WO2022118398A1 - Mobile information terminal and facial expression monitoring method - Google Patents
Mobile information terminal and facial expression monitoring method Download PDFInfo
- Publication number
- WO2022118398A1 WO2022118398A1 PCT/JP2020/044867 JP2020044867W WO2022118398A1 WO 2022118398 A1 WO2022118398 A1 WO 2022118398A1 JP 2020044867 W JP2020044867 W JP 2020044867W WO 2022118398 A1 WO2022118398 A1 WO 2022118398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- facial expression
- user
- target
- feature amount
- information terminal
- Prior art date
Links
- 230000008921 facial expression Effects 0.000 title claims abstract description 274
- 238000000034 method Methods 0.000 title claims description 19
- 238000012544 monitoring process Methods 0.000 title claims description 13
- 230000006866 deterioration Effects 0.000 claims description 28
- 238000003384 imaging method Methods 0.000 abstract description 4
- 238000004891 communication Methods 0.000 description 27
- 230000006872 improvement Effects 0.000 description 21
- 238000004458 analytical method Methods 0.000 description 16
- 230000037303 wrinkles Effects 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 210000004709 eyebrow Anatomy 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 8
- 238000003702 image correction Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000001815 facial effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 241001417519 Priacanthidae Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- the present invention relates to a mobile information terminal and a facial expression monitoring method, and more particularly to a mobile information terminal and a facial expression monitoring method having a function of photographing a user or the like and a function of notifying the user.
- Patent Document 1 describes "a setting means for setting for each person whether or not to record the image data when the person in the image data has a predetermined expression, an imaging means for obtaining the image data by imaging, and an image.
- a digital camera provided with a control means for determining whether or not to record image data based on the setting contents of the setting means for a person is described. That is, the facial expression is analyzed at the time of shooting with the camera, and a smile or one's favorite face is recorded.
- a display step for displaying a plurality of facial expressions with different facial expressions, a step for designating a score for the facial expression of the facial image displayed in the display step, and a score specified above are used.
- a method of registering a facial expression database including a step of associating a relationship with a numerical value indicating the facial expression of the facial image and storing it in the facial expression database is described. That is, it is shown that a face image having a good facial expression can be easily selected and extracted from a plurality of images.
- Patent Documents 1 and 2 describe that a good face and a good facial expression can be easily selected and extracted and recorded, they are unconsciously used when a mobile information terminal such as a smartphone is used for a long time. It is not suggested without any consideration for having a bad expression.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a mobile information terminal and a facial expression monitoring method that contribute to improving the facial expression of a user who is using the mobile information terminal.
- the present invention includes the configuration described in the claims.
- the present invention is a portable information terminal, which is connected to a camera, a display, a memory, a notification member for outputting notification information, and the camera, the display, and the memory, respectively.
- the memory includes a target image in which the target user's facial expression is captured, and the processor shows the characteristics of the target user's facial expression captured in the target image.
- the target feature amount is analyzed, and when the information is displayed on the screen of the display, the camera reads the target image captured by the user's face, and the feature of the facial expression of the user captured by the target image is captured.
- the indicated target feature amount is analyzed, the target feature amount and the deviation amount of the target feature amount are calculated, and the deviation amount is equal to or higher than a predetermined facial expression determination threshold for determining that the user's facial expression has deteriorated.
- the notification member is made to output the notification information based on the result of the determination.
- FIG. 1 is a diagram schematically showing a processing outline of the smartphone 100 according to the present embodiment.
- the smartphone 100 includes an in-camera 101, a display 102, a speaker 103, a microphone 104, a vibrator 105, and a touch panel 106.
- the smartphone 100 captures the face of the user 10 looking at the screen of the display 102 by the in-camera 101 and captures it as a face image in the smartphone 100.
- the user selects a target image 111 consisting of a “good facial expression” face image from the user's own face image displayed on the display 102 and incorporates it into the smartphone 100. sign up.
- the smartphone 100 photographs the face of the user 10 who is gazing at the display 102 with the in-camera 101.
- the target image 112 which is a face image while the display 102 is being visually recognized and is the target of the facial expression monitoring process, is captured in the smartphone 100.
- the facial expression feature amount (hereinafter referred to as "feature amount”) that quantitatively represents each feature forming the facial expression is analyzed and calculated. Further, for example, a feature is obtained in which the evaluation value of the facial expression can be judged to be a better facial expression than the registered image. If it is judged that there is no wrinkle if it is in a wrinkled state or a wrinkled state of the face, as a better facial expression, the amount of deviation between the characteristic amount of "good facial expression” and the characteristic amount of "facial expression at the time of shooting" is Even if it is equal to or higher than the facial expression determination threshold, a warning may not be issued or a display indicating that the direction is shifted may be displayed.
- the smartphone 100 quantitatively analyzes and calculates from "good facial expressions" of wide open eyes to "bad facial expressions” such as bind-off eyes and slanted eyes as feature quantities.
- the smartphone 100 has a feature amount of the target image 111 (a feature amount of a "good expression”, hereinafter referred to as a "target feature amount”) and a feature amount of the target image 112 (a feature amount of a "expression at the time of shooting", which is the following.
- a feature amount of the target image 111 a feature amount of a "good expression", hereinafter referred to as a "target feature amount”
- a feature amount of the target image 112 a feature amount of a "expression at the time of shooting
- the smartphone 100 emits a warning voice 115 such as "the facial expression is getting worse” from the speaker 103. Further, the smartphone 100 generates vibration by the vibrator 105 to convey a warning to the user 10. Therefore, the display 102, the speaker 103, and the vibrator 105 correspond to the notification member.
- the facial expression determination threshold value is set to the amount of deviation of the feature amount that should be determined to have changed from "good facial expression” to "bad facial expression”.
- the smartphone 100 displays the character information 116 such as "laughing” instructing the display 102 to improve the facial expression and the icon 117 indicating the face for improving the facial expression together with or instead of the warning.
- the smartphone 100 is a voice instructing facial expression improvement such as “laughing”, “big eyes”, “raising the corner of the mouth”, “relaxing the power between the eyebrows", and “tightening the face” from the speaker 103. It emits 118, 119, 120, 121, 122.
- the user can be notified of the warning information of the facial expression deterioration and the instruction information instructing the improvement of the facial expression, and the user who is not aware of the deterioration of the facial expression. It is possible to inform the person of the deterioration of facial expression and instruct the improvement of facial expression.
- the smartphone 100 may notify the user of warning information of facial expression deterioration or instruction information for instructing improvement of facial expression when the state in which the target feature amount deviates from the target feature amount by the facial expression determination threshold or more exceeds the notification determination time. .. That is, the notification information is output only when both the facial expression determination threshold value and the notification determination time are satisfied.
- the notification determination time may be set to a time during which it is determined that the facial expression deterioration state has continued to some extent without being notified only when the temporary or momentary deviation between the two feature quantities exceeds the facial expression determination threshold value.
- the target feature amount does not deviate from the target feature amount by the facial expression judgment threshold or more, in other words, when the user is visually recognizing the screen in a state where the user has not reached a “good facial expression” or a “bad facial expression” yet.
- FIG. 2 is a diagram illustrating the operation of the smartphone 100 according to the present embodiment.
- Graphs 1 to 4 in FIG. 2 show a deviation amount ⁇ fa (that is, a quantitatively large “good facial expression” target for the target feature amount of the “facial expression at the time of shooting” with respect to the target feature amount of the “good facial expression” in each feature.
- the vertical axis is the difference between the feature amount and the target feature amount of the "facial expression at the time of shooting"
- the horizontal axis is from "good facial expression” such as face 201 to "bad facial expression” such as faces 202 and 203. It shows the "expression at the time of shooting” in.
- Graph 1 shows the characteristic line 211 when the characteristic example forming the facial expression is the state of the eyes.
- the feature amount is the size of the eye or the "good facial expression" of the wide open eye, for example, when the eyes are turned down, the line of sight is directed downward and the pupil is covered with the half eyelid, resulting in a "bad facial expression".
- the outer corners of the eyes are raised, the impression of a scary face becomes stronger and the face becomes “bad”.
- the "facial expression at the time of shooting” approaches the "bad facial expression” from the "good facial expression” due to the bind-off eyes and slanted eyes, and the target feature amount deviates from the target feature amount by the facial expression determination threshold of 212 or more.
- the measurement of the elapsed time is started.
- the user is notified of the warning information of the deterioration of the facial expression and the instruction information instructing the improvement of the facial expression such as "enlarge the eyes”.
- Graph 2 shows the characteristic line 221 when the characteristic example forming the facial expression is the state of the mouth.
- a "good facial expression” that is obediently closed, for example, when the mouth is tied in a syllabary, the corners of the mouth are lowered, giving the impression of being nervous, dissatisfied, and unhappy, resulting in a "bad facial expression.”
- the mouth is wide open, it will look sloppy and give a "bad expression”.
- the “facial expression at the time of shooting” approaches the "bad facial expression” due to the character mouth from "good facial expression” or the wide open mouth, and the target feature amount is the facial expression judgment threshold 222 or more than the target feature amount.
- the measurement of the elapsed time is started.
- the user is notified of warning information of facial expression deterioration and instruction information instructing the improvement of facial expression such as "raise the corner of the mouth”.
- Graph 3 shows the characteristic line 231 when the characteristic example forming the facial expression is the state of wrinkles between the eyebrows.
- the "facial expression at the time of shooting” approaches “bad facial expression” depending on the state of wrinkles between the eyebrows from "good facial expression”
- the target feature amount deviates from the target feature amount by the facial expression judgment threshold of 232 or more.
- the state 233 is reached, the measurement of the elapsed time is started.
- the elapsed time exceeds the notification judgment time, the user is notified of the warning information of the deterioration of the facial expression and the instruction information instructing the improvement of the facial expression such as "relax the force between the eyebrows”.
- Graph 4 shows a characteristic line 241 when the characteristic example forming the facial expression is a wrinkled state of the face.
- the "facial expression at the time of shooting” approaches “bad facial expression” depending on the state of wrinkles on the face from "good facial expression”, and the target feature amount deviates from the target feature amount by the facial expression judgment threshold 242 or more.
- the state 243 is reached, the measurement of the elapsed time is started.
- the user When the elapsed time exceeds the notification judgment time, the user is notified of the warning information of the deterioration of the facial expression and the instruction information instructing the improvement of the facial expression such as "tighten the face".
- the double chin is regarded as one of the facial expressions, and the change in the chin line representing the double chin is captured from the photographed face, and the double chin is not formed.
- the deviation of the feature amount from the "good facial expression” exceeds the facial expression judgment threshold, a warning or instruction is given to pay attention to the posture.
- the facial expression determination threshold value may be initially set in advance, or may be changed at any time to the optimum setting according to the shooting situation or state. Further, the facial expression determination threshold value for each feature may be set to a different threshold value as shown in FIG. 2, or may be set to the same threshold level for a plurality of features. Further, when the facial expression determination threshold value is exceeded for each feature, the facial expression deterioration warning information or the facial expression improvement instruction information may be notified, or when the facial expression deterioration warning information or the facial expression deterioration instruction information is exceeded for a plurality of features. You may notify the instruction information of facial expression improvement.
- FIG. 3 is a functional block diagram of a configuration example of the smartphone 100 according to the present embodiment.
- the smartphone 100 includes an in-camera 101, a display 102, a speaker 103, a microphone 104, a vibrator 105, a touch panel 106, an out-camera 107, a timer 108, a processor 310, a memory 320, and a communication device 340, which are connected to each other via a bus 350. Connected to and configured.
- Each of the in-camera 101 and the out-camera 107 captures the peripheral visual field, and the light incident from the lens is converted into an electric signal by an image sensor to acquire an image.
- the in-camera 101 is provided on the same surface as the screen of the display 102 in the smartphone 100.
- the in-camera 101 photographs the face of the user 10 who is looking at the screen, and captures the face image in the smartphone 100.
- the out-camera 107 is provided on the surface (rear surface) of the smartphone 100 on the side opposite to the screen of the display 102.
- the display 102 is composed of a liquid crystal panel or the like, and displays images and videos, as well as notification information to the user 10, such as warning information on deterioration of facial expressions and instruction information for improving facial expressions, and icons for starting applications and various status displays on the screen. Display on.
- the speaker 103 emits various output information (including notification information and instruction information) in the smartphone 100 to the outside by voice.
- the microphone 104 collects voices from the outside and voices of the user 10 itself, converts them into voice signals, and captures them in the smartphone 100.
- the operation information by the voiced sound from the user 10 can be taken into the smartphone 100, and the operation for the operation information can be executed conveniently.
- the vibrator 105 generates vibration under the control of the processor 310, and converts the notification information to the user 10 transmitted by the smartphone 100 into vibration. When the facial expression deteriorates, vibration can be generated to notify the user 10.
- the touch panel 106 is laminated on the screen of the display 102.
- the touch panel 106 is composed of, for example, a capacitive touch panel, and can input information that the user 10 wants to input by approaching or touching (hereinafter, referred to as touch) with a finger, a stylus, or the like.
- the touch panel 106 is an example of an operation input member.
- the operation input member is, for example, a keyboard or key button communicated and connected via a communication device 340, a voice input device in which the user 10 utters a voice indicating an input operation, collects the sound with the microphone 104, and converts it into operation information, or a user. It may be a gesture input device that captures and analyzes the gesture of.
- the processor 310 is composed of a CPU, an MPU, etc., and constitutes a controller of the smartphone 100.
- the processor 310 reads and executes the operating system (Operating System: OS) 322 stored and stored in the memory 320 as the control program 321 and the operation control application program 323 in the work area of the memory 320, respectively. It controls the components and realizes the functions of the OS 322 and the application program 323.
- OS Operating System
- the processor 310 executes the application program 323, it constitutes each functional block of the feature amount analysis unit 311, the target image registration unit 312, the feature amount comparison unit 313, the notification unit 314, and the face image correction unit 315.
- the feature amount analysis unit 311 analyzes the feature amount that quantitatively represents each feature of the facial expression from the face image, and the feature amount (target feature amount) of the target image 111 and the feature amount (target feature amount) of the target image 112. Is calculated.
