heat radiating substrate 1A according to the present embodiment with a viewpoint on the heating element side
  • FIG. 11B is a schematic cross-sectional view showing an example of the heat radiating substrate 1A.
  • the heating element 4 is post-mounted so as to be in close contact with the base body 51 which is one surface of the radiating element 5 arranged so as to penetrate the base material 2 and have a conductive pattern. It is different from the heat radiating substrate 1 according to the first embodiment in which the heating element 4 is mounted first in that it is electrically joined to the heating element 3. Therefore, the components common to the heat radiating substrate 1 according to the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the heat radiating board 1A includes a base material 2 made of resin and having a conductive pattern 3 arranged therein, and a heat radiating body 5 arranged so as to penetrate the base material 2.
  • the resin body 6 that covers one surface of the base material 2 and integrally fixes the heat radiating body 5 to the base material 2 so that one side of the heat radiating body 5 is exposed from the base material 2 and the resin body 6 are in close contact with one side of the heat radiating body 5. It is configured to include a heat generating body 4 electrically bonded to the conductive pattern 3.
  • the LED 4B includes a case body 41B having a reflection cavity, a chip mounting portion 42B that supports the LED chip 43, a metal lead frame 44B, and an LED chip 43 mounted on the surface of the chip mounting portion 42B.
  • a heat transfer portion 45B that contacts the chip mounting portion 42B and receives heat of the LED chip 43 by heat conduction, an external terminal 46 provided at one end of the metal lead frame 44B, and a dome-shaped seal that covers the LED chip 43. It is configured to include a stop body 47.
  • the heat radiating body 5 includes a base body 51 that comes into contact with the heat transfer portion 45B of the LED 4B as a heat generating body and receives heat generated by the LED 4B by heat conduction, and a heat radiating fin 42 erected in a strip shape on the base body 51.
  • the radiator 5 may be a heat sink made of a heat conductive resin having a thermal conductivity of 1 (W / m ⁇ K) or more.
  • a heat conductive adhesive layer 8 is provided between the heat transfer portion 45B of the LED 4B and the base body 51 of the radiator body 5. When the heating element 4 and the heating element 5 come into contact with each other via the heat conductive adhesive layer 8, the heat from the heating element 4 can be efficiently conducted to the heating element 5. Further, a heat conductive adhesive layer 8 is also provided between the base material 2 and the heat radiating body 5, so that the heat of the base material 2 is efficiently conducted to the heat radiating body 5. In particular, the heat of the conductive pattern 3 arranged on the base material 2 is conducted to the radiator body 5 and radiated to the outside.
  • solder 7B can be mentioned as a joint body that electrically joins the external terminal 46 of the LED 4B as the heating element 4 to be mounted later and the conductive pattern 3.
  • the solder 7B is preferably a low-temperature solder having a melting point lower than the softening point of the base material 2, and is, for example, an alloy of tin (Sn) and bismuth (Bi) (SnBi), tin (Sn) and bismuth (Bi).
  • PET poly
  • the substrate 2 does not melt or otherwise deform, while the solder paste melts and chemically and physically with the conductive pattern 3. It will be in a state where it can be joined. Then, the solder is solidified, and the external terminal 46 is electrically bonded to the conductive pattern 3 via the solder.
  • solder 7B is not limited to low-temperature solder, and may be ordinary solder because it is non-contact and does not give a load to the base material 2 as compared with trowel soldering.
  • FIG. 12 is a flowchart showing an example of a schematic procedure of the manufacturing method of the heat dissipation board 1A according to the present embodiment, and FIG. 13 shows a through hole 2c in which a through hole 2c is formed and a conductive pattern 3 is arranged.
  • FIG. 14 shows electricity of the heating element 4 and the conductive pattern 3 from the preparation process of the base material 2. It is a figure which shows each process until joining with each other.
  • the heat radiating substrate 1 is secondary to the preparation step S21 of the base material 2, the plating step S22 for wiring for forming the conductive pattern 3 on the base material 2, and the base material 2 and the heat radiating body 5.
  • a resin body 6 Positioning on a mold for molding, a resin body 6 is formed which covers one surface of the base material 2 and integrally fixes the heat radiating body 5 to the base material 2 so that one side of the heat radiating body 5 is exposed from the base material 2.
  • the resin filling step S23 for secondary molding the resin, the heating element bonding step S24 for adhering the radiator 5 and the heating element 4 in close contact with each other, and the conductive pattern 3 and the heating element 4 are electrically connected by the bonding body 7. It is manufactured through an electrical joining step S25 for joining.
  • Base material preparation step S21 In the base material preparation step S21, first, a part of the base body 51 of the radiator body 5 is conductive to the base material 2 on a substantially flat film-like base material 2 formed into a predetermined shape and size. A predetermined through hole 2c is formed so as to be exposed on the side where the pattern 3 is formed (see FIG. 14A).
  • a base layer made of catalyst particles such as metal nanoparticles that triggers the growth of metal plating is formed on the base material 2 in a predetermined pattern.
  • the base material 2 is preferably subjected to surface treatment such as corona treatment, plasma treatment, solvent treatment, primer treatment, etc. in order to uniformly apply the catalyst ink composed of catalyst particles such as metal nanoparticles.
  • plating process for wiring S22 By performing electrolytic plating or electroless plating on the base layer formed on the base material 2, plated metal is deposited on the surface and inside of the base layer, and the conductive pattern 3 is arranged (see FIG. 14B).
  • the plating method is the same as that of known plating solutions and plating treatments, and specific examples thereof include electrolytic copper plating and electrolytic copper plating.
  • (Resin filling step S23) In the resin filling step S23, first, in the wiring plating step S22, depending on the combination of the resin material of the base material 2 and the resin body 6 on one surface 2a on the side opposite to the surface on which the conductive pattern 3 of the base material 2 is arranged. A binder ink forming the binder layer AD is applied (see FIG. 14C).
  • the binder ink contains an adhesive resin and is applied by screen printing, inkjet printing, spray coating, brush painting or the like to improve the adhesiveness between the base material 2 and the resin body 6 to be secondarily molded.
  • the heat conductive adhesive layer 8 to the region where one surface 2a of the base material 2 is in contact with the base body 51 of the heat radiating body 5, the heat conduction from the base material 2 to the heat radiating body 5 is further enhanced.
  • the heat of the conductive pattern 3 or the like arranged on the material 2 can be dissipated through the radiator body 5.
  • the fixed side mold KA and the movable side mold are set in a state where the base material 2 and the radiator 5 on which the conductive pattern 3 is arranged are positioned and set on the secondary molding die.
  • the KB is closed and the cavity CA is filled with resin.
  • it covers one surface 2a on the side opposite to the surface on which the conductive pattern 3 of the substrate 2 is arranged, and is integrated with the substrate 2 so that a part of the base 51 of the radiator 5 is exposed from the substrate 2.
  • a resin body 6 to be fixed to is formed (see FIG. 14D).
  • the LED 4B as the heating element 4 is bonded to the base body 51 of the heat radiating body 5 in which the heat transfer portion 45B is exposed from the base material 2 via the heat conductive adhesive layer 8 (see FIG. 14E).
  • the heat conductive adhesive layer 8 a heat conductive double-sided tape containing an acrylic pressure-sensitive adhesive may be used. By using the heat conductive double-sided tape, the LED 4B can be easily adhered to the base body 51 of the heat radiating body 5.
  • solder paste is applied to the external terminals 46 of the conductive pattern 3 and the LED 4B.
  • the solder paste can be applied using a known device such as a stencil printing device, a screen printing device, and a dispenser device. In this embodiment, the solder paste is applied using a dispenser device.
  • the solder is melted and solidified, and the external terminal 46 of the LED 4B is electrically bonded onto the conductive pattern 3 via the solder 7B.
  • the base material 2 is a film made of a thermoplastic resin that can be deformed by thermal molding or the like, its softening point is low. It is not melted or otherwise deformed by the heat of the electrical joining step S25.
  • the soldering laser soldering or light firing soldering may be used.
  • the solder 7B is not limited to low-temperature solder, and may be ordinary solder because it is non-contact and does not give a load to the base material 2.
  • the number of parts and the number of assembly steps are reduced to reduce the cost, the position accuracy and the adhesion of the parts are improved, and the whole is made thinner. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

Provided are: a three-dimensional heat dissipation substrate that has stable adhesion properties, and that can be made thinner overall, and that also reduces costs; and a method for manufacturing said heat dissipation substrate. The present invention comprises: a base material on which an electrically conductive pattern is arranged, the base material being composed of a resin; a heat-emitting element such as a light-emitting element, a semiconductor device, a capacitor, or a resistor chip arranged so as to penetrate the base material; a heat-dissipating body that releases heat transmitted from the heat-emitting element to the outside; a resin body that covers one surface of the base material and that integrally secures the heat-dissipating body to the base material so as to be in close contact with the heat-emitting element; and a connection body that electrically connects the heat-emitting element and the electrically conductive pattern.

Description

放熱基板及びその製造方法Heat dissipation board and its manufacturing method
 本発明は、放熱基板及びその製造方法に関する。 The present invention relates to a heat dissipation substrate and a method for manufacturing the same.
 フレキシブル配線基板に発光ダイオードのダイスを実装する発光ダイオード照明モジュ
ールにおいて、フレキシブル配線基板を貫通して設けられ、発光ダイオードのダイスを搭載するヒートスプレッダを備え、ダイスとフレキシブル配線基板が接続される接続部の範囲まで、ヒートスプレッダが延長されている発光ダイオード照明モジュールが知られている(特許文献1)。
In a light emitting diode lighting module that mounts a light emitting diode die on a flexible wiring board, a heat spreader that is provided through the flexible wiring board and mounts a light emitting diode die is provided, and the connection part where the die and the flexible wiring board are connected. A light emitting diode lighting module in which a heat spreader is extended to the extent is known (Patent Document 1).
 第一の面と第二の面を備えるベース基材と、第一の面上に形成された導電路と、第一の面から第二の面までを貫通する貫通孔と、貫通孔に挿入され、少なくとも一部が第一の面から突出している放熱部材と、放熱部材の側面を覆うとともに、貫通孔の内周面と、この内周面に囲まれた放熱部材の外周面との間に隙間なく介在する熱伝導性樹脂組成物と、第一の面から突出している放熱部材を覆う金属層と、を有し、金属層の外側表面と導電路の外側表面とがほぼ同一平面上にある放熱基板も知られている(特許文献2)。 A base substrate having a first surface and a second surface, a conductive path formed on the first surface, a through hole penetrating from the first surface to the second surface, and insertion into the through hole. Between the inner peripheral surface of the through hole and the outer peripheral surface of the heat radiating member surrounded by the inner peripheral surface of the through hole while covering the side surface of the heat radiating member having at least a part protruding from the first surface. It has a heat conductive resin composition intervening without gaps and a metal layer covering a heat radiating member protruding from the first surface, and the outer surface of the metal layer and the outer surface of the conductive path are substantially on the same plane. The heat dissipation substrate in (Patent Document 2) is also known.
特開2005-136224号公報Japanese Unexamined Patent Publication No. 2005-136224 国際公開WO2018/123480International release WO2018 / 123480
 本発明は、コストを削減しつつ、安定した密着性を有するとともに全体を薄型化することができる立体的な放熱基板、及びその製造方法を提供する。 The present invention provides a three-dimensional heat-dissipating substrate that has stable adhesion and can be made thinner as a whole while reducing costs, and a method for manufacturing the same.
 前記課題を解決するために、請求項1に記載の放熱基板は、
 樹脂からなり導電性パターンが配置された基材と、
 前記基材を貫通して配置された発熱体と、
 前記発熱体から伝達される熱を外部に放出する放熱体と、
 前記基材の一面を覆い前記放熱体を前記発熱体に密着して接触するように前記基材と一体的に固定する樹脂体と、
 前記発熱体と前記導電性パターンを電気的に接合する接合体と、を備えた、
 ことを特徴とする。
In order to solve the above problems, the heat dissipation substrate according to claim 1 is used.
A base material made of resin and having a conductive pattern arranged on it,
A heating element arranged through the base material and
A heating element that releases heat transferred from the heating element to the outside,
A resin body that covers one surface of the base material and integrally fixes the heat radiating element to the base material so as to be in close contact with the heating element.
A bonding element that electrically joins the heating element and the conductive pattern.
It is characterized by that.
 請求項2に記載の発明は、請求項1に記載の放熱基板において、
 前記放熱体は、前記基材の前記導電性パターンが配置された面とは反対側の面に配置されている、
 ことを特徴とする。
The invention according to claim 2 is the heat radiation substrate according to claim 1.
The radiator is arranged on a surface of the substrate opposite to the surface on which the conductive pattern is arranged.
It is characterized by that.
 請求項3に記載の発明は、請求項1に記載の放熱基板において、
 前記放熱体は、前記基材の前記導電性パターンが配置された面に配置されている、
 ことを特徴とする。
The invention according to claim 3 is the heat dissipation substrate according to claim 1.
