[go: up one dir, main page]

WO2022130718A1 - Information generation device - Google Patents

Information generation device Download PDF

Info

Publication number
WO2022130718A1
WO2022130718A1 PCT/JP2021/034453 JP2021034453W WO2022130718A1 WO 2022130718 A1 WO2022130718 A1 WO 2022130718A1 JP 2021034453 W JP2021034453 W JP 2021034453W WO 2022130718 A1 WO2022130718 A1 WO 2022130718A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
event
information
formation
unit
Prior art date
Application number
PCT/JP2021/034453
Other languages
French (fr)
Japanese (ja)
Inventor
誠一 佐藤
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to DE112021005100.8T priority Critical patent/DE112021005100T5/en
Priority to JP2022569714A priority patent/JP7470213B2/en
Publication of WO2022130718A1 publication Critical patent/WO2022130718A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data

Definitions

  • the present invention refers to a scenario generation method capable of generating a test scenario for each event by analyzing the formation of the own vehicle and surrounding objects, or a scenario generated by the scenario generation method.
  • the present invention relates to an information generator suitable for a vehicle control method capable of performing vehicle travel control in real time.
  • ADAS advanced driver assistance system
  • automated driving related technology is rapidly progressing, and adaptive cruise control, lane keep assist system, and emergency are available as functions to automate a part of driving operation.
  • Automatic braking and the like have already been put into practical use.
  • test scenario should include everything from everyday safety scenes to diverse and complex danger scenes. It is not realistic to manually create these test scenarios one by one, so a mechanism for automatic generation is required.
  • an information generation device that generates a test case of an incident scene described in Patent Document 1 is known.
  • the presence or absence of abnormal approach is determined by comparing the distance between moving objects and the threshold value (distance threshold value) of the inter-vehicle distance.
  • An information generator that generates a test case using distance information with an object is disclosed.
  • Patent Document 1 since the information generator described in Patent Document 1 extracts an incident scene based on TTC (Time To Collision), it is not determined as an incident scene depending on the setting of the TTC threshold value, and a test case is generated. Leakage may occur.
  • TTC Time To Collision
  • Patent Document 1 has a problem that it is not possible to generate a test scenario for a scene that is not actually an incident due to the characteristics of generating a test scenario of an incident scene using TTC as described above. There is also.
  • an information generation device capable of generating test scenarios of various scenes without being limited to incident scenes by performing analysis using a formation format that abstracts the positional relationship of surrounding objects.
  • the purpose is to provide.
  • the information generation device of the present invention is an information generation device that generates a scenario of a scene in which the own vehicle travels based on the travel information of the own vehicle, based on the travel information of the own vehicle.
  • a formation forming unit that forms a formation that abstracts the layout of the own vehicle and the surrounding object according to a formation format in which the surrounding object is assigned to each previously arbitrarily divided area around the own vehicle, and the surrounding object.
  • a formation transition determination unit for determining whether or not an event in which the formation of the surrounding object changes has occurred in the traveling information of the own vehicle is provided. It is characterized by that.
  • a test scenario is generated including not only the scene in the dangerous area but also the scene in the normal area. can do.
  • most of the performance evaluation (80%) of the automatic driving system has a large number of test scenarios that are automatically generated by the information generator of the present invention, which is the process that was mainly performed in the performance evaluation test and development using the actual vehicle in the past. Since the above) can be performed efficiently by simulation, the development speed of the automated driving system can be increased, and the development cost can be expected to be significantly reduced.
  • test scenario event scenario for each event
  • various scenes including not only dangerous scenes but also regular scenes.
  • FIG. 3 is a block diagram showing an overall configuration example of a travel control device according to a second embodiment of an information generation device to which the formation analysis according to the present invention is applied.
  • the present invention generates a test scenario (event scenario) for each event by analyzing the formation of the own vehicle and surrounding objects.
  • the definition of the formation in the present invention is not simply determined by the relative distance or the relative position of the own vehicle and the surrounding vehicle, but is an abstraction of the layout of the surrounding vehicle with respect to the own vehicle according to the formation format specified by the user. Point to.
  • FIG. 1 is a block diagram showing an overall configuration example of a scenario generation device to which a scenario generation method based on the formation analysis of the present invention is applied.
  • the scenario generation device 3 exemplified here is a scenario generation device that outputs an event scenario 19 by inputting a vehicle (hereinafter, may be referred to as a own vehicle or a own vehicle) 1 or a driving log 2 acquired by a driving simulator 1A. be.
  • the scenario generation device 3 is configured as a computer including a processor such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive). Each function of the scenario generator 3 is realized by the processor executing the program stored in the ROM.
  • the RAM stores data including intermediate data of operations performed by a program executed by the processor.
  • the scenario generator 3 analyzes the formation of the own vehicle and surrounding objects based on the log analysis unit 4 for analyzing the information required for the formation analysis from the travel log 2 and the information analyzed by the log analysis unit 4. Then, the formation analysis unit 8 that outputs the extracted data 12 that is extracted by dividing the travel log 2 based on the analysis result, and the scenario event (cut-in, cut-out, rapid addition) to the extracted data 12. It is provided with an event information addition unit 13 for adding information (deceleration, wobbling, etc.) and a format conversion unit 18 for outputting an event scenario 19 in which the extraction data 12 to which event information is added is converted into a format suitable for the simulator environment. There is.
  • the travel log 2 records travel information that is data related to the travel scene of the vehicle 1, and is vehicle information (vehicle speed) that can be acquired by the vehicle-mounted network of the vehicle 1 (CAN (Control Area Network), Ethernet (registered trademark)). , Position, etc.) and log data that records detection information of surrounding objects that can be acquired by external recognition sensors (camera, radar, lidar, etc.), and simulation results obtained by driving in a virtual space like the driving simulator 1A. May be used as.
  • the travel log 2 is applied with the data obtained by acquiring the information of the surrounding objects by the outside world recognition sensor installed in the infrastructure such as the security camera and the N system. Is also good.
  • the log analysis unit 4 analyzes the traveling lane of the own vehicle, the traveling lane of the surrounding object, and the relative position between the own vehicle and the surrounding object, which are mainly required for the formation analysis, from the traveling log 2.
  • the log analysis unit 4 is composed of a vehicle lane analysis unit 5, a surrounding object lane analysis unit 6, and a relative position analysis unit 7.
  • the own vehicle lane analysis unit 5 determines the travel lane of the own vehicle by analyzing the data (GNSS and map data) related to the travel position of the own vehicle recorded in the travel log 2.
  • the surrounding object lane analysis unit 6 has data on the traveling position of the surrounding object recorded in the traveling log 2 (the detection position of the surrounding object detected by the outside world recognition sensor, the relative position with the own vehicle, and the pair obtained by the vehicle-to-vehicle communication. By analyzing the position information of the vehicle, etc.), the traveling lane of the surrounding object is determined.
  • the relative position analysis unit 7 obtains relative position information by analyzing data related to the relative positions of the own vehicle and surrounding objects recorded in the travel log 2 (detection positions of surrounding objects detected by the outside world recognition sensor, etc.). Relative position information is required to determine the front-back relationship between the vehicle and surrounding objects, which cannot be determined from the travel lane information alone in the formation analysis.
  • the formation analysis unit 8 is composed of a formation formation unit 9, a formation transition determination unit 10, and a data extraction unit 11.
  • the formation forming unit 9 assigns which area around the own vehicle the surrounding object belongs to based on the information analyzed by the log analysis unit 4 according to the formation format specified by the user.
  • the formation format can specify in advance which format (for example, designations such as those in FIGS. 2A and 2B) the user uses to analyze the formation of the surrounding object.
  • the formation format is centered on the vehicle presence lane (“C”), the right area is “R”, the left area is “L”, the road shoulder area is “S”, the front area is “F”, and the front area “F”.
  • the area around the vehicle is arbitrarily divided in advance, such as "FF" for the front area and "R” for the rear area.
  • FIG. 2A two regions of “F” and “FF” are set in the front region of the vehicle 20, “R” is set in the rear region, and “R”, “L” and “S” are set as the left and right regions.
  • the front area is divided into two, so that not only the scenario related to the preceding vehicle close to the own vehicle but also the behavior of the own vehicle can be indirectly affected by the preceding vehicle. It is possible to generate a scenario in which there is a possibility (for example, when the preceding vehicle interrupts in front of the preceding vehicle and the preceding vehicle suddenly brakes, the own vehicle also needs to suddenly decelerate).
  • FIG. 2B is a setting example in which the front region of the vehicle 20 is "F", the rear region is “R”, and the left and right regions are “R", “L”, and “S”.
  • a scenario can be generated in consideration of two objects of the road shoulder "S" in addition to the six objects of front, rear, left and right directly facing the own vehicle. If it is not necessary to consider a scene that indirectly affects the behavior of the own vehicle, such as the preceding vehicle, use the formation format shown in Fig. 2 (b) to narrow down the generation to the minimum necessary scenarios. Can be done.
  • FIGS. 2 (a) and 2 (b) Examples of the formation format have been described with reference to FIGS. 2 (a) and 2 (b), but the formation format can be freely (arbitrarily) set according to the scenario that the user wants to generate, and FIG. The setting is not limited to (a) and FIG. 2 (b).
  • the formation transition determination unit 10 determines whether or not the formation (abstract layout of the surrounding object) of the surrounding object assigned to the area has changed according to the formation format specified by the formation forming unit 9. For example, if the preceding vehicle in the adjacent lane changes lanes to the driving lane of the own vehicle, it is determined that the formation has changed.
  • the data extraction unit 11 generates the extraction data 12 by dividing the travel log 2 before and after the formation is switched each time the formation transition determination unit 10 determines that the formation (abstracted layout) has changed. do.
  • the event information addition unit 13 is composed of a lane change extraction unit 14, an acceleration extraction unit 15, and an event determination unit 16.
  • the lane change extraction unit 14 analyzes whether or not a lane change has occurred due to a surrounding object based on the data (lane recognition information, lateral position, lateral speed, etc.) recorded in the extracted data 12 regarding the surrounding object. do. Depending on the specified formation format, it may be determined that the assigned area of the surrounding object has changed, assuming that the lane has changed. Taking the formation format shown in FIG. 2A as an example, one example is a case where a surrounding object belonging to “FR” is changed to the assignment to “FC”.
  • the acceleration extraction unit 15 determines the magnitude / change of the acceleration of the surrounding object based on the data (velocity, acceleration, etc.) recorded in the extraction data 12 regarding the surrounding object.
  • the event determination unit 16 determines whether or not the behavior information of the surrounding objects analyzed by the lane change extraction unit 14 and the acceleration extraction unit 15 corresponds to the event conditions predefined in the scenario definition file 17. Then, event information (cut-in, cut-out, sudden deceleration, sudden acceleration, etc.) is added to the extracted data 12.
  • the format conversion unit 18 generates an event scenario 19 by converting the extraction data 12 to which the event information is added by the event information addition unit 13 into a format that can be used in various simulation environments.
  • FIG. 3 shows a processing flow of the formation analysis unit 8
  • FIG. 4 shows an example in which formation analysis is performed using a certain travel log 2.
  • the formation analysis unit 8 first reads the log analysis data (information analyzed by the log analysis unit 4) (S300), and then allocates surrounding objects to the area defined in the formation format based on the read log analysis data. Then, a formation is formed (S301).
  • step S302 it is determined whether or not there is a formation registration history.
  • step S302 If there is no formation registration history in step S302, the formation formed in that step is registered as the initial formation (S303).
  • analysis start point (t1) for starting the analysis of the formation for dividing the running log 2 for each formation is set (S304).
  • This analysis start point (t1) can be arbitrarily set by the user, but basically it may be the same as the first step of reading the travel log.
  • the vehicle 41 is assigned to the adjacent right lane front “FR” and the vehicle 42 is assigned to the adjacent left lane front “FL” (definition area) around the own vehicle 40.
  • the formation 401 is registered and set as the analysis start point (t1).
  • step S305 whether or not the formation of the surrounding object formed in each step has changed from the last registered formation, that is, whether or not an event has occurred in the traveling log 2 in which the formation of the surrounding object changes.
  • step S305 If it is determined in step S305 that there is no change in the formation, the process returns to the log analysis data reading process (S300) in the next step.
  • step S305 The case where there is a change in the formation of surrounding objects in step S305 will be described below.
  • FIG. 5 is a diagram summarizing the state transitions of the formation when there is one or no surrounding object
  • FIG. 6 is a table summarizing the conditions when the states in FIG. 5 are switched.
  • FIG. 7 shows a case where two surrounding objects exist in the front direction of the own vehicle
  • FIG. 8 is a table summarizing the state transition conditions in FIG. 7.
  • the initial formation 401 is the “object 1 in front of the right lane and the object 2 in front of the left lane” in FIG. It is a state, and the next formation 402 transitions to the state of “the object 1 in front of the own lane and the object 2 in front of the left lane” in FIG. 7.
  • the state transition is performed based on the condition of "1" in FIG. 7, and it is determined that the condition of No. 1 in FIG. 8 is satisfied, and it is determined that the formation has been switched.
  • the condition “13” is changed from the state of “the object 1 in front of the own lane and the object 2 in front of the left lane” in FIG. By satisfying ", there is an object 1 in front of the own lane and an object 2 in front of the object 1".
  • the definitions of the front object 1 and the front object 2 shown in FIGS. 7 and 8 are merely examples, and the indexes such as the object 1 and the object 2 should be referred to as independent definitions between the states.
  • the indexes such as the object 1 and the object 2 should be referred to as independent definitions between the states.
  • the indexes such as the object 1 and the object 2 should be referred to as independent definitions between the states.
  • the indexes such as the object 1 and the object 2 should be referred to as independent definitions between the states.
  • state transitions in FIGS. 7 and 8 are part of all formation transition judgment rule databases, and combinations can be flexibly defined by the front-back and left-right relationships between not only two objects but also a larger number of surrounding objects.
  • step S305 of FIG. 3 The processing after it is determined in step S305 of FIG. 3 that there is a formation change will be described.
  • step S305 of FIG. 3 If it is determined in step S305 of FIG. 3 that there is a formation change (that is, an event that changes the formation of a surrounding object has occurred), the formation at the time of determination is registered (S306).
  • the timing at which the formation is switched (that is, the timing at which the formation of the surrounding object changes occurs) is set as the formation change point (t1_fc, t2_fc, ...) (S307).
  • a log data division point (t2, t3) is set after an arbitrary time from the formation change point (S308).
  • the user can arbitrarily decide how many seconds before and after the formation change point is set as the log data division point.
  • the extraction range of the travel log 2 used to generate the scenario corresponding to the event in which the formation of the surrounding object changes is determined with the formation change point as the base point.
