[go: up one dir, main page]

WO2022134011A1 - Lamp assembly integrating lidar and lamp - Google Patents

Lamp assembly integrating lidar and lamp Download PDF

Info

Publication number
WO2022134011A1
WO2022134011A1 PCT/CN2020/139447 CN2020139447W WO2022134011A1 WO 2022134011 A1 WO2022134011 A1 WO 2022134011A1 CN 2020139447 W CN2020139447 W CN 2020139447W WO 2022134011 A1 WO2022134011 A1 WO 2022134011A1
Authority
WO
WIPO (PCT)
Prior art keywords
light sources
range sensors
vehicle
lamp assembly
orientation
Prior art date
Application number
PCT/CN2020/139447
Other languages
French (fr)
Inventor
Fuchao BAO
Yongjie Huang
Yongsheng Zhang
Hongshan Li
Original Assignee
SZ DJI Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co., Ltd. filed Critical SZ DJI Technology Co., Ltd.
Priority to CN202080108188.5A priority Critical patent/CN116710808A/en
Priority to PCT/CN2020/139447 priority patent/WO2022134011A1/en
Publication of WO2022134011A1 publication Critical patent/WO2022134011A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/068Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle by mechanical means
    • B60Q1/0683Adjustable by rotation of a screw
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2200/00Special features or arrangements of vehicle headlamps
    • B60Q2200/30Special arrangements for adjusting headlamps, e.g. means for transmitting the movements for adjusting the lamps
    • B60Q2200/36Conjoint adjustments, i.e. a mechanical link allows conjoint adjustment of several units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93277Sensor installation details in the lights

