[go: up one dir, main page]

WO2022113404A1 - Motor manufacturing method - Google Patents

Motor manufacturing method Download PDF

Info

Publication number
WO2022113404A1
WO2022113404A1 PCT/JP2021/020279 JP2021020279W WO2022113404A1 WO 2022113404 A1 WO2022113404 A1 WO 2022113404A1 JP 2021020279 W JP2021020279 W JP 2021020279W WO 2022113404 A1 WO2022113404 A1 WO 2022113404A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
rotor
stator
manufacturing
motor
Prior art date
Application number
PCT/JP2021/020279
Other languages
French (fr)
Japanese (ja)
Inventor
勇太 榎園
大地 東
達哉 齋藤
Original Assignee
住友電気工業株式会社
住友電工焼結合金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工焼結合金株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022565040A priority Critical patent/JP7672427B2/en
Publication of WO2022113404A1 publication Critical patent/WO2022113404A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centring rotors within the stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the present disclosure relates to a method of manufacturing a motor.
  • This application claims priority based on Japanese Patent Application No. 2020-195500 of the Japanese application dated November 25, 2020, and incorporates all the contents described in the Japanese application.
  • the axial gap type rotary electric machine of Patent Document 1 includes a case, a stator, a rotor, a shaft, and a bearing.
  • the case includes a cylindrical peripheral wall portion and a pair of disk-shaped plates. A pair of plates are attached to both ends of the peripheral wall portion. A through hole is formed in the center of the pair of plates.
  • a shaft is provided in the through hole.
  • the stator and rotor are arranged in the case so as to face the axial direction of the shaft.
  • the stator is located on the plate.
  • the rotor is provided with a gap from the stator.
  • the shaft is the axis of rotation of the rotor.
  • the bearing rotatably supports the shaft.
  • the method for manufacturing the motor of the present disclosure is as follows.
  • the process of preparing parts for axial gap type motors and With the process of assembling the parts The parts are With the rotor With the stator, The shaft, which is the rotation axis of the rotor, and A bearing that rotatably supports the shaft and A case having a first plane on which the stator and the bearing are placed, and Includes shims located between the first plane and the bearing, or between the first plane and the stator.
  • the process of preparing the parts is The step of obtaining the predicted length of the gap between the rotor and the stator in consideration of the actual size of the stator, and It comprises a step of determining the thickness of the shim based on the difference between the design length of the gap and the predicted length.
  • FIG. 1 is a schematic cross-sectional view showing an outline of a motor manufactured by the method for manufacturing a motor according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the region A of FIG. 1 in an enlarged manner.
  • FIG. 3 is a schematic cross-sectional view showing another example of region A in FIG. 1 in an enlarged manner.
  • FIG. 4 is a cross-sectional view showing an outline of a virtual motor.
  • FIG. 5 is a schematic cross-sectional view showing the region A of FIG. 4 in an enlarged manner.
  • FIG. 6 is a schematic cross-sectional view showing another example of the region A in FIG. 4 in an enlarged manner.
  • FIG. 1 is a schematic cross-sectional view showing an outline of a motor manufactured by the method for manufacturing a motor according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the region A of FIG. 1 in an enlarged manner.
  • FIG. 3 is a schematic cross-sectional view showing another example
  • FIG. 7 is a diagram showing a graph showing the relationship between the load on the inner race of the first bearing and the deviation amount of the inner race with respect to the outer race of the first bearing.
  • FIG. 8 is a schematic cross-sectional view showing an outline of a motor manufactured by the method for manufacturing a motor according to the second embodiment.
  • FIG. 9 is a schematic cross-sectional view showing the region A of FIG. 8 in an enlarged manner.
  • FIG. 10 is a schematic cross-sectional view showing another example of region A in FIG. 8 in an enlarged manner.
  • FIG. 11 is a plan view of a shim provided in the motor manufactured by the method for manufacturing the motor according to the second embodiment as viewed from the first plate portion side.
  • FIG. 12 is a cross-sectional view showing an outline of a virtual motor.
  • FIG. 13 is a schematic cross-sectional view showing the region A of FIG. 12 in an enlarged manner.
  • FIG. 14 is a schematic cross-sectional view showing another example of the region A in FIG. 12 in an enlarged manner.
  • FIG. 15 is a diagram illustrating a method for manufacturing a motor according to the third embodiment.
  • FIG. 16 is a plan view of a shim provided in the motor manufactured by the method for manufacturing the motor according to the fourth embodiment as viewed from the first plate portion side.
  • FIG. 17 is a diagram illustrating a method for manufacturing a motor according to the fifth embodiment.
  • FIG. 18 is a diagram illustrating a method for manufacturing a motor according to the sixth embodiment.
  • One of the purposes of the present disclosure is to provide a method for manufacturing a motor having excellent manufacturability of the motor.
  • the motor manufacturing method of the present disclosure is excellent in motor manufacturability.
  • the axial gap type motor is manufactured, for example, through two assembly steps of a temporary assembly of motor parts and a main assembly.
  • the reason for temporarily assembling the parts is that it is difficult to set the length of the gap between the stator and the rotor as the design length when the parts are assembled once.
  • the design length of the gap is a target value of the design gap length determined based on the specifications of the motor. Therefore, the length of the gap of the temporarily assembled motor is measured. Find the difference between the measured length of the gap obtained by the measurement and the design length of the gap. After determining the measured length of the gap, disassemble the motor.
  • the parts are assembled using a shim that has the same thickness as the above difference.
  • the shim is placed between the bearing and the plate. By placing the shim, the bearing position is separated from the plate by the thickness of the shim.
  • the shaft supported by the bearings is displaced in the axial direction of the shaft. The displacement of the shaft causes the rotor to move away from the stator. As the rotors move apart, the length of the gap becomes longer than the measured length. That is, the length of the gap becomes longer than the measured length by the thickness of the shim. Since the thickness of the shim is the same as the above difference, the length of the gap can be used as the design length.
  • the manufacturing work becomes complicated because the number of times of assembling the parts is twice.
  • the present inventors have diligently studied a method for manufacturing a motor. As a result, the present inventors have developed a manufacturing method capable of making the length of the gap between the stator and the rotor substantially the same as the design length by assembling the parts only once. First, embodiments of the present disclosure will be listed and described.
  • the method for manufacturing a motor is as follows.
  • the process of preparing parts for axial gap type motors and With the process of assembling the parts The parts are With the rotor With the stator,
  • the shaft which is the rotation axis of the rotor, and
  • a bearing that rotatably supports the shaft and A case having a first plane on which the stator and the bearing are placed, and Includes shims located between the first plane and the bearing, or between the first plane and the stator.
  • the process of preparing the parts is The step of obtaining the predicted length of the gap between the rotor and the stator in consideration of the actual size of the stator, and It comprises a step of determining the thickness of the shim based on the difference between the design length of the gap and the predicted length.
  • the above motor manufacturing method is excellent in motor manufacturability with excellent assembly accuracy.
  • the predicted length of the gap can be obtained in consideration of the above actual dimensions before assembling the parts. That is, in the above manufacturing method, the difference between the predicted gap length and the design length can be obtained before assembling the parts.
  • the predicted gap length obtained in consideration of the above actual dimensions is the gap length calculated using the actual dimensions of the stator, which will be described in detail later.
  • the predicted length of the gap obtained in consideration of the above actual dimensions may be referred to as the first predicted length.
  • the predicted length of the gap can also be obtained from the design dimensions and dimensional tolerances of the parts.
  • the predicted gap length obtained from the design dimensions and dimensional tolerances of the parts is the gap length calculated using the design dimensions and dimensional tolerances of each part excluding shims.
  • the predicted length of the gap obtained from the design dimensions and dimensional tolerances of the part is sometimes called the second predicted length.
  • the first predicted length is more accurate than the second predicted length. That is, the difference between the first predicted length and the design length is more accurate than the difference between the second predicted length and the design length.
  • the above manufacturing method can assemble parts containing shims having the same thickness as the exact above difference. Therefore, in the above manufacturing method, the length of the gap can be set as the design length by assembling the parts only once.
  • the shim may be arranged between the first plane and the stator.
  • the above-mentioned motor manufacturing method is excellent in the manufacturability of a motor having excellent assembly accuracy when the predicted length exceeds the design length.
  • the shims may be arranged between the first plane and the bearings.
  • the above-mentioned motor manufacturing method is excellent in the manufacturability of a motor having excellent assembly accuracy when the predicted length is less than the design length.
  • the step of obtaining the predicted length it is preferable to further obtain the predicted length in consideration of the actual dimensions of each of the rotor, the shaft, and the bearing.
  • the rotor is Annulus plate-shaped rotor body and With at least one magnet fixed to the rotor body,
  • the bearing is a radial bearing or an angular bearing having an inner race and an outer race.
  • Each of the inner race and the outer race has a first end surface facing the rotor body.
  • the predicted length is further obtained in consideration of the amount of deviation between the first end surface of the outer race and the first end surface of the inner race.
  • the amount of deviation may be determined in consideration of the load acting on the inner race due to the weight of the shaft and the rotor, and the load acting on the inner race due to the attractive force of the magnet to the stator.
  • the first end surface of the inner race may shift from the first end surface of the outer race.
  • the difference between the predicted gap length and the design length increases by the amount of deviation. Therefore, even if a part including a shim having the same thickness as the difference between the predicted length and the design length obtained by considering only the above actual dimensions is assembled, it may be difficult to set the gap length as the design length.
  • the predicted length can be obtained in consideration of the amount of deviation. Therefore, the exact difference between the predicted length and the design length can be obtained. Therefore, in the above manufacturing method, the length of the gap can be set as the design length by assembling the parts only once. Therefore, the above manufacturing method is excellent in the manufacturability of the motor having excellent assembly accuracy.
  • the stator is Annulus plate-shaped yoke and With a plurality of columnar teeth arranged at intervals in the circumferential direction of the yoke, The yoke has a first surface in contact with the first plane. The teeth have end faces facing the rotor and In the step of obtaining the predicted length, the predicted length may be obtained in consideration of the actual size between the first surface of the yoke and the end surface of the teeth.
  • the stator may include a stator core made of a dust compact.
  • the above manufacturing method can manufacture a motor having excellent assembly accuracy even when the stator core is provided with a dust compact having a lower dimensional accuracy than the stator core of an electromagnetic steel sheet.
  • the part may include a fastening member that secures the first plane and the stator.
  • the rotor is Annulus plate-shaped rotor body and With at least one magnet fixed to the rotor body, The rotor body has a front surface facing the magnet and has a front surface. The magnet has a first end surface facing the stator and has a first end surface.
  • the step of obtaining the predicted length in the rotor in which the rotor body and the magnet are fixed, the actual dimension of the length between the first surface of the rotor body and the first end surface of the magnet is obtained. It is advisable to obtain the predicted length in consideration of this.
  • the number of the magnets is one.
  • the shape of the magnet may be annular.
  • the number of magnets is one, so that the number of parts is smaller than that in the case where the number of magnets is multiple. Therefore, the above manufacturing method is excellent in the manufacturability of the motor. Moreover, the above manufacturing method can manufacture a motor having excellent assembly accuracy.
  • the shaft In the step of assembling the parts, the shaft may be press-fitted into the rotor.
  • the rotor can be positioned with respect to the shaft by press-fitting the shaft into the rotor. Therefore, the above manufacturing method can manufacture a motor having a small rotor runout. Moreover, the above manufacturing method can manufacture a motor having excellent assembly accuracy.
  • the predicted length is obtained in consideration of the average value of the actual dimensions of each of the stator, the rotor, the shaft, and the bearing, which is smaller than the number of manufactured motors. good.
  • the above manufacturing method is excellent in the manufacturability of a plurality of motors having excellent assembly accuracy. Therefore, the above manufacturing method can manufacture a plurality of motors having a small variation in performance.
  • the predicted length is obtained in consideration of the average value of the actual dimensions, which is smaller than the number of manufactured pieces, and thus the predicted length is obtained in consideration of the same number of the actual dimensions as the number of manufactured pieces. Compared with the case, it is easy to improve the manufacturability.
  • the number of the stators and the number of the rotors are one each.
  • the above manufacturing method is excellent in the manufacturability of a single stator / single rotor type motor having excellent assembly accuracy.
  • the number of the stators is two and the number of the rotors is one.
  • the above manufacturing method is excellent in the manufacturability of a double stator / single rotor type motor having excellent assembly accuracy.
  • FIG. 1 is a cross-sectional view of a motor 1A manufactured by the method for manufacturing a motor of the present embodiment, cut along a plane parallel to the axial direction of the shaft 4.
  • the motor 1A of FIG. 1 is assembled using all the parts.
  • the parts include a stator 2, a rotor 3, a shaft 4, a first bearing 51, a shim 6 and a case 7.
  • FIG. 1 illustrates a single stator / single rotor type axial gap motor as the manufactured motor 1A.
  • the single stator / single rotor type refers to a motor in which the number of stators 2 and the number of rotors 3 are one each.
  • the axial gap motor is a motor in which the stator 2 and the rotor 3 face each other with a gap in the axial direction of the shaft 4.
  • FIG. 4 shows a cross-sectional view of a virtual motor 1Z cut along a plane parallel to the axial direction of the shaft 4.
  • the method for manufacturing a motor of this embodiment includes a step of assembling the above-mentioned parts of the motor 1A shown in FIG.
  • the motor 1A manufactured by assembling the parts has a gap between the stator 2 and the rotor 3.
  • steps A and B are performed in order.
  • step A the above parts are prepared.
  • step B the above parts are assembled.
  • Step A includes steps A1 and A2.
  • step A1 the predicted length G0 shown in FIGS. 4 to 6 is obtained.
  • the predicted length G0 is obtained in consideration of the actual dimensions of specific parts other than the shim 6 among the above parts.
  • step A2 determines the thickness Ts of the shim 6.
  • the thickness Ts is determined based on the difference between the design length G1 of the gap shown in FIGS. 1 to 3 and the predicted length G0 of the gap shown in FIGS. 4 to 6.
  • the design length G1 is a target value of the design gap length determined based on the specifications of the motor 1A.
  • the design length G1 has a certain allowable width.
  • step B shims 6 having a thickness Ts determined before assembling the parts are placed at predetermined positions.
  • the motor 1A manufactured earlier will be described. After that, a method of manufacturing a motor for manufacturing the motor 1A will be described. As shown in FIGS. 2 and 5 or 3 and 6, the method for manufacturing the motor of the present embodiment exemplifies the case where the predicted length G0 is less than the design length G1.
  • stator 2 (motor) ⁇ Stator> As shown in FIG. 1, the stator 2 is arranged on the first plane 71f of the case 7. As shown in FIG. 1, the stator 2 includes a stator core 21 and a plurality of coils 25.
  • the stator core 21 includes an annular plate-shaped yoke 22 and a plurality of columnar teeth 23.
  • the yoke yoke 22 magnetically couples adjacent teeth 23 among the teeth 23 arranged in the circumferential direction of the yoke 22.
  • the yoke 22 has a planar first surface 22f, a planar second surface 22s, an outer peripheral surface, and an inner peripheral surface.
  • the first surface 22f and the second surface 22s are surfaces connecting the outer peripheral surface and the inner peripheral surface.
  • the first surface 22f is in contact with the first plane 71f.
  • the second surface 22s is a surface connected to the side surface of the teeth 23.
  • the teeth 23 is provided with a coil 25 as shown in FIG.
  • the number of teeth 23 is plural.
  • the teeth 23 are arranged at predetermined intervals in the circumferential direction of the yoke 22.
  • Each tooth 23 projects so as to be orthogonal to the second surface 22s of the yoke 22 shown in FIG.
  • Each of the teeth 23 and the yoke 22 of this embodiment is composed of an integral dust compact.
  • the shape and size of each tooth 23 are the same.
  • the shape of each tooth 23 is prismatic or columnar.
  • Each tooth 23 has a side surface and an end surface 23a.
  • the side surface is a surface connected to the second surface 22s of the yoke 22.
  • the side surface protrudes from the second surface 22s of the yoke 22.
  • the end face 23a is located at the tip in the protruding direction.
  • the end surface 23a is a surface connected to the side surface.
  • the end face 23a faces the magnet 35 of the rotor 3, which
  • the stator core 21 has a hole portion as shown in FIG. A fastening member 91 is provided in this hole.
  • the fastening member 91 fixes the stator core 21 to the first plane 71f.
  • the fastening member 91 suppresses the positional deviation between the stator 2 and the first plane 71f.
  • An example of the fastening member 91 is a screw, a bolt, or the like.
  • the hole portion is formed from the first surface 22f to the middle of the teeth 23.
  • the number of holes may be less than the number of teeth 23, or may be the same as the number of teeth 23.
  • Each coil 25 has a tubular portion.
  • the tubular portion is configured by winding a winding spirally.
  • the coil 25 of this embodiment is an edgewise winding coil.
  • a covered flat wire is used for the winding of the coil 25.
  • Each coil 25 is arranged outside the teeth 23.
  • the cross-sectional shape of the tubular portion of each coil 25 may be, for example, a shape corresponding to the cross-sectional shape of the teeth 23.
  • the axial length of the tubular portion is slightly shorter than the length of the teeth 23. In FIG. 1, only the tubular portion is shown, and both ends of the winding are not shown.
  • the rotor 3 is provided with a gap from the stator 2.
  • the rotor 3 includes a rotor main body 31 and at least one magnet 35.
  • the rotor body 31 is rotatably supported by the shaft 4 with respect to the case 7.
  • the rotor body 31 is an annular member.
  • the rotor main body 31 is provided with a through hole in the center.
  • a third shaft portion 43 of the shaft 4, which will be described later, is provided in this through hole.
  • the rotor main body 31 and the shaft 4 are combined by press-fitting the third shaft portion 43 into the through hole.
  • the rotor 3 By being press-fitted, the rotor 3 can be positioned with respect to the shaft 4. Therefore, the runout of the rotor 3 tends to be small.
  • the position of the rotor main body 31 along the axial direction of the shaft 4 is positioned by the rotor main body 31 being stopped by the second end surface 42s of the second shaft portion 42, which will be described later.
  • the rotor main body 31 has a first surface 31f, a second surface 31s, an inner peripheral surface, and an outer peripheral surface.
  • the first surface 31f and the second surface 31s connect the inner peripheral surface and the outer peripheral surface.
  • the first surface 31f is a surface on the stator 2 side.
  • the second surface 31s is the surface on the second bearing 55 side shown in FIG. The second bearing 55 will be described later.
  • the first surface 31f of this embodiment is in contact with the second end surface 42s.
  • a recess 32 is provided on the first surface 31f of this embodiment.
  • the recess 32 is open to the stator 2 side.
  • a magnet 35 is fixed to the bottom surface 32a of the recess 32.
  • the inner peripheral surface of the rotor body 31 is in contact with the third shaft portion 43 of the shaft 4. As shown in FIG. 1, the outer peripheral surface of the rotor main body 31 is not in contact with the inner peripheral surface of the peripheral wall portion 73 of the case 7. A gap is provided between the outer peripheral surface of the rotor main body 31 and the inner peripheral surface of the peripheral wall portion 73 of the case 7.
  • the magnet 35 is fixed to the rotor main body 31. As shown in FIG. 2, an adhesive 38 is used to fix the magnet 35.
  • the number of magnets 35 may be one or a plurality. When the number of magnets 35 is one, the number of parts is small and the rotor 3 can be easily manufactured as compared with the case where the number of magnets 35 is a plurality. Therefore, it is easy to improve the manufacturability of the motor 1A. Moreover, it is easy to manufacture the motor 1A having excellent assembly accuracy.
  • the shape of the magnets 35 is annular. In one magnet 35, S poles and N poles are alternately arranged in the circumferential direction. When the number of magnets 35 is plural, the specific number of magnets 35 is the same as the number of teeth 23.
  • the plurality of magnets 35 are arranged at equal intervals in the circumferential direction of the rotor main body 31.
  • the shape of each magnet 35 is, for example, a flat plate.
  • the planar shape of each magnet 35 is, for example, the same as the planar shape of the end surface 23a of the teeth 23.
  • Each magnet 35 is magnetized in the axial direction of the rotation axis of the rotor 3.
  • the magnetization directions of the magnets 35 adjacent to each other in the circumferential direction of the rotor main body 31 are opposite to each other.
  • the rotating magnetic field generated by the stator 2 causes the magnet 35 to repeatedly attract and repel each tooth 23 to rotate the rotor 3.
  • the magnet 35 is a permanent magnet.
  • permanent magnets are ferrite magnets, neodymium magnets, samarium-cobalt magnets, or bond magnets.
  • neodymium magnets and samarium-cobalt magnets have strong magnetic forces.
  • the shaft 4 is a rotation shaft of the rotor 3.
  • the shaft 4 is composed of a solid round bar.
  • the shaft 4 has a plurality of shaft portions having different diameters.
  • the plurality of shaft portions are integrally configured.
  • the shaft 4 of the present embodiment has the first shaft portion 41, the second shaft portion 42, the third shaft portion 43, and the fourth shaft portion in order from the first plate portion 71 side to the second plate portion 72 side of the case 7. It has 44 and a fifth shaft portion 45.
  • the first shaft portion 41 is provided in the first bearing 51. As shown in FIG. 2, the outer peripheral surface of the first shaft portion 41 is in contact with the inner peripheral surface of the inner race 52 of the first bearing 51.
  • the second shaft portion 42 has a diameter larger than the diameter of the first shaft portion 41.
  • the second shaft portion 42 has a first end surface 42f and a second end surface 42s.
  • the first end surface 42f is in contact with the first end surface 52f of the inner race 52.
  • the first end surface 42f is not in contact with the outer race 53 of the first bearing 51.
  • the second end surface 42s is in contact with the first surface 31f of the rotor main body 31.
  • the third shaft portion 43 is provided in the through hole of the rotor main body 31. As shown in FIG. 2, the outer peripheral surface of the third shaft portion 43 is in contact with the inner peripheral surface of the rotor main body 31. As shown in FIG. 1, the third shaft portion 43 has a diameter smaller than the diameter of the second shaft portion 42. As shown in FIG. 2, the third shaft portion 43 has an end face 43a. The end surface 43a is in contact with the first end surface of the inner race 56 of the second bearing 55.
  • the fourth shaft portion 44 is provided in the second bearing 55.
  • the outer peripheral surface of the fourth shaft portion 44 is in contact with the inner peripheral surface of the inner race 56.
  • the fourth shaft portion 44 has a diameter smaller than the diameter of the third shaft portion 43.
  • the fifth shaft portion 45 is provided in the through hole 72h.
  • the through hole 72h is provided in the second plate portion 72, which will be described later.
  • the outer peripheral surface of the fifth shaft portion 45 is not in contact with the inner peripheral surface of the second plate portion 72.
  • the fifth shaft portion 45 has a diameter smaller than the diameter of the fourth shaft portion 44.
  • the first bearing 51 and the second bearing 55 rotatably support the shaft 4.
  • the first bearing 51 is mounted on the first shaft portion 41.
  • the second bearing 55 is mounted on the fourth shaft portion 44.
  • the configurations of the first bearing 51 and the second bearing 55 may be the same or different from each other.
  • the first bearing 51 is a radial bearing or an angular bearing.
  • the first bearing 51 has an inner race 52 and an outer race 53, as shown in FIGS. 2 and 3.
  • the first bearing 51 of the present embodiment is a ball bearing in which a ball 54 is arranged between the inner race 52 and the outer race 53.
  • the inner peripheral surface of the inner race 52 is in contact with the outer peripheral surface of the first shaft portion 41 of the shaft 4.
  • the outer peripheral surface of the outer race 53 is in contact with the protrusion 71a, which will be described later.
  • the inner race 52 has a first end surface 52f and a second end surface 52s.
  • the outer race 53 has a first end surface 53f and a second end surface 53s.
  • the first end surface 52f and the first end surface 53f face the rotor main body 31.
  • the first end surface 52f is in contact with the first end surface 42f.
  • the first end surface 53f is not in contact with the shaft 4.
  • the second end surface 52s and the second end surface 53s face the shim 6.
  • the second end surface 52s is not in contact with the shim 6 and the case 7.
  • the second end surface 52s is in contact with a fixing member (not shown). This fixing member mechanically fixes the first bearing 51 and the first shaft portion 41.
  • this fixing member is a retaining ring, a nut for a shaft, or the like.
  • a shaft nut is used as the fixing member, it is preferable to form a threaded portion on the outer peripheral surface of the first shaft portion 41.
  • This fixing member may not be used. In that case, the inner race 52 and the first shaft portion 41 are fixed by fitting them together.
  • the second end surface 53s is in contact with the shim 6.
  • FIG. 2 shows an example in which the first end surface 52f and the first end surface 53f are not displaced along the axial direction of the first bearing 51.
  • FIG. 3 shows an example in which the first end surface 52f and the first end surface 53f are displaced along the axial direction of the first bearing 51. As will be described in detail later, the first end surface 52f and the first end surface 53f may be displaced along the axial direction of the first bearing 51.
  • the second bearing 55 is a radial bearing or an angular bearing.
  • the configuration of the second bearing 55 is the same as that of the first bearing 51. That is, the second bearing 55 has an inner race 56 and an outer race 57, as shown in FIGS. 2 and 3.
  • the inner peripheral surface of the inner race 56 is in contact with the outer peripheral surface of the fourth shaft portion 44.
  • the outer peripheral surface of the outer race 57 is in contact with the inner peripheral surface of the recess 72a.
  • the recess 72a is provided in the second plate portion 72 of the case 7.
  • Each of the inner race 56 and the outer race 57 has a first end surface and a second end surface. Each first end surface faces the rotor body 31.
  • the first end surface of the inner race 56 is not in contact with the rotor main body 31, but is in contact with the end surface 43a.
  • the second end surface of the inner race 56 is not in contact with the elastic member 8 and the case 7.
  • the second end surface of the inner race 56 may or may not be in contact with the same fixing member as the first bearing 51. This is because the outer race 57 is pressed toward the rotor 3 by the elastic member 8.
  • the first end surface of the outer race 57 is not in contact with the rotor 3 and the shaft 4.
  • the second end surface of the outer race 57 faces the elastic member 8.
  • the second end surface of the outer race 57 is in contact with the elastic member 8.
  • the elastic member 8 presses the second bearing 55 toward the rotor 3.
  • the elastic member 8 is arranged between the outer race 57 and the bottom of the recess 72a.
  • An example of the elastic member 8 is a spring washer, a disc spring washer, a corrugated washer, an O-ring made of rubber, or the like.
  • the case 7 houses the stator 2, the rotor 3, a part of the shaft 4, the first bearing 51, the second bearing 55, the shim 6, and the like inside.
  • the case 7 includes a peripheral wall portion 73, a first plate portion 71, and a second plate portion 72.
  • the peripheral wall portion 73 and the second plate portion 72 of this embodiment are integrally configured.
  • the peripheral wall portion 73 and the first plate portion 71 of this embodiment are configured as separate bodies.
  • the peripheral wall portion 73 and the first plate portion 71 may be integrally configured, and the peripheral wall portion 73 and the second plate portion 72 may be configured separately.
  • the peripheral wall portion 73, the first plate portion 71, and the second plate portion 72 may be configured separately.
  • the peripheral wall portion 73 and the first plate portion 71 of this embodiment are fixed to each other by a fastening member 92.
  • An example of the fastening member 92 is a screw, a bolt, or the like, like the fastening member 91.
  • the peripheral wall portion 73 surrounds the outer periphery of the stator 2 and the rotor 3.
  • a hole is provided in the end surface of the peripheral wall portion 73.
  • a fastening member 92 is provided in this hole.
  • the first plate portion 71 has a first flat surface 71f, a protruding portion 71a, a first through hole, a second through hole, and a third through hole.
  • the first plane 71f is provided inside the case 7.
  • a stator 2 and a shim 6 described later are arranged on the first plane 71f.
  • the protrusion 71a is provided between the stator 2 and the first bearing 51.
  • the protrusion 71a is connected to the first plane 71f.
  • the protruding portion 71a protrudes from the first plane 71f.
  • the shape of the protrusion 71a is, for example, a cylinder.
  • the inner peripheral surface of the protruding portion 71a is in contact with the outer peripheral surface of the outer race 53.
  • the protrusion 71a can be used for positioning the first bearing 51.
  • the outer peripheral surface of the protrusion 71a may or may not be in contact with the inner peripheral surface of the yoke 22.
  • a part of the first shaft portion 41 is provided in the first through hole.
  • a fastening member 91 is provided in the second through hole.
  • the second through hole is provided at a position corresponding to the hole portion of the stator core 21.
  • a fastening member 92 is provided in the third through hole.
  • the second through hole is provided at a position corresponding to the hole portion of the peripheral wall portion 73.
  • the second plate portion 72 has a recess 72a in the center.
  • a through hole 72h is provided at the bottom of the recess 72a.
  • a fifth shaft portion 45 is provided in the through hole 72h.
  • the inner diameter of the through hole 72h is larger than the outer diameter of the fifth shaft portion 45. Therefore, the shaft 4 rotates without contacting the inner peripheral surface of the through hole 72h with the fifth shaft portion 45.
  • a second bearing 55 is arranged between the inner peripheral surface of the recess 72a and the fifth shaft portion 45.
  • the shim 6 adjusts the length of the gap between the stator 2 and the rotor 3.
  • the shim 6 is arranged between the first plane 71f and the outer race 53, as shown in FIGS. 2 and 3.
  • the shim 6 has a first surface and a second surface. The first surface is in contact with the first plane 71f. The second surface is in contact with the second end surface 53s without being in contact with the second end surface 52s.
  • the shape of the shim 6 is an annular plate shape.
  • the shim 6 may be formed of a single plate or may be formed by stacking a plurality of shim pieces.
  • the length of the gap can be changed by changing the thickness Ts of the shim 6.
  • the first is compared with the case where the shim 6 is not arranged between the first plane 71f and the second end surface 53s.
  • the positions of both first end surfaces 52f and 53f of the bearing 51 are separated from the first plane 71f.
  • the shaft 4 is separated from the first plane 71f.
  • the rotor 3 is separated from the first plane 71f by the contact between the second end surface 42s and the first surface 31f.
  • the length of the gap when the shim 6 is arranged between the first plane 71f and the second end surface 53s is not such that the shim 6 is arranged between the first plane 71f and the second end surface 53s. It will be longer than the length of the gap in the case.