  • the log data division point is arbitrarily set with the formation change point as the base point, but the log data division point is not determined only by the first formation change point, but the subsequent second formation change point. It is also possible to set in a form that includes. Specifically, the start point of the log data division is set based on the first formation change point, and the end point of the log data division is set based on the second formation change point. That is, the extraction range of the travel log 2 includes at least one of the log data division points (corresponding to the occurrence timing of the event in which the formation of the surrounding object changes).
  • step S309 by dividing and extracting the travel log data based on the log data division point set in step S308, the extraction data 12 divided for each formation change (within the extraction range described above) is generated. do.
  • S300 and S301 in FIG. 3 are executed by the formation forming unit 9
  • S302 to S305 are executed by the formation transition determination unit 10
  • S306 and thereafter are executed by the data extraction unit 11.
  • Event information is given by the event information giving department>
  • the event information giving unit 13 of FIG. 1 gives event information such as cut-in, cut-out, overtaking, sudden deceleration, etc. to each extracted data 12 generated by the formation analysis unit 8. It is necessary to analyze the behavior of surrounding objects in order to determine the event to be given.
  • the lane change extraction unit 14 extracts whether or not the surrounding object has changed lanes based on the lateral position and speed of the surrounding object, or information indicating whether or not the lane has been changed directly.
  • the acceleration extraction unit 15 extracts information such as sudden deceleration or rapid acceleration (that is, change in speed or acceleration) of the surrounding object based on the moving speed or acceleration information of the surrounding object.
  • information such as sudden deceleration or rapid acceleration (that is, change in speed or acceleration) of the surrounding object based on the moving speed or acceleration information of the surrounding object.
  • sudden deceleration and sudden acceleration are not uniquely determined, but can be arbitrarily determined by the user.
  • the scenario definition includes the own vehicle lane, the surrounding object lane, and the relative position information analyzed by the log analysis unit 4, and the behavior information of the surrounding object obtained by the lane change extraction unit 14 and the acceleration extraction unit 15. It is determined whether or not the event condition defined in advance in the file 17 is satisfied, and the determined event information is added to the extracted data 12.
  • FIG. 9 is described according to the formations (401, 402, 403) formed based on the travel log shown in FIG. After the extraction data 90 of the front and rear sections t1 to t2 of the formation 402 and the extraction data 91 of the front and rear sections t2 to t3 of the formation 403 are generated (by the formation analysis unit 8), the event information is given to each extraction data. Is shown.
  • FIG. 9 describes the details when event information is given to the extracted data 90.
  • the scenario definition file 92 in which the definition of the event (cut-in, cutout, follow-up, deceleration, sudden deceleration, wobbling, etc.) is described is read.
  • the surrounding vehicle 41A decelerates after changing lanes from the right lane of the own vehicle 40A to the own vehicle traveling lane (at this time, the surrounding vehicle). 42A is traveling in the left lane), and then the surrounding vehicle 42B traveling in the left lane interrupts in front of the own vehicle 40B and the surrounding vehicle 41B, so that the surrounding vehicle (preceding vehicle) 41B is traveling in a staggered manner.
  • the extracted data 90 generated based on the formation 402 it is determined that a cut-in and sudden deceleration event has occurred as an event determination, and tag information of cut-in and sudden deceleration is added. Further, in the extracted data 91 generated based on the formation 403, it is determined that a cut-in and wobble event has occurred as an event judgment, and tag information of cut-in and wobble is added.
  • the scenario definition file 92 describes the definitions of cut-in, sudden deceleration, and wobbling.
  • cut-in satisfies both the condition that the surrounding object has transitioned from the adjacent lanes "R" and "L” to the own vehicle traveling lane "C" and that the relative distance to the surrounding object is ahead. It is supposed to be.
  • the definition of the cut-in is only an example defined in this embodiment, and it is also possible to define the cut-in according to the lateral position and lateral speed of the surrounding object.
  • the definition of sudden deceleration is when the acceleration of the surrounding object is less than or equal to the preset threshold value (for example, -0.4 [G]) in the scenario definition file.
  • the preset threshold value for example, -0.4 [G]
  • the definition of wobbling may be carried out by setting a certain threshold value from information such as the steering angle, lateral speed, lateral acceleration, or lane departure warning of surrounding objects, and determining how many times the threshold value is exceeded. ..
  • the vehicle is generated by generating the event scenario 19 by converting the extracted data 12 (90, 91) to which the event information is added as described above into a format that can be used in various simulation environments by the format conversion unit 18.
  • the event scenario 19 can be generated including not only the scene in the dangerous area (incident scene) but also the scene in the regular area.
  • the scenario generator (information generator) 3 of the first embodiment is an information generator (in other words, an information generator) that generates a scenario of the scene in which the own vehicle travels based on the travel information of the own vehicle.
  • a scenario generator that generates a scenario used for simulation based on the actual vehicle driving and the driving log acquired by the driving simulator) 3.
  • the formation forming unit 9 that forms a formation that abstracts the layout of the own vehicle and the surrounding objects, and the event that the formation of the surrounding objects changes.
  • the formation transition determination unit 10 for determining whether or not an event in which the formation of the surrounding object changes has occurred in the travel information (travel log) of the own vehicle is provided.
  • the extraction range of the running information (running log) of the own vehicle used to generate the scenario corresponding to the event is extracted based on the occurrence timing (formation change point) of the event.
  • a data extraction unit 11 for determining and extracting data in the extraction range is provided.
  • the data extraction unit 11 divides the travel information (travel log) of the own vehicle before and after the event occurrence timing (log data division point) and obtains data (of the event). (Data divided for each occurrence) is extracted.
  • the extraction range of the travel information (travel log) of the own vehicle includes one or more of the occurrence timings of the event.
  • the event information giving unit 13 that gives the event information of the scenario to the extracted data is provided.
  • the scenario generation device (information generation device) 3 of the first embodiment includes a log analysis unit 4 that analyzes the relative positions of the own vehicle and surrounding objects and the relative positions of the own vehicle and surrounding objects from the travel log data.
  • the own vehicle and the surrounding object are assigned according to a formation format in which the surrounding object is assigned to each previously arbitrarily divided area around the own vehicle based on the analysis data of the existing lanes and the relative positions of the own vehicle and the surrounding object.
  • the formation forming unit 9 that sets the formation of the above, the formation transition determination unit 10 that determines whether or not an event that changes the formation of the surrounding object has occurred, and the formation timing of the event when the event occurs.
  • the data extraction unit 11 that determines the extraction range of the actual vehicle travel log used to generate the scenario corresponding to the event and extracts the data of the extraction range, and the lane change by the surrounding object with respect to the extracted data. It also includes an event information giving unit 13 that analyzes and gives scenario information (cut-in, cut-out, sudden deceleration, sudden acceleration, etc.) based on acceleration / deceleration.
  • a test scenario is generated including not only the scene in the dangerous area but also the scene in the normal area. Can be done.
  • most of the performance evaluation of the automatic driving system is based on the large number of test scenarios that are automatically generated by the scenario generator 3 of this embodiment, which is the process that was mainly performed in the performance evaluation test and development using the actual vehicle in the past. Since 80% or more) can be efficiently performed by simulation, the development speed of the automatic driving system can be increased, and the development cost can be expected to be significantly reduced.
  • Example 2 (travel control device)] ⁇ Overall configuration>
  • the scenario generation device 3 including the formation analysis unit 8 has been described, but the formation analysis unit 8 obtains information on surrounding objects obtained by the external world recognition sensor mounted on the vehicle during actual vehicle driving. Based on this, the formation analysis can be applied in real time, and it may be provided in the travel control device of the vehicle.
  • FIG. 10 is a block diagram showing an overall configuration example of a vehicle travel control device to which the formation analysis according to the present invention is applied.
  • the travel control device 101 exemplified here is an event scenario 119 stored based on formation analysis and actual travel by inputting vehicle information, external world information, infrastructure information, etc. acquired by vehicle 1B during actual vehicle travel. It is a driving control device that predicts an event by collating the scenes and provides driving control suitable for an actual driving scene.
  • the travel control device 101 is analyzed by the information receiving unit 102 that receives information necessary for formation analysis and travel control from the vehicle 1B, the information analysis unit 104 that analyzes the information used in the formation analysis, and the information analysis unit 104.
  • a formation that analyzes the transition of the formation of the own vehicle and surrounding objects based on the information obtained, and outputs the extracted data 112 including at least one formation change point (occurrence timing of an event that changes the formation) based on the analysis result.
  • the analysis unit 108 determines a scenario event (cut-in, cutout, rapid acceleration / deceleration, wobble, etc.) with respect to the extracted data 112, outputs the event determination result, and outputs the event determination result information.
  • the event prediction unit 121 that predicts the event that the vehicle 1B will encounter in the near future by collating the scenes, the scene predicted by the event prediction unit 121, and the vehicle information and surrounding information obtained by the information receiving unit 102.
  • the vehicle 1B is provided with a travel control unit 122 that instructs the vehicle 1B to perform appropriate travel control.
  • the information receiving unit 102 receives from the vehicle 1B the traveling information related to the traveling scene of the vehicle 1B including the own vehicle information, the outside world recognition information, the GNSS, the map information, the infrastructure information, and the like.
  • the information analysis unit 104 analyzes the traveling lane of the own vehicle, the traveling lane of the surrounding object, and the relative position between the own vehicle and the surrounding object, which are mainly required for the formation analysis, from the traveling information received by the information receiving unit 102.
  • the information analysis unit 104 has a vehicle lane analysis unit 105 that analyzes the travel lane of the vehicle, a peripheral object lane analysis unit 106 that analyzes the moving lane (travel lane) of the surrounding object, and a relative relationship between the vehicle and the peripheral object. It has a relative position analysis unit 107 that analyzes the position.
  • the formation analysis unit 108 has a formation forming unit 109 that forms a formation to which the surrounding object belongs to which area around the own vehicle according to the formation format specified by the user, and whether or not the formation has been switched (that is, the surrounding object). Includes at least one formation transition determination unit 110 that determines (whether or not an event that changes the formation of the formation has occurred) and a formation change point (that is, the occurrence timing of the event that changes the formation) that indicates the timing at which the formation is switched. It has a data extraction unit 111 that accumulates data in an extraction range for an arbitrary past X [s] in the form and extracts the extraction data 112. X can be arbitrarily set in consideration of the design intention.
  • the event information addition unit 113 extracts whether or not the lane of the own vehicle or the surrounding vehicle has been changed based on the data (lane recognition information, lateral position, lateral speed, etc.) recorded in the extraction data 112 regarding the surrounding objects.
  • the acceleration extraction unit 115 that extracts the degree of acceleration / deceleration (change) of the surrounding object based on the extraction unit 114 and the data (velocity, acceleration, etc.) about the surrounding object recorded in the extraction data 112, and the scenario definition file 117.
  • the event (cut-in, cut-out, sudden deceleration, sudden acceleration, etc.) of the extracted data 112 is determined according to (event conditions defined in advance in), and what kind of event the own vehicle 1B is under at that time is determined. It has an event determination unit 116 that outputs as a signal.
  • the travel control device 101 accumulates the event scenario 119 to which the event information is added by the storage unit 120 based on the event signal output from the event determination unit 116 of the event information addition unit 113.
  • the event prediction unit 121 holds the event signal (corresponding to the actual driving scene in which the current own vehicle 1B is placed) output from the event determination unit 116 of the event information addition unit 113 and the data of the past similar event. By collating the event scenario 119, it is predicted what kind of event is likely to occur in the near future regarding the event occurring in the running own vehicle 1B. Further, the predicted event and its occurrence probability are input to the traveling control unit 122.
  • the own vehicle 1B is traveling on a deceleration command related to travel control, a target travel speed command, a lateral movement amount command, etc., based on the predicted event and the occurrence probability input from the event prediction unit 121. It can be set appropriately according to the scene.
  • Event prediction by the event prediction unit and command setting by the driving control unit For example, assuming the situation shown in FIG. 4, the vehicle 41A cuts in in front of the overtaking vehicles 41A and 41B that have been cut in in front of the own vehicles 40A and 40B (own vehicle traveling lane). It is assumed that an event scenario in which 41B suddenly brakes is already stored by the storage unit 120. When the vehicle is driving in the second lane of a three-lane road while the actual vehicle is running, the overtaking vehicle in the third lane is approaching, and the vehicle is also driving in the first lane.
  • vent prediction unit 121 When the scene in which the current own vehicle is placed is collated with the past event scenario, it can be determined that there is a high possibility that an event in which the preceding vehicle cuts in and suddenly decelerates occurs (event prediction unit 121). It becomes possible to adjust the traveling control in real time, such as accelerating the deceleration timing of the ACC (Adaptive Cruise Control) (travel control unit 122).
  • ACC Adaptive Cruise Control
  • the travel control device (information generation device) 101 of the second embodiment is based on the storage unit 120 that stores the event scenario to which the event information is assigned and the current travel information of the own vehicle.
  • the event prediction unit 121 that predicts an event that will occur in the current own vehicle in the future (high probability) by collating the scene in which the current own vehicle is placed with a past event scenario (storage unit 120).
  • the travel control unit 122 that controls the travel of the current own vehicle based on at least one of the event predicted by the event prediction unit 121 (prediction event) or the probability of occurrence of the predicted event.
  • the scene of the own vehicle in motion is collated with the generated test scenario (event scenario for each event) to create a dangerous scene. Not only that, it is possible to appropriately and in real time control the running of the own vehicle in various scenes including the scene in the regular area.
  • each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD Solid State Drive
  • control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided is an information generation device that is able to generate test scenarios of various scenes, without being limited to incident scenes, by performing an analysis using a formation format in which the positional relationship of a peripheral object is abstracted. This information generation device is provided with: a formation building unit 9 that sets a formation of a host vehicle and a peripheral object in accordance with a formation format in which, on the basis of analysis data for the relative positions and existence lanes of the peripheral object and the host vehicle, the peripheral object is assigned to each arbitrarily divided region in the periphery of the host vehicle; a formation transition determination unit 10 that determines whether an event has occurred in which the formation of the peripheral object has changed; and a data extraction unit 11 that, when the event has occurred, determines, on the basis of the timing at which the event occurred, an extraction range for an actual vehicle travel log used to generate a scenario corresponding to the event, and extracts data in said extraction range.