- the target image registration unit 312 registers the selected “good facial expression” face image as the target image 111.
- the user 10 may operate the touch panel 106 to select and register the target image 111, or may automatically select and register the target image 111 from the captured or stored moving images.
- user selection it is possible to select a favorite "good facial expression” by the user's subjectivity, and in the case of automatic selection, it is possible to objectively select a "good facial expression” without the user being aware of it.
- the feature amount comparison unit 313 compares the target feature amount and the target feature amount, and calculates the deviation amount ⁇ fa of these feature amounts.
- the notification unit 314 provides warning information for warning when the facial expression deteriorates, instruction information for promoting improvement toward the "good facial expression", and facial expression information indicating the perspective state of the "good facial expression” such as the speaker 103. It is output from the notification member of.
- the face image correction unit 315 corrects the target image 112 so that it can be easily compared with the target image 111. Specifically, in the face image correction unit 315, the face captured in the target image 112 is oriented diagonally or tilted, which is different from the orientation of the face having a “good facial expression” captured in the target image 111. In this case, the target image 112 is corrected so that the orientation of the photographed face is the same as the orientation of the face of the target image 111.
- the facial expression of the face image corrected by the face image correction unit 315 is regarded as the "facial expression at the time of shooting", and the feature amount analysis unit 311 analyzes the feature amount. Even if there is, it becomes possible to make a more accurate comparison between the target feature amount and the target feature amount.
- the memory 320 is composed of a non-volatile storage device or the like, and stores various programs 321 and information data 324 handled by the processor 310 or the like.
- the information data 324 includes face image information 325 including the target image 111 and the target image 112, feature amount information 326 showing the result of the feature amount analysis unit 311 analyzing each of the target image 111 and the target image 112, and facial expression determination threshold information 327. , Notification judgment time information 328, warning instruction information 329 indicating the contents of facial expression deterioration warning and facial expression improvement instruction, facial expression indicating how close the "expression at the time of shooting" is to the registered "good facial expression”. Information 330 and the like are stored.
- the communication device 340 is a communication interface that performs wireless communication with other mobile information terminals or the like by short-range wireless communication, wireless LAN, or base station communication, and provides a communication processing circuit, an antenna, and the like corresponding to various predetermined communication interfaces. include.
- the communication device 340 receives, for example, a face image or video of the user 10's "good facial expression" on another personal digital assistant or an external information server, or receives a face image of the user 10's "facial expression at the time of shooting". Send it to other personal digital assistants.
- short-range wireless communication for example, communication using an electronic tag may be used.
- Bluetooth registered trademark
- IrDA Infrared Data Association, registered trademark
- Zigbee registered trademark
- HomeRF. Home Radio Frequency, registered trademark
- Wi-Fi registered trademark
- long-distance wireless communication such as W-CDMA (Wideband Code Division Multiple Access, registered trademark) or GSM (Global System for Mobile Communications) may be used.
- W-CDMA Wideband Code Division Multiple Access, registered trademark
- GSM Global System for Mobile Communications
- the communication device 340 may use other methods such as optical communication and sound wave communication as a means of wireless communication.
- FIG. 4 is a flowchart illustrating the basic operation of the smartphone 100 according to the present embodiment.
- the target image registration unit 312 accepts the selection of the user 10, or the target image registration unit 312 automatically selects and registers the target image 111 (S401).
- the in-camera 101 photographs the face of the user 10 and generates the target image 112 (S402: Yes).
- the smartphone 100 starts displaying the display data on the screen of the display 102
- the smartphone 100 considers that the user 10 has started to visually recognize the screen, and also starts taking an image of the in-camera 101.
- the smartphone 100 stands by when the display data is not displayed on the screen (S402: No).
- the feature quantity analysis unit 311 executes face recognition processing on the image captured by the in-camera 101, and if the face is captured, the feature quantity analysis and calculation is started with the image as the target image 112.
- the feature amount analysis unit 311 analyzes the target image 111 and calculates the target feature amount.
- the feature amount analysis unit 311 returns from step S410 described later and executes this step again, the feature amount analysis of the target image 111 is omitted. Further, the feature amount analysis unit 311 calculates the target feature amount by performing the feature amount analysis every time the target image 112 is updated or every predetermined frame (S403).
- the feature amount comparison unit 313 compares the target feature amount and the target feature amount, and calculates the deviation amount ⁇ fa (S403).
- the feature amount comparison unit 313 determines whether the deviation amount ⁇ fa is equal to or greater than the facial expression determination threshold value (S404). If affirmative (S404: Yes), the measurement of the elapsed time T is started (S405).
- the feature amount comparison unit 313 determines whether the elapsed time T is equal to or longer than the notification determination time (S405). If affirmative (S405: Yes), the notification unit 314 notifies the user 10 of the warning information of facial expression deterioration and the instruction information of facial expression improvement (S406).
- processor 310 continues the facial expression monitoring process (S402 to S405) and the notification process (S406) following the denial in step S404, the denial in step S405, or S406 (S407: Yes), the processor returns to step S403.
- the processor 310 terminates a series of processes.
- the "end" case is, for example, a case where the display 102 is finished or a case where the main power of the smartphone 100 is turned off.
- the target feature amount of the "facial expression during shooting" captured by the target image 112 deviates from the target feature amount of the "good facial expression” captured by the target image 111 by the facial expression determination threshold or more.
- the user can be notified of the facial expression deterioration warning and the facial expression improvement instruction only when the shifted state elapses for more than the notification determination time. Therefore, when the user is visually recognizing the smartphone 100 for a long time and continues to have an unfavorable facial expression for a long time, it is possible to notify the state and always induce a good facial expression, and a bad facial expression is fixed. You can solve this problem and achieve a good facial expression without being aware of it.
- the second embodiment is an embodiment in which the feature amount is analyzed after correcting the target image 112.
- the second embodiment will be described with reference to FIGS. 5A and 5B.
- 5A and 5B are diagrams schematically showing a processing outline of the second embodiment.
- FIG. 5A shows a case where the user 10 is visually recognizing the smartphone 100 from an angle.
- the smartphone 100 photographs the face of the user 10 who is gazing at the display 102 with the in-camera 101, and captures the facial image 501 of the "facial expression at the time of photographing".
- the face image correction unit 315 determines the orientation of the face of the face image 501, and corrects the image so as to be the same as the orientation of the face of the target image 111 facing the front.
- the feature amount analysis unit 311 analyzes the target feature amount by using the corrected image of the face image 501 as the target image 502. Therefore, even if the face of the face image 501 obtained by capturing the "facial expression at the time of shooting" is oriented diagonally, the "facial expression at the time of shooting” and the “good facial expression” are obtained by correcting the direction of the face and keeping the same face orientation. It is possible to analyze each feature amount of "" and to compare and discriminate facial expression feature amounts more accurately.
- FIG. 5B shows a case where the user 10 tilts his head and visually recognizes the smartphone 100.
- the smartphone 100 photographs the face of the user 10 who is gazing at the display 102 with the in-camera 101, and captures the facial image 503 of the "facial expression at the time of photographing".
- the face image correction unit 315 determines the inclination of the face of the face image 503, and corrects the image so as to match the inclination of the face of the target image 111 facing the front.
- the feature amount analysis unit 311 uses the image corrected by the face image 503 as the target image 504 and analyzes the target feature amount. As a result, the feature amount analysis unit 311 can more accurately compare and discriminate the feature amount of the facial expression.
- the face image correction unit 315 has the facial expression of "expression at the time of photography" and "the facial expression”. It is clear that a similar effect can be obtained by correcting the facial image taken to match the facial condition of "good facial expression".
- the third embodiment is an embodiment in which the smartphone 100 automatically updates the target image 111 in which a face with a “good facial expression” is captured.
- FIG. 6 is a flowchart illustrating the operation of the smartphone 100 according to the third embodiment.
- step S403 it is determined whether or not the photographed facial expression is a "good facial expression” rather than the registered "good facial expression” (S601).
- the feature amount comparison unit 313 determines that the registered "good expression” is a "good expression”.
- the target image registration unit 312 uses the target image 112 to display the target image. 111 is updated and registered (S602).
- step S404 After the update registration of the face image of "good facial expression” (S602), the process proceeds to step S404 as in the case where the target image 112 is not "good facial expression” even more than the target image 111 (S601: No).
- the image when it is determined that the image has a better "good facial expression” than the registered "good facial expression” at the time of user shooting, the image is updated and registered to have a better "good facial expression”. , Can lead to even better "good facial expressions”.
- the fourth embodiment is an embodiment that notifies how far away the "good facial expression” in which the "facial expression at the time of shooting" is registered is.
- FIG. 7 is a flowchart illustrating the operation of the smartphone 100 according to the fourth embodiment.
- step S404 when the feature amount comparison unit 313 determines in step S404 that the deviation amount ⁇ fa is less than the facial expression determination threshold value (S404: No), the notification unit 314 calculates (1- ⁇ fa)% and (1- ⁇ fa)%. Display information including ⁇ fa)% is output (S701). After that, the process proceeds to step S407.
- FIG. 8 is a diagram showing a screen display example of step S701.
- the display 102 shows “the level of” good facial expression "is now 80%”.
- Character information 801 is displayed.
- the speaker 103 may emit a voice 802 such as "The level of good facial expression is now 80%”.
- the user 10 who is visually recognizing the screen of the smartphone 100 can always numerically know what kind of facial expression his / her facial expression is, and can be aware that it does not lead to a “bad facial expression”. ..
- FIG. 9A is a diagram for supplementarily explaining the icon example shown in FIG. 8, and is a diagram showing another example of the screen display in step S701.
- the notification unit 314 uses an icon 901 representing the state of the facial expression as facial expression information, and displays this on the display 102.
- FIG. 9B is a diagram showing the types of icons.
- icons 901 representing "good facial expression”
- icon 902 representing normal facial expression
- icon 903 representing "bad facial expression”
- the notification unit 314 selects an icon corresponding to (1- ⁇ fa)% and displays it on the screen (S701).
- the "bad facial expression” icon 903 is displayed on the display 102 as needed by the notification unit 314 using it as notification information in step S406.
- the user can easily recognize the facial expression state of his / her face in a relatively small display area that does not interfere with the original information display.
- the fifth embodiment is an embodiment in which the deterioration of the facial expression of the user is monitored from a remote outside.
- FIG. 10 is a diagram schematically showing a usage environment of the smartphone 100 according to the fifth embodiment.
- the smartphone 100 seen by the user 10 is wirelessly connected to another mobile information terminal 20, another mobile information terminal 30, and an external information server 40 seen by the user 11 via a communication device 340.
- Information is transmitted and received by communication, wireless LAN, or base station communication.
- the smartphone 100 receives a facial image or a moving image of the user 10's "good facial expression” stored in each of the other mobile information terminal 20, the other mobile information terminal 30, and the information server 40.
- a facial image or a moving image of the user 10's "good facial expression” stored in each of the other mobile information terminal 20, the other mobile information terminal 30, and the information server 40.
- the user 11 who transmits the face image 112a of the "facial expression at the time of shooting" of the user 10 to the other mobile information terminal 20 and operates the other mobile information terminal 20 can know the facial expression state of the user 10. It is possible to speak out and give guidance as needed. As a result, it is possible to build a system that can monitor the deterioration of the user's facial expression from a remote outside.
- the sixth embodiment is an embodiment that captures the facial expression features of a part of the face and evaluates whether the deviation amount of the feature amount is equal to or larger than the facial expression determination threshold value. For example, in a state where only the upper part of the face can be constantly monitored depending on how the smartphone 100 is held, the condition of the eyes is surely photographed as the part of the upper part of the face that is particularly worrisome, and the facial expression of the eyes is captured. Calculate and evaluate the amount deviation.
- This embodiment is suitable when a head-mounted display (hereinafter referred to as "HMD") is used as a mobile information terminal.
- HMD head-mounted display
- FIG. 11A is a diagram showing the appearance of the HMD1100.
- the HMD1100 is attached to the head of the user 10 and displays a virtual space or a real space on the display 1102.
- the HMD 1100 includes a camera 1101 provided inside, a left headphone 1103 and a right headphone 1104 instead of a speaker, and a left vibrator 1105 and a right vibrator 1106.
- the camera 1101 can capture the peripheral portion of the eyes of the user 10.
- FIG. 11B is a target image 1111 composed of an image of the user's eyes captured by the camera 1101. Further, FIG. 11C is a target image 1112 showing a “good facial expression” of the eyes registered in advance.
- the HMD1100 captures the facial expression of the eye from the target image 1111 and calculates the amount of deviation of the feature amount from the registered target image 1112 with the "good facial expression" of the eye. Then, the HMD1100 displays the warning information of the deterioration of the facial expression and the instruction information of the improvement of the facial expression on the display 1102. Further, the HMD 1100 may emit warning information and facial expression improvement instruction information by voice from the left headphone 1103 and the right headphone 1104. Further, the left vibrator 1105 and the right vibrator 1106, which are in direct contact with the user 10, may transmit the vibration indicating the warning information to the user.
- the user visually recognizes the mobile information terminal for a long time and keeps an unfavorable facial expression for a long time, it is possible to solve the problem that a bad facial expression is fixed, and the facial expression is always good. You can guide and realize a good facial expression without being aware of it. In addition to the state of wrinkles in the eyes, mouth, eyebrows, and face, if it is a feature that forms a facial expression, such as the nose and face orientation, the same action, action, and effect can be obtained by capturing the feature. Needless to say, it will be done.
- a smartphone or a head-mounted display is taken as an example as a mobile information terminal, but the description is not limited to this, and at least it can be applied to a mobile information terminal having a notification function that can take a picture of a user.
- the present invention is not limited to the above-described embodiment, and includes various modifications.
- the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
- it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
- each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function may be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD. However, it may be stored in a device on the communication network.
