[go: up one dir, main page]

WO2022114102A1 - 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法 - Google Patents

風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法 Download PDF

Info

Publication number
WO2022114102A1
WO2022114102A1 PCT/JP2021/043327 JP2021043327W WO2022114102A1 WO 2022114102 A1 WO2022114102 A1 WO 2022114102A1 JP 2021043327 W JP2021043327 W JP 2021043327W WO 2022114102 A1 WO2022114102 A1 WO 2022114102A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
vortex generator
platform
wind turbine
cavity
Prior art date
Application number
PCT/JP2021/043327
Other languages
English (en)
French (fr)
Inventor
恭章 白石
和歌子 有木
敏之 上田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN202180077678.8A priority Critical patent/CN116457573A/zh
Priority to US18/038,226 priority patent/US12092072B2/en
Priority to EP21898074.6A priority patent/EP4234916A4/en
Publication of WO2022114102A1 publication Critical patent/WO2022114102A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/06495Aerodynamic elements attached to or formed with the blade, e.g. flaps, vortex generators or noise reducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5042Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like covering both elements to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/306Surface measures
    • F05B2240/3062Vortex generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/30Arrangement of components
    • F05B2250/33Arrangement of components symmetrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to a vortex generator for a wind turbine wing, a wind turbine wing and a wind power generator, and a method for manufacturing the wind turbine wing.
  • Patent Documents 1 to 8 disclose a vortex generator having a platform attached to the surface of a wind turbine blade and fins erected on the platform.
  • the vortex generator tends to become larger as the wind turbine blades become larger, and the thickness of the fins tends to become thicker. Therefore, in the cooling process when molding the vortex generator, shrinkage occurs due to shrinkage, and distortion and dents are likely to occur. In this case, a vortex generator having the shape as designed cannot be obtained, and when this vortex generator is installed on a wind turbine blade, the expected functions and performance may not be obtained.
  • At least one embodiment of the present invention provides a vortex generator for a wind turbine blade, a wind turbine blade and a wind power generator, and a method for manufacturing the wind turbine blade, in which a vortex generator having a shape as designed can be easily obtained. With the goal.
  • the vortex generator for a wind turbine wing is Platform and With at least one fin projecting from the top surface of the platform, A resin vortex generator for wind turbine wings equipped with The vortex generator is composed of a cavity that opens to the bottom surface of the platform and extends to the inside of the fin.
  • the wind turbine blade according to at least one embodiment of the present invention is With the wing body, With the above-mentioned vortex generator attached to the surface of the wing body, To prepare for.
  • the wind power generation device is With the wind turbine rotor including the above-mentioned wind turbine blades, A generator configured to be driven by the wind turbine rotor, To prepare for.
  • the method for manufacturing a wind turbine blade is as follows.
  • a method for manufacturing a wind turbine wing comprising the wing body and the above-mentioned vortex generator provided in the fin and having a hole communicating with the cavity and opening on the surface of the fin.
  • the step of adhering the vortex generator to the surface of the wing body A step of sucking air inside the cavity through the hole, To prepare for.
  • a vortex generator for a wind turbine blade for a wind turbine blade, a wind turbine blade and a wind power generator, and a method for manufacturing the wind turbine blade, which makes it easy to obtain a vortex generator having a shape as designed.
  • FIG. 1 It is a schematic block diagram of the wind power generation apparatus which concerns on one Embodiment. It is a perspective view of the wind turbine wing which concerns on one Embodiment. It is a perspective view of the vortex generator which concerns on one Embodiment. It is a top view of the vortex generator shown in FIG. It is a top view of the vortex generator which concerns on one Embodiment. It is a figure which shows the AA cross section of FIG. It is a figure which shows the BB cross section of FIG. It is a figure which shows the CC cross section of FIG. It is a figure which shows an example of the DD cross section of FIG. It is a figure which shows an example of the DD cross section of FIG.
  • FIG. 1 is a schematic configuration diagram of a wind power generation device according to an embodiment
  • FIG. 2 is a perspective view of a wind turbine blade according to an embodiment.
  • the wind turbine generator 40 includes a rotor 42 composed of at least one (for example, three) wind turbine blades 1 and a hub 43.
  • the wind turbine blade 1 is radially attached to the hub 43, and the rotor 42 rotates when the wind turbine blade 1 receives wind, and a generator (not shown) connected to the rotor 42 generates electricity.
  • the rotor 42 is supported by a nacelle 44 provided above the tower 46.
  • the tower 46 is erected on a base structure 48 (foundation structure, floating structure, etc.) provided on the water or on land.
  • the vortex generator according to the embodiment is attached to the wind turbine blade 1 of the wind power generation device 40.
  • the wind turbine blade 1 includes a blade body 2 and a vortex generator 10 attached to the surface (blade surface) of the blade body 2.
  • the wing body 2 has a wing root 3 attached to the hub 43 of the wind power generator 40, a wing tip 4 located farthest from the hub 43, and an airfoil portion 5 extending between the wing root 3 and the wing tip 4. And, including.
  • the wind turbine wing 1 has a leading edge 6 and a trailing edge 7 from the wing root 3 to the wing tip 4.
  • the outer shape of the wind turbine blade 1 is formed by a pressure surface (ventral surface) 8 and a negative pressure surface (back surface) 9 facing the pressure surface 8.
  • a plurality of vortex generators 10 are attached to the negative pressure surface 9 of the blade body 2. Further, a plurality of vortex generators 10 are arranged in a plurality of blade length directions on the negative pressure surface 9 of the blade body 2.
  • the "wingpan direction” is the direction connecting the wing root 3 and the wing tip 4.
  • FIG. 3 is a perspective view of the vortex generator 10 according to the embodiment
  • FIGS. 4 to 5 are plan views of the vortex generator according to the embodiment, respectively.
  • FIG. 4 is a plan view of the vortex generator 10 shown in FIG. 6 to 9 are cross-sectional views of the vortex generator 10 according to the embodiment, respectively.
  • 6 is a diagram showing a cross section taken along the line AA of FIG. 4
  • FIG. 7 is a diagram showing a cross section taken along the line BB of FIG. 4
  • FIG. 8 is a diagram showing a cross section taken along the line CC of FIG. 9 and 10 are views showing a DD cross section of FIG. 9 and 10 are views showing the vortex generator according to the embodiment together with the wind turbine blade to which the vortex generator is attached.
  • the vortex generator 10 has a platform 11 mounted on the surface of the wind turbine blade 1 (more specifically, the surface of the blade body 2) and at least one fin 12 provided on the platform 11. And prepare.
  • the platform 11 has an upper surface 11a on which fins 12 are provided, and a bottom surface 11b on the opposite side of the upper surface 11a.
  • the vortex generator 10 is attached to the surface of the blade body 2 (for example, the negative pressure surface 9) via the bottom surface 11b.
  • the shape of the platform 11 is not particularly limited, but in some embodiments, it may have a circular shape in a plan view as shown in FIGS. 3 to 5. In some embodiments, the platform 11 may have a shape such as a polygon or an ellipse in plan view. Further, the upper surface 11a of the platform 11 may have a curved surface shape or a planar shape. The upper surface 11a of the platform 11 shown in FIGS.
  • the bottom surface 11b of the platform 11 is basically a planar shape, but it does not have to be a perfect planar shape, and may be, for example, a concave curved surface shape having a relatively large curvature.
  • At least one fin 12 is provided so as to project from the upper surface 11a of the platform 11.
  • two fins 12A and 12B are provided on the platform 11.
  • the fins 12A and 12B are collectively referred to as fins 12.
  • the fins 12 have a front edge 13 located on the upstream side in the wind inflow direction, a trailing edge 14 located on the downstream side in the wind inflow direction, and an upstream in the wind inflow direction. It has a pressure surface (ventral surface) 15 of the fin 12 facing side, and a negative pressure surface (back surface) 16 of the fin 12 facing the downstream side in the inflow direction of wind.
  • the direction of the straight line ( LCA and LCB in FIGS. 4 and 5) connecting the leading edge 13 and the trailing edge 14 is the chord direction of the fin 12.
  • the fin 12 extends between the base 17 and the top 18 connected to the platform 11 in the height direction of the fin 12.
  • the height direction of the fin 12 is a direction orthogonal to the bottom surface 11b of the platform 11.
  • the height direction of the fins 12 is orthogonal to the plane including the edge of the bottom surface 11b of the platform 11.
  • the height direction of the fin 12 may be simply referred to as the height direction.
  • the height from the bottom surface 11b of the platform 11 means the height from the plane including the edge of the bottom surface 11b of the platform 11 when the bottom surface 11b of the platform is not a planar shape.
  • the operation of the vortex generator 10 will be briefly described.
  • the boundary layer gradually thickens from the laminar flow area near the leading edge 6 toward the turbulent flow area on the downstream side thereof, and the flow is separated before reaching the trailing edge 7. It happens by putting it away.
  • the vortex generator 10 attached to the wind turbine blade 1 forms a vertical vortex on the negative pressure surface 16 side of the fin 12 by the lift generated by the fin 12. Further, the flow flowing into the fin 12 forms a vertical vortex along the edge from the most upstream side position 13a of the leading edge 13 of the fin 12 toward the top 13b.
  • the vertical vortex generated by the fins 12 thus promotes momentum exchange in the height direction of the fins 12 inside and outside the boundary layer on one surface of the wind turbine blade on the wake side of the vortex generator 10.
  • the boundary phase on the surface of the wind turbine blade 1 becomes thin, and the separation of the flow from the surface of the wind turbine blade 1 is suppressed.
  • a leading edge portion 13' having a curved contour within a cross section orthogonal to the height direction of the fin 12 is included.
  • the leading edge portion 13'of the fin 12 has a curved contour in a cross section orthogonal to the height direction, when the vortex generator 10 is installed on the wind turbine blade 1, the vortex generator is generated.
  • the resistance to the flow of air flowing into the 10 can be reduced, and the performance of the vortex generator 10 can be easily exhibited.
  • the cross-sectional shape of the fins 12 orthogonal to the height direction of the fins 12 may have an airfoil profile.
  • the cross-sectional shape of the fin 12 since the cross-sectional shape of the fin 12 has an airfoil shape, it is possible to effectively suppress the separation of the flow from the surface of the wind turbine blade 1.
  • the fin 12 has a shape symmetrical with respect to the code of the fin 12.
  • the fin 12 since the fin 12 has a shape symmetrical with respect to the cord of the fin 12, it is molded by, for example, injection molding, as compared with the case where the fin 12 has a shape asymmetrical with respect to the cord. Will be easier.
  • the fin 12 includes a leading edge having a curved contour in a cross section orthogonal to the height direction of the fin, and is a wing symmetrical with respect to the code of the fin 12. It has a mold shape (that is, in a cross section orthogonal to the height direction of the fin 12, the pressure surface 15 and the negative pressure surface 16 have a shape symmetrical with respect to the code of the fin 12). Also, in the exemplary embodiment shown in FIG. 5, the fin 12 includes a leading edge having a curved contour in a cross section orthogonal to the height direction of the fin and is an asymmetric wing with respect to the cord of the fin 12. It has a mold shape (ie, in a cross section orthogonal to the height direction of the fin 12, the pressure plane 15 and the negative pressure plane 16 have an asymmetric shape with respect to the cord of the fin 12).
  • the fins 12 are provided so as to be inclined so as to form a predetermined angle with respect to the wind inflow direction. In some embodiments, as shown in FIGS. 3-5, from the upstream side to the downstream side in the wind inflow direction (that is, from the leading edge 6 side to the trailing edge 7 side of the wind turbine blade 1 (see FIG. 2)).