Description

情報生成装置Information generator
 本発明は、自車と周囲物体のフォーメーションを解析することで、イベント毎のテストシナリオを生成することができるシナリオ生成手法、或いは、そのシナリオ生成手法により生成されたシナリオを参照することで、自車の走行制御をリアルタイムに行うことができる車両制御手法に好適な情報生成装置に関する。 The present invention refers to a scenario generation method capable of generating a test scenario for each event by analyzing the formation of the own vehicle and surrounding objects, or a scenario generated by the scenario generation method. The present invention relates to an information generator suitable for a vehicle control method capable of performing vehicle travel control in real time.
 近年の自動車業界においては、ADAS(先進運転支援システム)や自動運転関連技術の開発が急速に進められており、運転操作の一部を自動化する機能として、アダプティブクルーズコントロール、レーンキープアシストシステム、緊急自動ブレーキ等が既に実用化に至っている。 In the automobile industry in recent years, the development of ADAS (advanced driver assistance system) and automated driving related technology is rapidly progressing, and adaptive cruise control, lane keep assist system, and emergency are available as functions to automate a part of driving operation. Automatic braking and the like have already been put into practical use.
 ADASや自動運転システムの信頼性を担保するためには、数億kmの走行試験、或いは、数万件のシナリオの試験が必要と言われており、中でも前記数億kmにも及ぶ走行試験を実施することは現実的に限界がある。そのような背景の中で、近年はシミュレーションを活用したADASや自動運転システムの性能試験が行われるようになってきた。しかし、シミュレーションで性能試験をする場合でも、膨大な数に及ぶテストシナリオを用意する必要がある。そのテストシナリオは、日常の安全シーンから多種多様で複雑な危険シーンまでを含んだものである必要がある。それらのテストシナリオを手作業で一つ一つ作成することは、現実的でないため、自動生成する仕組みが必要である。 In order to ensure the reliability of ADAS and autonomous driving systems, it is said that hundreds of millions of kilometers of driving tests or tens of thousands of scenario tests are required. There are practical limits to what can be done. Against this background, in recent years, performance tests of ADAS and automated driving systems that utilize simulation have come to be conducted. However, even when performing performance tests by simulation, it is necessary to prepare a huge number of test scenarios. The test scenario should include everything from everyday safety scenes to diverse and complex danger scenes. It is not realistic to manually create these test scenarios one by one, so a mechanism for automatic generation is required.
 シナリオ生成に関する技術としては、特許文献1に記載のインシデントシーンのテストケースを生成する情報生成装置が知られている。例えば、特許文献1の段落0030には「移動体間の距離と車間距離の閾値(距離閾値)とを比較することにより、異常接近の有無を判定する。」との記載があり、自車周囲物体との距離情報を用いてテストケースを生成する情報生成装置が開示されている。 As a technique related to scenario generation, an information generation device that generates a test case of an incident scene described in Patent Document 1 is known. For example, in paragraph 0030 of Patent Document 1, there is a description that "the presence or absence of abnormal approach is determined by comparing the distance between moving objects and the threshold value (distance threshold value) of the inter-vehicle distance." An information generator that generates a test case using distance information with an object is disclosed.
特開2019-79296号公報Japanese Unexamined Patent Publication No. 2019-79296
 しかしながら、特許文献1に記載の情報生成装置は、TTC(Time To Collision)に基づいてインシデントシーンを抽出するものであるため、TTCの閾値の設定次第ではインシデントシーンと判定されずにテストケースの生成漏れが発生する恐れがある。 However, since the information generator described in Patent Document 1 extracts an incident scene based on TTC (Time To Collision), it is not determined as an incident scene depending on the setting of the TTC threshold value, and a test case is generated. Leakage may occur.
 また、特許文献1に記載の情報生成装置では、前述したようにTTCを用いたインシデントシーンのテストシナリオを生成する特性上、実際にインシデントではないシーンを目的としてテストシナリオを生成することができない課題もある。 Further, the information generator described in Patent Document 1 has a problem that it is not possible to generate a test scenario for a scene that is not actually an incident due to the characteristics of generating a test scenario of an incident scene using TTC as described above. There is also.
 そこで、本発明では、周囲物体の位置関係を抽象化したフォーメーションフォーマットを用いた解析を施すことで、インシデントシーンに限定することなく、様々なシーンのテストシナリオを生成することができる情報生成装置を提供することを目的とする。 Therefore, in the present invention, an information generation device capable of generating test scenarios of various scenes without being limited to incident scenes by performing analysis using a formation format that abstracts the positional relationship of surrounding objects is provided. The purpose is to provide.
 上記課題を解決するために、本発明の情報生成装置は、自車両の走行情報に基づいて、前記自車両が走行するシーンのシナリオを生成する情報生成装置において、前記自車両の走行情報から、前記自車両の周囲の予め任意に分割された領域ごとに周囲物体が割り当てられたフォーメーションフォーマットに従って、前記自車両と前記周囲物体のレイアウトを抽象化したフォーメーションを形成するフォーメーション形成部と、前記周囲物体のフォーメーションが変化するイベントに対応するシナリオを生成するために、前記自車両の走行情報において、前記周囲物体のフォーメーションが変化するイベントが発生したか否かを判断するフォーメーション遷移判断部と、を備えることを特徴とする。 In order to solve the above problems, the information generation device of the present invention is an information generation device that generates a scenario of a scene in which the own vehicle travels based on the travel information of the own vehicle, based on the travel information of the own vehicle. A formation forming unit that forms a formation that abstracts the layout of the own vehicle and the surrounding object according to a formation format in which the surrounding object is assigned to each previously arbitrarily divided area around the own vehicle, and the surrounding object. In order to generate a scenario corresponding to an event in which the formation of the surrounding object changes, a formation transition determination unit for determining whether or not an event in which the formation of the surrounding object changes has occurred in the traveling information of the own vehicle is provided. It is characterized by that.
 本発明の情報生成装置によれば、自車両と周囲物体の存在レーンと位置関係に基づいてフォーメーションを解析することで、危険領域なシーンだけでなく、常用領域のシーンも含めてテストシナリオを生成することができる。また、従来では実車を用いた性能評価試験や開発が主流であったプロセスが、本発明の情報生成装置で自動生成される大量のテストシナリオをもって、自動運転システムの性能評価の大部分(8割以上)をシミュレーションで効率よく行うことができるようになるため、自動運転システムの開発スピードが上がり、開発コストの大幅な低減を期待できる。 According to the information generator of the present invention, by analyzing the formation based on the existence lane and the positional relationship between the own vehicle and surrounding objects, a test scenario is generated including not only the scene in the dangerous area but also the scene in the normal area. can do. In addition, most of the performance evaluation (80%) of the automatic driving system has a large number of test scenarios that are automatically generated by the information generator of the present invention, which is the process that was mainly performed in the performance evaluation test and development using the actual vehicle in the past. Since the above) can be performed efficiently by simulation, the development speed of the automated driving system can be increased, and the development cost can be expected to be significantly reduced.
 また、生成されたテストシナリオ(イベント毎のイベントシナリオ)に走行中の自車両のシーンを照合することで、危険領域なシーンだけでなく、常用領域のシーンも含めて様々なシーンに適切に、かつ、リアルタイムに自車両の走行制御を行うことができる。 In addition, by collating the scene of the own vehicle running with the generated test scenario (event scenario for each event), it is appropriate for various scenes including not only dangerous scenes but also regular scenes. Moreover, it is possible to control the running of the own vehicle in real time.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the explanation of the following embodiments.
本発明に係るフォーメーション解析に基づくシナリオ生成手法を適用した情報生成装置の実施例1となるシナリオ生成装置の全体構成例を示すブロック図。The block diagram which shows the whole composition example of the scenario generation apparatus which becomes Example 1 of the information generation apparatus to which the scenario generation method based on the formation analysis which concerns on this invention is applied. フォーメーションフォーマットの実施例を示す図。The figure which shows the embodiment of the formation format. フォーメーション解析部における処理フローを示す図。The figure which shows the processing flow in the formation analysis part. フォーメーション解析の実施例を示す図。The figure which shows the example of the formation analysis. 周囲物体が1つ又は存在しない場合のフォーメーション遷移判断における状態遷移の一例を示す図。The figure which shows an example of the state transition in the formation transition judgment when there is one or no surrounding object. 図5の状態遷移における条件を説明する図。The figure explaining the condition in the state transition of FIG. 自車前方に存在する周囲物体が2物体におけるフォーメーション遷移判断における状態遷移の一例を示す図。The figure which shows an example of the state transition in the formation transition judgment in the surrounding object existing in front of the own vehicle in two objects. 図7の状態遷移における条件を説明する図。The figure explaining the condition in the state transition of FIG. イベント情報付与部について実施例を示す図。The figure which shows the Example about the event information addition part. 本発明に係るフォーメーション解析を適用した情報生成装置の実施例2となる走行制御装置の全体構成例を示すブロック図。FIG. 3 is a block diagram showing an overall configuration example of a travel control device according to a second embodiment of an information generation device to which the formation analysis according to the present invention is applied.
 本発明は、自車と周囲物体のフォーメーションを解析することで、イベント毎のテストシナリオ(イベントシナリオ)を生成するものである。本発明におけるフォーメーションの定義として、単なる自車と周囲車両との相対距離や相対位置の相対関係により決まるものではなく、ユーザが指定するフォーメーションフォーマットに従って、自車に対する周囲車両のレイアウトを抽象化したものを指す。 The present invention generates a test scenario (event scenario) for each event by analyzing the formation of the own vehicle and surrounding objects. The definition of the formation in the present invention is not simply determined by the relative distance or the relative position of the own vehicle and the surrounding vehicle, but is an abstraction of the layout of the surrounding vehicle with respect to the own vehicle according to the formation format specified by the user. Point to.
 以下、図面を参照して、本発明に係るフォーメーション解析に基づくシナリオ生成手法の実施例について説明する。 Hereinafter, examples of the scenario generation method based on the formation analysis according to the present invention will be described with reference to the drawings.
[実施例1(シナリオ生成装置)]
<全体構成>
 図1は、本発明のフォーメーション解析に基づくシナリオ生成手法を適用したシナリオ生成装置の全体構成例を示すブロック図である。ここに例示するシナリオ生成装置3は、車両(以下、自車や自車両と称する場合がある)1又はドライビングシミュレータ1Aで取得される走行ログ2を入力にイベントシナリオ19を出力するシナリオ生成装置である。
[Example 1 (scenario generator)]
<Overall configuration>
FIG. 1 is a block diagram showing an overall configuration example of a scenario generation device to which a scenario generation method based on the formation analysis of the present invention is applied. The scenario generation device 3 exemplified here is a scenario generation device that outputs an event scenario 19 by inputting a vehicle (hereinafter, may be referred to as a own vehicle or a own vehicle) 1 or a driving log 2 acquired by a driving simulator 1A. be.
 シナリオ生成装置3は、CPU(Central Processing Unit)等のプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)等のメモリ等を備えるコンピュータとして構成されている。シナリオ生成装置3の各機能は、ROMに記憶されたプログラムをプロセッサが実行することによって実現される。RAMは、プロセッサが実行するプログラムによる演算の中間データ等を含むデータを格納する。 The scenario generation device 3 is configured as a computer including a processor such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive). Each function of the scenario generator 3 is realized by the processor executing the program stored in the ROM. The RAM stores data including intermediate data of operations performed by a program executed by the processor.
 シナリオ生成装置3は、走行ログ2からフォーメーション解析に必要となる情報を解析するためのログ解析部4と、前記ログ解析部4で解析された情報に基づいて自車と周囲物体のフォーメーションを解析し、その解析結果に基づいて前記走行ログ2を分割して抽出される抽出データ12を出力するフォーメーション解析部8と、前記抽出データ12に対してシナリオのイベント(カットイン、カットアウト、急加減速、ふらつきなど)情報を付与するイベント情報付与部13と、イベント情報が付与された抽出データ12をシミュレータ環境に応じたフォーマットに変換したイベントシナリオ19を出力するフォーマット変換部18と、を備えている。 The scenario generator 3 analyzes the formation of the own vehicle and surrounding objects based on the log analysis unit 4 for analyzing the information required for the formation analysis from the travel log 2 and the information analyzed by the log analysis unit 4. Then, the formation analysis unit 8 that outputs the extracted data 12 that is extracted by dividing the travel log 2 based on the analysis result, and the scenario event (cut-in, cut-out, rapid addition) to the extracted data 12. It is provided with an event information addition unit 13 for adding information (deceleration, wobbling, etc.) and a format conversion unit 18 for outputting an event scenario 19 in which the extraction data 12 to which event information is added is converted into a format suitable for the simulator environment. There is.
 走行ログ2は、車両1の走行シーンに関わるデータである走行情報を記録したものであり、車両1の車載ネットワーク(CAN(Controller Area Network)、Ethernet(登録商標))で取得できる車両情報(車速、位置等)や外界認識センサ(カメラ、レーダー、Lidar等)で取得できる周囲物体の検知情報を記録したログデータや、ドライビングシミュレータ1Aのように仮想空間を走行して得たシミュレーション結果を走行ログとして使用してもよい。本実施例においては、走行ログ2には、車両1やドライビングシミュレータ1A以外にも、防犯カメラやNシステム等のインフラに設置された外界認識センサで周囲物体の情報を取得したデータを適用しても良い。 The travel log 2 records travel information that is data related to the travel scene of the vehicle 1, and is vehicle information (vehicle speed) that can be acquired by the vehicle-mounted network of the vehicle 1 (CAN (Control Area Network), Ethernet (registered trademark)). , Position, etc.) and log data that records detection information of surrounding objects that can be acquired by external recognition sensors (camera, radar, lidar, etc.), and simulation results obtained by driving in a virtual space like the driving simulator 1A. May be used as. In this embodiment, in addition to the vehicle 1 and the driving simulator 1A, the travel log 2 is applied with the data obtained by acquiring the information of the surrounding objects by the outside world recognition sensor installed in the infrastructure such as the security camera and the N system. Is also good.
<ログ解析部>
 ログ解析部4は、フォーメーション解析で主に必要となる自車の走行レーン、周囲物体の走行レーン、自車と周囲物体間の相対位置を走行ログ2から解析する。ログ解析部4は、自車レーン解析部5と、周囲物体レーン解析部6と、相対位置解析部7で構成される。
<Log analysis unit>
The log analysis unit 4 analyzes the traveling lane of the own vehicle, the traveling lane of the surrounding object, and the relative position between the own vehicle and the surrounding object, which are mainly required for the formation analysis, from the traveling log 2. The log analysis unit 4 is composed of a vehicle lane analysis unit 5, a surrounding object lane analysis unit 6, and a relative position analysis unit 7.
(自車レーン解析部)
 自車レーン解析部5は、走行ログ2に記録されている自車の走行位置に関するデータ(GNSSや地図データ)を解析することで自車の走行レーンを判断する。
(Vehicle lane analysis department)
The own vehicle lane analysis unit 5 determines the travel lane of the own vehicle by analyzing the data (GNSS and map data) related to the travel position of the own vehicle recorded in the travel log 2.
(周囲物体レーン解析部)
 周囲物体レーン解析部6は、走行ログ2に記録されている周囲物体の走行位置に関するデータ(外界認識センサで検知した周囲物体の検知位置や自車との相対位置、車車間通信で得られる対車両の位置情報等)を解析することで周囲物体の走行レーンを判断する。
(Around object lane analysis unit)
The surrounding object lane analysis unit 6 has data on the traveling position of the surrounding object recorded in the traveling log 2 (the detection position of the surrounding object detected by the outside world recognition sensor, the relative position with the own vehicle, and the pair obtained by the vehicle-to-vehicle communication. By analyzing the position information of the vehicle, etc.), the traveling lane of the surrounding object is determined.
(相対位置解析部)
 相対位置解析部7は、走行ログ2に記録されている自車と周囲物体の相対位置に関するデータ(外界認識センサで検知した周囲物体の検知位置等)を解析することで相対位置情報を得る。フォーメーション解析において走行レーン情報だけでは判断できない自車と周囲物体の前後関係を判断するために相対位置情報は必要となる。
(Relative position analysis unit)
The relative position analysis unit 7 obtains relative position information by analyzing data related to the relative positions of the own vehicle and surrounding objects recorded in the travel log 2 (detection positions of surrounding objects detected by the outside world recognition sensor, etc.). Relative position information is required to determine the front-back relationship between the vehicle and surrounding objects, which cannot be determined from the travel lane information alone in the formation analysis.
