[go: up one dir, main page]

WO2022135564A1 - 一种环氧氯丙烷的制备系统及方法 - Google Patents

一种环氧氯丙烷的制备系统及方法 Download PDF

Info

Publication number
WO2022135564A1
WO2022135564A1 PCT/CN2021/141200 CN2021141200W WO2022135564A1 WO 2022135564 A1 WO2022135564 A1 WO 2022135564A1 CN 2021141200 W CN2021141200 W CN 2021141200W WO 2022135564 A1 WO2022135564 A1 WO 2022135564A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
liquid
inlet
outlet
hypergravity
Prior art date
Application number
PCT/CN2021/141200
Other languages
English (en)
French (fr)
Inventor
张亮亮
周黎旸
初广文
夏碧波
陈建峰
姜雨土
童继红
孙宝昌
毛伟
Original Assignee
衢州巨化锦纶有限责任公司
北京化工大学
巨化集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 衢州巨化锦纶有限责任公司, 北京化工大学, 巨化集团有限公司 filed Critical 衢州巨化锦纶有限责任公司
Priority to US18/269,109 priority Critical patent/US12077516B2/en
Publication of WO2022135564A1 publication Critical patent/WO2022135564A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/32Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/24Synthesis of the oxirane ring by splitting off HAL—Y from compounds containing the radical HAL—C—C—OY
    • C07D301/26Y being hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals

Definitions

  • the invention relates to the preparation field of epichlorohydrin, and more particularly, to a preparation system and method of epichlorohydrin.
  • Epichlorohydrin alias epichlorohydrin, is an important organic chemical raw material and fine chemical intermediate product. It is mainly used in the production of epoxy resin, nitroglycerin, explosives, glass fiber reinforced plastics, plasticizers and other products. market.
  • epichlorohydrin is mostly produced by high temperature chlorination of propylene, propylene acetate and glycerol. Although several process technologies have different starting materials, they all include a cyclization reaction step for synthesizing epichlorohydrin from dichloropropanol and lye.
  • the commonly used dichloropropanol is 1,3-dichloropropanol
  • the commonly used lye is sodium hydroxide, calcium hydroxide, etc.
  • calcium hydroxide is generally chosen as the lye in industry.
  • one aspect of the present invention provides a preparation system of epichlorohydrin, comprising:
  • the first supergravity reactor the liquid inlet of which is communicated with the liquid inlet pipeline of the raw material dichloropropanol and the lye;
  • the gas inlet of the second hypergravity reactor is communicated with the water vapor pipeline, and the gas outlet is communicated with the gas inlet of the first hypergravity reactor;
  • a liquid circulation tank the inlet of which is communicated with the liquid outlet of the first hypergravity reactor, and the outlet is communicated with the liquid inlet of the first hypergravity reactor and the liquid inlet of the second hypergravity reactor respectively;
  • the third hypergravity reactor the gas inlet of which is communicated with the gas outlet of the first hypergravity reactor, and the liquid outlet of which is communicated with the liquid inlets of the first hypergravity reactor and the second hypergravity reactor,
  • the gas outlet is connected to the recovery device, and the liquid inlet is connected to the liquid outlet of the recovery device;
  • the liquid outlet of the second supergravity reactor communicates with the inlet of the chloride salt solution storage tank.
  • it also includes:
  • a first valve located on the pipeline between the outlet of the liquid circulation tank and the liquid inlet of the first supergravity reactor;
  • the second valve is located on the pipeline between the outlet of the liquid circulation tank and the liquid inlet of the second supergravity reactor.
  • it also includes:
  • a valve controller coupled with the first valve and/or the second valve, is used to control the opening and closing degrees of the corresponding valves.
  • it also includes:
  • Detector to detect the flow of raw material dichloropropanol and lye in the liquid inlet pipeline
  • the processor determines the opening and closing degree of the corresponding valve according to the flow rate.
  • the recovery device includes:
  • the two-phase separator is in communication with the liquid outlets of the first condenser and the second condenser, and the liquid outlet of the two-phase separator is in communication with the liquid inlet of the third supergravity reactor.
  • the second hypergravity reactor and the third hypergravity reactor are rotating packed beds, and the first hypergravity reactor is a stator-rotor reactor.
  • the two-phase separator includes a separation chamber and a baffle plate arranged inside the separation chamber, the baffle plate divides the separation chamber into two communicating sub-chambers, one of which is The sub-cavity communicates with the third supergravity reactor, and the other sub-cavity communicates with a storage tank.
  • the baffle is movable.
  • the second hypergravity reactor and the third hypergravity reactor are rotating packed beds, and oleophobic packings are arranged in the rotating packed beds.
  • the present invention further provides a preparation method of epichlorohydrin, the preparation method comprising: using the above preparation system to prepare epichlorohydrin.
  • the invention provides a preparation system and method of epichlorohydrin.
  • the invention is coupled with a three-stage hypergravity reactor, and the product epichlorohydrin and water vapor are separated from the reaction system in the form of azeotrope by steam stripping. Steamed out, the product obtained in this way has a high purity, and the water vapor is supplemented by an external water vapor source on the one hand, and can be reused from the second supergravity reactor and the third supergravity reactor on the other hand to form water vapor.
  • the azeotrope is combined with the multi-stage supergravity reactor, and the azeotrope characteristics in the reaction system of the present invention are greatly improved.
  • the gas-phase mass transfer and liquid-phase mass transfer effect are excellent, so that the overall conversion rate of the reaction is higher.
  • FIG. 1 shows a schematic structural diagram of a preparation system of epichlorohydrin in an embodiment of the present invention.
  • the inventor of the present invention has found that the current industrial mainstream production process for preparing epichlorohydrin by reacting calcium hydroxide and dichloropropanol is: dichloropropanol and calcium hydroxide solution are reacted in a saponification tower, but there are many deficiencies at present, For example, the product conversion rate is low, and multiple side reactions are very likely to occur. There is still no good solution in the industry. At the same time, researchers in the industry do not know the reasons for the deficiency, and the research progress in relevant aspects has been stagnant.
  • the reason for the above deficiencies is that there are multiple baffle trays inside the saponification tower, the liquid flows on the trays only by gravity, and the fluidity is poor, resulting in insufficient contact between the oil and water phases, and the hydrogen Calcium oxide is easy to adhere to the tray, the pressure drop in the tower is large, and the product cannot be transferred in time, resulting in a low conversion rate; and the oil-water two-phase contact time in the saponification tower is long, and multiple side reactions are prone to occur.
  • Calcium hydroxide is easy to block the reactor. Because calcium hydroxide is slightly soluble in water, in the traditional saponification tower, the degree of liquid turbulence is poor, and calcium hydroxide is easy to block the tray, resulting in an increase in the pressure drop in the tower, high steam consumption, frequent shutdown of pickling, and time-consuming longer, the production cost increases.
  • the calcium chloride concentration in the saponification solution is low.
  • a calcium hydroxide solution with a larger flow rate and a lower concentration is often used in actual production; and due to the poor separation effect of the existing process, the inner column of the saponification tower is The pressure drop of the plate is high, resulting in large steam consumption, and the water vapor introduced into the system is finally condensed into the saponification liquid, resulting in a large amount of saponification liquid containing low concentration of calcium chloride, which needs to be processed by heat recovery such as mother liquor evaporation.
  • the footprint of the device is significantly increased. According to the survey, the current mainstream process uses calcium hydroxide with a mass fraction of 20% as the fresh lye for the reaction, and the concentration of calcium chloride produced is only about 10%.
  • the COD value in the saponification liquid produced by the existing mainstream process is generally above 10000ppm.
  • the amount of steam is large.
  • water vapor is introduced from the bottom of the tower, part of the water vapor is used to prevent calcium hydroxide from clogging the tray, and the other part of the water vapor is used to vaporize the product.
  • Structural design and poor mass transfer effect between steam, oil phase, water phase and calcium hydroxide solids in the saponification tower lead to large pressure drop in the saponification tower and large steam consumption.
  • the existing process adopts 74% mass fraction of raw material dichloropropanol to react, and the steam consumption is 640Kg/(t epichlorohydrin).
  • the present invention provides a new preparation system, as shown in Figure 1, which specifically includes:
  • the first supergravity reactor 7 its liquid inlet is communicated with the feed pipeline of raw material dichloropropanol 1 and lye 2;
  • the second hypergravity reactor 9 its gas inlet is communicated with the water vapor 3 pipeline, and the gas outlet is communicated with the gas inlet of the first hypergravity reactor 7;
  • the liquid circulation tank 8 its inlet is communicated with the liquid outlet of the first supergravity reactor 7, and the outlet is communicated with the liquid inlet of the first supergravity reactor 7 and the liquid inlet of the second supergravity reactor 9 respectively;
  • the third hypergravity reactor 11 has its gas inlet communicated with the gas outlet of the first hypergravity reactor 7, and its liquid outlet is connected to the first hypergravity reactor 7 and the second hypergravity reactor 9.
