WO2022114673A1 - Radiative cooling multilayer films - Google Patents
Radiative cooling multilayer films Download PDFInfo
- Publication number
- WO2022114673A1 WO2022114673A1 PCT/KR2021/017028 KR2021017028W WO2022114673A1 WO 2022114673 A1 WO2022114673 A1 WO 2022114673A1 KR 2021017028 W KR2021017028 W KR 2021017028W WO 2022114673 A1 WO2022114673 A1 WO 2022114673A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation
- layer
- multilayer film
- polymer
- cooling
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/027—Thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B23/00—Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
Definitions
- the present invention relates to multilayer films, and more particularly to radiation cooled multilayer films.
- Radiative cooling is a natural phenomenon in which the temperature of an object decreases when the amount of radiation emitted from the object exceeds the absorbed energy.
- the amount of radiant energy emitted is quantified by the Stefan-Boltzmann Law, and can be expressed as in Equation 1 below.
- the surface of the Earth always emits a certain amount of radiant energy. During the daytime, it absorbs radiant energy from the sun, and the absorbed radiant energy is greater than the emitted radiant energy, so radiative cooling does not occur. That is, the radiative cooling effect may theoretically be greater at night, but in places with a lot of clouds and humidity, radiant energy emitted from the earth's surface and objects is re-radiated, so radiative cooling may be insignificant or may not occur. Due to these characteristics, the radiative cooling effect is mainly maximized on clear and dry days with short days, low humidity, and no clouds. In the case of Korea, this phenomenon is related to the cause of the extreme diurnal temperature difference between spring and autumn.
- the engineering use of this natural phenomenon is called 'radiative cooling technology'. This is also called zero energy cooling or passive cooling technology in that it can implement cooling without external energy input, and is attracting attention in terms of carbon and energy reduction effects.
- the atmosphere that exists between the earth's surface and space is a mixture of numerous gases such as oxygen and nitrogen, which acts as a translucent medium for radiative cooling. 298 K) to space (0 K).
- the atmosphere is very transparent to thermal radiation in the 8 to 13 ⁇ m wavelength range, called the atmospheric window, allowing heat to be released into space without heating the atmosphere.
- Atmospheric window transmittance is affected by various environmental factors such as geographic location, cloudiness, and humidity conditions. In general, air window transmittance is high when it is clear and dry.
- Cid-Open Patent No. 109070695 discloses a selective heat dissipation cooling structure having an average emissivity of 0.5 to 1.0 for radiation in a wavelength region of 7 to 14 ⁇ m using a selective radiation layer including a polymer and a plurality of dielectric particles dispersed in the polymer.
- the present invention is to provide a transparent radiation-cooled multilayer film and a reflective radiation-cooled multilayer film having a structure that can substantially implement radiation cooling performance for a subject in a radiation-cooled multilayer film and can be mass-produced. .
- the present invention includes a first polymer in which dielectric particles having an average particle diameter of 0.01 to 30 ⁇ m are dispersed in an amount of 0.1 to 25% by weight, and an object from which heat is to be removed in a wavelength range of 8 to 13 ⁇ m.
- a first infrared radiation layer selectively radiatively cooled to an average emissivity of 0.5 to 1 with respect to radiation
- a second infrared radiation layer disposed on the first infrared radiation layer and including a second polymer for emitting the selectively radiatively cooled heat to the outside
- a metal reflective layer having a thickness of 20 to 150 nm that is located under the first infrared emitting layer and reflects sunlight.
- the film has a radiative cooling power of 50 to 150 W/m 2 under an operating temperature of -100 to 300° C., a visible light transmittance of 15 to 70%, and a solar reflectance of 20 to 50%, and , It provides a transparent radiation-cooled multilayer film, characterized in that the haze (Haze) is 10% or less.
- the film has a radiative cooling power of 50 to 150 W/m 2 under an operating temperature of -100 to 300° C., and provides a radiation-cooled multilayer film, characterized in that the solar reflectance is 80 to 95%. do.
- the dielectric particles are silica (SiO 2 ), alumina (Al 2 O 3 ), aluminum silicate (Al 2 SiO 5 ), zeolite (Na 2 Al 2 Si 3 O-2H 2 O), calcium carbonate (CaCO 3 ), Silicon carbide (SiC), zinc oxide (ZnO), zinc sulfate (ZnSO 4 ), titanium dioxide (TiO 2 ), barium sulfate (BaSO 4 ), cerium oxide (Ce 2 O 3 ), zirconia (ZrO 2 ) and kaolin oxide (Al 2 Si 2 O 5 (OH) 4 ) It provides a transparent radiation-cooled multilayer film, characterized in that at least one selected from the group consisting of.
- the first polymer and the second polymer are each PET (Polyethylene terephthalate), PETG (Glycol-modified polyethylene terephthalate), PEN (Polyethylene naphthalate), PVDF (Polyvinylidene fluoride), PTFE (Polytetrafluoroethylene), PFA (Perfluoroalkoxyalkane), PCTFE ( Polychlorotrifluoroethylene), ECTFE (Ethylene chlorotrifluoroethylene), ETFE (Ethylene Tetra fluoro Ethylene), FEP (Fluorinated ethylene propylene), THV (Terpolymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride), PVC (Polyvinyl chloride), PVDC (Polyvinylidene chloride), PU (Polyvinylidene chloride) Polyurethane), PC (Polycarbonate), PE (Polyethylene), and PP (
- the first infrared emitting layer and the second infrared emitting layer have an average thickness of 10 ⁇ m to 3 mm, respectively. It provides a transparent radiation-cooled multilayer film.
- the metal oxidation prevention layer for preventing oxidation of the metal reflective layer component including a third polymer; And it provides a transparent radiation-cooled multilayer film, characterized in that it further comprises a; and a pressure-sensitive adhesive layer that is located under the metal antioxidant layer is attached to the object.
- the metal reflective layer is formed of silver (Ag) or aluminum (Al) to a thickness of 20 to 150 nm
- the third polymer has an oxygen transmittance of 0.1 to 1,000 cc/m 2 ⁇ day ⁇ atm, and a moisture transmittance of 1 to 100 g It provides a transparent radiation-cooled multilayer film, characterized in that /m 2 ⁇ day ⁇ atm.
- the metal reflective layer is formed of silver (Ag) or aluminum (Al) to a thickness of 20 to 600 nm
- the third polymer has an oxygen transmittance of 0.1 to 5 cc/m 2 ⁇ day ⁇ atm, and a moisture transmittance of 1 to 20 g It provides a radiation-cooled multilayer film, characterized in that /m 2 ⁇ day ⁇ atm.
- the present invention is a radiation cooling film including a first infrared radiation layer including dielectric particles and a second infrared radiation layer located on the outermost side (upper side). It is possible to provide a transparent radiation-cooled multilayer film and a reflective radiation-cooled multilayer film capable of realizing a substantial radiation cooling effect by effectively emitting the second infrared radiation layer to the outside.
- the object has an adhesive layer attached to the object and can be easily attached to the surface of the object to be cooled, thereby reducing the thermal conduction resistance between the film and the main body, thereby further improving the radiation cooling efficiency.
- the multilayer film according to the present invention is extrusion-molded by selecting a polymer-based material and has ease of processing, so mass production is possible and economical and It has excellent performance, can be efficiently applied to detailed applications, and has technical significance in terms of commercialization.
- FIG. 1 is a cross-sectional view illustrating a radiation-cooled multilayer film according to the present invention.
- FIG. 2 is a schematic diagram illustrating a process of realizing cooling from a main body of a radiation-cooled multilayer film according to the present invention.
- FIG. 1 is a cross-sectional view illustratively showing a radiation-cooled multilayer film according to the present invention
- FIG. 2 is a schematic diagram illustrating a cooling realization process from the main body of the radiation-cooled multilayer film according to the present invention.
- the radiation-cooled multilayer film 100 includes a first infrared emission layer 110, a second infrared emission layer 130, and a metal reflection layer 150, and metal oxide. It may further include a barrier layer 160 , an adhesive layer 170 , and an adhesive layer 180 .
- 'film' may also be understood as 'sheet' according to its relative thickness, and therefore, 'multilayer film' in the present invention should be understood as a concept including 'multilayer sheet'.
- Radiative cooling multilayer film 100 shows a level of 100 W/m 2 at room temperature, daytime or nighttime, radiative cooling power.
- the transparent radiation-cooled multilayer film 100 may exhibit a radiative cooling power of 50 to 150 W/m 2 under an operating temperature of -100 to 300° C., and a visible light transmittance of 15 to 70%, and , the solar reflectance may be 20 to 50%, and the haze may be 10% or less.
- the reflective radiation cooling multilayer film 100 may exhibit a radiative cooling power of 50 to 150 W/m 2 under an operating temperature of -100 to 300° C., and may have a solar reflectance of 80 to 95%.
- the first infrared radiation layer 110 is an object to remove heat, that is, a layer that absorbs heat radiatedly cooled from the main body, and contains dielectric particles 120 having an average particle diameter of 0.01 to 30 ⁇ m in an amount of 0.1 to 25% by weight.
- the dispersed first polymer 140 is included.
- the main body is selectively radiatively cooled to an average emissivity of 0.5 to 1 for radiation in a wavelength range of 8 to 13 ⁇ m.
- emissivity means that an object receives light energy and reflects, transmits, or absorbs light energy.
- the ratio of absorbed energy can be defined as emissivity, which means that the emissivity is It is premised on the same as the absorption rate, and this premise means a case in which the kinetic state remains the same over time (eg, a state in which the temperature does not change).
- the average emissivity defines the average emissivity when the calculation range is set to a wavelength of 8 to 13 ⁇ m.
- the first polymer 140 is a material that transmits solar radiation and emits infrared radiation, and for example, absorbs sunlight in a wavelength range of 300 to 5,000 nm at a low rate of less than 20%, preferably less than 5%, and , an infrared absorption rate (emission rate) in the wavelength range of 5 to 50 ⁇ m may be 0.6 or more, preferably 0.9 or more.
- PET Polyethylene terephthalate
- PETG Polycol-modified polyethylene terephthalate
- PEN Polyethylene naphthalate
- PVDF Polyvinylidene fluoride
- PTFE Polytetrafluoroethylene
- PFA Perfluoroalkoxyalkane
- PCTFE Polychlorotrifluoroethylene
- ECTFE Ethylene chlorotrifluoroethylene
- ETFE Ethylene Tetra fluoro Ethylene
- FEP Fluorinated ethylene propylene
- THV Terpolymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride
- PVC Polyvinyl chloride
- PVDC Polyvinylidene chloride
- PU Polyurethane
- PC Polycarbonate
- PE Polyethylene
- PP Polypropylene
- the average thickness of the first infrared emitting layer 110 may be 10 ⁇ m to 3 mm, respectively, and preferably 20 to 1,000 ⁇ m. When the thickness of the first infrared radiation layer 110 is too thin, radiation cooling heat absorption performance may be reduced, and if excessive, heat emission performance through the second infrared radiation layer 130 may be reduced.
- the dielectric particles 120 are dispersed on the matrix of the first polymer 140 so that the selective radiation performance of the first infrared radiation layer 110 is implemented, and a high average emissivity for radiation in a wavelength range of 8 to 13 ⁇ m is obtained.
- the dielectric particles 120 having an average particle diameter of 0.01 to 30 ⁇ m are dispersed in an amount of 0.1 to 25% by weight, and preferably, the dielectric particles 120 having an average particle diameter of 1 to 10 ⁇ m are dispersed in an amount of 1 to 5% by weight.
- the dielectric particles 120 include, for example, silica (SiO 2 ), alumina (Al 2 O 3 ), aluminum silicate (Al 2 SiO 5 ), zeolite (Na 2 Al 2 Si 3 O-2H 2 O), calcium carbonate ( CaCO 3 ), silicon carbide (SiC), zinc oxide (ZnO), zinc sulfate (ZnSO 4 ), titanium dioxide (TiO 2 ), barium sulfate (BaSO 4 ), cerium oxide (Ce 2 O 3 ), zirconia (ZrO 2 ) ), kaolin oxide (Al 2 Si 2 O 5 (OH) 4 ), and the like.
- the second infrared radiation layer 130 is a layer for effectively radiating heat absorbed by radiation cooling in the first infrared radiation layer 110 to the outside. It is formed of a polymer material that gives long-term durability and weather resistance characteristics according to exposure, and in the present invention, a substantial radiative cooling effect is realized through the second infrared radiation layer 130 . That is, since the second infrared radiation layer 130 is provided, the radiation cooling heat does not stay in the first infrared radiation layer 110 and can be rapidly emitted to the outside.
- the dielectric particles 120 included in the first infrared radiation layer 110 are not included in the second infrared radiation layer 130 , the heat absorbed by radiative cooling in the first infrared radiation layer 110 is removed. It was confirmed that it can be effectively radiated to the outside.
- the material of the second infrared emitting layer 130 is PET (Polyethylene terephthalate), PETG (Glycol-modified polyethylene terephthalate), PEN (Polyethylene naphthalate), PVDF (Polyvinylidene fluoride), PTFE (Polyethylene terephthalate), like the first infrared emitting layer 110 .
- the average thickness of the second infrared emission layer 130 may be 10 ⁇ m to 3 mm, respectively, and preferably, 20 to 1,000 ⁇ m.
- the thickness of the second infrared radiation layer 130 is excessive, heat dissipation performance may be deteriorated due to the thickness of the second infrared radiation layer 130 itself.
- the polymer has a thickness of 50 ⁇ m or more, or 100 ⁇ m or more, it acts as a broadband emitter (BE) and includes wavelengths other than the atmospheric window (8 to 13 ⁇ m wavelength) for 4 to 20 ⁇ m wavelength. It emits radiation and shows relatively high cooling power compared to a selective emitter (SE).
- a polymer having a thickness of less than 50 ⁇ m can act as a selective emitter depending on the material and selectively radiate to the atmospheric window wavelength region, thereby increasing the cooling temperature compared to a broadband emitter. It is advantageous in terms of heat dissipation performance because selective radiation is possible when it is thin.
- the first infrared emitting layer 110 and the second infrared emitting layer 130 may be used by blending additives such as UV stabilizers, flame retardants, antioxidants, neutralizers, and processing aids in the range of 0.1 to 5% by weight, respectively. .