<フォーメーション解析部>
 フォーメーション解析部8は、フォーメーション形成部9と、フォーメーション遷移判断部10と、データ抽出部11で構成される。
<Formation analysis department>
The formation analysis unit 8 is composed of a formation formation unit 9, a formation transition determination unit 10, and a data extraction unit 11.
(フォーメーション形成部)
 フォーメーション形成部9は、ユーザが指定するフォーメーションフォーマットに従って、前記ログ解析部4で解析した情報に基づいて、周囲物体が自車周囲のどのエリアに属するかを割り当てる。
(Formation forming part)
The formation forming unit 9 assigns which area around the own vehicle the surrounding object belongs to based on the information analyzed by the log analysis unit 4 according to the formation format specified by the user.
 ここで、図2を参照してフォーメーションフォーマットについて説明する。 Here, the formation format will be described with reference to FIG.
 フォーメーションフォーマットは、予めユーザがどのフォーマット(例えば図2(a)や図2(b)のような指定)を用いて周囲物体のフォーメーションを解析していくかを指定することができる。 The formation format can specify in advance which format (for example, designations such as those in FIGS. 2A and 2B) the user uses to analyze the formation of the surrounding object.
 フォーメーションフォーマットは、自車存在レーンを中心(“C”)として、右領域は“R”、左領域は“L”、路肩領域は“S”、前方領域は“F”、前記前方領域“F”の更に前方領域は“FF”、後方領域は“R”といったように、自車周囲の領域を予め任意に分割したものである。 The formation format is centered on the vehicle presence lane (“C”), the right area is “R”, the left area is “L”, the road shoulder area is “S”, the front area is “F”, and the front area “F”. The area around the vehicle is arbitrarily divided in advance, such as "FF" for the front area and "R" for the rear area.
 図2(a)は、自車20の前方領域には“F”と“FF”の2領域、後方領域に“R”、左右の領域として“R”と“L”と“S”とした設定例である。図2(a)のフォーメーションフォーマットを用いると、前方領域を2分割しているため、自車と近接する先行車に関するシナリオだけでなく、先先行車による間接的に自車挙動へ影響を及ぼす可能性があるようなシナリオ(例えば、先先行車が先行車の前に割り込んできたことで先行車が急ブレーキをかけると自車も急減速が必要となる)を生成することができる。 In FIG. 2A, two regions of “F” and “FF” are set in the front region of the vehicle 20, “R” is set in the rear region, and “R”, “L” and “S” are set as the left and right regions. This is a setting example. When the formation format shown in FIG. 2A is used, the front area is divided into two, so that not only the scenario related to the preceding vehicle close to the own vehicle but also the behavior of the own vehicle can be indirectly affected by the preceding vehicle. It is possible to generate a scenario in which there is a possibility (for example, when the preceding vehicle interrupts in front of the preceding vehicle and the preceding vehicle suddenly brakes, the own vehicle also needs to suddenly decelerate).
 図2(b)は、自車20の前方領域には“F”、後方領域に“R”、左右の領域として“R”と“L”と“S”とした設定例である。図2(b)のフォーメーションフォーマットでは、自車に直接する前後左右の6物体分に加えて路肩“S”の2物体分を考慮してシナリオ生成することできる。先先行車のような間接的に自車挙動に影響を及ぼすシーンを考慮しなくて良い場合は、図2(b)のフォーメーションフォーマットを用いることで、必要最低限のシナリオに絞って生成することができる。 FIG. 2B is a setting example in which the front region of the vehicle 20 is "F", the rear region is "R", and the left and right regions are "R", "L", and "S". In the formation format of FIG. 2B, a scenario can be generated in consideration of two objects of the road shoulder "S" in addition to the six objects of front, rear, left and right directly facing the own vehicle. If it is not necessary to consider a scene that indirectly affects the behavior of the own vehicle, such as the preceding vehicle, use the formation format shown in Fig. 2 (b) to narrow down the generation to the minimum necessary scenarios. Can be done.
 フォーメーションフォーマットの実施例を図2(a)や図2(b)を用いて説明してきたが、ユーザが生成したいシナリオに応じてフォーメーションフォーマットは自由に(任意に)設定できるものであり、図2(a)や図2(b)の設定に限るものではない。 Examples of the formation format have been described with reference to FIGS. 2 (a) and 2 (b), but the formation format can be freely (arbitrarily) set according to the scenario that the user wants to generate, and FIG. The setting is not limited to (a) and FIG. 2 (b).
(フォーメーション遷移判断部)
 フォーメーション遷移判断部10は、前記フォーメーション形成部9で指定されたフォーメーションフォーマットに従ってエリア割当された周囲物体のフォーメーション(周囲物体の抽象化したレイアウト)が変わったか否かを判断する。例えば、隣接車線の先行車両が自車の走行レーンに車線変更すると、フォーメーションが変わったと判断する。
(Formation transition judgment unit)
The formation transition determination unit 10 determines whether or not the formation (abstract layout of the surrounding object) of the surrounding object assigned to the area has changed according to the formation format specified by the formation forming unit 9. For example, if the preceding vehicle in the adjacent lane changes lanes to the driving lane of the own vehicle, it is determined that the formation has changed.
(データ抽出部)
 データ抽出部11は、前記フォーメーション遷移判断部10でフォーメーション(抽象化したレイアウト)が変わったと判断される度に、フォーメーションが切り替わる前後で走行ログ2を区切って抽出することで、抽出データ12を生成する。
(Data extraction unit)
The data extraction unit 11 generates the extraction data 12 by dividing the travel log 2 before and after the formation is switched each time the formation transition determination unit 10 determines that the formation (abstracted layout) has changed. do.
<イベント情報付与部>
 イベント情報付与部13は、車線変更抽出部14と、加速度抽出部15と、イベント判断部16で構成される。
<Event information granting department>
The event information addition unit 13 is composed of a lane change extraction unit 14, an acceleration extraction unit 15, and an event determination unit 16.
(車線変更抽出部)
 車線変更抽出部14では、前記抽出データ12に記録されている周囲物体に関するデータ(車線認識情報、横位置、横速度など)を基に、周囲物体による車線変更が発生していたか否かを解析する。なお、指定されたフォーメーションフォーマット次第では、周囲物体の割当エリアが変更したことを車線変更があったとみなして判断してもよい。図2(a)に示したフォーメーションフォーマットを例に述べると、“FR”に属していた周囲物体が“FC”への割当に変わったケースが一つの例として挙げられる。
(Lane change extraction section)
The lane change extraction unit 14 analyzes whether or not a lane change has occurred due to a surrounding object based on the data (lane recognition information, lateral position, lateral speed, etc.) recorded in the extracted data 12 regarding the surrounding object. do. Depending on the specified formation format, it may be determined that the assigned area of the surrounding object has changed, assuming that the lane has changed. Taking the formation format shown in FIG. 2A as an example, one example is a case where a surrounding object belonging to “FR” is changed to the assignment to “FC”.
(加速度抽出部)
 加速度抽出部15では、前記抽出データ12に記録されている周囲物体に関するデータ(速度、加速度など)を基に、周囲物体の加速度の大きさ・変化を判断する。
(Acceleration extraction unit)
The acceleration extraction unit 15 determines the magnitude / change of the acceleration of the surrounding object based on the data (velocity, acceleration, etc.) recorded in the extraction data 12 regarding the surrounding object.
(イベント判断部)
 イベント判断部16では、前記車線変更抽出部14と加速度抽出部15で解析された周囲物体の挙動情報が、シナリオ定義ファイル17に予め定義されているイベント条件に該当するか否かを判断することで、前記抽出データ12にイベント情報(カットイン、カットアウト、急減速、急加速など)を付与する。
(Event Judgment Department)
The event determination unit 16 determines whether or not the behavior information of the surrounding objects analyzed by the lane change extraction unit 14 and the acceleration extraction unit 15 corresponds to the event conditions predefined in the scenario definition file 17. Then, event information (cut-in, cut-out, sudden deceleration, sudden acceleration, etc.) is added to the extracted data 12.
<フォーマット変換部>
 フォーマット変換部18では、前記イベント情報付与部13でイベント情報が付与された抽出データ12を各種シミュレーション環境で利用可能なフォーマットに変換することで、イベントシナリオ19が生成される。
<Format conversion unit>
The format conversion unit 18 generates an event scenario 19 by converting the extraction data 12 to which the event information is added by the event information addition unit 13 into a format that can be used in various simulation environments.
<フォーメーション解析部によるフォーメーション解析>
 ここで本実施例の特徴であるフォーメーション解析について、図3と図4を用いて詳細に説明する。図3は、フォーメーション解析部8の処理フローを表しており、図4は、ある走行ログ2を用いてフォーメーション解析を行った場合の実施例を示している。
<Formation analysis by formation analysis department>
Here, the formation analysis, which is a feature of this embodiment, will be described in detail with reference to FIGS. 3 and 4. FIG. 3 shows a processing flow of the formation analysis unit 8, and FIG. 4 shows an example in which formation analysis is performed using a certain travel log 2.
 フォーメーション解析部8では、はじめにログ解析データ(ログ解析部4で解析した情報)を読み出した(S300)後、その読み出したログ解析データに基づいて周囲物体をフォーメーションフォーマットで定義されるエリアに割り当てることで、フォーメーションを形成する(S301)。 The formation analysis unit 8 first reads the log analysis data (information analyzed by the log analysis unit 4) (S300), and then allocates surrounding objects to the area defined in the formation format based on the read log analysis data. Then, a formation is formed (S301).
 走行ログは1ステップごとに読み出しを行い、フォーメーションを形成するため、最初のステップではフォーメーションの登録履歴が無いため、初期フォーメーションの登録を行う必要がある。そのために、ステップS302ではフォーメーションの登録履歴の有無を判断する。 Since the running log is read out step by step to form a formation, there is no formation registration history in the first step, so it is necessary to register the initial formation. Therefore, in step S302, it is determined whether or not there is a formation registration history.
 ステップS302でフォーメーションの登録履歴が無い場合には、そのステップで形成されたフォーメーションを初期フォーメーションとして登録する(S303)。 If there is no formation registration history in step S302, the formation formed in that step is registered as the initial formation (S303).
 次に、走行ログ2をフォーメーション毎に区切っていくためのフォーメーションの解析を始める解析開始点(t1)を設定する(S304)。この解析開始点(t1)はユーザが任意で設定できるものとしているが、基本的には走行ログ読み出し最初のステップと同じにして良い。 Next, the analysis start point (t1) for starting the analysis of the formation for dividing the running log 2 for each formation is set (S304). This analysis start point (t1) can be arbitrarily set by the user, but basically it may be the same as the first step of reading the travel log.
 図4に示す走行ログ2においては、初期フォーメーションとして、自車両40の周囲に車両41が隣接右車線前方“FR”、車両42が隣接左車線前方“FL”(の定義エリア)に割り当てられたフォーメーション401が登録され、解析開始点(t1)として設定される。 In the traveling log 2 shown in FIG. 4, as the initial formation, the vehicle 41 is assigned to the adjacent right lane front “FR” and the vehicle 42 is assigned to the adjacent left lane front “FL” (definition area) around the own vehicle 40. The formation 401 is registered and set as the analysis start point (t1).
 前記解析開始点(t1)以降、走行ログ2に記録されているシーンの様態は時間経過とともに変わっていくことになる。従って、走行ログ2の解析データに基づいて形成される周囲物体のフォーメーションも時間経過とともに変化していく。そこで、ステップS305において、毎ステップで形成される周囲物体のフォーメーションが最後に登録されたフォーメーションから変化があったか否か、すなわち、走行ログ2において、周囲物体のフォーメーションが変化するイベントが発生したか否かを判断する。 After the analysis start point (t1), the mode of the scene recorded in the travel log 2 will change with the passage of time. Therefore, the formation of surrounding objects formed based on the analysis data of the travel log 2 also changes with the passage of time. Therefore, in step S305, whether or not the formation of the surrounding object formed in each step has changed from the last registered formation, that is, whether or not an event has occurred in the traveling log 2 in which the formation of the surrounding object changes. Judge.
 ステップS305において、フォーメーションの変更が無いと判断される場合は、次のステップのログ解析データの読み出し処理(S300)に戻る。 If it is determined in step S305 that there is no change in the formation, the process returns to the log analysis data reading process (S300) in the next step.
 ステップS305において、周囲物体のフォーメーションに変化がある場合について以下に説明する。 The case where there is a change in the formation of surrounding objects in step S305 will be described below.
 まず、周囲物体が1つの場合におけるフォーメーションの状態遷移について、図5と図6を用いて説明する。 First, the state transition of the formation when there is one surrounding object will be described with reference to FIGS. 5 and 6.
 図5は、周囲物体が1つ又は存在しない場合におけるフォーメーションの状態遷移をまとめた図であり、図6は、図5における状態が切り替わる際の条件をまとめた表である。 FIG. 5 is a diagram summarizing the state transitions of the formation when there is one or no surrounding object, and FIG. 6 is a table summarizing the conditions when the states in FIG. 5 are switched.
 例えば、自車走行レーン前方に周囲物体が存在する場合は、“自レーン前方物体あり”の状態にあることになり、その後、自車走行レーン前方に存在する周囲物体が右車線に移動した場合は、“右前方物体あり”の状態に遷移する。この時、図5において“自レーン前方物体あり”の状態から“右前方物体あり”の状態への遷移は“13”となり、図6のNo13の条件に該当することで、状態遷移する。 For example, if there is a surrounding object in front of the vehicle driving lane, it means that there is an object in front of the vehicle lane, and then the surrounding object existing in front of the vehicle traveling lane moves to the right lane. Transitions to the state of "there is an object in front of the right". At this time, the transition from the state of "with an object in front of the own lane" to the state of "with an object in front of the right" in FIG. 5 becomes "13", and the state transition occurs when the condition of No. 13 in FIG. 6 is satisfied.
 次に、周囲物体が複数の場合におけるフォーメーションの状態遷移について、図7と図8を用いて説明する。 Next, the state transition of the formation when there are a plurality of surrounding objects will be described with reference to FIGS. 7 and 8.
 図7は、自車前方方向に周囲物体が2物体存在するケースを表しており、図8は、図7における状態遷移の条件をまとめた表である。 FIG. 7 shows a case where two surrounding objects exist in the front direction of the own vehicle, and FIG. 8 is a table summarizing the state transition conditions in FIG. 7.
 例えば、図4に示した初期フォーメーション401の次にフォーメーション(第2フォーメーション)402に遷移したと判断する場合、初期フォーメーション401は図7の“右レーン前方物体1、左レーン前方物体2有り”の状態であり、次のフォーメーション402は図7の“自レーン前方物体1、左レーン前方物体2有り”の状態に遷移する。このとき、図7の“1”の条件に基づいて状態遷移することになり、図8のNo1の条件を満たしていることを判断して、フォーメーションが切り替わったことを判断する。 For example, when it is determined that the transition to the formation (second formation) 402 is performed after the initial formation 401 shown in FIG. 4, the initial formation 401 is the “object 1 in front of the right lane and the object 2 in front of the left lane” in FIG. It is a state, and the next formation 402 transitions to the state of “the object 1 in front of the own lane and the object 2 in front of the left lane” in FIG. 7. At this time, the state transition is performed based on the condition of "1" in FIG. 7, and it is determined that the condition of No. 1 in FIG. 8 is satisfied, and it is determined that the formation has been switched.
 さらに、図4においてフォーメーション(第2フォーメーション)402からフォーメーション(第3フォーメーション)403に遷移する際には、図7の“自レーン前方物体1、左レーン前方物体2有り”の状態から条件“13”を満たすことで“自レーン前方物体1、物体1の前に前方物体2有り”の状態となる。 Further, when transitioning from the formation (second formation) 402 to the formation (third formation) 403 in FIG. 4, the condition “13” is changed from the state of “the object 1 in front of the own lane and the object 2 in front of the left lane” in FIG. By satisfying ", there is an object 1 in front of the own lane and an object 2 in front of the object 1".
 ここで、図7や図8に示した前方物体1や前方物体2の定義は一例にすぎず、物体1や物体2といったインデックスは各状態間で独立した定義として参照されたい。例えば、領域“FL”と“FC”に物体が存在するシチュエーションにおいて、“FL”の物体が自車走行レーン“C”に車線変更する場合、既に“FC”領域に存在する物体の前方に入れば、“FL”に存在していた物体は“FFC”領域に割り当てられることになる。逆に、既に“FC”領域に存在する物体の後方に入れば、“FL”に存在していた物体は“FC”領域に割り当てられ、既に“FC”領域に存在していた物体は“FFC”領域の物体に割り当てられることになる。 Here, the definitions of the front object 1 and the front object 2 shown in FIGS. 7 and 8 are merely examples, and the indexes such as the object 1 and the object 2 should be referred to as independent definitions between the states. For example, in a situation where an object exists in the areas "FL" and "FC", when the object in "FL" changes lanes to the own vehicle driving lane "C", put it in front of the object already in the "FC" area. For example, the object existing in "FL" will be assigned to the "FFC" area. Conversely, if you enter behind an object that is already in the "FC" area, the object that was in the "FL" will be assigned to the "FC" area, and the object that was already in the "FC" area will be "FFC". "It will be assigned to an object in the area.
 さらに、図7や図8の状態遷移は全てのフォーメーション遷移判断ルールデータベースの一部であり、2物体だけでなくより多数の周囲物体間の前後左右関係でフレキシブルに組合せを定義することができる。 Furthermore, the state transitions in FIGS. 7 and 8 are part of all formation transition judgment rule databases, and combinations can be flexibly defined by the front-back and left-right relationships between not only two objects but also a larger number of surrounding objects.
 図3のステップS305でフォーメーション変更有りと判断された後の処理について説明する。 The processing after it is determined in step S305 of FIG. 3 that there is a formation change will be described.