  • the thickness Ts of the shim 6 is a thickness at which the length of the gap becomes the design length G1.
  • the parts prepared in step A are the parts of the motor 1 described above with reference to FIG.
  • the parts include a stator 2, a rotor 3, a shaft 4, a first bearing 51, a second bearing 55, a shim 6, a case 7, an elastic member 8, a fastening member 91, and a fastening member 92.
  • the predicted gap length G0 obtained in step A1 means the length of the gap in the virtual motor 1Z shown in FIG.
  • the virtual motor 1Z is a virtual assembly using the above parts excluding the shim 6, and is not an actual assembly.
  • the virtual motor 1Z includes the case 7, the stator 2, the rotor 3, the shaft 4, the first bearing 51, and the second bearing 55, but does not include the shim 6 shown in FIG. 1, which is the point of the motor of the present embodiment. It is different from the motor 1A manufactured by the manufacturing method.
  • the first bearing 51 is arranged on the first plane 71f of the case 7 where the shim 6 is arranged in the manufactured motor 1A.
  • FIG. 5 shows an example in which the first end surface 52f and the first end surface 53f are not displaced along the axial direction of the first bearing 51.
  • FIG. 6 shows an example in which the first end surface 52f and the first end surface 53f are displaced along the axial direction of the first bearing 51.
  • the first end surface 52f and the first end surface 53f may be displaced along the axial direction of the first bearing 51.
  • the predicted length G0 is obtained in consideration of the actual size of the stator 2.
  • the actual size of the stator 2 is the actual size of the stator 2 before assembly.
  • the consideration of the actual size includes the case of considering the actual size itself and the case of considering the calculated value obtained from the actual size.
  • the calculated value obtained from the actual dimensions is, for example, the average value of the actual dimensions of each stator 2 obtained from the plurality of stators 2.
  • the number of measurements to obtain the average value is less than the number of motors 1A manufactured. For example, assume the case of manufacturing 1000 motors 1A. If one stator 2 is used for one motor 1A, the number of measurements for obtaining the average value of the actual dimensions of the parts may be less than 1000. Even when two stators 2 are used, the number of measurements for obtaining the average value of the actual dimensions of the parts may be less than 1000. More specifically, it is possible to obtain an average value from the actual dimensions of 50 or less stators 2. The average value is preferably obtained for each lot of the stator 2.
  • the actual size of the stator 2 is the actual size of the length L1 of the stator core 21 shown in FIG.
  • the actual dimension of the length L1 is determined by the actual dimension of the length between the first surface 22f of the yoke 22 and the end surface 23a of the teeth 23.
  • the actual dimension of the length between the first surface 22f and the end surface 23a can be measured using a height gauge equipped with a class 0 surface plate.
  • the measurement point is set, for example, on a straight line drawn so that the center of gravity of the end surface 23a and the center of the yoke 22 pass through the stator core 21 in a plan view. It is preferable to select three or more measurement points on the straight line. In particular, the measurement points are the center of gravity of the end face 23a, the edge portion of the end face 23a located on the center side of the yoke 22, and the edge portion of the end face 23a located on the side far from the center of the yoke 22 on the straight line. It is preferable to include it.
  • the length between the first surface 22f and the end surface 23a is the average value of the lengths of the straight lines connecting the surface plate and each measurement point among the straight lines orthogonal to the surface plate.
  • the actual size of the stator 2 may be obtained from the actual size of the length between the contact point between the first plane 71f and the first surface 22f and the end surface 23a.
  • the actual size of the stator 2 may be determined by the actual size of the length between the first plane 71f and the end surface 23a.
  • the actual dimension of the length between the first plane 71f and the end surface 23a is obtained in the same manner as the actual dimension of the length between the first surface 22f and the end surface 23a. That is, the first plate portion 71 is placed on the surface plate, and the stator core 21 is placed on the first plate portion 71.
  • the measurement point is the same as the measurement point when measuring the actual dimension of the length between the first surface 22f and the end surface 23a.
  • the predicted length G0 is obtained by the "actual dimensions of length L2 + length L3 + length L4-length L5-length L1" shown in FIG.
  • the length L2 is the length between the first contact point and the second contact point.
  • the first contact point is a contact point between the first plane 71f and the first bearing 51.
  • the second contact point is a contact point between the first bearing 51 and the first end surface 42f.
  • the length L2 is the height of the first bearing 51.
  • the length L3 is the length between the second contact point and the third contact point.
  • the third contact point is a contact point between the second end surface 42s and the first surface 31f.
  • the length L3 is the length of the second shaft portion 42. That is, the length L3 is the length between the first end surface 42f and the second end surface 42s.
  • the length L4 is the length between the third contact point and the bottom surface 32a.
  • the length L4 is the depth of the recess 32.
  • the length L4 is the length between the first surface 31f and the bottom surface 32a.
  • the length L5 is the length between the bottom surface 32a and the first end surface 35f.
  • the length L5 is the thickness Tm of the magnet 35.
  • the lengths L2 to L5 are all design dimensions and are known.
  • the difference between the actual dimension and the design dimension of the length L2 to L5 tends to be smaller than the difference between the actual dimension and the design dimension of the length L1.
  • the difference between the actual size and the design size of the length L1 tends to be large especially when the stator core 21 is made of a dust compact. Therefore, it is necessary to consider the actual size of the length L1 for the predicted length G0.
  • the predicted length G0 considers at least one actual dimension of length L2 to length L5.
  • the concept of the actual dimensions of each of the length L2 to the length L5 is the same as the concept of the actual dimensions of the stator 2. Further, the concept of each calculated value obtained from the actual dimensions of the length L2 to the length L5 is the same as the concept of the calculated value obtained from the actual dimensions of the stator 2.
  • the actual size of the length L2 may be either the actual height of the inner race 52 or the actual height of the outer race 53.
  • the actual height of the outer race 53 is preferable because it is easier to measure than the actual height of the inner race 52.
  • the actual height of the inner race 52 or the actual height of the outer race 53 shall be the average value of the heights at a plurality of measurement points.
  • the measurement points are set at equal intervals in the circumferential direction of the inner race 52 or the outer race 53.
  • the number of measurement points shall be 3 or more.
  • the actual size of the length L3 is the average value of the lengths at a plurality of measurement points.
  • the measurement points are evenly spaced in the circumferential direction of the second shaft portion 42.
  • the number of measurement points shall be 3 or more.
  • the actual size of the length L4 is the average value of the depths at multiple measurement points.
  • the measurement points are evenly spaced on the circumferences of the three concentric circles.
  • the three circumferences are, in a plan view of the recess 32, on the circumference of the inner peripheral edge of the recess 32, on the circumference of the outer peripheral edge of the recess 32, and at the intermediate point between the inner peripheral edge and the outer peripheral edge of the recess 32. It is on the circumference.
  • the number of measurement points on each circumference shall be 3 or more.
  • a measurement point on the circumference of the inner peripheral edge, a measurement point on the circumference of the outer peripheral edge, and a measurement point on the circumference of the intermediate point are located on a straight line along the radial direction of the rotor 3. ..
  • the depth of each measurement point is the length along the axial direction of the rotor 3 between each measurement point and the first surface 31f of the rotor main body 31.
  • the actual dimension of the length L5 is the average value of the thickness Tm of the plurality of magnets 35.
  • Each thickness Tm may be the thickness of one measurement point, or may be the average value of the thickness Tm of a plurality of measurement points.
  • One measurement point is the center of gravity of the first end surface 35f in a plan view of the magnet 35.
  • the plurality of measurement points are set on a straight line drawn so as to pass through the center of gravity of the first end surface 35f and the center of the rotor 3 in a plan view of the magnet 35. It is preferable to take three or more measurement points on the straight line.
  • the plurality of measurement points are the center of gravity of the first end surface 35f, the edge of the first end surface 35f located on the center side of the rotor 3, and the first located on the side far from the center of the rotor 3 on the straight line. It is preferable to include an edge portion of the end face 35f.
  • the thickness Tm of each magnet 35 is an average value of the lengths of the rotor 3 along the axial direction at each measurement point.
  • the actual size of the length L5 is the average value of the thickness Tm of a plurality of measurement points when the number of magnets 35 is one and the shape of the magnets 35 is annular.
  • the measurement points are evenly spaced on the circumferences of the three concentric circles.
  • the three circumferences are a plan view of the magnet 35, on the circumference of the inner peripheral edge of the first end surface 35f, on the circumference of the outer peripheral edge of the first end surface 35f, and the inner peripheral edge and the outer edge of the first end surface 35f. It shall be on the circumference of the midpoint with the periphery.
  • the number of measurement points on each circumference shall be 3 or more.
  • a measurement point on the circumference of the inner peripheral edge, a measurement point on the circumference of the outer peripheral edge, and a measurement point on the circumference of the intermediate point are located on a straight line along the radial direction of the rotor 3. ..
  • the thickness of each measurement point is the length along the axial direction of the rotor 3 at each measurement point.
  • the actual size of the length L5 is the actual size in which the rotor body 31 and the magnet 35 are fixed when the adhesive 38 is provided. That is, the actual dimension of the length L5 is the average of the lengths along the axial direction of the rotor 3 between the measurement point of the thickness Tm of the magnet 35 and the bottom surface 32a of the recess 32 described above.
  • the predicted length G0 is preferably obtained in consideration of the deviation amount g of the first bearing 51 shown in FIG. That is, it is preferable to obtain the length L2 in consideration of the deviation amount g.
  • the deviation amount g is the length along the axial direction of the first bearing 51 between the first end surface 53f and the first end surface 52f.
  • the deviation amount g is obtained in consideration of the load acting on the inner race 52 due to the weight of the shaft 4 and the rotor 3 and the load acting on the inner race 52 due to the attractive force of the magnet 35 to the stator 2.
  • the deviation amount g is a load acting on the inner race 52 due to the weight of the second bearing 55, and a load acting on the inner race 52 due to a pressing force for pressing the second bearing 55 toward the first bearing 51 by the elastic member 8. , Is required in consideration of at least one of them.
  • the load due to the weight of the shaft 4 and the rotor 3 and the load due to the attractive force of the magnet 35 to the stator 2 mainly act on the inner race 52. Further, at least one of a load due to the weight of the second bearing 55 and a load due to the pressing force of the elastic member 8 pressing the second bearing 55 toward the first bearing 51 acts on the inner race 52.
  • the first end surface 52f deviates from the first end surface 53f.
  • the deviation of the first end surface 52f is greatly affected by the attractive force of the magnet 35. That is, the stronger the magnetic force of the magnet 35, the more the first end surface 52f shifts.
  • the difference between the predicted gap length G0 shown in FIG. 6 and the design length G1 shown in FIG. 3 increases by the amount of the deviation amount g. Therefore, it is preferable to consider the deviation amount g.
  • the deviation amount g may be obtained from a graph as shown in FIG. 7.
  • the load (N) on the vertical axis of FIG. 7 indicates the load on the inner race 52 of the first bearing 51.
  • the deviation amount (mm) on the horizontal axis in FIG. 7 indicates the deviation amount g of the first end surface 52f of the inner race 52 with respect to the first end surface 53f of the outer race 53 of the first bearing 51.
  • the graph of FIG. 7 may be prepared in advance. Specifically, the graph of FIG. 7 can be obtained by applying the axial load of the first bearing 51 to the inner race 52 while displacing it.
  • the predicted length G0 is obtained by "(length L2-shift amount g) + length L3 + length L4-length L5-actual size of length L1". Even when the deviation amount g is taken into consideration, it is preferable that at least one of the length L2 to the length L5 is the actual size.
  • the thickness Ts of the shim 6 is the design length G1 of the gap shown in FIG. 2 and the predicted length of the gap shown in FIG. 5 before the process of assembling the parts, that is, before manufacturing the motor 1A described above. It is determined from the difference from G0. Alternatively, the thickness Ts of the shim 6 is determined from the difference between the design length G1 of the gap shown in FIG. 3 and the predicted length G0 of the gap shown in FIG.
  • step B of assembling the parts the stator 2, the rotor 3, the shaft 4, the first bearing 51, and the shim 6 are arranged at predetermined positions in the case 7.
  • the order of assembling the parts is not particularly limited.
  • the following steps B1 to B5 may be performed in order.
  • step B1 the shim 6 and the stator 2 are arranged on the first plane 71f of the first plate portion 71.
  • the thickness Ts of the shim 6 is the same as the difference between the design length G1 and the predicted length G0 of the gap, as described above.
  • the shim 6 is arranged on the first plane 71f corresponding to the lower part of the first bearing 51.
  • step B2 the first bearing 51 is arranged on the shim 6.
  • step B3 the first shaft portion 41 of the shaft 4 is arranged in the first bearing 51.
  • a rotor assembly that combines the rotor 3 and the shaft 4 is prepared in advance.
  • step B3 the first shaft portion 41 of the rotor assembly is arranged in the first bearing 51.
  • the process B4 is performed without going through the process B31.
  • step B31 the rotor 3 is fitted to the shaft 4 in a state where the first shaft portion 41 is arranged in the first bearing 51.
  • step B4 the second bearing 55 is fitted to the fourth shaft portion 44 of the shaft 4.
  • step B5 the through hole 72h of the second plate portion 72 is fitted into the fifth shaft portion 45 of the shaft 4, and the end face of the peripheral wall portion 73 and the first plate portion 71 are abutted against each other. Then, the first plate portion 71 and the peripheral wall portion 73 are fixed by the fastening member 92.
  • the fastening member 92 is provided in the third through hole of the first plate portion 71 and the hole portion of the peripheral wall portion 73.
  • the motor 1A shown in FIG. 1 is manufactured.
  • the gap length of the manufactured motor 1A is the design length G1 as shown in FIG. 2 or FIG.
  • the design length G1 shown in FIG. 2 or FIG. 3 is longer than the predicted length G0 of the virtual motor 1Z shown in FIG. 5 or FIG. 6 by the thickness Ts of the shim 6 shown in FIG. 2 or FIG. ..
  • the estimated gap length G0 is taken into consideration in consideration of the actual dimensions of the specific parts, and by extension, the difference between the predicted gap length G0 and the design length G1. Can be asked.
  • the estimated gap length G0 obtained in consideration of the above actual dimensions is more accurate than the predicted gap length obtained from the design dimensions and dimensional tolerances of the parts. That is, the difference between the predicted gap length G0 and the design length G1 obtained in consideration of the above actual dimensions is compared with the difference between the predicted gap length and the design length of the gap obtained from the design dimensions and dimensional tolerances. Is accurate.
  • the load acting on the first end surface 52f of the inner race 52 of the first bearing 51 may cause the first end surface 52f of the inner race 52 to deviate from the first end surface 53f of the outer race 53.
  • the predicted length G0 is obtained in consideration of the deviation amount g, so that the accurate predicted length G0, and by extension, the predicted length G0 and the design length The exact difference from G1 can be obtained.
  • the method of manufacturing the motor of this embodiment can assemble a part including a shim 6 having the same thickness as the exact above difference. Therefore, in the method of manufacturing the motor of this embodiment, the length of the gap can be set to the design length G1 by assembling the parts only once. Therefore, the method for manufacturing the motor of this embodiment is excellent in the manufacturability of the motor 1A, which is excellent in assembly accuracy.
  • the method for manufacturing a motor of this embodiment is excellent in the manufacturability of a plurality of motors 1A having excellent assembly accuracy even when the step B of assembling parts is repeated. Therefore, the motor manufacturing method of the present embodiment can manufacture a plurality of motors 1A having small variations in performance.
  • the predicted length is obtained in consideration of the average value of the actual dimensions smaller than the number of manufactured products, compared with the case where the predicted length is obtained in consideration of the same number of actual dimensions as the number of manufactured products. , It is easy to improve the manufacturability of the motor 1A.
  • FIG. 8 is a cross-sectional view of the motor 1A manufactured by the method of manufacturing the motor of the present embodiment cut along a plane parallel to the axial direction of the shaft 4.
  • the motor 1A of FIG. 8 is assembled using all the parts.
  • FIG. 8 illustrates a single stator / single rotor type axial gap motor as the manufactured motor 1A.
  • FIG. 12 shows a cross-sectional view of the virtual motor 1Z cut along a plane parallel to the axial direction of the shaft 4.
  • the motor manufacturing method of the present embodiment differs from the motor manufacturing method of the first embodiment in that the shim 6 is arranged in the process B.
  • the following description will focus on the differences from the first embodiment.
  • the description of the same configuration as that of the first embodiment may be omitted.
  • the motor 1A manufactured earlier will be described. After that, a method of manufacturing a motor for manufacturing the motor 1A will be described. As shown in FIGS. 9 and 13 or FIGS. 10 and 14, the method for manufacturing the motor of the present embodiment exemplifies the case where the predicted length G0 exceeds the design length G1.
  • the shim 6 is arranged between the first plane 71f and the first plane 22f, as shown in FIGS. 8 to 10.
  • the first surface of the shim 6 is in contact with the first plane 71f.
  • the second surface of the shim 6 is in contact with the first surface 22f.
  • the shape of the shim 6 is an annulus plate.
  • the shim 6 of this embodiment is composed of a single plate.
  • the shim 6 When the shim 6 is arranged between the first plane 71f and the first surface 22f as shown in FIGS. 8 to 10, the shim 6 is not arranged between the first plane 71f and the first surface 22f. Compared with the case, the position of the end surface 23a approaches the first end surface 35f. Therefore, the length of the gap when the shim 6 is arranged between the first plane 71f and the first surface 22f is such that the shim 6 is not arranged between the first plane 71f and the first surface 22f. It will be shorter than the length of the gap in the case.
  • the thickness Ts of the shim 6 is a thickness at which the length of the gap becomes the design length G1.
  • the shim 6 has a plurality of through holes 61.
  • the through hole 61 is a hole into which the fastening member 91 is fitted.
  • the through hole 61 is provided at a position corresponding to the hole portion of the stator core 21.
  • the area of the first surface and the second surface of the shim 6 is preferably 95% or more and 100% or less with respect to the area of the first surface 22f of the yoke 22. This is because the shim 6 easily dissipates heat from the stator 2.
  • the area of the first surface and the second surface of the shim 6 is preferably more than 95% and less than 100% with respect to the area of the first surface 22f, and particularly 96% or more and 99% with respect to the area of the first surface 22f. The following is preferable.
  • Step B the shim 6 and the first bearing 51 are arranged on the first plane 71f of the first plate portion 71.
  • the thickness Ts of the shim 6 is the same as the difference between the design length G1 and the predicted length G0 of the gap, as described above.
  • the shim 6 is arranged on the first plane 71f corresponding to the lower side of the stator 2.
  • the stator 2 is arranged on the shim 6.
  • the steps B3 and subsequent steps are the same as those in the first embodiment.
  • the method for manufacturing the motor of this embodiment is excellent in the manufacturability of the motor 1A, which is excellent in assembly accuracy, as in the first embodiment.
  • FIG. 15 is a cross-sectional view of the motor 1A manufactured by the method for manufacturing the motor of the present embodiment, cut along a plane parallel to the axial direction of the shaft 4.
  • the motor manufacturing method of the present embodiment is different from the motor manufacturing method of the second embodiment in that at least one of the prepared stator core 21 and the first plate portion 71 has a positioning portion of the shim 6.
  • the following description will focus on the differences from the second embodiment.
  • the description of the configuration similar to that of the second embodiment may be omitted.
  • both the stator core 21 and the first plate portion 71 have a shim 6 positioning portion.
  • the first surface 22f of the stator core 21 is provided with a recess 221 as a positioning portion.
  • the first plane 71f of the first plate portion 71 is provided with a recess 711 as a positioning portion.
  • the shape of the recess 221 and the shape of the recess 711 are the same as each other.
  • the shape of the recess 221 and the shape of the recess 711 are annular shapes corresponding to the shape of the shim 6.
  • the total depth of the recess 221 and the recess 711 is greater than the thickness of the shim 6.
  • the depth of the recess 221 and the depth of the recess 711 may be the same or different from each other.
  • the area of the first surface of the shim 6 is less than 100% of the area of the first surface 22f of the yoke 22.
  • the lower limit of the area of the first surface of the shim 6 is the same as that of the second embodiment.
  • step A2 The method of obtaining the predicted length G0 in the step A1 is the same as that of the first embodiment.
  • the thickness of the shim 6 is determined by "predicted length G0-design length G1 + actual dimension of depth of recess 221 + depth of recess 711".
  • the actual dimension of the depth of the recess 221 is the actual dimension of the length between the first surface 22f and the bottom surface of the recess 221.
  • the depth of the recess 221 is the length along the axial direction of the shaft 4.
  • the actual dimension of the depth of the recess 221 is the average value of the depths at a plurality of measurement points.
  • the method of taking the measurement point is the same as the method of taking the measurement point in the above-mentioned method of obtaining the actual size of the length L4.
  • the depth of the recess 711 is the length between the first plane 71f and the bottom surface of the recess 711.
  • the depth of the recess 711 is a design dimension and is known.
  • the depth of the recess 711 is preferably the actual size.
  • the actual dimension of the depth of the recess 711 is the average value of the depths at a plurality of measurement points.
  • the method of taking the measurement point is the same as the method of taking the measurement point in the method of obtaining the actual size with the length L4.
  • step B1 the shim 6 is arranged in the recess 711.
  • step B1 the location of the first bearing 51 is the same as that of the second embodiment.
  • step B2 the stator 2 is arranged so that the recess 221 fits into the shim 6.
  • a gap is formed between the first surface 22f and the first plane 71f. The size of this gap is the difference between the predicted length G0 and the design length G1.
  • steps B3 and subsequent steps are the same as those in the second embodiment.
  • the shim 6 can be easily positioned with respect to the first plate portion 71. Moreover, the method of manufacturing the motor of this embodiment makes it easy to position the stator 2 with respect to the shim 6. Therefore, the method of manufacturing the motor of this embodiment makes it easy to assemble the parts.
  • Embodiment 4 A method of manufacturing the motor of the fourth embodiment will be described with reference to FIG.
  • the motor manufacturing method of the present embodiment differs from the motor manufacturing method of the second embodiment in the following requirements (a) and (b).
  • the stator core 21 to be prepared has a plurality of stator core pieces 210.
  • the shim 6 to be prepared has a plurality of shim pieces 60.
  • the stator core piece 210 is composed of one yoke piece 220 and at least one tooth.
  • the number of stator core pieces 210 can be appropriately selected.
  • the number of the stator core pieces 210 of this embodiment is six. That is, the number of yoke pieces 220 in this embodiment is six.
  • the shape of the yoke piece 220 is a fan plate shape.
  • the number of teeth connected to each yoke piece 220 may be one or plural. In this embodiment, the number of teeth connected to each yoke piece 220 is two. In this embodiment, the actual dimensions of the length of each stator core piece 210 are substantially the same.
  • the actual length of each stator core piece 210 is the actual length between the first surface 22f of the yoke piece 220 and the end surface of the tooth.
  • the method of obtaining the actual size of the length of each stator core piece 210 is the same as the method of obtaining the actual size of the length L1 described in the first embodiment.
  • the shim 6 is composed of shim pieces 60 divided into a plurality of parts in the circumferential direction.
  • the number of shim pieces 60 is the same as the number of stator core pieces 210.
  • the shape of the shim piece 60 is the same as the shape of the yoke piece 220.
  • the shape of the shim piece 60 of this embodiment is a fan plate shape.
  • Step A1 when the actual dimensions of the lengths of the stator core pieces 210 are substantially the same as in the present embodiment, the predicted length G0 corresponding to one stator core piece 210 may be obtained.
  • the predicted length G0 corresponding to each stator core piece 210 may be obtained. good. That is, the predicted length G0, which is the same as the number of the stator core pieces 210, is obtained.
  • the method of obtaining the predicted length G0 is the same as the method of obtaining the predicted length G0 described in the first embodiment.
  • Step A2 the thickness of all shim pieces 60 is determined from the difference between one predicted length G0 and the design length G1.
  • the thickness of each shim piece 60 may be determined from the difference between each predicted length G0 and the design length G1.
  • the method of obtaining the thickness of each shim piece 60 is the same as the method of obtaining the thickness of the shim 6 described in the first embodiment.
  • the method for manufacturing a motor of this embodiment is excellent in the manufacturability of a motor having excellent assembly accuracy even when the stator core 21 includes a plurality of stator core pieces 210.
  • FIG. 17 is a cross-sectional view of the motor 1A manufactured by the method of manufacturing the motor of the present embodiment cut along a plane parallel to the axial direction of the shaft 4.
  • the motor manufacturing method of the present embodiment differs from the motor manufacturing method of the fourth embodiment in the following requirements (a) and (b).
  • the following description will focus on the differences from the fourth embodiment. The description of the configuration similar to that of the fourth embodiment may be omitted.
  • step A1 when the actual size of the length L1 of at least one stator core piece 210 is different from the actual size of the length L1 of the other stator core piece 210 as in the present embodiment, the stator core pieces 210 having different lengths are dealt with.
  • the predicted length G0 For example, of the six stator core pieces 210, three stator core pieces 210 having a length L1 of A (mm), two stator core pieces 210 having a length L1 of B (mm), and C (mm) length L1. ), One stator core piece 210, and A ⁇ B ⁇ C. In this case, three predicted lengths G0 are obtained.
  • the first predicted length G0 is a predicted length corresponding to the stator core piece 210 having a length L1 of A (mm).
  • the second predicted length G0 is a predicted length corresponding to the stator core piece 210 having a length L1 of B (mm).
  • the third predicted length G0 is a predicted length corresponding to the stator core piece 210 having a length L1 of C (mm).
  • the predicted length G0 corresponding to each stator core piece 210 may be obtained. That is, the predicted length G0, which is the same as the number of the stator core pieces 210, is obtained.
  • the method of obtaining each predicted length G0 is the same as the method of obtaining the predicted length G0 described in the first embodiment.
  • Step A2 the thickness of each shim piece 60 is determined from the difference between the three predicted lengths G0 and the design length G1.
  • the method of obtaining the thickness of each shim piece 60 is the same as the method of obtaining the thickness of the shim 6 described in the first embodiment.
  • the method for manufacturing the motor of this embodiment is excellent in the manufacturability of the motor 1A, which is excellent in assembly accuracy, even when the length L1 of the stator core pieces 210 is different.
  • FIG. 18 is a cross-sectional view of the motor 1A manufactured by the method for manufacturing the motor of the present embodiment, cut along a plane parallel to the axial direction of the shaft 4.
  • the method for manufacturing the motor of this embodiment is different from the method for manufacturing the motor of the second embodiment in that a double stator / single rotor type axial gap motor is manufactured.
  • the double stator / single rotor type is a motor in which the number of stators 2 is two and the number of rotors 3 is one.
  • one rotor 3 is assembled so as to be sandwiched between the two stators 2 from the axial direction of the shaft 4.
  • the rotor body 31 is an annular flat plate member.
  • the rotor body 31 has one first through hole and at least one second through hole.
  • the first through hole is provided in the center.
  • a third shaft portion 43 of the shaft 4 is provided in the first through hole.
  • the second through hole is provided on the outer peripheral side of the first through hole.
  • a magnet 35 is provided in the second through hole.
  • the number of second through holes is the same as the number of magnets 35.
  • the thickness of the rotor main body 31 and the thickness of the magnet 35 in this embodiment are the same. That is, the first surface of the rotor body 31 and the first end surface of the magnet 35 are flush with each other. Further, the second surface of the rotor main body 31 and the second end surface of the magnet 35 are flush with each other.
  • the first surface of the rotor body 31 and the first end surface of the magnet 35 are surfaces provided on one of the stator 2 sides.
  • the second surface of the rotor body 31 and the second end surface of the magnet 35 are surfaces provided on the other stator 2 side.
  • the stator 2 shown on the lower side of the paper in FIG. 18 is one of the stators 2. Further, the stator 2 shown on the upper side of the paper in FIG. 18 is the other stator 2.
  • the thickness of the rotor body 31 and the magnet 35 may not be the same.
  • the case 7 of this embodiment includes a pair of first plate portions 71 and a peripheral wall portion 73.
  • the pair of first plate portions 71 and the peripheral wall portion 73 are configured as separate bodies.
  • One of the first plate portion 71 and the peripheral wall portion 73 is fixed by a fastening member 92.
  • the other first plate portion 71 and the peripheral wall portion 73 are fixed by a fastening member 92.
  • the method of obtaining the predicted length is the same as that of the first embodiment.
  • the other predicted length is obtained by "the height of the other first bearing 51 + the length of the third shaft portion 43-the thickness of the magnet 35-the actual dimension of the length of the stator core 21".
  • the length of the gap in the state where the shim 6 is not arranged is defined as one of the predicted lengths.
  • the length of the gap in the state where the shim 6 is not arranged is defined as the other predicted length.
  • the method of obtaining the thickness of one shim 6 and the method of obtaining the thickness of the other shim 6 are the same as those in the first embodiment.
  • the length of the third shaft portion 43 is the length between the end surface 43a and the second end surface 42s.
  • the length of the third shaft portion 43 is the length along the axial direction of the third shaft portion 43.
  • the length of the third shaft portion 43 is a design dimension and is known.
  • the length of the third shaft portion 43 is preferably the actual size.
  • the actual size of the length of the third shaft portion 43 is the average value of the lengths at a plurality of measurement points.
  • the measurement points are evenly spaced in the circumferential direction of the third shaft portion 43.
  • the number of measurement points shall be 3 or more.
  • the length of each measurement point is the length along the axial direction of the third shaft portion 43 at each measurement point.
  • the method for manufacturing the motor of this embodiment is excellent in the manufacturability of the motor 1A, which is excellent in assembly accuracy, as in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