- a metal reflective layer 150 and a metal oxidation prevention layer 160 may be further provided in order to prevent a decrease in the daytime cooling effect due to heating due to sunlight. That is, the present invention is provided with a metal reflective layer 150 having a thickness of 20 to 150 nm that is located under the first infrared emitting layer 110 to reflect sunlight, and is also located under the metal reflective layer 150, and the second 3 A metal anti-oxidation layer 160 for preventing oxidation of the metal reflective layer 150 component including a polymer may be provided.
- the thickness of the metal reflective layer 150 is preferably 20 to 150 nm in the case of the transparent radiation-cooled multilayer film 100, and 20 to 600 nm in the case of the reflective radiation-cooled multilayer film 100, preferably It may be 200 to 400 nm.
- the metal reflective layer 150 is positioned under the first infrared emitting layer 110 to reflect solar radiation, and in the present invention, the transparent radiation cooling multilayer by adjusting the thickness of the metal reflective layer 150 within the above range.
- the solar reflectance is set in the range of 20 to 50% to partially transmit sunlight for securing a view, and in the case of the reflective radiation-cooled multilayer film 100, 80 to 95% of It can be made to have sunlight reflectance.
- the material constituting the metal reflective layer 150 is a solar reflective metal material, and silver (Ag) or aluminum (Al) may be preferably applied.
- the visible light transmittance may be 15 to 70%, which is by adjusting the metal deposition thickness of the metal reflective layer 150 in the range of 20 to 150 nm as described above. can be achieved.
- a third polymer is included in the lower portion of the metal reflection layer 150.
- a metal oxidation prevention layer 160 may be provided.
- a material having low oxygen and moisture permeability may be selected for the third polymer, and specifically, the oxygen permeability is 0.1 to 1,000 cc/m 2 ⁇ day ⁇ atm, and the water transmittance is 1 to 100 g/m 2 dayatm, preferably A polymer having an oxygen permeability of 0.1 to 100 cc/m 2 ⁇ day ⁇ atm and a water permeability of 1 to 50 g/m2 ⁇ day ⁇ atm may be selected.
- a polymer having an oxygen transmittance of 0.1 to 5 cc/m2 ⁇ day ⁇ atm and a water transmittance of 1 to 20 g/m2 ⁇ day ⁇ atm may be selected.
- the third polymer material is not particularly limited as long as it satisfies the oxygen and moisture permeability, but preferably PET (Polyethylene terephthalate), PVDC (Polyvinylidene chloride) or EvOH (Ethylene vinyl alcohol) may be used, and more Preferably, PET (Polyethylene terephthalate) may be used.
- the adhesive layer 170 is located below the metal oxidation prevention layer 160 and is attached to the object. ) may be further provided.
- the material constituting the adhesive layer 170 is not particularly limited as long as it provides adhesive performance between the metal oxidation prevention layer 160 and the object and does not reduce the radiation cooling performance according to the present invention, for example, a silicone-based resin. , an acrylic resin, etc. may be used.
- an adhesive layer 180 connecting between the first infrared emitting layer 110 and the second infrared emitting layer 130 and between the metal reflective layer 150 and the metal oxidation prevention layer 160 is further provided.
- the material constituting the adhesive layer 180 is not particularly limited as long as it imparts adhesive performance to the adhesive layer and does not reduce the radiation cooling performance according to the present invention, for example, silicone-based resin, acrylic resin, urethane-based resin A resin, an epoxy-based resin, or the like may be used.
- All of the layers constituting the multilayer film 100 according to the present invention can be extrusion-molded except for the metal reflective layer 150 . That is, the multilayer film 100 according to the present invention can be manufactured by known methods such as extrusion lamination or co-extrusion by using the pellet-like raw material constituting each layer, and thus, in the case of the conventional inorganic material lamination type radiation cooling technology, vacuum There was a problem that mass production was difficult due to the deposition process, etc., but since the multilayer film 100 according to the present invention is extruded and has ease of processing, it has the advantage of easy mass production. In this case, in the case of the first infrared radiation layer 110 , the dielectric particles 120 are uniformly dispersed in the polymer resin itself, pelletized, and then manufactured through extrusion molding.
- Subjects subject to selective radiative cooling using the multilayer film 100 according to the present invention include, for example, solar panels, automobile exterior materials or windows, roofs or windows of buildings, curtains and blinds, agricultural protective films and plastic houses, and flexible It can be applied to a wide variety of objects that require radiant cooling, such as transparent electrodes and large outdoor display surfaces.
- the reflective radiation cooling film in the present invention can be used to achieve cooling by circulating an internal fluid such as air, water, and antifreeze in connection with a passive or active system.
- an internal fluid such as air, water, and antifreeze
- the above system can be applied to air-cooling/water-cooled air conditioning equipment using the radiative cooling effect and used for the purpose of reducing house cooling costs.
- the following contents are included. That is, all device configurations in the plurality of systems are in thermal connection with the cooling fluid, and the plurality of selective radiative cooling structures are placed in contact between the surfaces of one of the plurality of thermal cooling collecting devices to allow heat exchange, each The selective radiative cooling structure includes the selective radiative cooling layer.
- the process of selective radiative cooling using the multilayer film 100 according to the present invention is as follows.
- the film or sheet 100 having a selective radiation cooling structure is attached in close contact with the surface of the main body (target) to be cooled by directing the adhesive layer 170 to the main body. At this time, it can be attached in close contact with all surfaces (top and side) except for the bottom of the main body.
- the surface of the film or sheet 100 having a selective radiation cooling structure is cooled by infrared radiation (Surface cool), and the temperature of the subject (target) in a relatively high temperature state compared to the film or sheet 100 is relatively As a result, heat is transferred to the film or sheet 100 in a low temperature state (Space cool).
- cooling corresponding to the radiative cooling force generated by the selective radiative cooling structure is provided to the subject (target).
- the transparent radiation cooling multilayer film 100 provides a selective radiation cooling film structure that performs selective infrared radiation and solar light reflection functions, thereby lowering the temperature of the subject (target) without separate energy. have.
- a zero-energy cooling composite material By providing such a zero-energy cooling composite material, it can contribute to real-life applicability and, as a result, can significantly contribute to energy reduction and carbon reduction effects.
- PETG a portion corresponding to 30 mol% of ethylene units constituting polyethylene terephthalate (PET) is replaced with 1,4-cyclohexanedimethylene units
- silica SiO 2
- a first infrared radiation layer having a thickness of 25 ⁇ m.
- silver was heated and vaporized by an electron beam heating method to deposit a metal reflective layer having a thickness of 100 nm.
- PVDF was extruded in the same manner to prepare a second infrared emitting layer having a thickness of 25 ⁇ m.
- PET having an oxygen permeability of 40 cc/m 2 dayatm and a moisture permeability of 20 g/m 2 dayatm was extruded in the same manner to prepare a metal antioxidant layer.
- an adhesive layer is formed and adhered between the first infrared emitting layer and the second infrared emitting layer and between the metal reflective layer and the metal antioxidant layer with an acrylic resin, and an acrylic adhesive layer on the back surface of the metal antioxidant layer was formed to prepare a transparent radiation-cooled multilayer film.
- Example 1 A comparative test was conducted under the following conditions on the transparent window to which the prepared transparent radiation-cooling multilayer film was applied (Example 1) and the general transparent window to which it was not applied (Comparative Example 1), and the results are shown in FIG. 3 .
- the air temperature of the transparent window applied with the transparent radiation cooling multilayer film was lower by up to about 3° C. compared to the air temperature of the general transparent window (no film attached to the surface).
- the section in which the temperature reduction effect of Example 1 compared to Comparative Example 1 was exhibited was from about 7:00 am to about 7:00 pm. This is limited to the case of space cool temperature measurement.
- the transparent window to which the above-prepared transparent radiation cooling multilayer film is applied, a transparent window not applied (not attached), a transparent window to which a commercial tinting film is applied, and a transparent window to which a commercial Low-Emissivity (Low-Emissivity) film is applied, under the following conditions A comparative test was conducted, and the results are shown in FIG. 4 .
- the commercial tinting film and the commercial Low-E film are a type of thermal barrier film, and commercially available products are used. Both films transmit visible light, but the tinting film blocks both ultraviolet and infrared rays, and the Low-E film is different in that it is characterized by low emissivity.
- the transparent radiation-cooled multilayer film (Example 1), the film not attached to the surface, the tinting film, and the Low-E film all correspond to visible light transmitting films, and in Test Example 3, infrared rays are reflected and blocked. From the point of view of irradiating or radiating, we tried to verify the effect by comparing films applied to similar fields in real life. Referring to FIG. 4 , when the transparent radiation-cooling multilayer film was applied, the maximum temperature reduction effect was 4°C compared to the non-attached case, 5°C compared to the case where the tinting film was applied, and 2°C compared to the case where the Low-E film was applied.
- the temperature rose to a maximum of 7° C. during the day compared to the case where the tinting film was applied, and in the case of Example 1, the temperature was mostly kept low compared to the comparative examples. Applicability to real life can be checked.
- Example 2 the same radiation-cooled film as in Example 1 was prepared (Comparative Example 2), except that there was no adhesive layer in Example 1, and the test A comparative test was performed under the same conditions as the test conditions in Example 2. After the test, the surface temperature of the subject was measured, and the results are shown in Table 2 below.
- the radiation cooling efficiency can be further improved by reducing the thermal conduction resistance between the film and the main body by further including an adhesive layer attached to the main body and located under the metal antioxidant layer according to the present invention.
- PETG a portion corresponding to 30 mol% of ethylene units constituting polyethylene terephthalate (PET) is replaced with 1,4-cyclohexanedimethylene units) silica (SiO 2 ) having an average particle diameter of 2 to 5 ⁇ m 3 wt%
- SiO 2 1,4-cyclohexanedimethylene units
- the content was put into a single-screw extruder, melt-kneaded and solidified by cooling to prepare pellets, and then extrusion-molded to prepare a first infrared radiation layer having a thickness of 65 ⁇ m. Thereafter, silver (Ag) was heated and vaporized by an electron beam heating method to deposit a metal reflective layer having a thickness of 500 nm.
- PVDF was extruded in the same manner to prepare a second infrared emitting layer having a thickness of 25 ⁇ m.
- a metal antioxidant layer was prepared by extrusion molding PET having an oxygen permeability of 40 cc/m 2 dayatm and a water permeability of 20 g/m 2 ⁇ day ⁇ atm in the same manner.
- an adhesive layer is formed and adhered between the first infrared emitting layer and the second infrared emitting layer and between the metal reflective layer and the metal antioxidant layer with an acrylic resin, and an acrylic adhesive layer on the back surface of the metal antioxidant layer was formed to prepare a reflective radiation-cooled multilayer film.
- the solar reflectance of the prepared reflective radiation-cooled multilayer film was measured according to the following method, and the results are shown in Table 3 below.
- the reflective radiation-cooled multilayer film including the first infrared emitting layer and the second infrared emitting layer including dielectric particles according to the present invention has very excellent solar reflection performance.
- Example 2 A comparative test was conducted under the following conditions on the container to which the prepared reflective radiation-cooling multilayer film was applied (Example 2) and the container to which it was not applied (Comparative Example 3, Reference), and the results are shown in FIG. 5 .
- Example 2 the temperature of the inner temperature of the multilayer film attachment of Example 2 was lower by about 8° C. at most compared to the inner temperature of Comparative Example 3 (no film attached to the surface), and compared to Comparative Example 3 in the results of all the days carried out The temperature reduction effect of Example 2 was shown.
- the above effects are applicable to the field of the air conditioner outdoor unit cover or housing.
- the outdoor unit of the air conditioner discharges the high-temperature circulating air used to cool the room to the outside. Therefore, in the summer season when the amount of air conditioner usage increases, the internal temperature can be lowered by attaching the radiation cooling film of the present invention to the surface of the outdoor unit, thereby improving the indoor cooling effect and reducing power consumption.
- Test Example 6 a comparative test was performed by changing the subject material and the temperature measurement position as follows, and the results are shown in FIG. 6 .
- the above effects may be applied to detailed fields such as storage tanks and oil tankers.
- tankers In the case of tankers, they are exposed to the outdoors for a long time in the process of transporting oil or oil gas. At this time, the surface and internal temperature rises rapidly with a large amount of sunlight irradiation, and the evaporation of the oil product is accelerated.
- a gas valve In particular, in the case of an oil gas storage tank, a gas valve must be opened periodically due to such an increase in internal pressure of the tank, and in the case of a transport tanker, there is a risk of an explosion accident due to excessive internal pressure.
- the surface is cooled by spraying water periodically in summer, or an additional power-driven air conditioning system using cooling circulating water is used. Therefore, through the cooling effect of the reflective radiation cooling multilayer film according to the present invention, it is possible to secure the advantages of water saving or power saving.
- Example 4 the same radiation-cooled film as in Example 2 was prepared (Comparative Example 4) except that there was no adhesive layer in the above example, and the test A comparative test was performed under the same conditions as the test conditions in Example 6. After the test, the surface temperature of the subject was measured, and the results are shown in Table 2 below.
- the radiation cooling efficiency can be further improved by reducing the thermal conduction resistance between the film and the main body by further including an adhesive layer attached to the main body and located under the metal antioxidant layer according to the present invention.
- first polymer 150 metal reflective layer
- metal oxidation prevention layer 170 adhesive layer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Laminated Bodies (AREA)
Abstract
Disclosed is a radiative cooling film that includes a transparent-type radiative cooling multilayer film and a reflective-type radiative cooling film and is structured to allow for the substantial implementation of radiative cooling performance on an object and the mass production. The present invention provides a radiative cooling multilayer film comprising: a first infrared radiation layer containing a first polymer in which dielectric particles with an average particle diameter of 0.01 to 30 μm are dispersed in a content of 0.1 to 25 wt%, and selectively radiatively cooling an object, from which heat is to be removed, at an average emissivity of 0.5 to 1 with respect to radiation in a wavelength range of 8-13 μm; a second infrared radiation layer disposed above the first infrared radiation layer and emitting the heat resulting from the selective radiative cooling to the outside by comprising a second polymer; and a metal reflective layer disposed below the first infrared radiation layer to reflect solar light and having a thickness of 20 to 600 nm.
Description
본 발명은 다층 필름에 관한 것으로, 보다 상세하게는 복사냉각 다층 필름에 관한 것이다.The present invention relates to multilayer films, and more particularly to radiation cooled multilayer films.