  • the fins 12A and 12B may be provided so as to widen the gap between the pair of fins 12A and 12B.
  • a pair of fins 12A from the downstream side to the upstream side in the wind inflow direction (ie, from the trailing edge 7 side to the leading edge 6 side of the wind turbine blade 1 (see FIG. 2)).
  • the fins 12A and 12B may be provided so as to widen the gap between the 12Bs.
  • the mounting angle (cord direction) of the fins 12 is 12 degrees or more and 18 degrees or less with respect to the inflow direction of the wind.
  • the vortex generator 10 (platform 11 and fins 12) is made of resin.
  • the resin used as the material of the vortex generator 10 may be, for example, a thermoplastic such as ASA (acrylate styleylene acrylonitrile) or AES (acrylonitrile ethylene style).
  • the vortex generator 10 includes the cavity 20.
  • the cavity 20 is a cavity that opens to the bottom surface 11b of the platform 11 and extends to the inside of the fin 12. That is, the cavity 20 extends, at least in part, above the top surface 11a of the platform 11 in the height direction of the fins 12.
  • the vortex generator 10 since the vortex generator 10 is provided with the cavity portion 20 extending to the inside of the fin 12, the wall thickness of the fin 12 can be reduced with respect to the wall thickness of the platform 11 as compared with the case where the cavity portion 20 is not provided. .. That is, according to the above-described embodiment, it becomes easy to suppress sink marks due to shrinkage in the cooling process when the vortex generator 10 is molded from the resin material. Therefore, it becomes easy to obtain the vortex generator 10 having the shape as designed.
  • the vortex generator 10 when the vortex generator 10 is installed on the wind turbine blade 1, it is expected that the vortex generator 10 will be stably adhered to the surface of the blade body 2 or that the vortex generator 10 will have an effect of suppressing the flow from the surface of the wind turbine blade 1. It becomes easy to obtain as shown in.
  • the method for manufacturing the vortex generator 10 is not particularly limited, but the vortex generator 10 may be manufactured by injection molding, for example.
  • the method for forming the cavity 20 is not particularly limited, but the cavity 20 may be formed by using a core at the time of injection molding or the like.
  • the cavity 20 is of the platform 11 when the distance between the bottom surface 11b of the platform 11 and the top 18 of the fin 12 in the height direction of the fin 12 is HF (see FIG. 6 or 7).
  • the maximum value HVmax (see FIG. 6 or FIG. 7) of the height HV of the cavity 20 from the bottom surface 11b is HF / 3 or more.
  • the height HV of the cavity 20 is the distance in the height direction from the bottom surface 11b of the platform 11 to the surface 21 forming the cavity 20.
  • the height HV of the cavity 20 at the position of the rib 22 (see FIGS. 6 to 8) described later is formed by a smooth surface 21 in which the rib 22 is virtually removed from the vortex generator 10 and the cavity 20 is continuous. It is defined as the height of the cavity 20 (the distance in the height direction from the bottom surface 11b of the platform 11 to the surface 21 forming the cavity 20) when it is assumed that the cavity 20 is formed.
  • the maximum value HVmax of the height of the cavity 20 from the bottom surface 11b is HF / 3 or more, the area occupied by the cavity 20 in the fin 12 can be relatively large. Therefore, it becomes easy to reduce the wall thickness of the fin 12 with respect to the wall thickness of the platform 11. Therefore, it is possible to effectively suppress sink marks due to shrinkage in the cooling process when molding the vortex generator 10, and it becomes easier to obtain the vortex generator 10 having the shape as designed.
  • the maximum height HVmax of the cavity 20 may be HF / 2 or more. In this case, it becomes easier to make the wall thickness of the fin 12 thinner than the wall thickness of the platform 11. Therefore, it is possible to effectively suppress sink marks due to shrinkage in the cooling process when molding the vortex generator 10, and it becomes easier to obtain the vortex generator 10 having the shape as designed.
  • the height of the cavity 20 from the bottom surface 11b at the maximum blade thickness position P0 of the fin 12 in the cord direction of the fin 12 is set to be equal to or larger than the maximum thickness TB 2 of the platform 11, so that the fin 12 is used.
  • the area occupied by the cavity 20 in the above can be made relatively large. Therefore, it becomes easy to reduce the wall thickness of the fin 12 with respect to the wall thickness of the platform 11. Therefore, it is possible to effectively suppress sink marks due to shrinkage in the cooling process when molding the vortex generator 10, and it becomes easier to obtain the vortex generator 10 having the shape as designed.
  • the height HV from the bottom surface 11b of the cavity portion 20 may be the minimum thickness TB 1 or more of the platform 11.
  • the cavity 20 is in the cord direction of the fins 12 within a height distance of the platform 11 from the bottom surface 11b of the platform 11 to a maximum thickness of TB 2 or more and HF / 3 or less.
  • the length LV of the cavity 20 in the cord direction (see FIG. 8) provided in the region including the maximum blade thickness position P 0 (see FIG. 8) of the fin 12 is the cord length LF of the fin 12 (see FIG. 8). It may be 30% or more.
  • the cord direction length of the cavity 20 is such that the height HV of the cavity 20 in the height direction from the bottom surface 11b is equal to or more than the maximum thickness of the platform 11 and HF / 5 or less. May be 50% or more of the fin cord length.
  • the blade thickness of the fin 12 is relatively large.
  • the region including the maximum blade thickness position P0 in the cord direction within the above-mentioned range in the height direction of the fin 12 that is, within the range in which the blade thickness of the fin 12 is relatively large. Since the cavity 20 having a length of 30% or more or 50% or more of the fin cord length is provided inside, the wall thickness of the fin 12 can be effectively reduced within the range in the height direction. Therefore, it is possible to effectively suppress sink marks due to shrinkage in the cooling process when molding the vortex generator 10, and it becomes easier to obtain the vortex generator 10 having the shape as designed.
  • the cavity 20 is in the chord direction of the fins 12 within a height distance of the platform 11 from the bottom surface 11b of the platform 11 having a maximum thickness of TB 2 or more and HF / 5 or less.
  • the width WV (see FIG. 8) of the fin 12 at the maximum blade thickness position P 0 is 50% or more of the blade thickness WF (see FIG. 8) of the fin 12 at the maximum blade thickness position P 0 .
  • the blade thickness of the fin 12 is the size of the fin 12 in the thickness direction of the fin 12 orthogonal to the cord direction of the fin 12, and the width of the cavity 20 is the width of the cavity 20 in the thickness direction of the fin 12. The size.
  • the cavity 20 is a fin in the cord direction of the fin 12 within a range where the distance from the bottom surface 11b in the height direction is within the range of the maximum thickness TB 2 or more and HF / 5 or less of the platform 11.
  • the width WV at the maximum blade thickness position P0 of 12 is 50% or more of the blade thickness WF of the fin 12 at the maximum blade thickness position P0. Therefore, within the above range in the height direction, it is easy to reduce the wall thickness of the fin 12 at the maximum blade thickness position P0 of the fin 12. Therefore, it is possible to effectively suppress sink marks due to shrinkage in the cooling process when molding the vortex generator 10, and it becomes easier to obtain the vortex generator 10 having the shape as designed.
  • the wall thickness TV of the fin 12 in the chord direction of the fin 12 at the position of the leading edge 13 of the fin 12 in 50% or more of the extension range of the cavity 20 in the height direction of the fin 12. is 0.5 times or more and 2.0 times or less the average ((TB 1 + TB 2 ) / 2) of the maximum thickness TB 2 and the minimum thickness TB 1 of the platform 11.
  • the wall-thickness TV at the position of the leading edge 13 of the fin 12 is 0, which is the average of the maximum thickness TB 2 and the minimum thickness TB 1 of the platform 11. Since it is 5.5 times or more, it is possible to suppress a decrease in strength of the vortex generator 10 due to the provision of the cavity 20 in the fin 12. Further, within the above-mentioned range in the height direction, the wall thickness TV at the position of the leading edge 13 of the fin 12 is 2.0 times or less the average of the maximum thickness TB 2 and the minimum thickness TB 1 of the platform 11.
  • the wall-thickness TV at the position of the leading edge 13 of the fin 12 can be made relatively thin, and sink marks due to shrinkage in the cooling process when molding the vortex generator 10 can be effectively suppressed. Therefore, it is possible to obtain the vortex generator 10 having the shape as designed while suppressing the decrease in the strength of the vortex generator.
  • the fin 12 may include a leading edge portion 13'having a curved contour within a cross section orthogonal to the height direction. As shown in FIG. 4, the leading edge portion 13'of the fin 12 having a symmetrical shape with respect to the cord of the fin 12 has a curved contour. Further, as shown in FIG. 5, the leading edge portion 13'of the fin 12 having an asymmetrical shape with respect to the cord of the fin 12 also has a curved contour.
  • the vortex generator 10 when the vortex generator 10 is installed on the wind turbine blade 1, the resistance to the flow of air flowing into the vortex generator 10 can be reduced, and the performance of the vortex generator 10 can be easily exhibited.
  • the fin 12 may have an airfoil shape.
  • the fin 12 may have a shape symmetrical with respect to the code of the fin 12.
  • the fin 12 since the fin 12 has a shape symmetrical with respect to the cord of the fin 12, molding becomes easier as compared with the case where the fin 12 has a shape asymmetrical with respect to the cord.
  • the fins 12 when the vortex generator 10 is molded by injection molding, the fins 12 have a symmetrical shape, so that the vortex generator 10 can be easily removed from the mold.
  • the fin 12 may have an asymmetrical shape with respect to the cord of the fin 12, as shown in FIG.
  • a rib 22 extending inside the cavity 20 along the thickness direction of the fin 12 is provided.
  • the fin 12 When the cavity 20 is provided inside the fin 12, the fin 12 is easily deformed in the thickness direction of the fin 12, the fin 12 is easily deformed, and the platform 11 is also easily deformed along the thickness direction of the fin 12. Become.
  • the rib 22 extending along the thickness direction of the fin 12 is provided inside the cavity 20, the deformation of the fin 12 in the thickness direction of the fin 12 is suppressed. be able to. Therefore, the deformation of the platform 11 due to the deformation of the fin 12 described above can be suppressed. Therefore, it becomes easier to obtain the vortex generator 10 having the shape as designed.
  • the rib 22 may be integrally formed with the vortex generator 10 having the cavity 20 by injection molding or the like. Alternatively, the rib 22 may be installed inside the cavity 20 after forming the fin 12 of the vortex generator 10 having the cavity 20.
  • the cavity 20 may be provided with one or more ribs 22.
  • two ribs are provided in the cavity 20 at positions separated from each other in the cord direction of the fins 12.
  • the rib 22 extends along the height direction of the fin 12 over 70% or more of the extension range of the cavity 20 in the height direction of the fin 12.
  • the height HR of the rib 22 (see FIG. 7) is 70 of the extension range of the cavity 20 in the height direction of the fin 12 (height HV 1 of the cavity 20 at the position of the rib 22). It is set to% or more. That is, since the rib 22 extends along the height direction of the fin 12 over 70% or more of the extending range of the cavity 20 in the height direction of the fin 12, the fin 12 extends in the thickness direction of the fin 12. Deformation can be effectively suppressed. Therefore, the deformation of the platform 11 due to the deformation of the fins 12 can be effectively suppressed. Therefore, it becomes easier to obtain the vortex generator 10 having the shape as designed.
  • the height HR of the rib 22 is the length of the rib 22 in the height direction of the fin 12.
  • At least one of the ribs 22 has a leading edge 13 in the chord direction of the fin 12 at a position where the distance from the bottom surface 11b of the platform 11 in the height direction of the fin 12 is the maximum thickness of the platform 11. It is provided at a position where the distance from is LF / 2 (half of the cord length) or less.