  • the liquid inlet is connected, the gas outlet is connected to the recovery device, and the liquid inlet is connected to the liquid outlet of the recovery device;
  • the liquid outlet of the second supergravity reactor 9 is communicated with the inlet of the chloride salt solution storage tank.
  • the three-stage supergravity reactor is coupled, and the product epichlorohydrin and water vapor are steamed from the reaction system in the form of azeotrope by means of steam stripping.
  • the product obtained in this way has high purity and water vapor.
  • it is supplemented by an external water vapor source, and on the other hand, it can be supplemented from the second supergravity reactor and the third supergravity reactor to form a water vapor cycle, which can ensure the amount of water vapor, and does not require a large amount of water vapor.
  • azeotrope in combination with multi-stage hypergravity reactor, for the azeotrope characteristics in the reaction system of the present invention, greatly improve the gas phase mass transfer and liquid phase mass transfer of azeotrope, and then make the overall transformation of the reaction
  • the rate is higher, and at the same time, based on stripping and supergravity coordination, the dichloropropanol and the lye are rapidly mixed and mass-transferred, and the product epichlorohydrin is rapidly distilled from the reaction system in the form of an azeotrope (water vapor-based Rapid diffusion), the reaction is always carried out in the direction of generating epichlorohydrin, and the conversion rate is significantly improved.
  • the test device proves that the present invention can make the conversion rate of dichlorohydrin reach more than 99.6%, and the purity of the product epichlorohydrin is 99%. %above.
  • the present invention innovatively adopts the method of utilizing air stripping, and uses the water vapor required by the system itself to be reused as the air stripping gas, so that on the one hand, the equipment cost will not be increased, only the pipeline needs to be modified, and the other
  • the air stripping method is adopted to quickly discharge the product in the form of azeotrope, and then the product can be quickly transferred, so that the reaction is always carried out in the direction of generating epichlorohydrin, and the conversion rate is significantly improved.
  • the present invention also includes:
  • a first valve located on the pipeline between the outlet of the liquid circulation tank and the liquid inlet of the first supergravity reactor;
  • the second valve is located on the pipeline between the outlet of the liquid circulation tank and the liquid inlet of the second supergravity reactor.
  • the flow in the two hypergravity reactors can be adjusted, and then dynamically regulated, and the first valve and the second valve substantially control the flow back to the second hypergravity reactor
  • the reflux flow rate can be controlled to control the reaction balance in the second supergravity reactor and improve the overall reaction conversion rate.
  • it also includes:
  • a valve controller coupled with the first valve and/or the second valve, is used to control the opening and closing degrees of the corresponding valves.
  • valve opening and closing degree can be automatically controlled by the valve controller, so that manual control is not required.
  • the present invention also includes:
  • Detector to detect the flow of raw material dichloropropanol and lye in the liquid inlet pipeline
  • the processor determines the opening and closing degree of the corresponding valve according to the flow rate.
  • the flow rate of the raw material inlet can be detected by a detector, and then the valve opening and closing degree can be adjusted according to the flow feedback, that is, the adjustment in this embodiment is controlled based on the overall flow rate, which is targeted and can be automatically and dynamically adjusted.
  • the recovery device includes:
  • the two-phase separator is in communication with the liquid outlets of the first condenser and the second condenser, and the liquid outlet of the two-phase separator is in communication with the liquid inlet of the third supergravity reactor.
  • the first condenser and the second condenser are connected in series, and part of the residual liquid is pumped into the third supergravity reactor through the two-phase separator, and then recycled into the entire reaction cycle through circulation management.
  • the two-phase separator includes a separation chamber and a baffle plate arranged inside the separation chamber, the baffle plate divides the separation chamber into two communicating sub-chambers, one of which is The sub-chamber communicates with the third hypergravity reactor 11 , and the other sub-chamber communicates with a storage tank 17 .
  • the baffle is used to realize the separation of the two phases, the operation is simple and the equipment cost is low.
  • the baffle plate can be moved.
  • the hypergravity reactor can be selected in a targeted manner
  • the second hypergravity reactor and the third hypergravity reactor are rotating packed beds
  • the first hypergravity reactor is a fixed Rotor reactor.
  • the steam stripping emphasizes the dispersion and mixing of the gas phase, and uses the filler in the rotating packed bed to carry out mass transfer and mixing, which greatly enhances the overall dispersion effect and air stripping effect.
  • the stator and rotor are used for liquid reaction, and then Increase the collision area of the liquid and improve the efficiency of the liquid phase reaction.
  • the second supergravity reactor and the third supergravity reactor are rotating packed beds, and oleophobic packings are arranged in the rotating packed beds.
  • hypergravity technology is a typical process intensification technology. It has been successfully applied to various industrial processes to enhance mass transfer, heat transfer and micro-mixing and has achieved excellent results. It is characterized by small equipment footprint, The residence time is short, the mass transfer efficiency is high, and the reaction is fast and efficient.
  • the invention combines the supergravity technology and the stripping technology, and applies them to the preparation process of epichlorohydrin.
  • the reaction system Under the action of water vapor, the reaction system is fully turbulent, efficient mass transfer and heat exchange, and the product epichlorohydrin and water vapor are distilled from the reaction system in the form of azeotrope; in the second supergravity reactor and the third supergravity reactor Inside, the liquid and gas discharged from the first reactor are further purified respectively, and the unreacted raw materials are recycled back to the first hypergravity reactor, and the high-purity product epichlorohydrin and by-product chloride are extracted respectively:
  • the embodiment of the present invention can be divided into units according to functions, and specifically, it includes a reaction unit, a chloride salt purification unit, and a product purification unit.
  • Reaction unit the raw material dichloropropanol and lye are continuously added into the first hypergravity reactor according to a certain proportion, the feed liquid is broken into small droplets and liquid films, fully mixed, and react quickly;
  • the water vapor of the gravity reactor is continuously fed into the first supergravity reactor, so that the reaction material liquid is fully turbulent, and the water vapor and the reaction material liquid are fully mass-transferred and heat-exchanged;
  • the product ring in the material liquid in the first supergravity reactor Oxychloropropane and water vapor are steamed together in the form of azeotrope, and then passed into the third supergravity reactor;
  • the reacted liquid in the first supergravity reactor mainly chloride salt solution and a small amount of incompletely reacted) Alkali, dichlorohydrin
  • the above-mentioned liquid mainly chloride salt solution and a small amount of incompletely reacted lye, dichlorohydrin that are passed into the circulating buffer still from the
  • (2) chloride salt purification unit the above-mentioned liquid (mainly chloride salt solution and a small amount of incompletely reacted lye, dichloropropanol) passed into the second supergravity reactor is mixed with the second supergravity reactor The water vapor is fully contacted, and the heat exchange and mass transfer are rapid; the organic matter entrained in the liquid is vaporized by the water vapor and brought into the first supergravity reactor to continue the reaction; the remaining liquid is the chloride salt solution with low organic content, from the second supergravity reactor. After the hypergravity reactor flows out, it goes to the chloride salt storage tank.
  • the above-mentioned liquid mainly chloride salt solution and a small amount of incompletely reacted lye, dichloropropanol