본 출원은 2020년 11월 24일자로 출원된 대한민국 특허출원 제10-2020-0158945호 및 제10-2020-0158954호에 대한 우선권 및 이익을 주장하며, 이 출원은 그 전문이 본원에 참조로 포함된다.This application claims priority and interest to Korean Patent Application Nos. 10-2020-0158945 and 10-2020-0158954 filed on November 24, 2020, which are incorporated herein by reference in their entirety do.
복사냉각이란 물체로부터 방사된 복사량이 흡수된 에너지보다 많을 때 물체의 온도가 감소하는 자연적 현상이다. 방출되는 복사에너지의 양은 스테판-볼츠만 법칙(Stefan-Boltzmann Law)에 의해 정량화되며, 하기 수학식 1과 같이 표시될 수 있다.Radiative cooling is a natural phenomenon in which the temperature of an object decreases when the amount of radiation emitted from the object exceeds the absorbed energy. The amount of radiant energy emitted is quantified by the Stefan-Boltzmann Law, and can be expressed as in Equation 1 below.
[수학식 1][Equation 1]
P = εσT4
P = εσT 4
(P는 대기의 절대온도(T)에 대한 단위면적당 방출하는 복사에너지(W/㎡), ε은 방출율, σ = 5.67 × 10-8 W/㎡T4)(P is the radiant energy emitted per unit area (W/m2) with respect to the absolute temperature (T) of the atmosphere, ε is the emission rate, σ = 5.67 × 10 -8 W/m2T 4 )
지표면은 항상 일정한 복사에너지를 방출하고 있는데, 주간에는 태양으로부터의 복사에너지를 흡수하고, 방출 복사에너지 대비 흡수 복사에너지가 더 크므로 복사냉각이 발생하지 않는다. 즉, 야간에 복사냉각 효과가 이론적으로는 더 크게 발생할 수 있으나, 구름 및 습도가 많은 곳에서는 지표면 및 물체로부터 방출된 복사에너지가 재방사되어 복사냉각이 미미하거나 발생하지 않을 수 있다. 이러한 특징에 의해 복사냉각 효과는 주로 해가 짧고 습도가 낮으며 구름이 없는 맑고 건조한 날 극대화된다. 우리나라의 경우, 봄철과 가을철에 극심한 일교차를 유발하는 원인과 관계가 있는 현상이다.The surface of the Earth always emits a certain amount of radiant energy. During the daytime, it absorbs radiant energy from the sun, and the absorbed radiant energy is greater than the emitted radiant energy, so radiative cooling does not occur. That is, the radiative cooling effect may theoretically be greater at night, but in places with a lot of clouds and humidity, radiant energy emitted from the earth's surface and objects is re-radiated, so radiative cooling may be insignificant or may not occur. Due to these characteristics, the radiative cooling effect is mainly maximized on clear and dry days with short days, low humidity, and no clouds. In the case of Korea, this phenomenon is related to the cause of the extreme diurnal temperature difference between spring and autumn.
이러한 자연적 현상을 공학적으로 이용한 것을 '복사냉각 기술'이라고 칭한다. 이는 외부 에너지 투입 없이 냉각을 구현할 수 있다는 점에서 제로에너지 냉각(Zero energy cooling) 또는 패시브 쿨링(Passive cooling) 기술로도 불리며 탄소 및 에너지 저감 효과 측면에서 주목을 받고 있다. 지구 표면과 우주 사이에 존재하는 대기는 산소나 질소 등 수많은 기체의 혼합물로서 복사냉각을 위한 반투명 매개체 역할을 하나, 복사 특성의 관점에서 보면 대기는 대부분의 파장대에서의 낮은 투과율로 인해 지구 표면(평균 298 K)으로부터 우주(0 K)로의 열 복사를 약화시킨다. 그러나, 대기는 대기창(Atmospheric window)이라 불리는 8 내지 13 ㎛ 파장 범위에서의 열 복사에 대해서는 매우 투명하여 대기를 가열하지 않으면서 열을 우주 공간으로 방출할 수 있다. 대기창 투과율은 지리적 위치, 구름의 양, 습도 조건 등 여러가지 환경적 요인의 영향을 받으며, 일반적으로 맑고 건조할 경우 대기창 투과율도 높다.The engineering use of this natural phenomenon is called 'radiative cooling technology'. This is also called zero energy cooling or passive cooling technology in that it can implement cooling without external energy input, and is attracting attention in terms of carbon and energy reduction effects. The atmosphere that exists between the earth's surface and space is a mixture of numerous gases such as oxygen and nitrogen, which acts as a translucent medium for radiative cooling. 298 K) to space (0 K). However, the atmosphere is very transparent to thermal radiation in the 8 to 13 μm wavelength range, called the atmospheric window, allowing heat to be released into space without heating the atmosphere. Atmospheric window transmittance is affected by various environmental factors such as geographic location, cloudiness, and humidity conditions. In general, air window transmittance is high when it is clear and dry.
중국 공개특허 제109070695호는 고분자 및 고분자 내에 분산된 다수의 유전체 입자를 포함하는 선택적 방사층을 이용한 7 내지 14 ㎛ 파장 영역의 방사에 대한 평균 방사율이 0.5 내지 1.0인 선택적 방열 냉각구조로서, 복사냉각으로 인한 표면 냉각 효과를 발현함으로써 주체(열을 제거하고자 하는 물체)로부터 냉각을 실현하는 방법을 제시하였으나, 필름과 주체 사이의 열전도 저항을 줄이기 위한 수단에 대해서는 언급하지 않고 있고, 제시된 선택적 방사층 구조만으로 실효적인 복사냉각 구현은 어려울 수 있으며, 주체로부터 복사냉각에 대한 실제적인 효과에 대해서도 제시하지 않고 있다.Chinese Patent Laid-Open Patent No. 109070695 discloses a selective heat dissipation cooling structure having an average emissivity of 0.5 to 1.0 for radiation in a wavelength region of 7 to 14 μm using a selective radiation layer including a polymer and a plurality of dielectric particles dispersed in the polymer. A method for realizing cooling from the subject (object to remove heat) by expressing the surface cooling effect caused by It can be difficult to implement effective radiative cooling only with this method, and the actual effect on radiative cooling from the subject is not presented.
본 발명은 복사냉각 다층 필름에 있어, 주체에 대한 복사냉각 성능이 실질적으로 구현될 수 있는 구조로서, 대량 생산이 가능한 구조의 투명형 복사냉각 다층 필름과, 반사형 복사냉각 다층 필름을 제공하고자 한다.The present invention is to provide a transparent radiation-cooled multilayer film and a reflective radiation-cooled multilayer film having a structure that can substantially implement radiation cooling performance for a subject in a radiation-cooled multilayer film and can be mass-produced. .
상기 과제를 해결하기 위하여 본 발명은, 평균 입경 0.01 내지 30 ㎛의 유전체 입자가 0.1 내지 25 중량% 함량으로 분산된 제1 고분자를 포함하고, 열을 제거하고자 하는 물체를 파장 범위 8 내지 13 ㎛의 방사에 대하여 평균 방사율 0.5 내지 1로 선택적 복사냉각시키는 제1 적외선 방사층; 상기 제1 적외선 방사층 상부에 위치하고, 제2 고분자를 포함하여 상기 선택적 복사냉각된 열을 외부로 방출시키는 제2 적외선 방사층; 및 상기 제1 적외선 방사층 하부에 위치하여 태양광을 반사시키는 두께 20 내지 150 nm의 금속 반사층;을 포함하는 투명형 복사냉각 다층 필름을 제공한다.In order to solve the above problems, the present invention includes a first polymer in which dielectric particles having an average particle diameter of 0.01 to 30 μm are dispersed in an amount of 0.1 to 25% by weight, and an object from which heat is to be removed in a wavelength range of 8 to 13 μm. a first infrared radiation layer selectively radiatively cooled to an average emissivity of 0.5 to 1 with respect to radiation; a second infrared radiation layer disposed on the first infrared radiation layer and including a second polymer for emitting the selectively radiatively cooled heat to the outside; and a metal reflective layer having a thickness of 20 to 150 nm that is located under the first infrared emitting layer and reflects sunlight.
또한 상기 필름은 -100 내지 300℃의 작동 온도 하에 50 내지 150 W/㎡의 복사냉각력(Radiative cooling power)을 가지고, 가시광선 투과율이 15 내지 70%이고, 태양광 반사율이 20 내지 50%이고, 헤이즈(Haze)가 10% 이하인 것을 특징으로 하는 투명형 복사냉각 다층 필름을 제공한다.In addition, the film has a radiative cooling power of 50 to 150 W/m 2 under an operating temperature of -100 to 300° C., a visible light transmittance of 15 to 70%, and a solar reflectance of 20 to 50%, and , It provides a transparent radiation-cooled multilayer film, characterized in that the haze (Haze) is 10% or less.
또한 상기 필름은 -100 내지 300℃의 작동 온도 하에 50 내지 150 W/㎡의 복사냉각력(Radiative cooling power)을 가지고, 태양광 반사율이 80 내지 95%인 것을 특징으로 하는 복사냉각 다층 필름을 제공한다.In addition, the film has a radiative cooling power of 50 to 150 W/m 2 under an operating temperature of -100 to 300° C., and provides a radiation-cooled multilayer film, characterized in that the solar reflectance is 80 to 95%. do.
또한 상기 유전체 입자는 실리카(SiO2), 알루미나(Al2O3), 규산알루미늄(Al2SiO5), 제올라이트(Na2Al2Si3O-2H2O), 탄산칼슘(CaCO3), 탄화규소(SiC), 산화아연(ZnO), 황산아연(ZnSO4), 이산화타이타늄(TiO2), 황산바륨(BaSO4), 산화세륨(Ce2O3), 지르코니아(ZrO2) 및 산화 카올린(Al2Si2O5(OH)4)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 투명형 복사냉각 다층 필름을 제공한다.In addition, the dielectric particles are silica (SiO 2 ), alumina (Al 2 O 3 ), aluminum silicate (Al 2 SiO 5 ), zeolite (Na 2 Al 2 Si 3 O-2H 2 O), calcium carbonate (CaCO 3 ), Silicon carbide (SiC), zinc oxide (ZnO), zinc sulfate (ZnSO 4 ), titanium dioxide (TiO 2 ), barium sulfate (BaSO 4 ), cerium oxide (Ce 2 O 3 ), zirconia (ZrO 2 ) and kaolin oxide (Al 2 Si 2 O 5 (OH) 4 ) It provides a transparent radiation-cooled multilayer film, characterized in that at least one selected from the group consisting of.
또한 상기 제1 고분자 및 제2 고분자는 각각 PET(Polyethylene terephthalate), PETG(Glycol-modified polyethylene terephthalate), PEN(Polyethylene naphthalate), PVDF(Polyvinylidene fluoride), PTFE(Polytetrafluoroethylene), PFA(Perfluoroalkoxyalkane), PCTFE(Polychlorotrifluoroethylene), ECTFE(Ethylene chlorotrifluoroethylene), ETFE(Ethylene Tetra fluoro Ethylene), FEP(Fluorinated ethylene propylene), THV(Terpolymer of tetrafluoroethylene, hexafluoropropylene 및 vinylidene fluoride), PVC(Polyvinyl chloride), PVDC(Polyvinylidene chloride), PU(Polyurethane), PC(Polycarbonate), PE(Polyethylene) 및 PP(Polypropylene)로 이루어진 군에서 선택되는 1종이거나 2종 이상이 혼합된 것을 특징으로 하는 투명형 복사냉각 다층 필름을 제공한다.In addition, the first polymer and the second polymer are each PET (Polyethylene terephthalate), PETG (Glycol-modified polyethylene terephthalate), PEN (Polyethylene naphthalate), PVDF (Polyvinylidene fluoride), PTFE (Polytetrafluoroethylene), PFA (Perfluoroalkoxyalkane), PCTFE ( Polychlorotrifluoroethylene), ECTFE (Ethylene chlorotrifluoroethylene), ETFE (Ethylene Tetra fluoro Ethylene), FEP (Fluorinated ethylene propylene), THV (Terpolymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride), PVC (Polyvinyl chloride), PVDC (Polyvinylidene chloride), PU (Polyvinylidene chloride) Polyurethane), PC (Polycarbonate), PE (Polyethylene), and PP (Polypropylene) It provides a transparent type radiation cooling multilayer film, characterized in that one selected from the group consisting of or a mixture of two or more.
또한 상기 제1 적외선 방사층 및 제2 적외선 방사층의 평균 두께는 각각 10 ㎛ 내지 3 mm인 것을 특징으로 하는 투명형 복사냉각 다층 필름을 제공한다.In addition, the first infrared emitting layer and the second infrared emitting layer have an average thickness of 10 μm to 3 mm, respectively. It provides a transparent radiation-cooled multilayer film.
또한 상기 금속 반사층 하부에 위치하고, 제3 고분자를 포함하여 상기 금속 반사층 성분의 산화 방지를 위한 금속 산화방지층; 및 상기 금속 산화방지층 하부에 위치하여 상기 물체와 부착되는 점착층;을 더 포함하는 것을 특징으로 하는 투명형 복사냉각 다층 필름을 제공한다.In addition, it is located under the metal reflective layer, the metal oxidation prevention layer for preventing oxidation of the metal reflective layer component including a third polymer; And it provides a transparent radiation-cooled multilayer film, characterized in that it further comprises a; and a pressure-sensitive adhesive layer that is located under the metal antioxidant layer is attached to the object.
또한 상기 금속 반사층은 은(Ag) 또는 알루미늄(Al)이 20 내지 150 nm 두께로 형성되고, 상기 제3 고분자는 산소 투과율이 0.1 내지 1,000 cc/㎡·day·atm이고, 수분 투과율 1 내지 100 g/㎡·day·atm인 것을 특징으로 하는 투명형 복사냉각 다층 필름을 제공한다.In addition, the metal reflective layer is formed of silver (Ag) or aluminum (Al) to a thickness of 20 to 150 nm, the third polymer has an oxygen transmittance of 0.1 to 1,000 cc/m 2 ·day · atm, and a moisture transmittance of 1 to 100 g It provides a transparent radiation-cooled multilayer film, characterized in that /m 2 ·day · atm.