This motor manufacturing method comprises a step of preparing parts of an axial gap motor and a step of assembling the parts. The parts include: a rotor; a stator; a shaft that is the rotational axis of the rotor; a bearing for rotatably supporting the shaft; a case having a first plane on which the stator and the bearing are placed; and a shim disposed between the first plane and the bearing or between the first plane and the stator. The step of preparing the parts has: a step of obtaining a predicted length of the gap between the rotor and the stator in consideration of the actual dimension of the stator; and a step of determining the thickness of the shim on the basis of the difference between the design length of the gap and the predicted length thereof.

Description

モータの製造方法Motor manufacturing method

 本開示は、モータの製造方法に関する。
 本出願は、2020年11月25日付の日本国出願の特願2020-195500に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a method of manufacturing a motor.
This application claims priority based on Japanese Patent Application No. 2020-195500 of the Japanese application dated November 25, 2020, and incorporates all the contents described in the Japanese application.

 特許文献1のアキシャルギャップ型の回転電機は、特許文献1の図10に示すように、ケースとステータとロータとシャフトと軸受とを備える。ケースは、円筒状の周壁部と、一対の円板状のプレートとを備える。一対のプレートは、周壁部の両端に取り付けられている。一対のプレートの中央には、貫通孔が形成されている。貫通孔には、シャフトが設けられている。ステータとロータとは、ケース内でシャフトの軸方向に向かい合って配置されている。ステータは、プレートに配置されている。ロータは、ステータとギャップを開けて設けられている。シャフトは、ロータの回転軸である。軸受は、シャフトを回転自在に支持している。 As shown in FIG. 10 of Patent Document 1, the axial gap type rotary electric machine of Patent Document 1 includes a case, a stator, a rotor, a shaft, and a bearing. The case includes a cylindrical peripheral wall portion and a pair of disk-shaped plates. A pair of plates are attached to both ends of the peripheral wall portion. A through hole is formed in the center of the pair of plates. A shaft is provided in the through hole. The stator and rotor are arranged in the case so as to face the axial direction of the shaft. The stator is located on the plate. The rotor is provided with a gap from the stator. The shaft is the axis of rotation of the rotor. The bearing rotatably supports the shaft.

特開2020-108323号公報Japanese Unexamined Patent Publication No. 2020-108323

 本開示のモータの製造方法は、
 アキシャルギャップ型のモータのパーツを準備する工程と、
 前記パーツを組み立てる工程を備え、
 前記パーツは、
  ロータと、
  ステータと、
  前記ロータの回転軸であるシャフトと、
  前記シャフトを回転自在に支持するベアリングと、
  前記ステータ及び前記ベアリングが載置される第一平面を有するケースと、
  前記第一平面と前記ベアリングとの間、又は前記第一平面と前記ステータとの間に配置されるシムと、を含み、
 前記パーツを準備する工程は、
  前記ステータの実寸法を考慮して前記ロータと前記ステータとの間のギャップの予測長さを求める工程と、
  前記ギャップの設計長さと前記予測長さとの差に基づいて前記シムの厚さを決定する工程と、を有する。
The method for manufacturing the motor of the present disclosure is as follows.
The process of preparing parts for axial gap type motors and
With the process of assembling the parts
The parts are
With the rotor
With the stator,
The shaft, which is the rotation axis of the rotor, and
A bearing that rotatably supports the shaft and
A case having a first plane on which the stator and the bearing are placed, and
Includes shims located between the first plane and the bearing, or between the first plane and the stator.
The process of preparing the parts is
The step of obtaining the predicted length of the gap between the rotor and the stator in consideration of the actual size of the stator, and
It comprises a step of determining the thickness of the shim based on the difference between the design length of the gap and the predicted length.

図1は、実施形態1に係るモータの製造方法によって製造されたモータの概略を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing an outline of a motor manufactured by the method for manufacturing a motor according to the first embodiment. 図2は、図1の領域Aを拡大して示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing the region A of FIG. 1 in an enlarged manner. 図3は、図1の領域Aの別例を拡大して示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing another example of region A in FIG. 1 in an enlarged manner. 図4は、仮想的なモータの概略を示す断面図である。FIG. 4 is a cross-sectional view showing an outline of a virtual motor. 図5は、図4の領域Aを拡大して示す断面模式図である。FIG. 5 is a schematic cross-sectional view showing the region A of FIG. 4 in an enlarged manner. 図6は、図4の領域Aの別例を拡大して示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing another example of the region A in FIG. 4 in an enlarged manner. 図7は、第一ベアリングのインナーレースへの荷重と第一ベアリングのアウターレースに対するインナーレースのずれ量との関係を示すグラフを示す図である。FIG. 7 is a diagram showing a graph showing the relationship between the load on the inner race of the first bearing and the deviation amount of the inner race with respect to the outer race of the first bearing. 図8は、実施形態2に係るモータの製造方法によって製造されたモータの概略を示す断面模式図である。FIG. 8 is a schematic cross-sectional view showing an outline of a motor manufactured by the method for manufacturing a motor according to the second embodiment. 図9は、図8の領域Aを拡大して示す断面模式図である。FIG. 9 is a schematic cross-sectional view showing the region A of FIG. 8 in an enlarged manner. 図10は、図8の領域Aの別例を拡大して示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing another example of region A in FIG. 8 in an enlarged manner. 図11は、実施形態2に係るモータの製造方法によって製造されたモータに備わるシムを第一プレート部側から見た平面図である。FIG. 11 is a plan view of a shim provided in the motor manufactured by the method for manufacturing the motor according to the second embodiment as viewed from the first plate portion side. 図12は、仮想的なモータの概略を示す断面図である。FIG. 12 is a cross-sectional view showing an outline of a virtual motor. 図13は、図12の領域Aを拡大して示す断面模式図である。FIG. 13 is a schematic cross-sectional view showing the region A of FIG. 12 in an enlarged manner. 図14は、図12の領域Aの別例を拡大して示す断面模式図である。FIG. 14 is a schematic cross-sectional view showing another example of the region A in FIG. 12 in an enlarged manner. 図15は、実施形態3に係るモータの製造方法を説明する図である。FIG. 15 is a diagram illustrating a method for manufacturing a motor according to the third embodiment. 図16は、実施形態4に係るモータの製造方法によって製造されたモータに備わるシムを第一プレート部側から見た平面図である。FIG. 16 is a plan view of a shim provided in the motor manufactured by the method for manufacturing the motor according to the fourth embodiment as viewed from the first plate portion side. 図17は、実施形態5に係るモータの製造方法を説明する図である。FIG. 17 is a diagram illustrating a method for manufacturing a motor according to the fifth embodiment. 図18は、実施形態6に係るモータの製造方法を説明する図である。FIG. 18 is a diagram illustrating a method for manufacturing a motor according to the sixth embodiment.

 [本開示が解決しようとする課題]
 アキシャルギャップ型のモータの製造性を向上することが望まれている。
[Problems to be solved by this disclosure]
It is desired to improve the manufacturability of the axial gap type motor.

 本開示は、モータの製造性に優れるモータの製造方法を提供することを目的の一つとする。 One of the purposes of the present disclosure is to provide a method for manufacturing a motor having excellent manufacturability of the motor.

 [本開示の効果]
 本開示のモータの製造方法は、モータの製造性に優れる。
[Effect of this disclosure]
The motor manufacturing method of the present disclosure is excellent in motor manufacturability.

 《本開示の実施形態の説明》
 アキシャルギャップ型のモータは、例えば、モータのパーツの仮組みと本組みの2回の組み立て工程を経て製造される。パーツを仮組みする理由は、パーツの組み立て回数が1回では、ステータとロータとの間のギャップの長さを設計長さとすることが困難だからである。ギャップの設計長さとは、モータの仕様に基づいて決定された設計上のギャップの長さの目標値である。そこで、仮組みして作製されたモータのギャップの長さを測定する。測定により求められたギャップの測定長さとギャップの設計長さとの差を求める。ギャップの測定長さを求めた後、モータを分解する。
<< Explanation of Embodiments of the present disclosure >>
The axial gap type motor is manufactured, for example, through two assembly steps of a temporary assembly of motor parts and a main assembly. The reason for temporarily assembling the parts is that it is difficult to set the length of the gap between the stator and the rotor as the design length when the parts are assembled once. The design length of the gap is a target value of the design gap length determined based on the specifications of the motor. Therefore, the length of the gap of the temporarily assembled motor is measured. Find the difference between the measured length of the gap obtained by the measurement and the design length of the gap. After determining the measured length of the gap, disassemble the motor.

 上記差と同じ厚さを有するシムを用いて、パーツを本組みする。シムは、ベアリングとプレートとの間に配置される。シムが配置されることによって、ベアリングの位置がシムの厚さの分だけプレートから離れる。ベアリングの位置が離れることによって、ベアリングに支持されているシャフトがシャフトの軸方向にずれる。シャフトがずれることによって、ロータがステータから離れる。ロータが離れることによって、ギャップの長さが測定長さよりも長くなる。即ち、シムの厚さの分だけ、ギャップの長さが測定長さよりも長くなる。シムの厚さが上記差と同じであることで、ギャップの長さを設計長さとすることができる。 The parts are assembled using a shim that has the same thickness as the above difference. The shim is placed between the bearing and the plate. By placing the shim, the bearing position is separated from the plate by the thickness of the shim. When the bearings are separated from each other, the shaft supported by the bearings is displaced in the axial direction of the shaft. The displacement of the shaft causes the rotor to move away from the stator. As the rotors move apart, the length of the gap becomes longer than the measured length. That is, the length of the gap becomes longer than the measured length by the thickness of the shim. Since the thickness of the shim is the same as the above difference, the length of the gap can be used as the design length.

 上述した製造方法では、パーツの組み立て回数が2回であるため、製造作業が煩雑になる。 In the manufacturing method described above, the manufacturing work becomes complicated because the number of times of assembling the parts is twice.

 本発明者らは、モータの製造方法を鋭意検討した。その結果、本発明者らは、パーツを1回組み立てるだけで、ステータとロータとの間のギャップの長さを設計長さと実質的に同じにすることができる製造方法を開発するに至った。最初に本開示の実施態様を列記して説明する。 The present inventors have diligently studied a method for manufacturing a motor. As a result, the present inventors have developed a manufacturing method capable of making the length of the gap between the stator and the rotor substantially the same as the design length by assembling the parts only once. First, embodiments of the present disclosure will be listed and described.

 (1)本開示の一態様に係るモータの製造方法は、
 アキシャルギャップ型のモータのパーツを準備する工程と、
 前記パーツを組み立てる工程を備え、
 前記パーツは、
  ロータと、
  ステータと、
  前記ロータの回転軸であるシャフトと、
  前記シャフトを回転自在に支持するベアリングと、
  前記ステータ及び前記ベアリングが載置される第一平面を有するケースと、
  前記第一平面と前記ベアリングとの間、又は前記第一平面と前記ステータとの間に配置されるシムと、を含み、
 前記パーツを準備する工程は、
  前記ステータの実寸法を考慮して前記ロータと前記ステータとの間のギャップの予測長さを求める工程と、
  前記ギャップの設計長さと前記予測長さとの差に基づいて前記シムの厚さを決定する工程と、を有する。
(1) The method for manufacturing a motor according to one aspect of the present disclosure is as follows.
The process of preparing parts for axial gap type motors and
With the process of assembling the parts
The parts are
With the rotor
With the stator,
The shaft, which is the rotation axis of the rotor, and
A bearing that rotatably supports the shaft and
A case having a first plane on which the stator and the bearing are placed, and
Includes shims located between the first plane and the bearing, or between the first plane and the stator.
The process of preparing the parts is
The step of obtaining the predicted length of the gap between the rotor and the stator in consideration of the actual size of the stator, and
It comprises a step of determining the thickness of the shim based on the difference between the design length of the gap and the predicted length.

 上記モータの製造方法は、組み立て精度に優れるモータの製造性に優れる。上記製造方法は、パーツを組み立てる前に、上記実寸法を考慮してギャップの予測長さを求めることができる。即ち、上記製造方法は、パーツを組み立てる前に、ギャップの予測長さと設計長さとの差を求めることができる。 The above motor manufacturing method is excellent in motor manufacturability with excellent assembly accuracy. In the above manufacturing method, the predicted length of the gap can be obtained in consideration of the above actual dimensions before assembling the parts. That is, in the above manufacturing method, the difference between the predicted gap length and the design length can be obtained before assembling the parts.

 上記実寸法を考慮して求めるギャップの予測長さとは、詳しくは後述するが、ステータの実寸法を用いて演算したギャップの長さである。上記実寸法を考慮して求められるギャップの予測長さを第一予測長さということがある。これに対して、ギャップの予測長さは、パーツの設計寸法及び寸法公差から求めることもできる。パーツの設計寸法及び寸法公差から求められるギャップの予測長さとは、シムを除く各パーツの設計寸法及び寸法公差を用いて演算したギャップの長さである。パーツの設計寸法及び寸法公差から求められるギャップの予測長さを第二予測長さということがある。第一予測長さは、第二予測長さに比較して正確である。即ち、第一予測長さと設計長さとの差は、第二予測長さと設計長さとの差に比較して正確である。 The predicted gap length obtained in consideration of the above actual dimensions is the gap length calculated using the actual dimensions of the stator, which will be described in detail later. The predicted length of the gap obtained in consideration of the above actual dimensions may be referred to as the first predicted length. On the other hand, the predicted length of the gap can also be obtained from the design dimensions and dimensional tolerances of the parts. The predicted gap length obtained from the design dimensions and dimensional tolerances of the parts is the gap length calculated using the design dimensions and dimensional tolerances of each part excluding shims. The predicted length of the gap obtained from the design dimensions and dimensional tolerances of the part is sometimes called the second predicted length. The first predicted length is more accurate than the second predicted length. That is, the difference between the first predicted length and the design length is more accurate than the difference between the second predicted length and the design length.