Definitions

  • the present disclosure relates generally to a lamp assembly and, more particularly, to a lamp assembly integrating one or more lidars and one or more lamps.
  • lidar light detection and ranging system
  • laser imaging, detection, and ranging sytem laser imaging, detection, and ranging sytem
  • the lidar may be required to be installed at a certain height or position to function properly.
  • the forward lidar often needs to be assembled on the front grille or intercooling position in a vehicle, which may appear abrupt and restrict the overall design of the vehicle.
  • an angle calibration of the lidar after the assembly may be cumbersome, and an additional angle adjustment mechanism may be required for the lidar, adding complexity to the adjustment process and cost.
  • a lamp assembly in one disclosed embodiment, includes one or more range sensors, one or more light sources, and an adjuster coupled to the one or more lamps and the one or more lidars.
  • the adjuster is configured to adjust an orientation of at least one of the one or more range sensors and an orientation of at least one of the one or more light sources
  • a lamp assembly in another disclosed embodiment, includes one or more range sensors, one or more light sources, and a connector for connecting the one or more range sensors to the one or more light sources.
  • the one or more light sources face in a substantially same direction such that a direction of a first beam emitted by the one or more range sensors is substantially the same as a direction of a second beam emitted by the one or more light sources.
  • a vehicle headlight assembly in another disclosed embodiment, includes one or more light sources and one or more range sensors, the one or more range sensors and the one or more light sources being integrated in the vehicle headlight assembly.
  • the vehicle headlight assembly further includes a housing configured to accommodate the one or more light sources and the one or more range sensors.
  • a method for adjusting a lamp assembly includes obtaining status information of a vehicle, wherein the lamp assembly is installed on the vehicle, and wherein the lamp assembly includes one or more range sensors and one or more light sources. The method further includes adjusting an orientation of at least one of the one or more range sensors and an orientation of at least one of the one or more light sources based on the status information of the vehicle.
  • FIG. 1 is a schematic diagram showing an exemplary vehicle, in accordance with embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram showing an exemplary lighting system in a vehicle, in accordance with embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram showing an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram showing an angle adjustment system for an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram showing a front view of an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram showing a back view of an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram showing an exploded view of an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram showing an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram showing an exemplary lamp module, in accordance with embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram showing an exemplary lidar module, in accordance with embodiments of the present disclosure.
  • first component or unit, element, member, part, piece
  • first component or unit, element, member, part, piece
  • first component may be directly coupled, mounted, fixed, or secured to or with the second component, or may be indirectly coupled, mounted, or fixed to or with the second component via another intermediate component.
  • the terms “coupled, ” “mounted, ” “fixed, ” and “secured” do not necessarily imply that a first component is permanently coupled with a second component.
  • the first component may be detachably coupled with the second component when these terms are used.
  • first component When a first component is referred to as “connected” to or with a second component, it is intended that the first component may be directly connected to or with the second component or may be indirectly connected to or with the second component via an intermediate component.
  • the connection may include mechanical and/or electrical connections.
  • the connection may be permanent or detachable.
  • the electrical connection may be wired or wireless.
  • first component When a first component is referred to as “disposed, ” “located, ” or “provided” on a second component, the first component may be directly disposed, located, or provided on the second component or may be indirectly disposed, located, or provided on the second component via an intermediate component.
  • first component When a first component is referred to as “disposed, ” “located, ” or “provided” in a second component, the first component may be partially or entirely disposed, located, or provided in, inside, or within the second component.
  • the terms “perpendicular, ” “horizontal, ” “vertical, ” “left, ” “right, ” “up, ” “upward, ” “upwardly, ” “down, ” “downward, ” “downwardly, ” and similar expressions used herein are merely intended for describing relative positional relationship.
  • Autonomous driving technology requires sensing the surrounding environment and generating real-time instructions to safely drive a movable object, such as an autonomous vehicle, with little or no human interaction.
  • the autonomous vehicle can be equipped with lidar sensors to gather information from the environment and generate instructions for navigation. Calibration of lidar sensors is also required to ensure accuracy of environmental information obtained based on the scanning of the lidar sensors for navigating the autonomous vehicle.
  • a lamp assembly and a vehicle headlight assembly are provided.
  • the lamp assembly includes one or more range sensors (e.g., lidars) , one or more light sources, and an adjuster coupled to the one or more light sources and the one or more range sensors (e.g., lidars) , the adjuster configured to adjust an orientation of at least one of the one or more range sensors and an orientation of at least one of the one or more light sources.
  • a connector for connecting the one or more range sensors to the one or more light sources.
  • the one or more range sensors may include one or more lidars.
  • the one or more range sensors may include one or more time of flight (ToF) sensors.
  • ToF time of flight
  • lidars are described as an example of range sensors. Other types of range sensor can also be used in the lamp assembly and vehicle headlight assembly described in the present disclosure without departing from the spirit of the present disclosure.
  • the light sources may include a high beam light module, a low beam light module, or an integrated high beam and low beam light module.
  • the one or more lidars and the one or more light sources may face a substantially same direction such that a direction of a laser beam emitted by the lidars is substantially the same as a direction of a light beam emitted by the light sources.
  • the one or more light sources and the one or more lidars may be integrated in a vehicle headlight assembly.
  • the embodiments described in the present disclosure allow the lidars to be installed in a proper position on a vehicle for operation, simplify the process for calibrating an angle of the lidars, secure the lidars in an enclosed assembly, and enhance the overall appearance of the lidars in the vehicle.
  • FIG. 1 is a schematic diagram showing an exemplary vehicle 100, in accordance with embodiments of the present disclosure.
  • the vehicle 100 generally includes a chassis 110, a body 120, front wheels 130, and rear wheels 140.
  • the vehicle body 120 is arranged on the chassis 110 and substantially encloses components of the vehicle.
  • the body 120 and the chassis 110 may jointly form a frame.
  • the front wheels 130 and rear wheels 140 each are rotationally coupled to the chassis 110 near corners of the body 120.
  • the vehicle 100 may be an autonomous vehicle and include a navigation system for autonomously navigating the autonomous vehicle.
  • autonomous vehicle refers to a vehicle capable of performing navigation changes without driver intervention.
  • the “autonomous vehicle” may be fully automatic (e.g., fully operating without a driver or without driver input) or partially autonomous (e.g., some aspects of vehicle navigation are autonomous) .
  • the autonomous vehicle 100 may be a passenger car as shown in FIG. 1 or any other vehicle such as motorcycles, trucks, sport utility vehicles (SUVs) , recreational vehicles (RVs) , etc.
  • the vehicle 100 may be configured to be in an autonomous driving mode in which the navigation system performs navigation for the vehicle without driver intervention.
  • the vehicle 100 may also be configured to be a manual driving mode in which a human operator performs navigation of the vehicle.
  • the navigation system in the autonomous vehicle navigates the autonomous vehicle based on detection of objects and their locations within the environment of the vehicle.
  • the navigation system may include one or more lidars for detecting objects located near the autonomous vehicle.
  • the lidars may include a light source to emit laser beams and an optical receiver to receive light reflected from an object.
  • the lidars may also include a scanner to direct the laser beams to scan a field of view.
  • the laser beam may be a continuous beam of light or a pulse or series of pulses of light.
  • the lidar may have a wide field of view, such as at least 140 degree.
  • the lidar may have a narrow field of view, such as less than 50 degree.
  • the lidars may include a light source such as a laser, a beam splitter, a rotator, and/or a scanner.
  • the navigation system may include a positioning system (e.g., a global navigation satellite system (GNSS) , GPS, or odometer, etc. ) configured to receive data indicating the location of the vehicle 100.
  • the navigation system may further include an onboard controller configured to communicate with various other types of devices, such as a barometer, an inertial measurement unit (IMU) , a transponder, or the like, to obtain positioning information and velocity information of the vehicle 100.
  • the onboard controller includes one or more processors and a memory. The onboard controller may also provide control signals for controlling the movement of the vehicle 100.
  • the navigation system may include other components without departing from the scope of the present disclosure.
  • the navigation system may include one or more memories, a user interface, and/or other types of sensors, such as a speed sensor, an image sensor, etc.
  • the vehicle 100 may include a communication system configured to enable communication of data, information, autonomous driving instructions, and/or other types of signals between the navigation system and one or more off-board devices, such as a mobile device or a server.
  • the communication system may include components configured to send and/or receive signals, such as receivers, transmitters, or transceivers, that are configured for one-way or two-way communications.
  • the vehicle 100 includes a lighting system 150 to provide interior and exterior illumination for the vehicle.
  • the lighting system 150 may include an array of lamp assemblies that are mounted or integrated to the front, side, and rear of the vehicle. These lamp assemblies provide exterior illumination for the driver or navigation system to safely operate the vehicle in low-light conditions, such as nighttime driving, and to increase the conspicuity of the vehicle.
  • the lighting system 150 may also display information about the vehicle’s presence, position, size, direction of travel, as well as providing signaling functions to indicate the intended maneuvering of the vehicle.
  • the lighting system 150 includes headlamp assemblies designed to provide forward illumination in both a low-beam setting and a high-beam setting.
  • the headlamp may include a low-beam light module configured to provide adequate forward and lateral illumination for normal driving conditions with minimized glare.
  • the headlamp may further include a high-beam light module configured to provide an intense, center-weighted distribution of light that is primarily suitable for driving scenarios where on-coming drivers are not present.
  • the high-beam light module and low-beam light module may be integrated in a single headlamp module.
  • one or more lidars may be integrated with the headlamps in the vehicle headlight assemblies.
  • the lidars may be connected to the headlamps via a connector.
  • the lidars and the connected headlamps may face a substantially same direction such that a direction of the laser beam emitted by each lidar is substantially the same as a direction of the light beam emitted by the connected headlamps.
  • the vehicle headlight assemblies include an adjuster configured to adjust an orientation of the one or more lidars and an orientation of the one or more lamps. The integration of the lidars and headlamps in the vehicle headlight assembly may facilitate the lidars to track objects in the environment of the vehicle 100.
  • the vehicle 100 may further includes a propulsion system, a transmission system, a steering system, a brake system, and an actuator system.
  • the propulsion system is configured to effect motion of the vehicle.
  • the propulsion system may include an internal combustion engine, an electric machine, and/or a fuel cell propulsion system.
  • the transmission system is configured to transmit power from the propulsion system to the vehicle wheels 130 and/or 140.
  • the brake system is configured to provide braking torque to the vehicle wheels 130 and 140.
  • the steering system is configured to influence a position of the vehicle wheels 130 and, optionally, wheels 140.
  • the actuator system is configured to control the propulsion system, transmission system, steering system, and the brake system.
  • the vehicle 100 may include other components for realizing functions of an autonomous vehicle without departing from the scope of the present disclosure.
  • FIG. 2 is a schematic diagram showing an exemplary lighting system 200 in a vehicle, in accordance with embodiments of the present disclosure.
  • the lighting system 200 includes a low beam lamp 210 and a high beam lamp 220 at both sides at the front of the vehicle.
  • the low beam lamp 210 and high beam lamp 220 may be included in a lamp housing.
  • the low beam lamp 210 and high beam lamp 220 collectively are referred to as a headlamp in the present disclosure.
  • the low beam lamp 210 includes a low beam light module configured to provide adequate forward and lateral illumination for normal nighttime driving.
  • the low beam light module projects light in a lateral and/or downward direction to provide adequate lighting without reducing visibility of oncoming traffic.
  • the high beam lamp 220 includes a high beam light module configured to provide an intense, center-weighted distribution of light for driving in areas with poor lighting conditions.
  • the low beam lamp 210 and high beam lamp 220 may include internal parts, such as brackets, reflectors, bulbs, and internal adjuster mechanisms.
  • the low beam lamp 210 and high beam lamp 220 may be pre-assembled into a protective lamp housing prior to integration with the vehicle.
  • the low beam lamp 210 and high beam lamp 220 may include a protective outer lens to shield the internal lamp components from external debris, weather, and the like.
  • the high beam light module may be integrated with the low beam light module in a single light module, and the low beam lamp 210 and high beam lamp 220 may be integrated in a single headlight lamp assembly.
  • the lighting system 200 also includes a daylight running lamp 240 configured to increase the conspicuity of the vehicle during daylight conditions.
  • the daylight running lamp 240 may automatically switch on when the vehicle is shifted into drive.
  • the lighting system 200 further includes a position lamp 250, which is also called a parking lamp, configured to emit white or amber light to provide nighttime conspicuity to the vehicle.
  • the daylight running lamp 240 and position lamp 250 may be provided as separate lamps from the low beam lamp 210 and high beam lamp 220, or may be integrated into the low beam lamp 210 or high beam lamp 220.
  • the lighting system 200 also includes a signal indicator light 230 that is configured to flash to show the intent of a driver to make turns or change lanes.
  • the lighting system 200 also includes rear brake lights (not shown) that illuminate upon actuation of the vehicle brake system to indicate that the vehicle is slowing or stopping.
  • the lighting system 200 further includes taillights (not shown) on the rear end of the vehicle configured to illuminate rear corners of the vehicle. The taillight may be activated when the front headlights are turned on.
  • one or more lidars may be integrated with the low beam lamp 210 to emit laser beams in a forward direction of travel for detecting objects in the environment of the vehicle.
  • the installation position of the low beam light is suitable for the installation position requirements of the forward lidar.
  • the lidars and the low beam lamp 210 may face a substantially same direction, e.g., the vehicle forward driving direction, and a direction of the laser beams emitted by the one or more lidars is substantially the same as a direction of the light beam emitted by the low beam lamp 210.
  • the light-emitting axes of the one or more lidars and the light-emitting axis of the low beam lamp 210 are parallel and do not overlap, such that the laser beams emitted by the one or more lidars do not block the light beam emitted by the low beam lamp 210, and vice versa.
  • one or more lidars may be integrated with the high beam lamp 220 to emit laser beams in the forward driving direction of travel for detecting objects in the environment of the vehicle.
  • the lidars and the high beam lamp 220 may face a substantially same direction, e.g., the forward vehicle driving direction, and a direction of the laser beams emitted by the one or more lidars is substantially the same as a direction of the light beam emitted by the high beam lamp 220.
  • the light-emitting axes of the lidars and the light-emitting axis of the high beam lamp 220 are parallel and do not overlap, such that the laser beam emitted by the one or more lidars do not block the light beam emitted by the high beam lamp 220, and vice versa.
  • the high beam light module and low beam light module may be integrated in one combined headlight module, in which the combined headlight module can be switched between a high beam setting and a low beam setting.
  • the combined headlight module may further integrate with one or more lidars in a headlight assembly for detecting objects in the environment of the vehicle.
  • FIG. 3 is a schematic diagram showing an exemplary lamp assembly 300, in accordance with embodiments of the present disclosure.
  • the lamp assembly 300 includes a light source, such as a headlight lamp 310, and a range sensor, such as a lidar 320.
  • the lamp assembly 300 is located in a compartment in the front of the vehicle conventionally used for placing the headlamp.
  • the headlight lamp 310 may include an integrated high beam and low beam light module.
  • the headlight lamp 310 may be configured to generate a light beam when a predetermined environmental condition is satisfied.
  • the headlight lamp 310 may be controlled to be turned on or turned off by a controller in the vehicle.
  • the lidar 320 may be configured to generate a laser beam when the vehicle is in an autonomous driving mode.
  • the lidar 320 may be controlled to be turned on or turned off by a controller in the vehicle.
  • the lidar 320 may include a laser beam emitter, e.g., a semiconductor laser diode, configured to emit a laser beam, such as light at a pulse rate of approximately 1000Hz or 3600Hz.
  • the lidar 320 may include a light sensing module that includes a photodiode.
  • the lidar 320 may be a single channel lidar or a scanning lidar.
  • the lidar 320 may include a scanner for changing a propagation path of the laser beam emitted from the laser beam emitter.
  • the scanner may include one or more optical elements for reflecting, refracting, and/or diffracting the laser beam emitted by the laser beam emitter.
  • the lidar 320 may be capable of detecting a wide range of materials, such as metallic or non-metallic objects, precipitation, certain aerosols, clouds or molecules.
  • the lidar 320 may include additional components, and the present disclosure does not intend to limit the type of lidars being integrated in the headlight assembly.
  • the lidar 320 may perform two-dimensional sensing or three-dimensional sensing of the environment without departing from the scope of the present disclosure.
  • the lamp assembly 300 may include a first lidar with a wide field of view and a second lidar with a narrow field of view.
  • the first lidar with a wide field of view may be used to detect objects surrounding the vehicle
  • the second lidar with a narrow field of view may be used to monitor objects within a long range.
  • the lamp assembly 300 may include a group of lidars to allow a wide range to be detected around the vehicle.
  • a group of single channel lidars may be used to detect a wide range of objects around the vehicle. The present disclosure does not intend to limit the number of lidars housed in the headlight assembly 300.
  • the headlight lamp 310 and lidar 320 face a substantially same direction (e.g., vehicle forward driving direction) , such that a direction of the laser beam emitted by the lidar 320 is substantially the same as a direction of the light beam emitted by the headlight lamp 310.
  • the laser beam may be parallel to the light beam so that they do not interfere with each other.
  • the headlight lamp 310 and lidar 320 may be located in a compartment in the body of the vehicle.
  • the headlight lamp 310 and lidar 320 may be placed in the compartment side by side along a horizontal direction. In other embodiments, the headlight lamp 310 and lidar 320 may be placed in the compartment side by side along a vertical direction.
  • the headlight lamp 310 and lidar 320 may also be positioned based on a contour of a vehicle.
  • the headlight lamp 310 and lidar 320 may be arranged horizontally along the contour of the vehicle at a certain positioning in the front or rear directions to match the contour of the vehicle, as shown in FIG. 3.
  • the lamp assembly 300 may include a housing 340 configured to accommodate the headlight lamp 310 and the lidar 320.
  • the housing 340 may include a protective cover to protect the headlight lamp 310 and the lidar 320 from dirt, water, inclement weather, etc.
  • the housing 340 may include a supporting member 342 and a translucent member 344.
  • the supporting member 342 may be located at the base of the housing and configured to support the headlight lamp 310 and the lidar 320.
  • the translucent member 344 may be located at the side of the housing and configured to allow light to pass from the headlight lamp 310 and the lidar 320 to the outside environment.
  • the lamp assembly 300 may include other types of light sources different from the headlight lamp 310.
  • the lamp assembly 300 may include a taillight lamp and a lidar for installing on the rear end of the vehicle.