  • the rib 22 is provided in the region on the front edge side where the blade thickness of the fin 12 is relatively thick, the deformation of the platform 11 due to the deformation of the fin 12 can be effectively suppressed. Therefore, it becomes easier to obtain the vortex generator 10 having the shape as designed.
  • the vortex generator 10 is provided in the fin 12, communicating with the cavity 20 and the surface of the fin (negative pressure surface 16 in FIGS. 9 and 10). ) Is provided with a hole 24.
  • the hole 24 is a hole that opens to the surface of the fin 12 on one end side and opens to the surface 21 that forms the cavity 20 on the other end side.
  • the fin 12 is provided with a hole 24 that communicates with the cavity 20 and opens on the surface of the fin 12, for example, by connecting an air suction device (not shown) to the hole 24, the hole is formed.
  • the air in the cavity 20 can be evacuated through 24.
  • a pressing force on the wind turbine blade 1 can be applied to the vortex generator 10, whereby the vortex generator can be easily attached to the wind turbine blade 1.
  • the holes 24 are provided on the negative pressure surface 16 of the fins 12, as shown in FIGS. 9 and 10.
  • the hole 24 may be provided on the pressure surface 15 of the fin 12. In this case, the processing work for forming the hole 24 is easy.
  • the hole 24 may be provided in the trailing edge 19 (see FIGS. 4 and 8) including the trailing edge 14 of the fin 12. In this case, it is possible to suppress the deterioration of the aerodynamic performance of the vortex generator 10 due to the provision of the holes in the fins 12.
  • the vortex generator 10 may be adhered to the wing body 2 with an adhesive material 30 (for example, double-sided tape or an adhesive).
  • an adhesive material 30 for example, double-sided tape or an adhesive
  • a step Z (see FIG. 9) is generated between the platform 11 and the surface of the blade body 2. Therefore, as shown in FIG. 10, the tape 32 may be adhered to the upper surface 11a of the platform 11 and the surface of the blade body 2 so as to cover the edge 11c of the platform 11 of the vortex generator 10. That is, the wind turbine blade 1 according to some embodiments is adhered to the upper surface 11a of the platform 11 and the surface of the blade body 2 (for example, the negative pressure surface 9) so as to cover the edge 11c of the platform 11 of the vortex generator 10.
  • a tape 32 having an adhesive surface 32a is provided.
  • the vortex generator 10 is adhered to the surface of the blade body 2 (for example, the negative pressure surface 9). At this time, for example, as shown in FIG. 9, the bottom surface 11b of the vortex generator 10 and the surface of the wing body 2 are bonded with an adhesive material 30 (double-sided tape, adhesive, etc.).
  • an adhesive material 30 double-sided tape, adhesive, etc.
  • tape 32 is attached to the upper surface 11a of the platform 11 and the surface of the wing body 2 so as to cover the edge 11c of the platform 11 of the vortex generator 10.
  • the air inside the cavity 20 is sucked through the hole 24 of the vortex generator 10.
  • This work is performed, for example, by connecting an air suction device to the hole 24.
  • a sufficient pressing force can be easily applied to the vortex generator 10 at the time of attachment to the blade body 2. Therefore, the vortex generator 10 can be appropriately attached to the blade body 2 by a simple construction work. For example, even with the wind turbine blade 1 attached to the existing wind power generation device 40, a pressing force can be easily applied to the vortex generator 10 adhered to the surface of the blade main body 2. Therefore, the vortex generator 10 can be easily attached to the existing wind turbine blade 1.
  • the vortex generator (10) for a wind turbine blade is Platform (11) and At least one fin (12) provided so as to project from the upper surface of the platform,
  • a resin vortex generator for wind turbine wings equipped with The vortex generator includes a cavity 20 that opens to the bottom surface (11b) of the platform and extends to the inside of the fins.
  • the vortex generator since the vortex generator is provided with a cavity extending to the inside of the fin, the wall thickness of the fin can be reduced with respect to the wall thickness of the platform. That is, according to the configuration of (1) above, it becomes easy to suppress sink marks due to shrinkage in the cooling process when molding the vortex generator from the resin material. Therefore, it becomes easy to obtain a vortex generator having the shape as designed.
  • the maximum value of the height from the bottom surface of the cavity is set to HF / 3 or more, the area occupied by the cavity in the fin can be relatively large. Therefore, it becomes easy to reduce the wall thickness of the fins with respect to the wall thickness of the platform. Therefore, it is possible to effectively suppress sink marks due to shrinkage in the cooling process when molding the vortex generator, and it becomes easier to obtain a vortex generator having the shape as designed.
  • the height of the cavity from the bottom surface at the maximum blade thickness position of the fin in the cord direction of the fin is set to be equal to or larger than the maximum thickness of the platform.
  • the area occupied by the part can be made relatively large. Therefore, it becomes easy to reduce the wall thickness of the fins with respect to the wall thickness of the platform. Therefore, it is possible to effectively suppress sink marks due to shrinkage in the cooling process when molding the vortex generator, and it becomes easier to obtain a vortex generator having the shape as designed.
  • the distance from the bottom surface in the height direction is in the range of the maximum thickness of the platform or more and HF / 3 or less.
  • the cavity is provided in a region including the maximum blade thickness position of the fin in the cord direction of the fin.
  • the length (LV) of the cavity in the cord direction is 30% or more of the cord length (LF) of the fin.
  • the blade thickness of the fin 12 is relatively large in the range where the distance from the bottom surface of the platform in the fin height direction is HF / 3 or less.
  • the cavity portion is finned in the cord direction of the fin.
  • the length of the cavity in the cord direction is 30% or more of the cord length of the fin while being provided in the region including the maximum blade thickness position of the fin. Therefore, the wall thickness of the fins can be effectively reduced within the above range in the height direction. Therefore, it is possible to effectively suppress sink marks due to shrinkage in the cooling process when molding the vortex generator, and it becomes easier to obtain a vortex generator having the shape as designed.
  • the distance from the bottom surface in the height direction is in the range of the maximum thickness of the platform or more and HF / 5 or less.
  • the width (WV) of the fin at the maximum blade thickness position in the cord direction of the fin is 50% or more of the blade thickness (WF) of the fin at the maximum blade thickness position.
  • the cavity portion is the maximum wing of the fin in the cord direction of the fin.
  • the width at the thick position is 50% or more of the blade thickness of the fin at the maximum blade thickness position. Therefore, within the above range in the height direction, it is easy to reduce the wall thickness of the fin at the position of the maximum blade thickness of the fin. Therefore, it is possible to effectively suppress sink marks due to shrinkage in the cooling process when molding the vortex generator, and it becomes easier to obtain a vortex generator having the shape as designed.
  • the wall thickness (TV) of the fin in the cord direction of the fin at the position of the leading edge of the fin is the maximum of the platform in 50% or more of the extension range of the cavity in the height direction of the fin. It is 0.5 times or more and 2.0 times or less the average of the thickness (TB 2 ) and the minimum thickness (TB 1 ).
  • the strength of the vortex generator is reduced by providing the cavity in the fins. It can be suppressed.
  • the wall thickness of the fins described above is 2.0 times or less the average of the maximum thickness and the minimum thickness of the platform, the wall thickness at the leading edge portion of the fins is relatively thin. As a result, sink marks due to shrinkage during the cooling process when molding the vortex generator can be effectively suppressed. Therefore, according to the configuration (6) above, it is possible to obtain a vortex generator having a shape as designed while suppressing a decrease in the strength of the vortex generator.
  • the fins include a leading edge portion (13') having a curved contour in a cross section orthogonal to the height direction.
  • the leading edge portion of the fin since the leading edge portion of the fin has a curved contour in a cross section orthogonal to the height direction, it flows into the vortex generator when the vortex generator is installed on the wind turbine blade. The resistance to the air flow can be reduced, and the performance of the vortex generator can be easily demonstrated.
  • the fin has a shape symmetrical with respect to the code of the fin.
  • the vortex generator can be easily formed as compared with the case where the fin has an asymmetrical shape with respect to the cord. be able to.
  • a rib (22) extending inside the cavity along the thickness direction of the fin is provided.
  • the rib extends along the height direction of the fin over 70% or more of the extension range of the cavity in the height direction of the fin.
  • the ribs extend along the height direction of the fin over 70% or more of the extension range of the cavity in the height direction of the fin, so that the thickness of the fin Deformation of fins in the vertical direction can be effectively suppressed. Therefore, the deformation of the platform due to the above-mentioned deformation of the fins can be effectively suppressed. Therefore, it becomes easier to obtain a vortex generator having the shape as designed.
  • the fin is provided with a hole (24) that communicates with the cavity and opens on the surface of the fin.
  • the fin since the fin is provided with a hole that communicates with the cavity and opens on the surface of the fin, air in the cavity can be evacuated through the hole. Therefore, by removing the air in the cavity through this hole, the vortex generator can be applied with a pressing force against the wind turbine blade, whereby the vortex generator can be easily attached to the wind turbine blade.
  • the wind turbine blade (1) according to at least one embodiment of the present invention is Wing body (2) and The vortex generator (10) according to any one of (1) to (11) above, which is attached to the surface of the wing body. To prepare for.
  • the vortex generator since the vortex generator is provided with a cavity extending to the inside of the fin, the wall thickness of the fin can be reduced with respect to the wall thickness of the platform. That is, according to the configuration of (12) above, it becomes easy to suppress sink marks due to shrinkage in the cooling process when molding the vortex generator from the resin material. Therefore, it becomes easy to obtain a vortex generator having the shape as designed.
  • the wind power generator (40) is The wind turbine rotor (42) including the wind turbine blade according to (12) or (13) above, and A generator configured to be driven by the wind turbine rotor, To prepare for.
  • the vortex generator since the vortex generator is provided with a cavity extending to the inside of the fin, the wall thickness of the fin can be reduced with respect to the wall thickness of the platform. That is, according to the configuration of (14) above, it becomes easy to suppress sink marks due to shrinkage in the cooling process when molding the vortex generator from the resin material. Therefore, it becomes easy to obtain a vortex generator having the shape as designed.
  • the method for manufacturing a wind turbine blade according to at least one embodiment of the present invention is as follows.
  • the vortex generator is adhered to the surface of the wing body, and the air inside the cavity is sucked through the holes of the fins. Therefore, the vortex generator is attached to the wing body at the time of attachment. Sufficient pressing force can be easily applied to the surface. Therefore, the vortex generator can be appropriately attached to the wing body by a simple construction work.
  • the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
  • an expression representing a relative or absolute arrangement such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”. Strictly represents not only such an arrangement, but also a tolerance or a state of relative displacement at an angle or distance to the extent that the same function can be obtained.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • the expression representing a shape such as a square shape or a cylindrical shape not only represents a shape such as a square shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained.
  • the shape including the uneven portion, the chamfered portion, etc. shall also be represented.
  • the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