 上記製造方法は、正確な上記差と同じ厚さを有するシムを含むパーツを組み立てることができる。よって、上記製造方法は、パーツを1回組み立てるだけで、ギャップの長さを設計長さとすることができる。 The above manufacturing method can assemble parts containing shims having the same thickness as the exact above difference. Therefore, in the above manufacturing method, the length of the gap can be set as the design length by assembling the parts only once.

 (2)上記モータの製造方法の一形態として、
 前記予測長さが前記設計長さ超である場合、
 前記パーツを組み立てる工程では、前記シムを前記第一平面と前記ステータとの間に配置するとよい。
(2) As one form of the above motor manufacturing method,
If the predicted length exceeds the design length
In the step of assembling the parts, the shim may be arranged between the first plane and the stator.

 上記モータの製造方法は、予測長さが設計長さ超である場合、組み立て精度に優れるモータの製造性に優れる。 The above-mentioned motor manufacturing method is excellent in the manufacturability of a motor having excellent assembly accuracy when the predicted length exceeds the design length.

 (3)上記モータの製造方法の一形態として、
 前記予測長さが前記設計長さ未満である場合、
 前記パーツを組み立てる工程では、前記シムを前記第一平面と前記ベアリングとの間に配置するとよい。
(3) As one form of the above motor manufacturing method,
If the predicted length is less than the designed length
In the step of assembling the parts, the shims may be arranged between the first plane and the bearings.

 上記モータの製造方法は、予測長さが設計長さ未満である場合、組み立て精度に優れるモータの製造性に優れる。 The above-mentioned motor manufacturing method is excellent in the manufacturability of a motor having excellent assembly accuracy when the predicted length is less than the design length.

 (4)上記モータの製造方法の一形態として、
 前記予測長さを求める工程は、更に、前記ロータ、前記シャフト、及び前記ベアリングの各々の実寸法を考慮して前記予測長さを求めるとよい。
(4) As one form of the above motor manufacturing method,
In the step of obtaining the predicted length, it is preferable to further obtain the predicted length in consideration of the actual dimensions of each of the rotor, the shaft, and the bearing.

 上記製造方法は、正確な予測長さを求めることができるため、組み立て精度に優れるモータを製造できる。 Since the above manufacturing method can obtain an accurate predicted length, it is possible to manufacture a motor having excellent assembly accuracy.

 (5)上記モータの製造方法の一形態として、
 前記ロータは、
  円環板状のロータ本体と、
  前記ロータ本体に固定されている少なくとも1枚の磁石と、を有し、
 前記ベアリングは、インナーレース及びアウターレースを有するラジアルベアリング又はアンギュラベアリングであり、
 前記インナーレース及び前記アウターレースの各々は、前記ロータ本体に向き合う第一端面を有し、
 前記予測長さを求める工程は、更に、前記アウターレースの前記第一端面と前記インナーレースの前記第一端面とのずれ量を考慮して前記予測長さを求め、
 前記ずれ量は、前記シャフト及び前記ロータの自重によって前記インナーレースに作用する荷重、及び前記磁石の前記ステータへの吸引力によって前記インナーレースに作用する荷重を考慮して求められるとよい。
(5) As one form of the above motor manufacturing method,
The rotor is
Annulus plate-shaped rotor body and
With at least one magnet fixed to the rotor body,
The bearing is a radial bearing or an angular bearing having an inner race and an outer race.
Each of the inner race and the outer race has a first end surface facing the rotor body.
In the step of obtaining the predicted length, the predicted length is further obtained in consideration of the amount of deviation between the first end surface of the outer race and the first end surface of the inner race.
The amount of deviation may be determined in consideration of the load acting on the inner race due to the weight of the shaft and the rotor, and the load acting on the inner race due to the attractive force of the magnet to the stator.

 シャフト及びロータの重さと磁石の吸引力の大きさとによっては、アウターレースの第一端面に対してインナーレースの第一端面がずれる場合がある。ずれ量の分だけ、ギャップの予測長さと設計長さとの差が大きくなる。そのため、上記実寸法だけを考慮して求められる予測長さと設計長さとの差と同じ厚さを有するシムを含むパーツを組み立てても、ギャップ長さを設計長さとすることが難しいこともある。 Depending on the weight of the shaft and rotor and the magnitude of the attractive force of the magnet, the first end surface of the inner race may shift from the first end surface of the outer race. The difference between the predicted gap length and the design length increases by the amount of deviation. Therefore, even if a part including a shim having the same thickness as the difference between the predicted length and the design length obtained by considering only the above actual dimensions is assembled, it may be difficult to set the gap length as the design length.

 上記製造方法は、アウターレースの第一端面に対してインナーレースの第一端面がずれる場合であっても、ずれ量をも考慮して予測長さを求められるので、正確な予測長さ、延いては予測長さと設計長さとの正確な差を求めることができる。そのため、上記製造方法は、パーツを1回組み立てるだけで、ギャップの長さを設計長さとすることができる。よって、上記製造方法は、組み立て精度に優れるモータの製造性に優れる。 In the above manufacturing method, even if the first end surface of the inner race deviates from the first end surface of the outer race, the predicted length can be obtained in consideration of the amount of deviation. Therefore, the exact difference between the predicted length and the design length can be obtained. Therefore, in the above manufacturing method, the length of the gap can be set as the design length by assembling the parts only once. Therefore, the above manufacturing method is excellent in the manufacturability of the motor having excellent assembly accuracy.

 (6)上記モータの製造方法の一形態として、
 前記ステータは、
  円環板状のヨークと、
  前記ヨークの周方向に間隔をあけて配置される柱状の複数のティースと、を備え、
 前記ヨークは、前記第一平面に接する第一面を有し、
 前記ティースは、前記ロータに向かい合う端面を有し、
 前記予測長さを求める工程は、前記ヨークの前記第一面と前記ティースの前記端面との間の実寸法を考慮して前記予測長さを求めるとよい。
(6) As one form of the above motor manufacturing method,
The stator is
Annulus plate-shaped yoke and
With a plurality of columnar teeth arranged at intervals in the circumferential direction of the yoke,
The yoke has a first surface in contact with the first plane.
The teeth have end faces facing the rotor and
In the step of obtaining the predicted length, the predicted length may be obtained in consideration of the actual size between the first surface of the yoke and the end surface of the teeth.

 上記製造方法は、正確な予測長さを求めることができるため、組み立て精度に優れるモータを製造できる。 Since the above manufacturing method can obtain an accurate predicted length, it is possible to manufacture a motor having excellent assembly accuracy.

 (7)上記モータの製造方法の一形態として、
 前記ステータは、圧粉成形体で構成されているステータコアを備えているとよい。
(7) As one form of the above motor manufacturing method,
The stator may include a stator core made of a dust compact.

 上記製造方法は、電磁鋼板のステータコアよりも寸法精度の低い圧粉成形体で構成されるステータコアを備える場合であっても、組み立て精度に優れるモータを製造できる。 The above manufacturing method can manufacture a motor having excellent assembly accuracy even when the stator core is provided with a dust compact having a lower dimensional accuracy than the stator core of an electromagnetic steel sheet.

 (8)上記モータの製造方法の一形態として、
 前記パーツは、前記第一平面と前記ステータとを固定する締結部材を含んでいるとよい。
(8) As one form of the above motor manufacturing method,
The part may include a fastening member that secures the first plane and the stator.

 上記製造方法は、締結部材によってステータと第一平面とのずれを抑制できるため、組み立て精度に優れるモータを製造できる。 In the above manufacturing method, since the displacement between the stator and the first plane can be suppressed by the fastening member, it is possible to manufacture a motor having excellent assembly accuracy.

 (9)上記モータの製造方法の一形態として、
 前記ロータは、
  円環板状のロータ本体と、
  前記ロータ本体に固定されている少なくとも1枚の磁石と、を有し、
 前記ロータ本体は、前記磁石に向かい合う第一面を有し、
 前記磁石は、前記ステータに向かい合う第一端面を有し、
 前記予測長さを求める工程は、前記ロータ本体と前記磁石とが固定された前記ロータにおいて、前記ロータ本体の前記第一面と前記磁石の前記第一端面との間の長さの実寸法を考慮して前記予測長さを求めるとよい。
(9) As one form of the above motor manufacturing method,
The rotor is
Annulus plate-shaped rotor body and
With at least one magnet fixed to the rotor body,
The rotor body has a front surface facing the magnet and has a front surface.
The magnet has a first end surface facing the stator and has a first end surface.
In the step of obtaining the predicted length, in the rotor in which the rotor body and the magnet are fixed, the actual dimension of the length between the first surface of the rotor body and the first end surface of the magnet is obtained. It is advisable to obtain the predicted length in consideration of this.

 上記製造方法は、正確な予測長さを求めることができるため、組み立て精度に優れるモータを製造できる。 Since the above manufacturing method can obtain an accurate predicted length, it is possible to manufacture a motor having excellent assembly accuracy.

 (10)上記(9)のモータの製造方法の一形態として、
 前記磁石の数は、1枚であり、
 前記磁石の形状は、円環状であるとよい。
(10) As one form of the motor manufacturing method of the above (9),
The number of the magnets is one.
The shape of the magnet may be annular.

 上記製造方法は、磁石の数が1枚であることで、磁石の数が複数である場合に比較して、部品点数が少ない。そのため、上記製造方法は、モータの製造性に優れる。その上、上記製造方法は、組み立て精度に優れるモータを製造できる。 In the above manufacturing method, the number of magnets is one, so that the number of parts is smaller than that in the case where the number of magnets is multiple. Therefore, the above manufacturing method is excellent in the manufacturability of the motor. Moreover, the above manufacturing method can manufacture a motor having excellent assembly accuracy.

 (11)上記モータの製造方法の一形態として、
 前記パーツを組み立てる工程では、前記ロータに前記シャフトを圧入するとよい。
(11) As one form of the above motor manufacturing method,
In the step of assembling the parts, the shaft may be press-fitted into the rotor.

 上記製造方法は、ロータにシャフトが圧入されていることで、シャフトに対してロータを位置決めできる。そのため、上記の製造方法は、ロータの振れの小さなモータを製造できる。その上、上記の製造方法は、組み立て精度に優れるモータを製造できる。 In the above manufacturing method, the rotor can be positioned with respect to the shaft by press-fitting the shaft into the rotor. Therefore, the above manufacturing method can manufacture a motor having a small rotor runout. Moreover, the above manufacturing method can manufacture a motor having excellent assembly accuracy.

 (12)上記モータの製造方法の一形態として、
 前記パーツを組み立てる工程を繰り返し行い、
 前記予測長さを求める工程は、前記モータの製造数よりも少ない数の前記ステータ、前記ロータ、前記シャフト、及び前記ベアリングの各々の実寸法の平均値を考慮して前記予測長さを求めるとよい。
(12) As one form of the above motor manufacturing method,
Repeat the process of assembling the parts,
In the step of obtaining the predicted length, the predicted length is obtained in consideration of the average value of the actual dimensions of each of the stator, the rotor, the shaft, and the bearing, which is smaller than the number of manufactured motors. good.

 上記製造方法は、組み立て精度に優れる複数のモータの製造性に優れる。そのため、上記製造方法は、性能のばらつきが小さい複数のモータを製造できる。特に、上記製造方法は、製造数よりも少ない上記実寸法の平均値を考慮して上記予測長さが求められることで、製造数と同数の上記実寸法を考慮して上記予測長さを求める場合に比較して、製造性を向上し易い。 The above manufacturing method is excellent in the manufacturability of a plurality of motors having excellent assembly accuracy. Therefore, the above manufacturing method can manufacture a plurality of motors having a small variation in performance. In particular, in the manufacturing method, the predicted length is obtained in consideration of the average value of the actual dimensions, which is smaller than the number of manufactured pieces, and thus the predicted length is obtained in consideration of the same number of the actual dimensions as the number of manufactured pieces. Compared with the case, it is easy to improve the manufacturability.

 (13)上記モータの製造方法の一形態として、
 前記ステータの数と前記ロータの数とが1つずつであるとよい。
(13) As one form of the above motor manufacturing method,
It is preferable that the number of the stators and the number of the rotors are one each.

 上記製造方法は、組み立て精度に優れるシングルステータ・シングルロータ型のモータの製造性に優れる。 The above manufacturing method is excellent in the manufacturability of a single stator / single rotor type motor having excellent assembly accuracy.

 (14)上記モータの製造方法の一形態として、
 前記ステータの数が2つであり、前記ロータの数が1つであるとよい。
(14) As one form of the above motor manufacturing method,
It is preferable that the number of the stators is two and the number of the rotors is one.

 上記製造方法は、組み立て精度に優れるダブルステータ・シングルロータ型のモータの製造性に優れる。 The above manufacturing method is excellent in the manufacturability of a double stator / single rotor type motor having excellent assembly accuracy.

 《本開示の実施形態の詳細》
 本開示の実施形態の詳細を、以下に説明する。図中の同一符号は同一名称物を示す。
<< Details of Embodiments of the present disclosure >>
Details of the embodiments of the present disclosure will be described below. The same reference numerals in the figure indicate the same names.

 《実施形態1》
 〔モータの製造方法〕
 図1から図7を参照して、実施形態1のモータの製造方法を説明する。図1は、本形態のモータの製造方法によって製造されたモータ1Aをシャフト4の軸方向に平行な平面で切断した断面図である。図1のモータ1Aは、全てのパーツを用いて組み立てたものである。パーツは、ステータ2とロータ3とシャフト4と第一ベアリング51とシム6とケース7とを含む。図1は、製造されたモータ1Aとして、シングルステータ・シングルロータ型のアキシャルギャップモータを例示している。シングルステータ・シングルロータ型とは、ステータ2の数とロータ3の数とが1つずつのモータをいう。アキシャルギャップモータとは、ステータ2とロータ3とがシャフト4の軸方向にギャップをあけて向かい合っているモータである。図4は、仮想的なモータ1Zをシャフト4の軸方向に平行な平面で切断した断面図を示している。
<< Embodiment 1 >>
[Motor manufacturing method]
The method for manufacturing the motor according to the first embodiment will be described with reference to FIGS. 1 to 7. FIG. 1 is a cross-sectional view of a motor 1A manufactured by the method for manufacturing a motor of the present embodiment, cut along a plane parallel to the axial direction of the shaft 4. The motor 1A of FIG. 1 is assembled using all the parts. The parts include a stator 2, a rotor 3, a shaft 4, a first bearing 51, a shim 6 and a case 7. FIG. 1 illustrates a single stator / single rotor type axial gap motor as the manufactured motor 1A. The single stator / single rotor type refers to a motor in which the number of stators 2 and the number of rotors 3 are one each. The axial gap motor is a motor in which the stator 2 and the rotor 3 face each other with a gap in the axial direction of the shaft 4. FIG. 4 shows a cross-sectional view of a virtual motor 1Z cut along a plane parallel to the axial direction of the shaft 4.

 本形態のモータの製造方法は、図1に示すモータ1Aの上記パーツを組み立てる工程を備える。パーツを組み立てて製造されたモータ1Aは、ステータ2とロータ3との間にギャップが設けられている。本形態のモータの製造方法は、工程Aと工程Bとを順に行う。
 工程Aは、上記パーツを準備する。
 工程Bは、上記パーツを組み立てる。
The method for manufacturing a motor of this embodiment includes a step of assembling the above-mentioned parts of the motor 1A shown in FIG. The motor 1A manufactured by assembling the parts has a gap between the stator 2 and the rotor 3. In the method for manufacturing the motor of this embodiment, steps A and B are performed in order.
In step A, the above parts are prepared.
In step B, the above parts are assembled.

 本形態のモータの製造方法の特徴の一つは、以下の要件(a)及び(b)を満たす点にある。
 (a)工程Aは、工程A1と工程A2とを有する。
 工程A1は、図4から図6に示す予測長さG0を求める。予測長さG0は、上記パーツのうちシム6を除く特定のパーツの実寸法を考慮して求められる。
 工程A2は、シム6の厚さTsを決定する。厚さTsは、図1から図3に示すギャップの設計長さG1と図4から図6に示すギャップの予測長さG0との差に基づいて決定される。設計長さG1とは、モータ1Aの仕様に基づいて決定された設計上のギャップの長さの目標値である。設計長さG1は、一定の許容幅を有する。
 (b)工程Bでは、パーツを組み立てる前に決定された厚さTsを有するシム6を所定の箇所に配置する。
One of the features of the method for manufacturing the motor of this embodiment is that the following requirements (a) and (b) are satisfied.
(A) Step A includes steps A1 and A2.
In step A1, the predicted length G0 shown in FIGS. 4 to 6 is obtained. The predicted length G0 is obtained in consideration of the actual dimensions of specific parts other than the shim 6 among the above parts.
Step A2 determines the thickness Ts of the shim 6. The thickness Ts is determined based on the difference between the design length G1 of the gap shown in FIGS. 1 to 3 and the predicted length G0 of the gap shown in FIGS. 4 to 6. The design length G1 is a target value of the design gap length determined based on the specifications of the motor 1A. The design length G1 has a certain allowable width.
(B) In step B, shims 6 having a thickness Ts determined before assembling the parts are placed at predetermined positions.

 先に製造されたモータ1Aを説明する。その後、モータ1Aを製造するモータの製造方法を説明する。本形態のモータの製造方法は、図2及び図5、又は図3及び図6に示すように、予測長さG0が設計長さG1未満である場合を例としている。 The motor 1A manufactured earlier will be described. After that, a method of manufacturing a motor for manufacturing the motor 1A will be described. As shown in FIGS. 2 and 5 or 3 and 6, the method for manufacturing the motor of the present embodiment exemplifies the case where the predicted length G0 is less than the design length G1.

   (モータ)
    〈ステータ〉
 ステータ2は、図1に示すように、ケース7の第一平面71fに配置されている。ステータ2は、図1に示すように、ステータコア21と複数のコイル25とを備えている。
(motor)
<Stator>
As shown in FIG. 1, the stator 2 is arranged on the first plane 71f of the case 7. As shown in FIG. 1, the stator 2 includes a stator core 21 and a plurality of coils 25.

     ・ステータコア
 ステータコア21は、円環板状のヨーク22と柱状の複数のティース23とを備えている。
Stator core The stator core 21 includes an annular plate-shaped yoke 22 and a plurality of columnar teeth 23.

     ・・ヨーク
 ヨーク22は、ヨーク22の周方向に並ぶティース23のうち、隣り合っているティース23同士を磁気的に結合する。ヨーク22は、図2に示すように、平面状の第一面22fと平面状の第二面22sと外周面と内周面とを有している。第一面22f及び第二面22sは、外周面と内周面とをつないでいる面である。第一面22fは、第一平面71fに接している。第二面22sは、ティース23の側面につながっている面である。
The yoke yoke 22 magnetically couples adjacent teeth 23 among the teeth 23 arranged in the circumferential direction of the yoke 22. As shown in FIG. 2, the yoke 22 has a planar first surface 22f, a planar second surface 22s, an outer peripheral surface, and an inner peripheral surface. The first surface 22f and the second surface 22s are surfaces connecting the outer peripheral surface and the inner peripheral surface. The first surface 22f is in contact with the first plane 71f. The second surface 22s is a surface connected to the side surface of the teeth 23.

     ・・ティース
 ティース23は、図1に示すように、コイル25が設けられている。ティース23の数は複数である。各ティース23は、ヨーク22の周方向に所定の間隔をあけて配置されている。各ティース23は、図2に示すヨーク22の第二面22sに直交するように突出している。本形態の各ティース23とヨーク22とは一体の圧粉成形体で構成されている。各ティース23の形状及び大きさは同一である。各ティース23の形状は、角柱状又は円柱状である。各ティース23は、側面と端面23aとを有する。側面は、ヨーク22の第二面22sにつながっている面である。側面は、ヨーク22の第二面22sから突出している。端面23aは、突出方向の先端に位置している。端面23aは、側面につながっている面である。端面23aは、後述するロータ3の磁石35に向かい合っている。
The teeth 23 is provided with a coil 25 as shown in FIG. The number of teeth 23 is plural. The teeth 23 are arranged at predetermined intervals in the circumferential direction of the yoke 22. Each tooth 23 projects so as to be orthogonal to the second surface 22s of the yoke 22 shown in FIG. Each of the teeth 23 and the yoke 22 of this embodiment is composed of an integral dust compact. The shape and size of each tooth 23 are the same. The shape of each tooth 23 is prismatic or columnar. Each tooth 23 has a side surface and an end surface 23a. The side surface is a surface connected to the second surface 22s of the yoke 22. The side surface protrudes from the second surface 22s of the yoke 22. The end face 23a is located at the tip in the protruding direction. The end surface 23a is a surface connected to the side surface. The end face 23a faces the magnet 35 of the rotor 3, which will be described later.

     ・・穴部
 ステータコア21は、図1に示すように、穴部を有している。この穴部には、締結部材91が設けられている。締結部材91は、ステータコア21を第一平面71fに固定する。締結部材91によって、ステータ2と第一平面71fとの位置ずれが抑制される。締結部材91の一例は、ネジ又はボルトなどである。穴部は、第一面22fからティース23の途中にわたって形成されている。穴部の数は、ティース23の数よりも少なくてもよいし、ティース23の数と同数であってもよい。
-Hole portion The stator core 21 has a hole portion as shown in FIG. A fastening member 91 is provided in this hole. The fastening member 91 fixes the stator core 21 to the first plane 71f. The fastening member 91 suppresses the positional deviation between the stator 2 and the first plane 71f. An example of the fastening member 91 is a screw, a bolt, or the like. The hole portion is formed from the first surface 22f to the middle of the teeth 23. The number of holes may be less than the number of teeth 23, or may be the same as the number of teeth 23.

     ・コイル
 各コイル25は、筒状部を備えている。筒状部は、巻線を螺旋状に巻回して構成されている。本形態のコイル25は、エッジワイズ巻きコイルである。コイル25の巻線には、被覆平角線が用いられている。各コイル25は、ティース23の外側に配置されている。各コイル25における筒状部の横断面形状は、例えば、ティース23の横断面形状に対応した形状であることが挙げられる。筒状部の軸方向の長さは、ティース23の長さよりも若干短い。なお、図1では、筒状部のみを示し、巻線の両端部は図示を省略している。
Coil Each coil 25 has a tubular portion. The tubular portion is configured by winding a winding spirally. The coil 25 of this embodiment is an edgewise winding coil. A covered flat wire is used for the winding of the coil 25. Each coil 25 is arranged outside the teeth 23. The cross-sectional shape of the tubular portion of each coil 25 may be, for example, a shape corresponding to the cross-sectional shape of the teeth 23. The axial length of the tubular portion is slightly shorter than the length of the teeth 23. In FIG. 1, only the tubular portion is shown, and both ends of the winding are not shown.

    〈ロータ〉
 ロータ3は、ステータ2とギャップをあけて設けられている。ロータ3は、ロータ本体31と、少なくとも1つの磁石35とを備えている。
<Rotor>
The rotor 3 is provided with a gap from the stator 2. The rotor 3 includes a rotor main body 31 and at least one magnet 35.

     ・ロータ本体
 ロータ本体31は、シャフト4によってケース7に対して回転可能に支持されている。ロータ本体31は、円環状の部材である。ロータ本体31は、中央に貫通孔が設けられている。この貫通孔には、後述するシャフト4の第三軸部43が設けられている。本形態では、貫通孔に第三軸部43が圧入されることで、ロータ本体31とシャフト4とが組み合わされている。圧入されていることで、シャフト4に対してロータ3を位置決めできる。そのため、ロータ3の振れが小さくなり易い。シャフト4の軸方向に沿ったロータ本体31の位置は、後述する第二軸部42の第二端面42sにロータ本体31が当止されることで位置決めされている。
-Rotor body The rotor body 31 is rotatably supported by the shaft 4 with respect to the case 7. The rotor body 31 is an annular member. The rotor main body 31 is provided with a through hole in the center. A third shaft portion 43 of the shaft 4, which will be described later, is provided in this through hole. In this embodiment, the rotor main body 31 and the shaft 4 are combined by press-fitting the third shaft portion 43 into the through hole. By being press-fitted, the rotor 3 can be positioned with respect to the shaft 4. Therefore, the runout of the rotor 3 tends to be small. The position of the rotor main body 31 along the axial direction of the shaft 4 is positioned by the rotor main body 31 being stopped by the second end surface 42s of the second shaft portion 42, which will be described later.