또한 상기 금속 반사층은 은(Ag) 또는 알루미늄(Al)이 20 내지 600 nm 두께로 형성되고, 상기 제3 고분자는 산소 투과율이 0.1 내지 5 cc/㎡·day·atm이고, 수분 투과율 1 내지 20 g/㎡·day·atm인 것을 특징으로 하는 복사냉각 다층 필름을 제공한다.In addition, the metal reflective layer is formed of silver (Ag) or aluminum (Al) to a thickness of 20 to 600 nm, the third polymer has an oxygen transmittance of 0.1 to 5 cc/m 2 ·day · atm, and a moisture transmittance of 1 to 20 g It provides a radiation-cooled multilayer film, characterized in that /m 2 ·day · atm.
본 발명은 유전체 입자를 포함한 제1 적외선 방사층 및 최외측(상단)에 위치하는 제2 적외선 방사층을 포함하는 복사냉각 필름으로서, 제1 적외선 방사층에 의해 주체로부터 복사냉각되어 흡수된 열을 제2 적외선 방사층이 효과적으로 외부로 방사시킴으로써 실질적인 복사냉각 효과 구현이 가능한 투명형 복사냉각 다층 필름과, 반사형 복사냉각 다층 필름을 제공할 수 있다.The present invention is a radiation cooling film including a first infrared radiation layer including dielectric particles and a second infrared radiation layer located on the outermost side (upper side). It is possible to provide a transparent radiation-cooled multilayer film and a reflective radiation-cooled multilayer film capable of realizing a substantial radiation cooling effect by effectively emitting the second infrared radiation layer to the outside.
또한 금속 반사층과 금속 산화방지층을 구비하여 태양광으로 인한 가열로 주간 냉각 효과가 저하되는 것을 방지할 수 있다.In addition, it is possible to prevent a decrease in the daytime cooling effect due to heating due to sunlight by providing a metal reflective layer and a metal oxidation prevention layer.
또한 물체와 부착되는 점착층을 구비하여 냉각하고자 하는 물체의 표면에 손쉽게 부착할 수 있어, 필름과 주체 사이의 열전도 저항을 감소시켜 복사냉각 효율을 보다 향상시킬 수 있다.In addition, it has an adhesive layer attached to the object and can be easily attached to the surface of the object to be cooled, thereby reducing the thermal conduction resistance between the film and the main body, thereby further improving the radiation cooling efficiency.
또한 기존의 무기물 적층형 복사냉각 기술의 경우 진공 증착 공정 등으로 인해 대량 생산이 어려우나, 본 발명에 따른 다층 필름은 고분자 기반의 소재 선택으로 압출 성형되어 가공 용이성을 지니므로, 대량 생산이 가능하고 경제적이면서도 성능이 뛰어나, 세부 응용에 효율적으로 적용될 수 있고, 상용화 측면에서도 기술적 의의가 있다.In addition, in the case of the existing inorganic laminated radiation cooling technology, mass production is difficult due to the vacuum deposition process, etc., but the multilayer film according to the present invention is extrusion-molded by selecting a polymer-based material and has ease of processing, so mass production is possible and economical and It has excellent performance, can be efficiently applied to detailed applications, and has technical significance in terms of commercialization.
도 1은 본 발명에 따른 복사냉각 다층 필름을 예시적으로 나타낸 단면도이다.1 is a cross-sectional view illustrating a radiation-cooled multilayer film according to the present invention.
도 2는 본 발명에 따른 복사냉각 다층 필름의 주체로부터의 냉각 실현 과정을 설명하는 모식도이다.2 is a schematic diagram illustrating a process of realizing cooling from a main body of a radiation-cooled multilayer film according to the present invention.
도 3은 본 발명의 시험예 2에서 비교시험 결과를 나타낸 그래프이다.3 is a graph showing the results of a comparative test in Test Example 2 of the present invention.
도 4는 본 발명의 시험예 3에서 비교시험 결과를 나타낸 그래프이다.4 is a graph showing a comparative test result in Test Example 3 of the present invention.
도 5는 본 발명의 시험예 6에서 비교시험 결과를 나타낸 그래프이다.5 is a graph showing the results of a comparative test in Test Example 6 of the present invention.
도 6은 본 발명의 시험예 7에서 비교시험 결과를 나타낸 그래프이다.6 is a graph showing a comparative test result in Test Example 7 of the present invention.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
도 1은 본 발명에 따른 복사냉각 다층 필름을 예시적으로 나타낸 단면도이고, 도 2는 본 발명에 따른 복사냉각 다층 필름의 주체로부터의 냉각 실현 과정을 설명하는 모식도이다.1 is a cross-sectional view illustratively showing a radiation-cooled multilayer film according to the present invention, and FIG. 2 is a schematic diagram illustrating a cooling realization process from the main body of the radiation-cooled multilayer film according to the present invention.
도 1 및 도 2를 참조하면, 본 발명에 따른 복사냉각 다층 필름(100)은 제1 적외선 방사층(110), 제2 적외선 방사층(130) 및 금속 반사층(150)을 포함하며, 금속 산화방지층(160), 점착층(170) 및 접착층(180)을 더 포함할 수 있다.1 and 2, the radiation-cooled multilayer film 100 according to the present invention includes a first infrared emission layer 110, a second infrared emission layer 130, and a metal reflection layer 150, and metal oxide. It may further include a barrier layer 160 , an adhesive layer 170 , and an adhesive layer 180 .
본 발명에서 '필름'이라는 용어는 그 상대적인 두께에 따라 '시트'로도 이해될 수 있으며, 따라서 본 발명에서 '다층 필름'은 '다층 시트'를 포함하는 개념으로 이해되어야 한다.In the present invention, the term 'film' may also be understood as 'sheet' according to its relative thickness, and therefore, 'multilayer film' in the present invention should be understood as a concept including 'multilayer sheet'.
본 발명에 따른 복사냉각 다층 필름(100)은 실온, 주간 또는 야간에, 복사냉각력(Radiative cooling power)이 100 W/㎡ 수준을 보여준다. 구체적으로, 본 발명에서 투명형 복사냉각 다층 필름(100)의 경우 -100 내지 300℃의 작동 온도 하에 50 내지 150 W/㎡의 복사냉각력을 나타낼 수 있고, 가시광선 투과율이 15 내지 70%이고, 태양광 반사율이 20 내지 50%이고, 헤이즈(Haze)가 10% 이하일 수 있다. 또한 반사형 복사냉각 다층 필름(100)의 경우 -100 내지 300℃의 작동 온도 하에 50 내지 150 W/㎡의 복사냉각력을 나타낼 수 있고, 태양광 반사율이 80 내지 95%일 수 있다.Radiative cooling multilayer film 100 according to the present invention shows a level of 100 W/m 2 at room temperature, daytime or nighttime, radiative cooling power. Specifically, in the present invention, the transparent radiation-cooled multilayer film 100 may exhibit a radiative cooling power of 50 to 150 W/m 2 under an operating temperature of -100 to 300° C., and a visible light transmittance of 15 to 70%, and , the solar reflectance may be 20 to 50%, and the haze may be 10% or less. In addition, the reflective radiation cooling multilayer film 100 may exhibit a radiative cooling power of 50 to 150 W/m 2 under an operating temperature of -100 to 300° C., and may have a solar reflectance of 80 to 95%.
상기 제1 적외선 방사층(110)은 열을 제거하고자 하는 물체, 즉, 주체로부터 복사냉각된 열을 흡수하는 층으로서 평균 입경 0.01 내지 30 ㎛의 유전체 입자(120)가 0.1 내지 25 중량% 함량으로 분산된 제1 고분자(140)를 포함한다. 이때, 주체를 파장 범위 8 내지 13 ㎛의 방사에 대하여 평균 방사율 0.5 내지 1로 선택적 복사냉각시킨다. 여기서 방사율이란, 물체가 빛 에너지를 받아 반사, 투과 또는 흡수를 하게 되는데, 반사율, 투과율 및 흡수율의 합을 '1'이라 할 때 흡수된 에너지가 차지하는 비율을 방사율로 정의할 수 있고, 이는 방사율이 흡수율과 동일함을 전제하며, 이러한 전제 사항은 시간이 지남에 따라 운동 상태가 그대로인 동적 상태(예컨대, 온도가 변하지 않는 상태)인 경우를 의미한다. 한편, 상기 평균 방사율은 산출 범위를 8 내지 13 ㎛ 파장으로 설정하였을 경우의 평균 방사율을 정의하고 있다.The first infrared radiation layer 110 is an object to remove heat, that is, a layer that absorbs heat radiatedly cooled from the main body, and contains dielectric particles 120 having an average particle diameter of 0.01 to 30 μm in an amount of 0.1 to 25% by weight. The dispersed first polymer 140 is included. At this time, the main body is selectively radiatively cooled to an average emissivity of 0.5 to 1 for radiation in a wavelength range of 8 to 13 μm. Here, emissivity means that an object receives light energy and reflects, transmits, or absorbs light energy. When the sum of reflectance, transmittance, and absorptivity is '1', the ratio of absorbed energy can be defined as emissivity, which means that the emissivity is It is premised on the same as the absorption rate, and this premise means a case in which the kinetic state remains the same over time (eg, a state in which the temperature does not change). On the other hand, the average emissivity defines the average emissivity when the calculation range is set to a wavelength of 8 to 13 μm.
상기 제1 고분자(140)는 태양 방사를 투과하고 적외선 방사를 방출하는 소재로서, 예컨대, 300 내지 5,000 nm의 파장 범위에서 태양광을 20% 미만, 바람직하게는 5% 미만으로 낮은 비율로 흡수하고, 5 내지 50 ㎛ 파장 범위에서 적외선 흡수율(방출률)이 0.6 이상, 바람직하게는 0.9 이상일 수 있다. 이러한 제1 고분자 소재로서는 예컨대, PET(Polyethylene terephthalate), PETG(Glycol-modified polyethylene terephthalate), PEN(Polyethylene naphthalate), PVDF(Polyvinylidene fluoride), PTFE(Polytetrafluoroethylene), PFA(Perfluoroalkoxyalkane), PCTFE(Polychlorotrifluoroethylene), ECTFE(Ethylene chlorotrifluoroethylene), ETFE(Ethylene Tetra fluoro Ethylene), FEP(Fluorinated ethylene propylene), THV(Terpolymer of tetrafluoroethylene, hexafluoropropylene 및 vinylidene fluoride), PVC(Polyvinyl chloride), PVDC(Polyvinylidene chloride), PU(Polyurethane), PC(Polycarbonate), PE(Polyethylene), PP(Polypropylene) 등을 들 수 있으며, 본 발명에서는 투명한 소재가 적용된다.The first polymer 140 is a material that transmits solar radiation and emits infrared radiation, and for example, absorbs sunlight in a wavelength range of 300 to 5,000 nm at a low rate of less than 20%, preferably less than 5%, and , an infrared absorption rate (emission rate) in the wavelength range of 5 to 50 μm may be 0.6 or more, preferably 0.9 or more. As such a first polymer material, for example, PET (Polyethylene terephthalate), PETG (Glycol-modified polyethylene terephthalate), PEN (Polyethylene naphthalate), PVDF (Polyvinylidene fluoride), PTFE (Polytetrafluoroethylene), PFA (Perfluoroalkoxyalkane), PCTFE (Polychlorotrifluoroethylene), ECTFE (Ethylene chlorotrifluoroethylene), ETFE (Ethylene Tetra fluoro Ethylene), FEP (Fluorinated ethylene propylene), THV (Terpolymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride), PVC (Polyvinyl chloride), PVDC (Polyvinylidene chloride), PU (Polyurethane) PC (Polycarbonate), PE (Polyethylene), PP (Polypropylene), etc. may be mentioned, and a transparent material is applied in the present invention.
상기 제1 적외선 방사층(110)의 평균 두께는 각각 10 ㎛ 내지 3 mm일 수 있고, 바람직하게는 20 내지 1,000 ㎛일 수 있다. 제1 적외선 방사층(110)의 두께가 너무 얇은 경우 복사냉각 열의 흡수 성능이 저하될 수 있고, 과도할 경우에는 상기 제2 적외선 방사층(130)을 통한 열 방출 성능이 저하될 수 있다.The average thickness of the first infrared emitting layer 110 may be 10 μm to 3 mm, respectively, and preferably 20 to 1,000 μm. When the thickness of the first infrared radiation layer 110 is too thin, radiation cooling heat absorption performance may be reduced, and if excessive, heat emission performance through the second infrared radiation layer 130 may be reduced.
상기 유전체 입자(120)는 상기 제1 고분자(140) 매트릭스 상에 분산되어 제1 적외선 방사층(110)의 선택적 방사 성능이 구현되도록 하며, 파장 범위 8 내지 13 ㎛의 방사에 대하여 높은 평균 방사율을 고려할 때 평균 입경 0.01 내지 30 ㎛의 유전체 입자(120)가 0.1 내지 25 중량% 함량으로 분산되어 있으며, 바람직하게는 평균 입경 1 내지 10 ㎛의 유전체 입자(120)가 1 내지 5 중량% 함량으로 분산되어 있을 수 있다. 이러한 유전체 입자(120)로는 예컨대, 실리카(SiO2), 알루미나(Al2O3), 규산알루미늄(Al2SiO5), 제올라이트(Na2Al2Si3O-2H2O), 탄산칼슘(CaCO3), 탄화규소(SiC), 산화아연(ZnO), 황산아연(ZnSO4), 이산화타이타늄(TiO2), 황산바륨(BaSO4), 산화세륨(Ce2O3), 지르코니아(ZrO2), 산화 카올린(Al2Si2O5(OH)4) 등을 들 수 있다.The dielectric particles 120 are dispersed on the matrix of the first polymer 140 so that the selective radiation performance of the first infrared radiation layer 110 is implemented, and a high average emissivity for radiation in a wavelength range of 8 to 13 μm is obtained. Considering that, the dielectric particles 120 having an average particle diameter of 0.01 to 30 μm are dispersed in an amount of 0.1 to 25% by weight, and preferably, the dielectric particles 120 having an average particle diameter of 1 to 10 μm are dispersed in an amount of 1 to 5% by weight. may have been The dielectric particles 120 include, for example, silica (SiO 2 ), alumina (Al 2 O 3 ), aluminum silicate (Al 2 SiO 5 ), zeolite (Na 2 Al 2 Si 3 O-2H 2 O), calcium carbonate ( CaCO 3 ), silicon carbide (SiC), zinc oxide (ZnO), zinc sulfate (ZnSO 4 ), titanium dioxide (TiO 2 ), barium sulfate (BaSO 4 ), cerium oxide (Ce 2 O 3 ), zirconia (ZrO 2 ) ), kaolin oxide (Al 2 Si 2 O 5 (OH) 4 ), and the like.