  • the lamp assembly 300 may include a low beam light lamp and a lidar for installing on the front end of the vehicle. The present disclosure does not intend to limit the type of lamps included in the lamp assembly.
  • FIG. 4 is a schematic diagram showing an angle adjustment system 400 for an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
  • the angle adjustment system 400 includes a first adjuster 305 for adjusting a first angle of the headlight lamp 310, a second adjuster 325 for adjusting a first angle of the lidar 320, and a third adjuster 315 for adjusting a second angle of the headlight lamp 310.
  • the first adjuster 305 may be configured to adjust a horizontal angle of the headlight lamp 310.
  • the second adjuster 325 may be configured to adjust a horizontal angle of the lidar 320.
  • the third adjuster 315 may be configured to adjust a pitch angle of the headlight lamp 310 and a pitch angle of the lidar 320.
  • the adjuster 315 may be coupled to the headlight lamp 310 and lidar 320, directly or indirectly, for adjusting the pitch angle of the headlight lamp 310 and the pitch angle of the lidar 320.
  • the third adjuster 315 may be configured to calibrate the lidar 320.
  • the adjuster 315 may be configured to adjust a pitch angle of the headlight lamp 310 and a pitch angle of the lidar 320 such that the headlight lamp 310 and lidar 320 face a substantially same direction.
  • the adjuster 315 may be configured to adjust an orientation (e.g., a pitch angle) of the headlight lamp 310 and an orientation (e.g., a pitch angle) of the lidar 320 to maintain a predetermined relative spatial configuration between the lidar 320 and the headlight lamp 310.
  • the adjusters 305, 315, and 325 may each include a turning section and an actuator member (e.g., a motor) for adjusting an angle of the headlight lamp 310 or the lidar 320.
  • the adjusters can include any other structures which are not limited by the present disclosure.
  • the adjustor 325 may be directly or indirectly coupled to the lidar 320 or group of lidars if provided.
  • the angle adjustment system 400 may not include all of the three adjustors 305, 315, and 325, and may only include a subset of the adjusters.
  • the angle adjustment system 400 may include another adjuster for separately adjusting an angle (e.g., a pitch angle) of the lidar 320.
  • the lamp assembly may include a plurality of lidars, and the adjuster 325 may be configured to adjust an angle for each of the plurality of lidars.
  • FIG. 5 is a schematic diagram showing a front view of an exemplary lamp assembly 500, in accordance with embodiments of the present disclosure.
  • the lamp assembly 500 may be installed on a vehicle, such as in the front compartment of the vehicle conventionally used for placing the headlamp.
  • the lamp assembly 500 includes the headlight lamp 310, the lidar 320, and a connector 330 connecting between the headlight lamp 310 and lidar 320.
  • the lamp assembly 500 further includes the first adjuster 305 for adjusting a first angle of the headlight lamp 310, the second adjuster 325 for adjusting a first angle of the lidar 320, and the third adjuster 315 for adjusting a second angle of the headlight lamp 310 and a second angle of the lidar 320.
  • the third adjuster 315 may be coupled to at least one of the connector 330, the headlight lamp 310, or the lidar 320.
  • the first adjuster 305 may be configured to adjust an angle of the headlight lamp 310 manually, for example, by manually turning a section of the adjuster 305.
  • the first adjuster 305 may be configured to adjust an angle of the headlight lamp 310 automatically, for example, by a motor.
  • the second adjuster 325 may be configured to adjust a first angle of the lidar 320 manually (e.g., by turning a section of the adjuster 325) or automatically (e.g., via a motor) .
  • the third adjuster 315 may be configured to adjust a second angle of the headlight lamp 310 and a second angle of the lidar 320 manually (e.g., by turning a section of the adjuster 315) or automatically (e.g., via a motor) .
  • the connector 330 may include a shaft.
  • a first portion of the connector may be configured to connect to the lidar 320, and a second portion of the connector may be configured to connect to the headlight lamp 310.
  • a first end point of the connector may be configured to connect to the lidar 320, and a second end point of the connector may be configured to connect to the headlight lamp 310.
  • the connector 330 can be other types of structures, such as a flat structure, or a flexible structure, without departing from the scope of the present disclosure.
  • the lamp assembly 500 further includes a frame 312 for fixedly connecting to the headlight lamp 310 and a frame 322 for fixedly connecting to the lidar 320.
  • the frame 312 may be connected to the headlight lamp 310 through one or more fasteners, such as bolts, screws, nuts, etc.
  • the frame 312 may be fixedly connected to the headlight lamp 310 via a fixed point 313 of the headlight lamp.
  • the frame 322 may be connected to the lidar 320 through one or more fasteners, such as bolts, screws, nuts, etc.
  • the frame 322 may be fixedly connected to the lidar 320 via a fixed point 323 of the lidar.
  • the frames 312 and 322 may be configured to connect with external components, such as components in the compartment of the vehicle where the lamp assembly 500 is installed.
  • the adjuster 315 may be coupled to the connector 330.
  • the adjuster 315 may be connect to the lidar 320 through the connector 330.
  • the adjuster 315 is configured to adjust an orientation (e.g., a pitch angle) of the lidar 320 and an orientation (e.g., a pitch angle) of the headlight lamp 310.
  • the adjuster 315 may be configured to adjust the pitch angle of the headlight lamp 310, manually or automatically.
  • the adjuster 315 can also automatically adjust the pitch angle of the headlight lamp 310 according to the change of the vehicle load.
  • the adjustment of the angle of the headlight lamp 310 via the adjuster 315 may cause the lidar 320 to be adjusted at the same time.
  • the fixed point 323 of the lidar 320 remains stationary, and the lidar 320 rotates around the fixed point 323.
  • the adjustment of the pitch angle of the lidar 320 can be performed simultaneously with the headlight lamp 310 when the headlight lamp 310 is adjusted manually or automatically via the adjuster 315.
  • the adjuster 315 may be configured to adjust an orientation (e.g., a pitch angle) of the headlight lamp 310 and an orientation (e.g., a pitch angle) of the lidar 320 via the connector 330 to maintain a predetermined relative spatial configuration between the lidar 320 and the headlight lamp 310.
  • the adjuster 315 may be configured to adjust a horizontal angle of the lidar 320 and a horizontal angle of the headlight lamp 310. The present disclosure does not intend to limit the type of angles of the headlight lamp 310 and lidar 320 adjusted by the adjuster 315.
  • the lamp assembly 500 may further include one or more motors for adjusting an orientation of the lidar 320 and/or an orientation of the headlight lamp 310.
  • the motor can be connected to the adjuster 315 to automatically adjust an orientation (e.g., a pitch angle) of the lidar 320 and/or an orientation (e.g., a pitch angle) of the headlight lamp 310.
  • the one or more motors may be configured to automatically adjust an orientation of the lidar 320 and/or an orientation of the headlight lamp 310 based on a steering angle of a vehicle.
  • the one or more motors may be configured to adjust a horizontal angle of the headlight lamp 310 and/or a horizontal angle of the lidar 320 based on a driving direction of the vehicle.
  • the one or more motors may be configured to automatically adjust an orientation (e.g., a pitch angle) of the lidar 320 and/or an orientation (e.g., a pitch angle) of the headlight lamp 310 based on a loading state of a vehicle.
  • the one or more motors may be configured to lower the pitch angle of the headlight lamp 310 and/or the pitch angle of the lidar 320 when the load of the vehicle increases, such that a top portion of the light beam emitted by the headlight lamp 310 and the laser beam emitted by the lidar 320 extend substantially parallel to the ground or road surface.
  • a system may be provided for adjusting the lamp assembly 500.
  • the system may include one or more processors and a memory coupled to the one or more processors and storing instructions that, when executed by the one or more processors, cause the system to perform the methods described in the present disclosure.
  • the system may obtain status information of a vehicle.
  • the status information of the vehicle may include a steering angle of the vehicle or a loading state of the vehicle.
  • the system may adjust an orientation of the lidar 320 and an orientation of the headlight lamp 310 based on the status information of the vehicle.
  • the system may adjust, based on the status information of the vehicle, a pitch angle of at least one of the one or more range sensors and a pitch angle of at least one of the one or more light sources.
  • the system may adjust, based on the status information of the vehicle, a yaw angle of the lidar 320 and a yaw angle of the headlight lamp 310.
  • the system may adjust the headlight lamp 310 based on a measurement result of the lidar 320.
  • the system may increase a brightness of the headlight lamp 310 in response to detecting an object in front of the vehicle by the lidar 320.
  • the system may adjust the orientation of the headlight lamp 310 and the orientation of the lidar 320 such that the headlight lamp 310 and the lidar 320 face in a substantially same direction.
  • the system may adjust the orientation of the headlight lamp 310 and the orientation of the lidar 320 in response to detecting an object in front of the vehicle by the lidar 320 at substantially a same time.
  • the lidar 320 may be configured to turn on when the vehicle is in an autonomous driving mode.
  • the system may adjust an operation of the headlight lamp 310 or the lidar 320 when a predetermined environmental condition is satisfied. For example, the system may increase a brightness of the headlight lamp 310 when a brightness of an external light is lower than a predetermined threshold. The system may increase a brightness of the headlight lamp 310 when a visibility of an environment is lower than a predetermined threshold. The system may gradually increase a brightness of the headlight lamp 310 when a brightness of an external light gradually decreases. The system may gradually increase a brightness of the headlight lamp 310 when a visibility of an environment gradually decreases. The system may adjust the headlight lamp 310 or the lidar 320 to operate when a predetermined environmental condition is satisfied.
  • the system may adjust the orientation of the headlight lamp 310 or the lidar 320 to maintain a predetermined relative spatial configuration between the headlight lamp 310 and the lidar 320.
  • the orientation of the headlight lamp 310 and the lidar 320 may be adjusted manually based on an input from a user.
  • the orientation of the headlight lamp 310 and the lidar 320 may also be adjusted automatically based on the status information of the vehicle.
  • non-transitory computer readable storage medium including instructions, such as included in the memory or storage medium, executable by one or more processors, for performing the methods described in the present disclosure.
  • the non-transitory computer-readable storage medium may be a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disc, an optical data storage device, and the like.
  • FIG. 6 is a schematic diagram showing a back view of the exemplary lamp assembly 500, in accordance with embodiments of the present disclosure.
  • the lidar 320 is connected to the headlight lamp 310 via the connector 330.
  • the lidar 320 is integrated with the headlight lamp 310 in the lamp assembly 500.
  • the lamp assembly 500 may be installed in a vehicle to provide both a headlight lamp and a lidar.
  • the lamp assembly 500 may be installed in the front compartment of the vehicle where the headlamp is traditionally installed. In doing so, the lidar 320 may be secured in the vehicle body, reducing the risk of the lidar 320 being injured by the external environment.
  • the integrated lamp assembly also has a compact structure and more pleasant appearance compared to have the lidar being installed on the front grille or intercooling position of the vehicle. Further, the integration allows the lidar 320 to be adjusted at the same time with the headlight lamp 310, simplifying the angle adjustment process and reducing the cost for an additional angle adjustment mechanism for the lidar 320.
  • the lamp assembly 500 may integrate other types of light sources with the lidar.
  • the lamp assembly 500 may integrate the taillight lamp with the lidar.
  • the lamp assembly 500 may integrate the low beam light lamp with the lidar.
  • the lamp assembly 500 may integrate the high beam light lamp with the lidar.
  • the present disclosure does not intend to limit the type of lamp being integrated with the lidar.
  • the lamp assembly 500 may be installed on any position of the vehicle, not limited to the headlamp compartment.
  • the lamp assembly may be installed in the compartment for the taillight when the taillight lamp is included.
  • the lamp assembly may be installed in the compartment for the high beam light when the high beam lamp is included.
  • the lamp assembly may include a plurality of lidars.
  • the headlight lamp may be connected to a group of lidars via the connector 330, and the adjuster 315 may be configured to adjust an angle of the headlight lamp and an angle of each of the group of lidars at a substantially same time.
  • the lidar 320 may have a wide field of view with a short detection range. In other embodiments, the lidar 320 may have a narrow field of view with a long detection range. For example, a first lamp assembly including the lidar 320 having a wide field of view may be installed at one side of the vehicle, and a second lamp assembly including the lidar 320 having a narrow field of view may be installed at another side of the vehicle. In doing so, both wide field of view and narrow field of view can be provided for detecting objects surrounding the vehicle.
  • FIG. 7 is a schematic diagram showing an exploded view of the exemplary lamp assembly 500, in accordance with some embodiments of the present disclosure.
  • the exemplary lamp assembly 500 includes the headlight lamp 310, the lidar 320, the first adjuster 305 for adjusting a first angle of the headlight lamp 310, the second adjuster 325 for adjusting a first angle of the lidar 320, a connector 330 connecting between the headlight lamp 310 and lidar 320, the third adjuster 315 for adjusting a second angle of the headlight lamp 310, the frame 312 for connecting to the headlight lamp 310, and the frame 322 for connecting to the lidar 320.
  • the lamp assembly 500 further includes a fastener 314 for attaching the fixed point 313 of the headlight lamp 310 with the frame 312.
  • the lamp assembly 500 further includes a fastener 324 for attaching the fixed point 323 of the lidar 320 with the frame 322.
  • the lamp assembly 500 may further include a first decorative piece 311 for attaching to the front of the headlight lamp 310 and a second decorative piece 321 for attaching to the front of the lidar 320.
  • the first decorative piece 311 and the second decorative piece 321 may have the same color and the same shape to harmonize the appearance of the headlight lamp 310 and lidar 320 and to enhance the overall appearance of the lamp assembly 500.
  • the lamp assembly 500 may include greater or fewer components than those shown in FIG. 7.
  • the connector 330 may be omitted, and the angles of the headlight lamp 310 and lidar 320 may be independently adjusted.
  • the lamp assembly 500 may include a housing encasing the integrated headlight lamp 310 and lidar 320. The present disclosure does not intend to limit the components included in the lamp assembly.
  • FIG. 8 is a schematic diagram showing an exemplary lamp assembly 800, in accordance with embodiments of the present disclosure.
  • the lamp assembly 800 may be used for a vehicle with an Adaptive Front-Lighting System (AFS) .
  • the AFS optimizes distribution of light from the headlights according to driving circumstances. Depending on vehicle speed and steering input, the AFS points the low-beam headlights in the direction the driver intends to travel.
  • the headlights are equipped with AFS motors.
  • the AFS motors receive vehicle signals when the vehicle is turning, and automatically adjust the horizontal angles of the high beam and low beam headlamps. As a result, the direction of the headlight automatically adjusts to reduce a lighting blind spot when the vehicle is turning.
  • the connector 330 causes the lidar 320 to be adjusted to synchronize the horizontal adjustment.
  • the adjustment of the lidar 320 can reduce the blind spot and improve the detection coverage of the lidar.
  • the lamp assembly 800 includes the headlight lamp 310, the lidar 320, and the connector 330 connecting between the headlight lamp 310 and lidar 320.
  • the lamp assembly 800 further includes the first adjuster 305 for adjusting a first angle of the headlight lamp 310, the second adjuster 325 for adjusting a first angle of the lidar 320, and the third adjuster 315 for adjusting a second angle of the headlight lamp 310 and a second angle of the lidar 320.
  • the adjuster 315 includes a motor 316 for actuating the adjustment of the headlight lamp 310.
  • the lamp assembly 800 includes the frame 312 for fixedly connecting to the headlight lamp 310 via the fixed point 313, and the frame 322 for fixedly connecting to the lidar 320 via the fixed point 323.
  • the lamp assembly 800 includes an AFS motor 318 and an AFS frame 317.
  • the AFS motor 318 may be configured to adjust a horizontal angle of the headlight lamp 310 based on a steering angle of the vehicle.
  • the AFS frame 317 may be coupled to the headlight lamp 310 and the AFS motor 318 to stabilize the connection between the headlight lamp 310 and AFS motor 318.
  • the lamp assembly 800 may be installed in a front compartment of the vehicle where the headlight is installed.
  • the first adjuster 305 may instead be configured to adjust a pitch angle of the headlight lamp 310.
  • the second adjuster 325 may instead be configured to adjust a pitch angle of the lidar 320.
  • the third adjuster 315 may instead be configured to adjust a horizontal angle of the headlight lamp 310 and a horizontal angle of the lidar 320 via the connector 330.
  • the AFS motor 318 may drive the adjuster 315 to adjust a horizontal angle of the headlight lamp 310 when the vehicle is turning.
  • the motor 316 may actuate the adjustment of the horizontal angle of the headlight lamp 310.
  • the horizontal angle of the lidar 320 is adjusted accordingly via the connector 330.
  • the adjustment to the horizontal angle of the headlight lamp 310 and the horizontal angle of the lidar 320 may be at a substantially same time.
  • the degree of adjustment to the horizontal angle of the headlight lamp 310 and the horizontal angle of the lidar 320 may be substantially the same.
  • the headlight lamp 310 and the lidar 320 may face in substantially the same direction, and the laser beam emitted by the lidar 320 may be in a parallel direction to the light beam emitted by the headlight lamp 310. In doing so, the horizontal angle of the lidar 320 is adjusted to cause the laser beam to cover a larger area for detecting objects in the environment of the vehicle when the vehicle is turning.
  • the lamp assembly 800 may include a second connector connecting between the headlight lamp 310 and the lidar 320.
  • the second connector may be coupled to the first adjuster 305 and the lidar 320.
  • the first adjuster 305 may be used to adjust a pitch angle of the headlight lamp 310, and cause the pitch angle of the lidar 320 to be adjusted at substantially the same time via the second connector.
  • the degree of adjustment to the pitch angle of the headlight lamp 310 and the pitch angle of the lidar 320 may be substantially the same.
  • the lamp assembly 800 may include a plurality of lidars, each of which is coupled to the connector 330. Through the connector 330, the horizontal angle of each of the plurality of lidars may be adjusted at substantially the same time when the horizontal angle of the headlight lamp 310 is adjusted by the AFS motor 318.
  • the present disclosure does not intend to limit the number of lidars included in the lamp assembly.
  • Both the headlight lamp 310 and the lidar 320 may produce high heat when operating in the lamp assembly. Because of the integral design of the lamp assembly, it may be desired to enhance heat dissipation by the lamp assembly. For example, the headlight lamp 310 and the lidar 320 may be placed in the lamp assembly to be spaced apart to have a distance therebetween equal to or greater than a preset distance. By arranging the headlight lamp 310 and the lidar 320 to have a preset minimal distance therebetween, the mutual interference caused by heat and the risk of overheating are reduced.
  • a heat dissipation device is included in both the headlight lamp 310 and the lidar 320.
  • the heat dissipation device can include a radiator, a cooling fan, or a combination of both.
  • FIG. 9 is a schematic diagram showing an exemplary lamp module 900, in accordance with embodiments of the present disclosure.
  • the lamp module 900 may be included in a lamp assembly, such as the lamp assemblies 500 and 800 described above.
  • the lamp module 900 includes a fan 910 and a radiator 920, both connected to the headlight lamp 310.
  • the fan 910 and the radiator 920 facilitate to dissipate the heat generated by the headlight lamp 310 and to avoid overheating of the headlight lamp 310.
  • the arrangement of the fan 910 and the radiator 920 can be different from the lamp module 900 shown in FIG. 9 without departing from the scope of the present disclosure.
  • the radiator 920 and the fan 910 may be spaced part and not adjacent to each other in the lamp module.
  • the radiator 920 and the fan 910 may be placed side by side in a horizontal direction.
  • FIG. 10 is a schematic diagram showing an exemplary lidar module 1000, in accordance with embodiments of the present disclosure.
  • the lidar module 1000 may be included in a lamp assembly, such as the lamp assemblies 500 and 800 described above.
  • the lidar module 1000 includes a fan 1010 and a radiator 1020, both connected to the lidar 320.
  • the fan 1010 and the radiator 1020 facilitate to dissipate the heat generated by the lidar 320 and to avoid overheating of the lidar 320.
  • the arrangement of the fan 1010 and the radiator 1020 can be different from the lidar module 1000 shown in FIG. 10 without departing from the scope of the present disclosure.
  • the radiator 1020 and the fan 1010 may be spaced part and not adjacent to each other in the lidar module.
  • the radiator 1020 and the fan 1010 may be placed side by side in a horizontal or vertical direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A lamp assembly is disclosed. The lamp assembly includes one or more range sensors, one or more light sources, a connector for connecting the one or more range sensors to the one or more light sources, and an adjuster coupled to at least one of the connector, the one or more light sources, or the one or more range sensors. The adjuster is configured to adjust an angle of the one or more range sensors and an angle of the one or more light sources.