  • the supergravity field level in the first supergravity reactor is 50-1800g, more preferably 80-1200g; the supergravity field level in the second supergravity reactor is 20-1200g, more preferably 50g ⁇ 800g; the supergravity field level in the above-mentioned third supergravity reactor is 20 ⁇ 1200g, more preferably 50 ⁇ 800g; the temperature of the reaction feed liquid in the above-mentioned first supergravity reactor is 50 ⁇ 90 °C, more preferably 60 ⁇ 85 °C; the mass fraction of the above-mentioned raw material dichloropropanol is 20 ⁇ 98%; the above-mentioned lye solution includes but not limited to calcium hydroxide solution, sodium hydroxide solution, potassium hydroxide solution, ammonia water or its mixed solution, feed alkali The stoichiometric excess of the liquid phase dichloropropanol is 5 to 30% (converted to the amount ratio of the pure substance); the above-mentioned circulating liquid passed
  • the vacuum degree is at 20 ⁇ 90KPa; the temperature of the above-mentioned steam and epichlorohydrin azeotrope gas passed into the second hypergravity reactor from the first hypergravity reactor is 60 ⁇ 90 °C, preferably 70 ⁇ 88 °C, wherein The water content is about 28%; the temperature of the above reflux condensate is 4-13°C.
  • FIG. 1 The preparation system of the present invention will be described in detail below by taking FIG. 1 as an example. As shown in Figure 1, it specifically includes: dichloropropanol inlet (1), lye inlet (2), water vapor inlet (3), No. 1 storage tank (4), No. 1 pump (5), No.
  • the liquid outlet of the storage tank (4) is connected to the chloride salt solution outlet (21); the gas outlet of the first-stage hypergravity reactor (7) is connected to the gas inlet of the third-stage hypergravity reactor (11); the third-stage hypergravity reactor (11) The liquid outlet is connected to the liquid inlet of the first-stage supergravity reactor (7); the gas outlet of the third-stage supergravity reactor (11) is connected to the inlet of the first condenser (12); the gas outlet of the first condenser (12) The inlet of the second condenser (13) is connected; the liquid outlet of the first condenser (12) and the liquid outlet of the second condenser (13) are connected to the inlet of the two-phase separator (14); the gas inlet of the second condenser (13) is connected The inlet of the vacuum buffer tank (18); the outlet of the vacuum buffer tank (18) is connected to the vacuum pump (19); the water phase outlet of the two-phase separator (14) is connected to the inlet of the third pump (15
  • the first-stage hypergravity reactor can strengthen the oil phase (dichloropropanol), the water phase (lye), the steam, and the partially separated solids by breaking droplets, shearing the fluid, enhancing turbulence, etc.
  • the complex mixing, mass transfer and heat transfer process between the four phases of alkali and salt make the dichloropropanol and the lye mix quickly and evenly, the main reaction rate is accelerated, and the side reactions are suppressed; Rapid mass transfer and heat exchange, the product epichlorohydrin is rapidly evaporated from the reaction system in the form of azeotrope, so that the reaction proceeds in the direction of generating epichlorohydrin, and the conversion rate is significantly improved.
  • the test device proves that the present invention can make the conversion rate of dichloropropanol reach over 98%, and the purity of the product epichlorohydrin is over 97%.
  • the chloride salt concentration in the chloride salt produced liquid increases significantly.
  • the present invention couples the reaction and the separation process through a three-stage hypergravity reactor, so that the reaction and the separation process are efficiently carried out, the steam consumption is greatly reduced, and the amount of steam condensed water is also significantly reduced, and the chloride salt is recovered.
  • the concentration of chloride salts in the effluent is significantly increased, so the calcium chloride produced liquid does not need to be concentrated and heat treated, and the production efficiency is improved.
  • Using the test device of the present invention adopts calcium hydroxide with a mass fraction of 20%, and the concentration of calcium chloride produced can reach 33%.
  • the content of organic matter in the chloride salt produced liquid decreased significantly.
  • the present invention couples the reaction and the separation process through a three-stage hypergravity reactor, so that the reaction and the separation process are efficiently carried out, and the conversion rate of dichlorohydrin and the purity of epichlorohydrin are significantly improved; therefore, the chloride salt
  • the content of organic compounds such as dichloropropanol and epichlorohydrin in the produced liquid is significantly reduced, and the COD value is reduced to below 4000ppm, so no wastewater treatment device is required, and the environmental protection benefit is improved.
  • the size of the equipment is reduced. Compared with the traditional tower reactor or tubular reactor equipment, the size of the supergravity reactor used in the present invention is greatly reduced; The equipment and places for the evaporation and concentration of chloride salts have been established, which further reduces the footprint of the device and reduces the investment.
  • the present invention is exemplified below with specific scenarios.
  • the alkali solution used is calcium hydroxide solution, wherein the mass fraction of dichloropropanol (A) is 76%, the mass fraction of calcium hydroxide (B) is 20%, and the feed
  • the stoichiometric excess (C) of lye relative to dichloropropanol is 5%
  • the temperature (T1) of the reaction material in the first-stage hypergravity reactor is 85°C
  • the hypergravity field level in the first-stage hypergravity reactor ( G1) is 300g
  • the supergravity field level (G2) in the second-stage supergravity reactor is 200g
  • the supergravity field level (G3) in the third-stage supergravity reactor is 200g
  • the first-stage supergravity field level (G3) is 200g.
  • the mass flow ratio (r) of the circulating liquid that continues to react in the reactor and another liquid passing into the second-stage supergravity reactor is 7, the vacuum degree (P) of the whole system is 60KPa, and the amount of water vapor (Q) is 300Kg/(t epichlorohydrin), the reflux condensate temperature (T2) is 8°C, and the reaction time (t) is 30min.
  • the conversion rate ( ⁇ ) of dichloropropanol obtained was 98.7%
  • the purity ( ⁇ ) of epichlorohydrin was 98.0%
  • the concentration of calcium chloride ( ⁇ ) in the calcium chloride produced liquid was 32%
  • the COD value in the saponification solution was 98.0%. 4000ppm.
  • Embodiment 2 ⁇ 17 technological process and step are with embodiment 1, the technological condition of each embodiment and operating condition and corresponding experimental result refer to table 1 for details, and the meaning and unit of listed letters in table head are the same as in embodiment 1, Due to space, the unit Kg/(t epichlorohydrin) of Q is not listed in the table, and the percentages mentioned in all the examples are mass percentages.
  • Examples 1 to 6 are within the scope of the process parameters claimed by the present invention. From the results of the examples, it can be concluded that the present invention can significantly improve the conversion rate of raw materials and the purity of products, and solve the problems of equipment blockage and steam consumption in the traditional method. At the same time, the present invention can obviously increase the salt concentration in the chloride salt solution and reduce the organic content in it.
  • Examples 7 to 17 are outside the range of the process parameters claimed in the present invention, and are comparative examples. It can be proved inversely from the comparative example that the process parameters advocated in this aspect can simultaneously achieve several process indicators such as high conversion rate, high product purity, low steam consumption, high concentration and low organic content chloride salt extraction, etc. Within the range of process operating parameters claimed by the invention, one or more of the above several process indicators will not be able to be achieved.
  • the present invention is coupled with a three-stage hypergravity reactor, and the product epichlorohydrin and water vapor are steamed from the reaction system in the form of azeotrope by steam stripping.
  • the obtained product has a high purity, and the water vapor is supplemented by the external water vapor source on the one hand, and can be supplemented from the second supergravity reactor and the third supergravity reactor on the other hand to form a water vapor cycle, which can ensure that the water The consumption of steam does not require a large amount of water vapor; further, the azeotrope is combined with the multi-stage supergravity reactor to greatly improve the gas phase mass transfer and liquid phase of the azeotrope according to the characteristics of the azeotrope in the reaction system of the present invention. Phase mass transfer, which in turn makes the overall conversion rate of the reaction higher.
  • the dichloropropanol and the lye are rapidly mixed and mass transferred, and the product epichlorohydrin is removed from the reaction system in the form of an azeotrope. It is quickly evaporated (based on the rapid diffusion of water vapor), so that the reaction is always carried out in the direction of generating epichlorohydrin, and the conversion rate is significantly improved. , the purity of the product epichlorohydrin is above 99%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)