 ロータ本体31は、図2に示すように、第一面31fと第二面31sと内周面と外周面とを有している。第一面31fと第二面31sは、内周面と外周面とをつないでいる。第一面31fは、ステータ2側の面である。第二面31sは、図1に示す第二ベアリング55側の面である。第二ベアリング55は後述する。本形態の第一面31fは、第二端面42sに接している。本形態の第一面31fには、凹部32が設けられている。凹部32は、ステータ2側に開口している。凹部32の底面32aには、磁石35が固定されている。ロータ本体31の内周面は、シャフト4の第三軸部43に接している。ロータ本体31の外周面は、図1に示すように、ケース7の周壁部73の内周面と接していない。ロータ本体31の外周面とケース7の周壁部73の内周面との間には間隔が設けられている。 As shown in FIG. 2, the rotor main body 31 has a first surface 31f, a second surface 31s, an inner peripheral surface, and an outer peripheral surface. The first surface 31f and the second surface 31s connect the inner peripheral surface and the outer peripheral surface. The first surface 31f is a surface on the stator 2 side. The second surface 31s is the surface on the second bearing 55 side shown in FIG. The second bearing 55 will be described later. The first surface 31f of this embodiment is in contact with the second end surface 42s. A recess 32 is provided on the first surface 31f of this embodiment. The recess 32 is open to the stator 2 side. A magnet 35 is fixed to the bottom surface 32a of the recess 32. The inner peripheral surface of the rotor body 31 is in contact with the third shaft portion 43 of the shaft 4. As shown in FIG. 1, the outer peripheral surface of the rotor main body 31 is not in contact with the inner peripheral surface of the peripheral wall portion 73 of the case 7. A gap is provided between the outer peripheral surface of the rotor main body 31 and the inner peripheral surface of the peripheral wall portion 73 of the case 7.

     ・磁石
 磁石35は、ロータ本体31に固定されている。磁石35の固定には、図2に示すように、接着剤38を用いる。磁石35の数は、1枚でもよいし、複数でもよい。磁石35の数が1枚であれば、磁石35の数が複数である場合に比較して、部品点数が少なく、ロータ3を作製し易い。そのため、モータ1Aの製造性を向上し易い。その上、組み立て精度に優れるモータ1Aを製造し易い。
-Magnet The magnet 35 is fixed to the rotor main body 31. As shown in FIG. 2, an adhesive 38 is used to fix the magnet 35. The number of magnets 35 may be one or a plurality. When the number of magnets 35 is one, the number of parts is small and the rotor 3 can be easily manufactured as compared with the case where the number of magnets 35 is a plurality. Therefore, it is easy to improve the manufacturability of the motor 1A. Moreover, it is easy to manufacture the motor 1A having excellent assembly accuracy.

 磁石35の数が1枚である場合、磁石35の形状は円環状である。1枚の磁石35は、S極とN極とが周方向に交互に配置されている。磁石35の数が複数である場合、具体的な磁石35の数はティース23の数と同数とする。複数の磁石35は、ロータ本体31の周方向に等間隔に配置されている。各磁石35の形状は、例えば、平板状である。各磁石35の平面形状は、例えば、ティース23の端面23aの平面形状と同じである。各磁石35は、ロータ3の回転軸の軸方向に着磁される。ロータ本体31の周方向に隣り合っている磁石35の磁化方向は互いに逆である。ステータ2で発生される回転磁界によって磁石35が各ティース23と吸引と反発を繰り返すことでロータ3が回転する。 When the number of magnets 35 is one, the shape of the magnets 35 is annular. In one magnet 35, S poles and N poles are alternately arranged in the circumferential direction. When the number of magnets 35 is plural, the specific number of magnets 35 is the same as the number of teeth 23. The plurality of magnets 35 are arranged at equal intervals in the circumferential direction of the rotor main body 31. The shape of each magnet 35 is, for example, a flat plate. The planar shape of each magnet 35 is, for example, the same as the planar shape of the end surface 23a of the teeth 23. Each magnet 35 is magnetized in the axial direction of the rotation axis of the rotor 3. The magnetization directions of the magnets 35 adjacent to each other in the circumferential direction of the rotor main body 31 are opposite to each other. The rotating magnetic field generated by the stator 2 causes the magnet 35 to repeatedly attract and repel each tooth 23 to rotate the rotor 3.

 磁石35は、永久磁石である。永久磁石の具体例は、フェライト磁石、ネオジム磁石、サマリウムコバルト磁石、又はボンド磁石である。特に、ネオジム磁石とサマリウムコバルト磁石は、磁力が強い。 The magnet 35 is a permanent magnet. Specific examples of permanent magnets are ferrite magnets, neodymium magnets, samarium-cobalt magnets, or bond magnets. In particular, neodymium magnets and samarium-cobalt magnets have strong magnetic forces.

    〈シャフト〉
 シャフト4は、ロータ3の回転軸である。シャフト4は、中実の丸棒状体で構成されている。シャフト4は、図1に示すように、直径の異なる複数の軸部を有している。複数の軸部は、一体に構成されている。本形態のシャフト4は、ケース7の第一プレート部71側から第二プレート部72側に向かって順に、第一軸部41、第二軸部42、第三軸部43、第四軸部44、及び第五軸部45を有している。
<shaft>
The shaft 4 is a rotation shaft of the rotor 3. The shaft 4 is composed of a solid round bar. As shown in FIG. 1, the shaft 4 has a plurality of shaft portions having different diameters. The plurality of shaft portions are integrally configured. The shaft 4 of the present embodiment has the first shaft portion 41, the second shaft portion 42, the third shaft portion 43, and the fourth shaft portion in order from the first plate portion 71 side to the second plate portion 72 side of the case 7. It has 44 and a fifth shaft portion 45.

 第一軸部41は、図1に示すように、第一ベアリング51内に設けられている。第一軸部41の外周面は、図2に示すように、第一ベアリング51のインナーレース52の内周面に接している。 As shown in FIG. 1, the first shaft portion 41 is provided in the first bearing 51. As shown in FIG. 2, the outer peripheral surface of the first shaft portion 41 is in contact with the inner peripheral surface of the inner race 52 of the first bearing 51.

 第二軸部42は、図1に示すように、第一軸部41の直径よりも大きな直径を有している。第二軸部42は、図2に示すように、第一端面42fと第二端面42sとを有している。第一端面42fは、インナーレース52の第一端面52fに接している。第一端面42fは、第一ベアリング51のアウターレース53に接していない。第二端面42sは、ロータ本体31の第一面31fに接している。 As shown in FIG. 1, the second shaft portion 42 has a diameter larger than the diameter of the first shaft portion 41. As shown in FIG. 2, the second shaft portion 42 has a first end surface 42f and a second end surface 42s. The first end surface 42f is in contact with the first end surface 52f of the inner race 52. The first end surface 42f is not in contact with the outer race 53 of the first bearing 51. The second end surface 42s is in contact with the first surface 31f of the rotor main body 31.

 第三軸部43は、図1に示すように、ロータ本体31の貫通孔に設けられている。第三軸部43の外周面は、図2に示すように、ロータ本体31の内周面に接している。第三軸部43は、図1に示すように、第二軸部42の直径よりも小さな直径を有している。第三軸部43は、図2に示すように、端面43aを有する。端面43aは、第二ベアリング55のインナーレース56の第一端面に接している。 As shown in FIG. 1, the third shaft portion 43 is provided in the through hole of the rotor main body 31. As shown in FIG. 2, the outer peripheral surface of the third shaft portion 43 is in contact with the inner peripheral surface of the rotor main body 31. As shown in FIG. 1, the third shaft portion 43 has a diameter smaller than the diameter of the second shaft portion 42. As shown in FIG. 2, the third shaft portion 43 has an end face 43a. The end surface 43a is in contact with the first end surface of the inner race 56 of the second bearing 55.

 第四軸部44は、図1に示すように、第二ベアリング55内に設けられている。第四軸部44の外周面は、インナーレース56の内周面に接している。第四軸部44は、第三軸部43の直径よりも小さな直径を有している。 As shown in FIG. 1, the fourth shaft portion 44 is provided in the second bearing 55. The outer peripheral surface of the fourth shaft portion 44 is in contact with the inner peripheral surface of the inner race 56. The fourth shaft portion 44 has a diameter smaller than the diameter of the third shaft portion 43.

 第五軸部45は、貫通孔72h内に設けられている。貫通孔72hは、後述する第二プレート部72に設けられている。第五軸部45の外周面は、第二プレート部72の内周面と接していない。第五軸部45は、第四軸部44の直径よりも小さな直径を有している。 The fifth shaft portion 45 is provided in the through hole 72h. The through hole 72h is provided in the second plate portion 72, which will be described later. The outer peripheral surface of the fifth shaft portion 45 is not in contact with the inner peripheral surface of the second plate portion 72. The fifth shaft portion 45 has a diameter smaller than the diameter of the fourth shaft portion 44.

    〈第一ベアリング・第二ベアリング〉
 第一ベアリング51及び第二ベアリング55は、シャフト4を回転自在に支持している。第一ベアリング51は、第一軸部41に装着されている。第二ベアリング55は、第四軸部44に装着されている。第一ベアリング51及び第二ベアリング55の構成は、互いに同じ構成でもよいし、互いに異なる構成であってもよい。
<First bearing / Second bearing>
The first bearing 51 and the second bearing 55 rotatably support the shaft 4. The first bearing 51 is mounted on the first shaft portion 41. The second bearing 55 is mounted on the fourth shaft portion 44. The configurations of the first bearing 51 and the second bearing 55 may be the same or different from each other.

 第一ベアリング51は、ラジアルベアリング又はアンギュラベアリングである。第一ベアリング51は、図2、図3に示すように、インナーレース52とアウターレース53とを有する。本形態の第一ベアリング51は、インナーレース52とアウターレース53との間にボール54が配置されるボールベアリングである。インナーレース52の内周面は、シャフト4の第一軸部41の外周面に接している。アウターレース53の外周面は、後述する突出部71aに接している。 The first bearing 51 is a radial bearing or an angular bearing. The first bearing 51 has an inner race 52 and an outer race 53, as shown in FIGS. 2 and 3. The first bearing 51 of the present embodiment is a ball bearing in which a ball 54 is arranged between the inner race 52 and the outer race 53. The inner peripheral surface of the inner race 52 is in contact with the outer peripheral surface of the first shaft portion 41 of the shaft 4. The outer peripheral surface of the outer race 53 is in contact with the protrusion 71a, which will be described later.

 インナーレース52は、第一端面52fと第二端面52sとを有している。アウターレース53は、第一端面53fと第二端面53sとを有している。第一端面52f及び第一端面53fは、ロータ本体31に向き合っている。第一端面52fは、第一端面42fに接している。第一端面53fは、シャフト4に接していない。第二端面52s及び第二端面53sは、シム6に向き合っている。第二端面52sは、シム6及びケース7に接していない。本形態では、第二端面52sは、図示を省略する固定部材に接している。この固定部材は、第一ベアリング51と第一軸部41とを機械的に固定する。この固定部材の一例は、止め輪又は軸用ナットなどである。固定部材に軸用ナットを用いる場合、第一軸部41の外周面にねじ部を形成しておくとよい。この固定部材は用いられなくてもよい。その場合、インナーレース52と第一軸部41とは嵌め合わせることで固定される。第二端面53sは、シム6に接している。図2には、第一端面52fと第一端面53fとが第一ベアリング51の軸方向に沿ってずれていない例を示している。図3には、第一端面52fと第一端面53fとが第一ベアリング51の軸方向に沿ってずれている例を示している。詳しくは後述するように、第一端面52fと第一端面53fとが第一ベアリング51の軸方向に沿ってずれることもある。 The inner race 52 has a first end surface 52f and a second end surface 52s. The outer race 53 has a first end surface 53f and a second end surface 53s. The first end surface 52f and the first end surface 53f face the rotor main body 31. The first end surface 52f is in contact with the first end surface 42f. The first end surface 53f is not in contact with the shaft 4. The second end surface 52s and the second end surface 53s face the shim 6. The second end surface 52s is not in contact with the shim 6 and the case 7. In this embodiment, the second end surface 52s is in contact with a fixing member (not shown). This fixing member mechanically fixes the first bearing 51 and the first shaft portion 41. An example of this fixing member is a retaining ring, a nut for a shaft, or the like. When a shaft nut is used as the fixing member, it is preferable to form a threaded portion on the outer peripheral surface of the first shaft portion 41. This fixing member may not be used. In that case, the inner race 52 and the first shaft portion 41 are fixed by fitting them together. The second end surface 53s is in contact with the shim 6. FIG. 2 shows an example in which the first end surface 52f and the first end surface 53f are not displaced along the axial direction of the first bearing 51. FIG. 3 shows an example in which the first end surface 52f and the first end surface 53f are displaced along the axial direction of the first bearing 51. As will be described in detail later, the first end surface 52f and the first end surface 53f may be displaced along the axial direction of the first bearing 51.

 第二ベアリング55は、ラジアルベアリング又はアンギュラベアリングである。第二ベアリング55の構成は、第一ベアリング51と同じ構成である。即ち、第二ベアリング55は、図2,図3に示すように、インナーレース56とアウターレース57とを有する。インナーレース56の内周面は、第四軸部44の外周面に接している。アウターレース57の外周面は、凹部72aの内周面に接している。凹部72aは、ケース7の第二プレート部72に設けられている。インナーレース56及びアウターレース57の各々は、第一端面と第二端面とを有している。各第一端面は、ロータ本体31に向き合っている。インナーレース56の第一端面は、ロータ本体31に接しておらず、端面43aに接している。インナーレース56の第二端面は、弾性部材8及びケース7に接していない。インナーレース56の第二端面は、第一ベアリング51と同様の固定部材に接していてもよいし、固定部材に接していなくてもよい。弾性部材8によってアウターレース57がロータ3側へ押圧されているからである。アウターレース57の第一端面は、ロータ3及びシャフト4に接していない。アウターレース57の第二端面は、弾性部材8に向き合っている。アウターレース57の第二端面は、弾性部材8に接している。 The second bearing 55 is a radial bearing or an angular bearing. The configuration of the second bearing 55 is the same as that of the first bearing 51. That is, the second bearing 55 has an inner race 56 and an outer race 57, as shown in FIGS. 2 and 3. The inner peripheral surface of the inner race 56 is in contact with the outer peripheral surface of the fourth shaft portion 44. The outer peripheral surface of the outer race 57 is in contact with the inner peripheral surface of the recess 72a. The recess 72a is provided in the second plate portion 72 of the case 7. Each of the inner race 56 and the outer race 57 has a first end surface and a second end surface. Each first end surface faces the rotor body 31. The first end surface of the inner race 56 is not in contact with the rotor main body 31, but is in contact with the end surface 43a. The second end surface of the inner race 56 is not in contact with the elastic member 8 and the case 7. The second end surface of the inner race 56 may or may not be in contact with the same fixing member as the first bearing 51. This is because the outer race 57 is pressed toward the rotor 3 by the elastic member 8. The first end surface of the outer race 57 is not in contact with the rotor 3 and the shaft 4. The second end surface of the outer race 57 faces the elastic member 8. The second end surface of the outer race 57 is in contact with the elastic member 8.

    〈弾性部材8〉
 弾性部材8は、第二ベアリング55をロータ3側へ押圧する。弾性部材8は、アウターレース57と凹部72aの底部との間に配置されている。弾性部材8の一例は、ばね座金、皿ばね座金、波形座金、又はゴム製のOリングなどである。
<Elastic member 8>
The elastic member 8 presses the second bearing 55 toward the rotor 3. The elastic member 8 is arranged between the outer race 57 and the bottom of the recess 72a. An example of the elastic member 8 is a spring washer, a disc spring washer, a corrugated washer, an O-ring made of rubber, or the like.

    〈ケース〉
 ケース7は、ステータ2、ロータ3、シャフト4の一部、第一ベアリング51、第二ベアリング55、及びシム6などを内部に収納している。ケース7は、周壁部73と第一プレート部71と第二プレート部72とを備えている。
<Case>
The case 7 houses the stator 2, the rotor 3, a part of the shaft 4, the first bearing 51, the second bearing 55, the shim 6, and the like inside. The case 7 includes a peripheral wall portion 73, a first plate portion 71, and a second plate portion 72.

 本形態の周壁部73と第二プレート部72とは、一体に構成されている。本形態の周壁部73と第一プレート部71とは、別体に構成されている。本形態とは異なり、周壁部73と第一プレート部71とは、一体に構成されていて、周壁部73と第二プレート部72とは、別体に構成されていてもよい。また、本形態とは異なり、周壁部73と第一プレート部71と第二プレート部72とは、別体に構成されていてもよい。本形態の周壁部73と第一プレート部71とは、締結部材92によって互いに固定されている。締結部材92の一例は、締結部材91と同様、ネジ又はボルトなどである。 The peripheral wall portion 73 and the second plate portion 72 of this embodiment are integrally configured. The peripheral wall portion 73 and the first plate portion 71 of this embodiment are configured as separate bodies. Unlike this embodiment, the peripheral wall portion 73 and the first plate portion 71 may be integrally configured, and the peripheral wall portion 73 and the second plate portion 72 may be configured separately. Further, unlike the present embodiment, the peripheral wall portion 73, the first plate portion 71, and the second plate portion 72 may be configured separately. The peripheral wall portion 73 and the first plate portion 71 of this embodiment are fixed to each other by a fastening member 92. An example of the fastening member 92 is a screw, a bolt, or the like, like the fastening member 91.

 周壁部73は、ステータ2及びロータ3の外周を囲む。周壁部73の端面には、穴部が設けられている。この穴部には、締結部材92が設けられている。 The peripheral wall portion 73 surrounds the outer periphery of the stator 2 and the rotor 3. A hole is provided in the end surface of the peripheral wall portion 73. A fastening member 92 is provided in this hole.

 第一プレート部71は、第一平面71fと突出部71aと第一貫通孔と第二貫通孔と第三貫通孔を有している。第一平面71fは、ケース7の内側に設けられている。第一平面71fは、ステータ2及び後述するシム6が配置されている。突出部71aは、ステータ2と第一ベアリング51との間に設けられている。突出部71aは、第一平面71fにつながっている。突出部71aは、第一平面71fから突出している。突出部71aの形状は、例えば円筒状である。突出部71aの内周面は、アウターレース53の外周面に接している。突出部71aは、第一ベアリング51の位置決めに利用できる。突出部71aの外周面は、ヨーク22の内周面に接していてもよいし、接していなくてもよい。第一貫通孔には、第一軸部41の一部が設けられている。第二貫通孔には、締結部材91が設けられている。第二貫通孔は、ステータコア21の上記穴部に対応する箇所に設けられている。第三貫通孔には、締結部材92が設けられている。第二貫通孔は、周壁部73の上記穴部に対応する箇所に設けられている。 The first plate portion 71 has a first flat surface 71f, a protruding portion 71a, a first through hole, a second through hole, and a third through hole. The first plane 71f is provided inside the case 7. A stator 2 and a shim 6 described later are arranged on the first plane 71f. The protrusion 71a is provided between the stator 2 and the first bearing 51. The protrusion 71a is connected to the first plane 71f. The protruding portion 71a protrudes from the first plane 71f. The shape of the protrusion 71a is, for example, a cylinder. The inner peripheral surface of the protruding portion 71a is in contact with the outer peripheral surface of the outer race 53. The protrusion 71a can be used for positioning the first bearing 51. The outer peripheral surface of the protrusion 71a may or may not be in contact with the inner peripheral surface of the yoke 22. A part of the first shaft portion 41 is provided in the first through hole. A fastening member 91 is provided in the second through hole. The second through hole is provided at a position corresponding to the hole portion of the stator core 21. A fastening member 92 is provided in the third through hole. The second through hole is provided at a position corresponding to the hole portion of the peripheral wall portion 73.

 第二プレート部72は、中央に凹部72aを有している。凹部72aの底部には、貫通孔72hが設けられている。貫通孔72h内には、第五軸部45が設けられている。貫通孔72hの内径は、第五軸部45の外径よりも大きい。そのため、貫通孔72hの内周面と第五軸部45とが接触することなく、シャフト4が回転する。凹部72aの内周面と第五軸部45との間には、第二ベアリング55が配置されている。 The second plate portion 72 has a recess 72a in the center. A through hole 72h is provided at the bottom of the recess 72a. A fifth shaft portion 45 is provided in the through hole 72h. The inner diameter of the through hole 72h is larger than the outer diameter of the fifth shaft portion 45. Therefore, the shaft 4 rotates without contacting the inner peripheral surface of the through hole 72h with the fifth shaft portion 45. A second bearing 55 is arranged between the inner peripheral surface of the recess 72a and the fifth shaft portion 45.

    〈シム〉
 シム6は、ステータ2とロータ3との間のギャップの長さを調整している。シム6は、本形態では図2、図3に示すように、第一平面71fとアウターレース53との間に配置されている。シム6は、第一面と第二面とを有している。第一面は、第一平面71fに接している。第二面は、第二端面52sに接することなく、第二端面53sに接している。シム6の形状は、円環板状である。シム6は、一枚板で構成していてもよいし、複数枚のシム片を重ねて構成していてもよい。
<Sim>
The shim 6 adjusts the length of the gap between the stator 2 and the rotor 3. In this embodiment, the shim 6 is arranged between the first plane 71f and the outer race 53, as shown in FIGS. 2 and 3. The shim 6 has a first surface and a second surface. The first surface is in contact with the first plane 71f. The second surface is in contact with the second end surface 53s without being in contact with the second end surface 52s. The shape of the shim 6 is an annular plate shape. The shim 6 may be formed of a single plate or may be formed by stacking a plurality of shim pieces.

 シム6の厚さTsを変えることで、ギャップの長さを変えられる。シム6が第一平面71fと第二端面53sとの間に配置されている場合、シム6が第一平面71fと第二端面53sとの間に配置されていない場合に比較して、第一ベアリング51の両第一端面52f、53fの位置が第一平面71fから離れる。第一端面52fと第一端面42fとが接していることで、シャフト4が第一平面71fから離れる。第二端面42sと第一面31fとが接していることで、ロータ3が第一平面71fから離れる。よって、シム6が第一平面71fと第二端面53sとの間に配置されている場合のギャップの長さが、シム6が第一平面71fと第二端面53sとの間に配置されていない場合のギャップの長さよりも長くなる。シム6の厚さTsは、ギャップの長さが設計長さG1となる厚さである。 The length of the gap can be changed by changing the thickness Ts of the shim 6. When the shim 6 is arranged between the first plane 71f and the second end surface 53s, the first is compared with the case where the shim 6 is not arranged between the first plane 71f and the second end surface 53s. The positions of both first end surfaces 52f and 53f of the bearing 51 are separated from the first plane 71f. When the first end surface 52f and the first end surface 42f are in contact with each other, the shaft 4 is separated from the first plane 71f. The rotor 3 is separated from the first plane 71f by the contact between the second end surface 42s and the first surface 31f. Therefore, the length of the gap when the shim 6 is arranged between the first plane 71f and the second end surface 53s is not such that the shim 6 is arranged between the first plane 71f and the second end surface 53s. It will be longer than the length of the gap in the case. The thickness Ts of the shim 6 is a thickness at which the length of the gap becomes the design length G1.

  [工程A]
 工程Aで準備するパーツは、図1を参照して上述したモータ1のパーツである。本形態では、パーツは、ステータ2、ロータ3、シャフト4、第一ベアリング51、第二ベアリング55、シム6、ケース7、弾性部材8、締結部材91、及び締結部材92を含む。
[Step A]
The parts prepared in step A are the parts of the motor 1 described above with reference to FIG. In this embodiment, the parts include a stator 2, a rotor 3, a shaft 4, a first bearing 51, a second bearing 55, a shim 6, a case 7, an elastic member 8, a fastening member 91, and a fastening member 92.

