[go: up one dir, main page]

WO2022142804A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2022142804A1
WO2022142804A1 PCT/CN2021/130976 CN2021130976W WO2022142804A1 WO 2022142804 A1 WO2022142804 A1 WO 2022142804A1 CN 2021130976 W CN2021130976 W CN 2021130976W WO 2022142804 A1 WO2022142804 A1 WO 2022142804A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiator
frequency band
frequency
antenna assembly
Prior art date
Application number
PCT/CN2021/130976
Other languages
English (en)
French (fr)
Inventor
吴小浦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21913547.2A priority Critical patent/EP4270648A4/en
Publication of WO2022142804A1 publication Critical patent/WO2022142804A1/zh
Priority to US18/340,161 priority patent/US20230420846A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna assembly and an electronic device.
  • An antenna assembly is usually included in an electronic device to realize the communication function of the electronic device.
  • the communication performance of the antenna assembly in the electronic device in the related art is not good enough, and there is still room for improvement.
  • the present application provides an antenna assembly, the antenna assembly comprising:
  • the first antenna includes a first radiator, a first signal source and a first matching circuit, the first radiator has a first feeding point, and the first signal source is electrically connected to the first matching circuits to the first feed point;
  • the second antenna includes a second radiator, a third radiator, a second signal source and a second matching circuit
  • the second radiator and the first radiator are spaced apart and coupled to each other, so
  • the second radiator has a second feeding point
  • the second signal source is electrically connected to the second matching circuit to the second feeding point
  • the second signal source is also electrically connected to the second matching circuit
  • the circuit is connected to the third radiator, and the first antenna and the second antenna work together to realize the transmission and reception of electromagnetic wave signals in at least the first frequency range, the second frequency range and the third frequency range.
  • the present application further provides an electronic device including the antenna assembly according to the first aspect.
  • FIG. 1 is a schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 2 is a table of transmission and reception of electromagnetic wave signals supported by the antenna assembly in the present embodiment.
  • FIG. 3 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • FIG. 4 is an equivalent schematic diagram of FIG. 3 including the first adjustment circuit to achieve low impedance to ground in the second frequency range and the third frequency range.
  • FIG. 5 is a schematic diagram of simulation of partial S-parameters of the antenna assembly shown in FIG. 1 .
  • FIG. 6 is a schematic diagram of a first regulating circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a first regulating circuit provided by another embodiment of the present application.
  • FIG. 8 is a simulation diagram of the first adjustment circuit used for switching the frequency band supported by the first antenna within the range of the first frequency band.
  • FIG. 9 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a second regulating circuit in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a second regulating circuit in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of simulation of the antenna assembly shown in FIG. 9 .
  • FIG. 13 is a schematic diagram of an antenna assembly provided by yet another embodiment of the present application.
  • FIG. 14 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • FIG. 15 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • FIG. 16 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • FIG. 17 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • FIG. 18 is a schematic diagram of the size of the gap between the first radiator and the second radiator in the antenna assembly according to an embodiment of the application.
  • FIG. 19 is a perspective structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 20 is a cross-sectional view of the line I-I in FIG. 19 according to an embodiment.
  • FIG. 21 is a schematic diagram of the position of an electronic device in one embodiment.
  • FIG. 22 is a schematic diagram of the position of an electronic device in another embodiment.
  • a first aspect of the present application provides an antenna assembly, the antenna assembly comprising:
  • the first antenna includes a first radiator, a first signal source and a first matching circuit, the first radiator has a first feeding point, and the first signal source is electrically connected to the first matching circuits to the first feed point;
  • the second antenna includes a second radiator, a third radiator, a second signal source and a second matching circuit
  • the second radiator and the first radiator are spaced apart and coupled to each other, so
  • the second radiator has a second feeding point
  • the second signal source is electrically connected to the second matching circuit to the second feeding point
  • the second signal source is also electrically connected to the second matching circuit
  • the circuit is connected to the third radiator, and the first antenna and the second antenna work together to realize the transmission and reception of electromagnetic wave signals in at least the first frequency range, the second frequency range and the third frequency range.
  • the first antenna is used to transmit and receive electromagnetic wave signals in the first frequency range
  • the second antenna is used to transmit and receive electromagnetic wave signals in the second frequency range and the third frequency range
  • the first frequency range includes The LB frequency band
  • the second frequency band range includes the MHB frequency band
  • the third frequency band range includes the UHB frequency band.
  • the antenna assembly has a first resonance mode, a second resonance mode, a third resonance mode and a fourth resonance mode, so as to cover the transmission and reception of electromagnetic wave signals in the second frequency range and the third frequency range.
  • At least one resonance mode among the first resonance mode, the second resonance mode, the third resonance mode and the fourth resonance mode is generated by the third radiator, and at least the other resonance mode is generated by A portion of the first radiator is coupled to the signal coupling from the second radiator.
  • the first antenna further includes a first adjustment circuit, and the first adjustment circuit is used to adjust the impedance to ground of the electromagnetic wave signals in the second frequency range and the third frequency range.
  • the first radiator further has a first ground end, a first free end and a first connection point, the first radiator A ground terminal is grounded, the first connection point and the first feed point are arranged at intervals, and both are arranged between the first free terminal and the first ground terminal, and one end of the first regulating circuit grounding, the other end is electrically connected to the first connection point, the second radiator further includes a second grounding end and a second free end, the second grounding end is grounded, and the second free end is connected to the first A free end is relatively set.
  • the first connection point when one end of the first regulating circuit is grounded and the other end is electrically connected to the first connection point, the first connection point is disposed between the first ground end and the first feeding point , or, the first connection point is disposed between the first feeding point and the first free end.
  • the first resonance mode is generated from the second ground end of the second radiator to the second free end, so The first adjustment circuit and the first radiator generate the second resonant mode from the first connection point to the first free end, and the second signal source and the second feed point of the second radiator to the second The free end generates the third resonance mode, and the third radiator generates the fourth resonance mode.
  • the first resonance mode is the fundamental mode of the second antenna working from the second ground end to the second free end of the second radiator
  • the second resonance mode is the first antenna working at the the fundamental mode of the first adjusting circuit and the first radiator from the first connection point to the first free end
  • the third resonance mode is that the second antenna works on the second signal source and the second radiator from the second feeding point to the fundamental mode of the second free end
  • the fourth resonance mode is the fundamental mode of the second antenna operating on the third radiator.
  • the first adjustment circuit is further configured to switch the frequency band supported by the first antenna within the first frequency band range.
  • the first adjustment circuit includes a plurality of sub-adjustment circuits and a switch unit, the switch unit is electrically connected to the first connection point, the switch unit is also electrically connected to the plurality of sub-adjustment circuits to ground, and the switch unit Under the control of the control signal, at least one sub-regulation circuit of the plurality of sub-regulation circuits is electrically connected to the first connection point.
  • the sub-adjustment circuit includes at least one or a combination of capacitors, inductors, and resistors.
  • the frequency bands supported in the first frequency band include B28 frequency band, B20 frequency band, B5 frequency band and B8 frequency band
  • the first adjustment circuit is used to make the first antenna work in the B28 frequency band, B20 frequency band and B5 frequency band and any one of the B8 frequency bands, and can switch between B28 frequency bands, B20 frequency bands, B5 frequency bands and B8 frequency bands.
  • the second antenna further includes a second adjustment circuit, and the second adjustment circuit is used for switching the frequency bands supported by the second antenna in the second frequency band range and the third frequency band range.
  • one end of the second adjusting circuit is grounded, and the other end is electrically connected to the second matching circuit; or, the second radiator includes a second grounding end, a second free end, a second feeding point and a second The connection point, the second grounding end is grounded, the second free end is spaced apart from the first radiator, the second connection point is spaced apart from the second feeding point, and both are disposed between the second free end and the first radiator. Between the second ground terminals, one end of the second regulating circuit is grounded, and the other end is electrically connected to the second connection point.
  • the second connection point when one end of the second regulating circuit is grounded and the other end is electrically connected to the second connection point, the second connection point is disposed between the second ground terminal and the second feed point, or, The second connection point is disposed between the second free end and the second feeding point.
  • the first antenna is used to transmit and receive electromagnetic wave signals in the first frequency range and the second frequency range
  • the second antenna is used to transmit and receive electromagnetic wave signals in the third frequency range and the fourth frequency range
  • the first frequency band includes the LB frequency band
  • the second frequency band includes the MB frequency band
  • the third frequency band includes the UHB frequency band
  • the fourth frequency band includes the HB frequency band
  • the first antenna is used for transmitting and receiving electromagnetic wave signals in the first frequency range and the fourth frequency frequency range
  • the second antenna is used for transmitting and receiving electromagnetic wave signals in the second frequency frequency range and the fourth frequency frequency range
  • the first antenna is used to transmit and receive electromagnetic wave signals in the first frequency range and the second frequency range
  • the second antenna is used to transmit and receive electromagnetic wave signals in the third frequency range
  • the first antenna is used to transmit and receive electromagnetic wave signals in the first frequency range and the third frequency range
  • the second antenna is used to transmit and receive electromagnetic wave signals in the second frequency range
  • the first frequency range includes the LB frequency band
  • the second frequency band range includes the MB frequency band
  • the third frequency band range includes the UHB frequency band
  • the fourth frequency band range includes the HB frequency band.
  • the first adjustment circuit and the second adjustment circuit are jointly adjusted so that the first antenna and the second antenna are jointly used to realize the ENDC of the first frequency range, the second frequency range and the third frequency range. or CA.
  • the first antenna further includes a fourth radiator, the fourth radiator is electrically connected to the first matching circuit, and the fourth radiator is used to generate at least one resonance mode.
  • the present application provides an electronic device, including the antenna assembly according to the first aspect or any one of the first aspects.
  • the present application provides an antenna assembly 10 .
  • the antenna assembly 10 can be applied to the electronic device 1, and the electronic device 1 includes, but is not limited to, a mobile phone, an Internet device (mobile internet device, MID), an e-book, a portable play station (Play Station Portable, PSP) or a personal An electronic device 1 with a communication function, such as a digital assistant (Personal Digital Assistant, PDA).
  • a mobile phone an Internet device (mobile internet device, MID), an e-book, a portable play station (Play Station Portable, PSP) or a personal
  • An electronic device 1 with a communication function such as a digital assistant (Personal Digital Assistant, PDA).
  • PDA Personal Digital Assistant
  • FIG. 1 is a schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • the antenna assembly 10 includes a first antenna 110 and a second antenna 120 .
  • the first antenna 110 includes a first radiator 111 , a first signal source 112 and a first matching circuit 113 .
  • the first radiator 111 has a first feeding point 1113, and the first signal source 112 is electrically connected to the first matching circuit 113 to the first feeding point 1113.
  • the second antenna 120 includes a second radiator 121 , a third radiator 125 , a second signal source 122 and a second matching circuit 123 .
  • the second radiator 121 and the first radiator 111 are spaced apart and coupled to each other, the second radiator 121 has a second feeding point 1213 , and the second signal source 122 is electrically connected to the second matching
  • the circuit 123 is connected to the second feeding point 1213, and the second signal source 122 is also electrically connected to the second matching circuit 123 to the third radiator 125, the first antenna 110 and the second
  • the antennas 120 work together to transmit and receive electromagnetic wave signals in at least the first frequency range, the second frequency range and the third frequency range.
  • the terms “first” and “second” in the description and claims of the present application and the above drawings are used to distinguish different objects, rather than to describe a specific order.
  • the terms “comprising” and “having” and any variations thereof are intended to cover non-exclusive inclusion.
  • the fact that the antenna assembly 10 includes the first antenna 110 and the second antenna 120 does not exclude that the antenna assembly 10 also includes other antennas than the first antenna 110 and the second antenna 120 .
  • the so-called signal source refers to a device that generates an excitation signal.
  • the first signal source 112 When the first antenna 110 is used to receive electromagnetic wave signals, the first signal source 112 generates a first excitation signal, and the first excitation signal passes through the first excitation signal.
  • the matching circuit 113 is loaded on the first feeding point 1113, so that the first radiator 111 radiates electromagnetic wave signals.
  • the second signal source 122 when the second antenna 120 is used to receive electromagnetic wave signals, the second signal source 122 generates a second excitation signal, and the second excitation signal is loaded to the second feed via the second matching circuit 123 point 1213, so that the second radiator 121 can send and receive electromagnetic wave signals, and the third radiator 125 can send and receive electromagnetic wave signals.
  • the first radiator 111 may be a flexible printed circuit (Flexible Printed Circuit, FPC) antenna radiator or a laser direct structuring (LDS) antenna radiator, or a print direct structuring (PDS) Antenna radiators, or metal branches.
  • the second radiator 121 may be an FPC antenna radiator, an LDS antenna radiator, a PDS antenna radiator, or a metal branch.
  • the third radiator 125 may be an FPC antenna radiator, an LDS antenna radiator, a PDS antenna radiator, or a metal branch.
  • the types of the first radiator 111 , the second radiator 121 and the third radiator 125 may be the same or different.
  • the second radiator 121 and the first radiator 111 are spaced apart and coupled to each other, that is, the first radiator 111 and the second radiator 121 have a common diameter , due to the coupling effect of the first radiator 111 and the second radiator 121, the first antenna 110 not only uses the first radiator 111 to send and receive electromagnetic wave signals, but also uses the second radiator 121 to send and receive signals. electromagnetic wave signal, so that the first antenna 110 can work in a wider frequency band.
  • the second antenna 120 can not only use the second radiator 121 to send and receive electromagnetic wave signals, but also use the first radiator 111 to send and receive electromagnetic wave signals, so that the second antenna 120 can work in a wider frequency band.