- SSD Solid State Drive
- control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
- the warning information for the deterioration of the facial expression is notified when the two conditions of the facial expression judgment threshold value or more and the notification judgment time or more are satisfied, but the warning information is notified when the facial expression judgment threshold value or more is satisfied. You may.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Telephone Function (AREA)
- Studio Devices (AREA)
Abstract
This mobile information terminal stores a target image in which the facial expression of a target user is captured, and analyzes a target feature amount indicating the characteristics of the target facial expression of the user captured in the target image. When information is displayed on the screen of a display of a mobile information terminal, an object image obtained by imaging the face of the user who visually recognizes the screen is read, an object feature amount indicating the characteristics of the user's facial expression captured in the object image is analyzed, and a deviation amount between the object feature amount and the target feature amount is calculated, and when it is determined that the deviation amount is equal to or higher than a predetermined facial expression determination threshold value for determining that the user's facial expression has deteriorated, notification information based on the result of determination is output.
Description
本発明は、携帯情報端末及び表情監視方法に係り、特に、ユーザなどを撮影する機能やユーザに通知する機能を有する携帯情報端末及び表情監視方法に関する。
The present invention relates to a mobile information terminal and a facial expression monitoring method, and more particularly to a mobile information terminal and a facial expression monitoring method having a function of photographing a user or the like and a function of notifying the user.
特許文献1には、「画像データ内の人物が所定の表情であるときにその画像データを記録するか否かを人物ごとに設定する設定手段と、撮像により画像データを得る撮像手段と、画像データ中の人物を特定する特定手段と、画像データ中の人物の表情を検出する表情検出手段と、画像データ中の人物が特定され、かつ前記所定の表情が検出されたときに、該特定された人物に対する前記設定手段の設定内容に基づいて画像データの記録の可否を決定する制御手段と、を具備するデジタルカメラ」が記載されている。即ち、カメラ撮影時に表情を解析して、笑顔や自分の好みの顔を記録するというものである。
Patent Document 1 describes "a setting means for setting for each person whether or not to record the image data when the person in the image data has a predetermined expression, an imaging means for obtaining the image data by imaging, and an image. A specific means for identifying a person in data, a facial expression detecting means for detecting a person's facial expression in image data, and a specific means for detecting a person in image data, and when the predetermined facial expression is detected, the specific means is specified. A digital camera provided with a control means for determining whether or not to record image data based on the setting contents of the setting means for a person is described. That is, the facial expression is analyzed at the time of shooting with the camera, and a smile or one's favorite face is recorded.
また、特許文献2には、「複数の異なる表情の顔画像を表示する表示ステップと、上記表示ステップで表示された顔画像の表情に対して点数を指定するステップと、上記指定された点数と上記顔画像の表情を示す数値との関係を対応付けて表情データベースに格納するステップと、を具備する表情データベース登録方法」が記載されている。即ち、複数の画像から好みの良い表情の顔画像を簡単に選択抽出して得ることが示されている。
Further, in Patent Document 2, "a display step for displaying a plurality of facial expressions with different facial expressions, a step for designating a score for the facial expression of the facial image displayed in the display step, and a score specified above are used. A method of registering a facial expression database including a step of associating a relationship with a numerical value indicating the facial expression of the facial image and storing it in the facial expression database is described. That is, it is shown that a face image having a good facial expression can be easily selected and extracted from a plurality of images.
ユーザがスマートフォンなどの携帯情報端末を見ていると、伏し目がちになったり、見えづらい文字をみる為に眉間にしわを寄せたりすることが度々発生し、怖い顔になりやすい。多くのユーザが携帯情報端末を長時間使用し、好ましくない表情を長く続けることにより、印象の悪い表情が定着してしまうという課題がある。
When a user is looking at a mobile information terminal such as a smartphone, he or she often tends to look down or wrinkles between the eyebrows to see characters that are difficult to see, and tends to have a scary face. There is a problem that many users use a mobile information terminal for a long time and keep an unfavorable facial expression for a long time, so that a bad facial expression is fixed.
前記特許文献1、2では、よい顔、良い表情を簡単に選択抽出したり記録したりすることについては記載されているものの、スマートフォンなどの携帯情報端末を長い時間使用している際に無意識に悪い表情をしていることに対しては、何ら考慮なく示唆されていない。
Although Patent Documents 1 and 2 describe that a good face and a good facial expression can be easily selected and extracted and recorded, they are unconsciously used when a mobile information terminal such as a smartphone is used for a long time. It is not suggested without any consideration for having a bad expression.
本発明は、前記課題に鑑みてなされたもので、携帯情報端末を使用中のユーザの表情の改善に寄与する携帯情報端末及び表情監視方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a mobile information terminal and a facial expression monitoring method that contribute to improving the facial expression of a user who is using the mobile information terminal.
上記目的を達成するために、本発明は、請求の範囲に記載の構成を備える。その一例をあげるならば、本発明は、携帯情報端末であって、カメラと、ディスプレイと、メモリと、通知情報を出力する通知部材と、前記カメラ、前記ディスプレイ、及び前記メモリのそれぞれに接続されたプロセッサと、を備え、前記メモリは、目標とするユーザの表情が撮像された目標画像を記憶し、前記プロセッサは、前記目標画像に撮像された前記ユーザの前記目標とする表情の特徴を示す目標特徴量を解析し、前記ディスプレイの画面に情報が表示されている際に、前記カメラが前記ユーザの顔を撮像した対象画像を読み込み、前記対象画像に撮像された前記ユーザの表情の特徴を示す対象特徴量を解析し、前記目標特徴量及び前記対象特徴量のずれ量を算出し、前記ずれ量が前記ユーザの表情が悪化したと判定するために予め定めた表情判定閾値以上となったと判断すると、前記通知部材に対して前記判断の結果に基づく通知情報を出力させる、ことを特徴とする。
In order to achieve the above object, the present invention includes the configuration described in the claims. To give an example, the present invention is a portable information terminal, which is connected to a camera, a display, a memory, a notification member for outputting notification information, and the camera, the display, and the memory, respectively. The memory includes a target image in which the target user's facial expression is captured, and the processor shows the characteristics of the target user's facial expression captured in the target image. The target feature amount is analyzed, and when the information is displayed on the screen of the display, the camera reads the target image captured by the user's face, and the feature of the facial expression of the user captured by the target image is captured. It is said that the indicated target feature amount is analyzed, the target feature amount and the deviation amount of the target feature amount are calculated, and the deviation amount is equal to or higher than a predetermined facial expression determination threshold for determining that the user's facial expression has deteriorated. When the determination is made, the notification member is made to output the notification information based on the result of the determination.
本発明によれば、携帯情報端末を使用中のユーザの表情の改善に寄与する携帯情報端末及び表情監視方法を提供することができる。なお、上記した以外の目的、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a mobile information terminal and a facial expression monitoring method that contribute to improving the facial expression of a user who is using the mobile information terminal. The purposes, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
以下、本発明の実施形態の例を、図面を用いて説明する。携帯情報端末の具体例としてスマートフォンを例にとり説明する。図1は、本実施形態に係るスマートフォン100の処理概要を模式的に示す図である。
Hereinafter, an example of the embodiment of the present invention will be described with reference to the drawings. A smartphone will be described as a specific example of a mobile information terminal. FIG. 1 is a diagram schematically showing a processing outline of the smartphone 100 according to the present embodiment.
<第1実施形態>
図1において、スマートフォン100は、インカメラ101、ディスプレイ102、スピーカー103、マイク104、バイブレータ105、及びタッチパネル106を備える。スマートフォン100は、インカメラ101によりディスプレイ102の画面を見ているユーザ10の顔を撮影しスマートフォン100内に顔画像として取り込む。 <First Embodiment>
In FIG. 1, thesmartphone 100 includes an in-camera 101, a display 102, a speaker 103, a microphone 104, a vibrator 105, and a touch panel 106. The smartphone 100 captures the face of the user 10 looking at the screen of the display 102 by the in-camera 101 and captures it as a face image in the smartphone 100.
図1において、スマートフォン100は、インカメラ101、ディスプレイ102、スピーカー103、マイク104、バイブレータ105、及びタッチパネル106を備える。スマートフォン100は、インカメラ101によりディスプレイ102の画面を見ているユーザ10の顔を撮影しスマートフォン100内に顔画像として取り込む。 <First Embodiment>
In FIG. 1, the
図1の「登録処理」に示すように、ユーザはディスプレイ102に表示されるユーザ自身の顔画像の中から「良い表情」の顔画像からなる目標画像111を選択してスマートフォン100内に取り込んで登録する。
As shown in the “registration process” of FIG. 1, the user selects a target image 111 consisting of a “good facial expression” face image from the user's own face image displayed on the display 102 and incorporates it into the smartphone 100. sign up.
ユーザ10がスマートフォン100の画面を視認する際には、図1の「表情監視処理」に示すように、スマートフォン100は、ディスプレイ102を注視しているユーザ10の顔をインカメラ101で撮影し、ディスプレイ102を視認中の顔画像であって、表情監視処理の対象となる対象画像112をスマートフォン100内に取り込む。
When the user 10 visually recognizes the screen of the smartphone 100, as shown in the “expression monitoring process” of FIG. 1, the smartphone 100 photographs the face of the user 10 who is gazing at the display 102 with the in-camera 101. The target image 112, which is a face image while the display 102 is being visually recognized and is the target of the facial expression monitoring process, is captured in the smartphone 100.
そして、取り込んだ目標画像111及び対象画像112から、顔の表情を形成する各特徴を定量的に表す表情特徴量(以下「特徴量」と記載する。)を解析して算出する。さらに、例えば表情の評価値を、登録された画像よりも良い表情と判断できる特徴が得られた、例えば、目の状態であれば目の大きさ、口の状態であれば口角の角度、眉間のしわの状態及び顔のしわ状態であればしわがない状態と判断した場合はより良い表情として、「良い表情」の特徴量と、「撮影時の表情」の特徴量とのずれ量が、表情判定閾値以上であったとしても警告を出さない、もしくはより方向にずれている旨の表示をしてもよい。
Then, from the captured target image 111 and the target image 112, the facial expression feature amount (hereinafter referred to as "feature amount") that quantitatively represents each feature forming the facial expression is analyzed and calculated. Further, for example, a feature is obtained in which the evaluation value of the facial expression can be judged to be a better facial expression than the registered image. If it is judged that there is no wrinkle if it is in a wrinkled state or a wrinkled state of the face, as a better facial expression, the amount of deviation between the characteristic amount of "good facial expression" and the characteristic amount of "facial expression at the time of shooting" is Even if it is equal to or higher than the facial expression determination threshold, a warning may not be issued or a display indicating that the direction is shifted may be displayed.
例えば、目の状態の場合、スマートフォン100は、大きく開いた目の「良い表情」から、伏し目、つり目などの「悪い表情」までを定量的に特徴量として解析し算出する。
For example, in the case of eye condition, the smartphone 100 quantitatively analyzes and calculates from "good facial expressions" of wide open eyes to "bad facial expressions" such as bind-off eyes and slanted eyes as feature quantities.
口の状態の場合は、素直に閉じた「良い表情」から、への字口、大きく開いた口などの「悪い表情」までを定量的に特徴量として解析し算出する。
In the case of the state of the mouth, it is quantitatively analyzed and calculated as a feature amount from the "good facial expression" that is obediently closed to the "bad facial expression" such as the character mouth and the wide open mouth.
眉間のしわ状態や顔のしわ状態の場合には、しわの出ていない「良い表情」から、多くのしわが出ている「悪い表情」までを定量的に特徴量として解析し算出する。
In the case of wrinkles between the eyebrows and wrinkles on the face, quantitatively analyze and calculate from "good facial expressions" without wrinkles to "bad facial expressions" with many wrinkles.
スマートフォン100は、目標画像111の特徴量(「良い表情」の特徴量であり、以下「目標特徴量」という)及び対象画像112の特徴量(「撮影時の表情」の特徴量であり、以下「対象特徴量」という)を比較し、対象特徴量が目標特徴量より予め定めた表情判定閾値以上ずれたとき、図1の「通知処理」に示すように、ディスプレイ102に「表情が悪化しています」というような警告の文字情報113や、表情悪化の顔を示すアイコン114を表示する。また、スマートフォン100は、スピーカー103から「表情が悪化しています」というような警告の音声115を発する。またスマートフォン100は、バイブレータ105により振動を発生させて、ユーザ10に警告を伝える。従って、ディスプレイ102、スピーカー103、バイブレータ105は通知部材に相当する。表情判定閾値は、「良い表情」から「悪い表情」になったと判断すべき特徴量のずれ量に設定される。
The smartphone 100 has a feature amount of the target image 111 (a feature amount of a "good expression", hereinafter referred to as a "target feature amount") and a feature amount of the target image 112 (a feature amount of a "expression at the time of shooting", which is the following. When the target feature amount deviates from the target feature amount by a predetermined facial expression determination threshold value or more by comparing (referred to as "target feature amount"), the display 102 shows "the facial expression deteriorates" as shown in the "notification process" of FIG. The text information 113 of the warning such as "is" and the icon 114 indicating the face with deteriorated facial expression are displayed. In addition, the smartphone 100 emits a warning voice 115 such as "the facial expression is getting worse" from the speaker 103. Further, the smartphone 100 generates vibration by the vibrator 105 to convey a warning to the user 10. Therefore, the display 102, the speaker 103, and the vibrator 105 correspond to the notification member. The facial expression determination threshold value is set to the amount of deviation of the feature amount that should be determined to have changed from "good facial expression" to "bad facial expression".
スマートフォン100は、警告と共に、又は警告に代えて、ディスプレイ102に表情の改善を指示する「笑って」というような文字情報116や、表情改善に向けた顔を示すアイコン117を表示する。またスマートフォン100は、スピーカー103から「笑って」、「目を大きく」、「口角を上げて」、「眉間の力を抜いて」、「顔をひきしめて」というような表情改善を指示する音声118、119、120、121、122を発する。
The smartphone 100 displays the character information 116 such as "laughing" instructing the display 102 to improve the facial expression and the icon 117 indicating the face for improving the facial expression together with or instead of the warning. In addition, the smartphone 100 is a voice instructing facial expression improvement such as "laughing", "big eyes", "raising the corner of the mouth", "relaxing the power between the eyebrows", and "tightening the face" from the speaker 103. It emits 118, 119, 120, 121, 122.