Abstract

本发明提供一种环氧氯丙烷的制备系统及方法,本发明通过三级超重力反应器耦合,采用水蒸气汽提的方式将产物环氧氯丙烷与水蒸气以共沸物形式从反应体系蒸出,进一步的,采用共沸物结合多级超重力反应器,针对本发明的反应体系中的共沸物特性,大大提高了共沸物的气相传质和液相传质,进而使得反应整体转化率更高,同时基于汽提和超重力配合,使得二氯丙醇与碱液快速混合传质,将产物环氧氯丙烷以共沸物的形式从反应体系中快速蒸出(基于水蒸气的快速扩散),使反应一直向生成环氧氯丙烷的方向进行,转化率得到显著提升,试验装置证明,本发明可使二氯丙醇转化率达到99.6%以上,产物环氧氯丙烷纯度在99%以上。

Description

一种环氧氯丙烷的制备系统及方法 技术领域
本发明涉及环氧氯丙烷的制备领域,更具体的,涉及一种环氧氯丙烷的制备系统及方法。
背景技术
环氧氯丙烷(EPCH)别名表氯醇,是重要的有机化工原料和精细化工中间品,它主要用于生产环氧树脂、硝化甘油、炸药、玻璃钢、增塑剂等多种产品,具有广阔的市场。
工业上环氧氯丙烷多采用丙烯高温氯化法、醋酸丙烯酯法、甘油法生产。几种工艺技术虽然起始原料不同,但都包含由二氯丙醇和碱液合成环氧氯丙烷的环合反应步骤。对于二氯丙醇环合反应制备环氧氯丙烷,常用的二氯丙醇为1,3-二氯丙醇,常用碱液为氢氧化钠、氢氧化钙等。考虑到最终的经济效益,工业上一般都会选择氢氧化钙作为碱液。
目前工业上氢氧化钙和二氯丙醇反应制备环氧氯丙烷的主流生产工艺是:二氯丙醇和氢氧化钙溶液在皂化塔进行反应,该工艺目前存在诸多不足,例如极易发生多个副反应,产品转化率低等问题。
发明内容
为了解决上述问题中的至少一个,本发明一方面提供了一种环氧氯丙烷的制备系统,包括:
第一超重力反应器,其液体入口与原料二氯丙醇和碱液的进液管路连通;
第二超重力反应器,其气体入口与水蒸气管路连通,气体出口与所述第一超重力反应器的气体进口连通;
液体循环罐,其进口与所述第一超重力反应器的液体出口连通,出口分别与所述第一超重力反应器的液体入口和第二超重力反应器的液体入口连通;
第三超重力反应器,其气体入口与所述第一超重力反应器的气体出口连通,其液体出口与所述第一超重力反应器和所述第二超重力反应器的液体入口连通,其气体出口连通至回收装置,液体入口连通至所述回收装置的液体出口;其中,
所述第二超重力反应器的液体出口与氯化盐溶液储罐入口连通。
在优选的实施例中,还包括:
第一阀门,位于所述液体循环罐的出口与所述第一超重力反应器的液体入口之间的管路上;
第二阀门,位于所述液体循环罐的出口与所述第二超重力反应器的液体入口之间的管路上。
在优选的实施例中,还包括:
阀门控制器,与所述第一阀门和/或所述第二阀门耦接,用于控制对应阀门的开合度。
在优选的实施例中,还包括:
检测器,检测原料二氯丙醇和碱液的进液管路处的流量;
处理器,根据所述流量确定所述对应阀门的开合度。
在优选的实施例中,所述回收装置包括:
串联的第一冷凝器和第二冷凝器,所述第一冷凝器的气体进口与所述第三超重力反应器的气体出口连通;
两相分离器,与所述第一冷凝器、第二冷凝器的液体出口连通,所述两相分离器的液体出口与所述第三超重力反应器的液体进口连通。
在优选的实施例中,所述第二超重力反应器和所述第三超重力反应器为旋转填充床,所述第一超重力反应器为定转子反应器。
在优选的实施例中,所述两相分离器包括分离腔以及设于所述分离腔内部的挡板,所述挡板将所述分离腔分割为两个相连通的子腔体,其中一个子腔体连通所述第三超重力反应器,另一个子腔体连通一储罐。
在优选的实施例中,所述挡板可移动。
在优选的实施例中,所述第二超重力反应器和所述第三超重力反应器为旋转填充床,所述旋转填充床内设有疏油填料。
本发明进一步提供一种环氧氯丙烷的制备方法,所述制备方法包括:利用如上所述的制备系统制备环氧氯丙烷。
本发明的有益效果:
本发明提供一种环氧氯丙烷的制备系统及方法,本发明通过三级超重力反应器耦合,采用水蒸气汽提的方式将产物环氧氯丙烷与水蒸气以共沸物形式从反应体系蒸出, 以该方式得到的产物纯度较高,水蒸气一方面通过外部的水蒸气源补充,另一方面可以从第二超重力反应器和第三超重力反应器中再利用,形成水蒸气循环,进而可以保证水蒸气的用量,不需要大量水蒸气;进一步的,采用共沸物结合多级超重力反应器,针对本发明的反应体系中的共沸物特性,大大提高了共沸物的气相传质和液相传质效果,进而使得反应整体转化率更高,同时基于汽提和超重力配合,使得二氯丙醇与碱液快速混合传质,将产物环氧氯丙烷以共沸物的形式从反应体系中快速蒸出(基于水蒸气的快速扩散),使反应一直向生成环氧氯丙烷的方向进行,转化率得到显著提升,试验装置证明,本发明可使二氯丙醇转化率达到99.6%以上,产物环氧氯丙烷纯度在99%以上。
附图说明
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本发明实施方式中一种环氧氯丙烷的制备系统结构示意图。
图1的附图标记,二氯丙醇入口(1)、碱液入口(2)、水蒸气入口(3)、一号储罐(4)、一号泵(5)、二号泵(6)、第一级超重力反应器(7)、循环缓冲釜(8)、第二级超重力反应器(9)、循环泵(10)、第三级超重力反应器(11)、第一冷凝器(12)、第二冷凝器(13)、两相分离器(14)、三号泵(15)、四号泵(16)、二号储罐(17)、真空缓冲罐(18)、真空泵(19)、环氧氯丙烷出口(20)、氯化盐溶液出口(21)。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
本发明发明人研究发现,目前工业上氢氧化钙和二氯丙醇反应制备环氧氯丙烷的主流生产工艺是:二氯丙醇和氢氧化钙溶液在皂化塔进行反应,但是目前存在诸多不足,例如产品转化率低、极易发生多个副反应等,业内仍然没有较好的解决方式,同时业内研究者不知晓导致其不足的原因所在,有关方面的研究进展一直停滞不前。
经过发明人的实验探究,导致上述不足的原因是皂化塔内部设有多块折流塔板,液体只靠重力在塔板上流动,流动性较差,导致油水两相不能充分接触,且氢氧化钙极易粘附塔板,塔内压降较大,无法及时转移产品,导致转换率低;而且在皂化塔内油水两相接触时间较长,极易发生多个副反应。
具体如下所示:
(1)副产物多,环氧氯丙烷选择性差。氢氧化钙与二氯丙醇反应生成环氧氯丙烷的反应方程式如下:
2C 3H 5Cl 2OH+Ca(OH) 2→2CH 2OCHCH 2Cl+CaCl 2+H 2O   (1)
但由于在传统皂化塔内,液体只能靠重力横向流动,油水两相不能充分接触,导致局部碱浓度过高,过量的碱容易与二氯丙醇发生如下亲核取代反应生成一氯丙二醇、丙三醇:
2C 3H 5Cl 2OH+Ca(OH) 2→2CH 2ClCHOHCH 2OH+CaCl 2   (2)
C 3H 5Cl 2OH+Ca(OH) 2→CH 2OHCHOHCH 2OH+CaCl 2   (3)
在传统皂化塔内,生成的环氧氯丙烷不能及时脱离反应体系,容易进一步在体系中发生水解、亲核取代等反应生成一氯丙二醇、环氧丙醇:
CH 2OCHCH 2Cl+H 2O→CH 2OHCHOHCH 2Cl     (4)
2CH 2OCHCH 2Cl+Ca(OH) 2→2CH 2OCHCH 2OH+CaCl 2    (5)
以上所述副反应的综合作用导致现有工艺生产得到的环氧氯丙烷纯度低,反应副产物多。据调查,当前主流工艺得到的环氧氯丙烷产品纯度较高水平仅95%左右(质量分数)。
(2)氢氧化钙极易堵塞反应器。由于氢氧化钙微溶于水,在传统皂化塔内,液体湍流程度差,氢氧化钙极易堵塞塔板,导致塔内压降增大,蒸汽耗量大,需要经常停车酸洗,耗时较长,生产成本增加。
(3)皂化液中氯化钙浓度低。如上一条所述,由于现有工艺皂化塔塔板极易被氢氧化钙堵塞,实际生产中常采用较大流量较低浓度的氢氧化钙溶液;且由于现有工艺分离效果差,皂化塔内塔板压降高,造成蒸汽耗量大,通入系统的水蒸气最后也被冷凝进入皂化液,因而产生大量含低浓度氯化钙的皂化液,需进行母液蒸发等热回收处理,能耗和装置的占地面积明显增加。据调查,当前主流工艺采用质量分数20%的氢氧化钙作为反应的新鲜碱液,氯化钙采出浓度仅10%左右。
(4)二氯丙醇转化率低,皂化液中有机物残留量高。由于现有工艺皂化塔内混合与 传质效果差,导致反应不完全,原料转化率低,且产生诸多副产物;且由于现有工艺分离效果差,部分产物环氧氯丙烷未被水蒸气带出,进入皂化液中排出,以上原因导致现有工艺皂化废液中二氯丙醇、环氧氯丙烷等有机物的含量较多,含环氧化物的废水对微生物有灭杀作用,难以用生物降解的方法进行处理,需要增加废水处理装置,投资显著增加。据调查,现有主流工艺采出的皂化液中COD值普遍在10000ppm以上。