Description

LAMP ASSEMBLY INTEGRATING LIDAR AND LAMP
COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
TECHNICAL FIELD
The present disclosure relates generally to a lamp assembly and, more particularly, to a lamp assembly integrating one or more lidars and one or more lamps.
BACKGROUND
With the continuous development of autonomous driving, various environmental sensors may be installed in vehicles to detect an environment of a vehicle and allow autonomous navigation of the vehicle. For example, some autonomous driving systems utilize lidar (light detection and ranging system, or laser imaging, detection, and ranging sytem) to achieve environment detection. In installing the environmental sensors, calibration of sensors, appearance, and surrounding environment of the vehicle body are factors to be considered.
In an autonomous driving solution that is based on lidars, the lidar may be required to be installed at a certain height or position to function properly. For example, the forward lidar often needs to be assembled on the front grille or intercooling position in a vehicle, which may appear abrupt and restrict the overall design of the vehicle. In addition, an angle calibration of the lidar after the assembly may be cumbersome, and an additional angle adjustment mechanism may be required for the lidar, adding complexity to the adjustment process and cost.
SUMMARY
In one disclosed embodiment, a lamp assembly is disclosed. The lamp assembly includes one or more range sensors, one or more light sources, and an adjuster coupled to the one or more lamps and the one or more lidars. The adjuster is configured to adjust an orientation of at least one of the one or more range sensors and an orientation of at least one of the one or more light sources
In another disclosed embodiment, a lamp assembly is disclosed. The lamp assembly includes one or more range sensors, one or more light sources, and a connector for connecting the one or more range sensors to the one or more light sources. The one or more light sources face in a substantially same direction such that a direction of a first beam emitted by the one or more range sensors is substantially the same as a direction of a second beam emitted by the one or more light sources.
In another disclosed embodiment, a vehicle headlight assembly is disclosed. The vehicle headlight assembly includes one or more light sources and one or more range sensors, the one or more range sensors and the one or more light sources being integrated in the vehicle headlight assembly. The vehicle headlight assembly further includes a housing configured to accommodate the one or more light sources and the one or more range sensors..
In another disclosed embodiment, a method for adjusting a lamp assembly is disclosed. The method includes obtaining status information of a vehicle, wherein the lamp assembly is installed on the vehicle, and wherein the lamp assembly includes one or more range sensors and one or more light sources. The method further includes adjusting an orientation of at least one of the one or more range sensors and an orientation of at least one of the one or more light sources based on the status information of the vehicle.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Other features and advantages of the present invention will become apparent by a review of the specification, claims, and appended figures.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic diagram showing an exemplary vehicle, in accordance with embodiments of the present disclosure.
FIG. 2 is a schematic diagram showing an exemplary lighting system in a vehicle, in accordance with embodiments of the present disclosure.
FIG. 3 is a schematic diagram showing an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
FIG. 4 is a schematic diagram showing an angle adjustment system for an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
FIG. 5 is a schematic diagram showing a front view of an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
FIG. 6 is a schematic diagram showing a back view of an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
FIG. 7 is a schematic diagram showing an exploded view of an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
FIG. 8 is a schematic diagram showing an exemplary lamp assembly, in accordance with embodiments of the present disclosure.
FIG. 9 is a schematic diagram showing an exemplary lamp module, in accordance with embodiments of the present disclosure.
FIG. 10 is a schematic diagram showing an exemplary lidar module, in accordance with embodiments of the present disclosure.
DETAILED DESCRIPTION
The following detailed description refers to the accompanying drawings. Wherever possible, the same reference numbers refer to the same or similar parts. While several illustrative embodiments are described herein, modifications, adaptations, and other implementations are possible. For example, substitutions, additions, or modifications may be made to the components illustrated in the drawings. Accordingly, the following detailed description is not limited to the disclosed embodiments and examples. Instead, the proper scope is defined by the appended claims.
As used herein, when a first component (or unit, element, member, part, piece) is referred to as “coupled, ” “mounted, ” “fixed, ” “secured” to or with a second component, it is intended that the first component may be directly coupled, mounted, fixed, or secured to or with the second component, or may be indirectly coupled, mounted, or fixed to or with the second component via another intermediate component. The terms “coupled, ” “mounted, ” “fixed, ” and “secured” do not necessarily imply that a first component is permanently coupled with a second component. The first component may be detachably coupled with the second component when these terms are used. When a first component is referred to as “connected” to or with a second component, it is intended that the first component may be directly connected to or with the second component or may be indirectly connected to or with the second component via an intermediate component. The connection may include mechanical and/or electrical connections. The connection may be permanent or detachable. The electrical connection may be wired or wireless. When a first component is referred to as “disposed, ” “located, ” or “provided” on a second component, the first component may be directly disposed, located, or provided on the second component or may be indirectly disposed, located, or provided on the second component via an intermediate component. When a first component is referred to as “disposed, ” “located, ” or “provided” in a second component, the first component may be partially or entirely disposed, located, or provided in, inside, or within the second component. The terms “perpendicular, ” “horizontal, ” “vertical, ” “left, ” “right, ” “up, ” “upward, ” “upwardly, ” “down, ” “downward, ” “downwardly, ” and similar expressions used herein are merely intended for describing relative positional relationship.
Autonomous driving technology requires sensing the surrounding environment and generating real-time instructions to safely drive a movable object, such as an autonomous vehicle, with little or no human interaction. The autonomous vehicle can be equipped with lidar sensors to gather information from the environment and generate instructions for navigation. Calibration of lidar sensors is also required to ensure accuracy of environmental information obtained based on the scanning of the lidar sensors for navigating the autonomous vehicle.
Consistent with embodiments of the present disclosure, a lamp assembly and a vehicle  headlight assembly are provided. The lamp assembly includes one or more range sensors (e.g., lidars) , one or more light sources, and an adjuster coupled to the one or more light sources and the one or more range sensors (e.g., lidars) , the adjuster configured to adjust an orientation of at least one of the one or more range sensors and an orientation of at least one of the one or more light sources. In some embodiments, a connector for connecting the one or more range sensors to the one or more light sources. In some embodiments, the one or more range sensors may include one or more lidars. In other embodiments, the one or more range sensors may include one or more time of flight (ToF) sensors. In the present disclosure, lidars are described as an example of range sensors. Other types of range sensor can also be used in the lamp assembly and vehicle headlight assembly described in the present disclosure without departing from the spirit of the present disclosure. The light sources may include a high beam light module, a low beam light module, or an integrated high beam and low beam light module. The one or more lidars and the one or more light sources may face a substantially same direction such that a direction of a laser beam emitted by the lidars is substantially the same as a direction of a light beam emitted by the light sources. The one or more light sources and the one or more lidars may be integrated in a vehicle headlight assembly. The embodiments described in the present disclosure allow the lidars to be installed in a proper position on a vehicle for operation, simplify the process for calibrating an angle of the lidars, secure the lidars in an enclosed assembly, and enhance the overall appearance of the lidars in the vehicle.
FIG. 1 is a schematic diagram showing an exemplary vehicle 100, in accordance with embodiments of the present disclosure. The vehicle 100 generally includes a chassis 110, a body 120, front wheels 130, and rear wheels 140. The vehicle body 120 is arranged on the chassis 110 and substantially encloses components of the vehicle. The body 120 and the chassis 110 may jointly form a frame. The front wheels 130 and rear wheels 140 each are rotationally coupled to the chassis 110 near corners of the body 120.
In some embodiments, the vehicle 100 may be an autonomous vehicle and include a navigation system for autonomously navigating the autonomous vehicle. In the present disclosure, the term “autonomous vehicle” refers to a vehicle capable of performing  navigation changes without driver intervention. The “autonomous vehicle” may be fully automatic (e.g., fully operating without a driver or without driver input) or partially autonomous (e.g., some aspects of vehicle navigation are autonomous) . The autonomous vehicle 100 may be a passenger car as shown in FIG. 1 or any other vehicle such as motorcycles, trucks, sport utility vehicles (SUVs) , recreational vehicles (RVs) , etc. The vehicle 100 may be configured to be in an autonomous driving mode in which the navigation system performs navigation for the vehicle without driver intervention. The vehicle 100 may also be configured to be a manual driving mode in which a human operator performs navigation of the vehicle.
The navigation system in the autonomous vehicle navigates the autonomous vehicle based on detection of objects and their locations within the environment of the vehicle. For example, the navigation system may include one or more lidars for detecting objects located near the autonomous vehicle. The lidars may include a light source to emit laser beams and an optical receiver to receive light reflected from an object. The lidars may also include a scanner to direct the laser beams to scan a field of view. The laser beam may be a continuous beam of light or a pulse or series of pulses of light. For example, the lidar may have a wide field of view, such as at least 140 degree. As another example, the lidar may have a narrow field of view, such as less than 50 degree. In some embodiments, the lidars may include a light source such as a laser, a beam splitter, a rotator, and/or a scanner.
The navigation system may include a positioning system (e.g., a global navigation satellite system (GNSS) , GPS, or odometer, etc. ) configured to receive data indicating the location of the vehicle 100. The navigation system may further include an onboard controller configured to communicate with various other types of devices, such as a barometer, an inertial measurement unit (IMU) , a transponder, or the like, to obtain positioning information and velocity information of the vehicle 100. The onboard controller includes one or more processors and a memory. The onboard controller may also provide control signals for controlling the movement of the vehicle 100. The navigation system may include other components without departing from the scope of the present disclosure. For example, the navigation system may include one or more memories, a user interface, and/or other types  of sensors, such as a speed sensor, an image sensor, etc.
The vehicle 100 may include a communication system configured to enable communication of data, information, autonomous driving instructions, and/or other types of signals between the navigation system and one or more off-board devices, such as a mobile device or a server. For example, the communication system may include components configured to send and/or receive signals, such as receivers, transmitters, or transceivers, that are configured for one-way or two-way communications.
The vehicle 100 includes a lighting system 150 to provide interior and exterior illumination for the vehicle. For example, the lighting system 150 may include an array of lamp assemblies that are mounted or integrated to the front, side, and rear of the vehicle. These lamp assemblies provide exterior illumination for the driver or navigation system to safely operate the vehicle in low-light conditions, such as nighttime driving, and to increase the conspicuity of the vehicle. The lighting system 150 may also display information about the vehicle’s presence, position, size, direction of travel, as well as providing signaling functions to indicate the intended maneuvering of the vehicle. For example, the lighting system 150 includes headlamp assemblies designed to provide forward illumination in both a low-beam setting and a high-beam setting. The headlamp may include a low-beam light module configured to provide adequate forward and lateral illumination for normal driving conditions with minimized glare. The headlamp may further include a high-beam light module configured to provide an intense, center-weighted distribution of light that is primarily suitable for driving scenarios where on-coming drivers are not present. In some embodiments, the high-beam light module and low-beam light module may be integrated in a single headlamp module.
In some embodiments, one or more lidars may be integrated with the headlamps in the vehicle headlight assemblies. For example, the lidars may be connected to the headlamps via a connector. The lidars and the connected headlamps may face a substantially same direction such that a direction of the laser beam emitted by each lidar is substantially the same as a direction of the light beam emitted by the connected headlamps. In some embodiments, the vehicle headlight assemblies include an adjuster configured to adjust an orientation of the  one or more lidars and an orientation of the one or more lamps. The integration of the lidars and headlamps in the vehicle headlight assembly may facilitate the lidars to track objects in the environment of the vehicle 100.
The vehicle 100 may further includes a propulsion system, a transmission system, a steering system, a brake system, and an actuator system. The propulsion system is configured to effect motion of the vehicle. For example, the propulsion system may include an internal combustion engine, an electric machine, and/or a fuel cell propulsion system. The transmission system is configured to transmit power from the propulsion system to the vehicle wheels 130 and/or 140. The brake system is configured to provide braking torque to the  vehicle wheels  130 and 140. The steering system is configured to influence a position of the vehicle wheels 130 and, optionally, wheels 140. The actuator system is configured to control the propulsion system, transmission system, steering system, and the brake system. The vehicle 100 may include other components for realizing functions of an autonomous vehicle without departing from the scope of the present disclosure.
FIG. 2 is a schematic diagram showing an exemplary lighting system 200 in a vehicle, in accordance with embodiments of the present disclosure. As shown in FIG. 2, the lighting system 200 includes a low beam lamp 210 and a high beam lamp 220 at both sides at the front of the vehicle. The low beam lamp 210 and high beam lamp 220 may be included in a lamp housing. The low beam lamp 210 and high beam lamp 220 collectively are referred to as a headlamp in the present disclosure. The low beam lamp 210 includes a low beam light module configured to provide adequate forward and lateral illumination for normal nighttime driving. The low beam light module projects light in a lateral and/or downward direction to provide adequate lighting without reducing visibility of oncoming traffic. The high beam lamp 220 includes a high beam light module configured to provide an intense, center-weighted distribution of light for driving in areas with poor lighting conditions. The low beam lamp 210 and high beam lamp 220 may include internal parts, such as brackets, reflectors, bulbs, and internal adjuster mechanisms. The low beam lamp 210 and high beam lamp 220 may be pre-assembled into a protective lamp housing prior to integration with the vehicle. The low beam lamp 210 and high beam lamp 220 may include a protective outer  lens to shield the internal lamp components from external debris, weather, and the like. In some embodiments, the high beam light module may be integrated with the low beam light module in a single light module, and the low beam lamp 210 and high beam lamp 220 may be integrated in a single headlight lamp assembly.