これにより、対象特徴量が目標特徴量より表情判定閾値以上ずれると、ユーザに表情悪化の警告情報や表情の改善を指示する指示情報を通知することができ、表情の悪化を意識していないユーザに表情の悪化を知らしめて表情の改善を指導することができる。
As a result, when the target feature amount deviates from the target feature amount by the facial expression judgment threshold or more, the user can be notified of the warning information of the facial expression deterioration and the instruction information instructing the improvement of the facial expression, and the user who is not aware of the deterioration of the facial expression. It is possible to inform the person of the deterioration of facial expression and instruct the improvement of facial expression.
また、スマートフォン100は対象特徴量が目標特徴量より表情判定閾値以上ずれる状態が、通知判定時間以上経過すると、ユーザに表情悪化の警告情報や表情の改善を指示する指示情報を通知してもよい。即ち、表情判定閾値と、通知判定時間との二つの条件を共に満たした場合にのみ通知情報を出力する。通知判定時間は、両特徴量の一時的或いは瞬間的なずれが表情判定閾値以上となっただけでは通知がされず、表情悪化状態がある程度継続したと判断する時間に設定すればよい。
Further, the smartphone 100 may notify the user of warning information of facial expression deterioration or instruction information for instructing improvement of facial expression when the state in which the target feature amount deviates from the target feature amount by the facial expression determination threshold or more exceeds the notification determination time. .. That is, the notification information is output only when both the facial expression determination threshold value and the notification determination time are satisfied. The notification determination time may be set to a time during which it is determined that the facial expression deterioration state has continued to some extent without being notified only when the temporary or momentary deviation between the two feature quantities exceeds the facial expression determination threshold value.
これにより、対象特徴量が目標特徴量より表情判定閾値以上ずれていない状態で、言い換えれば、ユーザがほぼ「良い表情」かまだ「悪い表情」に至っていない状態で画面を視認しているとき、何かの拍子に一時的或いは瞬間的に、伏し目、つり目、への字口、大きく開いた口、眉間や顔のしわなどが発生し表情判定閾値以上の特徴量のずれが生じても、表情悪化警告や表情改善指示を不適当に誤ってさせることを防止できる。即ち、閾値を超える「悪い表情」の状態がある程度継続し、表情悪化警告や表情改善指示が本来必要な場合になってから的確に表情悪化警告や表情改善指示を発生させることが可能となる。
As a result, when the target feature amount does not deviate from the target feature amount by the facial expression judgment threshold or more, in other words, when the user is visually recognizing the screen in a state where the user has not reached a “good facial expression” or a “bad facial expression” yet. Even if there is a temporary or momentary shift in the amount of features that exceeds the facial expression judgment threshold due to the occurrence of a bind-off eye, a slanted eye, a wide open mouth, a wrinkle between the eyebrows or the face, etc. It is possible to prevent the facial expression deterioration warning and the facial expression improvement instruction from being improperly mistaken. That is, it is possible to accurately generate a facial expression deterioration warning and a facial expression improvement instruction after the state of "bad facial expression" exceeding the threshold value continues to some extent and the facial expression deterioration warning and the facial expression improvement instruction are originally required.
次に、本実施形態に係るスマートフォン100の動作について、図2を用いて更に詳しく説明する。図2は、本実施形態に係るスマートフォン100の動作を説明する図である。
Next, the operation of the smartphone 100 according to the present embodiment will be described in more detail with reference to FIG. FIG. 2 is a diagram illustrating the operation of the smartphone 100 according to the present embodiment.
図2のグラフ1~4は、各特徴において、「良い表情」の目標特徴量に対する「撮影時の表情」の対象特徴量のずれ量Δfa(即ち、定量的に大の「良い表情」の目標特徴量と「撮影時の表情」の対象特徴量との差)を縦軸にし、横軸には顔201のような「良い表情」から顔202、203のような「悪い表情」までの中にある「撮影時の表情」を示したものである。
Graphs 1 to 4 in FIG. 2 show a deviation amount Δfa (that is, a quantitatively large “good facial expression” target for the target feature amount of the “facial expression at the time of shooting” with respect to the target feature amount of the “good facial expression” in each feature. The vertical axis is the difference between the feature amount and the target feature amount of the "facial expression at the time of shooting"), and the horizontal axis is from "good facial expression" such as face 201 to "bad facial expression" such as faces 202 and 203. It shows the "expression at the time of shooting" in.
グラフ1は、表情を形成する特徴例が目の状態である場合の特性線211を示す。この場合、特徴量は目の大きさ、又は大きく開いた目の「良い表情」に対し、例えば、伏し目になると、視線が下に向き瞳は半ばまぶたで覆ってしまい「悪い表情」となる。また、目尻が上がっているつり目になると、目つきがきつくて怖い顔という印象が強くなり「悪い表情」となる。特性線211に沿って、「撮影時の表情」が「良い表情」から伏し目やつり目などにより「悪い表情」に近づき、対象特徴量が目標特徴量より表情判定閾値212以上ずれた目の表情状態213になると、経過時間の計測を開始する。経過時間が通知判定時間以上となると、ユーザに表情悪化の警告情報や「目を大きく」というような表情の改善を指示する指示情報を通知する。
Graph 1 shows the characteristic line 211 when the characteristic example forming the facial expression is the state of the eyes. In this case, the feature amount is the size of the eye or the "good facial expression" of the wide open eye, for example, when the eyes are turned down, the line of sight is directed downward and the pupil is covered with the half eyelid, resulting in a "bad facial expression". In addition, when the outer corners of the eyes are raised, the impression of a scary face becomes stronger and the face becomes "bad". Along the characteristic line 211, the "facial expression at the time of shooting" approaches the "bad facial expression" from the "good facial expression" due to the bind-off eyes and slanted eyes, and the target feature amount deviates from the target feature amount by the facial expression determination threshold of 212 or more. When the state 213 is reached, the measurement of the elapsed time is started. When the elapsed time exceeds the notification determination time, the user is notified of the warning information of the deterioration of the facial expression and the instruction information instructing the improvement of the facial expression such as "enlarge the eyes".
グラフ2は、表情を形成する特徴例が口の状態である場合の特性線221を示す。素直に閉じた「良い表情」に対し、例えば、口をへの字に結んだへの字口になると、口角が下がって神経質で不満が多く不幸そうな印象を与え「悪い表情」となる。また、大きく開いた口になると、だらしなく見えてしまい「悪い表情」となる。特性線221に沿って、「撮影時の表情」が「良い表情」からへの字口や大きく開いた口などにより「悪い表情」に近づき、対象特徴量が目標特徴量より表情判定閾値222以上ずれた口の表情状態223になると、経過時間の計測を開始する。経過時間が通知判定時間以上となるとユーザに表情悪化の警告情報や「口角を上げて」というような表情の改善を指示する指示情報を通知する。
Graph 2 shows the characteristic line 221 when the characteristic example forming the facial expression is the state of the mouth. In contrast to a "good facial expression" that is obediently closed, for example, when the mouth is tied in a syllabary, the corners of the mouth are lowered, giving the impression of being nervous, dissatisfied, and unhappy, resulting in a "bad facial expression." Also, if the mouth is wide open, it will look sloppy and give a "bad expression". Along the characteristic line 221 the "facial expression at the time of shooting" approaches the "bad facial expression" due to the character mouth from "good facial expression" or the wide open mouth, and the target feature amount is the facial expression judgment threshold 222 or more than the target feature amount. When the facial expression state 223 of the displaced mouth is reached, the measurement of the elapsed time is started. When the elapsed time exceeds the notification judgment time, the user is notified of warning information of facial expression deterioration and instruction information instructing the improvement of facial expression such as "raise the corner of the mouth".
グラフ3は、表情を形成する特徴例が眉間のしわの状態である場合の特性線231を示す。眉間にしわが出ていない「良い表情」に対し、眉間に多くのしわが出ていると、怒っているようで怖い人、困っている人というような印象になってしまい「悪い表情」となる。特性線231に沿って、「撮影時の表情」が「良い表情」から眉間のしわの状態により「悪い表情」に近づき、対象特徴量が目標特徴量より表情判定閾値232以上ずれた眉間のしわ状態233になると、経過時間の計測を開始する。経過時間が通知判定時間以上となるとユーザに表情悪化の警告情報や「眉間の力を抜いて」というような表情の改善を指示する指示情報を通知する。
Graph 3 shows the characteristic line 231 when the characteristic example forming the facial expression is the state of wrinkles between the eyebrows. A "good facial expression" with no wrinkles between the eyebrows, but a lot of wrinkles between the eyebrows gives the impression of an angry, scary person or a troubled person, resulting in a "bad facial expression". .. Along the characteristic line 231 the "facial expression at the time of shooting" approaches "bad facial expression" depending on the state of wrinkles between the eyebrows from "good facial expression", and the target feature amount deviates from the target feature amount by the facial expression judgment threshold of 232 or more. When the state 233 is reached, the measurement of the elapsed time is started. When the elapsed time exceeds the notification judgment time, the user is notified of the warning information of the deterioration of the facial expression and the instruction information instructing the improvement of the facial expression such as "relax the force between the eyebrows".
グラフ4は、表情を形成する特徴例が顔のしわの状態である場合の特性線241を示す。顔にしわの出ていない「良い表情」に対し、顔に多くのしわが出ていると、老けて見えてしまい、どうしても不機嫌なイメージや暗い印象を与えてしまい「悪い表情」となる。特性線241に沿って、「撮影時の表情」が「良い表情」から顔のしわの状態により「悪い表情」に近づき、対象特徴量が目標特徴量より表情判定閾値242以上ずれた顔のしわ状態243になると、経過時間の計測を開始する。経過時間が通知判定時間以上となるとユーザに表情悪化の警告情報や「顔をひきしめて」というような表情の改善を指示する指示情報を通知する。なお、鼻や顔の姿勢など、表情を形成する他の特徴例の場合でも同様である。
Graph 4 shows a characteristic line 241 when the characteristic example forming the facial expression is a wrinkled state of the face. A "good expression" with no wrinkles on the face, but a lot of wrinkles on the face makes it look old and gives a moody image or a dark impression, resulting in a "bad expression". Along the characteristic line 241 the "facial expression at the time of shooting" approaches "bad facial expression" depending on the state of wrinkles on the face from "good facial expression", and the target feature amount deviates from the target feature amount by the facial expression judgment threshold 242 or more. When the state 243 is reached, the measurement of the elapsed time is started. When the elapsed time exceeds the notification judgment time, the user is notified of the warning information of the deterioration of the facial expression and the instruction information instructing the improvement of the facial expression such as "tighten the face". The same applies to other characteristic examples that form facial expressions, such as the posture of the nose and face.
例えば、顔が下向きになると、2重あごになることを表情の一つの特徴として捉えて、撮影された顔から2重あごを表すあごのラインの変化を捕捉し、2重あごになってない「良い表情」から特徴量のずれが表情判定閾値以上となると、姿勢を注意するように警告や指示を通知する。これにより、顔が下向きになり猫背になって印象の悪い表情になることを避けることができ、また下を向き続けないことにより、付随効果として、肩こり解消という効果も得られる。
For example, when the face is turned downward, the double chin is regarded as one of the facial expressions, and the change in the chin line representing the double chin is captured from the photographed face, and the double chin is not formed. When the deviation of the feature amount from the "good facial expression" exceeds the facial expression judgment threshold, a warning or instruction is given to pay attention to the posture. As a result, it is possible to prevent the face from turning downward and becoming a stoop and giving an unpleasant facial expression, and by not keeping the face facing downward, an effect of eliminating stiff shoulders can be obtained as an incidental effect.
ここで、表情判定閾値は、予め初期設定してもよいし、撮影される状況や状態に応じて最適な設定に随時変更してもよい。また、各特徴における表情判定閾値は、図2に示すようにそれぞれ異なる閾値レベルに設定してもよいし、複数で同じ閾値レベルに設定してもよい。また、それぞれの特徴で表情判定閾値以上になったとき表情悪化の警告情報や表情改善の指示情報を通知してもよいし、複数の特徴で閾値以上になったとき、表情悪化の警告情報や表情改善の指示情報を通知してもよい。
Here, the facial expression determination threshold value may be initially set in advance, or may be changed at any time to the optimum setting according to the shooting situation or state. Further, the facial expression determination threshold value for each feature may be set to a different threshold value as shown in FIG. 2, or may be set to the same threshold level for a plurality of features. Further, when the facial expression determination threshold value is exceeded for each feature, the facial expression deterioration warning information or the facial expression improvement instruction information may be notified, or when the facial expression deterioration warning information or the facial expression deterioration instruction information is exceeded for a plurality of features. You may notify the instruction information of facial expression improvement.
例えば、目と口と眉間のしわという複数の特徴で少なくとも2つ以上、又は全ての特徴についての特徴量のずれが表判定閾値以上になってから、表情悪化の警告情報と共に、「笑って」というような複数の特徴に共通する表情改善の指示情報を通知してもよい。即ち、「撮影時の表情」の各特徴のうち少なくとも一つの特徴において、対象特徴量が目標特徴量より表情判定閾値以上ずれると、ユーザに表情悪化を示す警告情報、表情の改善を指示する指示情報、又は警告情報及び指示情報の両方を通知する。これにより、「撮影時の表情」のどのような特徴に対しても相応しい形で表情悪化の警告や表情改善の指示を発することができる。
For example, after the deviation of the feature amount for at least two or more features such as wrinkles between the eyes, mouth, and eyebrows exceeds the table judgment threshold, "laugh" with the warning information of facial expression deterioration. You may notify the instruction information of the facial expression improvement common to a plurality of features such as. That is, when the target feature amount deviates from the target feature amount by the facial expression determination threshold value or more in at least one feature of each feature of the "facial expression at the time of shooting", the user is instructed to give warning information indicating deterioration of the facial expression and to improve the facial expression. Notify information, or both warning and instructional information. As a result, it is possible to issue a warning of facial expression deterioration and an instruction to improve facial expressions in a form suitable for any feature of "facial expression at the time of shooting".