   (工程A1)
 工程A1で求められるギャップの予測長さG0とは、図4に示す仮想的なモータ1Zにおけるギャップの長さをいう。仮想的なモータ1Zとは、シム6を除く上記パーツを用いて仮想的に組み立てたものであり、実際に組み立てたものではない。仮想的なモータ1Zは、ケース7とステータ2とロータ3とシャフト4と第一ベアリング51と第二ベアリング55とを含むものの、図1に示すシム6を含まない点が、本形態のモータの製造方法によって製造されたモータ1Aと相違する。仮想的なモータ1Zは、製造されたモータ1Aにおいてシム6が配置されていたケース7の第一平面71fに第一ベアリング51が配置されている。仮想的なモータ1Zは、製造されたモータ1Aに対して、シム6の厚さTsの分だけ、第一ベアリング51、シャフト4、及びロータ3の位置が、第一平面71f側に位置している。図5には、第一端面52fと第一端面53fとが第一ベアリング51の軸方向に沿ってずれていない例を示している。図6には、第一端面52fと第一端面53fとが第一ベアリング51の軸方向に沿ってずれている例を示している。詳しくは後述するように、第一端面52fと第一端面53fとが第一ベアリング51の軸方向に沿ってずれることもある。
(Step A1)
The predicted gap length G0 obtained in step A1 means the length of the gap in the virtual motor 1Z shown in FIG. The virtual motor 1Z is a virtual assembly using the above parts excluding the shim 6, and is not an actual assembly. The virtual motor 1Z includes the case 7, the stator 2, the rotor 3, the shaft 4, the first bearing 51, and the second bearing 55, but does not include the shim 6 shown in FIG. 1, which is the point of the motor of the present embodiment. It is different from the motor 1A manufactured by the manufacturing method. In the virtual motor 1Z, the first bearing 51 is arranged on the first plane 71f of the case 7 where the shim 6 is arranged in the manufactured motor 1A. In the virtual motor 1Z, the positions of the first bearing 51, the shaft 4, and the rotor 3 are located on the first plane 71f side with respect to the manufactured motor 1A by the thickness Ts of the shim 6. There is. FIG. 5 shows an example in which the first end surface 52f and the first end surface 53f are not displaced along the axial direction of the first bearing 51. FIG. 6 shows an example in which the first end surface 52f and the first end surface 53f are displaced along the axial direction of the first bearing 51. As will be described in detail later, the first end surface 52f and the first end surface 53f may be displaced along the axial direction of the first bearing 51.

 予測長さG0は、ステータ2の実寸法を考慮して求める。ステータ2の実寸法とは、組立前のステータ2を実測した寸法である。実寸法を考慮とは、実寸法自体を考慮する場合と、実寸法から得られた演算値を考慮する場合とが含まれる。実寸法から得られた演算値とは、例えば、複数のステータ2から求めた各ステータ2の実寸法の平均値である。 The predicted length G0 is obtained in consideration of the actual size of the stator 2. The actual size of the stator 2 is the actual size of the stator 2 before assembly. The consideration of the actual size includes the case of considering the actual size itself and the case of considering the calculated value obtained from the actual size. The calculated value obtained from the actual dimensions is, for example, the average value of the actual dimensions of each stator 2 obtained from the plurality of stators 2.

 平均値を求めるための測定数は、モータ1Aの製造数よりも少ないことが挙げられる。例えば、1000個のモータ1Aを製造する場合を想定する。1つのモータ1Aにステータ2が1つ用いられるなら、そのパーツの実寸法の平均値を求めるための測定数は、1000個未満とすればよい。ステータ2が2つ用いられる場合であっても、そのパーツの実寸法の平均値を求めるための測定数は、1000個未満とすればよい。より具体的には、50個以下のステータ2の実寸法から平均値を求めることが挙げられる。平均値は、ステータ2のロットごとに求めることが好ましい。 The number of measurements to obtain the average value is less than the number of motors 1A manufactured. For example, assume the case of manufacturing 1000 motors 1A. If one stator 2 is used for one motor 1A, the number of measurements for obtaining the average value of the actual dimensions of the parts may be less than 1000. Even when two stators 2 are used, the number of measurements for obtaining the average value of the actual dimensions of the parts may be less than 1000. More specifically, it is possible to obtain an average value from the actual dimensions of 50 or less stators 2. The average value is preferably obtained for each lot of the stator 2.

 ステータ2の実寸法とは、図5に示すステータコア21の長さL1の実寸法である。長さL1の実寸法は、ヨーク22の第一面22fとティース23の端面23aとの間の長さの実寸法によって求められる。第一面22fと端面23aとの間の長さの実寸法は、0級の定盤を備えたハイトゲージを用いて測定できる。 The actual size of the stator 2 is the actual size of the length L1 of the stator core 21 shown in FIG. The actual dimension of the length L1 is determined by the actual dimension of the length between the first surface 22f of the yoke 22 and the end surface 23a of the teeth 23. The actual dimension of the length between the first surface 22f and the end surface 23a can be measured using a height gauge equipped with a class 0 surface plate.

 端面23aが上方を向くようにステータコア21を定盤上に載置する。端面23a上に、複数の測定点を選択する。測定点は、例えば、ステータコア21を平面視し、端面23aの重心とヨーク22の中心とを通るように引いた直線上に設定する。測定点は、上記直線上に3点以上選択することが好ましい。特に、測定点は、上記直線上において、端面23aの重心と、ヨーク22の中心側に位置する端面23aの縁部と、ヨーク22の中心から遠い側に位置する端面23aの縁部と、を含むことが好ましい。第一面22fと端面23aとの間の長さは、定盤に直交する直線のうち定盤と各測定点とを結ぶ直線の長さの平均値とする。 Place the stator core 21 on the surface plate so that the end face 23a faces upward. A plurality of measurement points are selected on the end face 23a. The measurement point is set, for example, on a straight line drawn so that the center of gravity of the end surface 23a and the center of the yoke 22 pass through the stator core 21 in a plan view. It is preferable to select three or more measurement points on the straight line. In particular, the measurement points are the center of gravity of the end face 23a, the edge portion of the end face 23a located on the center side of the yoke 22, and the edge portion of the end face 23a located on the side far from the center of the yoke 22 on the straight line. It is preferable to include it. The length between the first surface 22f and the end surface 23a is the average value of the lengths of the straight lines connecting the surface plate and each measurement point among the straight lines orthogonal to the surface plate.

 ステータ2の実寸法は、第一平面71fと第一面22fとの接触箇所と端面23aとの間の長さの実寸法によって求めてもよい。ステータ2の実寸法は、第一平面71fと端面23aとの間の長さの実寸法によって求めてもよい。第一平面71fと端面23aとの間の長さの実寸法は、第一面22fと端面23aとの間の長さの実寸法と同様にして求められる。即ち、第一プレート部71を定盤上に載置し、ステータコア21を第一プレート部71の上に載置する。測定点については、第一面22fと端面23aとの間の長さの実寸法を測定する際の測定点と同様である。 The actual size of the stator 2 may be obtained from the actual size of the length between the contact point between the first plane 71f and the first surface 22f and the end surface 23a. The actual size of the stator 2 may be determined by the actual size of the length between the first plane 71f and the end surface 23a. The actual dimension of the length between the first plane 71f and the end surface 23a is obtained in the same manner as the actual dimension of the length between the first surface 22f and the end surface 23a. That is, the first plate portion 71 is placed on the surface plate, and the stator core 21 is placed on the first plate portion 71. The measurement point is the same as the measurement point when measuring the actual dimension of the length between the first surface 22f and the end surface 23a.

 予測長さG0は、図5に示す「長さL2+長さL3+長さL4-長さL5-長さL1の実寸法」によって求められる。 The predicted length G0 is obtained by the "actual dimensions of length L2 + length L3 + length L4-length L5-length L1" shown in FIG.

 長さL2は、第一接触箇所と第二接触箇所との間の長さである。第一接触箇所は、第一平面71fと第一ベアリング51との接触箇所である。第二接触箇所は、第一ベアリング51と第一端面42fとの接触箇所である。長さL2は、第一ベアリング51の高さである。
 長さL3は、第二接触箇所と第三接触箇所との間の長さである。第三接触箇所は、第二端面42sと第一面31fとの接触箇所である。長さL3は、第二軸部42の長さである。即ち、長さL3は、第一端面42fと第二端面42sとの間の長さである。
 長さL4は、第三接触箇所と底面32aとの間の長さである。長さL4は、凹部32の深さである。即ち、長さL4は、第一面31fと底面32aとの間の長さである。
 長さL5は、底面32aと第一端面35fとの間の長さである。長さL5は、磁石35の厚さTmである。磁石35とロータ本体31とが接着剤38で固定されている場合、長さL5は、磁石35の厚さTmと接着剤38の厚さTaとの合計である。
The length L2 is the length between the first contact point and the second contact point. The first contact point is a contact point between the first plane 71f and the first bearing 51. The second contact point is a contact point between the first bearing 51 and the first end surface 42f. The length L2 is the height of the first bearing 51.
The length L3 is the length between the second contact point and the third contact point. The third contact point is a contact point between the second end surface 42s and the first surface 31f. The length L3 is the length of the second shaft portion 42. That is, the length L3 is the length between the first end surface 42f and the second end surface 42s.
The length L4 is the length between the third contact point and the bottom surface 32a. The length L4 is the depth of the recess 32. That is, the length L4 is the length between the first surface 31f and the bottom surface 32a.
The length L5 is the length between the bottom surface 32a and the first end surface 35f. The length L5 is the thickness Tm of the magnet 35. When the magnet 35 and the rotor main body 31 are fixed by the adhesive 38, the length L5 is the sum of the thickness Tm of the magnet 35 and the thickness Ta of the adhesive 38.

 これらの長さはいずれも、シャフト4の軸方向に沿った長さである。長さL2から長さL5は、いずれも設計寸法であり、既知である。長さL2から長さL5の実寸法と設計寸法との差は、長さL1の実寸法と設計寸法との差に比較して小さくなり易い。長さL1の実寸法と設計寸法との差は、特にステータコア21が圧粉成形体で構成されている場合に大きくなり易い。そのため、予測長さG0は、長さL1の実寸法を考慮する必要がある。勿論、予測長さG0は、長さL2から長さL5の少なくとも1つの実寸法を考慮することが好ましい。長さL2から長さL5の各々の実寸法の考え方は、ステータ2の実寸法の考え方と同じである。また、長さL2から長さL5の各々の実寸法から得られた各々の演算値の考え方は、ステータ2の実寸法から得られた演算値の考え方と同じである。 All of these lengths are along the axial direction of the shaft 4. The lengths L2 to L5 are all design dimensions and are known. The difference between the actual dimension and the design dimension of the length L2 to L5 tends to be smaller than the difference between the actual dimension and the design dimension of the length L1. The difference between the actual size and the design size of the length L1 tends to be large especially when the stator core 21 is made of a dust compact. Therefore, it is necessary to consider the actual size of the length L1 for the predicted length G0. Of course, it is preferable that the predicted length G0 considers at least one actual dimension of length L2 to length L5. The concept of the actual dimensions of each of the length L2 to the length L5 is the same as the concept of the actual dimensions of the stator 2. Further, the concept of each calculated value obtained from the actual dimensions of the length L2 to the length L5 is the same as the concept of the calculated value obtained from the actual dimensions of the stator 2.

 長さL2の実寸法は、インナーレース52の高さの実寸法又はアウターレース53の高さの実寸法のいずれでもよい。アウターレース53の高さの実寸法の方が、インナーレース52の高さの実寸法よりも測定し易いため、好ましい。インナーレース52の高さの実寸法又はアウターレース53の高さの実寸法は、複数の測定点における高さの平均値とする。測定点は、インナーレース52又はアウターレース53の周方向に等間隔にとる。測定点の数は、3点以上とする。 The actual size of the length L2 may be either the actual height of the inner race 52 or the actual height of the outer race 53. The actual height of the outer race 53 is preferable because it is easier to measure than the actual height of the inner race 52. The actual height of the inner race 52 or the actual height of the outer race 53 shall be the average value of the heights at a plurality of measurement points. The measurement points are set at equal intervals in the circumferential direction of the inner race 52 or the outer race 53. The number of measurement points shall be 3 or more.

 長さL3の実寸法は、複数の測定点における長さの平均値とする。測定点は、第二軸部42の周方向に等間隔にとる。測定点の数は、3点以上とする。 The actual size of the length L3 is the average value of the lengths at a plurality of measurement points. The measurement points are evenly spaced in the circumferential direction of the second shaft portion 42. The number of measurement points shall be 3 or more.

 長さL4の実寸法は、複数の測定点における深さの平均値とする。測定点は、3つの同心円の円周上に等間隔にとる。3つの円周上とは、凹部32を平面視し、凹部32の内周縁の円周上と、凹部32の外周縁の円周上と、凹部32の内周縁と外周縁との中間地点の円周上とする。各円周上における測定点の数は、3点以上とする。内周縁の円周上のある測定点と、外周縁の円周上のある測定点と、中間地点の円周上のある測定点とは、ロータ3の径方向に沿った直線上に位置する。各測定点の深さは、各測定点とロータ本体31の第一面31fとの間において、ロータ3の軸方向に沿った長さである。 The actual size of the length L4 is the average value of the depths at multiple measurement points. The measurement points are evenly spaced on the circumferences of the three concentric circles. The three circumferences are, in a plan view of the recess 32, on the circumference of the inner peripheral edge of the recess 32, on the circumference of the outer peripheral edge of the recess 32, and at the intermediate point between the inner peripheral edge and the outer peripheral edge of the recess 32. It is on the circumference. The number of measurement points on each circumference shall be 3 or more. A measurement point on the circumference of the inner peripheral edge, a measurement point on the circumference of the outer peripheral edge, and a measurement point on the circumference of the intermediate point are located on a straight line along the radial direction of the rotor 3. .. The depth of each measurement point is the length along the axial direction of the rotor 3 between each measurement point and the first surface 31f of the rotor main body 31.

 長さL5の実寸法は、磁石35の数が複数である場合、複数の磁石35の厚さTmの平均値とする。各厚さTmは、1つの測定点の厚さとしてもよいし、複数の測定点の厚さTmの平均値としてもよい。1つの測定点は、磁石35を平面視し、第一端面35fの重心とする。複数の測定点は、磁石35を平面視し、第一端面35fの重心とロータ3の中心とを通るように引いた直線上に設定する。複数の測定点は、上記直線上に3点以上とることが好ましい。特に、複数の測定点は、上記直線上において、第一端面35fの重心と、ロータ3の中心側に位置する第一端面35fの縁部と、ロータ3の中心から遠い側に位置する第一端面35fの縁部と、を含むことが好ましい。各磁石35の厚さTmは、各測定点におけるロータ3の軸方向に沿った長さの平均値する。 When the number of magnets 35 is plural, the actual dimension of the length L5 is the average value of the thickness Tm of the plurality of magnets 35. Each thickness Tm may be the thickness of one measurement point, or may be the average value of the thickness Tm of a plurality of measurement points. One measurement point is the center of gravity of the first end surface 35f in a plan view of the magnet 35. The plurality of measurement points are set on a straight line drawn so as to pass through the center of gravity of the first end surface 35f and the center of the rotor 3 in a plan view of the magnet 35. It is preferable to take three or more measurement points on the straight line. In particular, the plurality of measurement points are the center of gravity of the first end surface 35f, the edge of the first end surface 35f located on the center side of the rotor 3, and the first located on the side far from the center of the rotor 3 on the straight line. It is preferable to include an edge portion of the end face 35f. The thickness Tm of each magnet 35 is an average value of the lengths of the rotor 3 along the axial direction at each measurement point.

 長さL5の実寸法は、磁石35の数が1つであり、磁石35の形状が円環状である場合、複数の測定点の厚さTmの平均値とする。測定点は、3つの同心円の円周上に等間隔にとる。3つの円周上とは、磁石35を平面視し、第一端面35fにおける内周縁の円周上と、第一端面35fにおける外周縁の円周上と、第一端面35fにおける内周縁と外周縁との中間地点の円周上とする。各円周上における測定点の数は、3点以上とする。内周縁の円周上のある測定点と、外周縁の円周上のある測定点と、中間地点の円周上のある測定点とは、ロータ3の径方向に沿った直線上に位置する。各測定点の厚さは、各測定点におけるロータ3の軸方向に沿った長さである。 The actual size of the length L5 is the average value of the thickness Tm of a plurality of measurement points when the number of magnets 35 is one and the shape of the magnets 35 is annular. The measurement points are evenly spaced on the circumferences of the three concentric circles. The three circumferences are a plan view of the magnet 35, on the circumference of the inner peripheral edge of the first end surface 35f, on the circumference of the outer peripheral edge of the first end surface 35f, and the inner peripheral edge and the outer edge of the first end surface 35f. It shall be on the circumference of the midpoint with the periphery. The number of measurement points on each circumference shall be 3 or more. A measurement point on the circumference of the inner peripheral edge, a measurement point on the circumference of the outer peripheral edge, and a measurement point on the circumference of the intermediate point are located on a straight line along the radial direction of the rotor 3. .. The thickness of each measurement point is the length along the axial direction of the rotor 3 at each measurement point.

 長さL5の実寸法は、接着剤38が設けられている場合、ロータ本体31と磁石35とが固定された状態の実寸法である。即ち、長さL5の実寸法は、上述した磁石35の厚さTmの測定点と凹部32の底面32aとの間において、ロータ3の軸方向に沿った長さの平均とする。 The actual size of the length L5 is the actual size in which the rotor body 31 and the magnet 35 are fixed when the adhesive 38 is provided. That is, the actual dimension of the length L5 is the average of the lengths along the axial direction of the rotor 3 between the measurement point of the thickness Tm of the magnet 35 and the bottom surface 32a of the recess 32 described above.

 予測長さG0は、更に、図6に示す第一ベアリング51のずれ量gを考慮して求めることが好ましい。即ち、長さL2は、更に、ずれ量gを考慮して求めることが好ましい。ずれ量gとは、第一端面53fと第一端面52fとの間において、第一ベアリング51の軸方向に沿った長さである。 The predicted length G0 is preferably obtained in consideration of the deviation amount g of the first bearing 51 shown in FIG. That is, it is preferable to obtain the length L2 in consideration of the deviation amount g. The deviation amount g is the length along the axial direction of the first bearing 51 between the first end surface 53f and the first end surface 52f.

 ずれ量gは、シャフト4及びロータ3の自重によってインナーレース52に作用する荷重、及び磁石35のステータ2への吸引力によってインナーレース52に作用する荷重を考慮して求められる。ずれ量gは、更に、第二ベアリング55の自重によってインナーレース52に作用する荷重、及び弾性部材8による第二ベアリング55を第一ベアリング51側へ押圧する押圧力によってインナーレース52に作用する荷重、の少なくとも一方を考慮して求められる。 The deviation amount g is obtained in consideration of the load acting on the inner race 52 due to the weight of the shaft 4 and the rotor 3 and the load acting on the inner race 52 due to the attractive force of the magnet 35 to the stator 2. The deviation amount g is a load acting on the inner race 52 due to the weight of the second bearing 55, and a load acting on the inner race 52 due to a pressing force for pressing the second bearing 55 toward the first bearing 51 by the elastic member 8. , Is required in consideration of at least one of them.

 インナーレース52には、主として、シャフト4及びロータ3の自重による荷重と、磁石35のステータ2への吸引力による荷重とが作用する。インナーレース52には、更に、第二ベアリング55の自重による荷重、及び弾性部材8が第二ベアリング55を第一ベアリング51側へ押圧する押圧力による荷重、の少なくとも一方が作用する。上記荷重の大きさによっては、第一端面53fに対して第一端面52fがずれる。特に、第一端面52fのずれは、磁石35の吸引力による影響が大きい。即ち、磁石35の磁力が強いほど、第一端面52fがずれる。ずれ量gの分だけ、図6に示すギャップの予測長さG0と図3に示す設計長さG1との差が大きくなる。そのため、ずれ量gを考慮することが好ましい。 The load due to the weight of the shaft 4 and the rotor 3 and the load due to the attractive force of the magnet 35 to the stator 2 mainly act on the inner race 52. Further, at least one of a load due to the weight of the second bearing 55 and a load due to the pressing force of the elastic member 8 pressing the second bearing 55 toward the first bearing 51 acts on the inner race 52. Depending on the magnitude of the load, the first end surface 52f deviates from the first end surface 53f. In particular, the deviation of the first end surface 52f is greatly affected by the attractive force of the magnet 35. That is, the stronger the magnetic force of the magnet 35, the more the first end surface 52f shifts. The difference between the predicted gap length G0 shown in FIG. 6 and the design length G1 shown in FIG. 3 increases by the amount of the deviation amount g. Therefore, it is preferable to consider the deviation amount g.

 ずれ量gは、図7に示すようなグラフから求めるとよい。図7の縦軸の荷重(N)とは、第一ベアリング51のインナーレース52への荷重を示す。図7の横軸のずれ量(mm)とは、第一ベアリング51のアウターレース53の第一端面53fに対するインナーレース52の第一端面52fのずれ量gを示す。図7のグラフは、予め用意しておくと良い。具体的には、図7のグラフは、インナーレース52に第一ベアリング51の軸方向の荷重を変位させながら作用させることで求めることができる。 The deviation amount g may be obtained from a graph as shown in FIG. 7. The load (N) on the vertical axis of FIG. 7 indicates the load on the inner race 52 of the first bearing 51. The deviation amount (mm) on the horizontal axis in FIG. 7 indicates the deviation amount g of the first end surface 52f of the inner race 52 with respect to the first end surface 53f of the outer race 53 of the first bearing 51. The graph of FIG. 7 may be prepared in advance. Specifically, the graph of FIG. 7 can be obtained by applying the axial load of the first bearing 51 to the inner race 52 while displacing it.

 予測長さG0は、「(長さL2-ずれ量g)+長さL3+長さL4-長さL5-長さL1の実寸法」によって求められる。ずれ量gを考慮する場合であっても、長さL2から長さL5の少なくとも1つは、実寸法であることが好ましい。 The predicted length G0 is obtained by "(length L2-shift amount g) + length L3 + length L4-length L5-actual size of length L1". Even when the deviation amount g is taken into consideration, it is preferable that at least one of the length L2 to the length L5 is the actual size.

   (工程A2)
 工程A2では、シム6の厚さTsは、パーツを組み立てる工程の前に、即ち上述したモータ1Aを製造する前に、図2に示すギャップの設計長さG1と図5に示すギャップの予測長さG0との差から決定する。或いは、シム6の厚さTsは、図3に示すギャップの設計長さG1と図6に示すギャップの予測長さG0との差から決定する。
(Step A2)
In step A2, the thickness Ts of the shim 6 is the design length G1 of the gap shown in FIG. 2 and the predicted length of the gap shown in FIG. 5 before the process of assembling the parts, that is, before manufacturing the motor 1A described above. It is determined from the difference from G0. Alternatively, the thickness Ts of the shim 6 is determined from the difference between the design length G1 of the gap shown in FIG. 3 and the predicted length G0 of the gap shown in FIG.

  [工程B]
 パーツを組み立てる工程Bでは、ステータ2、ロータ3、シャフト4、第一ベアリング51、及びシム6をケース7内の所定の位置に配置する。この工程Bによって図1に示すようなモータ1Aが製造できれば、パーツを組み立てる順番は特に限定されない。工程Bの一例としては、以下の工程B1から工程B5を順に行うことが挙げられる。
[Step B]
In step B of assembling the parts, the stator 2, the rotor 3, the shaft 4, the first bearing 51, and the shim 6 are arranged at predetermined positions in the case 7. As long as the motor 1A as shown in FIG. 1 can be manufactured by this step B, the order of assembling the parts is not particularly limited. As an example of the step B, the following steps B1 to B5 may be performed in order.