The radiator is arranged on the surface of the substrate on which the conductive pattern is arranged.
It is characterized by that.
 請求項4に記載の発明は、請求項1に記載の放熱基板において、
 前記放熱体は、前記樹脂体の側面に配置されている、
 ことを特徴とする。
The invention according to claim 4 is the heat radiation substrate according to claim 1.
The radiator is arranged on the side surface of the resin body.
It is characterized by that.
 前記課題を解決するために、請求項5に記載の放熱基板は、
 樹脂からなり導電性パターンが配置された基材と、
 前記基材を貫通して配置された放熱体と、
 前記基材の一面を覆い前記放熱体の一面が前記基材から露出するように前記放熱体を前記基材と一体的に固定する樹脂体と、
 前記放熱体の一面と密着して接触し前記導電性パターンと電気的に接合された発熱体と、を備えた、
 ことを特徴とする。
In order to solve the above problem, the heat dissipation substrate according to claim 5 is used.
A base material made of resin and having a conductive pattern arranged on it,
A radiator arranged through the base material and
A resin body that covers one surface of the base material and integrally fixes the heat radiating body to the base material so that one side of the heat radiating body is exposed from the base material.
A heating element that is in close contact with one surface of the heat radiating body and is electrically bonded to the conductive pattern.
It is characterized by that.
 請求項6に記載の発明は、請求項1ないし5のいずれか1項に記載の放熱基板において、
 前記基材は変形可能なフィルムであり、立体的な形状に賦形されている、
 ことを特徴とする。
The invention according to claim 6 is the heat dissipation substrate according to any one of claims 1 to 5.
The substrate is a deformable film and is shaped into a three-dimensional shape.
It is characterized by that.
 請求項7に記載の発明は、請求項1ないし6のいずれか1項に記載の放熱基板において、
 前記樹脂体は、光透過性を有する、
 ことを特徴とする。
The invention according to claim 7 is the heat dissipation substrate according to any one of claims 1 to 6.
The resin body has a light transmissive property.
It is characterized by that.
 請求項8に記載の発明は、請求項1ないし7のいずれか1項に記載の放熱基板において、
 前記基材の一面と前記放熱体との間に熱伝導性接着層が配置されている、
 ことを特徴とする。
The invention according to claim 8 is the heat dissipation substrate according to any one of claims 1 to 7.
A heat conductive adhesive layer is arranged between one surface of the base material and the radiator.
It is characterized by that.
 請求項9に記載の発明は、請求項1ないし8のいずれか1項に記載の放熱基板において、
 前記基材の一面と前記樹脂体との間にバインダー層が設けられている、
 ことを特徴とする。
The invention according to claim 9 is the heat dissipation substrate according to any one of claims 1 to 8.
A binder layer is provided between one surface of the base material and the resin body.
It is characterized by that.
 請求項10に記載の発明は、請求項1ないし9のいずれか1項に記載の放熱基板において、
 前記発熱体と前記放熱体との間に熱伝導性接着層が設けられている、
 ことを特徴とする。
The invention according to claim 10 is the heat dissipation substrate according to any one of claims 1 to 9.
A thermally conductive adhesive layer is provided between the heating element and the radiator.
It is characterized by that.
 請求項11に記載の発明は、請求項1ないし10のいずれか1項に記載の放熱基板において、
 前記放熱体は、熱伝導率が1W/m・K以上の熱伝導性樹脂からなる、
 ことを特徴とする。
The invention according to claim 11 is the heat dissipation substrate according to any one of claims 1 to 10.
The radiator is made of a heat conductive resin having a thermal conductivity of 1 W / m · K or more.
It is characterized by that.
 前記課題を解決するために、請求項12に記載の放熱基板の製造方法は、
 導電性パターンが配置された基材と、
 前記基材を貫通して配置された発熱体と、
 前記発熱体から伝達される熱を外部に放出する放熱体と、
 前記基材の一面を覆い前記放熱体を前記発熱体に密着して接触するように前記基材と一体的に固定する樹脂体と、
 前記発熱体と前記導電性パターンを電気的に接合する接合体と、を備える放熱基板の製造方法であって、
 前記基材を準備する工程と、
 前記基材に貫通孔を形成する工程と、
 前記基材上に前記導電性パターンを配置する工程と、
 前記貫通孔が形成され前記導電性パターンが配置された前記基材と前記発熱体と前記放熱体を金型に載置して前記樹脂体を射出成形する工程と、
 前記導電性パターンと前記発熱体とを電気的に接合する工程と、を含む、
 ことを特徴とする。
In order to solve the above problems, the method for manufacturing a heat dissipation substrate according to claim 12 is described.
The base material on which the conductive pattern is placed and
A heating element arranged through the base material and
A heating element that releases heat transferred from the heating element to the outside,
A resin body that covers one surface of the base material and integrally fixes the heat radiating element to the base material so as to be in close contact with the heating element.
A method for manufacturing a heat-dissipating substrate comprising the heating element and a joining body for electrically joining the conductive pattern.
The process of preparing the base material and
The step of forming a through hole in the base material and
The step of arranging the conductive pattern on the base material and
A step of injecting and molding the resin body by placing the base material, the heating element, and the heat radiating element on which the through hole is formed and the conductive pattern is arranged on a mold.
A step of electrically joining the conductive pattern and the heating element.
It is characterized by that.
 前記課題を解決するために、請求項13に記載の放熱基板の製造方法は、
 導電性パターンが配置された基材と、
 前記基材を貫通して配置された放熱体と、
 前記基材の一面を覆い前記放熱体の一面が前記基材から露出するように前記放熱体を前記基材と一体的に固定する樹脂体と、
 前記放熱体の一面と密着して接触し前記導電性パターンと電気的に接合された発熱体と、を備える放熱基板の製造方法であって、
 前記基材を準備する工程と、
 前記基材に貫通孔を形成する工程と、
 前記基材上に前記導電性パターンを配置する工程と、
 前記貫通孔が形成され前記導電性パターンが配置された前記基材と前記放熱体を金型に載置して前記樹脂体を射出成形する工程と、
 前記放熱体と前記発熱体を密着させて接着する工程と、
 前記導電性パターンと前記発熱体とを電気的に接合する工程と、を含む、
 ことを特徴とする。
In order to solve the above problems, the method for manufacturing a heat dissipation substrate according to claim 13 is
The base material on which the conductive pattern is placed and
A radiator arranged through the base material and
A resin body that covers one surface of the base material and integrally fixes the heat radiating body to the base material so that one side of the heat radiating body is exposed from the base material.
A method for manufacturing a heat-dissipating substrate comprising a heating element that is in close contact with one surface of the heat-dissipating body and is electrically bonded to the conductive pattern.
The process of preparing the base material and
The step of forming a through hole in the base material and
The step of arranging the conductive pattern on the base material and
A step of injecting and molding the resin body by placing the base material on which the through hole is formed and the conductive pattern is arranged and the heat radiating body on a mold.
The step of bringing the radiator and the heating element into close contact with each other and adhering them to each other.
A step of electrically joining the conductive pattern and the heating element.
It is characterized by that.
 請求項14に記載の発明は、請求項1ないし13のいずれか1項に記載の放熱基板において、
 前記発熱体は、発光素子、半導体デバイス、コンデンサ、抵抗チップのいずれかを含む、
 ことを特徴とする。
The invention according to claim 14 is the heat dissipation substrate according to any one of claims 1 to 13.
The heating element includes any of a light emitting element, a semiconductor device, a capacitor, and a resistance chip.
It is characterized by that.
 請求項1に記載の発明によれば、部品点数及び組立工数を低減してコストを削減しつつ、密着性を向上させるとともに全体を薄型化することができる。 According to the invention of claim 1, it is possible to improve the adhesion and make the whole thin while reducing the number of parts and the assembly man-hours to reduce the cost.
 請求項2に記載の発明によれば、発熱体と反対側に放熱体を位置精度よく実装して密着性を向上させるとともに全体を薄型化することができる。 According to the second aspect of the present invention, the radiator can be mounted on the side opposite to the heating element with high positional accuracy to improve the adhesion and reduce the overall thickness.
 請求項3に記載の発明によれば、導電パターンと同じ側に発熱体及び放熱体を位置精度よく実装するとともにコストを抑制しつつ薄型化することができる。 According to the third aspect of the present invention, the heating element and the heat radiating element can be mounted on the same side as the conductive pattern with high positional accuracy, and the thickness can be reduced while suppressing the cost.
 請求項4に記載の発明によれば、部品点数及び組立工数を低減してコストを削減しつつ、部品の位置精度及び密着性を向上させるとともに全体を薄型化することができる。 According to the invention of claim 4, the number of parts and the number of assembly steps can be reduced to reduce the cost, the position accuracy and the adhesion of the parts can be improved, and the whole can be made thinner.
 請求項5に記載の発明によれば、導電性パターンが形成された変形可能な基材に発熱体及び放熱体を位置精度よく実装するとともにコストを抑制しつつ薄型化することができる。 According to the invention of claim 5, the heating element and the heat radiating element can be mounted on the deformable base material on which the conductive pattern is formed with high position accuracy, and the thickness can be reduced while suppressing the cost.
 請求項6に記載の発明によれば、複数の発熱体と放熱体を備えた立体的な放熱基板を構成ことができる。 According to the invention of claim 6, it is possible to configure a three-dimensional heat dissipation board including a plurality of heating elements and a radiator.
 請求項7に記載の発明によれば、樹脂体に他の部品を一体化して部品点数を削減することができる。 According to the invention of claim 7, the number of parts can be reduced by integrating other parts with the resin body.
 請求項8に記載の発明によれば、基材に放熱体を安定して固定するとともに放熱体から基材への熱伝導を高めることができる。 According to the invention of claim 8, the radiator can be stably fixed to the substrate and the heat conduction from the radiator to the substrate can be enhanced.
 請求項9に記載の発明によれば、基材と樹脂体の接着強度を高めることができる。 According to the invention of claim 9, the adhesive strength between the base material and the resin body can be increased.
 請求項10に記載の発明によれば、発熱体から放熱体への熱伝導を高めることができる。 According to the invention of claim 10, heat conduction from the heating element to the radiator can be enhanced.
 請求項11に記載の発明によれば、放熱体を低コスト化することができる。 According to the invention of claim 11, the cost of the radiator can be reduced.
 請求項12に記載の発明によれば、部品点数及び組立工数を低減してコストを削減しつつ、密着性を向上させるとともに全体を薄型化することができる。 According to the invention of claim 12, the number of parts and the number of assembly steps can be reduced to reduce the cost, the adhesion can be improved, and the whole can be made thinner.
 請求項13に記載の発明によれば、部品点数及び組立工数を低減してコストを削減しつつ、部品の位置精度及び密着性を向上させるとともに全体を薄型化することができる。 According to the thirteenth aspect of the present invention, the number of parts and the number of assembly steps can be reduced to reduce the cost, the position accuracy and the adhesion of the parts can be improved, and the whole can be made thinner.
 請求項14に記載の発明によれば、実装される様々な発熱体及び導電性パターンからの熱を放熱することができる。 According to the invention of claim 14, heat from various mounted heating elements and conductive patterns can be dissipated.