次に、本実施形態に係るスマートフォン100の構成例について、図3を用いて説明する。図3は、本実施形態に係るスマートフォン100の構成例の機能ブロック図である。
Next, a configuration example of the smartphone 100 according to the present embodiment will be described with reference to FIG. FIG. 3 is a functional block diagram of a configuration example of the smartphone 100 according to the present embodiment.
スマートフォン100は、インカメラ101、ディスプレイ102、スピーカー103、マイク104、バイブレータ105、タッチパネル106、アウトカメラ107、タイマー108、プロセッサ310、メモリ320、通信器340を含み、これらがバス350を介して相互に接続されて構成される。
The smartphone 100 includes an in-camera 101, a display 102, a speaker 103, a microphone 104, a vibrator 105, a touch panel 106, an out-camera 107, a timer 108, a processor 310, a memory 320, and a communication device 340, which are connected to each other via a bus 350. Connected to and configured.
インカメラ101、アウトカメラ107のそれぞれは、周囲の視界視野を撮影するもので、レンズから入射した光を撮像素子で電気信号に変換して画像を取得する。インカメラ101は、スマートフォン100においてディスプレイ102の画面と同じ面に設けられる。インカメラ101は、画面を見ているユーザ10の顔を撮影し、その顔画像をスマートフォン100内に取り込む。アウトカメラ107は、スマートフォン100においてディスプレイ102の画面とは反対側の面(背面)に設けられる。
Each of the in-camera 101 and the out-camera 107 captures the peripheral visual field, and the light incident from the lens is converted into an electric signal by an image sensor to acquire an image. The in-camera 101 is provided on the same surface as the screen of the display 102 in the smartphone 100. The in-camera 101 photographs the face of the user 10 who is looking at the screen, and captures the face image in the smartphone 100. The out-camera 107 is provided on the surface (rear surface) of the smartphone 100 on the side opposite to the screen of the display 102.
ディスプレイ102は、液晶パネルなどにより構成され、画像や映像の表示と共に、表情悪化の警告情報や表情改善の指示情報など、ユーザ10への通知情報や、起動アプリや各種状態表示のアイコンを画面内に表示する。
The display 102 is composed of a liquid crystal panel or the like, and displays images and videos, as well as notification information to the user 10, such as warning information on deterioration of facial expressions and instruction information for improving facial expressions, and icons for starting applications and various status displays on the screen. Display on.
スピーカー103は、スマートフォン100内の各種の出力情報(通知情報、指示情報を含む)を音声で外部に発する。
The speaker 103 emits various output information (including notification information and instruction information) in the smartphone 100 to the outside by voice.
マイク104は、外部からの音声やユーザ10自身の発声を集音し、音声信号に変換してスマートフォン100内に取り込む。ユーザ10からの発声音による操作情報をスマートフォン100内に取り込み、操作情報に対する動作を使い勝手よく実行することができる。
The microphone 104 collects voices from the outside and voices of the user 10 itself, converts them into voice signals, and captures them in the smartphone 100. The operation information by the voiced sound from the user 10 can be taken into the smartphone 100, and the operation for the operation information can be executed conveniently.
バイブレータ105は、プロセッサ310からの制御によって振動を発生させるもので、スマートフォン100で発信されたユーザ10への通知情報を振動に変換する。表情が悪化した際に、振動を発生させてユーザ10に知らしめることができる。
The vibrator 105 generates vibration under the control of the processor 310, and converts the notification information to the user 10 transmitted by the smartphone 100 into vibration. When the facial expression deteriorates, vibration can be generated to notify the user 10.
タッチパネル106は、ディスプレイ102の画面上に積層される。タッチパネル106は、例えば静電容量式などのタッチパネルで構成され、指やタッチペンなどによる接近又は接触操作(以降、タッチという)により、ユーザ10が入力したい情報を入力できる。タッチパネル106は操作入力部材の一例である。操作入力部材は、例えば通信器340を介して通信接続したキーボードやキーボタン、ユーザ10が入力操作を示す音声を発声し、マイク104で集音して操作情報に変換する音声入力装置、又はユーザのジェスチャーを撮像して解析するジェスチャー入力装置でもよい。
The touch panel 106 is laminated on the screen of the display 102. The touch panel 106 is composed of, for example, a capacitive touch panel, and can input information that the user 10 wants to input by approaching or touching (hereinafter, referred to as touch) with a finger, a stylus, or the like. The touch panel 106 is an example of an operation input member. The operation input member is, for example, a keyboard or key button communicated and connected via a communication device 340, a voice input device in which the user 10 utters a voice indicating an input operation, collects the sound with the microphone 104, and converts it into operation information, or a user. It may be a gesture input device that captures and analyzes the gesture of.
プロセッサ310は、CPU、MPU等で構成され、スマートフォン100のコントローラを構成する。プロセッサ310は、メモリ320に制御用のプログラム321として記憶格納されているオペレーティングシステム(Operating System:OS)322や動作制御用のアプリケーションプログラム323をメモリ320の作業領域に読み出して実行することにより、各構成部を制御し、OS322、アプリケーションプログラム323の機能を実現する。
The processor 310 is composed of a CPU, an MPU, etc., and constitutes a controller of the smartphone 100. The processor 310 reads and executes the operating system (Operating System: OS) 322 stored and stored in the memory 320 as the control program 321 and the operation control application program 323 in the work area of the memory 320, respectively. It controls the components and realizes the functions of the OS 322 and the application program 323.
プロセッサ310がアプリケーションプログラム323を実行すると、特徴量解析部311、目標画像登録部312、特徴量比較部313、通知部314、顔画像補正部315の各機能ブロックを構成する。
When the processor 310 executes the application program 323, it constitutes each functional block of the feature amount analysis unit 311, the target image registration unit 312, the feature amount comparison unit 313, the notification unit 314, and the face image correction unit 315.
特徴量解析部311は、顔画像から顔の表情の各特徴を定量的に表す特徴量を解析し、目標画像111の特徴量(目標特徴量)及び対象画像112の特徴量(対象特徴量)を算出する。
The feature amount analysis unit 311 analyzes the feature amount that quantitatively represents each feature of the facial expression from the face image, and the feature amount (target feature amount) of the target image 111 and the feature amount (target feature amount) of the target image 112. Is calculated.
目標画像登録部312は、選択された「良い表情」の顔画像を目標画像111として登録する。ユーザ10がタッチパネル106を操作して目標画像111を選択及び登録操作を行ってもよいし、撮影或いは格納されている動画像の中から目標画像111を自動的に選択し登録してもよい。ユーザ選択の場合はユーザの主観で好きな「良い表情」を選ぶことができ、自動選択の場合にはユーザが意識することなく客観的に「良い表情」を選ぶことが可能となる。
The target image registration unit 312 registers the selected “good facial expression” face image as the target image 111. The user 10 may operate the touch panel 106 to select and register the target image 111, or may automatically select and register the target image 111 from the captured or stored moving images. In the case of user selection, it is possible to select a favorite "good facial expression" by the user's subjectivity, and in the case of automatic selection, it is possible to objectively select a "good facial expression" without the user being aware of it.
特徴量比較部313は、目標特徴量及び対象特徴量を比較しこれらの特徴量のずれ量Δfaを算出する。
The feature amount comparison unit 313 compares the target feature amount and the target feature amount, and calculates the deviation amount Δfa of these feature amounts.
通知部314は、表情が悪化した場合にそれを警告する警告情報や、「良い表情」に向けて改善を促すための指示情報、「良い表情」との遠近状態を示す表情情報をスピーカー103等の通知部材から出力させる。
The notification unit 314 provides warning information for warning when the facial expression deteriorates, instruction information for promoting improvement toward the "good facial expression", and facial expression information indicating the perspective state of the "good facial expression" such as the speaker 103. It is output from the notification member of.
顔画像補正部315は、対象画像112を、目標画像111と比較しやすいように補正する。具体的には、顔画像補正部315は、対象画像112に撮影された顔が斜めを向いていたり、傾いていたりして、目標画像111に撮像された「良い表情」の顔の向きと異なる場合、撮影された顔の向きを目標画像111の顔の向きと同一になるように、対象画像112を補正する。顔画像補正部315で補正処理された顔画像の表情を「撮影時の表情」として、特徴量解析部311が特徴量の解析を行うことにより、例えば、撮影された顔に斜め向きや傾きがあっても、対象特徴量と目標特徴量との比較を一層正確に行うことが可能になる。
The face image correction unit 315 corrects the target image 112 so that it can be easily compared with the target image 111. Specifically, in the face image correction unit 315, the face captured in the target image 112 is oriented diagonally or tilted, which is different from the orientation of the face having a “good facial expression” captured in the target image 111. In this case, the target image 112 is corrected so that the orientation of the photographed face is the same as the orientation of the face of the target image 111. The facial expression of the face image corrected by the face image correction unit 315 is regarded as the "facial expression at the time of shooting", and the feature amount analysis unit 311 analyzes the feature amount. Even if there is, it becomes possible to make a more accurate comparison between the target feature amount and the target feature amount.
メモリ320は、不揮発性記憶装置等で構成され、プロセッサ310等が扱う各種のプログラム321や情報データ324を記憶する。
The memory 320 is composed of a non-volatile storage device or the like, and stores various programs 321 and information data 324 handled by the processor 310 or the like.
情報データ324は、目標画像111及び対象画像112を含む顔画像情報325、特徴量解析部311が目標画像111及び対象画像112のそれぞれを解析した結果を示す特徴量情報326、表情判定閾値情報327、通知判定時間情報328、表情悪化警告や表情改善指示の内容を表す警告指示情報329、「撮影時の表情」が登録済の「良い表情」に対してどの程度遠近状態にあるかを示す表情情報330などが格納される。
The information data 324 includes face image information 325 including the target image 111 and the target image 112, feature amount information 326 showing the result of the feature amount analysis unit 311 analyzing each of the target image 111 and the target image 112, and facial expression determination threshold information 327. , Notification judgment time information 328, warning instruction information 329 indicating the contents of facial expression deterioration warning and facial expression improvement instruction, facial expression indicating how close the "expression at the time of shooting" is to the registered "good facial expression". Information 330 and the like are stored.
通信器340は、近距離無線通信、無線LAN或いは基地局通信により、他の携帯情報端末等と無線通信を行う通信インターフェースであり、所定の各種の通信インターフェースに対応する通信処理回路及びアンテナ等を含む。通信器340は、例えば、他の携帯情報端末や外部の情報サーバなどにあるユーザ10の「良い表情」の顔画像や動画を受信したり、ユーザ10の「撮影時の表情」の顔画像を他の携帯情報端末等に送信したりする。
The communication device 340 is a communication interface that performs wireless communication with other mobile information terminals or the like by short-range wireless communication, wireless LAN, or base station communication, and provides a communication processing circuit, an antenna, and the like corresponding to various predetermined communication interfaces. include. The communication device 340 receives, for example, a face image or video of the user 10's "good facial expression" on another personal digital assistant or an external information server, or receives a face image of the user 10's "facial expression at the time of shooting". Send it to other personal digital assistants.
近距離無線通信例として、例えば電子タグを用いた通信でもよい。また、スマートフォン100が他の携帯情報端末の近くにある場合に少なくとも無線通信可能であるものであれば、Bluetooth(登録商標)、IrDA(Infrared Data Association、登録商標)、Zigbee(登録商標)、HomeRF(Home Radio Frequency、登録商標)、又は、Wi-Fi(登録商標)規格に準拠した通信がある。
As an example of short-range wireless communication, for example, communication using an electronic tag may be used. Also, if the smartphone 100 is near other mobile information terminals and at least wireless communication is possible, Bluetooth (registered trademark), IrDA (Infrared Data Association, registered trademark), Zigbee (registered trademark), HomeRF. (Home Radio Frequency, registered trademark) or Wi-Fi (registered trademark) standard compliant communication.
更に、基地局通信として、W-CDMA(Wideband Code Division Multiple Access、登録商標)やGSM(Global System for Mobile Communications)などの遠距離の無線通信を用いてもよい。なお、図示しないが通信器340は無線通信の手段として光通信、音波による通信等、他の方法を使用してもよい。
Further, as base station communication, long-distance wireless communication such as W-CDMA (Wideband Code Division Multiple Access, registered trademark) or GSM (Global System for Mobile Communications) may be used. Although not shown, the communication device 340 may use other methods such as optical communication and sound wave communication as a means of wireless communication.
また、高精細映像等を扱う場合は、データ量は飛躍的に多くなるので、無線通信に5G(5th Generation:第5世代移動通信システム)、ローカル5Gなどの高速大容量通信網を使用すれば、飛躍的に使い勝手を向上できる。
Also, when dealing with high-definition video, the amount of data will increase dramatically, so if you use a high-speed, large-capacity communication network such as 5G (5th Generation: 5th generation mobile communication system) or local 5G for wireless communication, , The usability can be dramatically improved.
次に、本実施形態に係るスマートフォン100の基本動作を、図4を用いて説明する。図4は、本実施形態に係るスマートフォン100の基本動作を説明するフローチャートである。
Next, the basic operation of the smartphone 100 according to the present embodiment will be described with reference to FIG. FIG. 4 is a flowchart illustrating the basic operation of the smartphone 100 according to the present embodiment.
初めに、目標画像登録部312は、ユーザ10の選択を受け付け、又は目標画像登録部312が目標画像111を自動選択して登録する(S401)。
First, the target image registration unit 312 accepts the selection of the user 10, or the target image registration unit 312 automatically selects and registers the target image 111 (S401).
この後、ユーザ10がスマートフォン100の画面を視認し始めると、インカメラ101がユーザ10の顔を撮影し、対象画像112を生成する(S402:Yes)。スマートフォン100は、ディスプレイ102の画面に表示データの表示を開始すると、ユーザ10が画面の視認を始めたとみなして、インカメラ101の撮像も開始する。スマートフォン100は、画面に表示データを表示しない場合は待機する(S402:No)。
After that, when the user 10 starts to visually recognize the screen of the smartphone 100, the in-camera 101 photographs the face of the user 10 and generates the target image 112 (S402: Yes). When the smartphone 100 starts displaying the display data on the screen of the display 102, the smartphone 100 considers that the user 10 has started to visually recognize the screen, and also starts taking an image of the in-camera 101. The smartphone 100 stands by when the display data is not displayed on the screen (S402: No).