  (パーツを組み立てる順番の一例)
 工程B1では、第一プレート部71の第一平面71fにシム6及びステータ2を配置する。シム6の厚さTsは、上述したように、ギャップの設計長さG1と予測長さG0との差と同じである。本形態のように予測長さG0が設計長さG1よりも短い場合、工程B1では、第一ベアリング51の下方に対応する第一平面71fにシム6を配置する。
 工程B2では、シム6の上に第一ベアリング51を配置する。
 工程B3では、シャフト4の第一軸部41を第一ベアリング51内に配置する。予め、ロータ3とシャフト4とを組み合わせたロータアッシーを準備しておく。工程B3では、ロータアッシーの第一軸部41を第一ベアリング51内に配置する。その場合、工程B31を経ずに工程B4を経る。ロータアッシーを準備せず、組み合わされていないロータ3とシャフト4とを準備する場合、工程B4前に工程B31を経る。工程B31は、第一軸部41が第一ベアリング51内に配置された状態のシャフト4にロータ3を嵌める。
 工程B4では、シャフト4の第四軸部44に第二ベアリング55を嵌める。
 工程B5では、シャフト4の第五軸部45に第二プレート部72の貫通孔72hを嵌めて、周壁部73の端面と第一プレート部71とを突き合わせる。そして、締結部材92によって第一プレート部71と周壁部73とを固定する。締結部材92は、第一プレート部71の第三貫通孔と周壁部73の上記穴部とに設けられる。
(An example of the order in which parts are assembled)
In step B1, the shim 6 and the stator 2 are arranged on the first plane 71f of the first plate portion 71. The thickness Ts of the shim 6 is the same as the difference between the design length G1 and the predicted length G0 of the gap, as described above. When the predicted length G0 is shorter than the design length G1 as in the present embodiment, in the step B1, the shim 6 is arranged on the first plane 71f corresponding to the lower part of the first bearing 51.
In step B2, the first bearing 51 is arranged on the shim 6.
In step B3, the first shaft portion 41 of the shaft 4 is arranged in the first bearing 51. A rotor assembly that combines the rotor 3 and the shaft 4 is prepared in advance. In step B3, the first shaft portion 41 of the rotor assembly is arranged in the first bearing 51. In that case, the process B4 is performed without going through the process B31. When the rotor 3 and the shaft 4 which are not combined are prepared without preparing the rotor assembly, the process B31 is performed before the step B4. In step B31, the rotor 3 is fitted to the shaft 4 in a state where the first shaft portion 41 is arranged in the first bearing 51.
In step B4, the second bearing 55 is fitted to the fourth shaft portion 44 of the shaft 4.
In step B5, the through hole 72h of the second plate portion 72 is fitted into the fifth shaft portion 45 of the shaft 4, and the end face of the peripheral wall portion 73 and the first plate portion 71 are abutted against each other. Then, the first plate portion 71 and the peripheral wall portion 73 are fixed by the fastening member 92. The fastening member 92 is provided in the third through hole of the first plate portion 71 and the hole portion of the peripheral wall portion 73.

 このような順番でパーツを組み立てることによって、図1に示すモータ1Aが製造される。製造されたモータ1Aのギャップ長さは、図2又は図3に示すように、設計長さG1となる。図2又は図3に示す設計長さG1は、図5又は図6に示す仮想的なモータ1Zの予測長さG0よりも、図2又は図3に示すシム6の厚さTsの分だけ長い。 By assembling the parts in this order, the motor 1A shown in FIG. 1 is manufactured. The gap length of the manufactured motor 1A is the design length G1 as shown in FIG. 2 or FIG. The design length G1 shown in FIG. 2 or FIG. 3 is longer than the predicted length G0 of the virtual motor 1Z shown in FIG. 5 or FIG. 6 by the thickness Ts of the shim 6 shown in FIG. 2 or FIG. ..

 〔作用効果〕
 本形態のモータの製造方法は、パーツを組み立てる前に、特定のパーツの実寸法を考慮してギャップの予測長さG0、延いては、ギャップの予測長さG0と設計長さG1との差を求めることができる。上記実寸法を考慮して求められるギャップの予測長さG0は、パーツの設計寸法及び寸法公差から求められるギャップの予測長さに比較して正確である。即ち、上記実寸法を考慮して求められるギャップの予測長さG0と設計長さG1との差は、設計寸法及び寸法公差から求められるギャップの予測長さとギャップの設計長さとの差に比較して正確である。
[Action effect]
In the method of manufacturing the motor of this embodiment, before assembling the parts, the estimated gap length G0 is taken into consideration in consideration of the actual dimensions of the specific parts, and by extension, the difference between the predicted gap length G0 and the design length G1. Can be asked. The estimated gap length G0 obtained in consideration of the above actual dimensions is more accurate than the predicted gap length obtained from the design dimensions and dimensional tolerances of the parts. That is, the difference between the predicted gap length G0 and the design length G1 obtained in consideration of the above actual dimensions is compared with the difference between the predicted gap length and the design length of the gap obtained from the design dimensions and dimensional tolerances. Is accurate.

 第一ベアリング51のインナーレース52の第一端面52fに作用する荷重によって、アウターレース53の第一端面53fに対してインナーレース52の第一端面52fがずれる場合がある。この場合であっても、本形態のモータの製造方法は、ずれ量gをも考慮して予測長さG0を求められるので、正確な予測長さG0、延いては予測長さG0と設計長さG1との正確な上記差を求めることができる。 The load acting on the first end surface 52f of the inner race 52 of the first bearing 51 may cause the first end surface 52f of the inner race 52 to deviate from the first end surface 53f of the outer race 53. Even in this case, in the method of manufacturing the motor of this embodiment, the predicted length G0 is obtained in consideration of the deviation amount g, so that the accurate predicted length G0, and by extension, the predicted length G0 and the design length The exact difference from G1 can be obtained.

 本形態のモータの製造方法は、正確な上記差と同じ厚さを有するシム6を含むパーツを組み立てることができる。そのため、本形態のモータの製造方法は、パーツを1回組み立てるだけで、ギャップの長さを設計長さG1とすることができる。よって、本形態のモータの製造方法は、組み立て精度に優れるモータ1Aの製造性に優れる。 The method of manufacturing the motor of this embodiment can assemble a part including a shim 6 having the same thickness as the exact above difference. Therefore, in the method of manufacturing the motor of this embodiment, the length of the gap can be set to the design length G1 by assembling the parts only once. Therefore, the method for manufacturing the motor of this embodiment is excellent in the manufacturability of the motor 1A, which is excellent in assembly accuracy.

 本形態のモータの製造方法は、パーツを組み立てる工程Bを繰り返し行う場合であっても、組み立て精度に優れる複数のモータ1Aの製造性に優れる。そのため、本形態のモータの製造方法は、性能のばらつきが小さい複数のモータ1Aを製造できる。特に、製造数よりも少ない上記実寸法の平均値を考慮して上記予測長さが求められることで、製造数と同数の上記実寸法を考慮して上記予測長さを求める場合に比較して、モータ1Aの製造性を向上し易い。 The method for manufacturing a motor of this embodiment is excellent in the manufacturability of a plurality of motors 1A having excellent assembly accuracy even when the step B of assembling parts is repeated. Therefore, the motor manufacturing method of the present embodiment can manufacture a plurality of motors 1A having small variations in performance. In particular, since the predicted length is obtained in consideration of the average value of the actual dimensions smaller than the number of manufactured products, compared with the case where the predicted length is obtained in consideration of the same number of actual dimensions as the number of manufactured products. , It is easy to improve the manufacturability of the motor 1A.

 《実施形態2》
 〔モータの製造方法〕
 図8から図14を参照して、実施形態2のモータの製造方法を説明する。図8は、本形態のモータの製造方法によって製造されたモータ1Aをシャフト4の軸方向に平行な平面で切断した断面図である。図8のモータ1Aは、全てのパーツを用いて組み立てたものである。図8は、製造されたモータ1Aとして、シングルステータ・シングルロータ型のアキシャルギャップモータを例示している。図12は、仮想的なモータ1Zをシャフト4の軸方向に平行な平面で切断した断面図を示している。
<< Embodiment 2 >>
[Motor manufacturing method]
The method of manufacturing the motor of the second embodiment will be described with reference to FIGS. 8 to 14. FIG. 8 is a cross-sectional view of the motor 1A manufactured by the method of manufacturing the motor of the present embodiment cut along a plane parallel to the axial direction of the shaft 4. The motor 1A of FIG. 8 is assembled using all the parts. FIG. 8 illustrates a single stator / single rotor type axial gap motor as the manufactured motor 1A. FIG. 12 shows a cross-sectional view of the virtual motor 1Z cut along a plane parallel to the axial direction of the shaft 4.

 本形態のモータの製造方法は、工程Bにおいてシム6を配置する箇所が実施形態1のモータの製造方法と相違する。以下の説明は、実施形態1との相違点を中心に行う。実施形態1と同様の構成の説明は省略することもある。 The motor manufacturing method of the present embodiment differs from the motor manufacturing method of the first embodiment in that the shim 6 is arranged in the process B. The following description will focus on the differences from the first embodiment. The description of the same configuration as that of the first embodiment may be omitted.

 先に製造されたモータ1Aを説明する。その後、モータ1Aを製造するモータの製造方法を説明する。本形態のモータの製造方法は、図9及び図13、又は図10及び図14に示すように、予測長さG0が設計長さG1超である場合を例としている。 The motor 1A manufactured earlier will be described. After that, a method of manufacturing a motor for manufacturing the motor 1A will be described. As shown in FIGS. 9 and 13 or FIGS. 10 and 14, the method for manufacturing the motor of the present embodiment exemplifies the case where the predicted length G0 exceeds the design length G1.

    〈シム〉
 シム6は、本形態では図8から図10に示すように、第一平面71fと第一面22fとの間に配置されている。シム6の第一面は、第一平面71fに接している。シム6の第二面は、第一面22fに接している。シム6の形状は、図11に示すように、円環板状である。本形態のシム6は、一枚板で構成している。
<Sim>
In this embodiment, the shim 6 is arranged between the first plane 71f and the first plane 22f, as shown in FIGS. 8 to 10. The first surface of the shim 6 is in contact with the first plane 71f. The second surface of the shim 6 is in contact with the first surface 22f. As shown in FIG. 11, the shape of the shim 6 is an annulus plate. The shim 6 of this embodiment is composed of a single plate.

 図8から図10に示すようにシム6が第一平面71fと第一面22fとの間に配置されている場合、シム6が第一平面71fと第一面22fの間に配置されていない場合に比較して、端面23aの位置が第一端面35fに近づく。よって、シム6が第一平面71fと第一面22fとの間に配置されている場合のギャップの長さが、シム6が第一平面71fと第一面22fとの間に配置されていない場合のギャップの長さよりも短くなる。シム6の厚さTsは、ギャップの長さが設計長さG1となる厚さである。 When the shim 6 is arranged between the first plane 71f and the first surface 22f as shown in FIGS. 8 to 10, the shim 6 is not arranged between the first plane 71f and the first surface 22f. Compared with the case, the position of the end surface 23a approaches the first end surface 35f. Therefore, the length of the gap when the shim 6 is arranged between the first plane 71f and the first surface 22f is such that the shim 6 is not arranged between the first plane 71f and the first surface 22f. It will be shorter than the length of the gap in the case. The thickness Ts of the shim 6 is a thickness at which the length of the gap becomes the design length G1.

 シム6は、図11に示すように、複数の貫通孔61を有する。貫通孔61は、締結部材91がはめ込まれる孔である。貫通孔61は、ステータコア21の上記穴部に対応した箇所に設けられている。 As shown in FIG. 11, the shim 6 has a plurality of through holes 61. The through hole 61 is a hole into which the fastening member 91 is fitted. The through hole 61 is provided at a position corresponding to the hole portion of the stator core 21.

 シム6の上記第一面及び上記第二面の面積は、ヨーク22の第一面22fの面積に対して95%以上100%以下が好ましい。シム6によってステータ2が放熱され易いからである。シム6の上記第一面及び上記第二面の面積は、更に第一面22fの面積に対して95%超100%未満が好ましく、特に第一面22fの面積に対して96%以上99%以下が好ましい。 The area of the first surface and the second surface of the shim 6 is preferably 95% or more and 100% or less with respect to the area of the first surface 22f of the yoke 22. This is because the shim 6 easily dissipates heat from the stator 2. The area of the first surface and the second surface of the shim 6 is preferably more than 95% and less than 100% with respect to the area of the first surface 22f, and particularly 96% or more and 99% with respect to the area of the first surface 22f. The following is preferable.

    (工程A1・工程A2)
 工程A1における予測長さG0の求め方、及び工程A2におけるシム6の厚さTsの決定の仕方は、実施形態1と同じである。
(Process A1 and Process A2)
The method of obtaining the predicted length G0 in the step A1 and the method of determining the thickness Ts of the shim 6 in the step A2 are the same as those in the first embodiment.

  [工程B]
 工程B1では、第一プレート部71の第一平面71fにシム6及び第一ベアリング51を配置する。シム6の厚さTsは、上述したように、ギャップの設計長さG1と予測長さG0との差と同じである。本形態のように予測長さG0が設計長さG1よりも長い場合、工程B1では、ステータ2の下方に対応する第一平面71fにシム6を配置する。
 工程B2では、シム6の上にステータ2を配置する。
 工程B3以降は、実施形態1と同じである。
[Step B]
In step B1, the shim 6 and the first bearing 51 are arranged on the first plane 71f of the first plate portion 71. The thickness Ts of the shim 6 is the same as the difference between the design length G1 and the predicted length G0 of the gap, as described above. When the predicted length G0 is longer than the design length G1 as in the present embodiment, in the step B1, the shim 6 is arranged on the first plane 71f corresponding to the lower side of the stator 2.
In step B2, the stator 2 is arranged on the shim 6.
The steps B3 and subsequent steps are the same as those in the first embodiment.

 〔作用効果〕
 本形態のモータの製造方法は、実施形態1と同様、組み立て精度に優れるモータ1Aの製造性に優れる。
[Action effect]
The method for manufacturing the motor of this embodiment is excellent in the manufacturability of the motor 1A, which is excellent in assembly accuracy, as in the first embodiment.

 《実施形態3》
 〔モータの製造方法〕
 図15を参照して、実施形態3のモータの製造方法を説明する。図15は、本形態のモータの製造方法によって製造されたモータ1Aをシャフト4の軸方向に平行な平面で切断した断面図である。
<< Embodiment 3 >>
[Motor manufacturing method]
A method of manufacturing the motor of the third embodiment will be described with reference to FIG. FIG. 15 is a cross-sectional view of the motor 1A manufactured by the method for manufacturing the motor of the present embodiment, cut along a plane parallel to the axial direction of the shaft 4.

 本形態のモータの製造方法は、準備するステータコア21及び第一プレート部71の少なくとも一方がシム6の位置決め部を有する点が実施形態2のモータの製造方法と相違する。以下の説明は、実施形態2との相違点を中心に行う。実施形態2と同様の構成の説明は省略することもある。これらの点は、後述する実施形態4及び実施形態6でも同様である。 The motor manufacturing method of the present embodiment is different from the motor manufacturing method of the second embodiment in that at least one of the prepared stator core 21 and the first plate portion 71 has a positioning portion of the shim 6. The following description will focus on the differences from the second embodiment. The description of the configuration similar to that of the second embodiment may be omitted. These points are the same in the fourth and sixth embodiments described later.

 本形態では、ステータコア21及び第一プレート部71はいずれも、シム6の位置決め部を有する。ステータコア21の第一面22fには、位置決め部として凹部221が設けられている。第一プレート部71の第一平面71fには、位置決め部として凹部711が設けられている。凹部221の形状と凹部711の形状とは、互いに同じ形状である。凹部221の形状と凹部711の形状は、シム6の形状に対応した円環状である。凹部221と凹部711の合計深さは、シム6の厚さ超である。凹部221の深さと凹部711の深さとは、互いに同一でもよいし、互いに異なっていてもよい。 In this embodiment, both the stator core 21 and the first plate portion 71 have a shim 6 positioning portion. The first surface 22f of the stator core 21 is provided with a recess 221 as a positioning portion. The first plane 71f of the first plate portion 71 is provided with a recess 711 as a positioning portion. The shape of the recess 221 and the shape of the recess 711 are the same as each other. The shape of the recess 221 and the shape of the recess 711 are annular shapes corresponding to the shape of the shim 6. The total depth of the recess 221 and the recess 711 is greater than the thickness of the shim 6. The depth of the recess 221 and the depth of the recess 711 may be the same or different from each other.

 シム6の上記第一面の面積は、ヨーク22の第一面22fの面積に対して100%未満である。シム6の上記第一面の面積の下限値は、実施形態2と同じである。 The area of the first surface of the shim 6 is less than 100% of the area of the first surface 22f of the yoke 22. The lower limit of the area of the first surface of the shim 6 is the same as that of the second embodiment.

   (工程A1・工程A2)
 工程A1における予測長さG0の求め方は、実施形態1と同じである。工程A2では、シム6の厚さは、「予測長さG0-設計長さG1+凹部221の深さの実寸法+凹部711の深さ」によって決定される。
(Process A1 and Process A2)
The method of obtaining the predicted length G0 in the step A1 is the same as that of the first embodiment. In step A2, the thickness of the shim 6 is determined by "predicted length G0-design length G1 + actual dimension of depth of recess 221 + depth of recess 711".

 凹部221の深さの実寸法は、第一面22fと凹部221の底面との間の長さの実寸法である。凹部221の深さは、シャフト4の軸方向に沿った長さである。凹部221の深さの実寸法は、複数の測定点における深さの平均値とする。測定点のとり方は、上述した長さL4の実寸法の求め方における測定点のとり方と同じである。 The actual dimension of the depth of the recess 221 is the actual dimension of the length between the first surface 22f and the bottom surface of the recess 221. The depth of the recess 221 is the length along the axial direction of the shaft 4. The actual dimension of the depth of the recess 221 is the average value of the depths at a plurality of measurement points. The method of taking the measurement point is the same as the method of taking the measurement point in the above-mentioned method of obtaining the actual size of the length L4.

 凹部711の深さは、第一平面71fと凹部711の底面との間の長さである。凹部711の深さは、設計寸法であり、既知である。凹部711の深さは、実寸法であることが好ましい。凹部711の深さの実寸法は、複数の測定点における深さの平均値とする。測定点のとり方は、長さL4との実寸法の求め方における測定点のとり方と同じである。 The depth of the recess 711 is the length between the first plane 71f and the bottom surface of the recess 711. The depth of the recess 711 is a design dimension and is known. The depth of the recess 711 is preferably the actual size. The actual dimension of the depth of the recess 711 is the average value of the depths at a plurality of measurement points. The method of taking the measurement point is the same as the method of taking the measurement point in the method of obtaining the actual size with the length L4.

  [工程B]
 工程B1では、シム6を凹部711に配置する。工程B1において、第一ベアリング51の配置箇所は、実施形態2と同じである。
 工程B2において、ステータ2は、シム6に凹部221が嵌るように配置する。第一面22fと第一平面71fとの間には、隙間が形成される。この隙間の大きさが予測長さG0と設計長さG1との差である。
 工程B3以降は、実施形態2と同じである。
[Step B]
In step B1, the shim 6 is arranged in the recess 711. In step B1, the location of the first bearing 51 is the same as that of the second embodiment.
In step B2, the stator 2 is arranged so that the recess 221 fits into the shim 6. A gap is formed between the first surface 22f and the first plane 71f. The size of this gap is the difference between the predicted length G0 and the design length G1.
The steps B3 and subsequent steps are the same as those in the second embodiment.

 〔作用効果〕
 本形態のモータの製造方法は、第一プレート部71に対してシム6を位置決めし易い。その上、本形態のモータの製造方法は、シム6に対してステータ2を位置決めし易い。そのため、本形態のモータの製造方法は、パーツを組み立て易い。
[Action effect]
In the method of manufacturing the motor of this embodiment, the shim 6 can be easily positioned with respect to the first plate portion 71. Moreover, the method of manufacturing the motor of this embodiment makes it easy to position the stator 2 with respect to the shim 6. Therefore, the method of manufacturing the motor of this embodiment makes it easy to assemble the parts.

 《実施形態4》
 〔モータの製造方法〕
 図16を参照して、実施形態4のモータの製造方法を説明する。本形態のモータの製造方法は、以下の(a)及び(b)の要件が実施形態2のモータの製造方法と相違する。
 (a)準備するステータコア21が複数のステータコア片210を有する。
 (b)準備するシム6が複数のシム片60を有する。
<< Embodiment 4 >>
[Motor manufacturing method]
A method of manufacturing the motor of the fourth embodiment will be described with reference to FIG. The motor manufacturing method of the present embodiment differs from the motor manufacturing method of the second embodiment in the following requirements (a) and (b).
(A) The stator core 21 to be prepared has a plurality of stator core pieces 210.
(B) The shim 6 to be prepared has a plurality of shim pieces 60.

     ・・ステータコア片
 ステータコア片210は、1つのヨーク片220と少なくとも1つのティースとで構成されている。ステータコア片210の数は、適宜選択できる。本形態のステータコア片210の数は、6個である。即ち、本形態のヨーク片220の数は、6個である。ヨーク片220の形状は、扇板状である。各ヨーク片220につながるティースの数は、1つでもよいし複数でもよい。本形態では、各ヨーク片220につながるティースの数は、2つである。本形態では、各ステータコア片210の長さの実寸法は、実質的に同一である。各ステータコア片210の長さの実寸法とは、ヨーク片220の第一面22fとティースの端面との間の長さの実寸法である。各ステータコア片210の長さの実寸法の求め方は、実施形態1で説明した長さL1の実寸法の求め方と同じである。
Stator core piece The stator core piece 210 is composed of one yoke piece 220 and at least one tooth. The number of stator core pieces 210 can be appropriately selected. The number of the stator core pieces 210 of this embodiment is six. That is, the number of yoke pieces 220 in this embodiment is six. The shape of the yoke piece 220 is a fan plate shape. The number of teeth connected to each yoke piece 220 may be one or plural. In this embodiment, the number of teeth connected to each yoke piece 220 is two. In this embodiment, the actual dimensions of the length of each stator core piece 210 are substantially the same. The actual length of each stator core piece 210 is the actual length between the first surface 22f of the yoke piece 220 and the end surface of the tooth. The method of obtaining the actual size of the length of each stator core piece 210 is the same as the method of obtaining the actual size of the length L1 described in the first embodiment.

    〈シム〉
 シム6は、周方向に複数に分割されたシム片60で構成されている。シム片60の数は、ステータコア片210の数と同じである。シム片60の形状は、ヨーク片220の形状と同じである。本形態のシム片60の形状は、扇板状である。
<Sim>
The shim 6 is composed of shim pieces 60 divided into a plurality of parts in the circumferential direction. The number of shim pieces 60 is the same as the number of stator core pieces 210. The shape of the shim piece 60 is the same as the shape of the yoke piece 220. The shape of the shim piece 60 of this embodiment is a fan plate shape.

   (工程A1)
 工程A1では、本形態のように各ステータコア片210の上記長さの実寸法が実質的に同一である場合、1つのステータコア片210に対応した予測長さG0を求めてもよい。或いは、工程A1では、本形態のように各ステータコア片210の上記長さの実寸法が実質的に同一である場合であっても、各ステータコア片210に対応した予測長さG0を求めてもよい。即ち、ステータコア片210の数と同数の予測長さG0を求める。予測長さG0の求め方は、実施形態1で説明した予測長さG0の求め方と同じである。
(Step A1)
In step A1, when the actual dimensions of the lengths of the stator core pieces 210 are substantially the same as in the present embodiment, the predicted length G0 corresponding to one stator core piece 210 may be obtained. Alternatively, in step A1, even when the actual dimensions of the lengths of the stator core pieces 210 are substantially the same as in the present embodiment, the predicted length G0 corresponding to each stator core piece 210 may be obtained. good. That is, the predicted length G0, which is the same as the number of the stator core pieces 210, is obtained. The method of obtaining the predicted length G0 is the same as the method of obtaining the predicted length G0 described in the first embodiment.

   (工程A2)
 工程A2では、1つの予測長さG0と設計長さG1との差から全てのシム片60の厚さを決定する。或いは、各予測長さG0と設計長さG1との差から各シム片60の厚さを決定してもよい。各シム片60の厚さの求め方は、実施形態1で説明したシム6の厚さの求め方と同じである。
(Step A2)
In step A2, the thickness of all shim pieces 60 is determined from the difference between one predicted length G0 and the design length G1. Alternatively, the thickness of each shim piece 60 may be determined from the difference between each predicted length G0 and the design length G1. The method of obtaining the thickness of each shim piece 60 is the same as the method of obtaining the thickness of the shim 6 described in the first embodiment.

 〔作用効果〕
 本形態のモータの製造方法は、ステータコア21が複数のステータコア片210を備える場合であっても、組み立て精度に優れるモータの製造性に優れる。
[Action effect]
The method for manufacturing a motor of this embodiment is excellent in the manufacturability of a motor having excellent assembly accuracy even when the stator core 21 includes a plurality of stator core pieces 210.

 《実施形態5》
 図17を参照して、実施形態5のモータの製造方法を説明する。図17は、本形態のモータの製造方法によって製造されたモータ1Aをシャフト4の軸方向に平行な平面で切断した断面図である。
<< Embodiment 5 >>
A method of manufacturing the motor of the fifth embodiment will be described with reference to FIG. FIG. 17 is a cross-sectional view of the motor 1A manufactured by the method of manufacturing the motor of the present embodiment cut along a plane parallel to the axial direction of the shaft 4.