(5)蒸汽用量大。在传统皂化塔内,水蒸气从塔底通入,一部分水蒸气用于防止氢氧化钙堵塞塔板,另一部分水蒸气用于将产物汽化蒸出,由于皂化塔内多层折流塔板的结构设计以及皂化塔内蒸汽、油相、水相和部分析出的氢氧化钙固体间传质效果差,导致皂化塔内压降大,蒸汽耗量大。据调查,现有工艺采用74%质量分数的原料二氯丙醇反应,消耗蒸汽量为640Kg/(t环氧氯丙烷)。
有鉴于此,本发明提供一种新的制备系统,如图1所示,其具体包括:
第一超重力反应器7,其液体入口与原料二氯丙醇1和碱液2的进液管路连通;
第二超重力反应器9,其气体入口与水蒸气3管路连通,气体出口与所述第一超重力反应器7的气体进口连通;
液体循环罐8,其进口与所述第一超重力反应器7的液体出口连通,出口分别与所述第一超重力反应器7的液体入口和第二超重力反应器9的液体入口连通;
第三超重力反应器11,其气体入口与所述第一超重力反应器7的气体出口连通,其液体出口与所述第一超重力反应器7和所述第二超重力反应器9的液体入口连通,其气体出口连通至回收装置,液体入口连通至所述回收装置的液体出口;其中,
所述第二超重力反应器9的液体出口与氯化盐溶液储罐入口连通。
本发明通过三级超重力反应器耦合,采用水蒸气汽提的方式将产物环氧氯丙烷与水蒸气以共沸物形式从反应体系蒸出,以该方式得到的产物纯度较高,水蒸气一方面通过外部的水蒸气源补充,另一方面可以从第二超重力反应器和第三超重力反应器中得到补充,形成水蒸气循环,进而可以保证水蒸气的用量,不需要大量水蒸气;进一步的,采用共沸物结合多级超重力反应器,针对本发明的反应体系中的共沸物特性,大大提高了共沸物的气相传质和液相传质,进而使得反应整体转化率更高,同时基于汽提和超重力配合,使得二氯丙醇与碱液快速混合传质,将产物环氧氯丙烷以共沸物的形式从反应体系中快速蒸出(基于水蒸气的快速扩散),使反应一直向生成环氧氯丙烷的方向进行,转化率得到显著提升,试验装置证明,本发明可使二氯丙醇转化率达到99.6%以上,产物环氧氯丙烷纯度在99%以上。
可以理解,本发明创新地采用了利用气提的方式,采用系统本身需要的水蒸气复用为气提用气,从而一方面不会增大设备成本,仅需要对管路进行改造,另一方面采用气提的方式快速将产品以共沸形式排出,进而能够快速转移产品,使反应一直向生成环氧氯丙烷的方向进行,转化率得到显著提升。
在图1未示出的实施例中,本发明还包括:
第一阀门,位于所述液体循环罐的出口与所述第一超重力反应器的液体入口之间的管路上;
第二阀门,位于所述液体循环罐的出口与所述第二超重力反应器的液体入口之间的管路上。
本实施例中通过第一阀门和第二阀门的控制,可以调节两个超重力反应器中的流量,进而动态调控,并且第一阀门和第二阀门实质控制了回流到第二超重力反应器的回流量,进而控制第二超重力反应器中的反应平衡,以及提高整体的反应转化率。
进一步的,在一些实施例中,还包括:
阀门控制器,与所述第一阀门和/或所述第二阀门耦接,用于控制对应阀门的开合度。
本实施例中,可以通过阀门控制器自动控制阀门开合度,进而无需人工手动控制。
进一步的,本发明还包括:
检测器,检测原料二氯丙醇和碱液的进液管路处的流量;
处理器,根据所述流量确定所述对应阀门的开合度。
该实施例中,可以通过检测器检测原料进口的流量,进而根据该流量反馈来调节阀门开合度,即该实施例的调节基于整体流量来控制,具有针对性并且可以自动动态调节。
此外,在本发明实施例中,所述回收装置包括:
串联的第一冷凝器和第二冷凝器,所述第一冷凝器的气体进口与所述第三超重力反应器的气体出口连通;
两相分离器,与所述第一冷凝器、第二冷凝器的液体出口连通,所述两相分离器的液体出口与所述第三超重力反应器的液体进口连通。
本实施例中,通过第一冷凝器和第二冷凝器串联,通过两相分离器将部分残余液体泵入第三超重力反应器,进而通过循环管理回收到整个反应循环中。
在优选的实施例中,所述两相分离器包括分离腔以及设于所述分离腔内部的挡板,所述挡板将所述分离腔分割为两个相连通的子腔体,其中一个子腔体连通所述第三超重力反应器11,另一个子腔体连通一储罐17。
本实施例中,利用挡板实现两相分离,操作简单并且设备成本低。
进一步的,为了实现整个反应的动态平衡调控,所述挡板可移动。
此外,在本发明中,可以对超重力反应器进行针对性选择,所述第二超重力反应器和所述第三超重力反应器为旋转填充床,所述第一超重力反应器为定转子反应器。
该实施例中,对于水蒸气的汽提而言,其强调气相的分散混合,采用旋转填充床中的填料进行传质混合,大大加强整体分散效果和气提效果,采用定转子进行液体反应,进而增大液体的碰撞面积,提高液相反应效率。
进一步的,本发明为了使得不易发生堵塞现象,所述第二超重力反应器和所述第三超重力反应器为旋转填充床,所述旋转填充床内设有疏油填料。
可以理解,超重力技术一种典型过程强化技术,目前已经被成功应用于各种强化传质、传热和微观混合的工业过程中并取得了优异的成果,其特点是设备占地面积小,停留时间短,传质效率高,反应快速高效。
本发明将超重力技术与汽提技术结合,将之应用于环氧氯丙烷的制备工艺中,在第一超重力反应器内,碱液和原料二氯丙醇充分混合,快速反应;同时在水蒸气作用下,反应体系充分湍动,高效传质换热,产物环氧氯丙烷与水蒸气以共沸物形式从反应体系蒸出;在第二超重力反应器和第三超重力反应器内,第一反应器排出的液体和气体分别被进一步提纯,未反应的原料被循环回第一超重力反应器,高纯度的产物环氧氯丙烷和副产物氯化盐分别采出:
本发明实施例可以按照功能进行单元划分,具体而言,其包括反应单元、氯化盐提纯单元以及产物提纯单元。
(1)反应单元:将原料二氯丙醇和碱液按照一定比例连续加入第一超重力反应器内,料液被破碎为小液滴和液膜,充分混合,快速反应;同时经过第二超重力反应器的水蒸气连续通入第一超重力反应器中,使反应料液充分湍动,水蒸气与反应料液充分传质换热;第一超重力反应器内的料液中产物环氧氯丙烷与水蒸气以共沸物形式一起蒸出,随后通入第三超重力反应器中;第一超重力反应器内反应后的液体(主要是氯化盐溶液和少量未完全反应的碱液、二氯丙醇)通入循环缓冲釜中;上述从第一超重力反应器通入循环缓冲釜的液体(主要是氯化盐溶液和少量未完全反应的碱液、二氯丙醇)经 循环泵从循环缓冲釜中采出后分为两股,一股作为循环液通入第一超重力反应器内继续反应,另一股通入第二超重力反应器内。
(2)氯化盐提纯单元:上述通入第二超重力反应器的液体(主要是氯化盐溶液和少量未完全反应的碱液、二氯丙醇)在第二超重力反应器内与水蒸气充分接触,快速换热和传质;液体中夹带的有机物被水蒸气气化后带入第一超重力反应器内继续反应;剩余液体为低有机物含量的氯化盐溶液,从第二超重力反应器流出后去往氯化盐储罐。
(3)产物提纯单元:上述从第一超重力反应器进入第三超重力反应器的共沸气体在第三超重力反应器内与回流的冷凝液充分接触,快速传质换热;气体中夹带的未完全反应的二氯丙醇和其他副产物被洗涤到液相中回流到第一超重力反应器内继续反应;回流冷凝液中含有的少量环氧氯丙烷被汽提到气相中,随共沸气体一起从第三超重力反应器顶部排出;上述从第三超重力反应器顶部排出的气体经过两级冷凝器后被完全冷凝为液体,少量不凝气从第二冷凝器顶部排出;第二冷凝器顶部气体出口通过真空缓冲罐连接真空泵;上述经过两级冷凝器被完全冷凝的液体通入两相分离器中,在两相分离器内油相(产物环氧氯丙烷)与水相(蒸汽冷凝水)分层;水相通回第三超重力反应器内,作为上述的回流冷凝液;油相作为产品环氧氯丙烷采出到环氧氯丙烷储罐中。
具体地,上述第一超重力反应器内的超重力场水平为50~1800g,更优选为80~1200g;上述第二超重力反应器内的超重力场水平为20~1200g,更优选为50~800g;上述第三超重力反应器内的超重力场水平为20~1200g,更优选为50~800g;上述第一超重力反应器内反应料液温度为50~90℃,更优为60~85℃;上述原料二氯丙醇质量分数为20~98%;上述的碱液包括但不限于氢氧化钙溶液、氢氧化钠溶液、氢氧化钾溶液、氨水或其混合液,进料碱液相对二氯丙醇化学计量过量5~30%(折算纯物质物质的量比值);上述通入第一超重力反应器内继续反应的循环液和另一股通入第二超重力反应器内的液体质量流量比为1~10,更优为4~8;上述通入第二超重力反应器的水蒸气用量为200~500Kg/(t环氧氯丙烷);上述真空泵维持全系统的真空度在20~90KPa;上述从第一超重力反应器通入第二超重力反应器的水蒸气和环氧氯丙烷共沸气体的温度为60~90℃,优选为70~88℃,其中含水量约为28%;上述回流冷凝液的温度为4~13℃。