 図3のステップS305でフォーメーション変更有り(すなわち、周囲物体のフォーメーションが変化するイベントが発生した)と判断されると、判断された時点におけるフォーメーションが登録される(S306)。 If it is determined in step S305 of FIG. 3 that there is a formation change (that is, an event that changes the formation of a surrounding object has occurred), the formation at the time of determination is registered (S306).
 次に、フォーメーションが切り替わったタイミング(すなわち、周囲物体のフォーメーションが変化するイベントが発生したタイミング)をフォーメーション変更点(t1_fc、t2_fc、・・・)として設定する(S307)。 Next, the timing at which the formation is switched (that is, the timing at which the formation of the surrounding object changes occurs) is set as the formation change point (t1_fc, t2_fc, ...) (S307).
 次に、前記ステップS307にて設定されたフォーメーション変更点を基点として、フォーメーション変更点から任意の時間後にログデータ分割点(t2、t3)を設定する(S308)。このログデータ分割点は、フォーメーション変更点を基点として前後何秒に設定するかをユーザが任意に決めることができる。基本的には、図4に示すように、解析開始点t1を第1のログデータ分割点にして、フォーメーションが変更される毎にt2(=t1_fc+α[s])、t3(=t2_fc+β[s])・・・として自動設定されるとよい。しかし、ログデータ分割点を設定後に同じフォーメーションの状態が長時間続き、その間のログデータは不要といった場合は、ログデータ分割点を別途設定することも可能としている。これにより、フォーメーション変更点を基点として、周囲物体のフォーメーションが変化するイベントに対応するシナリオを生成するのに用いる走行ログ2の抽出範囲を決める。 Next, using the formation change point set in step S307 as a base point, a log data division point (t2, t3) is set after an arbitrary time from the formation change point (S308). The user can arbitrarily decide how many seconds before and after the formation change point is set as the log data division point. Basically, as shown in FIG. 4, the analysis start point t1 is set as the first log data division point, and each time the formation is changed, t2 (= t1_fc + α [s]) and t3 (= t2_fc + β [s]]. ) ... should be set automatically. However, if the same formation state continues for a long time after setting the log data division point and the log data during that period is unnecessary, it is possible to set the log data division point separately. As a result, the extraction range of the travel log 2 used to generate the scenario corresponding to the event in which the formation of the surrounding object changes is determined with the formation change point as the base point.
 ここで、本実施例のユーザの利用目的によっては、例えばカットインからカットアウトといったフォーメーション変更に関わる複数のイベントの一連の流れを一つのデータとして組み合わせて扱いたい場合もあることが考えられる。そこで、ログデータ分割点は、フォーメーション変更点を基点として任意に設定されるものであるが、ログデータ分割点を第1のフォーメーション変更点だけで決めるのではなく、それに続く第2のフォーメーション変更点も含む形で設定することも可能としている。具体的には、ログデータ分割の始点は第1のフォーメーション変更点に基づいて設定され、ログデータ分割の終点は第2のフォーメーション変更点に基づいて設定されるものである。つまり、前記走行ログ2の抽出範囲には、ログデータ分割点(周囲物体のフォーメーションが変化するイベントの発生タイミングに対応)の少なくとも一を含む。 Here, depending on the purpose of use of the user of this embodiment, it may be possible to handle a series of flows of a plurality of events related to formation changes such as cut-in to cut-out in combination as one data. Therefore, the log data division point is arbitrarily set with the formation change point as the base point, but the log data division point is not determined only by the first formation change point, but the subsequent second formation change point. It is also possible to set in a form that includes. Specifically, the start point of the log data division is set based on the first formation change point, and the end point of the log data division is set based on the second formation change point. That is, the extraction range of the travel log 2 includes at least one of the log data division points (corresponding to the occurrence timing of the event in which the formation of the surrounding object changes).
 ステップS309では、前記ステップS308で設定されたログデータ分割点に基づいて、走行ログデータを分割して抽出することで、フォーメーション変更毎に(前述した抽出範囲で)分割された抽出データ12を生成する。 In step S309, by dividing and extracting the travel log data based on the log data division point set in step S308, the extraction data 12 divided for each formation change (within the extraction range described above) is generated. do.
 なお、図3のS300およびS301は、フォーメーション形成部9にて実行され、S302からS305は、フォーメーション遷移判断部10にて実行され、S306以降は、データ抽出部11にて実行される。 Note that S300 and S301 in FIG. 3 are executed by the formation forming unit 9, S302 to S305 are executed by the formation transition determination unit 10, and S306 and thereafter are executed by the data extraction unit 11.
<イベント情報付与部によるイベント情報付与>
 図1のイベント情報付与部13は、前記フォーメーション解析部8で生成される各抽出データ12に対して、カットイン、カットアウト、追い越し、急減速等といったイベント情報を付与する。付与するイベントの判断を行うために、周囲物体の挙動を解析する必要がある。
<Event information is given by the event information giving department>
The event information giving unit 13 of FIG. 1 gives event information such as cut-in, cut-out, overtaking, sudden deceleration, etc. to each extracted data 12 generated by the formation analysis unit 8. It is necessary to analyze the behavior of surrounding objects in order to determine the event to be given.
 車線変更抽出部14では、周囲物体の横位置や横速度、或いは直接、車線変更を行ったか否かが分かる情報によって、周囲物体の車線変更有無を抽出する。 The lane change extraction unit 14 extracts whether or not the surrounding object has changed lanes based on the lateral position and speed of the surrounding object, or information indicating whether or not the lane has been changed directly.
 加速度抽出部15では、周囲物体の移動速度や加速度情報によって、周囲物体の急減速や急加速(すなわち、速度や加速度の変化)といった情報を抽出する。急減速や急加速の定義は一意に決まるものではなく、ユーザが任意に決定できるものである。 The acceleration extraction unit 15 extracts information such as sudden deceleration or rapid acceleration (that is, change in speed or acceleration) of the surrounding object based on the moving speed or acceleration information of the surrounding object. The definitions of sudden deceleration and sudden acceleration are not uniquely determined, but can be arbitrarily determined by the user.
 イベント判断部16では、ログ解析部4で解析した自車レーン、周囲物体レーン、相対位置情報や、前記車線変更抽出部14や前記加速度抽出部15で得られる周囲物体の挙動情報が、シナリオ定義ファイル17で予め定義されているイベント条件に該当するか否かを判断し、抽出データ12に前記判断されたイベント情報を付与する。 In the event determination unit 16, the scenario definition includes the own vehicle lane, the surrounding object lane, and the relative position information analyzed by the log analysis unit 4, and the behavior information of the surrounding object obtained by the lane change extraction unit 14 and the acceleration extraction unit 15. It is determined whether or not the event condition defined in advance in the file 17 is satisfied, and the determined event information is added to the extracted data 12.
 イベント情報付与部13の実施例について図9を用いて説明する。 An embodiment of the event information giving unit 13 will be described with reference to FIG.
 図9は、図4に示した走行ログに基づいて形成されたフォーメーション(401、402、403)に従って説明している。フォーメーション402の前後区間t1~t2の抽出データ90とフォーメーション403の前後区間t2~t3の抽出データ91が(フォーメーション解析部8により)生成された上で、イベント情報が各抽出データに付与されることを示している。 FIG. 9 is described according to the formations (401, 402, 403) formed based on the travel log shown in FIG. After the extraction data 90 of the front and rear sections t1 to t2 of the formation 402 and the extraction data 91 of the front and rear sections t2 to t3 of the formation 403 are generated (by the formation analysis unit 8), the event information is given to each extraction data. Is shown.
 さらに図9においては、抽出データ90に対してイベント情報を付与する場合の詳細を説明している。抽出データ90に対してイベント情報を付与するために、イベント(カットイン、カットアウト、追従、減速、急減速、ふらつき等)の定義が記述されたシナリオ定義ファイル92を読み込む。 Further, FIG. 9 describes the details when event information is given to the extracted data 90. In order to add event information to the extracted data 90, the scenario definition file 92 in which the definition of the event (cut-in, cutout, follow-up, deceleration, sudden deceleration, wobbling, etc.) is described is read.
 ここで、前述の図4において説明しなかったが、図4の走行ログ2においては、周囲車両41Aは自車両40Aの右レーンから自車走行レーンへ車線変更後に減速し(このとき、周囲車両42Aは左レーン走行)、その後、左レーン走行の周囲車両42Bが自車両40Bおよび周囲車両41Bの前に割り込んできたことで、周囲車両(先行車)41Bはふらつき走行をしている。 Here, although not described in FIG. 4 above, in the traveling log 2 of FIG. 4, the surrounding vehicle 41A decelerates after changing lanes from the right lane of the own vehicle 40A to the own vehicle traveling lane (at this time, the surrounding vehicle). 42A is traveling in the left lane), and then the surrounding vehicle 42B traveling in the left lane interrupts in front of the own vehicle 40B and the surrounding vehicle 41B, so that the surrounding vehicle (preceding vehicle) 41B is traveling in a staggered manner.
 従って、フォーメーション402に基づいて生成された抽出データ90は、イベント判断として、カットインと急減速のイベントが発生したと判断され、カットインと急減速というタグ情報が付与される。また、フォーメーション403に基づいて生成された抽出データ91は、イベント判断として、カットインとふらつきのイベントが発生したと判断され、カットインとふらつきというタグ情報が付与される。 Therefore, in the extracted data 90 generated based on the formation 402, it is determined that a cut-in and sudden deceleration event has occurred as an event determination, and tag information of cut-in and sudden deceleration is added. Further, in the extracted data 91 generated based on the formation 403, it is determined that a cut-in and wobble event has occurred as an event judgment, and tag information of cut-in and wobble is added.
 シナリオ定義ファイル92において、カットインと急減速とふらつきの定義について述べる。 The scenario definition file 92 describes the definitions of cut-in, sudden deceleration, and wobbling.
 カットインの定義は、周囲物体が隣接レーン“R”、“L”から自車走行レーン“C”に遷移したことと、前記周囲物体との相対距離が前方であることの両条件を満たすこととしている。前記カットインの定義は、本実施例で行った一例の定義にすぎず、周囲物体の横位置や横速度によってカットインを定義することも可能である。 The definition of cut-in satisfies both the condition that the surrounding object has transitioned from the adjacent lanes "R" and "L" to the own vehicle traveling lane "C" and that the relative distance to the surrounding object is ahead. It is supposed to be. The definition of the cut-in is only an example defined in this embodiment, and it is also possible to define the cut-in according to the lateral position and lateral speed of the surrounding object.
 急減速の定義は、周囲物体の加速度がシナリオ定義ファイル内で予め設定される閾値(例えば-0.4[G])以下となった場合としている。 The definition of sudden deceleration is when the acceleration of the surrounding object is less than or equal to the preset threshold value (for example, -0.4 [G]) in the scenario definition file.
 ふらつきの定義は、周囲物体の操舵角や横速度、横加速度、あるいは車線逸脱警報等の情報から、ある一定の閾値を設けて、その閾値を何回超えたかという判断によって、実施されるとよい。 The definition of wobbling may be carried out by setting a certain threshold value from information such as the steering angle, lateral speed, lateral acceleration, or lane departure warning of surrounding objects, and determining how many times the threshold value is exceeded. ..
 上記のようにしてイベント情報が付与された抽出データ12(90、91)を、フォーマット変換部18で各種シミュレーション環境で利用可能なフォーマットに変換することで、イベントシナリオ19を生成することにより、車両1が走行するシーンにおいて、危険領域なシーン(インシデントシーン)だけでなく、常用領域のシーンも含めてイベントシナリオ19を生成することができる。 The vehicle is generated by generating the event scenario 19 by converting the extracted data 12 (90, 91) to which the event information is added as described above into a format that can be used in various simulation environments by the format conversion unit 18. In the scene in which 1 travels, the event scenario 19 can be generated including not only the scene in the dangerous area (incident scene) but also the scene in the regular area.
<実施例1(シナリオ生成装置)の作用効果>
 以上で説明したように、本実施例1のシナリオ生成装置(情報生成装置)3は、自車両の走行情報に基づいて、前記自車両が走行するシーンのシナリオを生成する情報生成装置(言い換えれば、実車走行やドライビングシミュレータによって取得される走行ログに基づいて、シミュレーションに用いるシナリオを生成するシナリオ生成装置)3において、前記自車両の走行情報(走行ログ)から、前記自車両の周囲の予め任意に分割された領域ごとに周囲物体が割り当てられたフォーメーションフォーマットに従って、前記自車両と前記周囲物体のレイアウトを抽象化したフォーメーションを形成するフォーメーション形成部9と、前記周囲物体のフォーメーションが変化するイベントに対応するシナリオを生成するために、前記自車両の走行情報(走行ログ)において、前記周囲物体のフォーメーションが変化するイベントが発生したか否かを判断するフォーメーション遷移判断部10と、を備える。
<Operation and effect of Example 1 (scenario generator)>
As described above, the scenario generator (information generator) 3 of the first embodiment is an information generator (in other words, an information generator) that generates a scenario of the scene in which the own vehicle travels based on the travel information of the own vehicle. , A scenario generator that generates a scenario used for simulation based on the actual vehicle driving and the driving log acquired by the driving simulator) 3. From the driving information (driving log) of the own vehicle, it is arbitrary in advance around the own vehicle. According to the formation format in which the surrounding objects are assigned to each of the divided areas, the formation forming unit 9 that forms a formation that abstracts the layout of the own vehicle and the surrounding objects, and the event that the formation of the surrounding objects changes. In order to generate the corresponding scenario, the formation transition determination unit 10 for determining whether or not an event in which the formation of the surrounding object changes has occurred in the travel information (travel log) of the own vehicle is provided.
 また、前記イベントが発生した場合に、前記イベントの発生タイミング(フォーメーション変更点)に基づいて、前記イベントに対応するシナリオを生成するのに用いる前記自車両の走行情報(走行ログ)の抽出範囲を決め、前記抽出範囲のデータを抽出するデータ抽出部11を備える。 Further, when the event occurs, the extraction range of the running information (running log) of the own vehicle used to generate the scenario corresponding to the event is extracted based on the occurrence timing (formation change point) of the event. A data extraction unit 11 for determining and extracting data in the extraction range is provided.
 また、前記データ抽出部11は、前記イベントが発生した場合に、前記イベントの発生タイミングの前後(ログデータ分割点)で前記自車両の走行情報(走行ログ)を分割してデータ(前記イベントの発生毎に分割されたデータ)を抽出する。 Further, when the event occurs, the data extraction unit 11 divides the travel information (travel log) of the own vehicle before and after the event occurrence timing (log data division point) and obtains data (of the event). (Data divided for each occurrence) is extracted.
 また、前記自車両の走行情報(走行ログ)の抽出範囲には、前記イベントの発生タイミングの一つもしくは複数を含む。 Further, the extraction range of the travel information (travel log) of the own vehicle includes one or more of the occurrence timings of the event.
 また、前記データ抽出部11で抽出されたデータにおける前記周囲物体の挙動情報(車線変更有無、速度の変化、又は加速度の変化の少なくとも一つ)が予め定義されたイベント条件に該当するか否かを判断することで、前記抽出されたデータに対してシナリオのイベント情報を付与するイベント情報付与部13を備える。 Whether or not the behavior information (at least one of lane change, speed change, or acceleration change) of the surrounding object in the data extracted by the data extraction unit 11 corresponds to a predefined event condition. The event information giving unit 13 that gives the event information of the scenario to the extracted data is provided.
 言い換えれば、本実施例1のシナリオ生成装置(情報生成装置)3は、走行ログデータから自車両と周囲物体の各存在レーンと自車両と周囲物体の相対位置を解析するログ解析部4と、前記自車両と周囲物体の各存在レーンと相対位置の解析データに基づいて自車両の周囲の予め任意に分割された領域ごとに周囲物体が割り当てられたフォーメーションフォーマットに従って、前記自車両と前記周囲物体のフォーメーションを設定するフォーメーション形成部9と、前記周囲物体のフォーメーションが変化するイベントが発生したか否かを判断するフォーメーション遷移判断部10と、前記イベントが発生した場合に、当該イベントの発生タイミングに基づいて、当該イベントに対応するシナリオを生成するのに用いる実車走行ログの抽出範囲を決め、当該抽出範囲のデータを抽出するデータ抽出部11と、前記抽出データに対して前記周囲物体による車線変更や加減速に基づいてシナリオ情報(カットイン、カットアウト、急減速、急加速など)を解析して付与するイベント情報付与部13と、を備える。 In other words, the scenario generation device (information generation device) 3 of the first embodiment includes a log analysis unit 4 that analyzes the relative positions of the own vehicle and surrounding objects and the relative positions of the own vehicle and surrounding objects from the travel log data. The own vehicle and the surrounding object are assigned according to a formation format in which the surrounding object is assigned to each previously arbitrarily divided area around the own vehicle based on the analysis data of the existing lanes and the relative positions of the own vehicle and the surrounding object. The formation forming unit 9 that sets the formation of the above, the formation transition determination unit 10 that determines whether or not an event that changes the formation of the surrounding object has occurred, and the formation timing of the event when the event occurs. Based on this, the data extraction unit 11 that determines the extraction range of the actual vehicle travel log used to generate the scenario corresponding to the event and extracts the data of the extraction range, and the lane change by the surrounding object with respect to the extracted data. It also includes an event information giving unit 13 that analyzes and gives scenario information (cut-in, cut-out, sudden deceleration, sudden acceleration, etc.) based on acceleration / deceleration.