As shown in FIG. 2, the lighting system 200 also includes a daylight running lamp 240 configured to increase the conspicuity of the vehicle during daylight conditions. The daylight running lamp 240 may automatically switch on when the vehicle is shifted into drive. The lighting system 200 further includes a position lamp 250, which is also called a parking lamp, configured to emit white or amber light to provide nighttime conspicuity to the vehicle. The daylight running lamp 240 and position lamp 250 may be provided as separate lamps from the low beam lamp 210 and high beam lamp 220, or may be integrated into the low beam lamp 210 or high beam lamp 220. The lighting system 200 also includes a signal indicator light 230 that is configured to flash to show the intent of a driver to make turns or change lanes.
The lighting system 200 also includes rear brake lights (not shown) that illuminate upon actuation of the vehicle brake system to indicate that the vehicle is slowing or stopping. The lighting system 200 further includes taillights (not shown) on the rear end of the vehicle configured to illuminate rear corners of the vehicle. The taillight may be activated when the front headlights are turned on.
In some embodiments, one or more lidars may be integrated with the low beam lamp 210 to emit laser beams in a forward direction of travel for detecting objects in the environment of the vehicle. The installation position of the low beam light is suitable for the installation position requirements of the forward lidar. For example, the lidars and the low beam lamp 210 may face a substantially same direction, e.g., the vehicle forward driving direction, and a direction of the laser beams emitted by the one or more lidars is substantially the same as a direction of the light beam emitted by the low beam lamp 210. For example, the light-emitting axes of the one or more lidars and the light-emitting axis of the low beam lamp 210 are parallel and do not overlap, such that the laser beams emitted by the one or more lidars do not block the light beam emitted by the low beam lamp 210, and vice versa.
In some embodiments, one or more lidars may be integrated with the high beam lamp  220 to emit laser beams in the forward driving direction of travel for detecting objects in the environment of the vehicle. For example, the lidars and the high beam lamp 220 may face a substantially same direction, e.g., the forward vehicle driving direction, and a direction of the laser beams emitted by the one or more lidars is substantially the same as a direction of the light beam emitted by the high beam lamp 220. For example, the light-emitting axes of the lidars and the light-emitting axis of the high beam lamp 220 are parallel and do not overlap, such that the laser beam emitted by the one or more lidars do not block the light beam emitted by the high beam lamp 220, and vice versa.
In some embodiments, the high beam light module and low beam light module may be integrated in one combined headlight module, in which the combined headlight module can be switched between a high beam setting and a low beam setting. The combined headlight module may further integrate with one or more lidars in a headlight assembly for detecting objects in the environment of the vehicle.
FIG. 3 is a schematic diagram showing an exemplary lamp assembly 300, in accordance with embodiments of the present disclosure. As shown in FIG. 3, the lamp assembly 300 includes a light source, such as a headlight lamp 310, and a range sensor, such as a lidar 320. The lamp assembly 300 is located in a compartment in the front of the vehicle conventionally used for placing the headlamp. The headlight lamp 310 may include an integrated high beam and low beam light module. The headlight lamp 310 may be configured to generate a light beam when a predetermined environmental condition is satisfied. For example, the headlight lamp 310 may be controlled to be turned on or turned off by a controller in the vehicle. The lidar 320 may be configured to generate a laser beam when the vehicle is in an autonomous driving mode. For example, the lidar 320 may be controlled to be turned on or turned off by a controller in the vehicle. The lidar 320 may include a laser beam emitter, e.g., a semiconductor laser diode, configured to emit a laser beam, such as light at a pulse rate of approximately 1000Hz or 3600Hz. The lidar 320 may include a light sensing module that includes a photodiode. The lidar 320 may be a single channel lidar or a scanning lidar. For example, the lidar 320 may include a scanner for changing a propagation path of the laser beam emitted from the laser beam emitter. For example, the scanner may include one or  more optical elements for reflecting, refracting, and/or diffracting the laser beam emitted by the laser beam emitter. The lidar 320 may be capable of detecting a wide range of materials, such as metallic or non-metallic objects, precipitation, certain aerosols, clouds or molecules. The lidar 320 may include additional components, and the present disclosure does not intend to limit the type of lidars being integrated in the headlight assembly. For example, the lidar 320 may perform two-dimensional sensing or three-dimensional sensing of the environment without departing from the scope of the present disclosure.
In some embodiments, the lamp assembly 300 may include a first lidar with a wide field of view and a second lidar with a narrow field of view. For example, the first lidar with a wide field of view may be used to detect objects surrounding the vehicle, and the second lidar with a narrow field of view may be used to monitor objects within a long range. In some embodiments, the lamp assembly 300 may include a group of lidars to allow a wide range to be detected around the vehicle. For example, a group of single channel lidars may be used to detect a wide range of objects around the vehicle. The present disclosure does not intend to limit the number of lidars housed in the headlight assembly 300.
As shown in FIG. 3, the headlight lamp 310 and lidar 320 face a substantially same direction (e.g., vehicle forward driving direction) , such that a direction of the laser beam emitted by the lidar 320 is substantially the same as a direction of the light beam emitted by the headlight lamp 310. The laser beam may be parallel to the light beam so that they do not interfere with each other. The headlight lamp 310 and lidar 320 may be located in a compartment in the body of the vehicle. The headlight lamp 310 and lidar 320 may be placed in the compartment side by side along a horizontal direction. In other embodiments, the headlight lamp 310 and lidar 320 may be placed in the compartment side by side along a vertical direction. The headlight lamp 310 and lidar 320 may also be positioned based on a contour of a vehicle. For example, the headlight lamp 310 and lidar 320 may be arranged horizontally along the contour of the vehicle at a certain positioning in the front or rear directions to match the contour of the vehicle, as shown in FIG. 3.
As shown in FIG. 3, the lamp assembly 300 may include a housing 340 configured to accommodate the headlight lamp 310 and the lidar 320. For example, the housing 340 may  include a protective cover to protect the headlight lamp 310 and the lidar 320 from dirt, water, inclement weather, etc. The housing 340 may include a supporting member 342 and a translucent member 344. The supporting member 342 may be located at the base of the housing and configured to support the headlight lamp 310 and the lidar 320. The translucent member 344 may be located at the side of the housing and configured to allow light to pass from the headlight lamp 310 and the lidar 320 to the outside environment.
In some embodiments, the lamp assembly 300 may include other types of light sources different from the headlight lamp 310. For example, the lamp assembly 300 may include a taillight lamp and a lidar for installing on the rear end of the vehicle. As another example, the lamp assembly 300 may include a low beam light lamp and a lidar for installing on the front end of the vehicle. The present disclosure does not intend to limit the type of lamps included in the lamp assembly.
FIG. 4 is a schematic diagram showing an angle adjustment system 400 for an exemplary lamp assembly, in accordance with embodiments of the present disclosure. As shown in FIG. 4, the angle adjustment system 400 includes a first adjuster 305 for adjusting a first angle of the headlight lamp 310, a second adjuster 325 for adjusting a first angle of the lidar 320, and a third adjuster 315 for adjusting a second angle of the headlight lamp 310. In some embodiments, the first adjuster 305 may be configured to adjust a horizontal angle of the headlight lamp 310. The second adjuster 325 may be configured to adjust a horizontal angle of the lidar 320. The third adjuster 315 may be configured to adjust a pitch angle of the headlight lamp 310 and a pitch angle of the lidar 320. For example, the adjuster 315 may be coupled to the headlight lamp 310 and lidar 320, directly or indirectly, for adjusting the pitch angle of the headlight lamp 310 and the pitch angle of the lidar 320. For example, the third adjuster 315 may be configured to calibrate the lidar 320. In some embodiments, the adjuster 315 may be configured to adjust a pitch angle of the headlight lamp 310 and a pitch angle of the lidar 320 such that the headlight lamp 310 and lidar 320 face a substantially same direction. In doing so, the light beam emitted by the headlight lamp and the laser beam emitted by the lidar 320 are in a substantially same direction with minimal interference to one another. In some embodiments, the adjuster 315 may be configured to adjust an orientation  (e.g., a pitch angle) of the headlight lamp 310 and an orientation (e.g., a pitch angle) of the lidar 320 to maintain a predetermined relative spatial configuration between the lidar 320 and the headlight lamp 310. The  adjusters  305, 315, and 325 may each include a turning section and an actuator member (e.g., a motor) for adjusting an angle of the headlight lamp 310 or the lidar 320. The adjusters can include any other structures which are not limited by the present disclosure.
For example, the adjustor 325 may be directly or indirectly coupled to the lidar 320 or group of lidars if provided. In some embodiments, the angle adjustment system 400 may not include all of the three  adjustors  305, 315, and 325, and may only include a subset of the adjusters. In other embodiments, the angle adjustment system 400 may include another adjuster for separately adjusting an angle (e.g., a pitch angle) of the lidar 320. In some embodiments, the lamp assembly may include a plurality of lidars, and the adjuster 325 may be configured to adjust an angle for each of the plurality of lidars.
FIG. 5 is a schematic diagram showing a front view of an exemplary lamp assembly 500, in accordance with embodiments of the present disclosure. The lamp assembly 500 may be installed on a vehicle, such as in the front compartment of the vehicle conventionally used for placing the headlamp. As shown in FIG. 5, the lamp assembly 500 includes the headlight lamp 310, the lidar 320, and a connector 330 connecting between the headlight lamp 310 and lidar 320. The lamp assembly 500 further includes the first adjuster 305 for adjusting a first angle of the headlight lamp 310, the second adjuster 325 for adjusting a first angle of the lidar 320, and the third adjuster 315 for adjusting a second angle of the headlight lamp 310 and a second angle of the lidar 320. The third adjuster 315 may be coupled to at least one of the connector 330, the headlight lamp 310, or the lidar 320. In some embodiments, the first adjuster 305 may be configured to adjust an angle of the headlight lamp 310 manually, for example, by manually turning a section of the adjuster 305. In other embodiments, the first adjuster 305 may be configured to adjust an angle of the headlight lamp 310 automatically, for example, by a motor. The second adjuster 325 may be configured to adjust a first angle of the lidar 320 manually (e.g., by turning a section of the adjuster 325) or automatically (e.g., via a motor) . The third adjuster 315 may be configured to adjust a second angle of the  headlight lamp 310 and a second angle of the lidar 320 manually (e.g., by turning a section of the adjuster 315) or automatically (e.g., via a motor) .
As shown in FIG. 5, the connector 330 may include a shaft. A first portion of the connector may be configured to connect to the lidar 320, and a second portion of the connector may be configured to connect to the headlight lamp 310. For example, a first end point of the connector may be configured to connect to the lidar 320, and a second end point of the connector may be configured to connect to the headlight lamp 310. The connector 330 can be other types of structures, such as a flat structure, or a flexible structure, without departing from the scope of the present disclosure.
As shown in FIG. 5, the lamp assembly 500 further includes a frame 312 for fixedly connecting to the headlight lamp 310 and a frame 322 for fixedly connecting to the lidar 320. The frame 312 may be connected to the headlight lamp 310 through one or more fasteners, such as bolts, screws, nuts, etc. For example, the frame 312 may be fixedly connected to the headlight lamp 310 via a fixed point 313 of the headlight lamp. Similarly, the frame 322 may be connected to the lidar 320 through one or more fasteners, such as bolts, screws, nuts, etc. The frame 322 may be fixedly connected to the lidar 320 via a fixed point 323 of the lidar. The  frames  312 and 322 may be configured to connect with external components, such as components in the compartment of the vehicle where the lamp assembly 500 is installed.
The adjuster 315 may be coupled to the connector 330. The adjuster 315 may be connect to the lidar 320 through the connector 330. In some embodiments, the adjuster 315 is configured to adjust an orientation (e.g., a pitch angle) of the lidar 320 and an orientation (e.g., a pitch angle) of the headlight lamp 310. For example, the adjuster 315 may be configured to adjust the pitch angle of the headlight lamp 310, manually or automatically. During the adjustment, the fixed point 313 of the headlight lamp 310 remains stationary, and the headlight lamp 310 rotates around the fixed point 313. In some embodiments, the adjuster 315 can also automatically adjust the pitch angle of the headlight lamp 310 according to the change of the vehicle load. Due to the connection by the connector 330, the adjustment of the angle of the headlight lamp 310 via the adjuster 315 may cause the lidar 320 to be adjusted at the same time. During the adjustment, the fixed point 323 of the lidar 320  remains stationary, and the lidar 320 rotates around the fixed point 323. As a result, the adjustment of the pitch angle of the lidar 320 can be performed simultaneously with the headlight lamp 310 when the headlight lamp 310 is adjusted manually or automatically via the adjuster 315. In some embodiments, the adjuster 315 may be configured to adjust an orientation (e.g., a pitch angle) of the headlight lamp 310 and an orientation (e.g., a pitch angle) of the lidar 320 via the connector 330 to maintain a predetermined relative spatial configuration between the lidar 320 and the headlight lamp 310. In some embodiments, the adjuster 315 may be configured to adjust a horizontal angle of the lidar 320 and a horizontal angle of the headlight lamp 310. The present disclosure does not intend to limit the type of angles of the headlight lamp 310 and lidar 320 adjusted by the adjuster 315.