下面以图1为例,对本发明的制备系统进行详细说明。如图1所示,其具体包括:二氯丙醇入口(1)、碱液入口(2)、水蒸气入口(3)、一号储罐(4)、一号泵(5)、二号泵(6)、第一级超重力反应器(7)、循环缓冲釜(8)、第二级超重力反应器(9)、循环泵(10)、第三级超重力反应器(11)、第一冷凝器(12)、第二冷凝器(13)、两相分离器(14)、三号泵(15)、四 号泵(16)、二号储罐(17)、真空缓冲罐(18)、真空泵(19)、环氧氯丙烷出口(20)、氯化盐溶液出口(21);原料二氯丙醇入口(1)和碱液入口(2)分别通过一号泵(5)和二号泵(6)连接第一级超重力反应器(7)液体入口;第一级超重力反应器(7)液体出口连接循环缓冲釜(8)液体入口;循环缓冲釜(8)液体出口连接循环泵(10)入口;循环泵(10)出口连接第一级超重力反应器(7)液体入口;循环泵(10)出口与第一级超重力反应器(7)液体入口之间设有一条旁路,旁路为循环泵(10)出口连接第二级超重力反应器(9)液体入口;蒸汽入口(3)连接第二级超重力反应器(9)气体入口;第二级超重力反应器(9)气体出口连接第一级超重力反应器(7)气体入口;第二级超重力反应器(9)液体出口连接一号储罐(4)液体入口;一号储罐(4)液体出口连接氯化盐溶液出口(21);第一级超重力反应器(7)气体出口连接第三级超重力反应器(11)气体入口;第三级超重力反应器(11)液体出口连接第一级超重力反应器(7)液体入口;第三级超重力反应器(11)气体出口连接第一冷凝器(12)入口;第一冷凝器(12)气体出口连接第二冷凝器(13)入口;第一冷凝器(12)液体出口与第二冷凝器(13)液体出口均连接两相分离器(14)入口;第二冷凝器(13)气体入口连接真空缓冲罐(18)入口;真空缓冲罐(18)出口连接真空泵(19);两相分离器(14)水相出口连接三号泵(15)入口;三号泵(15)出口连接第三级超重力反应器(11)液体入口;两相分离器(14)油相出口连接四号泵(16)入口;四号泵(16)出口连接二号储罐(17)入口;二号储罐(17)出口连接环氧氯丙烷出口(20)。
可以理解,本发明由于采用了超重力设备结合水蒸气汽提的方式,具有如下详细效果:
(1)提升原料的转化率与产物的选择性,抑制副反应发生,降低副产物含量,提高产品环氧氯丙烷纯度。本发明中第一级超重力反应器可以通过破碎液滴、剪切流体、增强湍动等方式强化油相(二氯丙醇)、水相(碱液)、蒸汽、和部分析出的固体碱和盐四相之间复杂的混合、传质和换热过程,使二氯丙醇与碱液快速均匀混合,主反应速率得以加快,副反应得到抑制;同时水蒸气与反应液充分接触,快速传质换热,将产物环氧氯丙烷以共沸物的形式从反应体系中快速蒸出,使反应一直向生成环氧氯丙烷的方向进行,转化率得到显著提升。试验装置证明,本发明可使二氯丙醇转化率达到98%以上,产物环氧氯丙烷纯度在97%以上。
(2)有效解决堵塞设备问题。由于超重力反应器内强大的离心力场,液体的湍流程度较大,油水两相快速均匀混合,固体和液体充分溶解,不会出现碱和盐析出结垢堵塞设备的问题,不需要定期对设备进行停车酸洗,可连续生产,降低生产成本。
(3)氯化盐采出液中氯化盐浓度显著增大。如前所述,本发明通过三级超重力反应器耦合反应和分离过程,使反应和分离过程高效进行,蒸汽耗量大大减小,进而使蒸汽冷凝水的量也显著减少,氯化盐采出液中氯化盐的浓度明显增大,所以氯化钙采出液不需要浓缩热处理,生产效益提升。运用本发明的试验装置采用质量分数20%的氢氧化钙,氯化钙采出浓度可达33%。
(4)氯化盐采出液中有机物含量明显下降。如前所述,本发明通过三级超重力反应器耦合反应和分离过程,使反应和分离过程高效进行,二氯丙醇的转化率和环氧氯丙烷的纯度均显著提升;因此氯化盐采出液中二氯丙醇、环氧氯丙烷等有机物的含量显著下降,COD值降低至4000ppm以下,所以无需废水处理装置,环保效益提升。
(5)蒸汽用量减少。如前所述,在三级超重力反应器中,蒸汽与反应液充分逆流接触,同时油水两相被高度破碎分散,气液接触传热比表面积显著增加,气液间高效传质换热,且蒸汽串联通过三级反应器,热量被充分利用,因此单位质量产品蒸汽耗量可减少约一半。
(7)设备尺寸减小。本发明中使用的超重力反应器较传统塔式反应器或管式反应器设备相比,设备尺寸大大减小;且本发明通过高效分离采出高含盐量的氯化盐溶液,省去了氯化盐蒸发浓缩的设备和场所,进一步减少装置的占地面积,减少投资。
下面以具体场景案例对本发明进行举例。
场景案例1
运用本发明的系统及方法制备环氧氯丙烷,所用碱液为氢氧化钙溶液,其中二氯丙醇质量分数(A)为76%,氢氧化钙质量分数(B)为20%,进料碱液相对二氯丙醇化学计量过量值(C)5%,第一级超重力反应器内反应料液温度(T1)为85℃,第一级超重力反应器内的超重力场水平(G1)为300g,第二级超重力反应器内的超重力场水平(G2)为200g,第三级超重力反应器内的超重力场水平(G3)为200g,通入第一级超重力反应器内继续反应的循环液和另一股通入第二级超重力反应器内的液体质量流量比(r)为7,全系统真空度(P)为60KPa,水蒸汽用量(Q)为300Kg/(t环氧氯丙烷),回流冷凝液温度(T2)为8℃,反应时间(t)为30min。得到二氯丙醇转化率(α)为98.7%,环氧氯丙烷纯度(β)为98.0%,氯化钙采出液中氯化钙浓度(γ)为32%,皂化液中COD值为4000ppm。
实施例2~17:工艺流程及步骤同实施例1,各实施例的工艺条件和操作条件以及相应的实验结果详见表1,表头所列字母含义及单位与实施例1中相同,囿于篇幅,Q的单位Kg/(t环氧氯丙烷)未在表中列出,所有实施例中提到的百分数均为质量百分数。
表1实施例2~17工艺参数及结果
Figure PCTCN2021141200-appb-000001
其中,实施例1~6在本发明主张的工艺参数范围内,由实施例的结果可以得出,本发明能明显提升原料的转化率及产品的纯度,解决了传统方法设备堵塞、蒸汽耗量高等问题;同时本发明能够明显提高氯化盐溶液中的盐浓度并降低其中有机物含量。
其中,实施例7~17部分工艺操作参数在本发明主张的工艺参数范围外,为对比例。由对比例可以反向证明,本方面所主张的工艺参数能够同时达到高转化率、高产品纯度、低蒸汽耗量、高浓度低有机物含量氯化盐采出等数个工艺指标,若偏离本发明主张的工艺操作参数范围,则以上数个工艺指标中的一个或多个将不能达到。
从上述技术方案的详细说明可知,本发明通过三级超重力反应器耦合,采用水蒸气汽提的方式将产物环氧氯丙烷与水蒸气以共沸物形式从反应体系蒸出,以该方式得到的产物纯度较高,水蒸气一方面通过外部的水蒸气源补充,另一方面可以从第二超重力反应器和第三超重力反应器中得到补充,形成水蒸气循环,进而可以保证水蒸气的用量,不需要大量水蒸气;进一步的,采用共沸物结合多级超重力反应器,针对本发明的反应体系中的共沸物特性,大大提高了共沸物的气相传质和液相传质,进而使得反应整体转 化率更高,同时基于汽提和超重力配合,使得二氯丙醇与碱液快速混合传质,将产物环氧氯丙烷以共沸物的形式从反应体系中快速蒸出(基于水蒸气的快速扩散),使反应一直向生成环氧氯丙烷的方向进行,转化率得到显著提升,试验装置证明,本发明可使二氯丙醇转化率达到99.6%以上,产物环氧氯丙烷纯度在99%以上。
本说明书中的各个实施方式均采用递进的方式描述,各个实施方式之间相同相似的部分互相参见即可,每个实施方式重点说明的都是与其他实施方式的不同之处。尤其,对于系统实施方式而言,由于其基本相似于方法实施方式,所以描述的比较简单,相关之处参见方法实施方式的部分说明即可。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施方式或示例描述的具体特征、结构、材料或者特点包含于本说明书实施方式的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施方式或示例。
此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施方式或示例以及不同实施方式或示例的特征进行结合和组合。以上所述仅为本说明书实施方式的实施方式而已,并不用于限制本说明书实施方式。对于本领域技术人员来说,本说明书实施方式可以有各种更改和变化。凡在本说明书实施方式的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书实施方式的权利要求范围之内。