風車翼用のボルテックスジェネレータは、プラットフォームと、前記プラットフォームの上面から突出して設けられた少なくとも一つのフィンと、を備える樹脂製の風車翼用ボルテックスジェネレータであって、前記ボルテックスジェネレータは、前記プラットフォームの底面に開口するとともに、前記フィンの内部まで及ぶ空洞部を含む。

Description

風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法
 本開示は、風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法に関する。
 本願は、2020年11月27日に日本国特許庁に出願された特願2020-197391号に基づき優先権を主張し、その内容をここに援用する。
 従来から、風車の運転効率を向上させる観点から、風車翼の空力的性能を改善する試みがなされている。その試みの一つは、風車翼の表面にボルテックスジェネレータを設け、風車翼の表面に沿った流れの剥離を抑制することである。
 特許文献1~8には、風車翼の表面に取り付けられるプラットフォームと該プラットフォーム上に立設されたフィンとを有するボルテックスジェネレータが開示されている。
欧州特許出願公開第2484898号明細書 国際公開第2015/030573号 独国特許出願公開第10/2013/201871号明細書 国際公開第2014/198353号 欧州特許出願公開2824320号明細書 欧州特許出願公開2739529号明細書 国際公開第2006/122547号 欧州特許出願公開2736805号明細書
 ところで、ボルテックスジェネレータは、風車翼の大型化に伴い大型化し、フィンの肉厚が厚くなる傾向にある。そのため、ボルテックスジェネレータを成形する際の冷却過程で収縮によるひけを起こし、歪みや凹みを生じやすくなる。この場合、設計どおりの形状のボルテックスジェネレータが得られず、このボルテックスジェネレータを風車翼に設置した際に、期待する機能や性能が得られない場合がある。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、設計どおりの形状のボルテックスジェネレータが得られやすい風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法を提供することを目的とする。
 本発明の少なくとも一実施形態に係る風車翼用のボルテックスジェネレータは、
 プラットフォームと、
 前記プラットフォームの上面から突出して設けられた少なくとも一つのフィンと、
を備える樹脂製の風車翼用ボルテックスジェネレータであって、
 前記ボルテックスジェネレータは、前記プラットフォームの底面に開口するとともに、前記フィンの内部まで及ぶ空洞部から構成される。
 本発明の少なくとも一実施形態に係る風車翼は、
 翼本体と、
 前記翼本体の表面に取り付けられた上述のボルテックスジェネレータと、
を備える。
 本発明の少なくとも一実施形態に係る風力発電装置は、
 上述の風車翼を含む風車ロータと、
 前記風車ロータによって駆動されるように構成された発電機と、
を備える。
 本発明の少なくとも一実施形態に係る風車翼の製造方法は、
 翼本体と、前記フィンに設けられ、前記空洞部に連通するとともに前記フィンの表面に開口する孔を備えた上述のボルテックスジェネレータと、を含む風車翼の製造方法であって、
 前記ボルテックスジェネレータを前記翼本体の表面に接着させるステップと、
 前記孔を介して、前記空洞部の内部の空気を吸引するステップと、
を備える。
 本発明の少なくとも一実施形態によれば、設計どおりの形状のボルテックスジェネレータが得られやすい風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法が提供される。
一実施形態に係る風力発電装置の概略構成図である。 一実施形態に係る風車翼の斜視図である。 一実施形態に係るボルテックスジェネレータの斜視図である。 図3に示すボルテックスジェネレータの平面図である。 一実施形態に係るボルテックスジェネレータの平面図である。 図4のA-A断面を示す図である。 図4のB-B断面を示す図である。 図6のC-C断面を示す図である。 図4のD-D断面の一例を示す図である。 図4のD-D断面の一例を示す図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
(風力発電装置の構成)
 まず、図1及び図2を参照して、幾つかの実施形態に係るボルテックスジェネレータが適用される風車翼及び風力発電装置の全体構成について説明する。図1は、一実施形態に係る風力発電装置の概略構成図であり、図2は、一実施形態に係る風車翼の斜視図である。
 図1に示すように、風力発電装置40は、少なくとも一本(例えば3本)の風車翼1及びハブ43で構成されるロータ42を備える。風車翼1は放射状にハブ43に取り付けられており、風車翼1で風を受けることによってロータ42が回転し、ロータ42に連結された発電機(不図示)で発電を行うように構成されている。
 なお、図1に示す実施形態において、ロータ42は、タワー46の上方に設けられたナセル44によって支持されている。また、タワー46は、水上又は陸上に設けられた土台構造48(基礎構造又は浮体構造等)に立設されている。
 以下に説明するように、風力発電装置40の風車翼1には、一実施形態に係るボルテックスジェネレータが取り付けられている。
(風車翼の構成)
 図2に示すように、風車翼1は、翼本体2と、翼本体2の表面(翼面)に取り付けられたボルテックスジェネレータ10と、を備える。
 翼本体2は、風力発電装置40のハブ43に取り付けられる翼根3と、ハブ43から最も遠くに位置する翼先端4と、翼根3と翼先端4の間に延在する翼型部5と、を含む。また、風車翼1は、翼根3から翼先端4にかけて、前縁6と後縁7とを有する。また、風車翼1の外形は、圧力面(腹面)8と、圧力面8に対向する負圧面(背面)9とによって形成される。
 図2に示す風車翼1においては、複数のボルテックスジェネレータ10が翼本体2の負圧面9に取り付けられている。また、複数のボルテックスジェネレータ10は、翼本体2の負圧面9において翼長方向に複数配列されている。
 なお、本明細書において、「翼長方向」とは、翼根3と翼先端4とを結ぶ方向である。
(ボルテックスジェネレータの構成)
 次に、図3~図10を参照して、幾つかの実施形態に係るボルテックスジェネレータ10について具体的に説明する。
 図3は、一実施形態に係るボルテックスジェネレータ10の斜視図であり、図4~図5は、それぞれ、一実施形態に係るボルテックスジェネレータの平面図である。なお、図4は、図3に示すボルテックスジェネレータ10の平面図である。図6~図9は、それぞれ、一実施形態に係るボルテックスジェネレータ10の断面図である。図6は、図4のA-A断面を示す図であり、図7は、図4のB-B断面を示す図であり、図8は、図6のC-C断面を示す図であり、図9及び図10は、図4のD-D断面を示す図である。また、図9及び図10は、一実施形態に係るボルテックスジェネレータを該ボルテックスジェネレータが取り付けられる風車翼とともに示す図である。
 図3~図5に示すように、ボルテックスジェネレータ10は、風車翼1の表面(より具体的には翼本体2の表面)に取り付けられるプラットフォーム11と、プラットフォーム11上に設けられる少なくとも1つのフィン12と、を備える。
 プラットフォーム11は、フィン12が設けられる上面11aと、上面11aとは反対側の底面11bと、を有する。ボルテックスジェネレータ10は、底面11bを介して翼本体2の表面(例えば負圧面9)に取り付けられる。プラットフォーム11の形状は特に限定されないが、幾つかの実施形態では、図3~図5に示すように平面視において円型形状であっても良い。幾つかの実施形態では、プラットフォーム11は、平面視において多角形や楕円等の形状を有していてもよい。また、プラットフォーム11の上面11aは、曲面形状であってもよく、あるいは平面形状であってもよい。図6及び図7に示すプラットフォーム11の上面11aは、底面11bから上面11aに向かう方向に突出する凸曲面形状を有している。プラットフォーム11の底面11bは、基本的には平面形状であるが、完全な平面形状でなくてもよく、例えば曲率の比較的大きい凹曲面形状であってもよい。
 少なくとも1つのフィン12は、プラットフォーム11の上面11aから突出して設けられる。図示する実施形態では、プラットフォーム11上に2つのフィン12A,12Bが設けられている。以下において、フィン12A,12Bをフィン12と総称する。
 図3~図5に示すように、フィン12は、風の流入方向の上流側に位置する前縁13と、風の流入方向の下流側に位置する後縁14と、風の流入方向における上流側を向くフィン12の圧力面(腹面)15と、風の流入方向における下流側を向くフィン12の負圧面(背面)16と、を有する。フィン12において、前縁13と後縁14とを結ぶ直線(図4及び図5のLCA及びLCB)の方向が、フィン12のコード方向である。また、フィン12は、フィン12の高さ方向において、プラットフォーム11と接続される基部17と頂部18との間を延びている。
 なお、本明細書においてフィン12の高さ方向とは、プラットフォーム11の底面11bに直交する方向である。あるいは、プラットフォームの底面11bが平面形状でない場合、フィン12の高さ方向は、プラットフォーム11の底面11bの縁を含む平面に直交する方向である。以下、フィン12の高さ方向を、単に高さ方向という場合がある。また、以下の説明において、プラットフォーム11の底面11bからの高さとは、プラットフォームの底面11bが平面形状でない場合、プラットフォーム11の底面11bの縁を含む平面からの高さの意味である。
 ここで、ボルテックスジェネレータ10の作用について簡単に説明する。
 風車翼1の負圧面9における流れの剥離は、前縁6近傍の層流域からその下流側の乱流域に向かって境界層が徐々に厚くなり、後縁7に到達する前に流れが剥がれてしまうことで生じる。
 風車翼1に取り付けられたボルテックスジェネレータ10は、フィン12が生み出す揚力によって、フィン12の負圧面16側に縦渦を形成する。また、フィン12に流入した流れによって、フィン12の前縁13の最上流側位置13aから頂部13bに向かうエッジに沿った縦渦が形成される。このようにフィン12により生成される縦渦によって、ボルテックスジェネレータ10の後流側において、風車翼1面上の境界層内外でのフィン12の高さ方向における運動量交換が促進される。これにより、風車翼1の表面における境界相が薄くなり、風車翼1表面からの流れの剥離が抑制されるようになっている。
 いくつかの実施形態では、例えば図4及び図5に示すように、フィン12の高さ方向に直交する断面内にて曲線形状の輪郭を有する前縁部13’を含む。
 上述の実施形態によれば、フィン12の前縁部13’は、高さ方向に直交する断面内にて曲線形状の輪郭を有するので、ボルテックスジェネレータ10を風車翼1に設置したとき、ボルテックスジェネレータ10に流入する空気の流れに対する抵抗を低減することができ、ボルテックスジェネレータ10の性能を発揮しやすい。
 幾つかの実施形態では、例えば図4及び図5に示すように、フィン12の高さ方向に直交するフィン12の断面形状は、翼型プロファイルを有していてもよい。
 上述の実施形態では、フィン12の断面形状が翼型形状を有するので、風車翼1表面からの流れの剥離を効果的に抑制することができる。
 いくつかの実施形態では、例えば図4に示すように、フィン12は、フィン12のコードに対して対称な形状を有する。
 上述の実施形態によれば、フィン12は、フィン12のコードに対して対称な形状を有するので、フィン12がコードに対して非対称の形状を有する場合と比較して、例えば射出成型等による成形が容易になる。
 なお、図4に示す例示的な実施形態では、フィン12は、フィンの高さ方向に直交する断面内にて曲線形状の輪郭を有する前縁部を含むとともに、フィン12のコードに関して対称な翼型形状を有する(すなわち、フィン12の高さ方向に直交する断面内にて、圧力面15と負圧面16とはフィン12のコードに関して対称な形状を有する)。また、図5に示す例示的な実施形態では、フィン12は、フィンの高さ方向に直交する断面内にて曲線形状の輪郭を有する前縁部を含むとともに、フィン12のコードに関して非対称な翼型形状を有する(すなわち、フィン12の高さ方向に直交する断面内にて、圧力面15と負圧面16とはフィン12のコードに関して非対称な形状を有する)。
 幾つかの実施形態において、フィン12は、風流入方向に対して所定の角度をなすように傾斜して設けられている。幾つかの実施形態では、図3~図5に示すように、風流入方向の上流側から下流側に向けて(すなわち、風車翼1(図2参照)の前縁6側から後縁7側に向けて)、一対のフィン12A,12Bの間の隙間が広がるように各々のフィン12A,12Bが設けられていてもよい。幾つかの実施形態では、風流入方向の下流側から上流側に向けて(すなわち、風車翼1(図2参照)の後縁7側から前縁6側に向けて)、一対のフィン12A,12Bの間の隙間が広がるように各々のフィン12A,12Bが設けられていてもよい。
 幾つかの実施形態では、フィン12(フィン12A及び/又はフィン12B)の取付角度(コード方向)が、風の流入方向に対して12度以上18度以下である。このようなフィン12を有するボルテックスジェネレータ10を風車翼1に取り付けることで、風車翼1表面からの流れの剥離を効果的に抑制することができる。
 幾つかの実施形態では、ボルテックスジェネレータ10(プラットフォーム11及びフィン12)は、樹脂製である。ボルテックスジェネレータ10の材料となる樹脂は、例えばASA(acrylate styrene acrylonitrile)又はAES(acrylonitrile ethylene styrene)などの熱可塑性プラスチックであってもよい。
 図3~図5に示すように、ボルテックスジェネレータ10は、空洞部20を含む。空洞部20は、プラットフォーム11の底面11bに開口するとともに、フィン12の内部まで及ぶ空洞である。すなわち、空洞部20は、フィン12の高さ方向において、少なくとも部分的に、プラットフォーム11の上面11aよりも高い位置範囲に及ぶ。