特徴量解析部311は、インカメラ101が撮像した画像に対して顔認識処理を実行し、顔が撮像されていればその画像を対象画像112として特徴量の解析及び算出を開始する。特徴量解析部311は、インカメラ101が撮像を開始してから本ステップを初めて実行する際には、目標画像111を解析して目標特徴量を算出する。一方、特徴量解析部311は、後述するステップS410から戻って再度本ステップを実行する際には、目標画像111の特徴量解析は省略する。更に特徴量解析部311は、対象画像112が更新される度に、又は予め定めたフレーム毎に特徴量解析を行って対象特徴量を算出する(S403)。
The feature quantity analysis unit 311 executes face recognition processing on the image captured by the in-camera 101, and if the face is captured, the feature quantity analysis and calculation is started with the image as the target image 112. When the in-camera 101 starts imaging and this step is executed for the first time, the feature amount analysis unit 311 analyzes the target image 111 and calculates the target feature amount. On the other hand, when the feature amount analysis unit 311 returns from step S410 described later and executes this step again, the feature amount analysis of the target image 111 is omitted. Further, the feature amount analysis unit 311 calculates the target feature amount by performing the feature amount analysis every time the target image 112 is updated or every predetermined frame (S403).
特徴量比較部313は、目標特徴量及び対象特徴量を比較し、ずれ量Δfaを算出する(S403)。
The feature amount comparison unit 313 compares the target feature amount and the target feature amount, and calculates the deviation amount Δfa (S403).
特徴量比較部313は、ずれ量Δfaが表情判定閾値以上であるかを判定する(S404)。肯定であれば(S404:Yes)、経過時間Tの計測を開始する(S405)。
The feature amount comparison unit 313 determines whether the deviation amount Δfa is equal to or greater than the facial expression determination threshold value (S404). If affirmative (S404: Yes), the measurement of the elapsed time T is started (S405).
特徴量比較部313は、経過時間Tが通知判定時間以上であるかを判定する(S405)。肯定であれば(S405:Yes)、通知部314が表情悪化の警告情報や表情改善の指示情報をユーザ10に通知する(S406)。
The feature amount comparison unit 313 determines whether the elapsed time T is equal to or longer than the notification determination time (S405). If affirmative (S405: Yes), the notification unit 314 notifies the user 10 of the warning information of facial expression deterioration and the instruction information of facial expression improvement (S406).
ステップS404で否定、ステップS405で否定、又はS406に続いて、プロセッサ310は、表情監視処理(S402~S405)及び通知処理(S406)を続ける場合は(S407:Yes)、ステップS403へ戻る。
If the processor 310 continues the facial expression monitoring process (S402 to S405) and the notification process (S406) following the denial in step S404, the denial in step S405, or S406 (S407: Yes), the processor returns to step S403.
プロセッサ310は、表情監視処理(S402~S405)及び通知処理(S406)を終了する場合は(S407:No)、一連の処理を終了する。「終了」する場合とは、例えば、ディスプレイ102の表示が終了する場合や、スマートフォン100の主電源がOFFにされる場合である。
When the facial expression monitoring process (S402 to S405) and the notification process (S406) are terminated (S407: No), the processor 310 terminates a series of processes. The "end" case is, for example, a case where the display 102 is finished or a case where the main power of the smartphone 100 is turned off.
本実施形態によれば、対象画像112に撮像された「撮影中の表情」の対象特徴量が目標画像111に撮像された「良い表情」の目標特徴量を基準として表情判定閾値以上ずれ、かつ、ずれた状態が通知判定時間以上経過するときのみ、ユーザに表情悪化警告や表情改善指示を通知させることができる。よって、ユーザがスマートフォン100を長時間視認していて、好ましくない表情を長く続けているときにその状態を知らしめ、常に良い表情に誘導することが可能となり、印象の悪い表情が定着してしまうことを解消し、意識しなくても印象の良い表情を実現できる。
According to the present embodiment, the target feature amount of the "facial expression during shooting" captured by the target image 112 deviates from the target feature amount of the "good facial expression" captured by the target image 111 by the facial expression determination threshold or more. , The user can be notified of the facial expression deterioration warning and the facial expression improvement instruction only when the shifted state elapses for more than the notification determination time. Therefore, when the user is visually recognizing the smartphone 100 for a long time and continues to have an unfavorable facial expression for a long time, it is possible to notify the state and always induce a good facial expression, and a bad facial expression is fixed. You can solve this problem and achieve a good facial expression without being aware of it.
<第2実施形態>
第2実施形態は、対象画像112を補正してから特徴量を解析する実施形態である。図5A、図5Bを参照して第2実施形態について説明する。図5A、図5Bは、第2実施形態の処理概要を模式的に示す図である。 <Second Embodiment>
The second embodiment is an embodiment in which the feature amount is analyzed after correcting thetarget image 112. The second embodiment will be described with reference to FIGS. 5A and 5B. 5A and 5B are diagrams schematically showing a processing outline of the second embodiment.
第2実施形態は、対象画像112を補正してから特徴量を解析する実施形態である。図5A、図5Bを参照して第2実施形態について説明する。図5A、図5Bは、第2実施形態の処理概要を模式的に示す図である。 <Second Embodiment>
The second embodiment is an embodiment in which the feature amount is analyzed after correcting the
図5Aは、ユーザ10がスマートフォン100を斜めから視認している場合を示す。
FIG. 5A shows a case where the user 10 is visually recognizing the smartphone 100 from an angle.
表情監視処理において、スマートフォン100はディスプレイ102を注視しているユーザ10の顔をインカメラ101で撮影し、「撮影時の表情」の顔画像501を取り込む。顔画像補正部315は、顔画像501の顔の向きを判定し、正面を向いている目標画像111の顔の向きと同じになるように画像補正する。
In the facial expression monitoring process, the smartphone 100 photographs the face of the user 10 who is gazing at the display 102 with the in-camera 101, and captures the facial image 501 of the "facial expression at the time of photographing". The face image correction unit 315 determines the orientation of the face of the face image 501, and corrects the image so as to be the same as the orientation of the face of the target image 111 facing the front.
特徴量解析部311は、顔画像501を補正した画像を対象画像502として用い、対象特徴量の解析を行う。よって、「撮影時の表情」を撮像した顔画像501の顔が斜めに向いていても、顔の向きを画像補正して顔の向きが同一の状態で「撮影時の表情」と「良い表情」の各特徴量を解析でき、より一層正確に表情の特徴量の比較判別を行うことができる。
The feature amount analysis unit 311 analyzes the target feature amount by using the corrected image of the face image 501 as the target image 502. Therefore, even if the face of the face image 501 obtained by capturing the "facial expression at the time of shooting" is oriented diagonally, the "facial expression at the time of shooting" and the "good facial expression" are obtained by correcting the direction of the face and keeping the same face orientation. It is possible to analyze each feature amount of "" and to compare and discriminate facial expression feature amounts more accurately.
図5Bは、ユーザ10が頭を傾けてスマートフォン100を視認している場合を示す。
FIG. 5B shows a case where the user 10 tilts his head and visually recognizes the smartphone 100.
表情監視処理において、スマートフォン100はディスプレイ102を注視しているユーザ10の顔をインカメラ101で撮影し、「撮影時の表情」の顔画像503を取り込む。顔画像補正部315は、顔画像503の顔の傾きを判定し、正面を向いている目標画像111の顔の傾きに合わせるように画像補正する。
In the facial expression monitoring process, the smartphone 100 photographs the face of the user 10 who is gazing at the display 102 with the in-camera 101, and captures the facial image 503 of the "facial expression at the time of photographing". The face image correction unit 315 determines the inclination of the face of the face image 503, and corrects the image so as to match the inclination of the face of the target image 111 facing the front.
以降、図5Aの場合と同様、特徴量解析部311は、顔画像503を補正した画像を対象画像504として用い、対象特徴量の解析を行う。これにより、特徴量解析部311は、一層正確に表情の特徴量の比較判別を行うことができる。なお、一例として撮影された顔が斜め向きや傾きのある場合について説明したが、他の異なる同様な状態であっても、顔画像補正部315が「撮影時の表情」の顔の状態と「良い表情」の顔の状態とを合わせるように撮影された顔画像を補正することにより、同様の効果が得られることは明白である。
After that, as in the case of FIG. 5A, the feature amount analysis unit 311 uses the image corrected by the face image 503 as the target image 504 and analyzes the target feature amount. As a result, the feature amount analysis unit 311 can more accurately compare and discriminate the feature amount of the facial expression. As an example, the case where the photographed face has an oblique direction or an inclination has been described, but even in other different and similar states, the face image correction unit 315 has the facial expression of "expression at the time of photography" and "the facial expression". It is clear that a similar effect can be obtained by correcting the facial image taken to match the facial condition of "good facial expression".
<第3実施形態>
第3実施形態は、「良い表情」の顔が撮像された目標画像111をスマートフォン100が自動更新する実施形態である。図6は、第3実施形態に係るスマートフォン100の動作を説明するフローチャートである。 <Third Embodiment>
The third embodiment is an embodiment in which thesmartphone 100 automatically updates the target image 111 in which a face with a “good facial expression” is captured. FIG. 6 is a flowchart illustrating the operation of the smartphone 100 according to the third embodiment.
第3実施形態は、「良い表情」の顔が撮像された目標画像111をスマートフォン100が自動更新する実施形態である。図6は、第3実施形態に係るスマートフォン100の動作を説明するフローチャートである。 <Third Embodiment>
The third embodiment is an embodiment in which the
図6において、ステップS403に続き、撮影された顔の表情は登録済の「良い表情」より更に「良い表情」か否かを判断する(S601)。特徴量比較部313は、目標特徴量の値よりも対象特徴量の値が高い場合に登録済の「良い表情」より更に「良い表情」であると判断する。
In FIG. 6, following step S403, it is determined whether or not the photographed facial expression is a "good facial expression" rather than the registered "good facial expression" (S601). When the value of the target feature amount is higher than the value of the target feature amount, the feature amount comparison unit 313 determines that the registered "good expression" is a "good expression".
撮影された顔の表情が登録済の「良い表情」より更に「良い表情」(高評価)である場合には(S601:Yes)、目標画像登録部312が、対象画像112を用いて目標画像111を更新して登録する(S602)。
When the facial expression of the photographed face is a "good facial expression" (highly evaluated) rather than the registered "good facial expression" (S601: Yes), the target image registration unit 312 uses the target image 112 to display the target image. 111 is updated and registered (S602).
「良い表情」の顔画像の更新登録後は(S602)、対象画像112が目標画像111より更に「良い表情」でない場合(S601:No)と同様、ステップS404へと進む。
After the update registration of the face image of "good facial expression" (S602), the process proceeds to step S404 as in the case where the target image 112 is not "good facial expression" even more than the target image 111 (S601: No).
本実施形態によれば、ユーザ撮影時に、登録された「良い表情」より更に優れた「良い表情」の画像であると判断された場合は、更に優れた「良い表情」に更新登録することにより、一層より優れた「良い表情」に誘導できる。
According to the present embodiment, when it is determined that the image has a better "good facial expression" than the registered "good facial expression" at the time of user shooting, the image is updated and registered to have a better "good facial expression". , Can lead to even better "good facial expressions".
<第4実施形態>
第4実施形態は、「撮影時の表情」が登録されている「良い表情」に対してどの程度遠近状態にあるかを通知する実施形態である。図7は、第4実施形態に係るスマートフォン100の動作を説明するフローチャートである。 <Fourth Embodiment>
The fourth embodiment is an embodiment that notifies how far away the "good facial expression" in which the "facial expression at the time of shooting" is registered is. FIG. 7 is a flowchart illustrating the operation of thesmartphone 100 according to the fourth embodiment.
第4実施形態は、「撮影時の表情」が登録されている「良い表情」に対してどの程度遠近状態にあるかを通知する実施形態である。図7は、第4実施形態に係るスマートフォン100の動作を説明するフローチャートである。 <Fourth Embodiment>
The fourth embodiment is an embodiment that notifies how far away the "good facial expression" in which the "facial expression at the time of shooting" is registered is. FIG. 7 is a flowchart illustrating the operation of the
図7において、ステップS404で特徴量比較部313がずれ量Δfaが表情判定閾値未満であると判定すると(S404:No)、通知部314は、(1-Δfa)%を算出し、(1-Δfa)%を含む表示情報を出力する(S701)。その後、ステップS407へ進む。
In FIG. 7, when the feature amount comparison unit 313 determines in step S404 that the deviation amount Δfa is less than the facial expression determination threshold value (S404: No), the notification unit 314 calculates (1-Δfa)% and (1-Δfa)%. Display information including Δfa)% is output (S701). After that, the process proceeds to step S407.
図8は、ステップS701の画面表示例を示す図である。「撮影時の表情」が登録済の「良い表情」に対してどの程度遠近状態にあるかを示す表情情報として、ディスプレイ102に「“良い表情”のレベルは、今80%です」というような文字情報801を表示する。また、スピーカー103から、「良い表情のレベルは、今80%です」というような音声802を発してもよい。
FIG. 8 is a diagram showing a screen display example of step S701. As facial expression information indicating how far the "facial expression at the time of shooting" is in the registered "good facial expression", the display 102 shows "the level of" good facial expression "is now 80%". Character information 801 is displayed. Further, the speaker 103 may emit a voice 802 such as "The level of good facial expression is now 80%".
これにより、スマートフォン100の画面を視認しているユーザ10は、自分の顔の表情がどういう状態を数値的に常時知ることができ、「悪い表情」に至らないように意識することが可能になる。
As a result, the user 10 who is visually recognizing the screen of the smartphone 100 can always numerically know what kind of facial expression his / her facial expression is, and can be aware that it does not lead to a “bad facial expression”. ..