  • the first antenna 110 can use not only the first radiator 111 but also the second radiator 121 to send and receive electromagnetic wave signals when working
  • the second antenna 120 can use not only the second radiator 121 but also the second radiator 121 when working.
  • the first radiator 111 therefore, realizes the multiplexing of the radiators in the antenna assembly 10, and also realizes the multiplexing of the space, so it is beneficial to reduce the size of the antenna assembly 10. It can be seen from the above analysis that the size of the antenna assembly 10 is small, and when the antenna assembly 10 is applied in the electronic device 1 , it is easy to stack with other devices in the electronic device 1 .
  • the second radiator 121 and the third radiator 125 in the second antenna 120 share the second matching circuit 123, so that the second antenna 120 can not only use the
  • the second radiator 121 can send and receive electromagnetic wave signals
  • the third radiator 125 can also be used to send and receive electromagnetic wave signals. Therefore, the second antenna 120 can support the sending and receiving of electromagnetic wave signals in more frequency bands.
  • the second radiator 121 and the first radiator 111 are spaced apart and coupled to each other.
  • a common aperture design to realize the mutual coupling between the first radiator 111 and the second radiator 121 .
  • "port” in “port to port” is the radiation aperture of the antenna, that is, the radiation apertures of the first antenna radiator 111 and the second antenna radiator 121 are opposite.
  • the co-aperture design of the first radiator 111 and the second radiator 121 can improve the multiplexing ratio of the first antenna 110 and the second antenna 120, through the "port-to-port" first radiator 111 and the second radiator 121
  • the mutual coupling of the antennas excites more resonant modes (also called resonant modes), so that more resonant modes can be achieved with fewer antenna branches.
  • the first antenna 110 is used to transmit and receive electromagnetic wave signals in the first frequency band
  • the second antenna 120 is used to transmit and receive electromagnetic wave signals in the second frequency band and the third frequency band
  • the first frequency band range includes a low frequency (Lower Band, LB) frequency band
  • the second frequency band range includes a middle high frequency (Middle High Band, MHB) frequency band
  • the third frequency band range includes an ultra high frequency (Ultra High Band, UHB) frequency band.
  • the so-called LB band refers to a frequency band with a frequency lower than 1000MHz; the so-called MHB band ranges from 1000MHz to 3000MHz; the so-called UHB band ranges from 3000MHz to 6000MHz.
  • the first antenna 110 and the second antenna 120 also support the transmission and reception of electromagnetic wave signals in other frequency bands.
  • the first antenna 110 and the second antenna 120 The case of supporting electromagnetic wave signals of other frequency bands will be described in detail later.
  • FIG. 2 is a table of the transmission and reception of electromagnetic wave signals supported by the antenna assembly in this embodiment.
  • Combination 1 in this table indicates that the first antenna 110 is used to transmit and receive electromagnetic wave signals in the first frequency band, and the second antenna 120 is used to transmit and receive electromagnetic wave signals in the second frequency band and the third frequency band.
  • Combination 2 indicates that the first antenna 110 is used to transmit and receive electromagnetic wave signals in the first frequency range and the second frequency range, and the second antenna 120 is used to transmit and receive electromagnetic wave signals in the third frequency range and the fourth frequency range.
  • Transceiver wherein the first frequency band includes the LB frequency band, the second frequency band includes the MB frequency band, the third frequency band includes the UHB frequency band, and the fourth frequency band includes the HB frequency band.
  • Combination 3 means that the first antenna 110 is used to transmit and receive electromagnetic wave signals in the first frequency band and the fourth frequency band, and the second antenna 120 is used to transmit and receive electromagnetic wave signals in the second frequency band and the fourth frequency band. send and receive.
  • Combination 4 indicates that the first antenna 110 is used to transmit and receive electromagnetic wave signals in the first frequency band and the second frequency band, and the second antenna 120 is used to transmit and receive electromagnetic wave signals in the third frequency band.
  • Combination 5 indicates that the first antenna 110 is used to transmit and receive electromagnetic wave signals in the first frequency band and the third frequency band, and the second antenna 120 is used to transmit and receive electromagnetic wave signals in the second frequency band.
  • the first frequency range includes the LB frequency band
  • the second frequency band range includes the MB frequency band
  • the third frequency band range includes the UHB frequency band
  • the fourth frequency band range includes the HB frequency band.
  • the first antenna 110 is used to transmit and receive electromagnetic wave signals in the first frequency range
  • the second antenna 120 is used to transmit and receive electromagnetic wave signals in the second frequency range and the third frequency range. Send and receive as an example.
  • the antenna assembly 10 has a first resonance mode, a second resonance mode, a third resonance mode and a fourth resonance mode to cover the electromagnetic wave signals in the second frequency range and the third frequency range of sending and receiving.
  • At least one resonance mode among the first resonance mode, the second resonance mode, the third resonance mode and the fourth resonance mode is generated by the third radiator (the fourth resonance mode mentioned later).
  • resonant mode at least another resonant mode is generated by the coupling of part of the first radiator 111 to the signal from the second radiator 121 (ie, the second resonant mode mentioned later).
  • the respective resonance modes will be described later in conjunction with a schematic simulation of the antenna assembly 10 .
  • FIG. 3 is a schematic diagram of an antenna assembly provided by another embodiment of the present application; Equivalent schematic diagram of low impedance to ground for a three-band range.
  • the first antenna 110 further includes a first adjustment circuit 114, and the first adjustment circuit 114 is configured to realize a low impedance from the electromagnetic wave signal in the second frequency band range and the third frequency band range to the ground.
  • the first adjustment circuit 114 realizes the impedance to ground of the electromagnetic wave signal in the second frequency range and the third frequency range. In other words, the first adjustment circuit 114 realizes the electromagnetic wave signal in the second frequency range and the third frequency range. low impedance to ground. That is, the radiator between the first radiator 111 from the connection point where the first adjustment circuit 114 is connected to the first radiator 111 to the ground terminal (first ground terminal 1111 ) of the first radiator 111 is equivalent to zero . Please refer to FIG. 4 for the equivalent antenna assembly 10 . It will be introduced later in conjunction with the simulation diagram of S-parameters.
  • the first radiator 111 further has a first ground end 1111 , a first free end 1112 and a first connection point 1114 .
  • the first grounding end 1111 is grounded, the first connection point 1114 and the first feeding point 1113 are spaced apart, and are both disposed between the first free end 1112 and the first grounding end 1111 .
  • One end of the first regulating circuit 114 is grounded, and the other end is electrically connected to the first connection point 1114 .
  • the second radiator 121 further includes a second ground end 1211 and a second free end 1212, the second ground end 1211 is grounded, the second free end 1212 is spaced apart from the first free end 1112, the The second feeding point 1213 is located between the second ground end 1211 and the second free end 1212 .
  • the first connection point 1114 is disposed between the first feeding point 1113 and the first free end 1112 . In other embodiments (see FIG. 17 ), the first connection point 1114 is located between the first feed point 1113 and the first ground terminal 1111 .
  • FIG. 5 is a schematic diagram of simulation of some S-parameters of the antenna assembly shown in FIG. 1 .
  • the abscissa is the frequency, and the unit is GHz, and the ordinate is the S parameter, and the unit is dB.
  • the second ground end 1211 to the second free end 1212 of the second radiator 121 generate the first resonance mode (marked as mode 1 in the figure), the first adjustment circuit 114 and the first radiator 111
  • the second resonance mode (marked as mode 2 in the figure) is generated from the first connection point 1114 to the first free end 1112 , the second signal source 122 and the second feeding point 1213 of the second radiator 121
  • the third resonance mode (marked as mode 3 in the figure) is generated to the second free end 1212
  • the fourth resonance mode (marked as mode 4 in the figure) is generated by the third radiator 125 .
  • the first resonance mode, the second resonance mode, the third resonance mode and the fourth resonance mode in the antenna assembly 10 can cover the transmission and reception of electromagnetic wave signals in the MHB frequency band and the UHB frequency band. That is, the transmission and reception of electromagnetic wave signals in the frequency band of 1000MHz-6000MHz is realized.
  • the first resonance mode is a fundamental mode or a higher-order mode of the second antenna 120 operating from the second ground end 1211 to the second free end 1212 of the second radiator 121
  • the The second resonance mode is the fundamental mode or higher-order mode of the first antenna 110 operating in the first adjustment circuit 114 and the first radiator 111 from the first connection point 1114 to the first free end 1112
  • the third resonance mode is the fundamental mode or higher-order mode of the second antenna 120 operating from the second feeding point 1213 of the second signal source 122 and the second radiator 121 to the second free end 1212 .
  • the four resonance modes are the fundamental mode or higher-order mode of the second antenna 120 operating in the third radiator 125 .
  • the first resonance mode is the fundamental mode of the second antenna 120 operating from the second ground end 1211 to the second free end 1212 of the second radiator 121
  • the second resonance mode For the first antenna 110 to work in the fundamental mode of the first adjustment circuit 114 and the first radiator 111 from the first connection point 1114 to the first free end 1112, the third resonance mode is the first The two antennas 120 work in the fundamental mode from the second feeding point 1213 of the second signal source 122 and the second radiator 121 to the second free end 1212
  • the fourth resonance mode is that the second antenna 120 works in the third Fundamental mode of the radiator 125 .
  • the first resonance mode is a quarter-wave fundamental mode in which the second antenna 120 operates at the second ground end 1211 to the second free end 1212 of the second radiator 121 . Understandably, the first resonance mode is that when the second antenna 120 operates in the fundamental mode from the second ground end 1211 to the second free end 1212 of the second radiator 121 , the first resonance mode has Higher transmit and receive power.
  • the second resonance mode is when the first antenna 110 operates in the fundamental mode of the first adjustment circuit 114 and the first radiator 111 from the first connection point 1114 to the first free end 1112 ,
  • the second resonance mode has higher transmit and receive power.
  • the third resonance mode is when the second antenna 120 operates in the fundamental mode from the second feeding point 1213 of the second signal source 122 and the second radiator 121 to the second free end 1212 , the third The resonant mode has higher transmit and receive power.
  • the fourth resonance mode is that when the second antenna 120 operates in the fundamental mode of the third radiator 125, the fourth resonance mode has higher transmit and receive power.
  • the first connection point 1114 can be set at the first connection point 1114. between the feed point 1113 and the first free end 1112, or the first connection point 1114 may be located between the first feed point 1113 and the first ground end 1111, as long as the The length from the first free end 1112 to the position of the first connection point 1113 may be equal to 1/4 wavelength, or approximately 1/4 wavelength.
  • FIG. 6 is a schematic diagram of a first regulating circuit provided by an embodiment of the present application.
  • the first adjustment circuit 114 includes a plurality of sub-adjustment circuits and switch units.
  • the sub-regulation circuit included in the first regulation circuit 114 is named as the first sub-regulation circuit 1141
  • the switch unit in the first regulation circuit 114 is named as the first switch unit 1142 .
  • the first switch unit 1142 is electrically connected to the first connection point 1114, the first switch unit 1142 is also electrically connected to the plurality of first sub-regulator circuits 1141 to ground, and the first switch unit 1142 is in the control signal Under the control of , at least one first sub-regulation circuit 1141 of the plurality of first sub-regulation circuits 1141 is electrically connected to the first connection point 1114 .
  • the number of the first sub-regulating circuits 1141 is 2 as an example for illustration, and correspondingly, the first switch unit 1142 is a single-pole double-throw switch for illustration as an example.
  • the active end of the first switch unit 1142 is electrically connected to the first connection point 1114 , and a fixed end of the first switch unit 1142 is electrically connected to one of the first sub-regulator circuits 1141 to ground.
  • the first switch unit The other fixed end of 1142 is electrically connected to another first sub-regulator circuit 1141 to ground.
  • the first adjustment circuit 114 includes N first sub-adjustment circuits 1141, and correspondingly, the first switch unit 1142 is a single-pole N-throw switch, or the first switch unit 1142 is an N pole N throw switch.
  • FIG. 7 is a schematic diagram of a first regulating circuit provided by another embodiment of the present application.
  • the first adjustment circuit 114 includes M first sub-adjustment circuits 1141 and M first switch units 1142 , and each first switch unit 1142 is connected in series with one first sub-adjustment circuit 1141 .
  • first sub-adjustment circuit 1141 and the first switch unit 1142 in the first adjustment circuit 114 are not limited to those described above, as long as the first switch unit 1142 can meet the requirements of the control signal At least one of the first sub-regulation circuits 1141 in the plurality of first sub-regulation circuits 1141 is controlled to be electrically connected to the first connection point 1114 .
  • the first sub-regulation circuit 1141 includes at least one or a combination of capacitors, inductors, and resistors. Therefore, the first sub-regulating circuit 1141 is also referred to as a lumped circuit.
  • FIG. 8 is a simulation diagram of the first adjustment circuit for switching the frequency band supported by the first antenna within the range of the first frequency band.
  • the abscissa is the frequency
  • the unit is GHz
  • the ordinate is the S parameter
  • the unit is dB.
  • curve 1 is B5 frequency band
  • curve 2 is B8 frequency band
  • curve 3 is B20 frequency band
  • curve 4 is B28 frequency band.
  • the first adjustment circuit 114 is further configured to switch the frequency band supported by the first antenna 110 within the first frequency band range.
  • the frequency bands supported in the first frequency band include B28 frequency band, B20 frequency band, B5 frequency band and B8 frequency band
  • the first adjustment circuit 114 is used to make the first antenna 110 work in the B28 frequency band, B20 frequency band, and B5 frequency band and any one of the B8 frequency bands, and can switch between B28 frequency bands, B20 frequency bands, B5 frequency bands and B8 frequency bands.
  • FIG. 9 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the second antenna 120 further includes a second adjustment circuit 124, and the second adjustment circuit 124 is configured to switch frequency bands supported by the second antenna 120 in the second frequency band range and the third frequency band range.