 上述の実施形態によれば、ボルテックスジェネレータ10にフィン12の内部まで及ぶ空洞部20を設けたので、空洞部20を設けない場合に比べ、プラットフォーム11の肉厚に対するフィン12の肉厚を薄くできる。すなわち、上述の実施形態によれば、樹脂材料からボルテックスジェネレータ10を成形する際の冷却過程での収縮によるヒケを抑制しやすくなる。このため、設計どおりの形状のボルテックスジェネレータ10が得られやすくなる。よって、例えば、このボルテックスジェネレータ10を風車翼1に設置するとき、翼本体2表面に安定して接着しやすくなり、あるいは、ボルテックスジェネレータ10による風車翼1の表面からの流れの剥離抑制効果が期待のとおりに得られやすくなる。
 ボルテックスジェネレータ10の製造方法は、特に限定されないが、例えば射出成形によってボルテックスジェネレータ10を製造してもよい。空洞部20の形成方法は特には限定されないが、射出成型時等に中子を使って空洞部20を形成してもよい。
 幾つかの実施形態では、空洞部20はフィン12の高さ方向における、プラットフォーム11の底面11bとフィン12の頂部18との距離をHF(図6又は図7参照)としたとき、プラットフォーム11の底面11bからの空洞部20の高さHVの最大値HVmax(図6又は図7参照)は、HF/3以上である。空洞部20の高さHVとは、プラットフォーム11の底面11bから空洞部20を形成する面21までの高さ方向の距離である。
 なお、後述するリブ22(図6~図8参照)の位置における空洞部20の高さHVは、ボルテックスジェネレータ10からリブ22を仮想的に取り外し空洞部20が連続した滑らかな面21によって形成されているものと仮定したときの空洞部20の高さ(プラットフォーム11の底面11bから空洞部20を形成する面21までの高さ方向の距離)であると定義する。
 上述の実施形態によれば、空洞部20の底面11bからの高さの最大値HVmaxをHF/3以上としたので、フィン12における空洞部20の占める領域を比較的大きくすることができる。よって、プラットフォーム11の肉厚に対するフィン12の肉厚を薄くしやすくなる。このため、ボルテックスジェネレータ10を成形する際の冷却過程での収縮によるヒケを効果的に抑制することができ、設計どおりの形状のボルテックスジェネレータ10がより得られやすくなる。
 空洞部20の高さの最大値HVmaxは、HF/2以上であってもよい。この場合、プラットフォーム11の肉厚に対するフィン12の肉厚をより薄くしやすくなる。そのため、ボルテックスジェネレータ10を成形する際の冷却過程での収縮によるヒケを効果的に抑制することができ、設計どおりの形状のボルテックスジェネレータ10がより得られやすくなる。
 幾つかの実施形態では、フィン12の高さ方向においてプラットフォーム11の底面11bからの距離がプラットフォーム11の最大厚さの位置での、フィン12のコード方向におけるフィン12の最大翼厚位置P(図6参照)において、空洞部20の高さHV0(図6参照)は、プラットフォーム11の最大厚さTB(図6参照)以上である。ただし、プラットフォーム11の厚さは、プラットフォーム11の底面11bに直交する方向である、フィンの高さ方向に沿って測定される。
 上述の実施形態では、フィン12のコード方向におけるフィン12の最大翼厚位置Pでの空洞部20の底面11bからの高さを、プラットフォーム11の最大厚さTB以上としたので、フィン12における空洞部20の占める領域を比較的大きくすることができる。よって、プラットフォーム11の肉厚に対するフィン12の肉厚を薄くしやすくなる。このため、ボルテックスジェネレータ10を成形する際の冷却過程での収縮によるヒケを効果的に抑制することができ、設計どおりの形状のボルテックスジェネレータ10がより得られやすくなる。また、空洞部20の底面11bからの高さHVはプラットフォーム11の最小厚さTB以上であっても良い。
 幾つかの実施形態では、プラットフォーム11の底面11bからの高さ方向における距離がプラットフォーム11の最大厚さTB以上かつHF/3以下の範囲内において、空洞部20は、フィン12のコード方向においてフィン12の最大翼厚位置P(図8参照)を含む領域に設けられ、コード方向における空洞部20の長さLV(図8参照)は、フィン12のコード長LF(図8参照)の30%以上であってもよい。
 あるいは、幾つかの実施形態では、底面11bからの高さ方向における空洞部20の高さHVがプラットフォーム11の最大厚さ以上かつHF/5以下の範囲内で、空洞部20のコード方向長さがフィンコード長の50%以上であってもよい。
 プラットフォーム11の底面11bからの高さ方向における距離がHF/3以下又はHF/5以下の範囲では、フィン12の翼厚が比較的大きい。この点、上述の実施形態では、フィン12の高さ方向における上述の範囲内(すなわち、フィン12の翼厚が比較的大きい範囲内)において、コード方向にて最大翼厚位置Pを含む領域内に、フィンコード長の30%以上又は50%以上の長さの空洞部20を設けたので、高さ方向における該範囲内において、フィン12の肉厚を効果的に薄くすることができる。このため、ボルテックスジェネレータ10を成形する際の冷却過程での収縮によるヒケを効果的に抑制することができ、設計どおりの形状のボルテックスジェネレータ10がより得られやすくなる。
 いくつかの実施形態では、プラットフォーム11の底面11bからの高さ方向における距離がプラットフォーム11の最大厚さTB以上かつHF/5以下の範囲内において、空洞部20は、フィン12のコード方向でのフィン12の最大翼厚位置Pにおける幅WV(図8参照)が、最大翼厚位置Pにおけるフィン12の翼厚WF(図8参照)の50%以上である。
 なお、フィン12の翼厚とは、フィン12のコード方向に直交するフィン12の厚さ方向におけるフィン12のサイズであり、空洞部20の幅は、フィン12の厚さ方向における空洞部20のサイズである。
 上述の実施形態によれば、高さ方向における底面11bからの距離がプラットフォーム11の最大厚さTB以上かつHF/5以下の範囲内において、空洞部20は、フィン12のコード方向でのフィン12の最大翼厚位置Pにおける幅WVが、最大翼厚位置Pにおけるフィン12の翼厚WFの50%以上である。よって、高さ方向における上述の範囲内において、フィン12の最大翼厚位置Pにおけるフィン12の肉厚を薄くしやすい。このため、ボルテックスジェネレータ10を成形する際の冷却過程での収縮によるヒケを効果的に抑制することができ、設計どおりの形状のボルテックスジェネレータ10がより得られやすくなる。
 幾つかの実施形態では、フィン12の高さ方向での空洞部20の延在範囲の50%以上において、フィン12の前縁13の位置でのフィン12のコード方向におけるフィン12の肉厚TV(図8参照)が、プラットフォーム11の最大厚さTBと最小厚さTBとの平均((TB+TB)/2)の0.5倍以上2.0倍以下である。
 上述の実施形態では、上述の高さ方向の範囲内において、フィン12の前縁13の位置での肉厚TVが、プラットフォーム11の最大厚さTBと最小厚さTBとの平均の0.5倍以上であるので、フィン12に空洞部20を設けることによるボルテックスジェネレータ10の強度低下を抑制することができる。また、上述の高さ方向の範囲内において、フィン12の前縁13の位置での肉厚TVが、プラットフォーム11の最大厚さTBと最小厚さTBとの平均の2.0倍以下であるので、フィン12の前縁13の位置における肉厚TVを比較的薄くして、ボルテックスジェネレータ10を成形する際の冷却過程での収縮によるヒケを効果的に抑制することができる。よって、ボルテックスジェネレータの強度の低下を抑制しながら、設計どおりの形状のボルテックスジェネレータ10を得ることができる。
 一実施形態では、既に述べたように、フィン12は、高さ方向に直交する断面内にて曲線形状の輪郭を有する前縁部13’を含んでもよい。図4に示すように、フィン12のコードに対して対称形状を有するフィン12の前縁部13’は曲線状の輪郭を有している。また、図5に示すように、フィン12のコードに対して非対称形状を有するフィン12の前縁部13’も曲線状の輪郭を有している。
 上述の実施形態によれば、ボルテックスジェネレータ10を風車翼1に設置したとき、ボルテックスジェネレータ10に流入する空気の流れに対する抵抗を低減することができ、ボルテックスジェネレータ10の性能を発揮しやすい。フィン12は翼型形状であってもよい。
 一実施形態では、図4に示すように、フィン12は、フィン12のコードに対して対称な形状を有していてもよい。
 上述の実施形態によれば、フィン12は、フィン12のコードに対して対称な形状を有するので、フィン12がコードに対して非対称の形状を有する場合と比較して、成形が容易になる。例えば、ボルテックスジェネレータ10を射出成形で成形する場合、フィン12が対称形状を有するため、ボルテックスジェネレータ10を型から抜きやすくなる。
 幾つかの実施形態では、図5に示すように、フィン12は、フィン12のコードに対して非対称な形状を有していてもよい。
 図6~図8に示すように、一実施形態では、空洞部20の内部をフィン12の厚さ方向に沿って延在するリブ22を備える。
 フィン12内部に空洞部20を設けると、フィン12の厚さ方向に向かってフィン12が変形しやすくなり、フィン12が変形すると共に、プラットフォーム11もフィン12の厚さ方向に沿って変形しやすくなる。この点、上述の実施形態によれば、空洞部20の内部にフィン12の厚さ方面に沿って延在するリブ22を設けたので、フィン12の厚さ方向におけるフィン12の変形を抑制することができる。そのため、上述のフィン12の変形に伴うプラットフォーム11の変形も抑制することができる。よって、設計どおりの形状のボルテックスジェネレータ10がより得られやすくなる。
 リブ22は、射出成形等により、空洞部20を有するボルテックスジェネレータ10とともに一体的に形成されてもよい。あるいは、リブ22は、空洞部20を有するボルテックスジェネレータ10のフィン12を成形した後に、空洞部20の内部に設置されてもよい。
 空洞部20には、1又は2以上のリブ22が設けられていてもよい。なお、図6~8に示す例示的な実施形態では、空洞部20において、フィン12のコード方向にて互いに離間した位置に2つのリブがそれぞれ設けられている。
 幾つかの実施形態では、リブ22は、フィン12の高さ方向における空洞部20の延在範囲の70%以上に亘ってフィン12の高さ方向に沿って延在する。
 上述の実施形態では、リブ22の高さHR(図7参照)が、フィン12の高さ方向における空洞部20の延在範囲(リブ22の位置における空洞部20の高さHV)の70%以上に設定される。すなわち、リブ22がフィン12の高さ方向における空洞部20の延在範囲の70%以上に亘ってフィン12の高さ方向に沿って延在するので、フィン12の厚さ方向におけるフィン12の変形を効果的に抑制することができる。そのため、フィン12の変形に伴うプラットフォーム11の変形も効果的に抑制することができる。よって、設計どおりの形状のボルテックスジェネレータ10がより得られやすくなる。なお、リブ22の高さHRとは、フィン12の高さ方向における、リブ22の長さである。
 幾つかの実施形態では、リブ22の少なくとも1つは、フィン12の高さ方向におけるプラットフォーム11の底面11bからの距離がプラットフォーム11の最大厚さの位置において、フィン12のコード方向における前縁13からの距離がLF/2(コード長の半分)以下の位置に設けられる。
 上述の実施形態によれば、フィン12の翼厚が比較的厚い前縁側の領域にリブ22を設けたので、フィン12の変形に伴うプラットフォーム11の変形を効果的に抑制することができる。よって、設計どおりの形状のボルテックスジェネレータ10がより得られやすくなる。
 幾つかの実施形態では、例えば図9及び図10に示すように、ボルテックスジェネレータ10は、フィン12に設けられ、空洞部20に連通するとともに前記フィンの表面(図9及び図10では負圧面16)に開口する孔24を備える。孔24は、一端側にてフィン12表面に開口するとともに、他端側にて空洞部20を形成する面21に開口する孔である。
 上述の実施形態によれば、空洞部20に連通するとともにフィン12の表面に開口する孔24をフィン12に設けたので、例えば孔24に空気吸引器(不図示)を接続することで、孔24を介して空洞部20内の空気を抜くことができる。この孔24を介して空洞部20内の空気を抜くことでボルテックスジェネレータ10に風車翼1への押付力を作用させることができ、これにより風車翼1にボルテックスジェネレータを容易に取り付けることができる。
 なお、幾つかの実施形態では、図9及び図10に示すように、孔24はフィン12の負圧面16に設けられる。幾つかの実施形態では孔24はフィン12の圧力面15に設けられてもよい。この場合、孔24を形成するための加工の作業がしやすい。幾つかの実施形態では、孔24は、フィン12の後縁14を含む後端面19(図4及び図8参照)に設けられてもよい。この場合、フィン12に孔を設けることによるボルテックスジェネレータ10の空力的性能の低下を抑制することができる。
 図9及び図10に示すように、ボルテックスジェネレータ10は接着材30(例えば両面テープ又は接着剤等)で翼本体2に接着されても良い。この場合、プラットフォーム11と翼本体2の表面の間に段差Z(図9参照)が発生する。そこで、図10に示すように、ボルテックスジェネレータ10のプラットフォーム11の縁11cを覆うように、プラットフォーム11の上面11a、及び、翼本体2の表面にテープ32を接着するようにしてもよい。すなわち、幾つかの実施形態に係る風車翼1は、ボルテックスジェネレータ10のプラットフォーム11の縁11cを覆うように、プラットフォーム11の上面11a、及び、翼本体2の表面(例えば負圧面9)に接着される接着面32aを有するテープ32を備える。
 上述のテープ32を設けることで、プラットフォーム11と翼本体2の表面の間の段差を低減することができる。その結果、風車翼1からのボルテックスジェネレータ10の剥離を防止しやすくなる。あるいは、上述の段差が低減されるため、段差による空気流れの剥離を抑制することができる。
(風車翼の製造方法)