図9Aは、図8に示したアイコン例を補足説明する図であって、ステップS701の画面表示の他例を示す図である。図9Aでは、通知部314は、表情情報として顔の表情の状態を表すアイコン901用い、これをディスプレイ102に表示する。
FIG. 9A is a diagram for supplementarily explaining the icon example shown in FIG. 8, and is a diagram showing another example of the screen display in step S701. In FIG. 9A, the notification unit 314 uses an icon 901 representing the state of the facial expression as facial expression information, and displays this on the display 102.
図9Bは、アイコンの種類を示す図である。アイコンとしては、「良い表情」を表すアイコン901から、普通の表情を表すアイコン902、「悪い表情」を表すアイコン903のように、表情特徴量の一致度(1-Δfa)に応じて複数種類のアイコンを用意しておく。通知部314は、(1-Δfa)%に対応するアイコンを選択して画面に表示させる(S701)。
FIG. 9B is a diagram showing the types of icons. There are multiple types of icons, such as icon 901 representing "good facial expression", icon 902 representing normal facial expression, and icon 903 representing "bad facial expression", depending on the degree of matching of facial expression features (1-Δfa). Prepare the icon of. The notification unit 314 selects an icon corresponding to (1-Δfa)% and displays it on the screen (S701).
「悪い表情」のアイコン903は、通知部314がステップS406において通知情報として用いることで、必要に応じてディスプレイ102に表示される。
The "bad facial expression" icon 903 is displayed on the display 102 as needed by the notification unit 314 using it as notification information in step S406.
アイコンを用いることにより、ユーザは本来の情報表示を妨げない程度の比較的小さい表示領域で自分の顔の表情状態を分かりやすく認識できる。
By using the icon, the user can easily recognize the facial expression state of his / her face in a relatively small display area that does not interfere with the original information display.
<第5実施形態>
第5実施形態は、離れた外部からユーザの表情悪化を監視する実施形態である。図10は、第5実施形態に係るスマートフォン100の使用環境を模式的に示す図である。 <Fifth Embodiment>
The fifth embodiment is an embodiment in which the deterioration of the facial expression of the user is monitored from a remote outside. FIG. 10 is a diagram schematically showing a usage environment of thesmartphone 100 according to the fifth embodiment.
第5実施形態は、離れた外部からユーザの表情悪化を監視する実施形態である。図10は、第5実施形態に係るスマートフォン100の使用環境を模式的に示す図である。 <Fifth Embodiment>
The fifth embodiment is an embodiment in which the deterioration of the facial expression of the user is monitored from a remote outside. FIG. 10 is a diagram schematically showing a usage environment of the
図10において、ユーザ10が見ているスマートフォン100は、通信器340を介して、ユーザ11が見ている他の携帯情報端末20、他の携帯情報端末30、外部の情報サーバ40と近距離無線通信、無線LAN或いは基地局通信により、情報の送受信を行う。
In FIG. 10, the smartphone 100 seen by the user 10 is wirelessly connected to another mobile information terminal 20, another mobile information terminal 30, and an external information server 40 seen by the user 11 via a communication device 340. Information is transmitted and received by communication, wireless LAN, or base station communication.
このような使用環境により、スマートフォン100は、他の携帯情報端末20、他の携帯情報端末30、及び情報サーバ40のそれぞれに記憶されているユーザ10の「良い表情」の顔画像や動画を受信し、より多くの範囲から一層的確な「良い表情」を登録して正確に表情悪化警告や表情改善指示を使い勝手良く通知することができる。
Due to such a usage environment, the smartphone 100 receives a facial image or a moving image of the user 10's "good facial expression" stored in each of the other mobile information terminal 20, the other mobile information terminal 30, and the information server 40. However, it is possible to register more accurate "good facial expressions" from a wider range and accurately notify the facial expression deterioration warning and facial expression improvement instruction with ease.
また、ユーザ10の「撮影時の表情」の顔画像112aを他の携帯情報端末20に送信し、他の携帯情報端末20を操作しているユーザ11は、ユーザ10の表情状態を知ることができ、必要に応じて声掛けや指導などを行うことが可能になる。引いては、離れた外部からユーザの表情悪化を監視できる体制を構築できる。
Further, the user 11 who transmits the face image 112a of the "facial expression at the time of shooting" of the user 10 to the other mobile information terminal 20 and operates the other mobile information terminal 20 can know the facial expression state of the user 10. It is possible to speak out and give guidance as needed. As a result, it is possible to build a system that can monitor the deterioration of the user's facial expression from a remote outside.
<第6実施形態>
第6実施形態は、顔の一部分の表情の特徴を捉えて特徴量のずれ量が表情判定閾値以上かを評価する実施形態である。例えば、スマートフォン100の持ち方等によって顔の上部分しか常時監視できない状態では、顔の上部分の中で特に気になる部分として目の状態を確実に撮影し、目の表情を捉まえて特徴量のずれを算出し、評価する。 <Sixth Embodiment>
The sixth embodiment is an embodiment that captures the facial expression features of a part of the face and evaluates whether the deviation amount of the feature amount is equal to or larger than the facial expression determination threshold value. For example, in a state where only the upper part of the face can be constantly monitored depending on how thesmartphone 100 is held, the condition of the eyes is surely photographed as the part of the upper part of the face that is particularly worrisome, and the facial expression of the eyes is captured. Calculate and evaluate the amount deviation.
第6実施形態は、顔の一部分の表情の特徴を捉えて特徴量のずれ量が表情判定閾値以上かを評価する実施形態である。例えば、スマートフォン100の持ち方等によって顔の上部分しか常時監視できない状態では、顔の上部分の中で特に気になる部分として目の状態を確実に撮影し、目の表情を捉まえて特徴量のずれを算出し、評価する。 <Sixth Embodiment>
The sixth embodiment is an embodiment that captures the facial expression features of a part of the face and evaluates whether the deviation amount of the feature amount is equal to or larger than the facial expression determination threshold value. For example, in a state where only the upper part of the face can be constantly monitored depending on how the
その場合は、比較する「良い表情」の目標画像は目の画像を用いる。これにより、目の状態のみを登録しておけばよいので、登録処理の負担が軽くなるという効果がある。
In that case, use the image of the eyes as the target image of the "good facial expression" to be compared. As a result, only the eye condition needs to be registered, which has the effect of reducing the burden of the registration process.
本実施形態は、携帯情報端末としてヘッドマウントディスプレイ(以下「HMD」と記載する)を用いる場合に好適である。
This embodiment is suitable when a head-mounted display (hereinafter referred to as "HMD") is used as a mobile information terminal.
図11Aは、HMD1100の外観を示す図である。
FIG. 11A is a diagram showing the appearance of the HMD1100.
HMD1100は、ユーザ10の頭部に装着され、ディスプレイ1102に仮想空間や現実空間を表示する。HMD1100は、内側に設けたカメラ1101と、スピーカーに代わり左ヘッドフォン1103及び右ヘッドフォン1104と、左バイブレータ1105及び右バイブレータ1106と、を備える。
The HMD1100 is attached to the head of the user 10 and displays a virtual space or a real space on the display 1102. The HMD 1100 includes a camera 1101 provided inside, a left headphone 1103 and a right headphone 1104 instead of a speaker, and a left vibrator 1105 and a right vibrator 1106.
カメラ1101は、ユーザ10の目の周辺部分を撮影することができる。
The camera 1101 can capture the peripheral portion of the eyes of the user 10.
図11Bは、カメラ1101が撮像したユーザの目の画像からなる対象画像1111である。また図11Cは、予め登録された目の「良い表情」を示す目標画像1112である。
FIG. 11B is a target image 1111 composed of an image of the user's eyes captured by the camera 1101. Further, FIG. 11C is a target image 1112 showing a “good facial expression” of the eyes registered in advance.
HMD1100は、対象画像1111から目の表情を捉え、登録された目標画像1112から目の「良い表情」との特徴量のずれ量を算出する。そして、HMD1100は、表情悪化の警告情報や表情改善の指示情報をディスプレイ1102で表示する。またHMD1100は、左ヘッドフォン1103及び右ヘッドフォン1104から警告情報や表情改善の指示情報を音声で発してもよい。またユーザ10に直に接触している左バイブレータ1105、右バイブレータ1106で警告情報を示す振動をユーザに伝えてもよい。
The HMD1100 captures the facial expression of the eye from the target image 1111 and calculates the amount of deviation of the feature amount from the registered target image 1112 with the "good facial expression" of the eye. Then, the HMD1100 displays the warning information of the deterioration of the facial expression and the instruction information of the improvement of the facial expression on the display 1102. Further, the HMD 1100 may emit warning information and facial expression improvement instruction information by voice from the left headphone 1103 and the right headphone 1104. Further, the left vibrator 1105 and the right vibrator 1106, which are in direct contact with the user 10, may transmit the vibration indicating the warning information to the user.
上記第1~第6実施形態によれば、ユーザが携帯情報端末を長時間視認し、好ましくない表情を長く続けることにより、印象の悪い表情が定着してしまうことを解消でき、常に良い表情に誘導し、意識しなくても印象の良い表情を実現できる。なお、目、口、眉間や顔のしわの状態以外に、例えば、鼻、顔の向きやなど、表情を形成する特徴であれば、その特徴を捉えて、同様の動作、作用、効果が得られることは言うまでもない。
According to the first to sixth embodiments, when the user visually recognizes the mobile information terminal for a long time and keeps an unfavorable facial expression for a long time, it is possible to solve the problem that a bad facial expression is fixed, and the facial expression is always good. You can guide and realize a good facial expression without being aware of it. In addition to the state of wrinkles in the eyes, mouth, eyebrows, and face, if it is a feature that forms a facial expression, such as the nose and face orientation, the same action, action, and effect can be obtained by capturing the feature. Needless to say, it will be done.
以上の説明では、携帯情報端末としてスマートフォンやヘッドマウントディスプレイを例にとり説明したが、これに限らず少なくともユーザを撮影でき通知機能のある携帯情報端末に対して適用可能である。
In the above explanation, a smartphone or a head-mounted display is taken as an example as a mobile information terminal, but the description is not limited to this, and at least it can be applied to a mobile information terminal having a notification function that can take a picture of a user.
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウエアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に格納されてもよいし、通信網上の装置に格納されてもよい。
Further, each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function may be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD. However, it may be stored in a device on the communication network.
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
また上記実施形態では、表情判定閾値以上及び通知判定時間以上の二つの条件を満たした場合に表情悪化に対する警告情報を通知したが、表情判定閾値以上となると、警告情報を通知するように構成してもよい。
Further, in the above embodiment, the warning information for the deterioration of the facial expression is notified when the two conditions of the facial expression judgment threshold value or more and the notification judgment time or more are satisfied, but the warning information is notified when the facial expression judgment threshold value or more is satisfied. You may.