  • the second antenna 120 also includes a second adjustment circuit 124 which can be incorporated into the antenna assembly 10 provided in any of the foregoing embodiments.
  • a second adjustment circuit 124 which can be incorporated into the antenna assembly 10 provided in any of the foregoing embodiments.
  • the schematic diagram of an embodiment in which the second antenna 120 further includes the second adjustment circuit 124 is used as an example for illustration.
  • one end of the second adjusting circuit 124 is grounded, and the other end is electrically connected to the second matching circuit 123 .
  • FIG. 10 is a schematic diagram of a second regulating circuit in an embodiment of the present application.
  • the second adjustment circuit 124 includes a plurality of sub-adjustment circuits and switch units.
  • the sub-regulation circuit included in the second regulation circuit 124 is named as the second sub-regulation circuit 1241
  • the switch unit included in the second regulation circuit 124 is named as the second switch unit 1242 .
  • the second switch unit 1242 is used to electrically connect at least one of the plurality of second sub-adjustment circuits 1241 in the second adjustment circuit 124 to the second matching circuit 123 under the control of the control signal.
  • the second adjustment circuit 124 includes three switches and three second sub-adjustment circuits 1241 as an example for illustration. Each switch is electrically connected to a second sub-regulator circuit 1241 .
  • FIG. 11 is a schematic diagram of a second regulating circuit in an embodiment of the present application.
  • the second adjustment circuit 124 includes a single-pole, three-throw switch and three second sub-adjustment circuits 1241 .
  • the movable terminal of the single-pole three-throw switch is electrically connected to the second matching circuit 123
  • the three fixed terminals of the single-pole three-throw switch are electrically connected to the three second sub-regulating circuits 1241 respectively.
  • the second adjustment circuit 124 includes K second sub-adjustment circuits 1241, and correspondingly, the second switch unit 1242 is a single-pole K-throw switch, or the second switch unit 1242 is a K-pole K-throw switch, where K is a positive integer greater than or equal to 2.
  • the second sub-adjustment circuit 1241 includes at least one or a combination of capacitors, inductors, and resistors. Therefore, the second sub-regulation circuit 1241 is also referred to as a lumped circuit. It can be understood that the second sub-adjustment circuit 1241 in the first adjustment circuit 114 and the second sub-adjustment circuit 1241 in the second adjustment circuit 124 may be the same or different.
  • FIG. 12 is a schematic diagram of the simulation of the antenna assembly shown in FIG. 9 .
  • the horizontal axis is the frequency
  • the unit is GHz
  • the vertical axis is the S parameter
  • the unit is dB.
  • curve 5 represents S1,1 parameters
  • curve 6 represents S2,1 parameters
  • curve 7 represents S2,2 parameters.
  • the resonant frequency band of curve 5 is the LB frequency band
  • the resonant frequency bands of the curve 7 are the MHB frequency band and the UHB frequency band.
  • the LB band has a higher degree of isolation from the MHB band and the UHB band, respectively.
  • the first antenna 110 and the second antenna 120 are jointly used to realize dual connection (LTE NR Double Connect, ENDC) or Carrier Aggregation (CA).
  • the first adjustment circuit 114 and the second adjustment circuit 124 are jointly adjusted so that the first antenna 110 and the second antenna 120 are jointly used to realize the first frequency range, the second frequency range and the first frequency range. ENDC or CA for the three-band range.
  • the first adjustment circuit 114 is used to adjust the first frequency range supported by the first antenna 110 .
  • the second antenna 120 may support The frequency band range deviates from at least one of the second frequency band range or the third frequency band range. Then, the second adjusting circuit 124 is used to make the second antenna 120 support the transmission and reception of electromagnetic wave signals in the second frequency band and the third frequency band.
  • the frequency range supported by the first antenna 110 may deviate from the above In the first frequency range, the first adjustment circuit 114 is used to enable the first antenna 110 to support the transmission and reception of electromagnetic wave signals in the first frequency range. Therefore, the first adjustment circuit 114 and the second adjustment circuit 124 need to be adjusted jointly, so that the first antenna 110 and the second antenna 120 can jointly realize the first frequency range, the second frequency range and the third frequency range. ENDC or CA.
  • the first antenna 110 and the second antenna 120 in the antenna assembly 10 are jointly used to realize the 4G wireless access network and 5G-NR in the first frequency range, the second frequency range and the third frequency range.
  • Dual Connectivity LTE NR Double Connect, ENDC. It can be seen that the antenna assembly 10 of the present application can implement ENDC, and can support both 4G wireless access network and 5G-NR. Therefore, the antenna assembly 10 provided by the embodiment of the present application can improve the transmission bandwidth of 4G and 5G, and improve the Uplink and downlink rate, with better communication effect.
  • FIG. 13 is a schematic diagram of an antenna assembly provided by yet another embodiment of the present application.
  • the first antenna 110 further includes a fourth radiator 115, the fourth radiator 115 is electrically connected to the first matching circuit 113, and the fourth radiator 115 is used for generating at least one resonant mode for widening The bandwidth of the antenna assembly 10 .
  • the first antenna 110 further includes the fourth radiator 115 and is combined into the antenna assembly 10 shown in FIG. 8 as an example for illustration.
  • FIG. 14 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the structure of the antenna assembly 10 provided in this embodiment is basically the same as that of the antenna assembly 10 provided in FIG. 13 and its related embodiments, the difference is that in this embodiment, one end of the first adjustment circuit 114 is grounded, and the other end is grounded. One end is electrically connected to the first matching circuit 113 .
  • the antenna assembly 10 includes a first antenna 110 and a second antenna 120 .
  • the first antenna 110 includes a first radiator 111 , a first signal source 112 , a first matching circuit 113 , a first adjusting circuit 114 and a fourth radiator 115 .
  • the first radiator 111 has a first feeding point 1113 .
  • the first signal source 112 is electrically connected to the first matching circuit 113 to the first feeding point 1113 .
  • One end of the first adjusting circuit 114 is grounded, and the other end of the first adjusting circuit 114 is electrically connected to the first matching circuit 113 .
  • the fourth radiator 115 is electrically connected to the first matching circuit 113 .
  • the second antenna 120 includes a second radiator 121 , a third radiator 125 , a second signal source 122 , a second matching circuit 123 and a second adjusting circuit 124 .
  • the second radiator 121 and the first radiator 111 are spaced apart and coupled to each other, and the second radiator 121 has a second feeding point 1213 .
  • the second signal source 122 electrically connects the second matching circuit 123 to the second feeding point 1213, and the second signal source 122 also electrically connects the second matching circuit 123 to the third radiation
  • FIG. 15 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the structures of the antenna assemblies 10 and 14 provided in this embodiment and the antenna assemblies 10 provided by related embodiments are basically the same, the difference is that in this embodiment, one end of the second adjusting circuit 124 is grounded, and the other end is grounded. Electrically connected to the second connection point 1214 .
  • the antenna assembly 10 includes a first antenna 110 and a second antenna 120 .
  • the first antenna 110 includes a first radiator 111 , a first signal source 112 , a first matching circuit 113 and a first adjusting circuit 114 .
  • the first radiator 111 has a first feeding point 1113 .
  • the first signal source 112 is electrically connected to the first matching circuit 113 to the first feeding point 1113 .
  • One end of the first adjusting circuit 114 is grounded, and the other end of the first adjusting circuit 114 is electrically connected to the first matching circuit 113 .
  • the fourth radiator 115 is electrically connected to the first matching circuit 113 .
  • the second antenna 120 includes a second radiator 121 , a third radiator 125 , a second signal source 122 , a second matching circuit 123 and a second adjusting circuit 124 .
  • the second radiator 121 and the first radiator 111 are spaced apart and coupled to each other. Specifically, the second radiator 121 has a second ground end 1211 and a second free end 1212 .
  • the second ground end 1211 and the second free end 1212 are two opposite sides of the second radiator 121 .
  • the second ground end 1211 is grounded, the second free end 1212 and the end of the first radiator 111 adjacent to the second radiator 121 (the first free end 1112 ) are spaced apart and coupled to each other .
  • the second radiator 121 also has a second feed point 1213 and a second connection point 1214 located between the second free end 1212 and the second ground end 1211 .
  • the second signal source 122 electrically connects the second matching circuit 123 to the second feeding point 1213, and the second signal source 122 also electrically connects the second matching circuit 123 to the third radiation
  • the body 125 one end of the second regulating circuit 124 is grounded, and the other end of the second regulating circuit 124 is electrically connected to the second connection point 1214 .
  • the second connection point 1214 is located between the second ground terminal 1211 and the second feed point 1213 .
  • FIG. 16 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the structure of the antenna assembly 10 provided in this embodiment is basically the same as that of the antenna assembly 10 provided in FIG. 15 and related embodiments, except that in this embodiment, the second connection point 1214 is located at the second between the free end 1212 and the second feeding point 1213 .
  • the antenna assembly 10 includes a first antenna 110 and a second antenna 120 .
  • the first antenna 110 includes a first radiator 111 , a first signal source 112 , a first matching circuit 113 and a first adjusting circuit 114 .
  • the first radiator 111 has a first feeding point 1113 .
  • the first signal source 112 is electrically connected to the first matching circuit 113 to the first feeding point 1113 .
  • One end of the first adjusting circuit 114 is grounded, and the other end of the first adjusting circuit 114 is electrically connected to the first matching circuit 113 .
  • the fourth radiator 115 is electrically connected to the first matching circuit 113 .
  • the second antenna 120 includes a second radiator 121 , a third radiator 125 , a second signal source 122 , a second matching circuit 123 and a second adjusting circuit 124 .
  • the second radiator 121 and the first radiator 111 are spaced apart and coupled to each other.
  • the second radiator 121 has a second ground end 1211 and a second free end 1212.
  • the second ground end 1211 is connected to the second radiator 1211.
  • the second free end 1212 is the opposite ends of the second radiator 121 , the second ground end 1211 is grounded, and the second free end 1212 and the first radiator 111 are adjacent to the second The ends (the first free ends 1112 ) of the radiator 121 are spaced apart and coupled to each other.
  • the second radiator 121 also has a second feed point 1213 and a second connection point 1214 located between the second free end 1212 and the second ground end 1211 .
  • the second signal source 122 electrically connects the second matching circuit 123 to the second feeding point 1213, and the second signal source 122 also electrically connects the second matching circuit 123 to the third radiation
  • the body 125 one end of the second regulating circuit 124 is grounded, and the other end of the second regulating circuit 124 is electrically connected to the second connection point 1214 .
  • the second connection point 1214 is located between the second free end 1212 and the second feeding point 1213 .
  • FIG. 17 is a schematic diagram of an antenna assembly provided by another embodiment of the present application.
  • the structure of the antenna assembly 10 provided in this embodiment is basically the same as that of the antenna assembly 10 provided in FIG. 9 , the difference is that in FIG. 9 and its corresponding embodiment, the first connection point 1114 is located at the first feeder between the electrical point 1113 and the first free end 1112 . In this embodiment, the first connection point 1114 is located between the first feed point 1113 and the first ground terminal 1111 .
  • the rest of the structure of the antenna assembly 10 can be referred to FIG. 9 and the description of the related embodiments, which will not be repeated here.
  • the first adjustment circuit 114 in the first antenna 110 includes the following manner: one end of the first adjustment circuit 114 is electrically connected to the first connection point 1114, and the other end is grounded; or , one end of the first adjusting circuit 114 is electrically connected to the first matching circuit 113 , and the other end is grounded.
  • one end of the first regulating circuit 114 is electrically connected to the first connection point 1114 and the other end is grounded, it includes the following situations: the first connection point 1114 is located between the first feeding point 1113 and the first feeding point 1113 . between a free end 1112 ; or, the first connection point 1114 is located between the first feeding point 1113 and the first ground end 1111 .
  • the first antenna 110 may include the fourth radiator 115 or not include the fourth radiator 115 . When the first antenna 110 includes a fourth radiator 115 , the fourth radiator 115 is electrically connected to the first matching circuit 113 .
  • the electromagnetic wave signal pair supported by the second resonance mode generated by the first radiator 111 can be reduced The influence of electromagnetic wave signals of other frequency bands supported by the antenna assembly 10 to be sent and received. Understandably, the first connection point 1114 may also be located between the first feed point 1113 and the first ground terminal 1111, as long as the first adjustment circuit 114 can be electrically connected to the first radiator 111 will do.
  • the second adjustment circuit 124 in the second antenna 120 includes the following manner: one end of the second adjustment circuit 124 is electrically connected to the second connection point 1214, and the other end is grounded; One end of the second adjusting circuit 124 is electrically connected to the second matching circuit 123, and the other end is grounded.
  • one end of the second regulating circuit 124 is electrically connected to the second connection point 1214 and the other end is grounded, it includes the following situation: the second connection point 1214 is located between the second feeding point 1213 and the second between the free ends 1212 ; or, the second connection point 1214 is located between the second feeding point 1213 and the second grounding end 1211 .
  • the electromagnetic wave signal generated by the second radiator 121 can be reduced to transmit and receive signals supported by the antenna assembly 10 .
  • the second connection point 1214 can also be located between the second feed point 1213 and the second ground terminal 1211, as long as the second adjustment circuit 124 can be electrically connected to the second radiator 121 is enough.
  • the antenna assembly 10 includes a combination of any one of the aforementioned first antenna 110 implementations and any one of the second antenna 120 implementations.
  • FIG. 18 is a schematic diagram of the size of the gap between the first radiator and the second radiator in the antenna assembly provided by an embodiment of the present application.
  • the size d of the gap between the first radiator 111 and the second radiator 121 satisfies: 0.5mm ⁇ d ⁇ 1.5mm.