In some embodiments, the lamp assembly 500 may further include one or more motors for adjusting an orientation of the lidar 320 and/or an orientation of the headlight lamp 310. For example, the motor can be connected to the adjuster 315 to automatically adjust an orientation (e.g., a pitch angle) of the lidar 320 and/or an orientation (e.g., a pitch angle) of the headlight lamp 310. In some embodiments, the one or more motors may be configured to automatically adjust an orientation of the lidar 320 and/or an orientation of the headlight lamp 310 based on a steering angle of a vehicle. For example, the one or more motors may be configured to adjust a horizontal angle of the headlight lamp 310 and/or a horizontal angle of the lidar 320 based on a driving direction of the vehicle. In some embodiments, the one or more motors may be configured to automatically adjust an orientation (e.g., a pitch angle) of the lidar 320 and/or an orientation (e.g., a pitch angle) of the headlight lamp 310 based on a loading state of a vehicle. For example, the one or more motors may be configured to lower the pitch angle of the headlight lamp 310 and/or the pitch angle of the lidar 320 when the load of the vehicle increases, such that a top portion of the light beam emitted by the headlight lamp 310 and the laser beam emitted by the lidar 320 extend substantially parallel to the ground or road surface.
In some embodiments, a system may be provided for adjusting the lamp assembly 500. The system may include one or more processors and a memory coupled to the one or more processors and storing instructions that, when executed by the one or more processors, cause  the system to perform the methods described in the present disclosure. For example, the system may obtain status information of a vehicle. The status information of the vehicle may include a steering angle of the vehicle or a loading state of the vehicle. The system may adjust an orientation of the lidar 320 and an orientation of the headlight lamp 310 based on the status information of the vehicle. For example, the system may adjust, based on the status information of the vehicle, a pitch angle of at least one of the one or more range sensors and a pitch angle of at least one of the one or more light sources. As another example, the system may adjust, based on the status information of the vehicle, a yaw angle of the lidar 320 and a yaw angle of the headlight lamp 310. The system may adjust the headlight lamp 310 based on a measurement result of the lidar 320. The system may increase a brightness of the headlight lamp 310 in response to detecting an object in front of the vehicle by the lidar 320. The system may adjust the orientation of the headlight lamp 310 and the orientation of the lidar 320 such that the headlight lamp 310 and the lidar 320 face in a substantially same direction. The system may adjust the orientation of the headlight lamp 310 and the orientation of the lidar 320 in response to detecting an object in front of the vehicle by the lidar 320 at substantially a same time. The lidar 320 may be configured to turn on when the vehicle is in an autonomous driving mode.
In some embodiments, the system may adjust an operation of the headlight lamp 310 or the lidar 320 when a predetermined environmental condition is satisfied. For example, the system may increase a brightness of the headlight lamp 310 when a brightness of an external light is lower than a predetermined threshold. The system may increase a brightness of the headlight lamp 310 when a visibility of an environment is lower than a predetermined threshold. The system may gradually increase a brightness of the headlight lamp 310 when a brightness of an external light gradually decreases. The system may gradually increase a brightness of the headlight lamp 310 when a visibility of an environment gradually decreases. The system may adjust the headlight lamp 310 or the lidar 320 to operate when a predetermined environmental condition is satisfied. For example, the system may adjust the orientation of the headlight lamp 310 or the lidar 320 to maintain a predetermined relative spatial configuration between the headlight lamp 310 and the lidar 320. The orientation of  the headlight lamp 310 and the lidar 320 may be adjusted manually based on an input from a user. The orientation of the headlight lamp 310 and the lidar 320 may also be adjusted automatically based on the status information of the vehicle.
In some embodiments, there is also provided a non-transitory computer readable storage medium including instructions, such as included in the memory or storage medium, executable by one or more processors, for performing the methods described in the present disclosure. For example, the non-transitory computer-readable storage medium may be a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disc, an optical data storage device, and the like.
FIG. 6 is a schematic diagram showing a back view of the exemplary lamp assembly 500, in accordance with embodiments of the present disclosure. As shown in FIG. 6, the lidar 320 is connected to the headlight lamp 310 via the connector 330. As a result, the lidar 320 is integrated with the headlight lamp 310 in the lamp assembly 500. The lamp assembly 500 may be installed in a vehicle to provide both a headlight lamp and a lidar. For example, the lamp assembly 500 may be installed in the front compartment of the vehicle where the headlamp is traditionally installed. In doing so, the lidar 320 may be secured in the vehicle body, reducing the risk of the lidar 320 being injured by the external environment. The integrated lamp assembly also has a compact structure and more pleasant appearance compared to have the lidar being installed on the front grille or intercooling position of the vehicle. Further, the integration allows the lidar 320 to be adjusted at the same time with the headlight lamp 310, simplifying the angle adjustment process and reducing the cost for an additional angle adjustment mechanism for the lidar 320.
The lamp assembly 500 may integrate other types of light sources with the lidar. For example, the lamp assembly 500 may integrate the taillight lamp with the lidar. As another example, the lamp assembly 500 may integrate the low beam light lamp with the lidar. As another example, the lamp assembly 500 may integrate the high beam light lamp with the lidar. The present disclosure does not intend to limit the type of lamp being integrated with the lidar. The lamp assembly 500 may be installed on any position of the vehicle, not limited to the headlamp compartment. For example, the lamp assembly may be installed in  the compartment for the taillight when the taillight lamp is included. As another example, the lamp assembly may be installed in the compartment for the high beam light when the high beam lamp is included. In addition, the lamp assembly may include a plurality of lidars. For example, the headlight lamp may be connected to a group of lidars via the connector 330, and the adjuster 315 may be configured to adjust an angle of the headlight lamp and an angle of each of the group of lidars at a substantially same time.
In some embodiments, the lidar 320 may have a wide field of view with a short detection range. In other embodiments, the lidar 320 may have a narrow field of view with a long detection range. For example, a first lamp assembly including the lidar 320 having a wide field of view may be installed at one side of the vehicle, and a second lamp assembly including the lidar 320 having a narrow field of view may be installed at another side of the vehicle. In doing so, both wide field of view and narrow field of view can be provided for detecting objects surrounding the vehicle.
FIG. 7 is a schematic diagram showing an exploded view of the exemplary lamp assembly 500, in accordance with some embodiments of the present disclosure. As shown in FIG. 7, the exemplary lamp assembly 500 includes the headlight lamp 310, the lidar 320, the first adjuster 305 for adjusting a first angle of the headlight lamp 310, the second adjuster 325 for adjusting a first angle of the lidar 320, a connector 330 connecting between the headlight lamp 310 and lidar 320, the third adjuster 315 for adjusting a second angle of the headlight lamp 310, the frame 312 for connecting to the headlight lamp 310, and the frame 322 for connecting to the lidar 320. The lamp assembly 500 further includes a fastener 314 for attaching the fixed point 313 of the headlight lamp 310 with the frame 312. The lamp assembly 500 further includes a fastener 324 for attaching the fixed point 323 of the lidar 320 with the frame 322.
As shown in FIG. 7, the lamp assembly 500 may further include a first decorative piece 311 for attaching to the front of the headlight lamp 310 and a second decorative piece 321 for attaching to the front of the lidar 320. The first decorative piece 311 and the second decorative piece 321 may have the same color and the same shape to harmonize the appearance of the headlight lamp 310 and lidar 320 and to enhance the overall appearance of  the lamp assembly 500. It will be appreciated that the lamp assembly 500 may include greater or fewer components than those shown in FIG. 7. For example, in some implementations, the connector 330 may be omitted, and the angles of the headlight lamp 310 and lidar 320 may be independently adjusted. As another example, the lamp assembly 500 may include a housing encasing the integrated headlight lamp 310 and lidar 320. The present disclosure does not intend to limit the components included in the lamp assembly.
FIG. 8 is a schematic diagram showing an exemplary lamp assembly 800, in accordance with embodiments of the present disclosure. The lamp assembly 800 may be used for a vehicle with an Adaptive Front-Lighting System (AFS) . The AFS optimizes distribution of light from the headlights according to driving circumstances. Depending on vehicle speed and steering input, the AFS points the low-beam headlights in the direction the driver intends to travel. For example, in a vehicle with the AFS function, the headlights are equipped with AFS motors. The AFS motors receive vehicle signals when the vehicle is turning, and automatically adjust the horizontal angles of the high beam and low beam headlamps. As a result, the direction of the headlight automatically adjusts to reduce a lighting blind spot when the vehicle is turning. In the lamp assembly 800, when the AFS motor drives the horizontal angle of the headlight lamp 310, the connector 330 causes the lidar 320 to be adjusted to synchronize the horizontal adjustment. The adjustment of the lidar 320 can reduce the blind spot and improve the detection coverage of the lidar.
As shown in FIG. 8, the lamp assembly 800 includes the headlight lamp 310, the lidar 320, and the connector 330 connecting between the headlight lamp 310 and lidar 320. The lamp assembly 800 further includes the first adjuster 305 for adjusting a first angle of the headlight lamp 310, the second adjuster 325 for adjusting a first angle of the lidar 320, and the third adjuster 315 for adjusting a second angle of the headlight lamp 310 and a second angle of the lidar 320. The adjuster 315 includes a motor 316 for actuating the adjustment of the headlight lamp 310. Similar to the lamp assembly 500, the lamp assembly 800 includes the frame 312 for fixedly connecting to the headlight lamp 310 via the fixed point 313, and the frame 322 for fixedly connecting to the lidar 320 via the fixed point 323. In addition, the lamp assembly 800 includes an AFS motor 318 and an AFS frame 317. The AFS motor 318  may be configured to adjust a horizontal angle of the headlight lamp 310 based on a steering angle of the vehicle. The AFS frame 317 may be coupled to the headlight lamp 310 and the AFS motor 318 to stabilize the connection between the headlight lamp 310 and AFS motor 318. The lamp assembly 800 may be installed in a front compartment of the vehicle where the headlight is installed.
In some embodiments, the first adjuster 305 may instead be configured to adjust a pitch angle of the headlight lamp 310. The second adjuster 325 may instead be configured to adjust a pitch angle of the lidar 320. The third adjuster 315 may instead be configured to adjust a horizontal angle of the headlight lamp 310 and a horizontal angle of the lidar 320 via the connector 330. For example, the AFS motor 318 may drive the adjuster 315 to adjust a horizontal angle of the headlight lamp 310 when the vehicle is turning. As a result, the motor 316 may actuate the adjustment of the horizontal angle of the headlight lamp 310. At a substantially same time, the horizontal angle of the lidar 320 is adjusted accordingly via the connector 330. The adjustment to the horizontal angle of the headlight lamp 310 and the horizontal angle of the lidar 320 may be at a substantially same time. The degree of adjustment to the horizontal angle of the headlight lamp 310 and the horizontal angle of the lidar 320 may be substantially the same. After the adjustment, the headlight lamp 310 and the lidar 320 may face in substantially the same direction, and the laser beam emitted by the lidar 320 may be in a parallel direction to the light beam emitted by the headlight lamp 310. In doing so, the horizontal angle of the lidar 320 is adjusted to cause the laser beam to cover a larger area for detecting objects in the environment of the vehicle when the vehicle is turning.
In some embodiments, the lamp assembly 800 may include a second connector connecting between the headlight lamp 310 and the lidar 320. For example, the second connector may be coupled to the first adjuster 305 and the lidar 320. The first adjuster 305 may be used to adjust a pitch angle of the headlight lamp 310, and cause the pitch angle of the lidar 320 to be adjusted at substantially the same time via the second connector. The degree of adjustment to the pitch angle of the headlight lamp 310 and the pitch angle of the lidar 320 may be substantially the same.
Although one lidar 320 is shown in FIG. 8, the lamp assembly 800 may include a  plurality of lidars, each of which is coupled to the connector 330. Through the connector 330, the horizontal angle of each of the plurality of lidars may be adjusted at substantially the same time when the horizontal angle of the headlight lamp 310 is adjusted by the AFS motor 318. The present disclosure does not intend to limit the number of lidars included in the lamp assembly.
Both the headlight lamp 310 and the lidar 320 may produce high heat when operating in the lamp assembly. Because of the integral design of the lamp assembly, it may be desired to enhance heat dissipation by the lamp assembly. For example, the headlight lamp 310 and the lidar 320 may be placed in the lamp assembly to be spaced apart to have a distance therebetween equal to or greater than a preset distance. By arranging the headlight lamp 310 and the lidar 320 to have a preset minimal distance therebetween, the mutual interference caused by heat and the risk of overheating are reduced. In some embodiments, a heat dissipation device is included in both the headlight lamp 310 and the lidar 320. The heat dissipation device can include a radiator, a cooling fan, or a combination of both.
FIG. 9 is a schematic diagram showing an exemplary lamp module 900, in accordance with embodiments of the present disclosure. The lamp module 900 may be included in a lamp assembly, such as the  lamp assemblies  500 and 800 described above. As shown in FIG. 9, the lamp module 900 includes a fan 910 and a radiator 920, both connected to the headlight lamp 310. The fan 910 and the radiator 920 facilitate to dissipate the heat generated by the headlight lamp 310 and to avoid overheating of the headlight lamp 310. The arrangement of the fan 910 and the radiator 920 can be different from the lamp module 900 shown in FIG. 9 without departing from the scope of the present disclosure. For example, the radiator 920 and the fan 910 may be spaced part and not adjacent to each other in the lamp module. As another example, the radiator 920 and the fan 910 may be placed side by side in a horizontal direction.
FIG. 10 is a schematic diagram showing an exemplary lidar module 1000, in accordance with embodiments of the present disclosure. The lidar module 1000 may be included in a lamp assembly, such as the  lamp assemblies  500 and 800 described above. As shown in FIG. 10, the lidar module 1000 includes a fan 1010 and a radiator 1020, both connected to the lidar  320. The fan 1010 and the radiator 1020 facilitate to dissipate the heat generated by the lidar 320 and to avoid overheating of the lidar 320. The arrangement of the fan 1010 and the radiator 1020 can be different from the lidar module 1000 shown in FIG. 10 without departing from the scope of the present disclosure. For example, the radiator 1020 and the fan 1010 may be spaced part and not adjacent to each other in the lidar module. As another example, the radiator 1020 and the fan 1010 may be placed side by side in a horizontal or vertical direction.
It is to be understood that the disclosed embodiments are not necessarily limited in their application to the details of construction and the arrangement of the components set forth in the following description and/or illustrated in the drawings and/or the examples. The disclosed embodiments are capable of variations, or of being practiced or carried out in various ways.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed devices and systems. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed devices and systems. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.

Claims (135)

  1. A lamp assembly, comprising:
    one or more range sensors;
    one or more light sources; and
    an adjuster coupled to the one or more light sources and the one or more range sensors, the adjuster configured to adjust an orientation of at least one of the one or more range sensors and an orientation of at least one of the one or more light sources.
  2. The lamp assembly of claim 1, further comprising a connector for connecting the one or more range sensors to the one or more light sources.
  3. The lamp assembly of claim 2, wherein the connector includes a shaft.
  4. The lamp assembly of claim 2, wherein a first portion of the connector is configured to connect to the one or more range sensors, and a second portion of the connector is configured to connect to the one or more light sources.
  5. The lamp assembly of claim 2, wherein the adjuster is configured to connect to the one or more range sensors through the connector.
  6. The lamp assembly of claim 2, wherein the adjuster is coupled to the connector.
  7. The lamp assembly of claim 1, wherein the one or more range sensors include one or more lidars.
  8. The lamp assembly of claim 1, wherein the one or more range sensors include one or more time of flight (ToF) sensors.
  9. The lamp assembly of claim 1, wherein the adjuster is configured to couple to the one or more light sources.
  10. The lamp assembly of claim 1, wherein the one or more light sources include at least one of a high beam light module, a low beam light module, or an integrated high beam and low beam light module.
  11. The lamp assembly of claim 1, wherein the one or more range sensors includes a first range sensor with a wide field of view and a second range sensor with a narrow field of view.
  12. The lamp assembly of claim 1, wherein the adjuster is further configured to adjust the orientation of the one or more range sensors and the orientation of the one or more light sources at substantially a same time.
  13. The lamp assembly of claim 12, wherein the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources are adjusted such that at least one of the one or more range sensors and at least one of the one or more light sources face in a substantially same direction.
  14. The lamp assembly of claim 12, wherein the orientation of at least one of the one or more range sensors is adjusted to be substantially the same as the orientation of at least one of the one or more light sources.
  15. The lamp assembly of claim 12, wherein the adjuster is configured to adjust the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources to maintain a predetermined relative spatial configuration between at least one of the one or more range sensors and at least one of the one or more light sources.
  16. The lamp assembly of claim 12, wherein the adjuster is further configured to adjust a pitch angle of at least one of the one or more range sensors and a pitch angle of at least one of the one or more light sources.
  17. The lamp assembly of claim 12, wherein the adjuster is further configured to adjust a horizontal angle of at least one of the one or more range sensors and a horizontal angle of at least one of the one or more light sources.
  18. The lamp assembly of claim 1, further comprising another adjuster configured to adjust another angle of at least one of the one or more range sensors.
  19. The lamp assembly of claim 1, further comprising one or more frames for fixedly connecting to the one or more range sensors through one or more fasteners.
  20. The lamp assembly of claim 19, wherein the one or more frames are configured to connect with one or more external components.
  21. The lamp assembly of claim 1, wherein the one or more range sensors and the one or more light sources face in a substantially same direction.
  22. The lamp assembly of claim 1, wherein the one or more range sensors and the one or more light sources are located in a compartment.
  23. The lamp assembly of claim 22, wherein the one or more range sensors and the one or more light sources placed in the compartment side by side along a horizontal direction.
  24. The lamp assembly of claim 22, wherein the one or more range sensors and the one or more light sources placed in the compartment side by side along a vertical direction.
  25. The lamp assembly of claim 1, wherein the one or more range sensors and the one or more light sources are positioned based on a contour of a vehicle.
  26. The lamp assembly of claim 1, wherein a distance between the one or more range sensors and the one or more light sources is equal to or greater than a preset distance.
  27. The lamp assembly of claim 1, wherein the one or more range sensors and the one or more light sources are located in a vehicle, the one or more range sensors configured to generate a laser beam when the vehicle is in an autonomous driving mode.
  28. The lamp assembly of claim 27, wherein the one or more range sensors are controlled to be turned on or turned off by a controller in the vehicle.
  29. The lamp assembly of claim 1, wherein the one or more light sources are configured to generate a light beam when a predetermined environmental condition is satisfied.
  30. The lamp assembly of claim 29, wherein the one or more light sources are controlled to be turned on or turned off by a controller.
  31. The lamp assembly of claim 1, wherein the one or more range sensors are connected to a heat dissipation device.
  32. The lamp assembly of claim 1, wherein the one or more light sources are connected to a heat dissipation device.
  33. The lamp assembly of claim 1, wherein the adjuster is configured to adjust the angle of the one or more range sensors and the angle of the one or more light sources automatically or manually.
  34. The lamp assembly of claim 1, wherein the adjuster is configured to calibrate the one or more range sensors.
  35. The lamp assembly of claim 1, wherein the light source assembly is configured to install on a vehicle.
  36. The lamp assembly of claim 1, wherein the adjuster includes one or more motors for adjusting the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources.
  37. The lamp assembly of claim 36, wherein the one or more motors are configured to adjust the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources based on a steering angle of a vehicle.
  38. The lamp assembly of claim 36, wherein the one or more motors are configured to adjust the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources based on a loading state of a vehicle.
  39. The lamp assembly of claim 38, wherein the one or more motors are configured to adjust a pitch angle of at least one of the one or more range sensors and a pitch angle of at least one of the one or more light sources based on the loading state of the vehicle.
  40. A lamp assembly, comprising:
    one or more range sensors;
    one or more light sources; and
    a connector for connecting the one or more range sensors to the one or more light sources, wherein the one or more range sensors and the one or more light sources face in a substantially same direction such that a direction of a first beam emitted by the one or more range sensors is substantially the same as a direction of a second beam emitted by the one or more light sources.
  41. The lamp assembly of claim 40, wherein the one or more range sensors include one or more lidars.
  42. The lamp assembly of claim 40, wherein the one or more range sensors include one or more time of flight (ToF) sensors.
  43. The lamp assembly of claim 40, wherein the first beam includes a laser beam, and the second beam includes a light beam.
  44. The lamp assembly of claim 40, wherein the connector includes a shaft.
  45. The lamp assembly of claim 40, wherein the light source assembly further comprises an adjuster coupled to at least one of the connector, the one or more light sources, or the one or more range sensors, the adjuster configured to adjust an orientation of at least one of the one or more range sensors and an orientation of at least one of the one or more light sources.
  46. The lamp assembly of claim 45, wherein the adjuster is configured to adjust the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources automatically or manually.
  47. The lamp assembly of claim 45, wherein the adjuster includes one or more motors for adjusting the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources.
  48. The lamp assembly of claim 47, wherein the one or more motors are configured to adjust the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources based on a steering angle of a vehicle.
  49. The lamp assembly of claim 47, wherein the one or more motors are configured to adjust the orientation of the one or more range sensors and the orientation of the one or more light sources based on a loading state of a vehicle.
  50. The lamp assembly of claim 49, wherein the one or more motors are configured to adjust a pitch angle of at least one of the one or more range sensors and a pitch angle of at least one of the one or more light sources based on the loading state of the vehicle.
  51. The lamp assembly of claim 40, wherein a first portion of the connector is configured to connect to the one or more range sensors, and a second portion of the connector is configured to connect to the one or more light sources.
  52. The lamp assembly of claim 40, wherein the one or more light sources include at least one of a high beam light module, a low beam light module, or an integrated high beam and low beam light module.
  53. The lamp assembly of claim 40, wherein the one or more range sensors includes a first range sensor with a wide field of view and a second range sensor with a narrow field of view.
  54. The lamp assembly of claim 40, further comprising one or more frames for fixedly connecting to the one or more range sensors through one or more fasteners.
  55. The lamp assembly of claim 54, wherein the one or more frames are configured to connect with one or more external components.
  56. The lamp assembly of claim 40, wherein the one or more range sensors and the one or more light sources are located in a compartment.
  57. The lamp assembly of claim 56, wherein the one or more range sensors and the one or more light sources placed in the compartment side by side along a horizontal direction.
  58. The lamp assembly of claim 56, wherein the one or more range sensors and the one or more light sources placed in the compartment side by side along a vertical direction.
  59. The lamp assembly of claim 40, wherein the one or more range sensors and the one or more light sources are positioned based on a contour of a vehicle.
  60. The lamp assembly of claim 40, wherein a distance between the one or more range sensors and the one or more light sources is equal to or greater than a preset distance.
  61. The lamp assembly of claim 40, wherein the one or more range sensors and the one or more light sources are located in a vehicle, the one or more range sensors configured to generate the laser beam when the vehicle is in an autonomous driving mode.
  62. The lamp assembly of claim 61, wherein the one or more range sensors are controlled to be turned on or turned off by a controller in the vehicle.
  63. The lamp assembly of claim 40, wherein the one or more light sources are configured to generate a light beam when a predetermined environmental condition is satisfied.
  64. The lamp assembly of claim 63, wherein the one or more light sources are controlled to be turned on or turned off by a controller.
  65. The lamp assembly of claim 40, wherein the one or more range sensors are connected to a heat dissipation device.
  66. The lamp assembly of claim 40, wherein the one or more light sources are connected to a heat dissipation device.
  67. The lamp assembly of claim 40, wherein the light source assembly is configured to install on a vehicle.
  68. A vehicle headlight assembly, comprising:
    one or more light sources;
    one or more range sensors, the one or more range sensors and the one or more light sources being integrated in the vehicle headlight assembly;
    a housing configured to accommodate the one or more light sources and the one or more range sensors.
  69. The vehicle headlight assembly of claim 68, wherein the housing includes a protective cover.
  70. The vehicle headlight assembly of claim 68, wherein the housing includes a supporting member and a translucent member.
  71. The vehicle headlight assembly of claim 68, wherein the one or more range sensors include one or more lidars.
  72. The vehicle headlight assembly of claim 68, wherein the one or more range sensors include one or more time of flight (ToF) sensors.
  73. The vehicle headlight assembly of claim 68, further comprising a connector for connecting the one or more range sensors to the one or more light sources.
  74. The vehicle headlight assembly of claim 68, wherein the connector includes a shaft.
  75. The vehicle headlight assembly of claim 68, wherein a first portion of the connector is connected to the one or more range sensors, and a second portion of the connector is connected to the one or more light sources.
  76. The vehicle headlight assembly of claim 68, wherein the one or more light sources include at least one of a high beam light module, a low beam light module, or an integrated high beam and low beam light module.
  77. The vehicle headlight assembly of claim 68, wherein the one or more range sensors includes a first range sensor with a wide field of view and a second range sensor with a narrow field of view.
  78. The vehicle headlight assembly of claim 68, further comprising an adjuster coupled to the one or more light sources and the one or more range sensors, wherein the adjuster is  further configured to adjust the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources.
  79. The vehicle headlight assembly of claim 78, wherein the orientation of at least one of the one or more range sensors and the angle of the one or more light sources are adjusted such that the one or more range sensors and the one or more light sources face a substantially same direction.
  80. The vehicle headlight assembly of claim 78, wherein the orientation of at least one of the one or more range sensors is adjusted to be substantially the same as the orientation of at least one of the one or more light sources.
  81. The vehicle headlight assembly of claim 68, wherein the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources each is a pitch angle.
  82. The vehicle headlight assembly of claim 68, wherein the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources each is a horizontal angle.
  83. The vehicle headlight assembly of claim 68, further comprising a motor configured to adjust a horizontal angle of the one or more light sources based on a steering angle of a vehicle.
  84. The vehicle headlight assembly of claim 83, wherein the motor includes an Adaptive Front-lighting System (AFS) motor.
  85. The vehicle headlight assembly of claim 83, wherein the motor causes a horizontal angle of the one or more range sensors to be adjusted.
  86. The vehicle headlight assembly of claim 68, further comprising a range sensor adjuster for adjusting another angle of the one or more range sensors.
  87. The vehicle headlight assembly of claim 68, further comprising a light source adjuster for adjusting another angle of the one or more light sources.
  88. The vehicle headlight assembly of claim 68, further comprising one or more frames for fixedly connecting to the one or more range sensors through one or more fasteners.
  89. The vehicle headlight assembly of claim 88, wherein the one or more frames are configured to connect with one or more external components.
  90. The vehicle headlight assembly of claim 68, further comprising one or more frames for fixedly connecting to the one or more light sources through one or more fasteners.
  91. The vehicle headlight assembly of claim 90, wherein the one or more frames are configured to connect with one or more external components.
  92. The vehicle headlight assembly of claim 68, wherein the one or more light sources are configured for installation in a front of a vehicle.
  93. The vehicle headlight assembly of claim 68, wherein the one or more range sensors are configured to detect a distance between a vehicle and an object.
  94. The vehicle headlight assembly of claim 68, wherein the one or more light sources includes a first decorative piece, the one or more range sensors includes a second decorative piece, the first decorative piece and the second decorative piece having a same color and a same shape.
  95. The vehicle headlight assembly of claim 68, wherein the one or more range sensors and the one or more light sources face substantially a same direction.
  96. The vehicle headlight assembly of claim 68, wherein the one or more range sensors and the one or more light sources are located in a compartment, the one or more range sensors and the one or more light sources placed in the compartment side by side along a horizontal direction.
  97. The vehicle headlight assembly of claim 68, wherein the one or more range sensors and the one or more light sources are located in a compartment, the one or more range sensors and the one or more light sources placed in the compartment side by side along a vertical direction.
  98. The vehicle headlight assembly of claim 68, wherein the one or more range sensors and the one or more light sources are positioned based on a contour of the vehicle.
  99. The vehicle headlight assembly of claim 68, wherein a distance between the one or more range sensors and the one or more light sources is equal to or greater than a preset distance.
  100. The vehicle headlight assembly of claim 68, the one or more range sensors and the one or more light sources are located in a vehicle, wherein the one or more range sensors configured to generate a laser beam when the vehicle is in an autonomous driving mode.
  101. The vehicle headlight assembly of claim 100, wherein the one or more range sensors are controlled to be turned on or turned off by a controller in the vehicle.
  102. The vehicle headlight assembly of claim 68, wherein the one or more light sources are configured to generate a light beam when a predetermined environmental condition is satisfied.
  103. The vehicle headlight assembly of claim 102, wherein the one or more light sources are controlled to be turned on or turned off by a controller.
  104. The vehicle headlight assembly of claim 68, wherein the one or more range sensors are connected to a heat dissipation device.
  105. The vehicle headlight assembly of claim 68, wherein the one or more light sources are connected to a heat dissipation device.
  106. The vehicle headlight assembly of claim 68, wherein the adjuster is configured to adjust the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources automatically or manually.
  107. The vehicle headlight assembly of claim 68, wherein the vehicle headlight assembly is configured to install on a vehicle.
  108. The vehicle headlight assembly of claim 68, wherein the adjuster includes one or more motors for adjusting the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources.
  109. The vehicle headlight assembly of claim 108, wherein the one or more motors are configured to adjust the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources based on a steering angle of a vehicle.
  110. The vehicle headlight assembly of claim 108, wherein the one or more motors are configured to adjust the orientation of at least one of the one or more range sensors and  the orientation of at least one of the one or more light sources based on a loading state of a vehicle.
  111. The vehicle headlight assembly of claim 110, wherein the one or more motors are configured to adjust a pitch angle of the one or more range sensors and a pitch angle of the one or more light sources based on the loading state of the vehicle.
  112. The vehicle headlight assembly of claim 68, wherein the adjuster is further configured to adjust the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources at substantially a same time.
  113. A vehicle, comprising:
    a body; and
    the lamp assembly of any one of claims 1-39.
  114. A vehicle, comprising:
    a body; and
    the lamp assembly of any one of claims 40-67.
  115. A vehicle, comprising:
    a body; and
    the vehicle headlight assembly of any one of claims 68-2.
  116. A method for adjusting a lamp assembly, comprising:
    obtaining status information of a vehicle, wherein the lamp assembly is installed on the vehicle, and wherein the lamp assembly includes one or more range sensors and one or more light sources; and
    adjusting an orientation of at least one of the one or more range sensors and an orientation of at least one of the one or more light sources based on the status information of the vehicle.
  117. The method of claim 116, wherein the status information of the vehicle includes at least one of a steering angle of the vehicle or a loading state of the vehicle.
  118. The method of claim 116, further comprising adjusting, based on the status information of the vehicle, a pitch angle of at least one of the one or more range sensors and a pitch angle of at least one of the one or more light sources.
  119. The method of claim 116, further comprising adjusting, based on the status information of the vehicle, a yaw angle of at least one of the one or more range sensors and a yaw angle of at least one of the one or more light sources.
  120. The method of claim 116, further comprising adjusting at least one of the one or more light sources based on a measurement result of at least one of the one or more range sensors.
  121. The method of claim 120, further comprising increasing a brightness of at least one of the one or more light sources in response to detecting an object in front of the vehicle by at least one of the one or more range sensors.
  122. The method of claim 116, further comprising adjusting the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources such that at least one of the one or more range sensors and at least one of the one or more light sources face in a substantially same direction.
  123. The method of claim 116, further comprising adjusting the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources at substantially a same time.
  124. The method of claim 116, wherein the one or more range sensors configured to turn on when the vehicle is in an autonomous driving mode.
  125. The method of claim 116, further comprising adjusting an operation of the one or more light sources or the one or more range sensors when a predetermined environmental condition is satisfied.
  126. The method of claim 125, further comprising increasing a brightness of at least one of the one or more light sources when a brightness of an external light is lower than a predetermined threshold.
  127. The method of claim 125, further comprising increasing a brightness of at least one of the one or more light sources when a visibility of an environment is lower than a predetermined threshold.
  128. The method of claim 125, further comprising gradually increasing a brightness of at least one of the one or more light sources when a brightness of an external light gradually decreases.
  129. The method of claim 125, further comprising gradually increasing a brightness of at least one of the one or more light sources when a visibility of an environment gradually decreases.
  130. The method of claim 116, further comprising adjusting the one or more light sources or the one or more range sensors when a predetermined environmental condition is satisfied.
  131. The method of claim 116, wherein adjusting the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources causes maintenance of a predetermined relative spatial configuration between at least one of the one or more range sensors and at least one of the one or more light sources.
  132. The method of claim 116, wherein the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources are adjusted manually based on an input from a user.
  133. The method of claim 116, wherein the orientation of at least one of the one or more range sensors and the orientation of at least one of the one or more light sources are adjusted automatically based on the status information of the vehicle.
  134. A system for adjusting a lamp assembly, comprising:
    one or more processors; and
    a memory coupled to the one or more processors and storing instructions that, when executed by the one or more processors, cause the system to perform the method of any one of claims 116-133.
  135. A non-transitory computer-readable medium with instructions stored thereon, that when executed by one or more processors, cause the one or more processors to perform the method of any one of claims 116-133.
PCT/CN2020/139447 2020-12-25 2020-12-25 Lamp assembly integrating lidar and lamp WO2022134011A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080108188.5A CN116710808A (en) 2020-12-25 2020-12-25 Lamp assembly integrating lidar and lamp
PCT/CN2020/139447 WO2022134011A1 (en) 2020-12-25 2020-12-25 Lamp assembly integrating lidar and lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139447 WO2022134011A1 (en) 2020-12-25 2020-12-25 Lamp assembly integrating lidar and lamp

Publications (1)

Publication Number Publication Date
WO2022134011A1 true WO2022134011A1 (en) 2022-06-30

Family

ID=82157112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139447 WO2022134011A1 (en) 2020-12-25 2020-12-25 Lamp assembly integrating lidar and lamp

Country Status (2)

Country Link
CN (1) CN116710808A (en)
WO (1) WO2022134011A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024163003A1 (en) * 2023-02-03 2024-08-08 Innovusion, Inc. Lidar integrated vehicle lights

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359064A (en) * 2014-10-29 2015-02-18 东莞德里特光电科技有限公司 Automobile LED headlamp
US20150293532A1 (en) * 2010-11-01 2015-10-15 Advanced Scientific Concepts, Inc. Flash ladar collision avoidance system
CN110073238A (en) * 2016-10-17 2019-07-30 伟摩有限责任公司 Light detection and ranging (LIDAR) equipment with multiple receivers
CN110537109A (en) * 2017-04-28 2019-12-03 深圳市大疆创新科技有限公司 Sensing component for autonomous driving

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527037A (en) * 1991-06-25 1993-02-05 Kansei Corp Inter-vehicle distance measuring radar
DE102015007172A1 (en) * 2015-06-03 2016-02-18 Daimler Ag Vehicle headlight and vehicle
CN110848635A (en) * 2019-11-29 2020-02-28 华域视觉科技(上海)有限公司 Lighting module
CN110953550A (en) * 2019-12-31 2020-04-03 华域视觉科技(上海)有限公司 Lighting detection lamp group and vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150293532A1 (en) * 2010-11-01 2015-10-15 Advanced Scientific Concepts, Inc. Flash ladar collision avoidance system
CN104359064A (en) * 2014-10-29 2015-02-18 东莞德里特光电科技有限公司 Automobile LED headlamp
CN110073238A (en) * 2016-10-17 2019-07-30 伟摩有限责任公司 Light detection and ranging (LIDAR) equipment with multiple receivers
CN110537109A (en) * 2017-04-28 2019-12-03 深圳市大疆创新科技有限公司 Sensing component for autonomous driving

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024163003A1 (en) * 2023-02-03 2024-08-08 Innovusion, Inc. Lidar integrated vehicle lights

Also Published As

Publication number Publication date
CN116710808A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
KR102690404B1 (en) Vehicle and method for controlling thereof
US6828928B2 (en) Motor-vehicle driving assistance device which is optimized by synergy with an adaptive lighting system
ES2909663T3 (en) Vehicle headlight or vehicle taillight
US9227555B2 (en) Adaptive external vehicle illumination system
JP7389789B2 (en) Vehicle emblem system, vehicle emblem unit, vehicle emblem mounting unit
JP5525639B1 (en) Light unit for vehicles that turn in a lean position and vehicles that turn in a lean position
CN111828929B (en) Vehicle lamp
US9527431B2 (en) Vehicle exterior mirror with adaptively activated forward lighting unit
JP5525638B1 (en) LIGHT UNIT FOR VEHICLE TURNING IN LEAN POSITION AND ITS ADJUSTING METHOD
CN101008481A (en) Vehicle lighting device
JP2013248990A (en) Sub headlight unit for vehicle turning by lean attitude, vehicle component part and sub headlight system and vehicle turning by lean attitude
EP3838728B1 (en) Straddle vehicle
US11325526B2 (en) Headlamp control device
US20200377165A1 (en) Headlamp with sensor
US20220063509A1 (en) Moving body
JP3205778U (en) Headlamp color temperature control module
US11840170B2 (en) Vehicle lamp having two lamp units each having a two light sources and a receiver for detecting an intensity of reflected light
WO2022134011A1 (en) Lamp assembly integrating lidar and lamp
JP2013248991A (en) Sub headlight unit of vehicle turning by lean attitude, screen unit and sub headlight system, and vehicle turning by lean attitude
US20230051036A1 (en) Method for controlling a motor vehicle lighting system
US12054174B2 (en) Moving body
US20240349411A1 (en) Lamp system of mobile body and control method thereof
US7896533B2 (en) Motor vehicle headlight
KR20170027394A (en) Lamp for vehicle and controlling method applied to the same
US11654837B2 (en) Sensor for autonomously movable moving body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966576

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080108188.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966576

Country of ref document: EP

Kind code of ref document: A1