Claims (10)

  1. 一种环氧氯丙烷的制备系统,其特征在于,包括:
    第一超重力反应器,其液体入口与原料二氯丙醇和碱液的进液管路连通;
    第二超重力反应器,其气体入口与水蒸气管路连通,气体出口与所述第一超重力反应器的气体进口连通;
    液体循环罐,其进口与所述第一超重力反应器的液体出口连通,出口分别与所述第一超重力反应器的液体入口和第二超重力反应器的液体入口连通;
    第三超重力反应器,其气体入口与所述第一超重力反应器的气体出口连通,其液体出口与所述第一超重力反应器和所述第二超重力反应器的液体入口连通,其气体出口连通至回收装置,液体入口连通至所述回收装置的液体出口;其中,
    所述第二超重力反应器的液体出口与氯化盐溶液储罐入口连通。
  2. 根据权利要求1所述的制备系统,其特征在于,还包括:
    第一阀门,位于所述液体循环罐的出口与所述第一超重力反应器的液体入口之间的管路上;
    第二阀门,位于所述液体循环罐的出口与所述第二超重力反应器的液体入口之间的管路上。
  3. 根据权利要求2所述的制备系统,其特征在于,还包括:
    阀门控制器,与所述第一阀门和/或所述第二阀门耦接,用于控制对应阀门的开合度。
  4. 根据权利要求3所述的制备系统,其特征在于,还包括:
    检测器,检测原料二氯丙醇和碱液的进液管路处的流量;
    处理器,根据所述流量确定所述对应阀门的开合度。
  5. 根据权利要求1所述的制备系统,其特征在于,所述回收装置包括:
    串联的第一冷凝器和第二冷凝器,所述第一冷凝器的气体进口与所述第三超重力反应器的气体出口连通;
    两相分离器,与所述第一冷凝器、第二冷凝器的液体出口连通,所述两相分离器的液体出口与所述第三超重力反应器的液体进口连通。
  6. 根据权利要求1所述的制备系统,其特征在于,所述第二超重力反应器和所述第三超重力反应器为旋转填充床,所述第一超重力反应器为定转子反应器。
  7. 根据权利要求5所述的制备系统,其特征在于,所述两相分离器包括分离腔以及设于所述分离腔内部的挡板,所述挡板将所述分离腔分割为两个相连通的子腔体,其中一个子腔体连通所述第三超重力反应器,另一个子腔体连通一储罐。
  8. 根据权利要求7所述的制备系统,其特征在于,所述挡板可移动。
  9. 根据权利要求1所述的制备系统,其特征在于,所述第二超重力反应器和所述第三超重力反应器为旋转填充床,所述旋转填充床内设有疏油填料。
  10. 一种环氧氯丙烷的制备方法,其特征在于,所述制备方法包括:
    利用如权利要求1-9任一项所述的制备系统制备环氧氯丙烷。
PCT/CN2021/141200 2020-12-25 2021-12-24 一种环氧氯丙烷的制备系统及方法 WO2022135564A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/269,109 US12077516B2 (en) 2020-12-25 2021-12-24 System and method for preparing epoxy chloropropane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011564263.7A CN112625008B (zh) 2020-12-25 2020-12-25 一种环氧氯丙烷的制备系统及方法
CN202011564263.7 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022135564A1 true WO2022135564A1 (zh) 2022-06-30

Family

ID=75325017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141200 WO2022135564A1 (zh) 2020-12-25 2021-12-24 一种环氧氯丙烷的制备系统及方法

Country Status (3)

Country Link
US (1) US12077516B2 (zh)
CN (1) CN112625008B (zh)
WO (1) WO2022135564A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112625008B (zh) 2020-12-25 2022-07-15 北京化工大学 一种环氧氯丙烷的制备系统及方法
CN116495764B (zh) * 2022-07-07 2025-05-30 浙江中巨海锐科技有限公司 一种面向氢氧化钙皂化反应二水氯化钙生产方法及系统
CN116693473A (zh) * 2023-04-04 2023-09-05 衢州巨化锦纶有限责任公司 一种生产环氧氯丙烷的环化工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202063710U (zh) * 2011-06-01 2011-12-07 大连欧科膜技术工程有限公司 从炼厂气中回收氢气的装置
CN105218492A (zh) * 2015-10-19 2016-01-06 河南心连心化肥有限公司 利用超重力反应器生产糠醇的装置及生产方法
WO2020263076A1 (en) * 2019-06-25 2020-12-30 Petroliam Nasional Berhad (Petronas) System and method for the processing of lng
CN112625008A (zh) * 2020-12-25 2021-04-09 北京化工大学 一种环氧氯丙烷的制备系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769277A (zh) * 2005-11-14 2006-05-10 湖南百利科技发展有限公司 环氧氯丙烷生产工艺
JP2011513311A (ja) * 2008-02-26 2011-04-28 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー エピクロロヒドリンの製造及び精製用プロセス及び装置
ES2455591T3 (es) * 2011-02-09 2014-04-16 Alstom Technology Ltd Lecho fijo giratorio
CN103012321B (zh) * 2012-12-12 2015-04-15 常州大学 一种二氯丙醇合成环氧氯丙烷的方法及其系统
CN103539763B (zh) * 2013-10-08 2016-05-04 常州大学 一种由二氯丙醇连续制备环氧氯丙烷的反应分离耦合工艺
CN107141239B (zh) * 2017-04-24 2019-07-05 北京化工大学 一种超重力反应器中合成双酚s的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202063710U (zh) * 2011-06-01 2011-12-07 大连欧科膜技术工程有限公司 从炼厂气中回收氢气的装置
CN105218492A (zh) * 2015-10-19 2016-01-06 河南心连心化肥有限公司 利用超重力反应器生产糠醇的装置及生产方法
WO2020263076A1 (en) * 2019-06-25 2020-12-30 Petroliam Nasional Berhad (Petronas) System and method for the processing of lng
CN112625008A (zh) * 2020-12-25 2021-04-09 北京化工大学 一种环氧氯丙烷的制备系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHU SHAOHUA, ET AL.: "A New Process of Reducing Free Formaldehyde from MF Resin by Steam Stripping", CHINA TEXTILE LEADER, no. 7, 8 July 2018 (2018-07-08), pages 86 - 88, XP055944652, DOI: 10.16481/j.cnki.ctl.2018.07.026 *

Also Published As

Publication number Publication date
CN112625008A (zh) 2021-04-09
CN112625008B (zh) 2022-07-15
US20240076277A1 (en) 2024-03-07
US12077516B2 (en) 2024-09-03

Similar Documents

Publication Publication Date Title
WO2022135564A1 (zh) 一种环氧氯丙烷的制备系统及方法
JP3844492B2 (ja) アルキレンオキシドを調整する方法
US20070116637A1 (en) Process for production of chlorine dioxide
US12134081B2 (en) Continuous preparation system and method for vinylidene chloride
CN106831315A (zh) 一种氯乙烷的连续化生产方法
CN109019521A (zh) 一种双氧水浓缩提纯装置及其在双氧水浓缩提纯中的应用
CN111072598A (zh) 一种利用钛硅分子筛催化剂直接氧化生产环氧氯丙烷的工艺
CN113480407B (zh) 一种二氯丙醇的连续化制备系统及方法
CN107987037B (zh) 一种单元化制备环氧丙烷的方法
WO2019114739A1 (zh) 一种氯化石蜡生产工艺
CN1347841A (zh) 大型高纯度二氧化氯发生装置及其生产方法
CN117105759B (zh) 一种连续制备2-氯-1-(1-氯环丙基)乙酮的方法
CN209098188U (zh) 一种双氧水浓缩提纯装置
CN203782064U (zh) 一种尿素与丙或乙二醇合成碳酸丙或乙烯酯的反应装置
CN111057026A (zh) 一种钛硅分子筛催化氧化氯丙烯连续生产环氧氯丙烷的方法
JP2002322106A (ja) 2,3−ジクロル−1−プロパノール及びエピクロルヒドリンの製造方法
TWI622584B (zh) 以氯丙烯與雙氧水反應生產環氧氯丙烷的製造裝置及製造方法
CN111116520B (zh) 以钛硅分子筛为催化剂氧化氯丙烯生产环氧氯丙烷的工艺
CN213668734U (zh) 一种氯化钠、氯化钾混盐分离提纯装置
CN105985217B (zh) 一种氯甲烷生产中提高反应物利用率的反应系统及其应用
CN113620909A (zh) 一种皂化方法及皂化装置
CN110963890A (zh) 一种气态甲醇的精制方法
CN217535872U (zh) 一种四氢呋喃的生产系统
JP2003267970A (ja) エチレンカーボネートの製造方法
CN114105742B (zh) 一种连续制备苯乙酮的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909559

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269109

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909559

Country of ref document: EP

Kind code of ref document: A1