  • the gaps between the radiators of the first antenna 110 and the radiators of the second antenna 120 in the antenna assembly 10 both satisfy d as follows: 0.5mm ⁇ d ⁇ 1.5mm. Therefore, a better coupling effect between the first radiator 111 and the second radiator 121 can be ensured.
  • the dimensions of the first radiator 111 and the second radiator 121 in the antenna assembly 10 are combined into the antenna assembly 10 shown in FIG. 1 as an example for description, it should not be understood as a limitation of the present application.
  • the gap between the first radiator 111 and the second radiator 121 is also applicable to the antenna assembly 10 provided in other embodiments.
  • FIG. 19 is a three-dimensional structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device 1 includes the antenna assembly 10 described in any of the foregoing embodiments.
  • FIG. 20 is a cross-sectional view of the line I-I in FIG. 19 according to an embodiment.
  • the electronic device 1 further includes a middle frame 30 , a screen 40 , a circuit board 50 and a battery cover 60 .
  • the material of the middle frame 30 is metal, such as aluminum-magnesium alloy.
  • the middle frame 30 generally constitutes the ground of the electronic device 1. When the electronic device in the electronic device 1 needs to be grounded, the middle frame 30 can be connected to the ground.
  • the ground system in the electronic device 1 includes, in addition to the middle frame 30 , the ground on the circuit board 50 and the ground in the screen 40 .
  • the screen 40 may be a display screen with display function, or may be a screen 40 integrated with display and touch functions.
  • the screen 40 is used to display text, images, videos and other information.
  • the screen 40 is carried on the middle frame 30 and is located on one side of the middle frame 30 .
  • the circuit board 50 is usually also carried on the middle frame 30 , and the circuit board 50 and the screen 40 are carried on opposite sides of the middle frame 30 .
  • At least one or more of the first signal source 112 , the second signal source 122 , the first matching circuit 113 , the second matching circuit 123 , the first adjusting circuit 114 , and the second adjusting circuit 124 in the antenna assembly 10 described above can be arranged on the circuit board 50 .
  • the battery cover 60 is disposed on the side of the circuit board 50 away from the middle frame 30 .
  • the battery cover 60 , the middle frame 30 , the circuit board 50 , and the screen 40 cooperate with each other to assemble a complete unit.
  • electronic equipment 1 Understandably, the description of the structure of the electronic device 1 is only a description of a form of the structure of the electronic device 1 , and should not be construed as a limitation on the electronic device 1 or as a limitation on the antenna assembly 10 .
  • the first radiator 111 When the first radiator 111 is electrically connected to the ground of the middle frame 30, the first radiator 111 can also be connected to the ground of the middle frame 30 through connecting ribs, or the first radiator 111 can also be electrically connected to the ground through a conductive elastic sheet. Connect to the ground of middle frame 30.
  • the second radiator 121 when the second radiator 121 is electrically connected to the ground of the middle frame 30, the second radiator 121 can also be connected to the ground of the middle frame 30 through the connecting ribs, or the second radiator 121 can also be connected to the ground of the middle frame 30 through the connecting ribs.
  • the conductive elastic sheet is electrically connected to the ground of the middle frame 30 .
  • the middle frame 30 includes a frame body 310 and a frame 320 .
  • the frame 320 is bent and connected to the periphery of the frame body 310 .
  • the first radiator 111 , the second radiator 121 , the third radiator 131 , and the fourth radiator 141 can also be formed on the frame 320 , but are FPC antenna radiators Either the LDS antenna radiator, the PDS antenna radiator, or the metal branch.
  • FIG. 21 is a schematic diagram of the position of the electronic device in one embodiment.
  • the electronic device 1 includes a top 1a and a bottom 1b, and the first radiator 111 and the second radiator 121 are both disposed on the top 1a.
  • top 1a refers to the upper part of the electronic device 1 when in use
  • bottom 1b is the lower part of the electronic device 1 opposite to the top 1a.
  • the electronic device 1 in this embodiment includes a first side 11 , a second side 12 , a third side 13 , and a fourth side 14 that are connected end to end in sequence.
  • the first side 11 and the third side 13 are short sides of the electronic device 1
  • the second side 12 and the fourth side 14 are long sides of the electronic device 1 .
  • the first side 11 is opposite to the third side 13 and is arranged at an interval
  • the second side 12 is opposite to the fourth side 14 and is arranged at an interval
  • the second side 12 is respectively connected to the fourth side 14 .
  • the first side 11 and the third side 13 are connected by bending
  • the fourth side 14 is respectively connected with the first side 11 and the third side 13 by bending.
  • connection between the first side 11 and the second side 12 , the connection between the second side 12 and the third side 13 , the third side 13 and the fourth side All form corners of the electronic device 1 .
  • the first side 11 is the top side
  • the second side 12 is the right side
  • the third side 13 is the lower side
  • the fourth side 14 is the left side.
  • the corner formed by the first side 11 and the second side 12 is the upper right corner
  • the corner formed by the first side 11 and the fourth side 14 is the upper left corner.
  • the top 1a includes three cases: the first radiator 111 and the second radiator 121 are disposed in the upper left corner of the electronic device 1; or, the first radiator 111 and the second radiator The body 121 is arranged on the top side of the electronic device 1 ; or the first radiator 111 and the second radiator 121 are arranged on the upper right corner of the electronic device 1 .
  • the first radiator 111 and the second radiator 121 are disposed at the upper left corner of the electronic device 1, the following situations are included: the first radiator 111 is located on the left side, and the first radiator 111 is located on the left side. The other part of a radiator 111 is located on the top side, and the second radiator 121 is located on the top side; or, a part of the second radiator 121 is located on the top side, and the other part of the second radiator 121 is located on the top side is located on the left, and the first radiator 111 is located on the left.
  • the first radiator 111 and the second radiator 121 are disposed at the upper right corner of the electronic device 1, it includes the following situations: the first radiator 111 is partially located on the top side, the first The other part of the radiator 111 is located on the right side, and the second radiator 121 is located on the right side; or, the second radiator 121 part is located on the right side, the second radiator 121 The first radiator 111 is partially located at the top edge.
  • the top 1a of the electronic device 1 is usually away from the ground, and the bottom 1b of the electronic device 1 is usually close to the ground.
  • the first radiator 111 and the second radiator 121 are disposed on the top 1a, the radiation efficiency of the upper hemisphere of the first antenna 110 and the second antenna 120 is better, so that the first antenna 110 and the second antenna 120 have better radiation efficiency in the upper hemisphere.