상기 제2 적외선 방사층(130)은 제1 적외선 방사층(110)에서 복사냉각되어 흡수된 열을 효과적으로 외부로 방사시키기 위한 층으로서, 적외선 방사율이 높고, 발수 및 오염 방지 특성을 지니며, 옥외 노출에 따른 장기 내구성 및 내후성 특성을 부여하는 고분자 소재로 형성되며, 본 발명에서는 제2 적외선 방사층(130)을 통해 실질적인 복사냉각 효과를 구현하게 된다. 즉, 상기 제2 적외선 방사층(130)이 구비됨으로써 제1 적외선 방사층(110)에 복사냉각 열이 머무르지 않고 신속히 외부로 방출될 수 있도록 한다. The second infrared radiation layer 130 is a layer for effectively radiating heat absorbed by radiation cooling in the first infrared radiation layer 110 to the outside. It is formed of a polymer material that gives long-term durability and weather resistance characteristics according to exposure, and in the present invention, a substantial radiative cooling effect is realized through the second infrared radiation layer 130 . That is, since the second infrared radiation layer 130 is provided, the radiation cooling heat does not stay in the first infrared radiation layer 110 and can be rapidly emitted to the outside.
본 발명에서는 제1 적외선 방사층(110)에 포함된 유전체 입자(120)를 제2 적외선 방사층(130)에는 포함시키지 않음으로써, 제1 적외선 방사층(110)에서 복사냉각되어 흡수된 열을 효과적으로 외부로 방사시킬 수 있음을 확인하였다.In the present invention, since the dielectric particles 120 included in the first infrared radiation layer 110 are not included in the second infrared radiation layer 130 , the heat absorbed by radiative cooling in the first infrared radiation layer 110 is removed. It was confirmed that it can be effectively radiated to the outside.
이러한 제2 적외선 방사층(130) 소재는 제1 적외선 방사층(110)과 마찬가지로 PET(Polyethylene terephthalate), PETG(Glycol-modified polyethylene terephthalate), PEN(Polyethylene naphthalate), PVDF(Polyvinylidene fluoride), PTFE(Polytetrafluoroethylene), PFA(Perfluoroalkoxyalkane), PCTFE(Polychlorotrifluoroethylene), ECTFE(Ethylene chlorotrifluoroethylene), ETFE(Ethylene Tetra fluoro Ethylene), FEP(Fluorinated ethylene propylene), THV(Terpolymer of tetrafluoroethylene, hexafluoropropylene 및 vinylidene fluoride), PVC(Polyvinyl chloride), PVDC(Polyvinylidene chloride), PU(Polyurethane) 및 PC(Polycarbonate), PE(Polyethylene), PP(Polypropylene)로 이루어진 군에서 선택되는 1종이거나 2종 이상이 혼합된 고분자를 이용하여 적용할 수 있으며, 본 발명에서는 투명한 소재가 적용된다.The material of the second infrared emitting layer 130 is PET (Polyethylene terephthalate), PETG (Glycol-modified polyethylene terephthalate), PEN (Polyethylene naphthalate), PVDF (Polyvinylidene fluoride), PTFE (Polyethylene terephthalate), like the first infrared emitting layer 110 . Polytetrafluoroethylene), PFA (Perfluoroalkoxyalkane), PCTFE (Polychlorotrifluoroethylene), ECTFE (Ethylene chlorotrifluoroethylene), ETFE (Ethylene Tetra fluoro Ethylene), FEP (Fluorinated ethylene propylene), THV (Terpolymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride), PVC (Polyvinyl chloride) ), PVDC (Polyvinylidene chloride), PU (Polyurethane) and PC (Polycarbonate), PE (Polyethylene), PP (Polypropylene) can be applied using one or a mixture of two or more polymers. , a transparent material is applied in the present invention.
상기 제2 적외선 방사층(130)의 평균 두께는 각각 10 ㎛ 내지 3 mm일 수 있고, 바람직하게는 20 내지 1,000 ㎛일 수 있다. 제2 적외선 방사층(130)의 두께가 과도할 경우에는 제2 적외선 방사층(130)의 두께 자체로 인해 열 방출 성능이 저하될 수 있다. 여기서, 고분자의 경우 두께가 50 ㎛ 이상, 또는 100 ㎛ 이상 수준이면 광대역 방사체(Broadband Emitter, BE)로 작용하여 대기창(8 내지 13 ㎛ 파장) 이외의 파장도 포함하는 4 내지 20 ㎛ 파장에 대해 방사를 하고, 선택적 방사체(Selective Emitter, SE) 대비 상대적으로 높은 냉각 전력 특징을 보인다. 하지만 두께 50 ㎛ 미만의 고분자는 소재에 따라 선택적 방사체로 작용하여 대기창 파장 영역으로 선택적 방사가 가능하여 광대역 방사체 대비 냉각 온도를 높일 수 있는 장점이 있어, 상기 제2 적외선 방사층의 두께가 상기 수준으로 얇을 경우 선택적 방사가 가능하므로 열 방출 성능에 있어 유리하다.The average thickness of the second infrared emission layer 130 may be 10 μm to 3 mm, respectively, and preferably, 20 to 1,000 μm. When the thickness of the second infrared radiation layer 130 is excessive, heat dissipation performance may be deteriorated due to the thickness of the second infrared radiation layer 130 itself. Here, if the polymer has a thickness of 50 μm or more, or 100 μm or more, it acts as a broadband emitter (BE) and includes wavelengths other than the atmospheric window (8 to 13 μm wavelength) for 4 to 20 μm wavelength. It emits radiation and shows relatively high cooling power compared to a selective emitter (SE). However, a polymer having a thickness of less than 50 μm can act as a selective emitter depending on the material and selectively radiate to the atmospheric window wavelength region, thereby increasing the cooling temperature compared to a broadband emitter. It is advantageous in terms of heat dissipation performance because selective radiation is possible when it is thin.
한편, 상기 제1 적외선 방사층(110) 및 제2 적외선 방사층(130)은 각각 UV 안정제, 난연제, 산화방지제, 중화제, 가공조제 등의 첨가제를 0.1 내지 5 중량% 범위에서 블렌드하여 사용할 수 있다.On the other hand, the first infrared emitting layer 110 and the second infrared emitting layer 130 may be used by blending additives such as UV stabilizers, flame retardants, antioxidants, neutralizers, and processing aids in the range of 0.1 to 5% by weight, respectively. .
본 발명에서는 태양광으로 인한 가열로 주간 냉각 효과가 저하되는 것을 방지하기 위하여 금속 반사층(150)과 금속 산화방지층(160)을 더 구비할 수 있다. 즉, 본 발명은 상기 제1 적외선 방사층(110) 하부에 위치하여 태양광을 반사시키는 두께 20 내지 150 nm의 금속 반사층(150)을 구비하고, 또한 상기 금속 반사층(150) 하부에 위치하고, 제3 고분자를 포함하여 상기 금속 반사층(150) 성분의 산화 방지를 위한 금속 산화방지층(160)을 구비할 수 있다.In the present invention, a metal reflective layer 150 and a metal oxidation prevention layer 160 may be further provided in order to prevent a decrease in the daytime cooling effect due to heating due to sunlight. That is, the present invention is provided with a metal reflective layer 150 having a thickness of 20 to 150 nm that is located under the first infrared emitting layer 110 to reflect sunlight, and is also located under the metal reflective layer 150, and the second 3 A metal anti-oxidation layer 160 for preventing oxidation of the metal reflective layer 150 component including a polymer may be provided.
여기서, 상기 금속 반사층(150)의 두께는 투명형 복사냉각 다층 필름(100)의 경우 20 내지 150 nm인 것이 바람직하고, 반사형 복사냉각 다층 필름(100)의 경우 20 내지 600 nm, 바람직하게는 200 내지 400 nm일 수 있다.Here, the thickness of the metal reflective layer 150 is preferably 20 to 150 nm in the case of the transparent radiation-cooled multilayer film 100, and 20 to 600 nm in the case of the reflective radiation-cooled multilayer film 100, preferably It may be 200 to 400 nm.
상기 금속 반사층(150)은 상기 제1 적외선 방사층(110) 하부에 위치하여 태양광 방사를 반사하는데, 본 발명에서는 상기 금속 반사층(150)의 두께를 상기 범위에서 조절함으로써 상기 투명형 복사냉각 다층 필름(100)의 경우 태양광 반사율을 20 내지 50% 범위로 하여 시야 확보를 위한 태양광 투과가 일부 이루어지도록 할 수 있고, 상기 반사형 복사냉각 다층 필름(100)의 경우에는 80 내지 95%의 태양광 반사율을 갖도록 할 수 있다.The metal reflective layer 150 is positioned under the first infrared emitting layer 110 to reflect solar radiation, and in the present invention, the transparent radiation cooling multilayer by adjusting the thickness of the metal reflective layer 150 within the above range. In the case of the film 100, the solar reflectance is set in the range of 20 to 50% to partially transmit sunlight for securing a view, and in the case of the reflective radiation-cooled multilayer film 100, 80 to 95% of It can be made to have sunlight reflectance.
이러한 금속 반사층(150)을 이루는 소재는 태양광 반사성 금속 재료로서, 은(Ag) 또는 알루미늄(Al)이 바람직하게 적용될 수 있다.The material constituting the metal reflective layer 150 is a solar reflective metal material, and silver (Ag) or aluminum (Al) may be preferably applied.
또한 본 발명에서 투명형 복사냉각 다층 필름(100)의 경우 가시광선 투과율은 15 내지 70%일 수 있는데, 이는 금속 반사층(150)의 금속 증착 두께를 상기한 바와 같이 20 내지 150 nm 범위에서 조절하여 달성될 수 있다.In addition, in the case of the transparent radiation-cooled multilayer film 100 in the present invention, the visible light transmittance may be 15 to 70%, which is by adjusting the metal deposition thickness of the metal reflective layer 150 in the range of 20 to 150 nm as described above. can be achieved.
본 발명에서는 필름의 적용 용처에 따라 수분 등으로 인해 금속 반사층(150)을 이루는 금속 성분이 쉽게 산화되어 태양광 반사 성능이 저하되는 것을 방지하기 위해 금속 반사층(150) 하부에 제3 고분자를 포함하는 금속 산화방지층(160)이 구비될 수 있다.In the present invention, in order to prevent the metal component constituting the metal reflection layer 150 from being easily oxidized due to moisture or the like depending on the purpose of application of the film, thereby reducing the sunlight reflection performance, a third polymer is included in the lower portion of the metal reflection layer 150. A metal oxidation prevention layer 160 may be provided.
이를 위해 상기 제3 고분자는 산소 및 수분 투과율이 낮은 소재가 선택될 수 있으며, 구체적으로 산소 투과율이 0.1 내지 1,000 cc/㎡·day·atm이고, 수분 투과율 1 내지 100 g/㎡dayatm, 바람직하게는 산소 투과율이 0.1 내지 100 cc/㎡·day·atm이고, 수분 투과율 1 내지 50 g/㎡·day·atm인 고분자가 선택될 수 있다. 반사형 복사냉각 다층 필름(100)의 경우 더욱 바람직하게는 산소 투과율이 0.1 내지 5 cc/㎡·day·atm이고, 수분 투과율 1 내지 20 g/㎡·day·atm인 고분자가 선택될 수 있다.For this, a material having low oxygen and moisture permeability may be selected for the third polymer, and specifically, the oxygen permeability is 0.1 to 1,000 cc/m 2 ·day · atm, and the water transmittance is 1 to 100 g/m 2 dayatm, preferably A polymer having an oxygen permeability of 0.1 to 100 cc/m 2 ·day·atm and a water permeability of 1 to 50 g/m2·day·atm may be selected. In the case of the reflective radiation-cooled multilayer film 100, more preferably, a polymer having an oxygen transmittance of 0.1 to 5 cc/m2·day·atm and a water transmittance of 1 to 20 g/m2·day·atm may be selected.
상기 제3 고분자 소재로는 상기 산소 및 수분 투과율을 만족하는 소재라면 특별히 한정되는 것은 아니나, 바람직하게는 PET(Polyethylene terephthalate), PVDC(Polyvinylidene chloride) 또는 EvOH(Ethylene vinyl alcohol)가 사용될 수 있고, 더욱 바람직하게는 PET(Polyethylene terephthalate)가 사용될 수 있다.The third polymer material is not particularly limited as long as it satisfies the oxygen and moisture permeability, but preferably PET (Polyethylene terephthalate), PVDC (Polyvinylidene chloride) or EvOH (Ethylene vinyl alcohol) may be used, and more Preferably, PET (Polyethylene terephthalate) may be used.
또한 본 발명에서는 다층 필름(100)과 주체 사이의 열전도 저항을 감소시켜 복사냉각 효율을 보다 향상시킬 수 있는 수단으로서, 상기 금속 산화방지층(160) 하부에 위치하여 상기 물체와 부착되는 점착층(170)이 더욱 구비될 수 있다.In addition, in the present invention, as a means to further improve the radiation cooling efficiency by reducing the thermal conduction resistance between the multilayer film 100 and the main body, the adhesive layer 170 is located below the metal oxidation prevention layer 160 and is attached to the object. ) may be further provided.
상기 점착층(170)을 이루는 소재로는 상기 금속 산화방지층(160)과 물체 사이에서 점착 성능을 부여하면서 본 발명에 따른 복사냉각 성능을 저하시키지 않는 소재라면 특별히 한정되는 것은 아니며, 예컨대, 실리콘계 수지, 아크릴계 수지 등이 사용될 수 있다.The material constituting the adhesive layer 170 is not particularly limited as long as it provides adhesive performance between the metal oxidation prevention layer 160 and the object and does not reduce the radiation cooling performance according to the present invention, for example, a silicone-based resin. , an acrylic resin, etc. may be used.
또한 본 발명에서는 상기 제1 적외선 방사층(110) 및 제2 적외선 방사층(130)의 사이와, 상기 금속 반사층(150) 및 금속 산화방지층(160) 사이를 연결하는 접착층(180)이 더욱 구비될 수 있다.In addition, in the present invention, an adhesive layer 180 connecting between the first infrared emitting layer 110 and the second infrared emitting layer 130 and between the metal reflective layer 150 and the metal oxidation prevention layer 160 is further provided. can be
상기 접착층(180)을 이루는 소재로는 상기 접착 대상이 되는 층에 접착 성능을 부여하면서 본 발명에 따른 복사냉각 성능을 저하시키지 않는 소재라면 특별히 한정되는 것은 아니며, 예컨대, 실리콘계 수지, 아크릴계 수지, 우레탄계 수지, 에폭시계 수지 등이 사용될 수 있다. The material constituting the adhesive layer 180 is not particularly limited as long as it imparts adhesive performance to the adhesive layer and does not reduce the radiation cooling performance according to the present invention, for example, silicone-based resin, acrylic resin, urethane-based resin A resin, an epoxy-based resin, or the like may be used.
이상의 본 발명에 따른 다층 필름(100)을 구성하는 층들은 상기 금속 반사층(150)을 제외하고는 모두 압출 성형이 가능하다. 즉, 본 발명에 따른 다층 필름(100)은 각 층을 구성하는 펠렛상의 원료를 이용하여 압출 라미네이션 내지 공압출 등의 공지된 방법으로 제조될 수 있으며, 따라서 기존의 무기물 적층형 복사냉각 기술의 경우 진공 증착 공정 등으로 인해 대량 생산이 어려운 문제가 있었으나, 본 발명에 따른 다층 필름(100)은 압출 성형되어 가공 용이성을 지니므로 대량 생산이 용이한 장점이 있다. 이때, 상기 제1 적외선 방사층(110)의 경우에는 고분자 수지 자체에 유전체 입자(120)를 균일하게 분산시켜 펠렛화한 후 압출 성형을 통해 제조될 수 있다.All of the layers constituting the multilayer film 100 according to the present invention can be extrusion-molded except for the metal reflective layer 150 . That is, the multilayer film 100 according to the present invention can be manufactured by known methods such as extrusion lamination or co-extrusion by using the pellet-like raw material constituting each layer, and thus, in the case of the conventional inorganic material lamination type radiation cooling technology, vacuum There was a problem that mass production was difficult due to the deposition process, etc., but since the multilayer film 100 according to the present invention is extruded and has ease of processing, it has the advantage of easy mass production. In this case, in the case of the first infrared radiation layer 110 , the dielectric particles 120 are uniformly dispersed in the polymer resin itself, pelletized, and then manufactured through extrusion molding.
본 발명에 따른 다층 필름(100)을 이용한 선택적 복사냉각의 대상이 되는 주체로는 예컨대, 태양 전지 패널, 자동차 외장재 혹은 창문, 건축물의 지붕 혹은 창문, 커튼 및 블라인드, 농업용 방호막 및 비닐하우스, 플렉서블 투명 전극, 옥외 대형 디스플레이 표면 등 복사냉각이 요구되는 매우 다양한 대상에 적용될 수 있다.Subjects subject to selective radiative cooling using the multilayer film 100 according to the present invention include, for example, solar panels, automobile exterior materials or windows, roofs or windows of buildings, curtains and blinds, agricultural protective films and plastic houses, and flexible It can be applied to a wide variety of objects that require radiant cooling, such as transparent electrodes and large outdoor display surfaces.
또한 본 발명에서 반사형 복사냉각 필름의 경우에는 수동 또는 액티브 시스템에 연결하여 대기, 물, 부동액 등 내부 유체를 순환시킴으로써 냉각을 달성하도록 하는 데 사용될 수 있다. 상기 시스템을 통해 복사냉각 효과를 이용한 공랭식/수랭식 공조 설비 등에 적용하여 주택 냉방비 절감 목적으로 활용될 수 있다. 여기서, 상기 시스템을 구현하기 위해서는 이하의 내용을 포함한다. 즉, 복수의 시스템에서 모든 장치 구성은 냉각 유체와 열 연결을 하는 것이고, 복수의 선택성 방사 냉각 구조에, 복수의 열 냉각 수집 장치 중의 하나의 표면 간 접촉을 두어, 열 교환이 가능하도록 하며, 각 선택성 방사 냉각 구조는 상기 선택복사냉각 층을 포함한다.In addition, in the case of the reflective radiation cooling film in the present invention, it can be used to achieve cooling by circulating an internal fluid such as air, water, and antifreeze in connection with a passive or active system. Through the above system, it can be applied to air-cooling/water-cooled air conditioning equipment using the radiative cooling effect and used for the purpose of reducing house cooling costs. Here, in order to implement the system, the following contents are included. That is, all device configurations in the plurality of systems are in thermal connection with the cooling fluid, and the plurality of selective radiative cooling structures are placed in contact between the surfaces of one of the plurality of thermal cooling collecting devices to allow heat exchange, each The selective radiative cooling structure includes the selective radiative cooling layer.
본 발명에 따른 다층 필름(100)을 이용한 선택적 복사냉각의 과정은 다음과 같다.The process of selective radiative cooling using the multilayer film 100 according to the present invention is as follows.
먼저, 선택적 복사냉각 구조로 이루어진 필름 또는 시트(100)를 점착층(170)을 주체로 향하게 하여 냉각하고자 하는 주체(목표물)의 표면과 밀착하여 부착한다. 이때 주체의 밑면을 제외한 모든 면(상부 및 측면)에 밀착하여 부착할 수 있다.First, the film or sheet 100 having a selective radiation cooling structure is attached in close contact with the surface of the main body (target) to be cooled by directing the adhesive layer 170 to the main body. At this time, it can be attached in close contact with all surfaces (top and side) except for the bottom of the main body.
다음으로, 적외선 방사에 의해 선택적 복사냉각 구조로 이루어진 필름 또는 시트(100)의 표면이 냉각되며(Surface cool), 필름 또는 시트(100) 대비 상대적으로 높은 온도 상태인 주체(목표물)의 온도가 상대적으로 낮은 온도 상태인 필름 또는 시트(100)로 열이 이동한다(Space cool).Next, the surface of the film or sheet 100 having a selective radiation cooling structure is cooled by infrared radiation (Surface cool), and the temperature of the subject (target) in a relatively high temperature state compared to the film or sheet 100 is relatively As a result, heat is transferred to the film or sheet 100 in a low temperature state (Space cool).
다음으로, 선택적 복사냉각 구조에 의해 발생한 복사냉각력에 상응하는 냉각을 주체(목표물)에 제공한다.Next, cooling corresponding to the radiative cooling force generated by the selective radiative cooling structure is provided to the subject (target).
이와 같이, 본 발명에 따른 투명형 복사냉각 다층 필름(100)은 선택적 적외선 방사 및 태양광 반사 기능을 수행하는 선택적 복사냉각 필름 구조를 제공함으로써, 별도의 에너지 없이 주체(목표물)의 온도를 낮출 수 있다. 이러한 제로 에너지 냉각 복합 소재를 제공함으로써 실생활 적용 가능성에 기여하고, 결과적으로 에너지 저감 및 탄소 저감 효과에도 크게 기여할 수 있다.As such, the transparent radiation cooling multilayer film 100 according to the present invention provides a selective radiation cooling film structure that performs selective infrared radiation and solar light reflection functions, thereby lowering the temperature of the subject (target) without separate energy. have. By providing such a zero-energy cooling composite material, it can contribute to real-life applicability and, as a result, can significantly contribute to energy reduction and carbon reduction effects.
이하, 본 발명에 따른 구체적인 실시예를 들어 설명한다.Hereinafter, specific examples according to the present invention will be described.
실시예 1Example 1
PETG(폴리에틸렌 테레프탈레이트(PET)를 구성하는 에틸렌 단위의 30 몰%에 해당하는 부분을 1,4-시클로헥산디메틸렌 단위로 대체)와 평균 입경 2 내지 5 ㎛의 실리카(SiO2)를 0.1 중량% 함량으로 단축압출기에 투입하여 용융 혼련 및 냉각 고화시켜 펠렛상으로 제조한 후, 압출 성형하여 두께 25 ㎛의 제1 적외선 방사층을 제조하였다. 이후, 전자빔 가열법에 의해 은(Ag)을 가열 증기화시켜 두께 100 nm의 금속 반사층을 증착하였다.PETG (a portion corresponding to 30 mol% of ethylene units constituting polyethylene terephthalate (PET) is replaced with 1,4-cyclohexanedimethylene units) and silica (SiO 2 ) having an average particle diameter of 2 to 5 μm by 0.1 weight % content was introduced into a single screw extruder, melt-kneaded and solidified by cooling to prepare pellets, and then extrusion-molded to prepare a first infrared radiation layer having a thickness of 25 μm. Thereafter, silver (Ag) was heated and vaporized by an electron beam heating method to deposit a metal reflective layer having a thickness of 100 nm.
또한 PVDF를 같은 방법으로 압출 성형하여 두께 25 ㎛의 제2 적외선 방사층을 제조하였다.In addition, PVDF was extruded in the same manner to prepare a second infrared emitting layer having a thickness of 25 μm.
또한 산소 투과율이 40 cc/㎡dayatm이고, 수분 투과율 20 g/㎡dayatm인 PET를 같은 방법으로 압출 성형하여 금속 산화방지층을 제조하였다.In addition, PET having an oxygen permeability of 40 cc/m 2 dayatm and a moisture permeability of 20 g/m 2 dayatm was extruded in the same manner to prepare a metal antioxidant layer.
다층 필름 성형기를 이용하여 상기 제조된 제1 적외선 방사층 및 제2 적외선 방사층의 사이와, 금속 반사층 및 금속 산화방지층 사이를 아크릴계 수지로 접착층을 형성하여 접착하고, 금속 산화방지층 이면에 아크릴계 점착층을 형성시켜 투명형 복사냉각 다층 필름을 제조하였다.Using a multi-layer film forming machine, an adhesive layer is formed and adhered between the first infrared emitting layer and the second infrared emitting layer and between the metal reflective layer and the metal antioxidant layer with an acrylic resin, and an acrylic adhesive layer on the back surface of the metal antioxidant layer was formed to prepare a transparent radiation-cooled multilayer film.
시험예 1Test Example 1
상기 제조된 투명형 복사냉각 다층 필름에 대하여 하기 방법에 따라 가시광선 투과율, 태양광 반사율 및 헤이즈(Haze)를 측정하고, 그 결과를 하기 표 1에 나타내었다.Visible light transmittance, solar reflectance, and haze were measured for the prepared transparent radiation-cooled multilayer film according to the following method, and the results are shown in Table 1 below.
[측정방법][How to measure]
(1) 가시광선 투과율 및 태양광 반사율(1) Visible light transmittance and solar reflectance
ASTM E424 방법에 따라 측정하였다.It was measured according to ASTM E424 method.
(3) 헤이즈(Haze)(3) Haze
ASTM D1003 방법에 따라 측정하였다.It was measured according to ASTM D1003 method.
구분division | 가시광선 투과율(%)Visible light transmittance (%) | 태양광 반사율(%)Solar Reflectance (%) | Haze(%)Haze (%) |
실시예 1Example 1 | 6565 | 2525 | 55 |
시험예 2Test Example 2
상기 제조된 투명형 복사냉각 다층 필름이 적용된 투명 창(실시예 1)과, 적용되지 않은 일반 투명 창(비교예 1)에 대하여 하기 조건으로 비교시험을 실시하였고, 그 결과를 도 3에 나타내었다.A comparative test was conducted under the following conditions on the transparent window to which the prepared transparent radiation-cooling multilayer film was applied (Example 1) and the general transparent window to which it was not applied (Comparative Example 1), and the results are shown in FIG. 3 .
[시험조건][Exam conditions]
- 주체(목표물) 소재 : 투명 아크릴 소재 - Subject (target) material: transparent acrylic material
- 온도 측정 위치 : 내부 공기(Space cool) - Temperature measurement location: inside air (Space cool)
- 기후 조건 : (주간) 습도 20 ~ 40 %, 구름양 2 ~ 3할 / (야간) 습도 40 ~ 90 %, 구름양 0 ~ 10할- Climatic conditions: (Daytime) Humidity 20 ~ 40%, Clouds 2 ~ 30% / (Night) Humidity 40 ~ 90%, Clouds 0 ~ 100%
도 3을 참조하면, 일반 투명 창(표면에 필름 미부착)의 내기 온도 대비 투명형 복사냉각 다층 필름 적용 투명 창의 내기 온도가 최대 약 3℃ 가량 낮게 나타났다. 비교예 1 대비 실시예 1의 온도 저감 효과가 나타난 구간은 오전 7시 경부터 오후 7시 경까지로 나타났다. 이는 내부 공기(Space cool) 온도 측정의 경우에 한한다.Referring to FIG. 3 , the air temperature of the transparent window applied with the transparent radiation cooling multilayer film was lower by up to about 3° C. compared to the air temperature of the general transparent window (no film attached to the surface). The section in which the temperature reduction effect of Example 1 compared to Comparative Example 1 was exhibited was from about 7:00 am to about 7:00 pm. This is limited to the case of space cool temperature measurement.
시험예 3Test Example 3
상기 제조된 투명형 복사냉각 다층 필름이 적용된 투명 창과, 적용되지 않은 투명 창(미부착), 상용 썬팅 필름이 적용된 투명 창 및 상용 Low-E(Low-Emissivity) 필름이 적용된 투명 창에 대하여 하기 조건으로 비교시험을 실시하였고, 그 결과를 도 4에 나타내었다. 참고로, 상기 상용 썬팅 필름과 상용 Low-E 필름은 열차단 필름의 일종으로 시판되는 제품이 사용되었으며, 두 필름 모두 가시광선을 투과시키나 썬팅 필름은 자외선과 적외선을 모두 차단하며, Low-E 필름은 저방사율을 주요 특징으로 한다는 데 차이가 있다.The transparent window to which the above-prepared transparent radiation cooling multilayer film is applied, a transparent window not applied (not attached), a transparent window to which a commercial tinting film is applied, and a transparent window to which a commercial Low-Emissivity (Low-Emissivity) film is applied, under the following conditions A comparative test was conducted, and the results are shown in FIG. 4 . For reference, the commercial tinting film and the commercial Low-E film are a type of thermal barrier film, and commercially available products are used. Both films transmit visible light, but the tinting film blocks both ultraviolet and infrared rays, and the Low-E film is different in that it is characterized by low emissivity.