 次に、図9及び図10を参照して、一実施形態に係る風車翼1の製造方法(あるいは風車翼1へのボルテックスジェネレータ10の取付方法)を説明する。
 一実施形態では、初めに、ボルテックスジェネレータ10を翼本体2の表面(例えば負圧面9)に接着させる。このとき、例えば図9に示すように、ボルテックスジェネレータ10の底面11bと翼本体2の表面間を接着材30(両面テープ又は接着剤等)で接着する。
 次に、図10に示すように、ボルテックスジェネレータ10のプラットフォーム11の縁11cを覆うように、プラットフォーム11の上面11a及び翼本体2の表面にテープ32を貼り付ける。このようにテープ32を設けることで、プラットフォーム11と翼本体2の表面の段差Z(図9参照)を低減することができる。
 更に、ボルテックスジェネレータ10の孔24を介して、空洞部20の内部の空気を吸引する。この作業は、例えば、孔24に空気吸引器を接続して実行する。フィン12の孔24を介して、空洞部20の内部の空気を吸引することにより、翼本体2への取付時にボルテックスジェネレータ10に十分な押し付け力を容易に付与することができる。よって、容易な施工作業でボルテックスジェネレータ10を翼本体2に適切に取り付けることができる。例えば、既設の風力発電装置40に取り付けられた風車翼1であっても、翼本体2の表面に接着させたボルテックスジェネレータ10に対して押し付け力を容易に付与することができる。よって、ボルテックスジェネレータ10の既設の風車翼1への取付が容易になる。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本発明の少なくとも一実施形態に係る風車翼用のボルテックスジェネレータ(10)は、
 プラットフォーム(11)と、
 前記プラットフォームの上面から突出して設けられた少なくとも一つのフィン(12)と、
を備える樹脂製の風車翼用ボルテックスジェネレータであって、
 前記ボルテックスジェネレータは、前記プラットフォームの底面(11b)に開口するとともに、前記フィンの内部まで及ぶ空洞部20を含む。
 上記(1)の構成によれば、ボルテックスジェネレータにフィンの内部まで及ぶ空洞部を設けたので、プラットフォームの肉厚に対するフィンの肉厚を薄くできる。すなわち、上記(1)の構成によれば、樹脂材料からボルテックスジェネレータを成形する際の冷却過程での収縮によるヒケを抑制しやすくなる。このため、設計どおりの形状のボルテックスジェネレータが得られやすくなる。
(2)いくつかの実施形態では、上記(1)の構成において、
 前記フィンの高さ方向における、前記プラットフォームの底面と前記フィンの頂部(18)との距離をHFとしたとき、前記空洞部の前記底面からの高さの最大値は、HF/3以上である。
 上記(2)の構成によれば、空洞部の底面からの高さの最大値を、HF/3以上としたため、フィンにおける空洞部の占める領域を比較的大きくすることができる。よって、プラットフォームの肉厚に対するフィンの肉厚を薄くしやすくなる。このため、ボルテックスジェネレータを成形する際の冷却過程での収縮によるヒケを効果的に抑制することができ、設計どおりの形状のボルテックスジェネレータがより得られやすくなる。
(3)いくつかの実施形態では、上記(1)または(2)の構成において、
 前記フィンの高さ方向における前記プラットフォームの最大厚さの位置を含み、前記プラットフォームの底面と平行な平面上での、前記フィンのコード方向における前記フィンの最大翼厚位置(P)において、前記空洞部の前記底面からの高さ(HV)は、前記プラットフォームの最大厚さ(TB)以上である。
 上記(3)の構成によれば、フィンのコード方向における前記フィンの最大翼厚位置での前記空洞部の前記底面からの高さを、前記プラットフォームの最大厚さ以上としたので、フィンにおける空洞部の占める領域を比較的大きくすることができる。よって、プラットフォームの肉厚に対するフィンの肉厚を薄くしやすくなる。このため、ボルテックスジェネレータを成形する際の冷却過程での収縮によるヒケを効果的に抑制することができ、設計どおりの形状のボルテックスジェネレータがより得られやすくなる。
(4)いくつかの実施形態では、上記(1)乃至(3)の構成において、
 前記フィンの高さ方向における前記プラットフォームの底面と前記フィンの頂部との距離をHFとしたとき、前記底面からの前記高さ方向における距離が前記プラットフォームの最大厚さ以上かつHF/3以下の範囲内において、
  前記空洞部は、前記フィンのコード方向において前記フィンの最大翼厚位置を含む領域に設けられ、
  前記コード方向における前記空洞部の長さ(LV)は、前記フィンのコード長(LF)の30%以上である。
 プラットフォームの底面からのフィン高さ方向における距離がHF/3以下の範囲では、フィン12の翼厚が比較的大きい。この点、上記(4)の構成によれば、プラットフォームの底面からの高さ方向における距離がプラットフォームの最大厚さ以上かつHF/3以下の範囲内において、空洞部は、フィンのコード方向においてフィンの最大翼厚位置を含む領域に設けられるとともに、コード方向における空洞部の長さが、フィンのコード長の30%以上である。よって、高さ方向における上述の範囲内において、フィンの肉厚を効果的に薄くすることができる。このため、ボルテックスジェネレータを成形する際の冷却過程での収縮によるヒケを効果的に抑制することができ、設計どおりの形状のボルテックスジェネレータがより得られやすくなる。
(5)いくつかの実施形態では、上記(1)乃至(4)の構成において、
 前記フィンの高さ方向における前記プラットフォームの底面と前記フィンの頂部との距離をHFとしたとき、前記高さ方向における前記底面からの距離が前記プラットフォームの最大厚さ以上かつHF/5以下の範囲内において、前記空洞部は、前記フィンのコード方向での前記フィンの最大翼厚位置における幅(WV)が、前記最大翼厚位置における前記フィンの翼厚(WF)の50%以上である。
 上記(5)の構成によれば、高さ方向における底面からの距離がプラットフォームの最大厚さ以上かつHF/5以下の範囲内において、空洞部は、フィンのコード方向での前記フィンの最大翼厚位置における幅が、最大翼厚位置におけるフィンの翼厚の50%以上である。よって、高さ方向における上述の範囲内において、フィンの最大翼厚位置におけるフィンの肉厚を薄くしやすい。このため、ボルテックスジェネレータを成形する際の冷却過程での収縮によるヒケを効果的に抑制することができ、設計どおりの形状のボルテックスジェネレータがより得られやすくなる。
(6)いくつかの実施形態では、上記(1)乃至(5)の構成において、
 前記フィンの高さ方向での前記空洞部の延在範囲の50%以上において、前記フィンの前縁の位置での前記フィンのコード方向における前記フィンの肉厚(TV)が、前記プラットフォームの最大厚さ(TB)と最小厚さ(TB)との平均の0.5倍以上2.0倍以下である。
 上記(6)の構成では、上述のフィンの肉厚が、プラットフォームの最大厚さと最小厚さとの平均の0.5倍以上であるので、フィンに空洞部を設けることによるボルテックスジェネレータの強度低下を抑制することができる。また、上記(6)の構成では、上述のフィンの肉厚が、プラットフォームの最大厚さと最小厚さとの平均の2.0倍以下であるので、フィンの前縁部における肉厚を比較的薄くして、ボルテックスジェネレータを成形する際の冷却過程での収縮によるヒケを効果的に抑制することができる。よって、上記(6)の構成によれば、ボルテックスジェネレータの強度の低下を抑制しながら、設計どおりの形状のボルテックスジェネレータを得ることができる。
(7)いくつかの実施形態では、上記(1)乃至(6)の構成において、
 前記フィンは、前記高さ方向に直交する断面内にて曲線形状の輪郭を有する前縁部(13’)を含む。
 上記(7)の構成によれば、フィンの前縁部は、高さ方向に直交する断面内にて曲線形状の輪郭を有するので、ボルテックスジェネレータを風車翼に設置したとき、ボルテックスジェネレータに流入する空気の流れに対する抵抗を低減することができ、ボルテックスジェネレータの性能を発揮しやすい。
(8)いくつかの実施形態では、上記(1)乃至(7)の構成において、
 前記フィンは、前記フィンのコードに対して対称な形状を有する。
 上記(8)の構成によれば、フィンは、フィンのコードに対して対称な形状を有するので、フィンがコードに対して非対称の形状を有する場合と比較して、ボルテックスジェネレータを容易に成形することができる。
(9)いくつかの実施形態では、上記(1)乃至(8)の構成において、
 前記空洞部の内部を前記フィンの厚さ方向に沿って延在するリブ(22)を備える。
 上記(9)の構成によれば、空洞部の内部にフィンの厚さ方面に沿って延在するリブを設けたので、フィンの厚さ方向におけるフィンの変形を抑制することができる。そのため、上述のフィンの変形に伴うプラットフォームの変形も抑制することができる。よって、設計どおりの形状のボルテックスジェネレータがより得られやすくなる。
(10)いくつかの実施形態では、上記(1)乃至(9)の構成において、
 前記リブは、前記フィンの高さ方向における前記空洞部の延在範囲の70%以上に亘って前記フィンの高さ方向に沿って延在する。
 上記(10)の構成によれば、上述のリブが、フィンの高さ方向における空洞部の延在範囲の70%以上に亘ってフィンの高さ方向に沿って延在するので、フィンの厚さ方向におけるフィンの変形を効果的に抑制することができる。そのため、上述のフィンの変形に伴うプラットフォームの変形も効果的に抑制することができる。よって、設計どおりの形状のボルテックスジェネレータがより得られやすくなる。
(11)いくつかの実施形態では、上記(1)乃至(10)の構成において、
 前記フィンに設けられ、前記空洞部に連通するとともに前記フィンの表面に開口する孔(24)を備える。
 上記(11)の構成によれば、空洞部に連通するとともにフィンの表面に開口する孔をフィンに設けたので、該孔を介して空洞部内の空気を抜くことができる。したがって、この孔を介して空洞部内の空気を抜くことでボルテックスジェネレータに風車翼への押付力を作用させることができ、これにより風車翼にボルテックスジェネレータを容易に取り付けることができる。
(12)本発明の少なくとも一実施形態に係る風車翼(1)は、
 翼本体(2)と、
 前記翼本体の表面に取り付けられた上記(1)乃至(11)の何れか一項に記載のボルテックスジェネレータ(10)と、
を備える。
 上記(12)の構成によれば、ボルテックスジェネレータにフィンの内部まで及ぶ空洞部を設けたので、プラットフォームの肉厚に対するフィンの肉厚を薄くできる。すなわち、上記(12)の構成によれば、樹脂材料からボルテックスジェネレータを成形する際の冷却過程での収縮によるヒケを抑制しやすくなる。このため、設計どおりの形状のボルテックスジェネレータが得られやすくなる。
(13)いくつかの実施形態では、上記(12)の構成において、
 前記ボルテックスジェネレータの前記プラットフォーム(11)の縁(11c)を覆うように、前記プラットフォームの上面(11a)、及び、前記翼本体の表面(例えば負圧面9)に接着される接着面(32a)を有するテープ(32)を備える。
 上記(13)の構成によれば、ボルテックスジェネレータのプラットフォームの縁を覆うように、プラットフォームの上面、及び、翼本体の表面にテープを接着することで、ボルテックスジェネレータと翼本体間を接着する際に生じる、これらの段差を解消することができる。その結果、風車翼からのボルテックスジェネレータの剥離を防止しやすくなる。
(14)本発明の少なくとも一実施形態に係る風力発電装置(40)は、
 上記(12)又は(13)に記載の風車翼を含む風車ロータ(42)と、
 前記風車ロータによって駆動されるように構成された発電機と、
を備える。
 上記(14)の構成によれば、ボルテックスジェネレータにフィンの内部まで及ぶ空洞部を設けたので、プラットフォームの肉厚に対するフィンの肉厚を薄くできる。すなわち、上記(14)の構成によれば、樹脂材料からボルテックスジェネレータを成形する際の冷却過程での収縮によるヒケを抑制しやすくなる。このため、設計どおりの形状のボルテックスジェネレータが得られやすくなる。
(15)本発明の少なくとも一実施形態に係る風車翼の製造方法は、
 翼本体(1)と、上記(11)に記載のボルテックスジェネレータ(10)と、を含む風車翼(1)の製造方法であって、
 前記ボルテックスジェネレータを前記翼本体の表面(例えば負圧面9)に接着させるステップと、
 前記孔(24)を介して、前記空洞部(20)の内部の空気を吸引するステップと、
を備える。
 上記(15)の方法によれば、ボルテックスジェネレータを翼本体の表面に接着させ、フィンの孔を介して、空洞部の内部の空気を吸引するようにしたので、翼本体への取付時にボルテックスジェネレータに十分な押し付け力を容易に付与することができる。よって、容易な施工作業でボルテックスジェネレータを翼本体に適切に取り付けることができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1     風車翼
2     翼本体
3     翼根
4     翼先端
5     翼型部
6     前縁
7     後縁
8     圧力面
9     負圧面
10    ボルテックスジェネレータ
11    プラットフォーム
11a   上面
11b   底面
11c   縁
12(12A,12B) フィン
13    前縁
13’   前縁部
13a   最上流側位置
13b   頂部
14    後縁
15    圧力面
16    負圧面
17    基部
18    頂部
19    後端面
20    空洞部
21    面
22    リブ
24    孔
30    接着材
32    テープ
32a   接着面
40    風力発電装置
42    ロータ
43    ハブ
44    ナセル
46    タワー
48    土台構造
HR    リブの高さ
HV    空洞部の高さ
LF    フィンのコード長
    フィンの最大翼厚位置
TB   プラットフォームの最小厚さ
TB   プラットフォームの最大厚さ
TV    フィンの肉厚
WF    フィンの翼厚
Z     段差