  • the second antenna 120 has better communication efficiency.
  • the first radiator 111 and the second radiator 121 may also be disposed corresponding to the bottom 1 b of the electronic device 1 , although the first radiator 111 and the second radiator 121
  • the radiation efficiency of the upper hemisphere of the first antenna 110 and the second antenna 120 is not so good, but as long as the radiation efficiency of the upper hemisphere is greater than or equal to the preset efficiency, the radiation efficiency of the upper hemisphere can be relatively good. communication effect.
  • FIG. 22 is a schematic diagram of the position of the electronic device in another embodiment.
  • the electronic device 1 in this embodiment includes a first side 11 , a second side 12 , a third side 13 , and a fourth side 14 that are connected end to end in sequence.
  • the first side 11 and the third side 13 are short sides of the electronic device 1
  • the second side 12 and the fourth side 14 are long sides of the electronic device 1 .
  • the first side 11 is opposite to the third side 13 and is arranged at an interval
  • the second side 12 is opposite to the fourth side 14 and is arranged at an interval
  • the second side 12 is respectively connected to the fourth side 14 .
  • the first side 11 and the third side 13 are connected by bending, and the fourth side 14 is respectively connected with the first side 11 and the third side 13 by bending.
  • the connection between the first side 11 and the second side 12 , the connection between the second side 12 and the third side 13 , the third side 13 and the fourth side The connection between the side edges 14 and the connection between the fourth side edge 14 and the first side edge 11 all form the corner A of the electronic device 1 .
  • the first radiator 111 and the second radiator 121 can be arranged corresponding to any corner of the electronic device 1 . It should be noted that the first radiator 111 and the second radiator 121 are both Corresponding to the same corner setting of the electronic device 1 .
  • the efficiency of the first antenna 110 and the second antenna 120 is high.
  • the first side 11 and the third side 13 are the short sides of the electronic device 1
  • the second side 12 and the fourth side are The side 14 is the long side of the electronic device 1 as an example for illustration.
  • the first side 11 , the second side 12 , the third side 13 , and the fourth side Sides 14 are of equal length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供一种天线组件及电子设备。天线组件包括第一天线及第二天线。第一天线包括第一辐射体、第一信号源及第一匹配电路,第一辐射体具有第一馈电点,第一信号源电连接第一匹配电路至第一馈电点。第二天线包括第二辐射体、第三辐射体、第二信号源及第二匹配电路,第二辐射体与第一辐射体间隔设置且相互耦合,第二辐射体具有第二馈电点,第二信号源电连接第二匹配电路至第二馈电点,且第二信号源还电连接第二匹配电路至第三辐射体,第一天线及第二天线共同作用以实现至少第一频段范围、第二频段范围及第三频段范围的电磁波信号的收发。本申请的天线组件的体积较小且通信性能好。

Description

天线组件及电子设备 技术领域
本申请涉及通信技术领域,尤其涉及一种天线组件及电子设备。
背景技术
随着技术的发展,手机等具有通信功能电子设备的普及度越来越高,且功能越来越强大。电子设备中通常包括天线组件以实现电子设备的通信功能。然而,相关技术中的电子设备中的天线组件的通信性能不够好,还有待提升的空间。
发明内容
第一方面,本申请提供一种天线组件,所述天线组件包括:
第一天线,所述第一天线包括第一辐射体、第一信号源及第一匹配电路,所述第一辐射体具有第一馈电点,所述第一信号源电连接所述第一匹配电路至所述第一馈电点;及
第二天线,所述第二天线包括第二辐射体、第三辐射体、第二信号源及第二匹配电路,所述第二辐射体与所述第一辐射体间隔设置且相互耦合,所述第二辐射体具有第二馈电点,所述第二信号源电连接所述第二匹配电路至所述第二馈电点,且所述第二信号源还电连接所述第二匹配电路至所述第三辐射体,所述第一天线及所述第二天线共同作用以实现至少第一频段范围、第二频段范围及第三频段范围的电磁波信号的收发。
第二方面,本申请还提供一种电子设备,所述电子设备包括如第一方面所述的天线组件。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的天线组件的示意图。
图2为本实施方式中天线组件支持的电磁波信号的收发的表格。
图3为本申请另一实施方式提供的天线组件的示意图。
图4为图3中包括第一调节电路实现第二频段范围及第三频段范围的到地的低阻抗的等效示意图。
图5为图1所示的天线组件的部分S参数的仿真示意图。
图6为本申请一实施方式提供的第一调节电路的示意图。
图7为本申请另一实施方式提供的第一调节电路的示意图。
图8为第一调节电路用于切换第一天线在第一频段的范围内支持的频段的仿真图。
图9为本申请另一实施方式提供的天线组件的示意图。
图10为本申请一实施方式中第二调节电路的示意图。
图11为本申请一实施方式中第二调节电路的示意图。
图12为图9所示的天线组件的仿真示意图。
图13为本申请再一实施方式提供的天线组件的示意图。
图14为本申请另一实施方式提供的天线组件的示意图。
图15为本申请另一实施方式提供的天线组件的示意图。
图16为本申请另一实施方式提供的天线组件的示意图。
图17为本申请又一实施方式提供的天线组件的示意图。
图18为本申请一实施方式提供的天线组件中第一辐射体与第二辐射体之间的间隙的尺寸的示意图。
图19为本申请一实施方式提供的电子设备的立体结构图。
图20为一实施方式提供的图19中I-I线的剖视图。
图21为一实施方式中电子设备的位置示意图。
图22为另一实施方式中电子设备的位置示意图。
具体实施方式
本申请第一方面提供一种天线组件,所述天线组件包括:
第一天线,所述第一天线包括第一辐射体、第一信号源及第一匹配电路,所述第一辐射体具有第一馈电点,所述第一信号源电连接所述第一匹配电路至所述第一馈电点;及
第二天线,所述第二天线包括第二辐射体、第三辐射体、第二信号源及第二匹配电路,所述第二辐射体与所述第一辐射体间隔设置且相互耦合,所述第二辐射体具有第二馈电点,所述第二信号源电连接所述第二匹配电路至所述第二馈电点,且所述第二信号源还电连接所述第二匹配电路至所述第三辐射体,所述第一天线及所述第二天线共同作用以实现至少第一频段范围、第二频段范围及第三频段范围的电磁波信号的收发。
其中,所述第一天线用于实现第一频段范围的电磁波信号的收发,所述第二天线用于实现第二频段范围及第三频段范围的电磁波信号的收发,其中,第一频段范围包括LB频段,第二频段范围包括MHB频段,第三频段范围包括UHB频段。
其中,所述天线组件具有第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式,以覆盖所述第二频段范围及所述第三频段范围的电磁波信号的收发。
其中,所述第一谐振模式、所述第二谐振模式、所述第三谐振模式及所述第四谐振模式中的至少一个谐振模式由所述第三辐射体产生,至少另一个谐振模式由部分所述第一辐射体耦合来自所述第二辐射体的信号耦合产生。
其中,所述第一天线还包括第一调节电路,所述第一调节电路用于调节所述第二频段范围及第三频段范围的电磁波信号的到地阻抗。
其中,所述第一调节电路的一端接地,另一端电连接至第一匹配电路;或者,所述第一辐射体还具有第一接地端、第一自由端及第一连接点,所述第一接地端接地,所述第一连接点与所述第一馈电点间隔设置,且均设置于所述第一自由端与所述第一接地端之间,所述第一调节电路的一端接地,另一端电连接至所述第一连接点,所述第二辐射体还包括第二接地端及第二自由端,所述第二接地端接地,所述第二自由端与所述第一自由端相对设置。
其中,当所述第一调节电路的一端接地,另一端电连接至所述第一连接点时,所述第一连接点设置于所述第一接地端与所述第一馈电点之间,或者,所述第一连接点设置于所述第一馈电点与所述第一自由端之间。
其中,当所述第一调节电路的一端接地,另一端连接至第一连接点时,所述第二辐射体的第二接地端至所述第二自由端产生所述第一谐振模式,所述第一调节电路及第一辐射体自第一连接点至所述第一自由端产生所述第二谐振模式,所述第二信号源及第二辐射体的第二馈电点至第二自由端产生所述第三谐振模式,所述第三辐射体产生所述第四谐振模式。
其中,所述第一谐振模式为第二天线工作在所述第二辐射体的第二接地端至所述第二自由端的基模,所述第二谐振模式为所述第一天线工作在所述第一调节电路及第一辐射体自第一连接点至所述第一自由端的基模,所述第三谐振模式为所述第二天线工作在所述第二信号源及第二辐射体的第二馈电点至第二自由端的基模,所述第四谐振模式为第二天线工作在第三辐射体的基模。
其中,所述第一调节电路还用于切换所述第一天线在第一频段范围内所支持的频段。
其中,所述第一调节电路包括多个子调节电路及开关单元,所述开关单元电连接所述第一连接点,所述开关单元还电连接所述多个子调节电路至地,所述开关单元在控制信号的控制下,将所述多个子调节电路中的至少一个子调节电路电连接至所述第一连接点。
其中,所述子调节电路包括电容、电感、电阻中的至少一个或者多个的组合。
其中,所述第一频段范围内所支持的频段包括B28频段、B20频段、B5频段及B8频段,所述第一调节电路用于使得所述第一天线工作在B28频段、B20频段、B5频段及B8频段中的任意一个频段,且可在B28频段、B20频段、B5频段及B8频段之间切换。
其中,所述第二天线还包括第二调节电路,所述第二调节电路用于切换所述第二天线在第二频段范围及所述第三频段范围所支持的频段。
其中,所述第二调节电路一端接地,另一端电连接至所述第二匹配电路;或者,所述第二辐射体包括第二接地端、第二自由端、第二馈电点及第二连接点,第二接地端接地,第二自由端与所述第一辐射体间隔设置,所述第二连接点与所述第二馈电点间隔设置,且均设置于第二自由端与所述第二接地端之间,所述第二调节电路一端接地,另一端电连接至所述第二连接点。
其中,当所述第二调节电路一端接地,另一端电连接至所述第二连接点时,所述第二连接点设置于所述第二接地端与第二馈电点之间,或者,所述第二连接点设置于所述第二自由端与所述第二馈电点之间。
其中,所述第一天线用于实现第一频段范围及第二频段范围的电磁波信号的收发,所述第二天线用于实现第三频段范围及第四频段范围的电磁波信号的收发,其中,所述第一频段范围包括LB频段,第二频段包括MB频段,第三频段包括UHB频段,第四频段包括HB频段;
或者,所述第一天线用于实现第一频段范围及第四频段范围的电磁波信号的收发,所述第二天线用于实现第二频段范围及第四频段范围的电磁波信号的收发;
或者,所述第一天线用于实现第一频段范围及第二频段范围的电磁波信号的收发,所述第二天线用于实现第三频段范围的电磁波信号的收发;
或者,所述第一天线用于实现第一频段范围及第三频段范围的电磁波信号的收发,所述第二天线用于实现第二频段范围的电磁波信号的收发;
其中,所述第一频段范围包括LB频段,第二频段范围包括MB频段,第三频段范围包括UHB频段,第四频段范围包括HB频段。
其中,所述第一调节电路及所述第二调节电路联调以使得所述第一天线及所述第二天线共同用于实现第一频段范围、第二频范围及第三频段范围的ENDC或CA。
其中,所述第一天线还包括第四辐射体,所述第四辐射体电连接至所述第一匹配电路,所述第四辐射体用于产生至少一谐振模式。
第二方面,本申请提供一种电子设备,包括如第一方面或第一方面中任意一种所述的天线组件。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请提供了一种天线组件10。所述天线组件10可应用于电子设备1中,所述电子设备1包括但不仅限于为手机、互联网设备(mobile internet device,MID)、电子书、便携式播放站(Play Station Portable,PSP)或个人数字助理(Personal Digital Assistant,PDA)等具有通信功能的电子设备1。
请参阅图1,图1为本申请一实施方式提供的天线组件的示意图。所述天线组件10包括第一天线110及第二天线120。所述第一天线110包括第一辐射体111、第一信号源112及第一匹配电路113。所 述第一辐射体111具有第一馈电点1113,所述第一信号源112电连接所述第一匹配电路113至所述第一馈电点1113。所述第二天线120包括第二辐射体121、第三辐射体125、第二信号源122及第二匹配电路123。所述第二辐射体121与所述第一辐射体111间隔设置且相互耦合,所述第二辐射体121具有第二馈电点1213,所述第二信号源122电连接所述第二匹配电路123至所述第二馈电点1213,且所述第二信号源122还电连接所述第二匹配电路123至所述第三辐射体125,所述第一天线110及所述第二天线120共同作用以实现至少第一频段范围、第二频段范围及第三频段范围的电磁波信号的收发。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。所述天线组件10包括第一天线110及第二天线120并不排除所述天线组件10还包括第一天线110及第二天线120之外的其他天线。
所谓信号源,是指产生激励信号的器件,当所述第一天线110用于接收电磁波信号时,所述第一信号源112产生第一激励信号,所述第一激励信号经由所述第一匹配电路113加载到所述第一馈电点1113上,以使得所述第一辐射体111辐射电磁波信号。相应的,当所述第二天线120用于接收电磁波信号时,所述第二信号源122产生第二激励信号,所述第二激励信号经由所述第二匹配电路123加载到第二馈电点1213上,以使得所述第二辐射体121收发电磁波信号,且使得所述第三辐射体125收发电磁波信号。
所述第一辐射体111可以为柔性电路板(Flexible Printed Circuit,FPC)天线辐射体或者为激光直接成型(Laser Direct Structuring,LDS)天线辐射体、或者为印刷直接成型(Print Direct Structuring,PDS)天线辐射体、或者为金属枝节。相应地,所述第二辐射体121可以为FPC天线辐射体或者为LDS天线辐射体、或者为PDS天线辐射体、或者为金属枝节。可以理解地,所述第三辐射体125可以为FPC天线辐射体或者为LDS天线辐射体、或者为PDS天线辐射体、或者为金属枝节。所述第一辐射体111、所述第二辐射体121及所述第三辐射体125的类型可以相同,也可以不同。