10 :ユーザ
11 :ユーザ
20 :携帯情報端末
30 :携帯情報端末
40 :情報サーバ
100 :スマートフォン
101 :インカメラ
102 :ディスプレイ
103 :スピーカー
104 :マイク
105 :バイブレータ
106 :タッチパネル
107 :アウトカメラ
108 :タイマー
111 :目標画像
112 :対象画像
112a :顔画像
113 :文字情報
114 :アイコン
115 :音声
116 :文字情報
117 :アイコン
118 :音声
119 :音声
120 :音声
121 :音声
122 :音声
201 :顔
202 :顔
203 :顔
211 :特性線
213 :表情状態
221 :特性線
223 :表情状態
231 :特性線
233 :状態
241 :特性線
243 :状態
310 :プロセッサ
311 :特徴量解析部
312 :目標画像登録部
313 :特徴量比較部
314 :通知部
315 :顔画像補正部
320 :メモリ
321 :プログラム
322 :オペレーティングシステム
323 :アプリケーションプログラム
324 :情報データ
325 :顔画像情報
326 :特徴量情報
327 :表情判定閾値情報
328 :通知判定時間情報
329 :警告指示情報
330 :表情情報
340 :通信器
350 :バス
411 :特徴量解析算出処理部
501 :顔画像
502 :対象画像
503 :顔画像
504 :対象画像
701 :文字情報
702 :音声
901 :アイコン
902 :アイコン
903 :アイコン
1100 :HMD
1101 :カメラ
1102 :ディスプレイ
1103 :左ヘッドフォン
1104 :右ヘッドフォン
1105 :左バイブレータ
1106 :右バイブレータ
1111 :対象画像
1112 :目標画像 10: User 11: User 20: Mobile information terminal 30: Mobile information terminal 40: Information server 100: Smartphone 101: In-camera 102: Display 103: Speaker 104: Microphone 105: Vibrator 106: Touch panel 107: Out-camera 108: Timer 111 : Target image 112: Target image 112a: Face image 113: Character information 114: Icon 115: Voice 116: Character information 117: Icon 118: Voice 119: Voice 120: Voice 121: Voice 122: Voice 201: Face 202: Face 203 : Face 211: Characteristic line 213: Facial expression state 221: Characteristic line 223: Facial expression state 231: Characteristic line 233: State 241: Characteristic line 243: State 310: Processor 311: Feature amount analysis unit 312: Target image registration unit 313: Feature Amount comparison unit 314: Notification unit 315: Face image correction unit 320: Memory 321: Program 322: Operating system 323: Application program 324: Information data 325: Face image information 326: Feature amount information 327: Facial expression determination threshold information 328: Notification Judgment time information 329: Warning instruction information 330: Expression information 340: Communication device 350: Bus 411: Feature quantity analysis calculation processing unit 501: Face image 502: Target image 503: Face image 504: Target image 701: Character information 702: Voice 901: Icon 902: Icon 903: Icon 1100: HMD
1101: Camera 1102: Display 1103: Left headphone 1104: Right headphone 1105: Left vibrator 1106: Right vibrator 1111: Target image 1112: Target image
11 :ユーザ
20 :携帯情報端末
30 :携帯情報端末
40 :情報サーバ
100 :スマートフォン
101 :インカメラ
102 :ディスプレイ
103 :スピーカー
104 :マイク
105 :バイブレータ
106 :タッチパネル
107 :アウトカメラ
108 :タイマー
111 :目標画像
112 :対象画像
112a :顔画像
113 :文字情報
114 :アイコン
115 :音声
116 :文字情報
117 :アイコン
118 :音声
119 :音声
120 :音声
121 :音声
122 :音声
201 :顔
202 :顔
203 :顔
211 :特性線
213 :表情状態
221 :特性線
223 :表情状態
231 :特性線
233 :状態
241 :特性線
243 :状態
310 :プロセッサ
311 :特徴量解析部
312 :目標画像登録部
313 :特徴量比較部
314 :通知部
315 :顔画像補正部
320 :メモリ
321 :プログラム
322 :オペレーティングシステム
323 :アプリケーションプログラム
324 :情報データ
325 :顔画像情報
326 :特徴量情報
327 :表情判定閾値情報
328 :通知判定時間情報
329 :警告指示情報
330 :表情情報
340 :通信器
350 :バス
411 :特徴量解析算出処理部
501 :顔画像
502 :対象画像
503 :顔画像
504 :対象画像
701 :文字情報
702 :音声
901 :アイコン
902 :アイコン
903 :アイコン
1100 :HMD
1101 :カメラ
1102 :ディスプレイ
1103 :左ヘッドフォン
1104 :右ヘッドフォン
1105 :左バイブレータ
1106 :右バイブレータ
1111 :対象画像
1112 :目標画像 10: User 11: User 20: Mobile information terminal 30: Mobile information terminal 40: Information server 100: Smartphone 101: In-camera 102: Display 103: Speaker 104: Microphone 105: Vibrator 106: Touch panel 107: Out-camera 108: Timer 111 : Target image 112: Target image 112a: Face image 113: Character information 114: Icon 115: Voice 116: Character information 117: Icon 118: Voice 119: Voice 120: Voice 121: Voice 122: Voice 201: Face 202: Face 203 : Face 211: Characteristic line 213: Facial expression state 221: Characteristic line 223: Facial expression state 231: Characteristic line 233: State 241: Characteristic line 243: State 310: Processor 311: Feature amount analysis unit 312: Target image registration unit 313: Feature Amount comparison unit 314: Notification unit 315: Face image correction unit 320: Memory 321: Program 322: Operating system 323: Application program 324: Information data 325: Face image information 326: Feature amount information 327: Facial expression determination threshold information 328: Notification Judgment time information 329: Warning instruction information 330: Expression information 340: Communication device 350: Bus 411: Feature quantity analysis calculation processing unit 501: Face image 502: Target image 503: Face image 504: Target image 701: Character information 702: Voice 901: Icon 902: Icon 903: Icon 1100: HMD
1101: Camera 1102: Display 1103: Left headphone 1104: Right headphone 1105: Left vibrator 1106: Right vibrator 1111: Target image 1112: Target image
Claims (8)
- 携帯情報端末であって、
カメラと、
ディスプレイと、
メモリと、
通知情報を出力する通知部材と、
前記カメラ、前記ディスプレイ、及び前記メモリのそれぞれに接続されたプロセッサと、を備え、
前記メモリは、目標とするユーザの表情が撮像された目標画像を記憶し、
前記プロセッサは、
前記目標画像に撮像された前記ユーザの前記目標とする表情の特徴を示す目標特徴量を解析し、
前記ディスプレイの画面に情報が表示されている際に、前記カメラが前記ユーザの顔を撮像した対象画像を読み込み、前記対象画像に撮像された前記ユーザの表情の特徴を示す対象特徴量を解析し、
前記目標特徴量及び前記対象特徴量のずれ量を算出し、
前記ずれ量が前記ユーザの表情が悪化したと判定するために予め定めた表情判定閾値以上となったと判断すると、前記通知部材に対して前記判断の結果に基づく通知情報を出力させる、
ことを特徴とする携帯情報端末。 It ’s a mobile information terminal,
With the camera
With the display
With memory
A notification member that outputs notification information and
A processor connected to each of the camera, the display, and the memory.
The memory stores a target image in which the facial expression of the target user is captured.
The processor
The target feature amount indicating the feature of the target facial expression of the user captured in the target image is analyzed.
When the information is displayed on the screen of the display, the camera reads the target image obtained by capturing the face of the user, and analyzes the target feature amount showing the characteristics of the facial expression of the user captured on the target image. ,
The amount of deviation between the target feature amount and the target feature amount is calculated.
When it is determined that the deviation amount is equal to or greater than a predetermined facial expression determination threshold value for determining that the user's facial expression has deteriorated, the notification member is made to output notification information based on the result of the determination.
A mobile information terminal characterized by that. - 請求項1に記載の携帯情報端末であって、
前記通知部材が出力する前記通知情報は、前記ユーザの表情が悪化したことを示す警告情報、前記ユーザの表情を改善させるための指示情報、及び前記ユーザの表情が前記ユーザの前記目標とする表情に対してどの程度遠近状態にあるかを示す表情情報の少なくとも一つ以上である、
ことを特徴とする携帯情報端末。 The mobile information terminal according to claim 1.
The notification information output by the notification member includes warning information indicating that the user's facial expression has deteriorated, instruction information for improving the user's facial expression, and the user's facial expression as the target facial expression of the user. At least one or more facial expression information indicating how far away the person is.
A mobile information terminal characterized by that. - 請求項1に記載の携帯情報端末であって、
前記プロセッサに接続されたタイマーを更に備え、
前記プロセッサは、
前記ずれ量が前記ユーザの表情が悪化したと判定するために予め定めた表情判定閾値以上となったと判断すると、前記タイマーに対して経過時間の計測を指示し、
前記経過時間が、前記ユーザの表情悪化状態が継続したと判断するために予め定められた通知判定時間以上となったと判断すると、前記通知部材に対して前記判断の結果に基づく通知情報を出力させる、
ことを特徴とする携帯情報端末。 The mobile information terminal according to claim 1.
Further equipped with a timer connected to the processor
The processor
When it is determined that the deviation amount is equal to or greater than a predetermined facial expression determination threshold value for determining that the user's facial expression has deteriorated, the timer is instructed to measure the elapsed time.
When it is determined that the elapsed time is equal to or longer than the notification determination time predetermined for determining that the user's facial expression deterioration state has continued, the notification member is made to output notification information based on the result of the determination. ,
A mobile information terminal characterized by that. - 請求項1に記載の携帯情報端末であって、
前記ユーザの操作を受け付ける操作入力部材を更に備え、
前記プロセッサは、
前記操作入力部材から前記目標画像の選択及び登録操作を受け付けると、前記メモリに記憶する、
ことを特徴とする携帯情報端末。 The mobile information terminal according to claim 1.
Further provided with an operation input member that accepts the user's operation,
The processor
When the target image selection and registration operation is received from the operation input member, it is stored in the memory.
A mobile information terminal characterized by that. - 請求項1に記載の携帯情報端末であって、
前記プロセッサは、撮影された動画の中から、前記ユーザの目標とする表情の顔画像を選択し、前記メモリに前記目標画像として記憶する、又は前記メモリに既に記憶されている前記目標画像を更新して記憶する、
ことを特徴とする携帯情報端末。 The mobile information terminal according to claim 1.
The processor selects a face image of the target facial expression of the user from the captured moving images and stores the target image in the memory as the target image, or updates the target image already stored in the memory. And remember
A mobile information terminal characterized by that. - 請求項1に記載の携帯情報端末であって、
前記特徴量は、前記目標特徴量が相対的に大きな値となり、かつ前記ユーザの前記目標とする表情よりも悪化した表情では相対的に小さな値となる特性を有し、
前記プロセッサは、前記目標特徴量の値よりも前記対象特徴量の値が大きい場合に、前記メモリに記憶された前記目標画像を前記対象画像に更新して記憶する、
ことを特徴とする携帯情報端末。 The mobile information terminal according to claim 1.
The feature amount has a characteristic that the target feature amount has a relatively large value and the facial expression worsened than the target facial expression of the user has a relatively small value.
When the value of the target feature amount is larger than the value of the target feature amount, the processor updates and stores the target image stored in the memory to the target image.
A mobile information terminal characterized by that. - 請求項1に記載の携帯情報端末であって、
前記プロセッサは、前記カメラが撮像した顔画像の向き及び角度の少なくとも一つ又は両方を補正し、補正後の前記顔画像を前記対象画像として前記対象特徴量を解析する、
ことを特徴とする携帯情報端末。 The mobile information terminal according to claim 1.
The processor corrects at least one or both of the directions and angles of the face image captured by the camera, and analyzes the target feature amount using the corrected face image as the target image.
A mobile information terminal characterized by that. - 携帯情報端末を視認時の表情監視方法であって、
前記携帯情報端末が、目標とするユーザの表情が撮像された目標画像を記憶するステップと、
前記目標画像に撮像された前記ユーザの前記目標とする表情の特徴を示す目標特徴量を解析するステップと、
前記携帯情報端末のディスプレイの画面に情報が表示されている際に、前記画面を視認する前記ユーザの顔を撮像した対象画像を読み込むステップと、
前記対象画像に撮像された前記ユーザの表情の特徴を示す対象特徴量を解析するステップと、
前記目標特徴量及び前記対象特徴量のずれ量を算出するステップと、
前記ずれ量が前記ユーザの表情が悪化したと判定するために予め定めた表情判定閾値以上となったと判断すると、前記判断の結果に基づく通知情報を出力するステップと、
を含むことを特徴とする表情監視方法。
It is a facial expression monitoring method when visually recognizing a mobile information terminal.
A step in which the mobile information terminal stores a target image in which the facial expression of the target user is captured, and
A step of analyzing a target feature amount indicating the feature of the target facial expression of the user captured in the target image, and a step of analyzing the target feature amount.
A step of reading a target image of the face of the user who visually recognizes the screen when the information is displayed on the screen of the display of the mobile information terminal.
A step of analyzing a target feature amount indicating the facial expression feature of the user captured in the target image, and a step of analyzing the target feature amount.
The step of calculating the deviation amount of the target feature amount and the target feature amount, and
When it is determined that the deviation amount is equal to or greater than a predetermined facial expression determination threshold value for determining that the user's facial expression has deteriorated, a step of outputting notification information based on the result of the determination, and a step of outputting notification information.
A facial expression monitoring method characterized by including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/044867 WO2022118398A1 (en) | 2020-12-02 | 2020-12-02 | Mobile information terminal and facial expression monitoring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/044867 WO2022118398A1 (en) | 2020-12-02 | 2020-12-02 | Mobile information terminal and facial expression monitoring method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022118398A1 true WO2022118398A1 (en) | 2022-06-09 |
Family
ID=81853051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/044867 WO2022118398A1 (en) | 2020-12-02 | 2020-12-02 | Mobile information terminal and facial expression monitoring method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022118398A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010148052A (en) * | 2008-12-22 | 2010-07-01 | Kyocera Corp | Mobile terminal with camera |
JP2010178259A (en) * | 2009-02-02 | 2010-08-12 | Nikon Corp | Digital camera |
JP2010181490A (en) * | 2009-02-03 | 2010-08-19 | Olympus Imaging Corp | Imaging apparatus |
JP2011118767A (en) * | 2009-12-04 | 2011-06-16 | Osaka Prefecture Univ | Facial expression monitoring method and facial expression monitoring apparatus |
JP2020149361A (en) * | 2019-03-13 | 2020-09-17 | Necソリューションイノベータ株式会社 | Expression estimating apparatus, feeling determining apparatus, expression estimating method, and program |
-
2020
- 2020-12-02 WO PCT/JP2020/044867 patent/WO2022118398A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010148052A (en) * | 2008-12-22 | 2010-07-01 | Kyocera Corp | Mobile terminal with camera |
JP2010178259A (en) * | 2009-02-02 | 2010-08-12 | Nikon Corp | Digital camera |
JP2010181490A (en) * | 2009-02-03 | 2010-08-19 | Olympus Imaging Corp | Imaging apparatus |
JP2011118767A (en) * | 2009-12-04 | 2011-06-16 | Osaka Prefecture Univ | Facial expression monitoring method and facial expression monitoring apparatus |
JP2020149361A (en) * | 2019-03-13 | 2020-09-17 | Necソリューションイノベータ株式会社 | Expression estimating apparatus, feeling determining apparatus, expression estimating method, and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10114458B2 (en) | Apparatus and method of controlling mobile terminal based on analysis of user's face | |
US10585288B2 (en) | Computer display device mounted on eyeglasses | |
EP2813922B1 (en) | Visibility improvement method based on eye tracking, machine-readable storage medium and electronic device | |
US8427476B2 (en) | System and method for automatically adjusting visual setting of display device | |
JP4384240B2 (en) | Image processing apparatus, image processing method, and image processing program | |
JP6341755B2 (en) | Information processing apparatus, method, program, and recording medium | |
US9225896B2 (en) | Mobile terminal device, storage medium, and display control method | |
CN108712603B (en) | Image processing method and mobile terminal | |
JP2006023953A (en) | Information display system | |
JP2016208370A (en) | Head mounted display and method for controlling head mounted display | |
KR20160016524A (en) | Wearable glasses and method for displaying image therethrough | |
KR20140002009A (en) | Input device, input method and recording medium | |
EP4002199A1 (en) | Method and device for behavior recognition based on line-of-sight estimation, electronic equipment, and storage medium | |
US20140009385A1 (en) | Method and system for rotating display image | |
CN109525837A (en) | Image generation method and mobile terminal | |
US20220334648A1 (en) | Wearable information terminal, control method thereof, and storage medium | |
JP4945617B2 (en) | Image processing apparatus, image processing method, and image processing program | |
JP2013228490A (en) | Display device, control method thereof and program | |
WO2022118398A1 (en) | Mobile information terminal and facial expression monitoring method | |
CN111610886A (en) | Method and device for adjusting brightness of touch screen and computer readable storage medium | |
EP4002200A1 (en) | Method and device for behaviour recognition, electronic equipment, and storage medium | |
JP2010231304A (en) | Peep detecting method and device, and peep detection program | |
US11775063B1 (en) | Display device and display method | |
US20100166311A1 (en) | Digital image processing apparatus and method of controlling the same | |
CN117251050A (en) | Control method, control device and display system of control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20964252 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20964252 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |