WO2022104762A1 - 多频段低噪声放大器、相控阵和电子设备 - Google Patents
多频段低噪声放大器、相控阵和电子设备 Download PDFInfo
- Publication number
- WO2022104762A1 WO2022104762A1 PCT/CN2020/130721 CN2020130721W WO2022104762A1 WO 2022104762 A1 WO2022104762 A1 WO 2022104762A1 CN 2020130721 W CN2020130721 W CN 2020130721W WO 2022104762 A1 WO2022104762 A1 WO 2022104762A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- band
- coupled
- amplifier
- shifting
- Prior art date
Links
- 230000002776 aggregation Effects 0.000 claims abstract description 21
- 238000004220 aggregation Methods 0.000 claims abstract description 21
- 230000010363 phase shift Effects 0.000 claims description 17
- 230000005540 biological transmission Effects 0.000 claims description 11
- 230000015654 memory Effects 0.000 claims description 11
- 230000007850 degeneration Effects 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 2
- 238000004891 communication Methods 0.000 description 29
- 238000010586 diagram Methods 0.000 description 14
- 238000013461 design Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000001629 suppression Effects 0.000 description 8
- 239000000969 carrier Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 4
- 241000700159 Rattus Species 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/68—Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/335—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/26—Modifications of amplifiers to reduce influence of noise generated by amplifying elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/111—Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/222—A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/294—Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/336—A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
Definitions
- the present application relates to the field of wireless communication, and in particular, to a multi-band low noise amplifier, a phased array and an electronic device.
- phased array technology offers one possible solution.
- NR new radio
- phased array technology has become a necessary technical means.
- phased arrays that support multiple frequency bands have gradually become an important technical trend.
- the multi-band phased array in the prior art usually adopts a combination of multiple single-band receivers, which inevitably leads to the problem of an excessively large area.
- Embodiments of the present application provide a multi-band low-noise amplifier, a phased array and an electronic device, which are used for receiving miniaturized multi-band signals.
- a multi-band phased array comprising a plurality of branches coupled with a plurality of multi-band antennas, each branch of the plurality of branches includes a multi-band low noise amplifier, the multi-band low noise amplifier
- the frequency band low noise amplifier is used to receive an inter-band carrier aggregation signal, and the inter-band carrier aggregation signal includes a first carrier signal located in a first frequency band and a second carrier signal located in a second frequency band, the first frequency band and the first frequency band.
- the multi-band low noise amplifier includes an input end, a first input matching network, a second input matching network, a first amplifier, and a second amplifier; the input end is coupled with the multi-band antenna, for receiving the inter-band carrier aggregation signal; the first input matching network is coupled between the input end and the first amplifier, and is used for realizing impedance matching of the first carrier signal, the first The amplifier is used for amplifying the matched first carrier signal; the second input matching network is coupled between the input terminal and the second amplifier, and is used for realizing impedance matching of the second carrier signal, the The second amplifier is used for amplifying the matched second carrier signal; each branch of the plurality of branches further includes a phase shifter, and the phase shifter is used to amplify all the signals output from the output end of the first amplifier.
- the first carrier signal is phase-shifted, and the phase shifter is further configured to phase-shift the second carrier signal output from the output end of the second amplifier.
- the first matching network is further configured to suppress the transmission of the second carrier signal
- the second matching network is further configured to suppress the transmission of the first carrier signal.
- the center frequency of the first frequency band is lower than the center frequency of the second frequency band;
- the first matching network includes a first inductor, and the first inductor is coupled in series with the first matching between the input end and the output end of the network;
- the second matching network includes a transformer, the transformer is coupled between the input end and the output end of the second matching network, the transformer includes a primary coil and a secondary coil, the One end of the primary coil is coupled to the input end of the second matching network, and the other end is coupled to ground; one end of the secondary coil is coupled to the output end of the second matching network, and the other end is coupled to ground.
- the first matching network further includes a grounded switch coupled between the signal path and the ground terminal. Based on the introduced grounding switch, the suppression capability of the first matching network for the signal of the second frequency band is further improved.
- the multi-band low noise amplifier further includes a second inductor, one end of the second inductor is coupled to the input end, and the other end of the second inductor is coupled to ground. It is used to further improve the matching performance of the amplifier circuit, and at the same time, it can also improve the ESD performance.
- the first amplifier includes a first source degeneration inductance
- the second amplifier includes a second source degeneration inductance
- the first source degeneration inductance is greater than the second source degeneration inductance degenerate inductance.
- the antenna is a multi-frequency single-feed antenna, which is coupled to the input end through a feed point. This further saves area and reduces the difficulty of feeder design.
- the phase shifter includes a first phase shifting branch and a second phase shifting branch, the first phase shifting branch is coupled to the output end of the first amplifier, and is used for pairing The first carrier signal is phase-shifted; the second phase-shift branch is coupled to the output end of the second amplifier, and is used for phase-shifting the second carrier signal.
- the first phase-shifting branch includes a first mixer and a first phase-shifting unit
- the second phase-shifting branch includes a second mixer and a second phase-shifting unit
- the first phase-shifting unit is coupled between the first mixer and the local oscillator signal generator
- the second phase-shifting unit is coupled to the second mixer and the local oscillator signal generator between.
- the local oscillator signal generator includes a first local oscillator signal generator and a second local oscillator signal generator; the first phase shift unit is coupled to the first local oscillator signal generator between the second local oscillator and the first mixer; the second phase shifting unit is coupled between the second local oscillator signal generator and the second mixer.
- Using different local oscillator signal generators improves the frequency coverage of the local oscillator signal and reduces the design difficulty.
- the first phase-shifting branch includes a third phase-shifting unit, and the third phase-shifting unit is coupled between the first mixer and the intermediate frequency signal processor, and is used for Phase-shifting the intermediate frequency signal of the first phase-shifting branch after down-conversion;
- the second phase-shifting branch includes a fourth phase-shifting unit, and the fourth phase-shifting unit is coupled to the second mixer
- the intermediate frequency processor and the intermediate frequency signal processor it is used to phase-shift the intermediate frequency signal of the second phase-shifting branch after down-conversion; the intermediate frequency processor is used to filter and convert the phase-shifted intermediate frequency signal.
- the design of the phase shifter is further optimized by adopting the IF phase-shifting architecture.
- a selector is further included, which is coupled between the antenna and the input end of the multi-band low noise amplifier.
- the phased array using this architecture can have the function of receiving and sending duplex.
- the first frequency band covers n257, n258 and n261
- the second frequency band covers n259 and n260. Based on this phased array architecture, the above frequency resources can be fully utilized with greater efficiency.
- a multi-band low noise amplifier comprising: an input end, a first input matching network, a second input matching network, a first amplifier, and a second amplifier; the input end is coupled with an antenna and is used for receiving a band an inter-band carrier aggregation signal, the inter-band carrier aggregation signal includes a first carrier signal in a first frequency band and a second carrier signal in a second frequency band, the first frequency band and the second frequency band being different and not overlapping; the first frequency band
- the input matching network is coupled between the input terminal and the first amplifier for impedance matching of the first carrier signal, and the first amplifier is used for outputting the amplified first carrier signal; the second input matches The network is coupled between the input end and the second amplifier for impedance matching of the second carrier signal, and the second amplifier is used for outputting the amplified second carrier signal.
- the design complexity between the multi-band low noise amplifier and the antenna is greatly reduced, and the area of the circuit.
- the multi-band low noise amplifier of the second aspect may also have other possible implementation manners.
- an electronic device including a transceiver, a memory, and a processor; wherein the transceiver is provided with the aforementioned multi-band phased array.
- FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
- FIG. 2 is a schematic diagram of the architecture of a phased array transceiver according to an embodiment of the present application
- FIG. 3 is a schematic diagram of carrier aggregation according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of the architecture of a multi-band LNA supporting inter-band CA according to an embodiment of the present application
- FIG. 5 is a schematic diagram of a low-frequency matching network according to an embodiment of the present application.
- FIG. 6 is a schematic diagram of a high-frequency matching network according to an embodiment of the present application.
- FIG. 7 is a schematic diagram of a source degenerate amplifier according to an embodiment of the present application.
- FIG. 8 is a schematic diagram of an architecture of a phase shifter for a multi-frequency phased array according to an embodiment of the present application.
- FIG. 9 is a schematic diagram of an electronic device according to an embodiment of the present application.
- FIG. 10 is a schematic diagram of a smart phone according to an embodiment of the present application.
- devices can be divided into devices that provide wireless network services and devices that use wireless network services.
- the devices that provide wireless network services refer to those devices that make up a wireless communication network, which can be referred to as network equipment or network elements for short.
- Network equipment is usually owned by operators (such as China Mobile and Vodafone) or infrastructure providers (such as tower companies), and these manufacturers are responsible for operation or maintenance.
- Network devices can be further classified into radio access network (RAN) devices and core network (core network, CN) devices.
- RAN radio access network
- core network core network
- a typical RAN device includes a base station (BS).
- the base station may also sometimes be referred to as a wireless access point (access point, AP), or a transmission reception point (transmission reception point, TRP).
- the base station may be a general node B (generation Node B, gNB) in a 5G new radio (new radio, NR) system, or an evolutional Node B (evolutional Node B, eNB) in a 4G long term evolution (long term evolution, LTE) system. ).
- Base stations can be classified into macro base stations or micro base stations according to their physical form or transmit power. Micro base stations are also sometimes referred to as small base stations or small cells.
- Devices using wireless network services are usually located at the edge of the network and may be referred to as a terminal for short.
- the terminal can establish a connection with the network device, and provide the user with specific wireless communication services based on the service of the network device.
- user equipment user equipment
- subscriber unit subscriber unit
- SU subscriber unit
- terminals tend to move with users and are sometimes referred to as mobile stations (mobile stations, MSs).
- some network devices such as relay nodes (relay nodes, RNs) or wireless routers, can sometimes be regarded as terminals because they have UE identity or belong to users.
- the terminal may be a mobile phone, a tablet computer, a laptop computer, a wearable device (such as a smart watch, smart bracelet, smart helmet, smart glasses), and other Devices with wireless access capabilities, such as smart cars, various Internet of things (IOT) devices, including various smart home devices (such as smart meters and smart home appliances) and smart city devices (such as security or monitoring equipment, intelligent road transport facilities), etc.
- IOT Internet of things
- smart home devices such as smart meters and smart home appliances
- smart city devices such as security or monitoring equipment, intelligent road transport facilities
- the present application will take the base station and the terminal as examples to describe the technical solutions of the embodiments of the present application in detail.
- FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
- the wireless communication system includes a terminal, a base station A, a base station B, and a base station C.
- the wireless communication system may comply with the wireless communication standard of the third generation partnership project (3GPP), or may comply with other wireless communication standards, such as the Institute of Electrical and Electronics Engineers (Institute of Electrical and Electronics). Engineers, IEEE) wireless communication standards of the 802 series (eg, 802.11, 802.15, or 802.20).
- the wireless communication system may also include other numbers of terminals and base stations.
- the wireless communication system may further include other network devices, such as core network devices.
- the terminal and the base station should know the predefined configuration of the wireless communication system, including the radio access technology (RAT) supported by the system and the wireless resource configuration specified by the system, such as the basic configuration of the radio frequency band and carrier.
- a carrier is a frequency range that conforms to system regulations. This frequency range can be determined by the center frequency of the carrier (referred to as the carrier frequency) and the bandwidth of the carrier.
- the pre-defined configurations of these systems can be used as part of the standard protocols of the wireless communication system, or determined by the interaction between the terminal and the base station.
- the content of the relevant standard protocol may be pre-stored in the memory of the terminal and the base station, or embodied as hardware circuits or software codes of the terminal and the base station.
- the terminal and the base station support one or more of the same RATs, such as 5G NR, or RATs of future evolution systems. Specifically, the terminal and the base station use the same air interface parameters, coding scheme and modulation scheme, etc., and communicate with each other based on the radio resources specified by the system.
- the same RATs such as 5G NR, or RATs of future evolution systems.
- the terminal and the base station use the same air interface parameters, coding scheme and modulation scheme, etc., and communicate with each other based on the radio resources specified by the system.
- the terminal integrated with the phased array in FIG. 1 can be directed to base station A, base station B, and base station C through different configurations.
- terminals with phased array function can realize more concentrated energy transmission through the function of phased array, thereby reducing the path loss of signal transmission at high frequencies, especially in the millimeter wave frequency range. .
- FIG. 2 is a schematic diagram of an architecture of a phased array transceiver according to an embodiment of the present application.
- the phased array as shown in the figure includes multiple radio frequency branches, and each branch of the multiple radio frequency branches may include a corresponding radio frequency front end 1 and a corresponding phase shifter 2 .
- the radio frequency front end 1 includes a low noise amplifier (LNA) 10 and a power amplifier (PA) 11 .
- the low noise amplifier 10 is used for amplifying the received signal coupled from the antenna of the corresponding branch, and the power amplifier 11 is used for amplifying the transmission signal and outputting it to the antenna corresponding to the branch.
- the phased array can also be designed to have only one of the functions of receiving or transmitting, and each corresponding branch can also include only one of the low-noise amplifier 10 and the power amplifier 11 .
- each branch may further include a selector 12 for realizing duplex transmission and reception.
- the selector may be a duplexer for separating the transmitted and received signals into different frequency bands.