図1Aは第1実施形態に係る放熱基板を発熱体側に視点を置いて示す斜視図、図1Bは第1実施形態に係る放熱基板の一例を示す断面模式図である。FIG. 1A is a perspective view showing the heat radiating substrate according to the first embodiment with a viewpoint on the heating element side, and FIG. 1B is a schematic cross-sectional view showing an example of the heat radiating substrate according to the first embodiment. 図2Aは発熱体の一例を示す平面模式図、図2Bは断面模式図である。FIG. 2A is a schematic plan view showing an example of a heating element, and FIG. 2B is a schematic cross-sectional view. 図3Aは変形例1に係る放熱基板を発熱体側に視点を置いて示す斜視図、図3Bは変形例1に係る放熱基板の一例を示す断面模式図である。FIG. 3A is a perspective view showing the heat radiating substrate according to the modified example 1 with a viewpoint on the heating element side, and FIG. 3B is a schematic cross-sectional view showing an example of the heat radiating substrate according to the modified example 1. 図4Aは変形例2に係る放熱基板を発熱体側に視点を置いて示す斜視図、図4Bは変形例2に係る放熱基板の一例を示す断面模式図である。FIG. 4A is a perspective view showing the heat radiating substrate according to the modified example 2 with a viewpoint on the heating element side, and FIG. 4B is a schematic cross-sectional view showing an example of the heat radiating substrate according to the modified example 2. 図5Aは変形例3に係る放熱基板を発熱体側に視点を置いて示す斜視図、図5Bは変形例3に係る放熱基板の一例を示す断面模式図である。FIG. 5A is a perspective view showing the heat radiating substrate according to the modified example 3 with a viewpoint on the heating element side, and FIG. 5B is a schematic cross-sectional view showing an example of the heat radiating substrate according to the modified example 3. 変形例4に係る放熱基板の一例を示す断面模式図である。It is sectional drawing which shows an example of the heat dissipation substrate which concerns on modification 4. 放熱基板の製造方法の概略の手順の一例を示すフローチャート図である。It is a flowchart which shows an example of the outline procedure of the manufacturing method of a heat dissipation board. 導電性パターンが配置された基材、発熱体及び放熱体を樹脂体を充填する金型にセットした状態を示す断面模式図である。It is sectional drawing which shows the state which set the base material, the heating element and the heat radiating body which arranged the conductive pattern in the mold which fills the resin body. 基材の準備工程から発熱体と導電性パターンを電気的に接合するまでの各工程を示す図である。It is a figure which shows each process from the preparation process of a base material to the electric bonding of a heating element and a conductive pattern. 導電性パターンが配置された基材、複数の発熱体及び放熱体を樹脂体を充填する金型にセットして基材の連結部を3次元形状に賦形した状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state which the base material which arranged the conductive pattern, a plurality of heating elements and a radiator are set in the mold which fills a resin body, and the connecting part of a base material is shaped into a three-dimensional shape. .. 図11Aは第2実施形態に係る放熱基板を発熱体側に視点を置いて示す斜視図、図11Bは第2実施形態に係る放熱基板の一例を示す断面模式図である。FIG. 11A is a perspective view showing the heat radiating substrate according to the second embodiment with a viewpoint on the heating element side, and FIG. 11B is a schematic cross-sectional view showing an example of the heat radiating substrate according to the second embodiment. 第2実施形態に係る放熱基板の製造方法の概略の手順の一例を示すフローチャート図である。It is a flowchart which shows an example of the outline procedure of the manufacturing method of the heat dissipation substrate which concerns on 2nd Embodiment. 貫通孔が形成され導電性パターンが配置された基材、発熱体及び放熱体を樹脂体を充填する金型にセットした状態を示す断面模式図である。It is sectional drawing which shows the state which set the base material, the heating element and the heat radiating body which the through hole is formed | arranged | heat | heat | heat | body in the mold which fills the resin body. 基材の準備工程から発熱体と導電性パターンを電気的に接合するまでの各工程を示す図である。It is a figure which shows each process from the preparation process of a base material to the electric bonding of a heating element and a conductive pattern.
 次に図面を参照しながら、本発明の実施形態の具体例を説明するが、本発明は以下の実施形態に限定されるものではない。
 尚、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, a specific example of the embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
In the explanation using the following drawings, it should be noted that the drawings are schematic and the ratio of each dimension is different from the actual one, which is necessary for the explanation for easy understanding. Illustrations other than the members are omitted as appropriate.
 「第1実施形態」
 (1)放熱基板の全体構成
 図1Aは本実施形態に係る放熱基板1を発熱体側に視点を置いて示す斜視図、図1Bは本実施形態に係る放熱基板1の一例を示す断面模式図、図2Aは発熱体4の一例を示す平面模式図、図2Bは断面模式図である。
 以下、図面を参照しながら、本実施形態に係る放熱基板1の構成について説明する。
"First embodiment"
(1) Overall Configuration of Heat Dissipating Board FIG. 1A is a perspective view showing the heat radiating board 1 according to the present embodiment from a viewpoint on the heating element side, and FIG. 1B is a schematic cross-sectional view showing an example of the heat radiating board 1 according to the present embodiment. FIG. 2A is a schematic plan view showing an example of the heating element 4, and FIG. 2B is a schematic cross-sectional view.
Hereinafter, the configuration of the heat dissipation substrate 1 according to the present embodiment will be described with reference to the drawings.
 放熱基板1は、図1に示すように、樹脂からなり導電性パターン3が配置された基材2と、基材2を貫通して配置された発熱体4と、発熱体4から伝達される熱を外部に放出する放熱体5と、基材2の一面を覆い放熱体5を発熱体4に密着して接触するように基材2と一体的に固定する樹脂体6と、発熱体4と導電性パターン3を電気的に接合する接合体7と、を備えて構成されている。 As shown in FIG. 1, the heat radiating substrate 1 is transmitted from a base material 2 made of resin and having a conductive pattern 3 arranged, a heating element 4 arranged so as to penetrate the base material 2, and a heating element 4. A heating element 5 that releases heat to the outside, a resin body 6 that covers one surface of the base material 2 and integrally fixes the heat radiating element 5 to the heating element 4 so as to be in close contact with the heating element 4, and a heating element 4 And a joining body 7 for electrically joining the conductive pattern 3 are provided.
 (基材)
  本実施形態において使用する導電性パターン3が形成される基材2は、絶縁性を有し、後述する樹脂体6との接着性を有する基材が好ましく、樹脂からなる基材(以下樹脂基材という)を使用することができる。なお、樹脂基材には、下記の変形可能なフィルム基材も含まれる。
(Base material)
The base material 2 on which the conductive pattern 3 used in the present embodiment is formed is preferably a base material having insulating properties and adhesiveness to the resin body 6 described later, and is a base material made of a resin (hereinafter referred to as a resin group). Material) can be used. The resin base material also includes the following deformable film base material.
 樹脂基材の材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル、ナイロン6-10、ナイロン46などのポリアミド(PA)、ポリエーテルエーテルケトン(PEEK)、アクリロニトリルブタジエンスチレン(ABS)、ポリメタクリル酸メチル(PMMA)、ポリ塩化ビニルなどの熱可塑性樹脂が挙げられる。
 特にポリエステルがより好ましく、さらにその中でもポリエチレンテレフタレート(PET)が経済性、電気絶縁性、耐薬品性等のバランスが良く最も好ましい。
As the material of the resin base material, polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), nylon 6-10, polyamide (PA) such as nylon 46, polyether ether ketone (PEEK), and acrylonitrile butadiene styrene ( Examples include thermoplastic resins such as ABS), polymethyl methacrylate (PMMA), and polyvinyl chloride.
In particular, polyester is more preferable, and among them, polyethylene terephthalate (PET) is most preferable because it has a good balance of economy, electrical insulation, chemical resistance and the like.
 基材2は、変形可能なフィルム基材であってもよく、フィルム基材上に導電性パターン3を配置して変形可能なフィルム基板としてもよい。
 ここで、「変形可能なフィルム基材」は、導電性パターン3を配置後に変形できる、すなわち、熱成形、真空成形または圧空成形等によって実質的に平坦な2次元形状から実質的に3次元形状に形成されることができる基材を意味する。
The base material 2 may be a deformable film base material, or may be a deformable film substrate by arranging a conductive pattern 3 on the film base material.
Here, the "deformable film substrate" can be deformed after the conductive pattern 3 is placed, that is, from a substantially flat two-dimensional shape to a substantially three-dimensional shape by thermoforming, vacuum forming, pneumatic forming, or the like. Means a substrate that can be formed into.
 樹脂基材としては、融点Tmが存在する場合は150℃以上であることが好ましく、200℃以上であることがより好ましい。また、ガラス転移点Tgの範囲は20℃~250℃が好ましく、50℃~200℃がより好ましく、70℃~150℃が最も好ましい。ガラス転移点Tgが低すぎる場合、導電性パターン3の形成時に基材2の歪みが大きくなる虞がある。 As the resin base material, when the melting point Tm is present, it is preferably 150 ° C. or higher, and more preferably 200 ° C. or higher. The range of the glass transition point Tg is preferably 20 ° C to 250 ° C, more preferably 50 ° C to 200 ° C, and most preferably 70 ° C to 150 ° C. If the glass transition point Tg is too low, the strain of the base material 2 may increase when the conductive pattern 3 is formed.
 基材2の厚み(mm)は特に制限されないが、取り扱い性及び薄型化のバランスの点から、樹脂基材では0.01~3mmが好ましく、0.02~1mmがより好ましく、0.03~0.1mmが更に好ましい。
 特にフィルム基材では、0.005~0.25mmが好ましく、0.01~0.2mmがより好ましく、0.05~0.188mmが最も好ましい。基材2の厚みが薄すぎる場合、強度が不十分になるとともに、導電性パターン3のめっき工程時に基材2の歪みが大きくなる虞がある。
The thickness (mm) of the base material 2 is not particularly limited, but the resin base material is preferably 0.01 to 3 mm, more preferably 0.02 to 1 mm, and 0.03 to 0.03 to be in terms of balance between handleability and thinning. 0.1 mm is more preferable.
In particular, for the film substrate, 0.005 to 0.25 mm is preferable, 0.01 to 0.2 mm is more preferable, and 0.05 to 0.188 mm is most preferable. If the thickness of the base material 2 is too thin, the strength may be insufficient and the strain of the base material 2 may be increased during the plating process of the conductive pattern 3.
 基材2の表面には、金属ナノ粒子等の触媒インクを均一に塗布するために、表面処理を施すことが好ましい。表面処理としては、例えば、コロナ処理、プラズマ処理、溶剤処理、プライマー処理を用いることができる。 It is preferable to apply a surface treatment to the surface of the base material 2 in order to uniformly apply the catalyst ink such as metal nanoparticles. As the surface treatment, for example, corona treatment, plasma treatment, solvent treatment, and primer treatment can be used.
 (導電性パターン)
 基材2の表面に導電性パターン3を配置する場合、さきに、金属めっき成長のきっかけとなる金属ナノ粒子等の触媒からなる下地層(不図示)を所定のパターン状に形成する。
 下地層は、基材2上に金属ナノ粒子等の触媒インクを塗布したあと、乾燥および焼成を行うことにより形成する。
(Conductive pattern)
When the conductive pattern 3 is arranged on the surface of the base material 2, a base layer (not shown) made of a catalyst such as metal nanoparticles that triggers the growth of metal plating is first formed in a predetermined pattern.
The base layer is formed by applying a catalyst ink such as metal nanoparticles on the base material 2 and then drying and firing.
  下地層の厚み(μm)は、0.1~20μmが好ましく、0.2~5μmがさらに好ましく、0.5~2μmが最も好ましい。下地層が薄すぎると、下地層の強度が低下するおそれがある。また、下地層が厚すぎると、金属ナノ粒子は通常の金属よりも高価であるため、製造コストが増大する虞がある。 The thickness (μm) of the base layer is preferably 0.1 to 20 μm, more preferably 0.2 to 5 μm, and most preferably 0.5 to 2 μm. If the base layer is too thin, the strength of the base layer may decrease. Further, if the base layer is too thick, the metal nanoparticles are more expensive than ordinary metals, which may increase the manufacturing cost.
  触媒の材料としては、金、銀、銅、パラジウム、ニッケルなどが用いられ、導電性の観点から金、銀、銅が好ましく、金、銀に比べて安価な銅が最も好ましい。 Gold, silver, copper, palladium, nickel and the like are used as the catalyst material, and gold, silver and copper are preferable from the viewpoint of conductivity, and copper, which is cheaper than gold and silver, is most preferable.
  触媒の粒子径(nm)は1~500nmが好ましく、10~100nmがより好ましい。粒子径が小さすぎる場合、粒子の反応性が高くなりインクの保存性・安定性に悪影響を与える虞がある。粒子径が大きすぎる場合、薄膜の均一形成が困難になるとともに、インクの粒子の沈殿が起こりやすくなる虞がある。 The particle size (nm) of the catalyst is preferably 1 to 500 nm, more preferably 10 to 100 nm. If the particle size is too small, the reactivity of the particles becomes high, which may adversely affect the storage stability and stability of the ink. If the particle size is too large, it becomes difficult to form a thin film uniformly, and there is a risk that ink particles are likely to precipitate.
  導電性パターン3は、下地層の上に電解めっきまたは無電解めっきにより形成される。めっき金属としては、銅、ニッケル、錫、銀、金などを用いることができるが、伸長性、導電性および価格の観点から銅を用いることが最も好ましい。 The conductive pattern 3 is formed on the base layer by electrolytic plating or electroless plating. As the plating metal, copper, nickel, tin, silver, gold and the like can be used, but copper is most preferable from the viewpoint of extensibility, conductivity and price.
  めっき層の厚さ(μm)は、0.03~100μmが好ましく、1~35μmがより好ましく、3~18μmが最も好ましい。めっき層が薄すぎると、機械的強度が不足するとともに、導電性が実用上十分に得られない虞がある。めっき層が厚すぎると、めっきに必要な時間が長くなり、製造コストが増大する虞がある。 The thickness (μm) of the plating layer is preferably 0.03 to 100 μm, more preferably 1 to 35 μm, and most preferably 3 to 18 μm. If the plating layer is too thin, the mechanical strength may be insufficient and the conductivity may not be sufficiently obtained for practical use. If the plating layer is too thick, the time required for plating becomes long, and the manufacturing cost may increase.