 本実施例1によれば、自車両と周囲物体の存在レーンと位置関係に基づいてフォーメーションを解析することで、危険領域なシーンだけでなく、常用領域のシーンも含めてテストシナリオを生成することができる。また、従来では実車を用いた性能評価試験や開発が主流であったプロセスが、本実施例のシナリオ生成装置3で自動生成される大量のテストシナリオをもって、自動運転システムの性能評価の大部分(8割以上)をシミュレーションで効率よく行うことができるようになるため、自動運転システムの開発スピードが上がり、開発コストの大幅な低減を期待できる。 According to the first embodiment, by analyzing the formation based on the existence lane and the positional relationship between the own vehicle and the surrounding object, a test scenario is generated including not only the scene in the dangerous area but also the scene in the normal area. Can be done. In addition, most of the performance evaluation of the automatic driving system is based on the large number of test scenarios that are automatically generated by the scenario generator 3 of this embodiment, which is the process that was mainly performed in the performance evaluation test and development using the actual vehicle in the past. Since 80% or more) can be efficiently performed by simulation, the development speed of the automatic driving system can be increased, and the development cost can be expected to be significantly reduced.
[実施例2(走行制御装置)]
<全体構成>
 上述した実施例1では、フォーメーション解析部8を備えるシナリオ生成装置3として説明してきたが、フォーメーション解析部8は、実際の実車走行時において、車両が搭載する外界認識センサで得た周囲物体情報を基に、リアルタイムでフォーメーション解析を適用することができ、車両の走行制御装置に備わっても良い。
[Example 2 (travel control device)]
<Overall configuration>
In the first embodiment described above, the scenario generation device 3 including the formation analysis unit 8 has been described, but the formation analysis unit 8 obtains information on surrounding objects obtained by the external world recognition sensor mounted on the vehicle during actual vehicle driving. Based on this, the formation analysis can be applied in real time, and it may be provided in the travel control device of the vehicle.
 図10は、本発明に係るフォーメーション解析を適用した車両の走行制御装置の全体構成例を示すブロック図である。 FIG. 10 is a block diagram showing an overall configuration example of a vehicle travel control device to which the formation analysis according to the present invention is applied.
 ここに例示する走行制御装置101は、実際の実車走行時において車両1Bで取得される車両情報や外界情報、インフラ情報等を入力に、フォーメーション解析に基づいて記憶されたイベントシナリオ119と実際の走行シーンを照合することでイベント予測を行い、実際の走行シーンに適した走行制御を提供する走行制御装置である。 The travel control device 101 exemplified here is an event scenario 119 stored based on formation analysis and actual travel by inputting vehicle information, external world information, infrastructure information, etc. acquired by vehicle 1B during actual vehicle travel. It is a driving control device that predicts an event by collating the scenes and provides driving control suitable for an actual driving scene.
 走行制御装置101は、車両1Bからフォーメーション解析や走行制御に必要となる情報を受信する情報受信部102と、フォーメーション解析で用いる情報を解析する情報解析部104と、前記情報解析部104で解析された情報に基づいて自車と周囲物体のフォーメーションの遷移を解析し、その解析結果に基づいてフォーメーション変更点(フォーメーションが変化するイベントの発生タイミング)を少なくとも一つは含む抽出データ112を出力するフォーメーション解析部108と、前記抽出データ112に対してシナリオのイベント(カットイン、カットアウト、急加減速、ふらつきなど)を判断し、そのイベント判断結果を出力することと、そのイベント判断結果情報を前記抽出データ112に付与するイベント情報付与部113と、前記イベント情報が付与された抽出データ112を記憶して蓄積することでイベントシナリオ119を生成する記憶部120と、前記イベントシナリオ119と実際の走行シーンを照合することで近い将来の車両1Bが遭遇するイベントを予測するイベント予測部121と、前記イベント予測部121で予測されたシーンと前記情報受信部102で得られる車両情報や周囲情報に基づいて、車両1Bに適切な走行制御を指示する走行制御部122を備える。 The travel control device 101 is analyzed by the information receiving unit 102 that receives information necessary for formation analysis and travel control from the vehicle 1B, the information analysis unit 104 that analyzes the information used in the formation analysis, and the information analysis unit 104. A formation that analyzes the transition of the formation of the own vehicle and surrounding objects based on the information obtained, and outputs the extracted data 112 including at least one formation change point (occurrence timing of an event that changes the formation) based on the analysis result. The analysis unit 108 determines a scenario event (cut-in, cutout, rapid acceleration / deceleration, wobble, etc.) with respect to the extracted data 112, outputs the event determination result, and outputs the event determination result information. The event information giving unit 113 given to the extracted data 112, the storage unit 120 to generate the event scenario 119 by storing and accumulating the extracted data 112 to which the event information is given, the event scenario 119 and the actual running. Based on the event prediction unit 121 that predicts the event that the vehicle 1B will encounter in the near future by collating the scenes, the scene predicted by the event prediction unit 121, and the vehicle information and surrounding information obtained by the information receiving unit 102. The vehicle 1B is provided with a travel control unit 122 that instructs the vehicle 1B to perform appropriate travel control.
<情報受信部>
 情報受信部102は、車両1Bから自車両情報や外界認識情報、GNSS、地図情報、インフラ情報等からなる車両1Bの走行シーンに関わる走行情報を受信する。
<Information receiver>
The information receiving unit 102 receives from the vehicle 1B the traveling information related to the traveling scene of the vehicle 1B including the own vehicle information, the outside world recognition information, the GNSS, the map information, the infrastructure information, and the like.
<情報解析部>
 情報解析部104は、情報受信部102で受信した走行情報から、フォーメーション解析で主に必要となる自車の走行レーン、周囲物体の走行レーン、自車と周囲物体間の相対位置を解析する。情報解析部104は、自車両の走行レーンを解析する自車レーン解析部105と、周囲物体の移動レーン(走行レーン)を解析する周囲物体レーン解析部106と、自車と周囲物体との相対位置を解析する相対位置解析部107を有する。
<Information analysis department>
The information analysis unit 104 analyzes the traveling lane of the own vehicle, the traveling lane of the surrounding object, and the relative position between the own vehicle and the surrounding object, which are mainly required for the formation analysis, from the traveling information received by the information receiving unit 102. The information analysis unit 104 has a vehicle lane analysis unit 105 that analyzes the travel lane of the vehicle, a peripheral object lane analysis unit 106 that analyzes the moving lane (travel lane) of the surrounding object, and a relative relationship between the vehicle and the peripheral object. It has a relative position analysis unit 107 that analyzes the position.
<フォーメーション解析部>
 フォーメーション解析部108は、ユーザが指定するフォーメーションフォーマットに従って、周囲物体が自車周囲のどのエリアに属するかを割り当てたフォーメーションを形成するフォーメーション形成部109と、フォーメーションが切り替わったか否か(つまり、周囲物体のフォーメーションが変化するイベントが発生したか否か)を判断するフォーメーション遷移判断部110と、フォーメーションが切り替わったタイミングを表すフォーメーション変更点(つまり、フォーメーションが変化するイベントの発生タイミング)を少なくとも一つ含む形で任意の過去X[s]分の抽出範囲のデータを蓄積して抽出データ112を抽出するデータ抽出部111を有する。Xは、設計意図を考慮して任意に設定できる。
<Formation analysis department>
The formation analysis unit 108 has a formation forming unit 109 that forms a formation to which the surrounding object belongs to which area around the own vehicle according to the formation format specified by the user, and whether or not the formation has been switched (that is, the surrounding object). Includes at least one formation transition determination unit 110 that determines (whether or not an event that changes the formation of the formation has occurred) and a formation change point (that is, the occurrence timing of the event that changes the formation) that indicates the timing at which the formation is switched. It has a data extraction unit 111 that accumulates data in an extraction range for an arbitrary past X [s] in the form and extracts the extraction data 112. X can be arbitrarily set in consideration of the design intention.
<イベント情報付与部>
 イベント情報付与部113は、抽出データ112に記録されている周囲物体に関するデータ(車線認識情報、横位置、横速度など)を基に、自車や周囲車両の車線変更の有無を抽出する車線変更抽出部114と、抽出データ112に記録されている周囲物体に関するデータ(速度、加速度など)を基に、周囲物体の加減速の度合い(変化)を抽出する加速度抽出部115と、シナリオ定義ファイル117(に予め定義されているイベント条件)に従って前記抽出データ112のイベント(カットイン、カットアウト、急減速、急加速など)を判断し、その時点において自車両1Bがどういうイベント下にあるかをイベント信号として出力するイベント判断部116を有する。
<Event information granting department>
The event information addition unit 113 extracts whether or not the lane of the own vehicle or the surrounding vehicle has been changed based on the data (lane recognition information, lateral position, lateral speed, etc.) recorded in the extraction data 112 regarding the surrounding objects. The acceleration extraction unit 115 that extracts the degree of acceleration / deceleration (change) of the surrounding object based on the extraction unit 114 and the data (velocity, acceleration, etc.) about the surrounding object recorded in the extraction data 112, and the scenario definition file 117. The event (cut-in, cut-out, sudden deceleration, sudden acceleration, etc.) of the extracted data 112 is determined according to (event conditions defined in advance in), and what kind of event the own vehicle 1B is under at that time is determined. It has an event determination unit 116 that outputs as a signal.
<記憶部>
 また、走行制御装置101は、イベント情報付与部113のイベント判断部116から出力されたイベント信号を基に、イベント情報が付与されたイベントシナリオ119を記憶部120によって蓄積していく。
<Memory>
Further, the travel control device 101 accumulates the event scenario 119 to which the event information is added by the storage unit 120 based on the event signal output from the event determination unit 116 of the event information addition unit 113.
<イベント予測部>
 イベント予測部121では、前記イベント情報付与部113のイベント判断部116から出力されたイベント信号(現在の自車両1Bが置かれている実際の走行シーンに対応)と過去類似イベントのデータを保有するイベントシナリオ119を照合することによって、走行中の自車両1Bに起きているイベントについて近い将来どういうイベントが発生する確率が高いかを予測する。また、その予測イベントとその発生確率を走行制御部122に入力する。
<Event prediction department>
The event prediction unit 121 holds the event signal (corresponding to the actual driving scene in which the current own vehicle 1B is placed) output from the event determination unit 116 of the event information addition unit 113 and the data of the past similar event. By collating the event scenario 119, it is predicted what kind of event is likely to occur in the near future regarding the event occurring in the running own vehicle 1B. Further, the predicted event and its occurrence probability are input to the traveling control unit 122.
<走行制御部>
 走行制御部122では、イベント予測部121から入力された予測イベントと発生確率を基に、走行制御に関する減速指令や目標走行速度の指令、横移動量の指令等を自車両1Bが走行しているシーンに応じて適切に設定することができる。
<Driving control unit>
In the travel control unit 122, the own vehicle 1B is traveling on a deceleration command related to travel control, a target travel speed command, a lateral movement amount command, etc., based on the predicted event and the occurrence probability input from the event prediction unit 121. It can be set appropriately according to the scene.
<イベント予測部によるイベント予測、および、走行制御部による指令設定>
 例えば図4のようなシチュエーションを想定し、自車両40A、40Bの前(自車走行レーン)にカットインしてきた追い越し車両41A、41Bの前方に車両42Bがカットインしてくることで、車両41A、41Bが急ブレーキをかけるようなイベントシナリオが既に記憶部120によって記憶されていたとする。実際の実車走行中に、自車両が3車線道路の第2車線を走行中に、第3車線の追い越し車両が迫っているかつ、第1車線にも車両が走行しているシーンに遭遇した時、前記現在の自車両が置かれているシーンを過去のイベントシナリオに照合すると、先行車がカットインして急減速するイベントが発生する可能性が高いと判断できるため(イベント予測部121)、ACC(Adaptive Cruise Control)の減速タイミングを早める等といった走行制御の調整がリアルタイムにできるようになる(走行制御部122)。
<Event prediction by the event prediction unit and command setting by the driving control unit>
For example, assuming the situation shown in FIG. 4, the vehicle 41A cuts in in front of the overtaking vehicles 41A and 41B that have been cut in in front of the own vehicles 40A and 40B (own vehicle traveling lane). It is assumed that an event scenario in which 41B suddenly brakes is already stored by the storage unit 120. When the vehicle is driving in the second lane of a three-lane road while the actual vehicle is running, the overtaking vehicle in the third lane is approaching, and the vehicle is also driving in the first lane. When the scene in which the current own vehicle is placed is collated with the past event scenario, it can be determined that there is a high possibility that an event in which the preceding vehicle cuts in and suddenly decelerates occurs (event prediction unit 121). It becomes possible to adjust the traveling control in real time, such as accelerating the deceleration timing of the ACC (Adaptive Cruise Control) (travel control unit 122).
<実施例2(走行制御装置)の作用効果>
 以上で説明したように、本実施例2の走行制御装置(情報生成装置)101は、前記イベント情報が付与されたイベントシナリオを記憶する記憶部120と、現在の自車両の走行情報に基づいて、前記現在の自車両が置かれているシーンを過去のイベントシナリオ(記憶部120)に照合することによって、前記現在の自車両に将来発生する(確率が高い)イベントを予測するイベント予測部121と、前記イベント予測部121で予測したイベント(予測イベント)又は予測したイベントの発生確率の少なくとも一つに基づいて、前記現在の自車両の走行制御を行う走行制御部122と、を備える。
<Operational effect of Example 2 (travel control device)>
As described above, the travel control device (information generation device) 101 of the second embodiment is based on the storage unit 120 that stores the event scenario to which the event information is assigned and the current travel information of the own vehicle. , The event prediction unit 121 that predicts an event that will occur in the current own vehicle in the future (high probability) by collating the scene in which the current own vehicle is placed with a past event scenario (storage unit 120). And the travel control unit 122 that controls the travel of the current own vehicle based on at least one of the event predicted by the event prediction unit 121 (prediction event) or the probability of occurrence of the predicted event.
 本実施例2によれば、上記した実施例1の作用効果に加えて、生成されたテストシナリオ(イベント毎のイベントシナリオ)に走行中の自車両のシーンを照合することで、危険領域なシーンだけでなく、常用領域のシーンも含めて様々なシーンに適切に、かつ、リアルタイムに自車両の走行制御を行うことができる。 According to the second embodiment, in addition to the operation and effect of the first embodiment described above, the scene of the own vehicle in motion is collated with the generated test scenario (event scenario for each event) to create a dangerous scene. Not only that, it is possible to appropriately and in real time control the running of the own vehicle in various scenes including the scene in the regular area.
 以上、本発明の実施例について図面を用いて記述してきたが、具体的な構成は上記した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to the above-described embodiments, and even if there are design changes and the like within a range that does not deviate from the gist of the present invention. , They are included in the present invention.
 例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置きかえることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 For example, the above-mentioned examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
1、1B:車両(自車両)、1A:ドライビングシミュレータ、2:走行ログ、3:シナリオ生成装置(情報生成装置)、4:ログ解析部、5、105:自車レーン解析部、6、106:周囲物体レーン解析部、7、107:相対位置解析部、8、108:フォーメーション解析部、9、109:フォーメーション形成部、10、110:フォーメーション遷移判断部、11、111:データ抽出部、12、112:抽出データ、13、113:イベント情報付与部、14、114:車線変更抽出部、15、115:加速度抽出部、16、116:イベント判断部、17、117:シナリオ定義ファイル、18:フォーマット変換部、19、119:イベントシナリオ、40、40A、40B:自車両、41、41A、41B、42、42A、42B:周囲物体、401:初期フォーメーション、402:第2フォーメーション、403:第3フォーメーション、90、91:抽出データ、92:シナリオ定義ファイル、101:走行制御装置(情報生成装置)、102:情報受信部、104:情報解析部、120:記憶部、121:イベント予測部、122:走行制御部 1, 1B: Vehicle (own vehicle), 1A: Driving simulator 2: Driving log 3: Scenario generation device (information generation device) 4: Log analysis unit 5, 105: Own vehicle lane analysis unit, 6, 106 : Surrounding object lane analysis unit, 7, 107: Relative position analysis unit, 8, 108: Formation analysis unit, 9, 109: Formation formation unit, 10, 110: Formation transition determination unit, 11, 111: Data extraction unit, 12 , 112: Extracted data, 13, 113: Event information addition unit, 14, 114: Lane change extraction unit, 15, 115: Acceleration extraction unit, 16, 116: Event judgment unit, 17, 117: Scenario definition file, 18: Format converter, 19, 119: Event scenario, 40, 40A, 40B: Own vehicle, 41, 41A, 41B, 42, 42A, 42B: Surrounding object, 401: Initial formation, 402: Second formation, 403: Third Formation, 90, 91: Extracted data, 92: Scenario definition file, 101: Travel control device (information generation device), 102: Information receiving unit, 104: Information analysis unit, 120: Storage unit, 121: Event prediction unit, 122 : Driving control unit

Claims (8)

  1.  自車両の走行情報に基づいて、前記自車両が走行するシーンのシナリオを生成する情報生成装置において、
     前記自車両の走行情報から、前記自車両の周囲の予め任意に分割された領域ごとに周囲物体が割り当てられたフォーメーションフォーマットに従って、前記自車両と前記周囲物体のレイアウトを抽象化したフォーメーションを形成するフォーメーション形成部と、
     前記周囲物体のフォーメーションが変化するイベントに対応するシナリオを生成するために、前記自車両の走行情報において、前記周囲物体のフォーメーションが変化するイベントが発生したか否かを判断するフォーメーション遷移判断部と、を備えることを特徴とする情報生成装置。
    In the information generation device that generates a scenario of the scene in which the own vehicle travels based on the travel information of the own vehicle.
    From the traveling information of the own vehicle, a formation that abstracts the layout of the own vehicle and the surrounding object is formed according to a formation format in which a peripheral object is assigned to each previously arbitrarily divided area around the own vehicle. Formation formation part and
    In order to generate a scenario corresponding to an event in which the formation of the surrounding object changes, a formation transition determination unit for determining whether or not an event in which the formation of the surrounding object changes has occurred in the traveling information of the own vehicle. An information generator, characterized in that it comprises.
  2.  請求項1に記載の情報生成装置において、
     前記イベントが発生した場合に、前記イベントの発生タイミングに基づいて、前記イベントに対応するシナリオを生成するのに用いる前記自車両の走行情報の抽出範囲を決め、前記抽出範囲のデータを抽出するデータ抽出部を備えることを特徴とする情報生成装置。
    In the information generator according to claim 1,
    When the event occurs, data for extracting the data in the extraction range by determining the extraction range of the traveling information of the own vehicle used to generate the scenario corresponding to the event based on the occurrence timing of the event. An information generation device characterized by having an extraction unit.
  3.  請求項2に記載の情報生成装置において、
     前記データ抽出部は、前記イベントが発生した場合に、前記イベントの発生タイミングの前後で前記自車両の走行情報を分割してデータを抽出することを特徴とする情報生成装置。
    In the information generator according to claim 2,
    The data extraction unit is an information generation device, characterized in that, when the event occurs, the travel information of the own vehicle is divided and data is extracted before and after the event occurrence timing.
  4.  請求項2に記載の情報生成装置において、
     前記自車両の走行情報の抽出範囲には、前記イベントの発生タイミングの一つもしくは複数を含むことを特徴とする情報生成装置。
    In the information generator according to claim 2,
    An information generation device characterized in that the extraction range of travel information of the own vehicle includes one or a plurality of occurrence timings of the event.
  5.  請求項2に記載の情報生成装置において、
     前記データ抽出部で抽出されたデータにおける前記周囲物体の挙動情報が予め定義されたイベント条件に該当するか否かを判断することで、前記抽出されたデータに対してシナリオのイベント情報を付与するイベント情報付与部を備えることを特徴とする情報生成装置。
    In the information generator according to claim 2,
    By determining whether or not the behavior information of the surrounding object in the data extracted by the data extraction unit corresponds to the predefined event conditions, the event information of the scenario is given to the extracted data. An information generation device including an event information addition unit.
  6.  請求項5に記載の情報生成装置において、
     前記周囲物体の挙動情報には、前記周囲物体の車線変更有無、速度の変化、又は加速度の変化の少なくとも一つを含むことを特徴とする情報生成装置。
    In the information generator according to claim 5,
    The information generation device, characterized in that the behavior information of the surrounding object includes at least one of the presence / absence of a lane change, a change in speed, or a change in acceleration of the surrounding object.
  7.  請求項5に記載の情報生成装置において、
     前記イベント情報が付与されたイベントシナリオを記憶する記憶部と、
     現在の自車両の走行情報に基づいて、前記現在の自車両が置かれているシーンを過去のイベントシナリオに照合することによって、前記現在の自車両に将来発生するイベントを予測するイベント予測部と、
     前記イベント予測部で予測したイベント又は予測したイベントの発生確率の少なくとも一つに基づいて、前記現在の自車両の走行制御を行う走行制御部と、を備えることを特徴とする情報生成装置。
    In the information generator according to claim 5,
    A storage unit that stores the event scenario to which the event information is assigned, and a storage unit.
    An event prediction unit that predicts future events in the current own vehicle by collating the scene in which the current own vehicle is placed with the past event scenario based on the current running information of the own vehicle. ,
    An information generation device including a travel control unit that controls the travel of the current own vehicle based on at least one of the event predicted by the event prediction unit and the probability of occurrence of the predicted event.
  8.  請求項1に記載の情報生成装置において、
     前記自車両の走行情報には、前記自車両の実車走行又はドライビングシミュレータによって取得される走行ログ、或いは、実車走行中に前記自車両で取得される走行情報を含むことを特徴とする情報生成装置。
    In the information generator according to claim 1,
    The travel information of the own vehicle includes a travel log acquired by the actual vehicle travel of the own vehicle or a driving simulator, or a travel information acquired by the own vehicle during the actual vehicle travel. ..
PCT/JP2021/034453 2020-12-18 2021-09-21 Information generation device WO2022130718A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021005100.8T DE112021005100T5 (en) 2020-12-18 2021-09-21 INFORMATION GENERATING DEVICE
JP2022569714A JP7470213B2 (en) 2020-12-18 2021-09-21 Information Generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-210425 2020-12-18
JP2020210425 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022130718A1 true WO2022130718A1 (en) 2022-06-23