[시험조건][Exam conditions]
- 주체(목표물) 소재 : 철 - Subject (target) material: iron
- 온도 측정 위치 : 내부 액체(물)(Space cool) - Temperature measurement location: internal liquid (water) (Space cool)
- 기후 조건 : (주간) 습도 20 ~ 45 %, 구름양 0 ~ 7할 / (야간) 습도 40 ~ 90 %, 구름양 0 ~ 7할- Climatic conditions: (Day) Humidity 20 ~ 45%, Clouds 0 ~ 70% / (Night) Humidity 40 ~ 90%, Clouds 0 ~ 70%
도 4를 참조하면, 투명형 복사냉각 다층 필름(실시예 1), 표면에 필름 미부착, 썬팅 필름, Low-E 필름에서 모두 가시광선 투과형 필름에 해당되며, 시험예 3에서는 적외선을 반사 및 차단시키거나 방사한다는 관점에서 실생활에서 유사 분야에 적용되는 필름을 비교함으로써 그 효과를 확인하고자 하였다. 도 4를 참조하면, 투명형 복사냉각 다층 필름이 적용된 경우, 미부착된 경우 대비 최고 4℃, 썬팅 필름이 적용된 경우 대비 5℃, Low-E 필름이 적용된 경우 대비 2℃ 온도 저감 효과를 나타냈다. 특히, 썬팅 필름이 적용된 경우는 미부착 대비 주간에 최고 7℃까지 온도가 상승한 점과, 실시예 1의 경우 비교예들에 비해 온도가 대부분 낮게 유지된 점으로 미루어 본 발명에 따른 선택적 방사 냉각 구조의 실생활 적용 가능성을 확인할 수 있다.4, the transparent radiation-cooled multilayer film (Example 1), the film not attached to the surface, the tinting film, and the Low-E film all correspond to visible light transmitting films, and in Test Example 3, infrared rays are reflected and blocked. From the point of view of irradiating or radiating, we tried to verify the effect by comparing films applied to similar fields in real life. Referring to FIG. 4 , when the transparent radiation-cooling multilayer film was applied, the maximum temperature reduction effect was 4°C compared to the non-attached case, 5°C compared to the case where the tinting film was applied, and 2°C compared to the case where the Low-E film was applied. In particular, in the case where the tinting film was applied, the temperature rose to a maximum of 7° C. during the day compared to the case where the tinting film was applied, and in the case of Example 1, the temperature was mostly kept low compared to the comparative examples. Applicability to real life can be checked.
시험예 4Test Example 4
본 발명에 따른 투명형 복사냉각 다층 필름에서 점착층의 효과를 확인하기 위해 상기 실시예 1에서 점착층이 없는 것을 제외하고는 실시예와 동일한 복사냉각 필름을 제조(비교예 2)하였고, 상기 시험예 2에서의 시험조건과 동일한 조건으로 비교시험을 실시하였다. 시험 후 주체의 표면 온도를 측정하고 그 결과를 하기 표 2에 나타내었다.In order to confirm the effect of the adhesive layer in the transparent radiation-cooled multilayer film according to the present invention, the same radiation-cooled film as in Example 1 was prepared (Comparative Example 2), except that there was no adhesive layer in Example 1, and the test A comparative test was performed under the same conditions as the test conditions in Example 2. After the test, the surface temperature of the subject was measured, and the results are shown in Table 2 below.
구분division | 실시예 1Example 1 | 비교예 2Comparative Example 2 |
표면 온도(℃)Surface temperature (℃) | 9.19.1 | 11.311.3 |
상기 표 2를 참조하면, 본 발명에 따라 금속 산화방지층 하부에 위치하여 주체와 부착되는 점착층을 더 포함함으로써 필름과 주체 사이의 열전도 저항을 감소시켜 복사냉각 효율을 보다 향상시킬 수 있음이 확인된다.Referring to Table 2, according to the present invention, it is confirmed that the radiation cooling efficiency can be further improved by reducing the thermal conduction resistance between the film and the main body by further including an adhesive layer attached to the main body and located under the metal antioxidant layer according to the present invention. .
실시예 2Example 2
PETG(폴리에틸렌 테레프탈레이트(PET)를 구성하는 에틸렌 단위의 30 몰%에 해당하는 부분을 1,4-시클로헥산디메틸렌 단위로 대체) 평균 입경 2 내지 5 ㎛의 실리카(SiO2)를 3 중량% 함량으로 단축압출기에 투입하여 용융 혼련 및 냉각 고화시켜 펠렛상으로 제조한 후, 압출 성형하여 두께 65 ㎛의 제1 적외선 방사층을 제조하였다. 이후, 전자빔 가열법에 의해 은(Ag)을 가열 증기화시켜 두께 500 nm의 금속 반사층을 증착하였다.PETG (a portion corresponding to 30 mol% of ethylene units constituting polyethylene terephthalate (PET) is replaced with 1,4-cyclohexanedimethylene units) silica (SiO 2 ) having an average particle diameter of 2 to 5 μm 3 wt% The content was put into a single-screw extruder, melt-kneaded and solidified by cooling to prepare pellets, and then extrusion-molded to prepare a first infrared radiation layer having a thickness of 65 μm. Thereafter, silver (Ag) was heated and vaporized by an electron beam heating method to deposit a metal reflective layer having a thickness of 500 nm.
또한 PVDF를 같은 방법으로 압출 성형하여 두께 25 ㎛의 제2 적외선 방사층을 제조하였다.In addition, PVDF was extruded in the same manner to prepare a second infrared emitting layer having a thickness of 25 μm.
또한 산소 투과율이 40 cc/㎡dayatm이고, 수분 투과율 20 g/㎡·day·atm인 PET를 같은 방법으로 압출 성형하여 금속 산화방지층을 제조하였다.In addition, a metal antioxidant layer was prepared by extrusion molding PET having an oxygen permeability of 40 cc/m 2 dayatm and a water permeability of 20 g/m 2 ·day·atm in the same manner.
다층 필름 성형기를 이용하여 상기 제조된 제1 적외선 방사층 및 제2 적외선 방사층의 사이와, 금속 반사층 및 금속 산화방지층 사이를 아크릴계 수지로 접착층을 형성하여 접착하고, 금속 산화방지층 이면에 아크릴계 점착층을 형성시켜 반사형 복사냉각 다층 필름을 제조하였다.Using a multi-layer film forming machine, an adhesive layer is formed and adhered between the first infrared emitting layer and the second infrared emitting layer and between the metal reflective layer and the metal antioxidant layer with an acrylic resin, and an acrylic adhesive layer on the back surface of the metal antioxidant layer was formed to prepare a reflective radiation-cooled multilayer film.
시험예 5Test Example 5
상기 제조된 반사형 복사냉각 다층 필름에 대하여 하기 방법에 따라 태양광 반사율을 측정하고, 그 결과를 하기 표 3에 나타내었다.The solar reflectance of the prepared reflective radiation-cooled multilayer film was measured according to the following method, and the results are shown in Table 3 below.
[태양광 반사율 측정방법][Method for measuring solar reflectance]
ASTM E424 방법에 따라 측정하였다.It was measured according to ASTM E424 method.
구분division | 태양광 반사율(%)Solar Reflectance (%) |
실시예Example | 9393 |
상기 표 3을 참조하면, 본 발명에 따라 유전체 입자를 포함한 제1 적외선 방사층 및 제2 적외선 방사층을 포함하는 반사형 복사냉각 다층 필름은 태양광 반사 성능이 매우 우수한 것을 확인할 수 있다.Referring to Table 3, it can be seen that the reflective radiation-cooled multilayer film including the first infrared emitting layer and the second infrared emitting layer including dielectric particles according to the present invention has very excellent solar reflection performance.
시험예 6Test Example 6
상기 제조된 반사형 복사냉각 다층 필름이 적용된 용기(실시예 2)와, 적용되지 않은 용기(비교예 3, Reference)에 대하여 하기 조건으로 비교시험을 실시하였고, 그 결과를 도 5에 나타내었다.A comparative test was conducted under the following conditions on the container to which the prepared reflective radiation-cooling multilayer film was applied (Example 2) and the container to which it was not applied (Comparative Example 3, Reference), and the results are shown in FIG. 5 .
[시험조건][Exam conditions]
- 주체(목표물) 소재 : 아크릴 - Subject (target) material: acrylic
- 온도 측정 위치 : 내부 공기(Space cool) - Temperature measurement location: inside air (Space cool)
- 기후 조건 : (주간) 습도 20 ~ 40 %, 구름양 2 ~ 3할 / (야간) 습도 40 ~ 90 %, 구름양 0 ~ 10할- Climatic conditions: (Daytime) Humidity 20 ~ 40%, Clouds 2 ~ 30% / (Night) Humidity 40 ~ 90%, Clouds 0 ~ 100%
도 5를 참조하면, 비교예 3(표면에 필름 미부착)의 내기 온도 대비 실시예 2의 다층 필름 부착의 내기 온도가 최대 약 8℃ 가량 낮게 나타났고, 실시된 모든 일자의 결과에서 비교예 3 대비 실시예 2의 온도 저감 효과가 나타났다. 이러한 결과는 반사형 복사 냉각 필름의 선택적 파장 열 방사가 박스 안 공간의 공기로부터 열을 빼앗는 효과가 현저하다는 것을 입증하고 있다. Referring to FIG. 5 , the temperature of the inner temperature of the multilayer film attachment of Example 2 was lower by about 8° C. at most compared to the inner temperature of Comparative Example 3 (no film attached to the surface), and compared to Comparative Example 3 in the results of all the days carried out The temperature reduction effect of Example 2 was shown. These results demonstrate that the selective wavelength heat radiation of the reflective radiative cooling film has a significant effect of taking heat away from the air in the space inside the box.
상기와 같은 효과는 에어컨 실외기 커버 또는 하우징의 분야에 적용 가능하다. 에어컨 실외기는 실내를 냉각시키는 데 활용된 고온 순환 공기를 밖으로 배출하는 역할을 한다. 따라서, 에어컨 사용량이 많아지는 하절기에는 실외기 표면에 본 발명의 복사 냉각 필름을 부착하여 내부 온도를 낮출 수 있어, 실내 냉각 효과를 향상시키면서 소모 전력을 절감할 수 있다.The above effects are applicable to the field of the air conditioner outdoor unit cover or housing. The outdoor unit of the air conditioner discharges the high-temperature circulating air used to cool the room to the outside. Therefore, in the summer season when the amount of air conditioner usage increases, the internal temperature can be lowered by attaching the radiation cooling film of the present invention to the surface of the outdoor unit, thereby improving the indoor cooling effect and reducing power consumption.
시험예 7Test Example 7
상기 시험예 6에서 주체 소재 및 온도 측정 위치를 하기 조건과 같이 변형하여 비교시험을 실시하였고, 그 결과를 도 6에 나타내었다.In Test Example 6, a comparative test was performed by changing the subject material and the temperature measurement position as follows, and the results are shown in FIG. 6 .
[시험조건][Exam conditions]
- 주체(목표물) 소재 : 철(Fe)- Main (target) material: iron (Fe)
- 온도 측정 위치 : 내부 액체(물)(Space cool) - Temperature measurement location: internal liquid (water) (Space cool)
- 기후 조건 : (주간) 습도 20 ~ 45 %, 구름양 0 ~ 7할 / (야간) 습도 40 ~ 90 %, 구름양 0 ~ 7할- Climate conditions: (Daytime) Humidity 20 ~ 45%, Clouds 0 ~ 70% / (Night) Humidity 40 ~ 90%, Clouds 0 ~ 70%
도 6을 참조하면, 비교예 3(표면에 필름 미부착, Reference)의 내기 온도 대비 실시예 2의 다층 필름 부착의 내부 수온이 주간 최대 7℃, 야간 3℃ 이상 감소되었다. 이러한 결과는 반사형 복사 냉각 필름의 표면에서의 선택적 파장 열 방사가 내부 액체(물 포함)의 온도도 냉각시킬 수 있는 효과를 발현한다는 것을 보여주고 있다. Referring to FIG. 6 , the internal water temperature of the multilayer film attachment of Example 2 compared to the internal temperature of Comparative Example 3 (no film attached to the surface, Reference) was reduced by more than 7°C during the day and 3°C at night. These results show that the selective wavelength thermal radiation at the surface of the reflective radiation cooling film exhibits an effect capable of cooling the temperature of the internal liquid (including water).
상기와 같은 효과는 저장 탱크 및 유조차 등 세부 분야에 적용될 수 있다. 유조차의 경우, 오일이나 오일 가스 운반 과정에서 장시간 옥외 노출된다. 이때, 다량의 태양광 조사로 표면 및 내부 온도가 급격하게 올라가고, 오일 제품의 증발을 가속화시킨다. 특히, 오일 가스 저장 탱크의 경우, 이러한 탱크 내압 상승으로 인해 주기적으로 가스 밸브를 개방해야 하며, 운송 유조차의 경우, 지나친 내압으로 인해 폭발 사고가 발생될 우려가 있다. 오일 증기 생성을 막기 위해 하절기에 주기적으로 물을 뿌려 표면을 냉각시키거나, 냉각 순환수를 이용한 추가 전력 구동의 공조 시스템을 활용하기도 한다. 따라서 본 발명에 따른 반사형 복사냉각 다층 필름의 냉각 효과를 통해 절수 또는 절전의 장점을 확보할 수 있다.The above effects may be applied to detailed fields such as storage tanks and oil tankers. In the case of tankers, they are exposed to the outdoors for a long time in the process of transporting oil or oil gas. At this time, the surface and internal temperature rises rapidly with a large amount of sunlight irradiation, and the evaporation of the oil product is accelerated. In particular, in the case of an oil gas storage tank, a gas valve must be opened periodically due to such an increase in internal pressure of the tank, and in the case of a transport tanker, there is a risk of an explosion accident due to excessive internal pressure. To prevent oil vapor generation, the surface is cooled by spraying water periodically in summer, or an additional power-driven air conditioning system using cooling circulating water is used. Therefore, through the cooling effect of the reflective radiation cooling multilayer film according to the present invention, it is possible to secure the advantages of water saving or power saving.
시험예 8Test Example 8
본 발명에 따른 반사형 복사냉각 다층 필름에서 점착층의 효과를 확인하기 위해 상기 실시예에서 점착층이 없는 것을 제외하고는 실시예 2와 동일한 복사냉각 필름을 제조(비교예 4)하였고, 상기 시험예 6에서의 시험조건과 동일한 조건으로 비교시험을 실시하였다. 시험 후 주체의 표면 온도를 측정하고 그 결과를 하기 표 2에 나타내었다.In order to confirm the effect of the adhesive layer in the reflective radiation-cooled multilayer film according to the present invention, the same radiation-cooled film as in Example 2 was prepared (Comparative Example 4) except that there was no adhesive layer in the above example, and the test A comparative test was performed under the same conditions as the test conditions in Example 6. After the test, the surface temperature of the subject was measured, and the results are shown in Table 2 below.