本实施方式提供的天线组件10中,所述第二辐射体121与所述第一辐射体111间隔设置且相互耦合,也即所述第一辐射体111与所述第二辐射体121共口径,由于所述第一辐射体111和第二辐射体121的耦合作用,所述第一天线110工作时不但利用所述第一辐射体111收发电磁波信号,还利用所述第二辐射体121收发电磁波信号,从而使得所述第一天线110可工作在较宽的频段。同样地,第二天线120工作时不但可以利用所述第二辐射体121收发电磁波信号,还可利用所述第一辐射体111收发电磁波信号,从而使得所述第二天线120可工作在较宽的频段。此外,由于所述第一天线110工作时不但可以利用第一辐射体111并且可以利用第二辐射体121收发电磁波信号,所述第二天线120工作时不但可以利用第二辐射体121还可利用第一辐射体111,因此,实现了天线组件10中辐射体的复用,也实现了空间的复用,因此,有利于减小所述天线组件10的尺寸。由上述分析可知,所述天线组件10的尺寸较小,当所述天线组件10应用于电子设备1中时,便于与电子设备1中的其他器件堆叠。此外,本实施方式提供的天线组件10中第二天线120中的第二辐射体121和第三辐射体125共用第二匹配电路123,可使得所述第二天线120收发电磁波信号时不但可利用第二辐射体121收发电磁波信号,还可利用第三辐射体125收发电磁波信号,因此,所述第二天线120可支持较多频段的电磁波信号的收发。
需要说明的是,所述第二辐射体121与所述第一辐射体111间隔设置且相互耦合,具体是指,通过第一辐射体111和第二辐射体121的“口对口”设计,又叫共口径设计,来实现的第一辐射体111与所述第二辐射体121的相互耦合。这里“口对口”中的“口”为天线的辐射口径,即,所述第一天线辐射体111与所述第二天线辐射体121的辐射口径相对。所述第一辐射体111和第二辐射体121的共口径设计可以提升第一天线110和第二天线120的复用率,通过“口对口”的第一辐射体111和第二辐射体121的相互耦合来激励出更多的谐振模式(也称为谐振模态),从而可以利用更少的天线枝节来实现更多的谐振模式。
在本实施方式中,所述第一天线110用于实现第一频段范围的电磁波信号的收发,所述第二天线120用于实现第二频段范围及第三频段范围的电磁波信号的收发,其中,第一频段范围包括低频(Lower Band,LB)频段,第二频段范围包括中高频(Middle High Band,MHB)频段,第三频段范围包括超高频(Ultra High Band,UHB)频段。
所谓LB频段,是指频率低于1000MHz的频段;所谓MHB频段的范围为:1000MHz-3000MHz;所谓UHB频段的范围为:3000MHz-6000MHz。
可以理解地,在其他实施中,所述第一天线110及所述第二天线120还支持其他频段范围的电磁波信号的收发,其他实施方式中所述第一天线110及所述第二天线120支持其他频段的电磁波信号的情况稍后详细介绍如下。
请参阅图2,图2为本实施方式中天线组件支持的电磁波信号的收发的表格。在本表格中组合1表示,所述第一天线110用于实现第一频段范围的电磁波信号的收发,所述第二天线120用于实现第二频段范围及第三频段范围的电磁波信号的收发。组合2表示,所述第一天线110用于实现第一频段范围及第二频段范围的电磁波信号的收发,所述第二天线120用于实现第三频段范围及第四频段范围的电磁波信号的收发,其中,所述第一频段范围包括LB频段,第二频段包括MB频段,第三频段包括UHB频段,第四频段包括HB频段。组合3表示,所述第一天线110用于实现第一频段范围及第四频段范围的电磁波信号的收发,所述第二天线120用于实现第二频段范围及第四频段范围的电磁波信号的收发。组合4表示,所述第一天线110用于实现第一频段范围及第二频段范围的电磁波信号的收发,所述第二天线120用于实现第三频段范围的电磁波信号的收发。组合5表示,所述第一天线110用于实现第一频段范围及第三频段范围的电磁波信号的收发,所述第二天线120用于实现第二频段范围的电磁波信号的收发。上述描述的组合1至组合5中,所述第一频段范围包括LB频段,第二频段范围包括MB频段,第三频段范围包括UHB频段,第四频段范围包括HB频段。
在接下来的实施方式中,以所述第一天线110用于实现第一频段范围的电磁波信号的收发,所述第二天线120用于实现第二频段范围及第三频段范围的电磁波信号的收发为例进行介绍。
在本实施方式中,所述天线组件10具有第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式,以覆盖所述第二频段范围及所述第三频段范围的电磁波信号的收发。
其中,所述第一谐振模式、所述第二谐振模式、所述第三谐振模式及所述第四谐振模式中的至少一个谐振模式由所述第三辐射体产生(后面讲到的第四谐振模式),至少另一个谐振模式由部分所述第一辐射体111耦合来自第二辐射体121的信号耦合产生(即后面讲到的第二谐振模式)。稍后将结合天线组件10的仿真示意图对各个谐振模式进行介绍。
请继续参阅图1,且一并参阅图3及图4,图3为本申请另一实施方式提供的天线组件的示意图;图4为图3中包括第一调节电路实现第二频段范围及第三频段范围的到地的低阻抗的等效示意图。所述第一天线110还包括第一调节电路114,所述第一调节电路114用于实现第二频段范围及第三频段范围的电磁波信号到地的低阻抗。
所述第一调节电路114实现第二频段范围及第三频段范围的电磁波信号的到地阻抗,换而言之,所述第一调节电路114实现第二频段范围及第三频段范围的电磁波信号到地的低阻抗。即,所述第一辐射体111自第一调节电路114连接到第一辐射体111的连接点到第一辐射体111的接地端(第一接地端1111)之间的辐射体等效为零。等效后的天线组件10请参阅图4所示。稍后将结合S参数的仿真图进行介绍。
在本实施方式中,所述第一辐射体111还具有第一接地端1111、第一自由端1112及第一连接点1114。所述第一接地端1111接地,所述第一连接点1114与所述第一馈电点1113间隔设置,且均设置于所述第一自由端1112与所述第一接地端1111之间。所述第一调节电路114的一端接地,另一端电连接至所述第一连接点1114。所述第二辐射体121还包括第二接地端1211及第二自由端1212,所述第二接地端1211接地,所述第二自由端1212与所述第一自由端1112间隔设置,所述第二馈电点1213位于所述第二接地端1211及所述第二自由端1212之间。
在本实施方式中,所述第一连接点1114设置于所述第一馈电点1113与所述第一自由端1112之间。在其他实施方式中(见图17),所述第一连接点1114位于所述第一馈电点1113与所述第一接地端1111之间。
请一并参阅图5,图5为图1所示的天线组件的部分S参数的仿真示意图。在本实施方式的示意图中,横坐标为频率,单位为GHz,纵坐标为S参数,单位为dB。所述第二辐射体121的第二接地端1211 至所述第二自由端1212产生所述第一谐振模式(图中标记为模式1),所述第一调节电路114及第一辐射体111自第一连接点1114至所述第一自由端1112产生所述第二谐振模式(图中标记为模式2),所述第二信号源122及第二辐射体121的第二馈电点1213至第二自由端1212产生所述第三谐振模式(图中标记为模式3),所述第三辐射体125产生所述第四谐振模式(图中标记为模式4)。
由本实施方式的仿真图可见,所述天线组件10中第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式可覆盖MHB频段及UHB频段的电磁波信号的收发。即,实现了1000MHz-6000MHz频段的电磁波信号的收发。
在一实施方式中,所述第一谐振模式为第二天线120工作在所述第二辐射体121的第二接地端1211至所述第二自由端1212的基模或高次模,所述第二谐振模式为所述第一天线110工作在所述第一调节电路114及第一辐射体111自第一连接点1114至所述第一自由端1112的基模或高次模,所述第三谐振模式为所述第二天线120工作在所述第二信号源122及第二辐射体121的第二馈电点1213至第二自由端1212的基模或高次模,所述第四谐振模式为第二天线120工作在第三辐射体125的基模或高次模。
在本实施方式中,所述第一谐振模式为第二天线120工作在所述第二辐射体121的第二接地端1211至所述第二自由端1212的基模,所述第二谐振模式为所述第一天线110工作在所述第一调节电路114及第一辐射体111自第一连接点1114至所述第一自由端1112的基模,所述第三谐振模式为所述第二天线120工作在所述第二信号源122及第二辐射体121的第二馈电点1213至第二自由端1212的基模,所述第四谐振模式为第二天线120工作在第三辐射体125的基模。
所述第一谐振模式为第二天线120工作在第二辐射体121的第二接地端1211至第二自由端1212的四分之一波长基模。可以理解地,所述第一谐振模式为第二天线120工作在所述第二辐射体121的第二接地端1211至所述第二自由端1212的基模时,所述第一谐振模式具有较高的收发功率。
同样地,所述第二谐振模式为所述第一天线110工作在所述第一调节电路114及第一辐射体111自第一连接点1114至所述第一自由端1112的基模时,所述第二谐振模式具有较高的收发功率。所述第三谐振模式为所述第二天线120工作在所述第二信号源122及第二辐射体121的第二馈电点1213至第二自由端1212的基模时,所述第三谐振模式具有较高的收发功率。所述第四谐振模式为第二天线120工作在第三辐射体125的基模时,所述第四谐振模式具有较高的收发功率。
需要说明的是,述第一调节电路114电连接到第一辐射体111的第一连接点时,要激励起所述第二谐振模式,所述第一连接点1114可设置于所述第一馈电点1113与所述第一自由端1112之间,或者,所述第一连接点1114位于所述第一馈电点1113与所述第一接地端1111之间均可,只要满足所述第一自由端1112到所述第一连接点1113的位置的长度等于1/4波长,或者近似为1/4波长即可。
请参阅图6,图6为本申请一实施方式提供的第一调节电路的示意图。在本实施方式的示意中,所述第一调节电路114包括多个子调节电路及开关单元。为了方便描述,所述第一调节电路114中包括的子调节电路命名为第一子调节电路1141,所述第一调节电路114中的开关单元命名为第一开关单元1142。所述第一开关单元1142电连接所述第一连接点1114,所述第一开关单元1142还电连接所述多个第一子调节电路1141至地,所述第一开关单元1142在控制信号的控制下,将所述多个第一子调节电路1141中的至少一个第一子调节电路1141电连接至所述第一连接点1114。
在本实施方式的示意图中以所述第一子调节电路1141的数目为2个为例进行示意,相应地,所述第一开关单元1142为单刀双掷开关为例进行示意。所述第一开关单元1142的活动端电连接所述第一连接点1114,所述第一开关单元1142的一个固定端电连接其中一个第一子调节电路1141至地,所述第一开关单元1142的另一个固定端电连接另一个第一子调节电路1141至地。可以理解地,在其他实施方式中,所述第一调节电路114包括N个第一子调节电路1141,相应地,所述第一开关单元1142为单刀N掷开关,或者所述第一开关单元1142为N刀N掷开关。
请参阅图7,图7为本申请另一实施方式提供的第一调节电路的示意图。在本实施方式中,所述第一调节电路114包括M个第一子调节电路1141及M个第一开关单元1142,每个第一开关单元1142均与一个第一子调节电路1141串联。
可以理解地,所述第一调节电路114中第一子调节电路1141和第一开关单元1142的形式并不局限 于上述介绍的几种,只要能够满足所述第一开关单元1142在控制信号的控制下降所述多个第一子调节电路1141中的至少一个第一子调节电路1141电连接至第一连接点1114即可。
所述第一子调节电路1141包括电容、电感、电阻中的至少一个或者多个的组合。因此,所述第一子调节电路1141也被称为集总电路。
请一并参阅图8,图8为第一调节电路用于切换第一天线在第一频段的范围内支持的频段的仿真图。在本仿真图中,横坐标为频率,单位为GHz,纵坐标为S参数,单位为dB。在本仿真图中曲线①为B5频段,曲线②为B8频段,曲线③为B20频段,曲线④为B28频段。所述第一调节电路114还用于切换所述第一天线110在第一频段范围内所支持的频段。所述第一频段范围内所支持的频段包括B28频段、B20频段、B5频段及B8频段,所述第一调节电路114用于使得所述第一天线110工作在B28频段、B20频段、B5频段及B8频段中的任意一个频段,且可在B28频段、B20频段、B5频段及B8频段之间切换。
请一并参阅图9,图9为本申请另一实施方式提供的天线组件的示意图。所述第二天线120还包括第二调节电路124,所述第二调节电路124用于切换所述第二天线120在第二频段范围及所述第三频段范围内所支持的频段。
所述第二天线120还包括第二调节电路124可结合到前面任意实施方式提供的天线组件10中。在本实施方式的示意图中以所述第二天线120还包括第二调节电路124结合到其中的一种实施方式的示意图中为例进行示意。
在本实方式中,所述第二调节电路124一端接地,另一端电连接至所述第二匹配电路123。
请参阅图10,图10为本申请一实施方式中第二调节电路的示意图。在本实施方式中,所述第二调节电路124包括多个子调节电路及开关单元。为了方便描述,所述第二调节电路124中包括的子调节电路命名为第二子调节电路1241,所述第二调节电路124中包括的开关单元命名为第二开关单元1242。所述第二开关单元1242用于在控制信号的控制下降所述第二调节电路124中的所述多个第二子调节电路1241中的至少一个电连接至第二匹配电路123。在本实施方式的示意图中,以所述第二调节电路124中的包括3个开关及3个第二子调节电路1241为例进行示意。每个开关均与一个第二子调节电路1241电连接。
请参阅图11,图11为本申请一实施方式中第二调节电路的示意图。在本实施方式中,所述第二调节电路124包括一个单刀三掷开关及三个第二子调节电路1241。所述单刀三掷开关的活动端电连接所述第二匹配电路123,所述单刀三掷开关的三个固定端分别电连接三个第二子调节电路1241。可以理解地,在其他实施方式中,所述第二调节电路124包括K个第二子调节电路1241,相应地,所述第二开关单元1242为单刀K掷开关,或者所述第二开关单元1242为K刀K掷开关,其中,K为大于等于2的正整数。
所述第二子调节电路1241包括电容、电感、电阻中的至少一个或者多个的组合。因此,所述第二子调节电路1241也被称为集总电路。可以理解地,所述第一调节电路114中的第二子调节电路1241与所述第二调节电路124中的第二子调节电路1241可以相同也可以不同。
请参阅图12,图12为图9所示的天线组件的仿真示意图。在本仿真图中,横轴为频率,单位为GHz,纵轴为S参数,单位为dB。在本仿真图中,曲线⑤表示S1,1参数,曲线⑥表示S2,1参数,曲线⑦表示S2,2参数。由该仿真图可见,曲线⑤的谐振频段为LB频段,曲线⑦的谐振频段为MHB频段及UHB频段。由曲线⑥可见,LB频段分别和MHB频段及UHB频段具有较高的隔离度。本申请的天线组件10中所述第一天线110及所述第二天线120共同用于实现第一频段范围、第二频段范围及第三频段范围的双连接(LTE NR Double Connect,ENDC)或载波聚合(Carrier Aggregation,CA)。
具体地,所述第一调节电路114及所述第二调节电路124联调以使得所述第一天线110及所述第二天线120共同用于实现第一频段范围、第二频范围及第三频段范围的ENDC或CA。举例而言,所述第一调节电路114用于调节所述第一天线110所支持的第一频段范围,若只采用第一调节电路114,则有可能会使得所述第二天线120所支持的频段范围偏离所述第二频段范围或第三频段范围中的至少一个。则,采用第二调节电路124使得所述第二天线120支持第二频段范围及第三频段范围的电磁波信号的收 发。若只采用第二调节电路124使得所述第二天线120支持第二频段范围及第三频段范围的电磁波信号的收发,则有可能会使得所述第一天线110所支持的频段范围偏离所述第一频段范围,则,采用第一调节电路114使得所述第一天线110支持第一频段范围的电磁波信号的收发。因此,需要所述第一调节电路114及第二调节电路124联合调整,使得所述第一天线110及所述第二天线120共同实现第一频段范围、第二频段范围及第三频段范围的ENDC或CA。
换而言之,所述天线组件10中的第一天线110及第二天线120共同用于实现第一频段范围、第二频段范围及第三频段范围的4G无线接入网与5G-NR的双连接(LTE NR Double Connect,ENDC)。由此可见,本申请的天线组件10可实现ENDC,可支持同时支持4G无线接入网与5G-NR,因此,本申请实施方式提供的天线组件10可提升4G及5G的传输带宽,以及提升上行下行速率,具有较好的通信效果。
请参阅图13,图13为本申请再一实施方式提供的天线组件的示意图。所述第一天线110还包括第四辐射体115,所述第四辐射体115电连接至所述第一匹配电路113,所述第四辐射体115用于产生至少一谐振模式,以扩宽所述天线组件10的带宽。
在本实施方式中,以所述第一天线110还包括第四辐射体115结合到图8所示的天线组件10中为例进行示意。