Claims (15)

  1.  プラットフォームと、
     前記プラットフォームの上面から突出して設けられた少なくとも一つのフィンと、
    を備える樹脂製の風車翼用ボルテックスジェネレータであって、
     前記ボルテックスジェネレータは、前記プラットフォームの底面に開口するとともに、前記フィンの内部まで及ぶ空洞部を含む
    風車翼用のボルテックスジェネレータ。
  2.  前記フィンの高さ方向における、前記プラットフォームの底面と前記フィンの頂部との距離をHFとしたとき、前記空洞部の前記底面からの高さの最大値は、HF/3以上である
    請求項1に記載の風車翼用のボルテックスジェネレータ。
  3.  前記フィンの高さ方向における前記プラットフォームの最大厚さの位置を含み、前記プラットフォームの底面と平行な平面上での、前記フィンのコード方向における前記フィンの最大翼厚位置において、前記空洞部の前記底面からの高さは、前記プラットフォームの最大厚さ以上である
    請求項1又は2に記載の風車翼用のボルテックスジェネレータ。
  4.  前記フィンの高さ方向における前記プラットフォームの底面と前記フィンの頂部との距離をHFとしたとき、前記底面からの前記高さ方向における距離が前記プラットフォームの最大厚さ以上かつHF/3以下の範囲内において、
      前記空洞部は、前記フィンのコード方向において前記フィンの最大翼厚位置を含む領域に設けられ、
      前記コード方向における前記空洞部の長さは、前記フィンのコード長の30%以上である
    請求項1乃至3の何れか一項に記載の風車翼用のボルテックスジェネレータ。
  5.  前記フィンの高さ方向における前記プラットフォームの底面と前記フィンの頂部との距離をHFとしたとき、前記高さ方向における前記底面からの距離が前記プラットフォームの最大厚さ以上かつHF/5以下の範囲内において、前記空洞部は、前記フィンのコード方向での前記フィンの最大翼厚位置における幅が、前記最大翼厚位置における前記フィンの翼厚の50%以上である
    請求項1乃至4の何れか一項に記載の風車翼用のボルテックスジェネレータ。
  6.  前記フィンの高さ方向での前記空洞部の延在範囲の50%以上において、前記フィンの前縁の位置での前記フィンのコード方向における前記フィンの肉厚が、前記プラットフォームの最大厚さと最小厚さとの平均の0.5倍以上2.0倍以下である
    請求項1乃至5の何れか一項に記載の風車翼用のボルテックスジェネレータ。
  7.  前記フィンは、前記高さ方向に直交する断面内にて曲線形状の輪郭を有する前縁部を含む
    請求項1乃至6の何れか一項に記載の風車翼用のボルテックスジェネレータ。
  8.  前記フィンは、前記フィンのコードに関して対称な形状を有する
    請求項1乃至7の何れか一項に記載の風車翼用のボルテックスジェネレータ。
  9.  前記空洞部の内部を前記フィンの厚さ方向に沿って延在するリブを備える
    請求項1乃至8の何れか一項に記載の風車翼用のボルテックスジェネレータ。
  10.  前記リブは、前記フィンの高さ方向における前記空洞部の延在範囲の70%以上に亘って前記フィンの高さ方向に沿って延在する
    請求項9に記載の風車翼用のボルテックスジェネレータ。
  11.  前記フィンに設けられ、前記空洞部に連通するとともに前記フィンの表面に開口する孔を備える
    請求項1乃至10の何れか一項に記載の風車翼用のボルテックスジェネレータ。
  12.  翼本体と、
     前記翼本体の表面に取り付けられた請求項1乃至11の何れか一項に記載のボルテックスジェネレータと、
    を備える風車翼。
  13.  前記ボルテックスジェネレータの前記プラットフォームの縁を覆うように、前記プラットフォームの上面、及び、前記翼本体の表面に接着される接着面を有するテープを備える
    請求項12に記載の風車翼。
  14.  請求項12又は13に記載の風車翼を含む風車ロータと、
     前記風車ロータによって駆動されるように構成された発電機と、
    を備える風力発電装置。
  15.  翼本体と、請求項11に記載のボルテックスジェネレータと、を含む風車翼の製造方法であって、
     前記ボルテックスジェネレータを前記翼本体の表面に接着させるステップと、
     前記孔を介して、前記空洞部の内部の空気を吸引するステップと、
    を備える風車翼の製造方法。
PCT/JP2021/043327 2020-11-27 2021-11-26 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法 WO2022114102A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180077678.8A CN116457573A (zh) 2020-11-27 2021-11-26 风车翼用的涡流发生器、风车翼及风力发电装置以及风车翼的制造方法
US18/038,226 US12092072B2 (en) 2020-11-27 2021-11-26 Vortex generator for wind turbine blade, wind turbine blade and wind power generating apparatus, and method for manufacturing wind turbine blade
EP21898074.6A EP4234916A4 (en) 2020-11-27 2021-11-26 Vortex generator for windmill blade, windmill blade, wind power generation device, and method for manufacturing windmill blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020197391A JP7063973B1 (ja) 2020-11-27 2020-11-27 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法
JP2020-197391 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022114102A1 true WO2022114102A1 (ja) 2022-06-02