구분division | 실시예 2Example 2 | 비교예 4Comparative Example 4 |
표면 온도(℃)Surface temperature (℃) | 7.17.1 | 8.48.4 |
상기 표 4를 참조하면, 본 발명에 따라 금속 산화방지층 하부에 위치하여 주체와 부착되는 점착층을 더 포함함으로써 필름과 주체 사이의 열전도 저항을 감소시켜 복사냉각 효율을 보다 향상시킬 수 있음이 확인된다.Referring to Table 4, according to the present invention, it is confirmed that the radiation cooling efficiency can be further improved by reducing the thermal conduction resistance between the film and the main body by further including an adhesive layer attached to the main body and located under the metal antioxidant layer according to the present invention. .
이상으로 본 발명의 바람직한 실시예를 상세하게 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.The preferred embodiment of the present invention has been described in detail above. The description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains will understand that other specific forms can be easily modified without changing the technical spirit or essential features of the present invention.
따라서, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Accordingly, the scope of the present invention is indicated by the claims described later rather than the detailed description, and all changes or modifications derived from the meaning, scope, and equivalent concept of the claims are included in the scope of the present invention. should be interpreted
* 부호의 설명* Explanation of symbols
100 : 투명형 복사냉각 다층 필름 110 : 제1 적외선 방사층100: transparent radiation-cooled multilayer film 110: first infrared radiation layer
120 : 유전체 입자 130 : 제2 적외선 방사층120: dielectric particles 130: second infrared radiation layer
140 : 제1 고분자 150 : 금속 반사층140: first polymer 150: metal reflective layer
160 : 금속 산화방지층 170 : 점착층160: metal oxidation prevention layer 170: adhesive layer
180 : 접착층180: adhesive layer
Claims (9)
- 평균 입경 0.01 내지 30 ㎛의 유전체 입자가 0.1 내지 25 중량% 함량으로 분산된 제1 고분자를 포함하고, 열을 제거하고자 하는 물체를 파장 범위 8 내지 13 ㎛의 방사에 대하여 평균 방사율 0.5 내지 1로 선택적 복사냉각시키는 제1 적외선 방사층;An object from which heat is to be removed is selected with an average emissivity of 0.5 to 1 for radiation in a wavelength range of 8 to 13 μm, comprising a first polymer in which dielectric particles having an average particle diameter of 0.01 to 30 μm are dispersed in an amount of 0.1 to 25 wt% a first infrared emitting layer for radiative cooling;상기 제1 적외선 방사층 상부에 위치하고, 제2 고분자를 포함하여 상기 선택적 복사냉각된 열을 외부로 방출시키는 제2 적외선 방사층; 및a second infrared radiation layer disposed on the first infrared radiation layer and including a second polymer to emit the selectively radiatively cooled heat to the outside; and상기 제1 적외선 방사층 하부에 위치하여 태양광을 반사시키는 두께 20 내지 600 nm의 금속 반사층;a metal reflective layer having a thickness of 20 to 600 nm that is positioned under the first infrared emitting layer and reflects sunlight;을 포함하는 복사냉각 다층 필름.Radiation cooling multilayer film comprising a.
- 제1항에 있어서,According to claim 1,상기 필름은 -100 내지 300℃의 작동 온도 하에 50 내지 150 W/㎡의 복사냉각력(Radiative cooling power)을 가지고, 가시광선 투과율이 15 내지 70%이고, 태양광 반사율이 20 내지 50%이고, 헤이즈(Haze)가 10% 이하인 것을 특징으로 하는 복사냉각 다층 필름.The film has a radiative cooling power of 50 to 150 W / m 2 under an operating temperature of -100 to 300 ° C, a visible light transmittance of 15 to 70%, and a solar reflectance of 20 to 50%, Radiation cooled multilayer film, characterized in that the haze (Haze) is 10% or less.
- 제1항에 있어서,According to claim 1,상기 필름은 -100 내지 300℃의 작동 온도 하에 50 내지 150 W/㎡의 복사냉각력(Radiative cooling power)을 가지고, 태양광 반사율이 80 내지 95%인 것을 특징으로 하는 복사냉각 다층 필름.The film has a radiative cooling power of 50 to 150 W/m 2 under an operating temperature of -100 to 300° C., and a solar reflectance of 80 to 95%.
- 제1항에 있어서,According to claim 1,상기 유전체 입자는 실리카(SiO2), 알루미나(Al2O3), 규산알루미늄(Al2SiO5), 제올라이트(Na2Al2Si3O-2H2O), 탄산칼슘(CaCO3), 탄화규소(SiC), 산화아연(ZnO), 황산아연(ZnSO4), 이산화타이타늄(TiO2), 황산바륨(BaSO4), 산화세륨(Ce2O3), 지르코니아(ZrO2) 및 산화 카올린(Al2Si2O5(OH)4)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 복사냉각 다층 필름.The dielectric particles are silica (SiO 2 ), alumina (Al 2 O 3 ), aluminum silicate (Al 2 SiO 5 ), zeolite (Na 2 Al 2 Si 3 O-2H 2 O), calcium carbonate (CaCO 3 ), carbide Silicon (SiC), zinc oxide (ZnO), zinc sulfate (ZnSO 4 ), titanium dioxide (TiO 2 ), barium sulfate (BaSO 4 ), cerium oxide (Ce 2 O 3 ), zirconia (ZrO 2 ) and kaolin oxide ( Al 2 Si 2 O 5 (OH) 4 ) Radiation-cooled multilayer film, characterized in that at least one selected from the group consisting of.
- 제1항에 있어서,According to claim 1,상기 제1 고분자 및 제2 고분자는 각각 PET(Polyethylene terephthalate), PETG(Glycol-modified polyethylene terephthalate), PEN(Polyethylene naphthalate), PVDF(Polyvinylidene fluoride), PTFE(Polytetrafluoroethylene), PFA(Perfluoroalkoxyalkane), PCTFE(Polychlorotrifluoroethylene), ECTFE(Ethylene chlorotrifluoroethylene), ETFE(Ethylene Tetra fluoro Ethylene), FEP(Fluorinated ethylene propylene), THV(Terpolymer of tetrafluoroethylene, hexafluoropropylene 및 vinylidene fluoride), PVC(Polyvinyl chloride), PVDC(Polyvinylidene chloride), PU(Polyurethane), PC(Polycarbonate), PE(Polyethylene) 및 PP(Polypropylene)로 이루어진 군에서 선택되는 1종이거나 2종 이상이 혼합된 것을 특징으로 하는 복사냉각 다층 필름.The first polymer and the second polymer are polyethylene terephthalate (PET), glycol-modified polyethylene terephthalate (PETG), polyethylene naphthalate (PEN), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), polychlorotrifluoroethylene (PCTFE), respectively. ), ECTFE (Ethylene chlorotrifluoroethylene), ETFE (Ethylene Tetra fluoro Ethylene), FEP (Fluorinated ethylene propylene), THV (Terpolymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride), PVC (Polyvinyl chloride), PVDC (Polyvinylidene chloride), PU (Polyurethane) ), PC (Polycarbonate), PE (Polyethylene) and PP (Polypropylene) radiation-cooled multilayer film, characterized in that one selected from the group consisting of or a mixture of two or more.
- 제1항에 있어서,According to claim 1,상기 제1 적외선 방사층 및 제2 적외선 방사층의 평균 두께는 각각 10 ㎛ 내지 3 mm인 것을 특징으로 하는 복사냉각 다층 필름.The radiation-cooled multilayer film, characterized in that the average thickness of the first infrared emitting layer and the second infrared emitting layer is 10 μm to 3 mm, respectively.
- 제1항에 있어서,According to claim 1,상기 금속 반사층 하부에 위치하고, 제3 고분자를 포함하여 상기 금속 반사층 성분의 산화 방지를 위한 금속 산화방지층; 및a metal anti-oxidation layer positioned under the metal reflective layer and including a third polymer to prevent oxidation of the metal reflective layer component; and상기 금속 산화방지층 하부에 위치하여 상기 물체와 부착되는 점착층;an adhesive layer positioned under the metal oxidation prevention layer and attached to the object;을 더 포함하는 것을 특징으로 하는 복사냉각 다층 필름.Radiation cooling multilayer film, characterized in that it further comprises.
- 제7항에 있어서,8. The method of claim 7,상기 금속 반사층은 은(Ag) 또는 알루미늄(Al)이 20 내지 150 nm 두께로 형성되고,The metal reflective layer is formed of silver (Ag) or aluminum (Al) with a thickness of 20 to 150 nm,상기 제3 고분자는 산소 투과율이 0.1 내지 1,000 cc/㎡·day·atm이고, 수분 투과율 1 내지 100 g/㎡·day·atm인 것을 특징으로 하는 복사냉각 다층 필름. The third polymer has an oxygen transmittance of 0.1 to 1,000 cc/m2·day·atm, and a moisture transmittance of 1 to 100 g/m2·day·atm.
- 제7항에 있어서,8. The method of claim 7,상기 금속 반사층은 은(Ag) 또는 알루미늄(Al)이 20 내지 600 nm 두께로 형성되고,The metal reflective layer is formed of silver (Ag) or aluminum (Al) with a thickness of 20 to 600 nm,상기 제3 고분자는 산소 투과율이 0.1 내지 5 cc/㎡·day·atm이고, 수분 투과율 1 내지 20 g/㎡·day·atm인 것을 특징으로 하는 복사냉각 다층 필름. The third polymer has an oxygen transmittance of 0.1 to 5 cc/m2·day·atm, and a moisture transmittance of 1 to 20 g/m2·day·atm.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0158954 | 2020-11-24 | ||
KR10-2020-0158945 | 2020-11-24 | ||
KR1020200158945A KR20220071613A (en) | 2020-11-24 | 2020-11-24 | Radiative cooling multi-layer film |
KR1020200158954A KR20220071619A (en) | 2020-11-24 | 2020-11-24 | Radiative cooling multilayer film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022114673A1 true WO2022114673A1 (en) | 2022-06-02 |
Family
ID=81756172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/017028 WO2022114673A1 (en) | 2020-11-24 | 2021-11-18 | Radiative cooling multilayer films |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022114673A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117704656A (en) * | 2023-12-14 | 2024-03-15 | 浙江大学 | Multi-response solar-infrared radiation adaptive dynamic control device and its control method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170248381A1 (en) * | 2016-02-29 | 2017-08-31 | The Regents Of The University Of Colorado, A Body Corporate | Radiative cooling structures and systems |
CN110103559A (en) * | 2019-05-13 | 2019-08-09 | 宁波瑞凌新能源科技有限公司 | A kind of radiation cooling material and its preparation method and application |
CN110216924A (en) * | 2019-05-31 | 2019-09-10 | 宁波瑞凌新能源科技有限公司 | A kind of recombination radiation refrigeration film |
KR102036069B1 (en) * | 2018-06-12 | 2019-10-24 | 경희대학교 산학협력단 | Radiant cooling structure including cavity pattern and forming method thereof |
WO2020022156A1 (en) * | 2018-07-23 | 2020-01-30 | 大阪瓦斯株式会社 | Radiant cooling device |
-
2021
- 2021-11-18 WO PCT/KR2021/017028 patent/WO2022114673A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170248381A1 (en) * | 2016-02-29 | 2017-08-31 | The Regents Of The University Of Colorado, A Body Corporate | Radiative cooling structures and systems |
KR102036069B1 (en) * | 2018-06-12 | 2019-10-24 | 경희대학교 산학협력단 | Radiant cooling structure including cavity pattern and forming method thereof |
WO2020022156A1 (en) * | 2018-07-23 | 2020-01-30 | 大阪瓦斯株式会社 | Radiant cooling device |
CN110103559A (en) * | 2019-05-13 | 2019-08-09 | 宁波瑞凌新能源科技有限公司 | A kind of radiation cooling material and its preparation method and application |
CN110216924A (en) * | 2019-05-31 | 2019-09-10 | 宁波瑞凌新能源科技有限公司 | A kind of recombination radiation refrigeration film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117704656A (en) * | 2023-12-14 | 2024-03-15 | 浙江大学 | Multi-response solar-infrared radiation adaptive dynamic control device and its control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021206474A1 (en) | Radiation cooling device using ceramic nanoparticle mixture | |
EP3412447B1 (en) | Passive radiative cooling of window structures | |
US11097513B2 (en) | Laminated glass pane and use thereof | |
WO2023090702A1 (en) | Radiative cooling multilayer films | |
WO2022114605A1 (en) | Passive radiative cooling film and use thereof | |
EP2416374A1 (en) | Solar cell module with layers of design for integration into buildings | |
WO2022114673A1 (en) | Radiative cooling multilayer films | |
JP2022119691A (en) | Radiation cooling film and product of the same | |
WO2012148176A2 (en) | Back sheet for solar cell module and solar cell module including same | |
WO2012157962A2 (en) | Protection film for solar cell application and solar cell having same | |
US6284383B1 (en) | Laminated glass for greenhouse | |
WO2023090717A1 (en) | Radiative cooling multilayer film | |
KR20220071619A (en) | Radiative cooling multilayer film | |
US20240167776A1 (en) | Radiative Cooling Device | |
JP2000150936A (en) | Semiconductor device and solar power generation device | |
US20200353730A1 (en) | Energy saving film structure | |
JP7442352B2 (en) | Radiation cooling membrane material | |
KR20230074367A (en) | Radiative cooling multi-layer film | |
KR102589053B1 (en) | Canopy type polycarbonate solar module | |
WO2020071597A1 (en) | Optical multilayer infrared reflection window film, manufacturing method therefor, and window system using same | |
WO2021100997A1 (en) | Light-emitting type cooling device | |
KR20220071613A (en) | Radiative cooling multi-layer film | |
WO2022202990A1 (en) | Radiative cooling device | |
KR20230103534A (en) | Cooling stucture and cooling film | |
CN209923245U (en) | Heat insulation film with architectural decoration effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21898499 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21898499 Country of ref document: EP Kind code of ref document: A1 |