请参阅图14,图14为本申请另一实施方式提供的天线组件的示意图。在本实施方式提供的天线组件10与图13及其相关实施方式提供的天线组件10的结构基本相同,不同之处在于,在本实施方式中,所述第一调节电路114的一端接地,另一端电连接至所述第一匹配电路113。具体地,所述天线组件10包括第一天线110及第二天线120。所述第一天线110包括第一辐射体111、第一信号源112、第一匹配电路113、第一调节电路114及第四辐射体115。所述第一辐射体111具有第一馈电点1113。所述第一信号源112电连接所述第一匹配电路113至所述第一馈电点1113。所述第一调节电路114的一端接地,所述第一调节电路114的另一端电连接至所述第一匹配电路113。所述第四辐射体115电连接所述第一匹配电路113。所述第二天线120包括第二辐射体121、第三辐射体125、第二信号源122、第二匹配电路123及第二调节电路124。所述第二辐射体121与所述第一辐射体111间隔设置且相互耦合,所述第二辐射体121具有第二馈电点1213。所述第二信号源122电连接所述第二匹配电路123至所述第二馈电点1213,且所述第二信号源122还电连接所述第二匹配电路123至所述第三辐射体125,所述第二调节电路124的一端接地,所述第二调节电路124的另一端电连接至第二匹配电路123。
请参阅图15,图15为本申请另一实施方式提供的天线组件的示意图。在本实施方式提供的天线组件10与14及其相关实施方式提供的天线组件10的结构基本相同,不同之处在于,在本实施方式中,所述第二调节电路124的一端接地,另一端电连接至所述第二连接点1214。具体地,所述天线组件10包括第一天线110及第二天线120。所述第一天线110包括第一辐射体111、第一信号源112、第一匹配电路113及第一调节电路114。所述第一辐射体111具有第一馈电点1113。所述第一信号源112电连接所述第一匹配电路113至所述第一馈电点1113。所述第一调节电路114的一端接地,所述第一调节电路114的另一端电连接至所述第一匹配电路113。所述第四辐射体115电连接所述第一匹配电路113。所述第二天线120包括第二辐射体121、第三辐射体125、第二信号源122、第二匹配电路123及第二调节电路124。所述第二辐射体121与所述第一辐射体111间隔设置且相互耦合。具体地,所述第二辐射体121具有第二接地端1211及第二自由端1212,所述第二接地端1211与所述第二自由端1212为所述第二辐射体121相背的两端,所述第二接地端1211接地,所述第二自由端1212与所述第一辐射体111的邻近所述第二辐射体121的端部(第一自由端1112)间隔设置且相互耦合。所述第二辐射体121还具有位于所述第二自由端1212与所述第二接地端1211之间的第二馈电点1213及第二连接点1214。所述第二信号源122电连接所述第二匹配电路123至所述第二馈电点1213,且所述第二信号源122还电连接所述第二匹配电路123至所述第三辐射体125,所述第二调节电路124的一端接地,所述第二调节电路124的另一端电连接至第二连接点1214。在本实施方式中,所述第二连接点1214位于所述第二接地端1211与所述第二馈电点1213之间。
请参阅图16,图16为本申请另一实施方式提供的天线组件的示意图。本实施方式提供的天线组件 10与图15及其相关实施方式中提供的天线组件10的结构基本相同,不同之处在于,在本实施方式中,所述第二连接点1214位于所述第二自由端1212与所述第二馈电点1213之间。具体地,所述天线组件10包括第一天线110及第二天线120。所述第一天线110包括第一辐射体111、第一信号源112、第一匹配电路113及第一调节电路114。所述第一辐射体111具有第一馈电点1113。所述第一信号源112电连接所述第一匹配电路113至所述第一馈电点1113。所述第一调节电路114的一端接地,所述第一调节电路114的另一端电连接至所述第一匹配电路113。所述第四辐射体115电连接所述第一匹配电路113。所述第二天线120包括第二辐射体121、第三辐射体125、第二信号源122、第二匹配电路123及第二调节电路124。所述第二辐射体121与所述第一辐射体111间隔设置且相互耦合,所述第二辐射体121具有第二接地端1211及第二自由端1212,所述第二接地端1211与所述第二自由端1212为所述第二辐射体121相背的两端,所述第二接地端1211接地,所述第二自由端1212与所述第一辐射体111的邻近所述第二辐射体121的端部(第一自由端1112)间隔设置且相互耦合。所述第二辐射体121还具有位于所述第二自由端1212与所述第二接地端1211之间的第二馈电点1213及第二连接点1214。所述第二信号源122电连接所述第二匹配电路123至所述第二馈电点1213,且所述第二信号源122还电连接所述第二匹配电路123至所述第三辐射体125,所述第二调节电路124的一端接地,所述第二调节电路124的另一端电连接至第二连接点1214。在本实施方式中,所述第二连接点1214位于所述第二自由端1212与所述第二馈电点1213之间。
请参阅图17,图17为本申请又一实施方式提供的天线组件的示意图。本实施方式提供的天线组件10和图9提供的天线组件10的结构基本相同,不同之处在于,在图9及其对应的实施方式中,所述第一连接点1114位于所述第一馈电点1113与所述第一自由端1112之间。在本实施方式中,所述第一连接点1114位于所述第一馈电点1113与所述第一接地端1111之间。本实施方式中,所述天线组件10的其余结构请参阅图9及其相关实施方式描述,在此不再赘述。
由上述各个实施方式可见,所述第一天线110中的第一调节电路114包括如下这种方式:所述第一调节电路114的一端电连接所述第一连接点1114,另一端接地;或者,所述第一调节电路114的一端电连接所述第一匹配电路113,另一端接地。当所述第一调节电路114的一端电连接所述第一连接点1114接地,另一端接地时,包括如下情况:所述第一连接点1114位于所述第一馈电点1113与所述第一自由端1112之间;或者,所述第一连接点1114位于所述第一馈电点1113与所述第一接地端1111之间。第一天线110可包括第四辐射体115或者不包括第四辐射体115。当所述第一天线110包括第四辐射体115时,所述第四辐射体115电连接所述第一匹配电路113。
当所述第一连接点1114位于所第一馈电点1113与所述第一自由端1112之间时,可减小所述第一辐射体111产生的第二谐振模式所支持的电磁波信号对天线组件10所支持收发的其他频段的电磁波信号的影响。可以理解地,所述第一连接点1114也可位于所述第一馈电点1113与所述第一接地端1111之间,只要能实现第一调节电路114电连接至所述第一辐射体111即可。
相应的,所述第二天线120中的第二调节电路124包括如下这种方式:所述第二调节电路124的一端电连接所述第二连接点1214,另一端接地;或者,所述第二调节电路124的一端电连接所述第二匹配电路123,另一端接地。当所述第二调节电路124的一端电连接所述第二连接点1214,另一端接地时,包括如下情况:所述第二连接点1214位于所述第二馈电点1213与所述第二自由端1212之间;或者,所述第二连接点1214位于所述第二馈电点1213与所述第二接地端1211之间。
当所述第二连接点1214位于所述第二馈电点1213与所述第二自由端1212之间,可减小所述第二辐射体121产生的电磁波信号对天线组件10所支持收发的其他频段的电磁波信号的影响。可以理解地,所述第二连接点1214也可位于所述第二馈电点1213与所述第二接地端1211之间,只要能实现第二调节电路124电连接至所述第二辐射体121即可。
可以理解地,所述天线组件10包括前面所述的所述第一天线110的任意一种实施方式,以及所述第二天线120的任意一种实施方式的组合。
请参阅图18,图18为本申请一实施方式提供的天线组件中第一辐射体与第二辐射体之间的间隙的尺寸的示意图。所述第一辐射体111与所述第二辐射体121之间的间隙的尺寸d满足:0.5mm≤d≤ 1.5mm。
可以理解地,对于所述天线组件10而言,所述天线组件10中第一天线110辐射体及第二天线120辐射体之间的间隙均满足d为:0.5mm≤d≤1.5mm。从而可保证第一辐射体111和第二辐射体121之间具有更好的耦合效果。虽然本实施方式中以天线组件10中第一辐射体111及第二辐射体121的尺寸结合到图1所示的天线组件10中为例进行说明,但是不应当理解为对本申请的限定,所述第一辐射体111及所述第二辐射体121之间的间隙也适用于其他实施方式提供的天线组件10。
请参阅图19,图19为本申请一实施方式提供的电子设备的立体结构图。所述电子设备1包括前面任意实施方式所述的天线组件10。
请一并参阅图20,图20为一实施方式提供的图19中I-I线的剖视图。在本实施方式中,所述电子设备1还包括中框30、屏幕40、电路板50及电池盖60。所述中框30的材质为金属,比如为铝镁合金。所述中框30通常构成电子设备1的地,所述电子设备1中的电子器件需要接地时,可连接所述中框30以接地。此外,所述电子设备1中的地系统除了包括所述中框30之外,还包括电路板50上的地以及屏幕40中的地。所述屏幕40可以为具有显示作用的显示屏,也可以为集成有显示及触控作用的屏幕40。所述屏幕40用于显示文字、图像、视频等信息。所述屏幕40承载于所述中框30,且位于所述中框30的一侧。所述电路板50通常也承载于所述中框30,且所述电路板50和所述屏幕40承载于所述中框30相背的两侧。前面介绍的天线组件10中的第一信号源112、第二信号源122、第一匹配电路113、第二匹配电路123、第一调节电路114、及第二调节电路124中的至少一个或多个可设置在所述电路板50上。所述电池盖60设置于所述电路板50背离中框30的一侧,所述电池盖60、所述中框30、所述电路板50、及所述屏幕40相互配合以组装成一个完整的电子设备1。可以理解地,所述电子设备1的结构描述仅仅为对电子设备1的结构的一种形态的描述,不应当理解为对电子设备1的限定,也不应当理解为对天线组件10的限定。
所述第一辐射体111电连接至中框30的地时,所述第一辐射体111还可通过连接筋连接中框30的地,或者,所述第一辐射体111还通过导电弹片电连接中框30的地。同样地,所述第二辐射体121电连接至中框30的地时,所述第二辐射体121还可通过连接筋连接中框30的地,或者,所述第二辐射体121还通过导电弹片电连接中框30的地。
所述中框30包括框体本体310及边框320。所述边框320弯折连接于所述框体本体310的周缘,前面所述的各个实施方式中的第一辐射体111、第二辐射体121、第三辐射体131、第四辐射体141中的任意一个辐射体可形成于所述边框320上。
可以理解地,在其他实施方式中,第一辐射体111、第二辐射体121、第三辐射体131、第四辐射体141也可形成于所述边框320上,而是为FPC天线辐射体或者为LDS天线辐射体、或者为PDS天线辐射体、或者为金属枝节。
请参阅图21,图21为一实施方式中电子设备的位置示意图。在本实施方式中,电子设备1包括顶部1a和底部1b,所述第一辐射体111及所述第二辐射体121均设置于所述顶部1a。
所谓顶部1a,是指电子设备1使用时位于上面的部分,而底部1b是和顶部1a相对的是位于电子设备1的下面的区域。
本实施方式中的电子设备1包括首尾依次相连的第一侧边11、第二侧边12、第三侧边13、及第四侧边14。所述第一侧边11与所述第三侧边13为电子设备1的短边,所述第二侧边12及所述第四侧边14为所述电子设备1的长边。所述第一侧边11与所述第三侧边13相对且间隔设置,所述第二侧边12与所述第四侧边14相对且间隔设置,所述第二侧边12分别与所述第一侧边11及所述第三侧边13弯折相连,所述第四侧边14分别与所述第一侧边11及所述第三侧边13弯折相连。所述第一侧边11与所述第二侧边12的连接处、所述第二侧边12与所述第三侧边13的连接处、所述第三侧边13与所述第四侧边14的连接处、所述第四侧边14与所述第一侧边11的连接处均形成电子设备1的角。所述第一侧边11为顶边,所述第二侧边12为右边,所述第三侧边13为下边,所述第四侧边14为左边。所述第一侧边11与所述第二侧边12形成的角为右上角,所述第一侧边11与所述第四侧边14形成的角为左上角。
所述顶部1a包括三种情况:所述第一辐射体111及所述第二辐射体121设置于所述电子设备1的 左上角;或者,所述第一辐射体111及所述第二辐射体121设置于所述电子设备1的顶边;或者所述第一辐射体111及所述第二辐射体121设置于所述电子设备1的右上角。
当所述第一辐射体111及所述第二辐射体121设置于所述电子设备1的左上角时包括如下几种情况:所述第一辐射体111的部分位于左侧边,所述第一辐射体111的另外部分位于顶边,且所述第二辐射体121均位于所述顶边;或者,所述第二辐射体121部分位于顶边,所述第二辐射体121的另外一部分位于左边,且所述第一辐射体111位于所述左边。
当所述第一辐射体111及所述第二辐射体121设置于所述电子设备1的右上角时,包括如下几种情况:所述第一辐射体111部分位于顶边,所述第一辐射体111的另外部分位于右侧边,且所述第二辐射体121位于右边;或者,所述第二辐射体121部分位于右边,所述第二辐射体121部分位于顶边,且所述第一辐射体111部分位于顶边。
当所述电子设备1立体放置时,所述电子设备1的顶部1a通常背离地面,而所述电子设备1的底部1b通常靠近地面。当所述第一辐射体111及所述第二辐射体121设置在所述顶部1a时,第一天线110及第二天线120的上半球辐射效率较好,从而使得所述第一天线110及所述第二天线120具有较好的通信效率。当然,在其他实施方式中,所述第一辐射体111及所述第二辐射体121也可对应所述电子设备1的底部1b设置,虽然所述第一辐射体111及所述第二辐射体121对应所述电子设备1的底部1b设置时,第一天线110及第二天线120的上半球辐射效率没有那么好,但只要满足上半球辐射效率大于等于预设效率也是可以具有较为良好的通信效果的。
请参阅图22,图22为另一实施方式中电子设备的位置示意图。本实施方式中的电子设备1包括首尾依次相连的第一侧边11、第二侧边12、第三侧边13、及第四侧边14。所述第一侧边11与所述第三侧边13为电子设备1的短边,所述第二侧边12及所述第四侧边14为所述电子设备1的长边。所述第一侧边11与所述第三侧边13相对且间隔设置,所述第二侧边12与所述第四侧边14相对且间隔设置,所述第二侧边12分别与所述第一侧边11及所述第三侧边13弯折相连,所述第四侧边14分别与所述第一侧边11及所述第三侧边13弯折相连。所述第一侧边11与所述第二侧边12的连接处、所述第二侧边12与所述第三侧边13的连接处、所述第三侧边13与所述第四侧边14的连接处、所述第四侧边14与所述第一侧边11的连接处均形成电子设备1的角A。所述第一辐射体111及所述第二辐射体121可对应所述电子设备1中的任意一个角设置,需要注意的是,所述第一辐射体111与所述第二辐射体121均对应所述电子设备1的同一个角设置。当所述第一辐射体111及所述第二辐射体121对应所述电子设备1的角设置时,所述第一天线110及所述第二天线120的效率较高。可以理解地,在本实施方式中,以所述第一侧边11及所述第三侧边13为所述电子设备1的短边,且所述第二侧边12及所述第四侧边14为电子设备1的长边为例进行示意,在其他实施方式中,所述第一侧边11、所述第二侧边12、所述第三侧边13、及所述第四侧边14长度相等。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线组件,其特征在于,所述天线组件包括:
    第一天线,所述第一天线包括第一辐射体、第一信号源及第一匹配电路,所述第一辐射体具有第一馈电点,所述第一信号源电连接所述第一匹配电路至所述第一馈电点;及
    第二天线,所述第二天线包括第二辐射体、第三辐射体、第二信号源及第二匹配电路,所述第二辐射体与所述第一辐射体间隔设置且相互耦合,所述第二辐射体具有第二馈电点,所述第二信号源电连接所述第二匹配电路至所述第二馈电点,且所述第二信号源还电连接所述第二匹配电路至所述第三辐射体,所述第一天线及所述第二天线共同作用以实现至少第一频段范围、第二频段范围及第三频段范围的电磁波信号的收发。
  2. 如权利要求1所述的天线组件,其特征在于,所述第一天线用于实现第一频段范围的电磁波信号的收发,所述第二天线用于实现第二频段范围及第三频段范围的电磁波信号的收发,其中,第一频段范围包括LB频段,第二频段范围包括MHB频段,第三频段范围包括UHB频段。
  3. 如权利要求2所述的天线组件,其特征在于,所述天线组件具有第一谐振模式、第二谐振模式、第三谐振模式及第四谐振模式,以覆盖所述第二频段范围及所述第三频段范围的电磁波信号的收发。
  4. 如权利要求3所述的天线组件,其特征在于,所述第一谐振模式、所述第二谐振模式、所述第三谐振模式及所述第四谐振模式中的至少一个谐振模式由所述第三辐射体产生,至少另一个谐振模式由部分所述第一辐射体耦合来自所述第二辐射体的信号耦合产生。
  5. 如权利要求4所述的天线组件,其特征在于,所述第一天线还包括第一调节电路,所述第一调节电路用于调节所述第二频段范围及第三频段范围的电磁波信号的到地阻抗。
  6. 如权利要求5所述的天线组件,其特征在于,所述第一调节电路的一端接地,另一端电连接至第一匹配电路;或者,所述第一辐射体还具有第一接地端、第一自由端及第一连接点,所述第一接地端接地,所述第一连接点与所述第一馈电点间隔设置,且均设置于所述第一自由端与所述第一接地端之间,所述第一调节电路的一端接地,另一端电连接至所述第一连接点,所述第二辐射体还包括第二接地端及第二自由端,所述第二接地端接地,所述第二自由端与所述第一自由端相对设置。
  7. 如权利要求6所述的天线组件,其特征在于,当所述第一调节电路的一端接地,另一端电连接至所述第一连接点时,所述第一连接点设置于所述第一接地端与所述第一馈电点之间,或者,所述第一连接点设置于所述第一馈电点与所述第一自由端之间。
  8. 如权利要求6所述的天线组件,其特征在于,当所述第一调节电路的一端接地,另一端连接至第一连接点时,所述第二辐射体的第二接地端至所述第二自由端产生所述第一谐振模式,所述第一调节电路及第一辐射体自第一连接点至所述第一自由端产生所述第二谐振模式,所述第二信号源及第二辐射体的第二馈电点至第二自由端产生所述第三谐振模式,所述第三辐射体产生所述第四谐振模式。
  9. 如权利要求8所述的天线组件,其特征在于,所述第一谐振模式为第二天线工作在所述第二辐射体的第二接地端至所述第二自由端的基模,所述第二谐振模式为所述第一天线工作在所述第一调节电路及第一辐射体自第一连接点至所述第一自由端的基模,所述第三谐振模式为所述第二天线工作在所述第二信号源及第二辐射体的第二馈电点至第二自由端的基模,所述第四谐振模式为第二天线工作在第三辐 射体的基模。