 本形態のモータの製造方法は、以下の(a)及び(b)の要件が実施形態4のモータの製造方法と相違する。
 (a)準備する複数のステータコア片210のうち、少なくとも1つのステータコア片210の長さL1の実寸法が他のステータコア片210の長さL1との実寸法と異なる。
 (b)準備する複数のシム片60のうち、少なくとも1つのシム片60の厚さが他のシム片60の厚さと異なる。
 以下の説明は、実施形態4との相違点を中心に行う。実施形態4と同様の構成の説明は省略することもある。
The motor manufacturing method of the present embodiment differs from the motor manufacturing method of the fourth embodiment in the following requirements (a) and (b).
(A) Of the plurality of stator core pieces 210 to be prepared, the actual size of the length L1 of at least one stator core piece 210 is different from the actual size of the length L1 of the other stator core pieces 210.
(B) Of the plurality of shim pieces 60 to be prepared, the thickness of at least one shim piece 60 is different from the thickness of the other shim pieces 60.
The following description will focus on the differences from the fourth embodiment. The description of the configuration similar to that of the fourth embodiment may be omitted.

   (工程A1)
 工程A1では、本形態のように少なくとも1つのステータコア片210の長さL1の実寸法が他のステータコア片210の長さL1との実寸法と異なる場合、長さの異なるステータコア片210に対応した予測長さG0を求める。例えば、6個のステータコア片210のうち、長さL1がA(mm)のステータコア片210が3個、長さL1がB(mm)のステータコア片210が2個、長さL1がC(mm)のステータコア片210が1個、A≠B≠Cである場合を考える。この場合、3つの予測長さG0を求める。1つ目の予測長さG0は、長さL1がA(mm)であるステータコア片210に対応した予測長さである。2つ目の予測長さG0は、長さL1がB(mm)であるステータコア片210に対応した予測長さである。3つ目の予測長さG0は、長さL1がC(mm)であるステータコア片210に対応した予測長さである。勿論、工程A1では、各ステータコア片210に対応した予測長さG0を求めてもよい。即ち、ステータコア片210の数と同数の予測長さG0を求める。各予測長さG0の求め方は、実施形態1で説明した予測長さG0の求め方と同じである。
(Step A1)
In step A1, when the actual size of the length L1 of at least one stator core piece 210 is different from the actual size of the length L1 of the other stator core piece 210 as in the present embodiment, the stator core pieces 210 having different lengths are dealt with. Find the predicted length G0. For example, of the six stator core pieces 210, three stator core pieces 210 having a length L1 of A (mm), two stator core pieces 210 having a length L1 of B (mm), and C (mm) length L1. ), One stator core piece 210, and A ≠ B ≠ C. In this case, three predicted lengths G0 are obtained. The first predicted length G0 is a predicted length corresponding to the stator core piece 210 having a length L1 of A (mm). The second predicted length G0 is a predicted length corresponding to the stator core piece 210 having a length L1 of B (mm). The third predicted length G0 is a predicted length corresponding to the stator core piece 210 having a length L1 of C (mm). Of course, in step A1, the predicted length G0 corresponding to each stator core piece 210 may be obtained. That is, the predicted length G0, which is the same as the number of the stator core pieces 210, is obtained. The method of obtaining each predicted length G0 is the same as the method of obtaining the predicted length G0 described in the first embodiment.

   (工程A2)
 工程A2では、3つの予測長さG0と設計長さG1との差から各シム片60の厚さを決定する。各シム片60の厚さの求め方は、実施形態1で説明したシム6の厚さの求め方と同じである。
(Step A2)
In step A2, the thickness of each shim piece 60 is determined from the difference between the three predicted lengths G0 and the design length G1. The method of obtaining the thickness of each shim piece 60 is the same as the method of obtaining the thickness of the shim 6 described in the first embodiment.

 〔作用効果〕
 本形態のモータの製造方法は、ステータコア片210の長さL1が異なる場合であっても、組み立て精度に優れるモータ1Aの製造性に優れる。
[Action effect]
The method for manufacturing the motor of this embodiment is excellent in the manufacturability of the motor 1A, which is excellent in assembly accuracy, even when the length L1 of the stator core pieces 210 is different.

 《実施形態6》
 〔モータの製造方法〕
 図18を参照して、実施形態6のモータの製造方法を説明する。図18は、本形態のモータの製造方法によって製造されたモータ1Aをシャフト4の軸方向に平行な平面で切断した断面図である。
<< Embodiment 6 >>
[Motor manufacturing method]
A method of manufacturing the motor of the sixth embodiment will be described with reference to FIG. FIG. 18 is a cross-sectional view of the motor 1A manufactured by the method for manufacturing the motor of the present embodiment, cut along a plane parallel to the axial direction of the shaft 4.

 本形態のモータの製造方法は、ダブルステータ・シングルロータ型のアキシャルギャップモータを製造する点が、実施形態2のモータの製造方法と相違する。ダブルステータ・シングルロータ型とは、ステータ2の数が2つであり、ロータ3の数が1つのモータである。ダブルステータ・シングルロータ型では、2つのステータ2で1つのロータ3がシャフト4の軸方向から挟まれるように組み付けられている。 The method for manufacturing the motor of this embodiment is different from the method for manufacturing the motor of the second embodiment in that a double stator / single rotor type axial gap motor is manufactured. The double stator / single rotor type is a motor in which the number of stators 2 is two and the number of rotors 3 is one. In the double stator / single rotor type, one rotor 3 is assembled so as to be sandwiched between the two stators 2 from the axial direction of the shaft 4.

    〈ロータ〉
 ロータ本体31は、円環状の平板部材である。ロータ本体31は、1つの第一貫通孔と少なくとも1つの第二貫通孔とを有する。第一貫通孔は、中央に設けられている。第一貫通孔には、シャフト4の第三軸部43が設けられている。第二貫通孔は、第一貫通孔よりも外周側に設けられている。第二貫通孔には、磁石35が設けられている。第二貫通孔の数は、磁石35の数と同数である。
<Rotor>
The rotor body 31 is an annular flat plate member. The rotor body 31 has one first through hole and at least one second through hole. The first through hole is provided in the center. A third shaft portion 43 of the shaft 4 is provided in the first through hole. The second through hole is provided on the outer peripheral side of the first through hole. A magnet 35 is provided in the second through hole. The number of second through holes is the same as the number of magnets 35.

 図18に示すように、本形態におけるロータ本体31の厚さと磁石35の厚さとは同一である。即ち、ロータ本体31の第一面と磁石35の第一端面とは面一である。また、ロータ本体31の第二面と磁石35の第二端面とは面一である。ロータ本体31の第一面と磁石35の第一端面とは、一方のステータ2側に設けられている面である。ロータ本体31の第二面と磁石35の第二端面とは、他方のステータ2側に設けられている面である。ここでは、図18の紙面下側に示されているステータ2が一方のステータ2である。また、図18の紙面上側に示されているステータ2が他方のステータ2である。図示は省略しているものの、ロータ本体31と磁石35の厚さは同一でなくてもよい。 As shown in FIG. 18, the thickness of the rotor main body 31 and the thickness of the magnet 35 in this embodiment are the same. That is, the first surface of the rotor body 31 and the first end surface of the magnet 35 are flush with each other. Further, the second surface of the rotor main body 31 and the second end surface of the magnet 35 are flush with each other. The first surface of the rotor body 31 and the first end surface of the magnet 35 are surfaces provided on one of the stator 2 sides. The second surface of the rotor body 31 and the second end surface of the magnet 35 are surfaces provided on the other stator 2 side. Here, the stator 2 shown on the lower side of the paper in FIG. 18 is one of the stators 2. Further, the stator 2 shown on the upper side of the paper in FIG. 18 is the other stator 2. Although not shown, the thickness of the rotor body 31 and the magnet 35 may not be the same.

    〈ケース〉
 本形態のケース7は、一対の第一プレート部71と周壁部73とを備える。一対の第一プレート部71と周壁部73とは、別体に構成されている。一方の第一プレート部71と周壁部73とは、締結部材92によって固定されている。他方の第一プレート部71と周壁部73とは、締結部材92によって固定されている。
<Case>
The case 7 of this embodiment includes a pair of first plate portions 71 and a peripheral wall portion 73. The pair of first plate portions 71 and the peripheral wall portion 73 are configured as separate bodies. One of the first plate portion 71 and the peripheral wall portion 73 is fixed by a fastening member 92. The other first plate portion 71 and the peripheral wall portion 73 are fixed by a fastening member 92.

   (工程A1・工程A2)
 一方の予測長さの求め方は、実施形態1と同じである。他方の予測長さの求め方は、「他方の第一ベアリング51の高さ+第三軸部43の長さ-磁石35の厚さ-ステータコア21の長さの実寸法」によって求められる。図18の紙面下側において、シム6が配置されていない状態のギャップの長さを一方の予測長さとしている。また、図18の紙面上側において、シム6が配置されていない状態のギャップの長さを他方の予測長さとしている。一方のシム6の厚さの求め方と他方のシム6の厚さの求め方とは、実施形態1と同じである。
(Process A1 and Process A2)
On the other hand, the method of obtaining the predicted length is the same as that of the first embodiment. The other predicted length is obtained by "the height of the other first bearing 51 + the length of the third shaft portion 43-the thickness of the magnet 35-the actual dimension of the length of the stator core 21". On the lower side of the paper in FIG. 18, the length of the gap in the state where the shim 6 is not arranged is defined as one of the predicted lengths. Further, on the upper side of the paper surface of FIG. 18, the length of the gap in the state where the shim 6 is not arranged is defined as the other predicted length. The method of obtaining the thickness of one shim 6 and the method of obtaining the thickness of the other shim 6 are the same as those in the first embodiment.

 第三軸部43の長さは、端面43aと第二端面42sとの間の長さである。第三軸部43の長さは、第三軸部43の軸方向に沿った長さである。第三軸部43の長さは、設計寸法であり、既知である。第三軸部43の長さは、実寸法が好ましい。第三軸部43の長さの実寸法は、複数の測定点における長さの平均値とする。測定点は、第三軸部43の周方向に等間隔にとる。測定点の数は、3点以上とする。各測定点の長さは、各測定点における第三軸部43の軸方向に沿った長さである。 The length of the third shaft portion 43 is the length between the end surface 43a and the second end surface 42s. The length of the third shaft portion 43 is the length along the axial direction of the third shaft portion 43. The length of the third shaft portion 43 is a design dimension and is known. The length of the third shaft portion 43 is preferably the actual size. The actual size of the length of the third shaft portion 43 is the average value of the lengths at a plurality of measurement points. The measurement points are evenly spaced in the circumferential direction of the third shaft portion 43. The number of measurement points shall be 3 or more. The length of each measurement point is the length along the axial direction of the third shaft portion 43 at each measurement point.

 〔作用効果〕
 本形態のモータの製造方法は、実施形態1と同様、組み立て精度に優れるモータ1Aの製造性に優れる。
[Action effect]
The method for manufacturing the motor of this embodiment is excellent in the manufacturability of the motor 1A, which is excellent in assembly accuracy, as in the first embodiment.

 本発明は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The present invention is not limited to these examples, but is indicated by the scope of claims and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

 1A モータ、1Z 仮想的なモータ
 2 ステータ
 21 ステータコア、210 ステータコア片
 22 ヨーク、220 ヨーク片、
 22f 第一面、221 凹部、22s 第二面
 23 ティース、23a 端面
 25 コイル
 3 ロータ
 31 ロータ本体
 31f 第一面、31s 第二面、32 凹部、32a 底面
 35 磁石、35f 第一端面、38 接着剤
 4 シャフト
 41 第一軸部
 42 第二軸部、42f 第一端面、42s 第二端面
 43 第三軸部、43a 端面
 44 第四軸部、45 第五軸部
 51 第一ベアリング
 52 インナーレース、52f 第一端面、52s 第二端面
 53 アウターレース、53f 第一端面、53s 第二端面
 54 ボール
 55 第二ベアリング
 56 インナーレース、57 アウターレース
 6 シム、60 シム片、61 貫通孔
 7 ケース
 71 第一プレート部
 71f 第一平面、711 凹部、71a 突出部
 72 第二プレート部
 72a 凹部、72h 貫通孔、73 周壁部
 8 弾性部材
 91、92 締結部材
 L1、L2、L3、L4、L5 長さ
 G0 予測長さ、G1 設計長さ
 g ずれ量
 Ts、Tm、Ta 厚さ
1A motor, 1Z virtual motor 2 stator 21 stator core, 210 stator core piece 22 yoke, 220 yoke piece,
22f 1st surface, 221 recesses, 22s 2nd surface 23 teeth, 23a end surface 25 coil 3 rotor 31 rotor body 31f 1st surface, 31s 2nd surface, 32 recesses, 32a bottom surface 35 magnets, 35f 1st end surface, 38 adhesive 4 Shaft 41 1st shaft part 42 2nd shaft part, 42f 1st end surface, 42s 2nd end face 43 3rd shaft part, 43a End face 44 4th shaft part, 45 5th shaft part 51 1st bearing 52 Inner race, 52f 1st end face, 52s 2nd end face 53 outer race, 53f 1st end face, 53s 2nd end face 54 ball 55 2nd bearing 56 inner race, 57 outer race 6 shims, 60 shim pieces, 61 through holes 7 cases 71 1st plate Part 71f First plane, 711 Recessed part, 71a Protruding part 72 Second plate part 72a Recessed part, 72h Through hole, 73 Peripheral wall part 8 Elastic member 91, 92 Fastening member L1, L2, L3, L4, L5 Length G0 Predicted length , G1 Design length g Deviation amount Ts, Tm, Ta Thickness

Claims (14)

 アキシャルギャップ型のモータのパーツを準備する工程と、
 前記パーツを組み立てる工程を備え、
 前記パーツは、
  ロータと、
  ステータと、
  前記ロータの回転軸であるシャフトと、
  前記シャフトを回転自在に支持するベアリングと、
  前記ステータ及び前記ベアリングが載置される第一平面を有するケースと、
  前記第一平面と前記ベアリングとの間、又は前記第一平面と前記ステータとの間に配置されるシムと、を含み、
 前記パーツを準備する工程は、
  前記ステータの実寸法を考慮して前記ロータと前記ステータとの間のギャップの予測長さを求める工程と、
  前記ギャップの設計長さと前記予測長さとの差に基づいて前記シムの厚さを決定する工程と、を有する、
モータの製造方法。
The process of preparing parts for axial gap type motors and
With the process of assembling the parts
The parts are
With the rotor
With the stator,
The shaft, which is the rotation axis of the rotor, and
A bearing that rotatably supports the shaft and
A case having a first plane on which the stator and the bearing are placed, and
Includes shims located between the first plane and the bearing, or between the first plane and the stator.
The process of preparing the parts is
The step of obtaining the predicted length of the gap between the rotor and the stator in consideration of the actual size of the stator, and
It comprises a step of determining the thickness of the shim based on the difference between the design length of the gap and the predicted length.
How to make a motor.
 前記予測長さが前記設計長さ超である場合、
 前記パーツを組み立てる工程では、前記シムを前記第一平面と前記ステータとの間に配置する、請求項1に記載のモータの製造方法。
If the predicted length exceeds the design length
The method for manufacturing a motor according to claim 1, wherein in the step of assembling the parts, the shim is arranged between the first plane and the stator.
 前記予測長さが前記設計長さ未満である場合、
 前記パーツを組み立てる工程では、前記シムを前記第一平面と前記ベアリングとの間に配置する、請求項1に記載のモータの製造方法。
If the predicted length is less than the designed length
The method for manufacturing a motor according to claim 1, wherein in the step of assembling the parts, the shim is arranged between the first plane and the bearing.
 前記予測長さを求める工程は、更に、前記ロータ、前記シャフト、及び前記ベアリングの各々の実寸法を考慮して前記予測長さを求める、請求項1から請求項3のいずれか1項に記載のモータの製造方法。 The step of obtaining the predicted length is further described in any one of claims 1 to 3, wherein the predicted length is obtained in consideration of the actual dimensions of each of the rotor, the shaft, and the bearing. How to make a motor.  前記ロータは、
  円環板状のロータ本体と、
  前記ロータ本体に固定されている少なくとも1枚の磁石と、を有し、
 前記ベアリングは、インナーレース及びアウターレースを有するラジアルベアリング又はアンギュラベアリングであり、
 前記インナーレース及び前記アウターレースの各々は、前記ロータ本体に向き合う第一端面を有し、
 前記予測長さを求める工程は、更に、前記アウターレースの前記第一端面と前記インナーレースの前記第一端面とのずれ量を考慮して前記予測長さを求め、
 前記ずれ量は、前記シャフト及び前記ロータの自重によって前記インナーレースに作用する荷重、及び前記磁石の前記ステータへの吸引力によって前記インナーレースに作用する荷重を考慮して求められる、請求項1から請求項4のいずれか1項に記載のモータの製造方法。
The rotor is
Annulus plate-shaped rotor body and
With at least one magnet fixed to the rotor body,
The bearing is a radial bearing or an angular bearing having an inner race and an outer race.
Each of the inner race and the outer race has a first end surface facing the rotor body.
In the step of obtaining the predicted length, the predicted length is further obtained in consideration of the amount of deviation between the first end surface of the outer race and the first end surface of the inner race.
The deviation amount is obtained from claim 1 in consideration of the load acting on the inner race due to the weight of the shaft and the rotor and the load acting on the inner race due to the attractive force of the magnet to the stator. The method for manufacturing a motor according to any one of claims 4.
 前記ステータは、
  円環板状のヨークと、
  前記ヨークの周方向に間隔をあけて配置される柱状の複数のティースと、を備え、
 前記ヨークは、前記第一平面に接する第一面を有し、
 前記ティースは、前記ロータに向かい合う端面を有し、
 前記予測長さを求める工程は、前記ヨークの前記第一面と前記ティースの前記端面との間の実寸法を考慮して前記予測長さを求める、請求項1から請求項5のいずれか1項に記載のモータの製造方法。
The stator is
Annulus plate-shaped yoke and
With a plurality of columnar teeth arranged at intervals in the circumferential direction of the yoke,
The yoke has a first surface in contact with the first plane.
The teeth have end faces facing the rotor and
The step of obtaining the predicted length is any one of claims 1 to 5, wherein the predicted length is obtained in consideration of the actual size between the first surface of the yoke and the end surface of the teeth. The method for manufacturing a motor according to the section.
 前記ステータは、圧粉成形体で構成されているステータコアを備えている、請求項1から請求項6のいずれか1項に記載のモータの製造方法。 The method for manufacturing a motor according to any one of claims 1 to 6, wherein the stator includes a stator core made of a dust compact.  前記パーツは、前記第一平面と前記ステータとを固定する締結部材を含んでいる、請求項1から請求項7のいずれか1項に記載のモータの製造方法。 The method for manufacturing a motor according to any one of claims 1 to 7, wherein the part includes a fastening member for fixing the first plane and the stator.  前記ロータは、
  円環板状のロータ本体と、
  前記ロータ本体に固定されている少なくとも1枚の磁石と、を有し、
 前記ロータ本体は、前記磁石に向かい合う第一面を有し、
 前記磁石は、前記ステータに向かい合う第一端面を有し、
 前記予測長さを求める工程は、前記ロータ本体と前記磁石とが固定された前記ロータにおいて、前記ロータ本体の前記第一面と前記磁石の前記第一端面との間の長さの実寸法を考慮して前記予測長さを求める、請求項1から請求項8のいずれか1項に記載のモータの製造方法。
The rotor is
Annulus plate-shaped rotor body and
With at least one magnet fixed to the rotor body,
The rotor body has a front surface facing the magnet and has a front surface.
The magnet has a first end surface facing the stator and has a first end surface.
In the step of obtaining the predicted length, in the rotor in which the rotor body and the magnet are fixed, the actual dimension of the length between the first surface of the rotor body and the first end surface of the magnet is obtained. The method for manufacturing a motor according to any one of claims 1 to 8, wherein the predicted length is obtained in consideration of the above.
 前記磁石の数は、1枚であり、
 前記磁石の形状は、円環状である、請求項9に記載のモータの製造方法。
The number of the magnets is one.
The method for manufacturing a motor according to claim 9, wherein the shape of the magnet is annular.
 前記パーツを組み立てる工程では、前記ロータに前記シャフトを圧入する、請求項1から請求項10のいずれか1項に記載のモータの製造方法。 The method for manufacturing a motor according to any one of claims 1 to 10, wherein in the step of assembling the parts, the shaft is press-fitted into the rotor.  前記パーツを組み立てる工程を繰り返し行い、
 前記予測長さを求める工程は、前記モータの製造数よりも少ない数の前記ステータ、前記ロータ、前記シャフト、及び前記ベアリングの各々の実寸法の平均値を考慮して前記予測長さを求める、請求項1から請求項11のいずれか1項に記載のモータの製造方法。
Repeat the process of assembling the parts,
In the step of obtaining the predicted length, the predicted length is obtained in consideration of the average value of the actual dimensions of each of the stator, the rotor, the shaft, and the bearing, which is smaller than the number of manufactured motors. The method for manufacturing a motor according to any one of claims 1 to 11.
 前記ステータの数と前記ロータの数とが1つずつである、請求項1から請求項12のいずれか1項に記載のモータの製造方法。 The method for manufacturing a motor according to any one of claims 1 to 12, wherein the number of the stators and the number of the rotors are one each.  前記ステータの数が2つであり、前記ロータの数が1つである、請求項1から請求項12のいずれか1項に記載のモータの製造方法。 The method for manufacturing a motor according to any one of claims 1 to 12, wherein the number of the stators is two and the number of the rotors is one.
PCT/JP2021/020279 2020-11-25 2021-05-27 Motor manufacturing method WO2022113404A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022565040A JP7672427B2 (en) 2020-11-25 2021-05-27 Motor manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-195500 2020-11-25
JP2020195500 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022113404A1 true WO2022113404A1 (en) 2022-06-02

Family

ID=81754207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020279 WO2022113404A1 (en) 2020-11-25 2021-05-27 Motor manufacturing method

Country Status (2)

Country Link
JP (1) JP7672427B2 (en)
WO (1) WO2022113404A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298589A (en) * 1994-04-15 1995-11-10 Kollmorgen Corp Axial air gap motor
JP2007202248A (en) * 2006-01-24 2007-08-09 Honda Motor Co Ltd Method and apparatus for assembling rotating electrical machine
WO2017141412A1 (en) * 2016-02-19 2017-08-24 株式会社日立産機システム Axial gap rotary electric machine
JP2018082610A (en) * 2016-11-07 2018-05-24 アスモ株式会社 Vehicle motor attachment structure and on-vehicle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298589A (en) * 1994-04-15 1995-11-10 Kollmorgen Corp Axial air gap motor
JP2007202248A (en) * 2006-01-24 2007-08-09 Honda Motor Co Ltd Method and apparatus for assembling rotating electrical machine
WO2017141412A1 (en) * 2016-02-19 2017-08-24 株式会社日立産機システム Axial gap rotary electric machine
JP2018082610A (en) * 2016-11-07 2018-05-24 アスモ株式会社 Vehicle motor attachment structure and on-vehicle device

Also Published As

Publication number Publication date
JPWO2022113404A1 (en) 2022-06-02
JP7672427B2 (en) 2025-05-07

Similar Documents

Publication Publication Date Title
US9130441B2 (en) Brushless DC motor
US7501724B2 (en) Movable assembly for cylinder type linear motor
CN103516081B (en) Rotor, the electric generator-motor with rotor and method for manufacturing rotor
CN102570669B (en) End plate, and rotor for rotary electric machine which employs the end plate
US20120049686A1 (en) Rotary electric machine
JPH0568185B2 (en)
JP6584331B2 (en) Single-phase brushless motor and method for manufacturing single-phase brushless motor
JP2013021810A (en) Rotary electric machine
US20210075278A1 (en) Laminated rotor having mechanically retained permanent magnets
WO2018131693A1 (en) Sensor magnet assembly and motor
JP2009095200A (en) Rotor of rotary electric machine
US7443061B2 (en) Driving device
JP2002058184A (en) Rotor construction and motor
WO2022113404A1 (en) Motor manufacturing method
EP2456046A2 (en) Stator, and motor comprising same
JP6967987B2 (en) Rotor, motor and rotor manufacturing method
JP2008131742A (en) motor
JP2019083651A (en) Rotor, manufacturing method of rotor, and rotary electric machine
WO2022270397A1 (en) Motor and motor production method
WO2022244482A1 (en) Motor and method for manufacturing motor
WO2022009774A1 (en) Rotating electric machine and method for manufacturing rotating electric machine
WO2017175461A1 (en) Axial gap rotary electric machine
JP2005312124A (en) Structure of rotary electric machine
JP7344687B2 (en) stepper motor
JP4706298B2 (en) Resolver device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897384

Country of ref document: EP

Kind code of ref document: A1