Family

ID=82059698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034453 WO2022130718A1 (en) 2020-12-18 2021-09-21 Information generation device

Country Status (3)

Country Link
JP (1) JP7470213B2 (en)
DE (1) DE112021005100T5 (en)
WO (1) WO2022130718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476412B2 (en) 2022-08-17 2024-04-30 ティーユーヴィー シュード コリア リミテッド Vehicle crash test method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215790A (en) * 2015-05-19 2016-12-22 株式会社デンソー Lane change plan generating device, lane change plan generating method
JP2017058761A (en) * 2015-09-14 2017-03-23 株式会社デンソー Driving assistance device and driving assistance program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043785B2 (en) 2017-10-25 2022-03-30 株式会社Ihi Information generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215790A (en) * 2015-05-19 2016-12-22 株式会社デンソー Lane change plan generating device, lane change plan generating method
JP2017058761A (en) * 2015-09-14 2017-03-23 株式会社デンソー Driving assistance device and driving assistance program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476412B2 (en) 2022-08-17 2024-04-30 ティーユーヴィー シュード コリア リミテッド Vehicle crash test method

Also Published As

Publication number Publication date
JP7470213B2 (en) 2024-04-17
DE112021005100T5 (en) 2023-10-12
JPWO2022130718A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
US10636295B1 (en) Method and device for creating traffic scenario with domain adaptation on virtual driving environment for testing, validating, and training autonomous vehicle
US20170132117A1 (en) Method and device for generating test cases for autonomous vehicles
WO2013108406A1 (en) Vehicle behavior prediction device and vehicle behavior prediction method, and driving assistance device
JP2018113015A (en) Autonomous system validation method
Lengyel et al. Conflicts of automated driving with conventional traffic infrastructure
CN114647954B (en) Simulation scene generation method, device, computer equipment and storage medium
So et al. Generating traffic safety test scenarios for automated vehicles using a big data technique
US20190130760A1 (en) In-vehicle device, information processing system, and information processing method
CN114091223A (en) A construction method and simulation equipment for simulating traffic flow
CN114117742A (en) Automatic driving scene generation method, device, electronic device and storage medium
KR20200082672A (en) Simulation method for autonomous vehicle linked game severs
KR20210065409A (en) Method and Apparatus for Collision Avoidance Trajectory Planning of Autonomous Vehicle
CN114692289A (en) Automatic driving algorithm testing method and related equipment
WO2022130718A1 (en) Information generation device
Oboril et al. Mtbf model for avs-from perception errors to vehicle-level failures
JP6689477B2 (en) In-vehicle device, information processing method, and information processing program
KR20200026031A (en) Deep learning based traffic signal control method and device for rlr detection and accident prevention
KR102766063B1 (en) Vils system and vils test method
Wang et al. Analysis and Prevention of Chain Collision in Traditional and Connected Vehicular Platoon
US10346690B2 (en) Driving assistance systems and method implemented in such a system
Kindo et al. Theory of collision avoidance capability in automated driving technologies
Li et al. Driver braking behaviour under near-crash scenarios
Enayati et al. Resilient Multi-range Radar Detection System for Autonomous Vehicles: A New Statistical Method
Riegl et al. Parameterization of automated driving functions in virtual environments based on characteristic test scenarios
JP7658514B2 (en) Control specification definition method, vehicle control device, and control specification definition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569714

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021005100

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906083

Country of ref document: EP

Kind code of ref document: A1