 (発熱体)
 放熱対象となる発熱体としては、特に限定されないが、放熱基板1に実装された、例えば、発光素子としてのLED、半導体デバイス、ディスプレイ、、電灯、自動車用パワーモジュール及び産業用パワーモジュール、コンデンサ、抵抗チップ等を挙げることができる。
(Heating element)
The heating element to be radiated is not particularly limited, but is, for example, an LED as a light emitting element, a semiconductor device, a display, an electric lamp, an automobile power module and an industrial power module, and a capacitor mounted on the radiating substrate 1. A resistance chip or the like can be mentioned.
 本実施形態においては、発熱体4の一例として、放熱基材付きパワーLED(以降単にLEDと記す)4Aを実装している。LED4Aは、図2に示すように、金属製の基板である金属ベース41と、中央に開口部を有するように金属ベース41の表面に形成された囲い42と、囲い42の開口部で露出した金属ベース41の表面上に実装された複数のLEDチップ43と、金属ベース41の表面上に形成され、一端側44aが導電性パターン3と電気的に接合され他端側44bがLEDチップ43とワイヤ45で電気的に接合される金属配線44と、囲い42が囲む開口部を覆う封止樹脂48とを備えている。 In this embodiment, as an example of the heating element 4, a power LED with a heat dissipation base material (hereinafter, simply referred to as LED) 4A is mounted. As shown in FIG. 2, the LED 4A is exposed by a metal base 41 which is a metal substrate, an enclosure 42 formed on the surface of the metal base 41 so as to have an opening in the center, and an opening of the enclosure 42. A plurality of LED chips 43 mounted on the surface of the metal base 41, formed on the surface of the metal base 41, one end side 44a is electrically bonded to the conductive pattern 3, and the other end side 44b is the LED chip 43. It includes a metal wiring 44 electrically joined by a wire 45, and a sealing resin 48 covering an opening surrounded by the enclosure 42.
 (放熱体)
 放熱体5は、基材2の導電性パターン3が配置された面とは反対側の一面2a側に配置されている。
 放熱体5としては、例えば、アルミ又は銅のフィン、板等を利用したヒートシンク、ヒートパイプに接続されているアルミ又は銅のブロック、内部に冷却液体をポンプで循環させているアルミ又は銅のブロック、及びペルチェ素子ならびにこれを備えたアルミ又は銅のブロック等が挙げられる。
 本実施形態においては、図1Bに示すように、放熱体5は、発熱体4としてのLED4Aの金属ベース41と接触してLED4Aで発生する熱を熱伝導によって受け取るベース体51と、ベース体51に短冊状に立設された放熱フィン42からなる、アルミニウム、銅等の金属製ヒートシンクである。
(Radiator)
The radiator 5 is arranged on one surface 2a side opposite to the surface on which the conductive pattern 3 of the base material 2 is arranged.
Examples of the radiator 5 include a heat sink using aluminum or copper fins, a plate or the like, an aluminum or copper block connected to a heat pipe, and an aluminum or copper block in which a cooling liquid is circulated by a pump inside. , And a Pelche element and an aluminum or copper block equipped with the element.
In the present embodiment, as shown in FIG. 1B, the radiator 5 has a base 51 and a base 51 that come into contact with the metal base 41 of the LED 4A as the heating element 4 and receive the heat generated by the LED 4A by heat conduction. It is a metal heat sink made of aluminum, copper, etc., which is composed of heat radiating fins 42 erected in a strip shape.
 また、放熱体5は、熱伝導率が1(W/m・K)以上の熱伝導性樹脂からなるヒートシンクであってもよい。熱伝導性樹脂としては、例えば、粒子状又はフィラー状の炭素系材料からなる高熱伝導性材料を所定の基材樹脂、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ポリアミド(PA)、ポリプロピレン(PP)、ポリフェニレンスルファイド(PPS)、アクリロニトリルブタジエンスチレン(ABS)、液晶ポリマー(LCP)、熱可塑性エラストマー(TPE)等の樹脂に混合した熱可塑性樹脂が挙げられる。これらの熱伝導性樹脂は、熱伝導率が概ね1W/m・Kないし10W/m・Kであり、アルミニウム、銅等の金属材料に比べて低いが、放熱体5を金属製に比べて低コスト化することができる。 Further, the radiator 5 may be a heat sink made of a heat conductive resin having a thermal conductivity of 1 (W / m · K) or more. As the heat conductive resin, for example, a highly heat conductive material made of a carbon-based material in the form of particles or a filler is used as a predetermined base resin, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycarbonate (PC). , Polypropylene (PA), polypropylene (PP), polyphenylene sulfide (PPS), acrylonitrile butadiene styrene (ABS), liquid crystal polymer (LCP), thermoplastic elastomer (TPE) and other resins mixed with a thermoplastic resin. These thermally conductive resins have a thermal conductivity of approximately 1 W / m · K to 10 W / m · K, which is lower than that of metal materials such as aluminum and copper, but the radiator 5 is lower than that of metal. It can be costly.
 発熱体4と放熱体5との間には熱伝導性接着層8が設けられている。熱伝導性接着層8を介して発熱体4と放熱体5とが接触することで、発熱体4からの熱を放熱体5に効率よく伝導することができる。熱伝導性接着層8を形成する高熱伝導接着剤としては、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、アクリル樹脂、フェノール樹脂、ビスマレイミドトリアジン樹脂、または、各種エンジニアリングプラスチック等をベースとし銀粉、カーボン、銅、アルミニウム、鉄、セラミック等、熱伝導率の大きい材料の粉末や繊維を混入したものを使用できる。熱伝導性接着層8は、熱伝導率が高いほど好ましく、具体的には、1W/m・K以上であることが好ましい。これにより、発熱体4から放熱体5への熱伝導をより高めることが可能となる。 A heat conductive adhesive layer 8 is provided between the heating element 4 and the radiator 5. When the heating element 4 and the heating element 5 come into contact with each other via the heat conductive adhesive layer 8, the heat from the heating element 4 can be efficiently conducted to the heating element 5. The high thermal conductive adhesive forming the thermally conductive adhesive layer 8 is based on epoxy resin, polyimide resin, silicone resin, acrylic resin, phenol resin, bismaleimide triazine resin, various engineering plastics, etc., and silver powder, carbon, copper. , Aluminum, iron, ceramic, and other materials with high thermal conductivity mixed with powder or fiber can be used. The higher the thermal conductivity of the heat conductive adhesive layer 8, the more preferable it is, and specifically, the heat conductive adhesive layer 8 is preferably 1 W / m · K or more. This makes it possible to further enhance the heat conduction from the heating element 4 to the radiator 5.
 (変形例1)
 図3Aは変形例1に係る放熱基板1を発熱体側に視点を置いて示す斜視図、図3Bは変形例1に係る放熱基板1の一例を示す断面模式図である。
 放熱体5Aは、図3に示すように、基材2の導電性パターン3が配置された一面2b側に配置されてもよい。放熱体5Aは、発熱体としてのLED4Aの金属ベース41と接触してLED4Aで発生する熱を熱伝導によって受け取るベース体51と、ベース体51から側方に延びて基材2の導電性パターン3が配置された一面2bから上方に突出するように短冊状に立設された放熱フィン52Aからなる、アルミニウム、銅等の金属製ヒートシンクである。
(Modification 1)
FIG. 3A is a perspective view showing the heat radiating substrate 1 according to the modified example 1 with a viewpoint on the heating element side, and FIG. 3B is a schematic cross-sectional view showing an example of the heat radiating substrate 1 according to the modified example 1.
As shown in FIG. 3, the radiator 5A may be arranged on the one side 2b side where the conductive pattern 3 of the base material 2 is arranged. The heat radiating body 5A has a base body 51 that comes into contact with the metal base 41 of the LED 4A as a heat generating body and receives heat generated by the LED 4A by heat conduction, and a conductive pattern 3 of the base material 2 extending laterally from the base body 51. It is a metal heat sink made of aluminum, copper, etc., which is composed of heat radiating fins 52A erected in a strip shape so as to project upward from one surface 2b on which the above-mentioned is arranged.
 放熱体5Aは、基材2の一面2aを覆う樹脂体6で発熱体4に密着して接触するように基材2と一体的に固定されている。このように、導電性パターン3と同じ側に発熱体4及び放熱体5Aを実装することでコストを抑制しつつ放熱基板1を薄型化することができる。 The heat radiating element 5A is a resin body 6 that covers one surface 2a of the base material 2 and is integrally fixed to the base material 2 so as to be in close contact with the heating element 4. In this way, by mounting the heating element 4 and the heat radiating element 5A on the same side as the conductive pattern 3, the heat radiating substrate 1 can be made thinner while suppressing the cost.
 (変形例2)
 図4Aは変形例2に係る放熱基板1を発熱体側に視点を置いて示す斜視図、図4Bは変形例2に係る放熱基板1の一例を示す断面模式図である。
 放熱体5Bは、図4に示すように、放熱フィン52Bが放熱基板1の側部1aから突出するように配置されてもよい。放熱体5Bは、発熱体としてのLED4Aの金属ベース41と接触してLED4Aで発生する熱を熱伝導によって受け取るベース体51と、ベース体51から側方に延びて樹脂体6の端面6aから突出するように短冊状に形成された放熱フィン52Bからなる、アルミニウム、銅等の金属製ヒートシンクである。
(Modification 2)
FIG. 4A is a perspective view showing the heat radiating substrate 1 according to the modified example 2 with a viewpoint on the heating element side, and FIG. 4B is a schematic cross-sectional view showing an example of the heat radiating substrate 1 according to the modified example 2.
As shown in FIG. 4, the heat radiating body 5B may be arranged so that the heat radiating fins 52B project from the side portion 1a of the heat radiating substrate 1. The heat radiating body 5B comes into contact with the metal base 41 of the LED 4A as a heating element and receives the heat generated by the LED 4A by heat conduction, and the heat radiating body 5B extends laterally from the base body 51 and protrudes from the end surface 6a of the resin body 6. It is a metal heat sink made of aluminum, copper, or the like, which is composed of heat radiating fins 52B formed in a strip shape so as to be used.
 放熱体5Bは、基材2の一面2aを覆う樹脂体6で熱伝導性接着層8を介して発熱体4に密着して接触するように基材2と一体的に固定されている。また、放熱体5Bの基材2の一面2aと接触する部分である放熱フィン52Bも熱伝導性接着層8を介して基材2と一体的に固定されている。このように、放熱体5Bを、放熱フィン52Bが放熱基板1の側部1aから突出するように実装することでコストを抑制しつつ放熱基板1の全体をより薄型化することができる。 The heat radiating element 5B is a resin body 6 that covers one surface 2a of the base material 2 and is integrally fixed to the base material 2 so as to be in close contact with the heating element 4 via the heat conductive adhesive layer 8. Further, the heat radiating fins 52B, which are the portions of the heat radiating body 5B that come into contact with one surface 2a of the base material 2, are also integrally fixed to the base material 2 via the heat conductive adhesive layer 8. In this way, by mounting the heat radiating body 5B so that the heat radiating fins 52B project from the side portion 1a of the heat radiating board 1, the entire heat radiating board 1 can be made thinner while suppressing the cost.
 (樹脂体)
 樹脂体6は、基材2の一面2aを覆い放熱体5を発熱体4に密着して接触するように基材2に一体的に固定している。具体的には、図1Bに示すように、放熱体5のベース体51の発熱体4の金属ベース41と接触する方向と交差する方向に突出して形成された鍔部51aと嵌り合う鉤部61を有し、全体が基材2の一面2aを覆うように形成されている。
(Resin body)
The resin body 6 covers one surface 2a of the base material 2 and integrally fixes the heat radiating body 5 to the base material 2 so as to be in close contact with the heating element 4. Specifically, as shown in FIG. 1B, a hook portion 61 that fits with a flange portion 51a formed so as to project in a direction intersecting the direction of contact with the metal base 41 of the heating element 4 of the base body 51 of the radiator body 5. Is formed so as to cover one side 2a of the base material 2 as a whole.
 樹脂体6は、基材2に対して二次モールド成形可能な樹脂材料からなる熱可塑性樹脂で構成されている。具体的には、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリメタクリル酸メチル(PMMA)、ポリアミド(PA)、アクリロニトリルブタジエンスチレン(ABS)、ポリエチレン(PE)、ポリプロピレン(PP)、変性ポリフェニレンエーテル(m-PPE)、変性ポリフェニレンオキサイト(m-PPO)、環状オレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)からなる群より選択される熱可塑性樹脂が挙げられる。樹脂体6は、機械的強度と耐熱性を有し、基材2に対する接着性の観点からPET、PCが好ましい。 The resin body 6 is made of a thermoplastic resin made of a resin material that can be secondarily molded with respect to the base material 2. Specifically, polycarbonate (PC), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polyamide (PA), acrylic nitrile butadiene styrene (ABS), polyethylene (PE), polypropylene (PP), modified polyphenylene ether ( Examples thereof include thermoplastic resins selected from the group consisting of m-PPE), modified polyphenylene oxide (m-PPO), cyclic olefin copolymers (COC), and cycloolefin polymers (COP). The resin body 6 has mechanical strength and heat resistance, and PET and PC are preferable from the viewpoint of adhesiveness to the base material 2.
 基材2と樹脂体6とを強固に接着するように、基材2の一面2aにはバインダー層ADを形成することが好ましい。バインダー層ADを形成する場合は、基材2及び樹脂体6の素材と相性のよい樹脂を含むバインダーインクが使用される。
 例えば、基材2がPET樹脂フィルムで、二次成形される樹脂体6がPC、PET、PMMA、PA、ABS、PE、PP、m-PPE、m-PPO、COC、COPからなる群より選択される材料を含む場合、それぞれの樹脂材料と相溶性が高い樹脂として、アクリル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂、アクリロニトリルブタジエンスチレン樹脂、ポリウレタン系樹脂等からなる群より選択して使用することもできる。また、バインダー層ADの厚みは0.5~50μmが好ましい。尚、バインダー層ADに代えて、コロナ処理、プラズマ処理、溶剤処理、プライマー処理を施してもよい。これにより、基材2と樹脂体6の接着強度を高めることができる。
It is preferable to form a binder layer AD on one surface 2a of the base material 2 so that the base material 2 and the resin body 6 are firmly adhered to each other. When forming the binder layer AD, a binder ink containing a resin compatible with the materials of the base material 2 and the resin body 6 is used.
For example, the base material 2 is a PET resin film, and the secondary molded resin body 6 is selected from the group consisting of PC, PET, PMMA, PA, ABS, PE, PP, m-PPE, m-PPO, COC, and COP. When the material to be used is included, the resin having high compatibility with each resin material is composed of acrylic resin, polyamide resin, polyester resin, polycarbonate resin, polyolefin resin, acrylonitrile butadiene styrene resin, polyurethane resin and the like. It can also be selected from the group and used. The thickness of the binder layer AD is preferably 0.5 to 50 μm. Instead of the binder layer AD, corona treatment, plasma treatment, solvent treatment, and primer treatment may be performed. As a result, the adhesive strength between the base material 2 and the resin body 6 can be increased.
 (変形例3)
 図5Aは変形例3に係る放熱基板1を発熱体側に視点を置いて示す斜視図、図5Bは変形例3に係る放熱基板1の一例を示す断面模式図である。
 樹脂体6は光透過性の熱可塑性樹脂材料からなる熱可塑性樹脂で構成してもよい。この場合、図5Aに示すように、発熱体としてのLED4Aは発光面が基材2に対して横向きになるように配置し、LED4Aに対して、LED4Aが発する光を受けて外部へ出射するレンズ体6Aを樹脂体6と一体に形成するようにしてもよい。これにより、放熱体5を発熱体としてのLED4Aに密着して接触するように、基材2と一体的に固定する樹脂体6にLED4Aの発する光を外部に導くレンズ体6を一体化することによりレンズ等の部品を削減することができる。なお、図5Bにおいて、放熱体5としては、放熱フィン52Bが放熱基板1の側部1aから突出するように配置されている例を示しているが、放熱体5としては、放熱基板1の使用態様に応じて、放熱フィンの配置を変更してもよい。
(Modification 3)
FIG. 5A is a perspective view showing the heat radiating substrate 1 according to the modified example 3 with a viewpoint on the heating element side, and FIG. 5B is a schematic cross-sectional view showing an example of the heat radiating substrate 1 according to the modified example 3.
The resin body 6 may be made of a thermoplastic resin made of a light-transmitting thermoplastic resin material. In this case, as shown in FIG. 5A, the LED 4A as a heating element is arranged so that the light emitting surface faces sideways with respect to the base material 2, and the LED 4A receives the light emitted by the LED 4A and emits the light to the outside. The body 6A may be formed integrally with the resin body 6. As a result, the lens body 6 that guides the light emitted by the LED 4A to the outside is integrated with the resin body 6 that is integrally fixed to the base material 2 so that the heat radiating body 5 is in close contact with the LED 4A as a heating element. This makes it possible to reduce the number of parts such as lenses. Note that, in FIG. 5B, as the heat radiating body 5, an example in which the heat radiating fins 52B are arranged so as to project from the side portion 1a of the heat radiating board 1 is shown, but as the heat radiating body 5, the heat radiating board 1 is used. The arrangement of the heat radiating fins may be changed depending on the embodiment.
 (変形例4)
 図6は変形例4に係る放熱基板1の一例を示す断面模式図である。
 放熱基板1は、図6に示すように、発熱体としてのLED4AとLED4Aから伝達される熱を外部に放出する放熱体5が、立体的に賦形された基材2と樹脂体6からなる屈曲部1bで連結されている。
 基材2が熱成形等で賦形可能な熱可塑性樹脂からなるフィルムである場合は、基材2を3次元形状に賦形した状態で樹脂体6で基材2の一面2aを覆うとともに、放熱体5をLED4Aに密着して接触するように基材2と一体的に固定することで、複数の発熱体4と放熱体5を備えた立体的な放熱基板1を構成することができる。
(Modification example 4)
FIG. 6 is a schematic cross-sectional view showing an example of the heat dissipation substrate 1 according to the modified example 4.
As shown in FIG. 6, the heat radiating substrate 1 is composed of a base material 2 and a resin body 6 in which a heat radiating body 5 that discharges heat transmitted from the LED 4A as a heating element and the LED 4A to the outside is three-dimensionally shaped. It is connected by a bent portion 1b.
When the base material 2 is a film made of a thermoplastic resin that can be shaped by thermoforming or the like, the base material 2 is shaped into a three-dimensional shape, and the resin body 6 covers one side 2a of the base material 2 and at the same time. By integrally fixing the heat radiating body 5 to the base material 2 so as to be in close contact with the LED 4A, it is possible to form a three-dimensional heat radiating substrate 1 having a plurality of heat generating bodies 4 and the heat radiating body 5.
 (接合体)
 接合体7は、導電性の線材7Aが挙げられる。導電性の線材7Aは、図2Bに示すように、発熱体としてのLEDチップ43の金属配線44の一端部44aと基材2上に配置された導電パターン3とをワイヤーボンディングにより電気的に接合する導線であり、具体的には、金、銅、銀、白金、アルミニウム又はこれらの合金の金属線を用いることができる。特に、熱抵抗などに優れる金線が好ましい。
(Joint body)
Examples of the bonded body 7 include a conductive wire rod 7A. As shown in FIG. 2B, the conductive wire 7A electrically joins one end 44a of the metal wiring 44 of the LED chip 43 as a heating element and the conductive pattern 3 arranged on the base material 2 by wire bonding. Specifically, a metal wire of gold, copper, silver, platinum, aluminum or an alloy thereof can be used. In particular, a gold wire having excellent thermal resistance is preferable.
 (2)放熱基板の製造方法
 図7は放熱基板1の製造方法の概略の手順の一例を示すフローチャート図、図8は導電性パターン3が配置された基材2、発熱体4及び放熱体5を樹脂体6を充填する金型にセットした状態を示す断面模式図、図9は基材2の準備工程から発熱体4と導電性パターン3を電気的に接合するまでの各工程を示す図、図10は導電性パターン3が配置された基材2、複数の発熱体4及び放熱体5を樹脂体6を充填する金型にセットして基材2の連結部2aを3次元形状に賦形した状態を示す断面模式図である。
(2) Manufacturing Method of Heat Dissipating Board FIG. 7 is a flowchart showing an example of a schematic procedure of the manufacturing method of the heat dissipation board 1, and FIG. Is a schematic cross-sectional view showing a state in which is set in a mold filled with a resin body 6, and FIG. 9 is a diagram showing each step from the preparation step of the base material 2 to the electrical joining of the heating element 4 and the conductive pattern 3. In FIG. 10, the base material 2 on which the conductive pattern 3 is arranged, the plurality of heat generating bodies 4 and the heat radiating body 5 are set in a mold filled with the resin body 6, and the connecting portion 2a of the base material 2 has a three-dimensional shape. It is sectional drawing which shows the shaped state.
 放熱基板1は、図7に示すように、基材2の準備工程S11と、基材2上に導電性パターン3を形成する配線用めっき工程S12と、基材2、発熱体4及び放熱体5を二次モールド用金型に位置決めして、基材2の一面を覆い放熱体5を発熱体4に密着して接触するように基材2と一体的に固定する樹脂体6を二次モールドする樹脂充填工程S13と、導電性パターン3と発熱体4とを接合体7で電気的に接合する電気的接合工程S14と、を経て製造される。 As shown in FIG. 7, the heat radiating substrate 1 includes a base material 2 preparation step S11, a wiring plating step S12 for forming a conductive pattern 3 on the base material 2, a base material 2, a heating element 4, and a heat radiating body. A resin body 6 is secondary, in which 5 is positioned in a mold for secondary molding, one surface of the base material 2 is covered, and the heat radiating body 5 is integrally fixed to the base material 2 so as to be in close contact with the heat generating body 4. It is manufactured through a resin filling step S13 for molding and an electrical joining step S14 for electrically joining the conductive pattern 3 and the heating element 4 with the joining body 7.
 (基材の準備工程S11)
 基材の準備工程S11においては、まず、所定の形状及び大きさに形成された実質的に平坦なフィルム状の基材2に放熱体5のベース体51が基材2の導電性パターン3が形成された側に露出するように所定の貫通孔2cを形成する(図9A 参照)。また、図3に示す変形例1に係る放熱基板1においては、放熱フィン52Aが貫通して露出するように所定の貫通孔(不図示)を形成する。
(Base material preparation step S11)
In the base material preparation step S11, first, the base body 51 of the radiator 5 is formed on the substantially flat film-like base material 2 formed into a predetermined shape and size, and the conductive pattern 3 of the base material 2 is formed. A predetermined through hole 2c is formed so as to be exposed on the formed side (see FIG. 9A). Further, in the heat radiating substrate 1 according to the modification 1 shown in FIG. 3, a predetermined through hole (not shown) is formed so that the heat radiating fins 52A penetrate and are exposed.
 そして、基材2上に導電性パターン3を配置するために、基材2上に金属めっき成長のきっかけとなる金属ナノ粒子等の触媒粒子からなる下地層を所定のパターン状に形成する。尚、基材2は、金属ナノ粒子等の触媒粒子からなる触媒インクを均一に塗布するために、例えば、コロナ処理、プラズマ処理、溶剤処理、プライマー処理等の表面処理を施すことが好ましい。 Then, in order to arrange the conductive pattern 3 on the base material 2, a base layer made of catalyst particles such as metal nanoparticles that triggers the growth of metal plating is formed on the base material 2 in a predetermined pattern. The base material 2 is preferably subjected to surface treatment such as corona treatment, plasma treatment, solvent treatment, primer treatment, etc. in order to uniformly apply the catalyst ink composed of catalyst particles such as metal nanoparticles.
 基材2上に金属ナノ粒子等の触媒粒子からなる触媒インクを塗布する方法としては、インクジェット印刷方式、シルクスクリーン印刷方式、グラビア印刷方式、オフセット印刷方式、フレキソ印刷方式、ローラーコーター方式、刷毛塗り方式、スプレー方式、ナイフジェットコーター方式、パッド印刷方式、グラビアオフセット印刷方式、ダイコーター方式、バーコーター方式、スピンコーター方式、コンマコーター方式、含浸コーター方式、ディスペンサー方式、メタルマスク方式が挙げられるが、本実施形態においてはインクジェット印刷方式を用いている。 As a method of applying a catalyst ink composed of catalyst particles such as metal nanoparticles on the base material 2, an inkjet printing method, a silk screen printing method, a gravure printing method, an offset printing method, a flexo printing method, a roller coater method, and a brush coating method are used. Methods, spray method, knife jet coater method, pad printing method, gravure offset printing method, die coater method, bar coater method, spin coater method, comma coater method, impregnation coater method, dispenser method, metal mask method, etc. In this embodiment, an inkjet printing method is used.
 具体的には、1000cps以下、例えば、2cpsから30cpsの低粘度の触媒インクをインクジェット印刷方式で塗布した後、溶媒を揮発させ金属ナノ粒子のみを残す。その後、溶媒を除去し(乾燥)、金属ナノ粒子を焼結させる(焼成)。
 焼成温度は、100°C~300°Cが好ましく、150°C~200°Cがより好ましい。焼成温度が低すぎると、金属ナノ粒子同士の焼結が不十分となるとともに、金属ナノ粒子以外の成分が残ることで、密着性が得られない虞がある。また、焼成温度が高すぎると、基材2の劣化や歪みが発生する虞がある。
Specifically, after applying a low-viscosity catalyst ink of 1000 cps or less, for example, 2 cps to 30 cps by an inkjet printing method, the solvent is volatilized to leave only metal nanoparticles. Then, the solvent is removed (drying) and the metal nanoparticles are sintered (baking).
The firing temperature is preferably 100 ° C to 300 ° C, more preferably 150 ° C to 200 ° C. If the firing temperature is too low, the sintering of the metal nanoparticles will be insufficient, and components other than the metal nanoparticles will remain, so that adhesion may not be obtained. Further, if the firing temperature is too high, the base material 2 may be deteriorated or distorted.
 (配線用めっき工程S12)
 基材2上に形成された下地層に対し、電解めっきまたは無電解めっきを行うことにより、下地層の表面および内部にめっき金属を析出させ導電性パターン3を配置する(図9B 参照)。めっき方法は公知のめっき液およびめっき処理と同様であり、具体的に無電解銅めっき、電解銅めっきが挙げられる。
(Plating process for wiring S12)
By performing electrolytic plating or electroless plating on the base layer formed on the base material 2, plated metal is deposited on the surface and inside of the base layer, and the conductive pattern 3 is arranged (see FIG. 9B). The plating method is the same as that of known plating solutions and plating treatments, and specific examples thereof include electrolytic copper plating and electrolytic copper plating.
 (樹脂充填工程S13)
 樹脂充填工程S13では、まず、配線用めっき工程S12で基材2の導電性パターン3が配置された面とは反対側の一面2aに基材2と樹脂体6の樹脂素材の組み合わせに応じてバインダー層ADを形成するバインダーインクを塗布する(図9C 参照)。バインダーインクは、接着性樹脂を含み、スクリーン印刷、インクジェット印刷、スプレーコート、筆塗り等で塗布され、基材2と二次モールドされる樹脂体6との接着性を向上させる。
(Resin filling step S13)
In the resin filling step S13, first, in the wiring plating step S12, depending on the combination of the resin material of the base material 2 and the resin body 6 on one surface 2a on the side opposite to the surface on which the conductive pattern 3 of the base material 2 is arranged. A binder ink forming the binder layer AD is applied (see FIG. 9C). The binder ink contains an adhesive resin and is applied by screen printing, inkjet printing, spray coating, brush painting or the like to improve the adhesiveness between the base material 2 and the resin body 6 to be secondarily molded.
 次に、図8に示すように、導電性パターン3が配置された基材2、発熱体4及び放熱体5を二次モールド成形用金型に位置決めしてセットした状態で固定側型KA、可動側型KBを閉じて樹脂をキャビティCAに充填する。発熱体4は金属ベース41の一面41aが放熱体5のベース体51上に熱伝導性接着層8を介して接着され、放熱体5が可動側型KBに固定される。これにより、発熱体4及び放熱体5を位置精度よく配置できる。そして、基材2の一面2bを覆い放熱体5を発熱体4に密着して接触するように基材2と一体的に固定する樹脂体6が形成される(図9D 参照)。 Next, as shown in FIG. 8, the fixed-side mold KA, in a state where the base material 2, the heating element 4 and the heating element 5 on which the conductive pattern 3 is arranged are positioned and set on the secondary mold forming die, The movable side type KB is closed and the cavity CA is filled with resin. In the heating element 4, one surface 41a of the metal base 41 is adhered to the base body 51 of the heat radiating body 5 via the heat conductive adhesive layer 8, and the heat radiating body 5 is fixed to the movable side type KB. As a result, the heating element 4 and the heat radiating element 5 can be arranged with high positional accuracy. Then, a resin body 6 is formed which covers one surface 2b of the base material 2 and integrally fixes the heat radiating element 5 to the base material 2 so as to be in close contact with the heating element 4 (see FIG. 9D).
 変形例3に係る複数の発熱体4と放熱体5を備えた立体的な放熱基板1を製造する場合には、図10に示すように、導電性パターン3が配置された基材2、複数の発熱体としてのLED4A及び放熱体5を二次モールド成形用金型に位置決めした状態で、固定側型KA、可動側型KBを閉じて基材2の発熱体4及び放熱体5が配置された領域を繋ぐ連結部2aを三次元形状に賦形する。そして、樹脂をキャビティCAに充填することで厚さ方向に屈曲した基材2とキャビティCAに充填された樹脂で3次元形状の屈曲部1b(図6 参照)を形成する。 When manufacturing a three-dimensional heat-dissipating substrate 1 provided with a plurality of heating elements 4 and a heat-dissipating element 5 according to a modification 3, as shown in FIG. 10, a plurality of base materials 2 on which a conductive pattern 3 is arranged are arranged. The heating element 4 and the heating element 5 of the base material 2 are arranged by closing the fixed side mold KA and the movable side mold KB in a state where the LED 4A and the heating element 5 as the heating element are positioned in the mold for secondary molding. The connecting portion 2a connecting the above regions is shaped into a three-dimensional shape. Then, by filling the cavity CA with the resin, the base material 2 bent in the thickness direction and the resin filled in the cavity CA form a bent portion 1b (see FIG. 6) having a three-dimensional shape.
 (電気的接合工程S14)
 電気的接合工程S14では、導電性パターン3とLEDチップ43の金属配線44の一端部44a(図2B 参照)を接合体7としての導電性の線材7Aで超音波利用のワイヤーボンディング方法で電気的及び機械的に接合する(図9E 参照)。導電性の線材としては、金ワイヤー、アルミワイヤーなどを使用することができるが、アルミニウムを主成分とするアルミワイヤーを用いることで、ワイヤーボンディング時の熱によって、基材2が溶融したり変形することを抑制することができる。
(Electrical joining step S14)
In the electrical bonding step S14, the conductive pattern 3 and the one end portion 44a (see FIG. 2B) of the metal wiring 44 of the LED chip 43 are electrically connected by a wire bonding method using ultrasonic waves with the conductive wire rod 7A as the bonding body 7. And mechanically join (see FIG. 9E). A gold wire, an aluminum wire, or the like can be used as the conductive wire, but by using an aluminum wire containing aluminum as a main component, the base material 2 is melted or deformed by the heat at the time of wire bonding. It can be suppressed.
 このように、本実施形態に係る放熱基板1の製造方法によれば、部品点数及び組立工数を低減してコストを削減しつつ、密着性を向上させるとともに全体を薄型化することができる。 As described above, according to the method for manufacturing the heat radiating substrate 1 according to the present embodiment, it is possible to reduce the number of parts and the number of assembly steps, reduce the cost, improve the adhesion, and reduce the overall thickness.
 「第2実施形態」
 図11Aは本実施形態に係る放熱基板1Aを発熱体側に視点を置いて示す斜視図、図11Bは放熱基板1Aの一例を示す断面模式図である。
 本実施形態に係る放熱基板1Aは、発熱体4を、基材2を貫通して配置された放熱体5の一面となるベース体51に密着して接触するように後実装して導電性パターン3と電気的に接合する点で、発熱体4が先に実装される第1実施形態に係る放熱基板1とは異なっている。従って、第1実施形態に係る放熱基板1と共通する構成要素には同一の符号を付し、その詳細な説明は省略する。
"Second embodiment"
FIG. 11A is a perspective view showing the heat radiating substrate 1A according to the present embodiment with a viewpoint on the heating element side, and FIG. 11B is a schematic cross-sectional view showing an example of the heat radiating substrate 1A.
In the heat radiating substrate 1A according to the present embodiment, the heating element 4 is post-mounted so as to be in close contact with the base body 51 which is one surface of the radiating element 5 arranged so as to penetrate the base material 2 and have a conductive pattern. It is different from the heat radiating substrate 1 according to the first embodiment in which the heating element 4 is mounted first in that it is electrically joined to the heating element 3. Therefore, the components common to the heat radiating substrate 1 according to the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
(1)放熱基板の全体構成
 放熱基板1Aは、図11Aに示すように、樹脂からなり導電性パターン3が配置された基材2と、基材2を貫通して配置された放熱体5と、基材2の一面を覆い放熱体5の一面が基材2から露出するように放熱体5を基材2と一体的に固定する樹脂体6と、放熱体5の一面と密着して接触し導電性パターン3と電気的に接合された発熱体4と、を備えて構成されている。
(1) Overall Configuration of Heat Dissipating Board As shown in FIG. 11A, the heat radiating board 1A includes a base material 2 made of resin and having a conductive pattern 3 arranged therein, and a heat radiating body 5 arranged so as to penetrate the base material 2. The resin body 6 that covers one surface of the base material 2 and integrally fixes the heat radiating body 5 to the base material 2 so that one side of the heat radiating body 5 is exposed from the base material 2 and the resin body 6 are in close contact with one side of the heat radiating body 5. It is configured to include a heat generating body 4 electrically bonded to the conductive pattern 3.
 (発熱体)
 本実施形態においては、発熱体4の一例として、パワーLED4B(以降単にLEDと記す)を実装している。LED4Bは、図11Bに示すように、反射キャビティを有するケース体41Bと、LEDチップ43を支えるチップ取付け部42Bと、金属リードフレーム44Bと、チップ取付け部42Bの表面上に実装されたLEDチップ43と、チップ取付け部42Bと接触してLEDチップ43の熱を熱伝導によって受け取る伝熱部45Bと、金属リードフレーム44Bの一端に設けられた外部端子46と、LEDチップ43を覆うドーム状の封止体47とを備えて構成されている。
(Heating element)
In the present embodiment, as an example of the heating element 4, a power LED 4B (hereinafter, simply referred to as an LED) is mounted. As shown in FIG. 11B, the LED 4B includes a case body 41B having a reflection cavity, a chip mounting portion 42B that supports the LED chip 43, a metal lead frame 44B, and an LED chip 43 mounted on the surface of the chip mounting portion 42B. A heat transfer portion 45B that contacts the chip mounting portion 42B and receives heat of the LED chip 43 by heat conduction, an external terminal 46 provided at one end of the metal lead frame 44B, and a dome-shaped seal that covers the LED chip 43. It is configured to include a stop body 47.
 (放熱体)
 放熱体5は、発熱体としてのLED4Bの伝熱部45Bと接触してLED4Bで発生する熱を熱伝導によって受け取るベース体51と、ベース体51に短冊状に立設された放熱フィン42からなる、アルミニウム、銅等の金属製ヒートシンクである。
 また、放熱体5は、熱伝導率が1(W/m・K)以上の熱伝導性樹脂からなるヒートシンクであってもよい。
(Radiator)
The heat radiating body 5 includes a base body 51 that comes into contact with the heat transfer portion 45B of the LED 4B as a heat generating body and receives heat generated by the LED 4B by heat conduction, and a heat radiating fin 42 erected in a strip shape on the base body 51. , Aluminum, copper and other metal heat sinks.
Further, the radiator 5 may be a heat sink made of a heat conductive resin having a thermal conductivity of 1 (W / m · K) or more.
 LED4Bの伝熱部45Bと放熱体5のベース体51との間には熱伝導性接着層8が設けられている。熱伝導性接着層8を介して発熱体4と放熱体5とが接触することで、発熱体4からの熱を放熱体5に効率よく伝導することができる。
 また、基材2と放熱体5との間にも熱伝導性接着層8が設けられ、基材2の熱を放熱体5へ効率よく伝導するようになっている。特に、基材2上に配置された導電性パターン3の熱は放熱体5へ伝導され外部へ放熱される。
A heat conductive adhesive layer 8 is provided between the heat transfer portion 45B of the LED 4B and the base body 51 of the radiator body 5. When the heating element 4 and the heating element 5 come into contact with each other via the heat conductive adhesive layer 8, the heat from the heating element 4 can be efficiently conducted to the heating element 5.
Further, a heat conductive adhesive layer 8 is also provided between the base material 2 and the heat radiating body 5, so that the heat of the base material 2 is efficiently conducted to the heat radiating body 5. In particular, the heat of the conductive pattern 3 arranged on the base material 2 is conducted to the radiator body 5 and radiated to the outside.
 (接合体)
 後実装される発熱体4としてのLED4Bの外部端子46と導電性パターン3とを電気的に接合する接合体としては、はんだ7Bが挙げられる。はんだ7Bは、基材2の軟化点より低温の溶融温度を有する低温はんだが望ましく、例えば、錫(Sn)とビスマス(Bi)との合金(SnBi)、錫(Sn)とビスマス(Bi)とニッケル(Ni)と銅(Cu)との合金(SnBiNiCu)、錫(Sn)とビスマス(Bi)と銅(Cu)とアンチモン(Sb)との合金(SnBiCuSb)、錫(Sn)と銀(Ag)とビスマス(Bi)との合金(SnAgBi)、錫(Sn)とインジウム(In)との合金(SnIn)、錫(Sn)とインジウム(In)とビスマス(Bi)との合金(SnInBi)、又は、基材2の軟化点と比較して相対的に低い融点を持つその他の合金とビスマス(Bi)及び/又はインジウム(In)とのその他の組み合わせとすることができ、例えば基材2としてポリエチレンテレフタレート(PET)を使用する場合は、基材2の軟化点より低い120~140℃の融点を有することが望ましい。
(Joint body)
Solder 7B can be mentioned as a joint body that electrically joins the external terminal 46 of the LED 4B as the heating element 4 to be mounted later and the conductive pattern 3. The solder 7B is preferably a low-temperature solder having a melting point lower than the softening point of the base material 2, and is, for example, an alloy of tin (Sn) and bismuth (Bi) (SnBi), tin (Sn) and bismuth (Bi). Alloy of nickel (Ni) and copper (Cu) (SnBiNiCu), alloy of tin (Sn) and bismuth (Bi) and copper (Cu) and antimony (Sb) (SnBiCuSb), tin (Sn) and silver (Ag) ) And an alloy of bismuth (Bi) (SnAgBi), an alloy of tin (Sn) and indium (In) (SnIn), an alloy of tin (Sn) and indium (In) and bismuth (Bi) (SnInBi), Alternatively, it can be another combination of bismuth (Bi) and / or indium (In) with another alloy having a melting point relatively low as compared with the softening point of the base material 2, for example, as the base material 2. When polyethylene terephthalate (PET) is used, it is desirable to have a melting point of 120 to 140 ° C., which is lower than the softening point of the base material 2.
 基材2の軟化点よりも低い融点を持つはんだペーストを用いることにより、基材2は溶融又はその他の変形をしない一方で、はんだペーストは溶融して導電性パターン3と化学的かつ物理的に接合し得る状態になる。そして、はんだが固化して、はんだを介して導電性パターン3に外部端子46が電気的に接合される。 By using a solder paste having a melting point lower than the softening point of the substrate 2, the substrate 2 does not melt or otherwise deform, while the solder paste melts and chemically and physically with the conductive pattern 3. It will be in a state where it can be joined. Then, the solder is solidified, and the external terminal 46 is electrically bonded to the conductive pattern 3 via the solder.
 また、外部端子46と導電性パターン3との接合には、レーザーはんだ付けや光焼成はんだ付けを用いてもよい。この場合は、こてはんだ付けに比べて、非接触で基材2に負荷を与えないことから、はんだ7Bとしては特に低温はんだに限らず、通常のはんだでもよい。 Further, laser soldering or light firing soldering may be used for joining the external terminal 46 and the conductive pattern 3. In this case, the solder 7B is not limited to low-temperature solder, and may be ordinary solder because it is non-contact and does not give a load to the base material 2 as compared with trowel soldering.
 (2)放熱基板の製造方法
 図12は本実施形態に係る放熱基板1Aの製造方法の概略の手順の一例を示すフローチャート図、図13は貫通孔2cが形成され導電性パターン3が配置された基材2、発熱体4及び放熱体5を樹脂体6を充填する金型にセットした状態を示す断面模式図、図14は基材2の準備工程から発熱体4と導電性パターン3を電気的に接合するまでの各工程を示す図である。
(2) Manufacturing Method of Heat Dissipating Board FIG. 12 is a flowchart showing an example of a schematic procedure of the manufacturing method of the heat dissipation board 1A according to the present embodiment, and FIG. 13 shows a through hole 2c in which a through hole 2c is formed and a conductive pattern 3 is arranged. A schematic cross-sectional view showing a state in which the base material 2, the heating element 4 and the heat radiating body 5 are set in a mold filled with the resin body 6, FIG. 14 shows electricity of the heating element 4 and the conductive pattern 3 from the preparation process of the base material 2. It is a figure which shows each process until joining with each other.
 放熱基板1は、図12に示すように、基材2の準備工程S21と、基材2上に導電性パターン3を形成する配線用めっき工程S22と、基材2及び放熱体5を二次モールド用金型に位置決めして、基材2の一面を覆い、放熱体5の一面が基材2から露出するように放熱体5を基材2と一体的に固定する樹脂体6を形成するように、樹脂を二次モールドする樹脂充填工程S23と、放熱体5と発熱体4を密着させて接着する発熱体接着工程S24と、導電性パターン3と発熱体4とを接合体7で電気的に接合する電気的接合工程S25と、を経て製造される。 As shown in FIG. 12, the heat radiating substrate 1 is secondary to the preparation step S21 of the base material 2, the plating step S22 for wiring for forming the conductive pattern 3 on the base material 2, and the base material 2 and the heat radiating body 5. Positioning on a mold for molding, a resin body 6 is formed which covers one surface of the base material 2 and integrally fixes the heat radiating body 5 to the base material 2 so that one side of the heat radiating body 5 is exposed from the base material 2. As described above, the resin filling step S23 for secondary molding the resin, the heating element bonding step S24 for adhering the radiator 5 and the heating element 4 in close contact with each other, and the conductive pattern 3 and the heating element 4 are electrically connected by the bonding body 7. It is manufactured through an electrical joining step S25 for joining.
 (基材の準備工程S21)
 基材の準備工程S21においては、まず、所定の形状及び大きさに形成された実質的に平坦なフィルム状の基材2に放熱体5のベース体51の一部が基材2の導電性パターン3が形成された側に露出するように所定の貫通孔2cを形成する(図14A 参照)。
(Base material preparation step S21)
In the base material preparation step S21, first, a part of the base body 51 of the radiator body 5 is conductive to the base material 2 on a substantially flat film-like base material 2 formed into a predetermined shape and size. A predetermined through hole 2c is formed so as to be exposed on the side where the pattern 3 is formed (see FIG. 14A).
 そして、基材2上に導電性パターン3を配置するために、基材2上に金属めっき成長のきっかけとなる金属ナノ粒子等の触媒粒子からなる下地層を所定のパターン状に形成する。尚、基材2は、金属ナノ粒子等の触媒粒子からなる触媒インクを均一に塗布するために、例えば、コロナ処理、プラズマ処理、溶剤処理、プライマー処理等の表面処理を施すことが好ましい。 Then, in order to arrange the conductive pattern 3 on the base material 2, a base layer made of catalyst particles such as metal nanoparticles that triggers the growth of metal plating is formed on the base material 2 in a predetermined pattern. The base material 2 is preferably subjected to surface treatment such as corona treatment, plasma treatment, solvent treatment, primer treatment, etc. in order to uniformly apply the catalyst ink composed of catalyst particles such as metal nanoparticles.
 (配線用めっき工程S22)
 基材2上に形成された下地層に対し、電解めっきまたは無電解めっきを行うことにより、下地層の表面および内部にめっき金属を析出させ導電性パターン3を配置する(図14B 参照)。めっき方法は公知のめっき液およびめっき処理と同様であり、具体的に無電解銅めっき、電解銅めっきが挙げられる。
(Plating process for wiring S22)
By performing electrolytic plating or electroless plating on the base layer formed on the base material 2, plated metal is deposited on the surface and inside of the base layer, and the conductive pattern 3 is arranged (see FIG. 14B). The plating method is the same as that of known plating solutions and plating treatments, and specific examples thereof include electrolytic copper plating and electrolytic copper plating.
 (樹脂充填工程S23)
 樹脂充填工程S23では、まず、配線用めっき工程S22で基材2の導電性パターン3が配置された面とは反対側の一面2aに基材2と樹脂体6の樹脂素材の組み合わせに応じてバインダー層ADを形成するバインダーインクを塗布する(図14C 参照)。バインダーインクは、接着性樹脂を含み、スクリーン印刷、インクジェット印刷、スプレーコート、筆塗り等で塗布され、基材2と二次モールドされる樹脂体6との接着性を向上させる。また、基材2の一面2aが放熱体5のベース体51と接する領域には、熱伝導性接着層8を塗布することにより、基材2から放熱体5への熱伝導をより高め、基材2上に配置された導電性パターン3等の熱を放熱体5を介して放熱することが可能となる。
(Resin filling step S23)
In the resin filling step S23, first, in the wiring plating step S22, depending on the combination of the resin material of the base material 2 and the resin body 6 on one surface 2a on the side opposite to the surface on which the conductive pattern 3 of the base material 2 is arranged. A binder ink forming the binder layer AD is applied (see FIG. 14C). The binder ink contains an adhesive resin and is applied by screen printing, inkjet printing, spray coating, brush painting or the like to improve the adhesiveness between the base material 2 and the resin body 6 to be secondarily molded. Further, by applying the heat conductive adhesive layer 8 to the region where one surface 2a of the base material 2 is in contact with the base body 51 of the heat radiating body 5, the heat conduction from the base material 2 to the heat radiating body 5 is further enhanced. The heat of the conductive pattern 3 or the like arranged on the material 2 can be dissipated through the radiator body 5.
 次に、図13に示すように、導電性パターン3が配置された基材2及び放熱体5を、二次モールド成形用金型に位置決めしてセットした状態で固定側型KA、可動側型KBを閉じて樹脂をキャビティCAに充填する。これにより、基材2の導電性パターン3が配置された面とは反対側の一面2aを覆い放熱体5のベース体51の一部が基材2から露出するように基材2と一体的に固定する樹脂体6が形成される(図14D 参照)。 Next, as shown in FIG. 13, the fixed side mold KA and the movable side mold are set in a state where the base material 2 and the radiator 5 on which the conductive pattern 3 is arranged are positioned and set on the secondary molding die. The KB is closed and the cavity CA is filled with resin. As a result, it covers one surface 2a on the side opposite to the surface on which the conductive pattern 3 of the substrate 2 is arranged, and is integrated with the substrate 2 so that a part of the base 51 of the radiator 5 is exposed from the substrate 2. A resin body 6 to be fixed to is formed (see FIG. 14D).
 (発熱体接着工程S24)
 発熱体4としてのLED4Bは伝熱部45Bが基材2から露出する放熱体5のベース体51上に熱伝導性接着層8を介して接着される(図14E 参照)。本実施形態においては、熱伝導性接着層8として、アクリル系粘着剤を含む熱伝導性両面テープを用いてもよい。熱伝導性両面テープを用いることで、LED4Bの放熱体5のベース体51上への接着が容易となる。
(Heading element bonding step S24)
The LED 4B as the heating element 4 is bonded to the base body 51 of the heat radiating body 5 in which the heat transfer portion 45B is exposed from the base material 2 via the heat conductive adhesive layer 8 (see FIG. 14E). In the present embodiment, as the heat conductive adhesive layer 8, a heat conductive double-sided tape containing an acrylic pressure-sensitive adhesive may be used. By using the heat conductive double-sided tape, the LED 4B can be easily adhered to the base body 51 of the heat radiating body 5.
 (電気的接合工程S25)
 電気的接合工程S25では、基材2上に形成された導電性パターン3上にLED4Bの外部端子46を接合体7としてのはんだ7Bで接合するために、まず、基材2の導電性パターン3が配置された一面2b側にソルダーレジストを例えばスクリーン印刷によって塗布する。
 次に、導電性パターン3、LED4Bの外部端子46にはんだペーストを塗布する。はんだペーストの塗布は、ステンシル印刷装置、スクリーン印刷装置、ディスペンサー装置等の公知の装置を用いて行うことができる。本実施形態においては、ディスペンサー装置を用いてはんだペーストを塗布する。
(Electrical joining step S25)
In the electrical joining step S25, in order to join the external terminal 46 of the LED 4B on the conductive pattern 3 formed on the base material 2 with the solder 7B as the joining body 7, first, the conductive pattern 3 of the base material 2 is joined. Solder resist is applied, for example, by screen printing on the side 2b on one side on which the solder is arranged.
Next, the solder paste is applied to the external terminals 46 of the conductive pattern 3 and the LED 4B. The solder paste can be applied using a known device such as a stencil printing device, a screen printing device, and a dispenser device. In this embodiment, the solder paste is applied using a dispenser device.
 そして、はんだペーストを塗布後、はんだを溶融、固化させて、導電性パターン3上にはんだ7Bを介してLED4Bの外部端子46を電気的に接合する。
 基材2が熱成形等で変形可能な熱可塑性樹脂からなるフィルムである場合は、その軟化点が低いが、例えば、はんだ7Bとして低温はんだを用いてこてはんだ付けすることで、基材2は電気的接合工程S25の熱によって溶融又はその他の変形をすることはない。
 また、はんだ付けは、レーザーはんだ付けや光焼成はんだ付けを用いてもよい。この場合は、非接触で基材2に負荷を与えないことから、はんだ7Bとしては特に低温はんだに限らず、通常のはんだでもよい。
Then, after applying the solder paste, the solder is melted and solidified, and the external terminal 46 of the LED 4B is electrically bonded onto the conductive pattern 3 via the solder 7B.
When the base material 2 is a film made of a thermoplastic resin that can be deformed by thermal molding or the like, its softening point is low. It is not melted or otherwise deformed by the heat of the electrical joining step S25.
Further, as the soldering, laser soldering or light firing soldering may be used. In this case, the solder 7B is not limited to low-temperature solder, and may be ordinary solder because it is non-contact and does not give a load to the base material 2.
 このように、本実施形態に係る放熱基板1の製造方法によれば、部品点数及び組立工数を低減してコストを削減しつつ、部品の位置精度及び密着性を向上させるとともに全体を薄型化することができる。 As described above, according to the method for manufacturing the heat radiating substrate 1 according to the present embodiment, the number of parts and the number of assembly steps are reduced to reduce the cost, the position accuracy and the adhesion of the parts are improved, and the whole is made thinner. be able to.
1、1A・・・放熱基板
 2・・・基材
 3・・・導電性パターン
 4・・・発熱体
  4A、4B・・・LED
  41・・・金属ベース
  45B・・・伝熱部
 5、5A、5B・・・放熱体
  51・・・ベース体
  52、52B・・・放熱フィン
 6・・・樹脂体
  6A・・・レンズ体
 7・・・接合体
  7A・・・線材
  7B・・・はんだ
 8・・・熱伝導性接着層
 AD・・・バインダー層
1, 1A ... Heat dissipation board 2 ... Base material 3 ... Conductive pattern 4 ... Heating element 4A, 4B ... LED
41 ... Metal base 45B ... Heat transfer part 5, 5A, 5B ... Heat radiator 51 ... Base body 52, 52B ... Radiation fin 6 ... Resin body 6A ... Lens body 7・ ・ ・ Bonded body 7A ・ ・ ・ Wire rod 7B ・ ・ ・ Solder 8 ・ ・ ・ Thermally conductive adhesive layer AD ・ ・ ・ Binder layer

Claims (14)

  1.  樹脂からなり導電性パターンが配置された基材と、
     前記基材を貫通して配置された発熱体と、
     前記発熱体から伝達される熱を外部に放出する放熱体と、
     前記基材の一面を覆い前記放熱体を前記発熱体に密着して接触するように前記基材と一体的に固定する樹脂体と、
     前記発熱体と前記導電性パターンを電気的に接合する接合体と、を備えた、
     ことを特徴とする放熱基板。
    A base material made of resin and having a conductive pattern arranged on it,
    A heating element arranged through the base material and
    A heating element that releases heat transferred from the heating element to the outside,
    A resin body that covers one surface of the base material and integrally fixes the heat radiating element to the base material so as to be in close contact with the heating element.
    A bonding element that electrically joins the heating element and the conductive pattern.
    A heat-dissipating board characterized by this.
  2.  前記放熱体は、前記基材の前記導電性パターンが配置された面とは反対側の面に配置されている、
     ことを特徴とする請求項1に記載の放熱基板。
    The radiator is arranged on a surface of the substrate opposite to the surface on which the conductive pattern is arranged.
    The heat radiating substrate according to claim 1.
  3.  前記放熱体は、前記基材の前記導電性パターンが配置された面に配置されている、
     ことを特徴とする請求項1に記載の放熱基板。
    The radiator is arranged on the surface of the substrate on which the conductive pattern is arranged.
    The heat radiating substrate according to claim 1.
  4.  前記放熱体は、前記樹脂体の側面に配置されている、
     ことを特徴とする請求項1に記載の放熱基板。
    The radiator is arranged on the side surface of the resin body.
    The heat radiating substrate according to claim 1.
  5.  樹脂からなり導電性パターンが配置された基材と、
     前記基材を貫通して配置された放熱体と、
     前記基材の一面を覆い前記放熱体の一面が前記基材から露出するように前記放熱体を前記基材と一体的に固定する樹脂体と、
     前記放熱体の一面と密着して接触し前記導電性パターンと電気的に接合された発熱体と、を備えた、
     ことを特徴とする放熱基板。
    A base material made of resin and having a conductive pattern arranged on it,
    A radiator arranged through the base material and
    A resin body that covers one surface of the base material and integrally fixes the heat radiating body to the base material so that one side of the heat radiating body is exposed from the base material.
    A heating element that is in close contact with one surface of the heat radiating body and is electrically bonded to the conductive pattern.
    A heat-dissipating board characterized by this.
  6.  前記基材は変形可能なフィルムであり、立体的な形状に賦形されている、
     ことを特徴とする請求項1ないし5のいずれか1項に記載の放熱基板。
    The substrate is a deformable film and is shaped into a three-dimensional shape.
    The heat-dissipating substrate according to any one of claims 1 to 5, wherein the heat-dissipating substrate is characterized by the above.
  7.  前記樹脂体は、光透過性を有する、
     ことを特徴とする請求項1ないし6のいずれか1項に記載の放熱基板。
    The resin body has a light transmissive property.
    The heat-dissipating substrate according to any one of claims 1 to 6, wherein the heat-dissipating substrate is characterized by the above.
  8.  前記基材の一面と前記放熱体との間に熱伝導性接着層が配置されている、
     ことを特徴とする請求項1ないし7のいずれか1項に記載の放熱基板。
    A heat conductive adhesive layer is arranged between one surface of the base material and the radiator.
    The heat-dissipating substrate according to any one of claims 1 to 7, wherein the heat-dissipating substrate is characterized by the above.
  9.  前記基材の一面と前記樹脂体との間にバインダー層が設けられている、
     ことを特徴とする請求項1ないし8のいずれか1項に記載の放熱基板。
    A binder layer is provided between one surface of the base material and the resin body.
    The heat-dissipating substrate according to any one of claims 1 to 8, wherein the heat-dissipating substrate is characterized by the above.
  10.  前記発熱体と前記放熱体との間に熱伝導性接着層が設けられている、
     ことを特徴とする請求項1ないし9のいずれか1項に記載の放熱基板。
    A thermally conductive adhesive layer is provided between the heating element and the radiator.
    The heat-dissipating substrate according to any one of claims 1 to 9, wherein the heat-dissipating substrate is characterized by the above.
  11.  前記放熱体は、熱伝導率が1W/m・K以上の熱伝導性樹脂からなる、
     ことを特徴とする請求項1ないし10のいずれか1項に記載の放熱基板。
    The radiator is made of a heat conductive resin having a thermal conductivity of 1 W / m · K or more.
    The heat-dissipating substrate according to any one of claims 1 to 10.
  12.  導電性パターンが配置された基材と、
     前記基材を貫通して配置された発熱体と、
     前記発熱体から伝達される熱を外部に放出する放熱体と、
     前記基材の一面を覆い前記放熱体を前記発熱体に密着して接触するように前記基材と一体的に固定する樹脂体と、
     前記発熱体と前記導電性パターンを電気的に接合する接合体と、を備える放熱基板の製造方法であって、
     前記基材を準備する工程と、
     前記基材に貫通孔を形成する工程と、
     前記基材上に前記導電性パターンを配置する工程と、
     前記貫通孔が形成され前記導電性パターンが配置された前記基材と前記発熱体と前記放熱体を金型に載置して前記樹脂体を射出成形する工程と、
     前記導電性パターンと前記発熱体とを電気的に接合する工程と、を含む、
     ことを特徴とする放熱基板の製造方法。
    The base material on which the conductive pattern is placed and
    A heating element arranged through the base material and
    A heating element that releases heat transferred from the heating element to the outside,
    A resin body that covers one surface of the base material and integrally fixes the heat radiating element to the base material so as to be in close contact with the heating element.
    A method for manufacturing a heat-dissipating substrate comprising the heating element and a joining body for electrically joining the conductive pattern.
    The process of preparing the base material and
    The step of forming a through hole in the base material and
    The step of arranging the conductive pattern on the base material and
    A step of injecting and molding the resin body by placing the base material, the heating element, and the heat radiating element on which the through hole is formed and the conductive pattern is arranged on a mold.
    A step of electrically joining the conductive pattern and the heating element.
    A method for manufacturing a heat dissipation board, which is characterized by the fact that.
  13.  導電性パターンが配置された基材と、
     前記基材を貫通して配置された放熱体と、
     前記基材の一面を覆い前記放熱体の一面が前記基材から露出するように前記放熱体を前記基材と一体的に固定する樹脂体と、
     前記放熱体の一面と密着して接触し前記導電性パターンと電気的に接合された発熱体と、を備える放熱基板の製造方法であって、
     前記基材を準備する工程と、
     前記基材に貫通孔を形成する工程と、
     前記基材上に前記導電性パターンを配置する工程と、
     前記貫通孔が形成され前記導電性パターンが配置された前記基材と前記放熱体を金型に載置して前記樹脂体を射出成形する工程と、
     前記放熱体と前記発熱体を密着させて接着する工程と、
     前記導電性パターンと前記発熱体とを電気的に接合する工程と、を含む、
     ことを特徴とする放熱基板の製造方法。
    The base material on which the conductive pattern is placed and
    A radiator arranged through the base material and
    A resin body that covers one surface of the base material and integrally fixes the heat radiating body to the base material so that one side of the heat radiating body is exposed from the base material.
    A method for manufacturing a heat-dissipating substrate comprising a heating element that is in close contact with one surface of the heat-dissipating body and is electrically bonded to the conductive pattern.
    The process of preparing the base material and
    The step of forming a through hole in the base material and
    The step of arranging the conductive pattern on the base material and
    A step of injecting and molding the resin body by placing the base material on which the through hole is formed and the conductive pattern is arranged and the heat radiating body on a mold.
    The step of bringing the radiator and the heating element into close contact with each other and adhering them to each other.
    A step of electrically joining the conductive pattern and the heating element.
    A method for manufacturing a heat dissipation board, which is characterized by the fact that.
  14.  前記発熱体は、発光素子、半導体デバイス、コンデンサ、抵抗チップのいずれかを含む、
     ことを特徴とする請求項1ないし13のいずれか1項に記載の放熱基板。
     
    The heating element includes any of a light emitting element, a semiconductor device, a capacitor, and a resistance chip.
    The heat-dissipating substrate according to any one of claims 1 to 13, wherein the heat-dissipating substrate is characterized by the above.
PCT/JP2020/049094 2020-12-28 2020-12-28 Heat dissipation substrate and method for manufacturing same WO2022144955A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/049094 WO2022144955A1 (en) 2020-12-28 2020-12-28 Heat dissipation substrate and method for manufacturing same
JP2021531260A JP6963269B1 (en) 2020-12-28 2020-12-28 Heat dissipation board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049094 WO2022144955A1 (en) 2020-12-28 2020-12-28 Heat dissipation substrate and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2022144955A1 true WO2022144955A1 (en) 2022-07-07

Family

ID=78409747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049094 WO2022144955A1 (en) 2020-12-28 2020-12-28 Heat dissipation substrate and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6963269B1 (en)
WO (1) WO2022144955A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897329A (en) * 1994-09-28 1996-04-12 Ibiden Co Ltd Device having electronic device therein
JPH11284094A (en) * 1998-03-27 1999-10-15 Hitachi Ltd Semiconductor device and method of manufacturing semiconductor device
JP2005135969A (en) * 2003-10-28 2005-05-26 Nec Semicon Package Solutions Ltd Bga-type semiconductor device with heat sink, and manufacturing method therefor
JP2011124251A (en) * 2009-12-08 2011-06-23 Renesas Electronics Corp Semiconductor device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897329A (en) * 1994-09-28 1996-04-12 Ibiden Co Ltd Device having electronic device therein
JPH11284094A (en) * 1998-03-27 1999-10-15 Hitachi Ltd Semiconductor device and method of manufacturing semiconductor device
JP2005135969A (en) * 2003-10-28 2005-05-26 Nec Semicon Package Solutions Ltd Bga-type semiconductor device with heat sink, and manufacturing method therefor
JP2011124251A (en) * 2009-12-08 2011-06-23 Renesas Electronics Corp Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP6963269B1 (en) 2021-11-05
JPWO2022144955A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
US8240882B2 (en) Light emitting diode module and method for making the same
US20140029201A1 (en) Power package module and manufacturing method thereof
US10718497B2 (en) Electronic product with light emitting function and method for manufacturing the same
CN100385648C (en) Semiconductor devices and electronic equipment
JP2010272556A (en) Mold package, and method for manufacturing the same
US11166369B2 (en) Light-emitting device and method for manufacturing same
JP6963269B1 (en) Heat dissipation board and its manufacturing method
JP6839427B1 (en) Display device and its manufacturing method
CN100499119C (en) LED Module
JP2009117124A (en) Light source unit
JP6903300B1 (en) Electronic device and its manufacturing method
JP2021077663A (en) Electronic apparatus
JP6610497B2 (en) Electronic device and manufacturing method thereof
JP6651699B2 (en) Manufacturing method of side emission type light emitting device
CN111341901B (en) Light emitting module
US20100302789A1 (en) LED Light Source Module and Method for Producing the Same
TWI683405B (en) Electronic device and its manufacturing method
JP4590294B2 (en) Manufacturing method of three-dimensional molded circuit components
JP2016207956A (en) Manufacturing method of hollow package, manufacturing method of solid state image sensor, hollow package, and solid state image sensor
KR102717135B1 (en) The electronic device with Thermal Interface Material Pad Using MID and MDM And Manufacturing Method Of The Same
CN217643497U (en) Photosensitive assembly and camera module
JP7288286B1 (en) Electronic device manufacturing method
JP7117706B1 (en) Display device and manufacturing method thereof
KR101145209B1 (en) Light emitting apparatus
CN102770978A (en) Metal-based electronic component packaging and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021531260

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967968

Country of ref document: EP

Kind code of ref document: A1