Family

ID=81534497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043327 WO2022114102A1 (ja) 2020-11-27 2021-11-26 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法

Country Status (5)

Country Link
US (1) US12092072B2 (ja)
EP (1) EP4234916A4 (ja)
JP (1) JP7063973B1 (ja)
CN (1) CN116457573A (ja)
WO (1) WO2022114102A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025116876A1 (en) * 2023-11-30 2025-06-05 De Ta Proje Mühendi̇sli̇k Maki̇na Enerji̇ Danişmanlik Elektri̇k Arge İmalat Ürt.İth.İhr.San.Ve Ti̇c.A.Ş. High-efficiency new blade profile for reducing radial and axial forces

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069061A (ja) * 2002-07-20 2004-03-04 Alstom (Switzerland) Ltd 後流を制御する渦発生器
WO2006122547A1 (en) 2005-05-17 2006-11-23 Vestas Wind Systems A/S A pitch controlled wind turbine blade, a wind turbine and use hereof
US20070235590A1 (en) * 2006-01-31 2007-10-11 Kokoshkin Roman N Vortex generator
US20090087314A1 (en) * 2006-06-09 2009-04-02 Michael Drachmann Haag Wind Turbine Blade And A Pitch Controlled Wind Turbine
EP2484898A1 (en) 2011-02-04 2012-08-08 LM Wind Power A/S Vortex generator device with tapered sections for a wind turbine
EP2736805A2 (en) 2011-07-22 2014-06-04 LM WP Patent Holding A/S Wind turbine blade comprising vortex generators
EP2739529A2 (en) 2011-07-22 2014-06-11 LM WP Patent Holding A/S Method for retrofitting vortex generators on a wind turbine blade
DE102013201871A1 (de) 2013-02-05 2014-08-21 Senvion Se Vortexgenerator für ein Rotorblatt einer Windenergieanlage
US20140328692A1 (en) * 2013-05-02 2014-11-06 General Electric Company Attachment system and method for wind turbine vortex generators
WO2014198353A1 (de) 2013-06-10 2014-12-18 Senvion Se Rotorblatt und vortexgenerator
EP2824320A1 (en) 2013-07-08 2015-01-14 Siemens Aktiengesellschaft Reduced noise vortex generator for wind turbine blade
WO2015030573A1 (en) 2013-09-02 2015-03-05 Corten Holding Bv Vortex generator for a wind turbine
US20150204306A1 (en) * 2014-01-17 2015-07-23 General Electric Company Rotatable aerodynamic surface features for wind turbine rotor blades
US20180347540A1 (en) * 2015-11-24 2018-12-06 Vestas Wind Systems A/S Wind turbine blade with aerodynamic device attached thereto
JP2020105998A (ja) * 2018-12-28 2020-07-09 三菱重工業株式会社 ボルテックスジェネレータ及び風車翼
JP2020197391A (ja) 2019-05-31 2020-12-10 Eneos株式会社 溶接部検査装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970644A (ja) * 1995-09-05 1997-03-18 Toyota Motor Corp 樹脂中子
DK2122164T3 (en) * 2007-01-05 2016-07-04 Lm Wp Patent Holding As Wind turbine blade with lift regulators in the form of grooves or holes
US9039381B2 (en) 2010-12-17 2015-05-26 Vestas Wind Systems A/S Wind turbine blade and method for manufacturing a wind turbine blade with vortex generators
ES2451568T3 (es) * 2011-02-04 2014-03-27 Lm Wind Power A/S Generador de torbellinos para turbina eólica con una base que tiene un rebaje para adhesivo
JP5728356B2 (ja) 2011-10-18 2015-06-03 株式会社東芝 気流発生ユニット、気流発生ユニットの設置方法および風力発電装置
WO2015132882A1 (ja) 2014-03-04 2015-09-11 中国電力株式会社 風力発電装置
DE102014106529B4 (de) * 2014-05-09 2016-02-04 Senvion Gmbh Reparaturverfahren für Vortexgenerator und ein Bausatz dafür
DK178138B1 (en) * 2014-07-16 2015-06-22 Envision Energy Vortex generator unit for a wind turbine blade
EP3514371B1 (en) * 2014-08-05 2021-05-26 LM WP Patent Holding A/S Wind turbine blade provided with surface mounted device
JP6153989B2 (ja) * 2015-11-13 2017-06-28 三菱重工業株式会社 ボルテックスジェネレータ、風車翼および風力発電装置
CN206468492U (zh) 2017-02-21 2017-09-05 红叶风电设备(营口)股份有限公司 一种风电叶片表面的涡流发生器
CN109386424A (zh) * 2017-08-10 2019-02-26 上海电气风电集团有限公司 涡流发生器、带有涡流发生器的风力机叶片及其安装方法
JP6783211B2 (ja) 2017-10-20 2020-11-11 三菱重工業株式会社 風車翼及び風車翼へのボルテックスジェネレータの配置決定方法
CN111502907B (zh) 2019-01-30 2022-03-01 上海电气风电集团股份有限公司 涡流发生器、风机叶片及包括其的风力发电机
CN110107463B (zh) 2019-05-27 2020-06-02 上海电气风电集团股份有限公司 一种渐缩截面涡流发生器及其安装方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069061A (ja) * 2002-07-20 2004-03-04 Alstom (Switzerland) Ltd 後流を制御する渦発生器
WO2006122547A1 (en) 2005-05-17 2006-11-23 Vestas Wind Systems A/S A pitch controlled wind turbine blade, a wind turbine and use hereof
US20070235590A1 (en) * 2006-01-31 2007-10-11 Kokoshkin Roman N Vortex generator
US20090087314A1 (en) * 2006-06-09 2009-04-02 Michael Drachmann Haag Wind Turbine Blade And A Pitch Controlled Wind Turbine
EP2484898A1 (en) 2011-02-04 2012-08-08 LM Wind Power A/S Vortex generator device with tapered sections for a wind turbine
EP2736805A2 (en) 2011-07-22 2014-06-04 LM WP Patent Holding A/S Wind turbine blade comprising vortex generators
EP2739529A2 (en) 2011-07-22 2014-06-11 LM WP Patent Holding A/S Method for retrofitting vortex generators on a wind turbine blade
DE102013201871A1 (de) 2013-02-05 2014-08-21 Senvion Se Vortexgenerator für ein Rotorblatt einer Windenergieanlage
US20140328692A1 (en) * 2013-05-02 2014-11-06 General Electric Company Attachment system and method for wind turbine vortex generators
WO2014198353A1 (de) 2013-06-10 2014-12-18 Senvion Se Rotorblatt und vortexgenerator
EP2824320A1 (en) 2013-07-08 2015-01-14 Siemens Aktiengesellschaft Reduced noise vortex generator for wind turbine blade
WO2015030573A1 (en) 2013-09-02 2015-03-05 Corten Holding Bv Vortex generator for a wind turbine
US20160215758A1 (en) * 2013-09-02 2016-07-28 Corten Holding Bv Vortex generator for a wind turbine
US20150204306A1 (en) * 2014-01-17 2015-07-23 General Electric Company Rotatable aerodynamic surface features for wind turbine rotor blades
US20180347540A1 (en) * 2015-11-24 2018-12-06 Vestas Wind Systems A/S Wind turbine blade with aerodynamic device attached thereto
JP2020105998A (ja) * 2018-12-28 2020-07-09 三菱重工業株式会社 ボルテックスジェネレータ及び風車翼
JP2020197391A (ja) 2019-05-31 2020-12-10 Eneos株式会社 溶接部検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4234916A4

Also Published As

Publication number Publication date
US12092072B2 (en) 2024-09-17
US20230417217A1 (en) 2023-12-28
JP7063973B1 (ja) 2022-05-09
CN116457573A (zh) 2023-07-18
EP4234916A4 (en) 2024-04-24
EP4234916A1 (en) 2023-08-30
JP2022085618A (ja) 2022-06-08

Similar Documents

Publication Publication Date Title
US10087912B2 (en) Vortex generator for a rotor blade
JP6153989B2 (ja) ボルテックスジェネレータ、風車翼および風力発電装置
JP6154050B1 (ja) 風車翼、風車ロータ及び風力発電装置並びにボルテックスジェネレータの取付方法
CN101220799A (zh) 具有扰流器的风轮机转子叶片
CN102297097A (zh) 带有空气动力涡流元件的风力涡轮机叶片
US10465652B2 (en) Vortex generators for wind turbine rotor blades having noise-reducing features
JP2018115559A (ja) ボルテックスジェネレータ及びその設置方法、並びに風車翼及び風力発電装置
US20190003451A1 (en) Vortex generator and wind turbine blade assembly
US20160153424A1 (en) Mountable wing tip device for mounting on a rotor blade of a wind turbine arrangement
JP2019078191A5 (ja)
JP2016070089A (ja) ファン
WO2022114102A1 (ja) 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法
US12037977B2 (en) Vortex generator for wind turbine blade, wind turbine blade, and wind power generating apparatus
WO2018046067A1 (en) Wind turbine blade comprising an airfoil profile
CN207033660U (zh) 一种涡流发生器安装结构
JP7469126B2 (ja) 風車翼アセンブリ及び風車
CN112020608B (zh) 具有降噪特征的用于风力涡轮转子叶片的涡流发生器
CN107027317A (zh) 风机叶轮
US20140234113A1 (en) Wind turbine blade and manufacturing method thereof
US11703029B2 (en) Rotor blade for a wind power installation, rotor for a wind power installation, structure and wind power installation
CN110080939A (zh) 一种涡流发生器、风机叶片及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077678.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18038226

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021898074

Country of ref document: EP

Effective date: 20230523

NENP Non-entry into the national phase

Ref country code: DE