  10. 如权利要求8所述的天线组件,其特征在于,所述第一调节电路还用于切换所述第一天线在第一频段范围内所支持的频段。
  11. 如权利要求10所述的天线组件,其特征在于,所述第一调节电路包括多个子调节电路及开关单元,所述开关单元电连接所述第一连接点,所述开关单元还电连接所述多个子调节电路至地,所述开关单元在控制信号的控制下,将所述多个子调节电路中的至少一个子调节电路电连接至所述第一连接点。
  12. 如权利要求11所述的天线组件,其特征在于,所述子调节电路包括电容、电感、电阻中的至少一个或者多个的组合。
  13. 如权利要求10所述的天线组件,其特征在于,所述第一频段范围内所支持的频段包括B28频段、B20频段、B5频段及B8频段,所述第一调节电路用于使得所述第一天线工作在B28频段、B20频段、B5频段及B8频段中的任意一个频段,且可在B28频段、B20频段、B5频段及B8频段之间切换。
  14. 如权利要求5-13任意一项所述的天线组件,其特征在于,所述第二天线还包括第二调节电路,所述第二调节电路用于切换所述第二天线在第二频段范围及所述第三频段范围所支持的频段。
  15. 如权利要求14所述的天线组件,其特征在于,所述第二调节电路一端接地,另一端电连接至所述第二匹配电路;或者,所述第二辐射体包括第二接地端、第二自由端、第二馈电点及第二连接点,第二接地端接地,第二自由端与所述第一辐射体间隔设置,所述第二连接点与所述第二馈电点间隔设置,且均设置于第二自由端与所述第二接地端之间,所述第二调节电路一端接地,另一端电连接至所述第二连接点。
  16. 如权利要求15所述的天线组件,其特征在于,当所述第二调节电路一端接地,另一端电连接至所述第二连接点时,所述第二连接点设置于所述第二接地端与第二馈电点之间,或者,所述第二连接点设置于所述第二自由端与所述第二馈电点之间。
  17. 如权利要求1所述的天线组件,其特征在于,
    所述第一天线用于实现第一频段范围及第二频段范围的电磁波信号的收发,所述第二天线用于实现第三频段范围及第四频段范围的电磁波信号的收发,其中,所述第一频段范围包括LB频段,第二频段包括MB频段,第三频段包括UHB频段,第四频段包括HB频段;
    或者,所述第一天线用于实现第一频段范围及第四频段范围的电磁波信号的收发,所述第二天线用于实现第二频段范围及第四频段范围的电磁波信号的收发;
    或者,所述第一天线用于实现第一频段范围及第二频段范围的电磁波信号的收发,所述第二天线用于实现第三频段范围的电磁波信号的收发;
    或者,所述第一天线用于实现第一频段范围及第三频段范围的电磁波信号的收发,所述第二天线用于实现第二频段范围的电磁波信号的收发;
    其中,所述第一频段范围包括LB频段,第二频段范围包括MB频段,第三频段范围包括UHB频段,第四频段范围包括HB频段。
  18. 如权利要求14所述的天线组件,其特征在于,所述第一调节电路及所述第二调节电路联调以使得所述第一天线及所述第二天线共同用于实现第一频段范围、第二频范围及第三频段范围的ENDC或CA。
  19. 如权利要求1所述的天线组件,其特征在于,所述第一天线还包括第四辐射体,所述第四辐射体电连接至所述第一匹配电路,所述第四辐射体用于产生至少一谐振模式。
  20. 一种电子设备,其特征在于,包括如权利要求1-19任意一项所述的天线组件。
PCT/CN2021/130976 2020-12-29 2021-11-16 天线组件及电子设备 WO2022142804A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21913547.2A EP4270648A4 (en) 2020-12-29 2021-11-16 ANTENNA ARRANGEMENT AND ELECTRONIC DEVICE
US18/340,161 US20230420846A1 (en) 2020-12-29 2023-06-23 Antenna assembly and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011603132.5 2020-12-29
CN202011603132.5A CN112751204B (zh) 2020-12-29 2020-12-29 天线组件及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/340,161 Continuation US20230420846A1 (en) 2020-12-29 2023-06-23 Antenna assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2022142804A1 true WO2022142804A1 (zh) 2022-07-07

Family

ID=75647077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130976 WO2022142804A1 (zh) 2020-12-29 2021-11-16 天线组件及电子设备

Country Status (4)

Country Link
US (1) US20230420846A1 (zh)
EP (1) EP4270648A4 (zh)
CN (1) CN112751204B (zh)
WO (1) WO2022142804A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220286148A1 (en) * 2021-03-03 2022-09-08 Taoglas Group Holdings Limited Multi-Band Antenna for use with Limited Size Ground Planes
CN115663462A (zh) * 2022-10-31 2023-01-31 维沃移动通信有限公司 天线结构及电子设备
WO2024078168A1 (zh) * 2022-10-10 2024-04-18 Oppo广东移动通信有限公司 天线组件、中框组件以及电子设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4113741A4 (en) * 2020-03-12 2023-08-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. ANTENNA AND ELECTRONIC DEVICE ASSEMBLY
CN112751204B (zh) * 2020-12-29 2023-04-28 Oppo广东移动通信有限公司 天线组件及电子设备
CN115207631A (zh) * 2021-04-13 2022-10-18 Oppo广东移动通信有限公司 天线和电子设备
CN115411501B (zh) * 2021-05-26 2024-12-31 Oppo广东移动通信有限公司 天线组件及电子设备
CN115548649B (zh) * 2021-06-30 2025-02-14 Oppo广东移动通信有限公司 天线模组及电子设备
CN115548638A (zh) * 2021-06-30 2022-12-30 Oppo广东移动通信有限公司 天线模组及电子设备
CN113571898B (zh) * 2021-07-27 2024-06-07 维沃移动通信有限公司 电子设备
CN113690585B (zh) * 2021-08-11 2023-09-22 Oppo广东移动通信有限公司 天线装置、壳体及电子设备
CN113690589A (zh) * 2021-08-23 2021-11-23 南昌逸勤科技有限公司 一种天线装置及无线通信设备
CN113644438B (zh) * 2021-08-31 2024-11-19 维沃移动通信有限公司 天线装置及电子设备
CN113904105B (zh) * 2021-09-18 2024-06-18 深圳市中天迅通信技术股份有限公司 5g移动终端天线装置和移动终端
CN114336010A (zh) * 2021-12-27 2022-04-12 Oppo广东移动通信有限公司 天线组件及电子设备
CN114300840B (zh) * 2022-01-21 2024-05-28 维沃移动通信有限公司 电子设备
CN114552181A (zh) * 2022-01-30 2022-05-27 Oppo广东移动通信有限公司 天线组件及电子设备
CN114552166B (zh) * 2022-02-22 2025-07-01 Oppo广东移动通信有限公司 天线组件和电子设备
CN115473030B (zh) * 2022-09-27 2025-06-13 Oppo广东移动通信有限公司 一种电子设备
CN118054201A (zh) * 2022-11-10 2024-05-17 Oppo广东移动通信有限公司 天线组件及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180026348A1 (en) * 2016-07-19 2018-01-25 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN109390693A (zh) * 2017-08-05 2019-02-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN109921174A (zh) * 2017-12-12 2019-06-21 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN110380198A (zh) * 2019-08-08 2019-10-25 维沃移动通信有限公司 一种天线模组及电子设备
CN110380197A (zh) * 2019-08-08 2019-10-25 维沃移动通信有限公司 一种天线模组及电子设备
CN110380190A (zh) * 2019-08-08 2019-10-25 维沃移动通信有限公司 一种天线模组及电子设备
CN112751204A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185238A (ja) * 2000-12-11 2002-06-28 Sony Corp デュアルバンド対応内蔵アンテナ装置およびこれを備えた携帯無線端末
US7324054B2 (en) * 2005-09-29 2008-01-29 Sony Ericsson Mobile Communications Ab Multi-band PIFA
TWI641183B (zh) * 2017-07-04 2018-11-11 廣達電腦股份有限公司 行動裝置
CN109728437B (zh) * 2017-10-30 2022-05-06 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN207781900U (zh) * 2017-12-26 2018-08-28 广东欧珀移动通信有限公司 天线组件及电子装置
EP3584879A1 (en) * 2018-06-20 2019-12-25 Advanced PCB Antennas Sweden AB A multiband antenna
CN108736130B (zh) * 2018-07-11 2020-01-14 Oppo广东移动通信有限公司 天线组件以及电子设备
CN109546311A (zh) * 2018-12-12 2019-03-29 维沃移动通信有限公司 一种天线结构及通信终端
CN109687111B (zh) * 2018-12-29 2021-03-12 维沃移动通信有限公司 一种天线结构及通信终端
CN111628794A (zh) * 2020-05-15 2020-09-04 Oppo广东移动通信有限公司 阻抗匹配电路和电子装置
CN112086752A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180026348A1 (en) * 2016-07-19 2018-01-25 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN109390693A (zh) * 2017-08-05 2019-02-26 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN109921174A (zh) * 2017-12-12 2019-06-21 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN110380198A (zh) * 2019-08-08 2019-10-25 维沃移动通信有限公司 一种天线模组及电子设备
CN110380197A (zh) * 2019-08-08 2019-10-25 维沃移动通信有限公司 一种天线模组及电子设备
CN110380190A (zh) * 2019-08-08 2019-10-25 维沃移动通信有限公司 一种天线模组及电子设备
CN112751204A (zh) * 2020-12-29 2021-05-04 Oppo广东移动通信有限公司 天线组件及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4270648A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220286148A1 (en) * 2021-03-03 2022-09-08 Taoglas Group Holdings Limited Multi-Band Antenna for use with Limited Size Ground Planes
US11949438B2 (en) * 2021-03-03 2024-04-02 Taoglas Group Holdings Limited Multi-band antenna for use with limited size ground planes
WO2024078168A1 (zh) * 2022-10-10 2024-04-18 Oppo广东移动通信有限公司 天线组件、中框组件以及电子设备
CN115663462A (zh) * 2022-10-31 2023-01-31 维沃移动通信有限公司 天线结构及电子设备
CN115663462B (zh) * 2022-10-31 2025-06-10 维沃移动通信有限公司 天线结构及电子设备

Also Published As

Publication number Publication date
CN112751204A (zh) 2021-05-04
EP4270648A1 (en) 2023-11-01
US20230420846A1 (en) 2023-12-28
EP4270648A4 (en) 2024-07-03
CN112751204B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2022142804A1 (zh) 天线组件及电子设备
CN113013593B (zh) 天线组件和电子设备
CN214099892U (zh) 天线系统及电子设备
CN112751203B (zh) 天线组件及电子设备
US11735809B2 (en) Antenna system and terminal device
CN112768900B (zh) 天线系统及电子设备
WO2022142822A1 (zh) 天线组件和电子设备
TWI506861B (zh) 可切換分集天線設備、行動通信裝置及低頻範圍分集天線
CN112086752A (zh) 天线组件和电子设备
CN113540758B (zh) 天线单元和电子设备
CN114336010A (zh) 天线组件及电子设备
CN110829023B (zh) 天线模组及终端
WO2022134786A1 (zh) 一种天线和通信设备
JP2024511041A (ja) アンテナおよび通信デバイス
CN114336009A (zh) 电子设备
US20250174886A1 (en) Antenna and communication device
WO2022068367A1 (zh) 天线组件及电子设备
WO2022142805A1 (zh) 天线系统及电子设备
US20230411847A1 (en) Antenna and electronic device
CN114447605A (zh) 多频段融合天线组件
US20240380113A1 (en) Microstrip antenna and electronic device
WO2022068373A1 (zh) 天线组件和电子设备
CN115249879A (zh) 天线组件和电子设备
CN117748164A (zh) 电子设备
TW202427858A (zh) 多頻多天線裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913547

Country of ref document: EP

Effective date: 20230725

NENP Non-entry into the national phase

Ref country code: DE