- the selector can be a switch, which turns on and off the transmit signal and the receive signal at different times.
- the selector 12 may be located at the front end of the branch, that is, coupled to the input end of the LNA and the output end of the PA as shown in FIG. 2; the selector 12 may also be located at the rear end of the branch, that is, coupled to the The output of the LNA and the input of the PA, and the PA and LNA are coupled directly to the antenna.
- Each branch of the multiple radio frequency branches of the phased array further includes a phase shifter, which is used to implement the phase shifting function of each branch.
- the phase shifter 2 is coupled to the back-end common node of the PA11 and the LNA10, that is, the output end of the LNA and the input end of the PA.
- the phase shifter 2 can also be coupled to the input end of the LNA and the output end of the PA.
- the PA and the LNA can multiplex the phase shifter 2, but this architecture of multiplexing the same phase shifter for transmission and reception is only applicable to the time division duplex mode. When the PA and the LNA work in different frequency bands at the same time, the PA and the LNA generally need to configure a separate phase shifter on their respective transmit and receive paths.
- CA carrier aggregation
- the principle of the technology is to carry user communication data on multiple carriers for communication; in the 3GPP (3rd Generation Partnership Project) protocol R10 (Release 10, version 10), the following three CA application scenarios are defined, as shown in Figure 3 Shown: Intra-band continuous CA (intra-band, contiguous CA); Intra-band discontinuous CA (intra-band, non-contiguous CA); Inter-band discontinuous CA (inter-band, non-contiguous CA), or is a cross-band CA; where A and B respectively represent two aggregated carriers.
- the number of carriers for carrier aggregation shown in FIG. 3 is not limited to two carriers A and B, and may also include other numbers of more carriers.
- the 5G millimeter wave frequency band defined by 3GPP includes n257 (26.5GHz-29.500GHz), n259 (39.5GHz-43.5GHz), n260 (37GHz-40GHz), n258 (24.25GHz-27.5GHz) , and n261 (27.5GHz-28.35GHz).
- the frequency bands covering n257, n258, and n261 are generally called low frequency bands (LB)
- the frequency bands covering n259 and n260 are generally called high frequency bands (HB).
- the carrier aggregation of the LB+HB combination is also called inter-band carrier aggregation, inter-band CA, due to the cross-band.
- the inter-band CA can include, but is not limited to, various combinations of n257+n259, n257+n260, n258+n259, n258+n260, etc. It should be noted that the specific frequency range of each frequency band of the millimeter wave mentioned here is only an example, and other numerical values may also be used in specific implementation, which is not specifically limited in this application. It should be understood that the technical solutions provided in this application are also applicable to other radio frequency bands.
- phased array integrated with inter-band CA will take advantage of both CA and phased array to improve communication quality with greater efficiency. But for receivers, especially LNAs used in phased arrays, it is a huge challenge to achieve miniaturization while supporting inter-band CAs with widely separated frequency bands.
- FIG. 4 is a schematic structural diagram of a multi-band LNA supporting inter-band CA according to an embodiment of the present application.
- the LNA (10) may include an input terminal (101), a first matching network (102), a second matching network (104), a first amplifier (103) and a second amplifier (105).
- the input end (101) is coupled to the antenna for receiving an inter-band carrier aggregation signal, the inter-band carrier aggregation signal may include a first carrier signal located in a first frequency band and a second carrier signal located in a second frequency band, the A frequency band is different from the second frequency band and does not overlap.
- the antenna coupled with the input end is a multi-frequency single-feed antenna, so that it can be coupled with the input end of the LNA through one feeding point, thereby saving the system area.
- a selector 12 as shown in FIG. 2 may be further included between the input end and the antenna, so as to further realize the transceiver duplex.
- the first matching network (102) and the second matching network (104) are commonly coupled to the input end (101), and receive the first frequency band signal and the second frequency band signal through one input end.
- the first matching network (102) is coupled between the input terminal (101) and the first amplifier (103), and is used to achieve matching from the input terminal (101) to the first amplifier (105).
- the second matching network (104) is coupled between the input terminal (101) and the second amplifier (105) for realizing matching from the input terminal (101) to the second amplifier (105).
- the first amplifier is used for receiving and amplifying the signal of the first frequency band
- the second amplifier is used for receiving and amplifying the signal of the second frequency band.
- the signal of the inter-band CA formed by Band A+Band B is coupled to the input terminal (101), the signal of Band A enters the first amplifier 103 through the first matching network 102 and is amplified and output, and the signal of Band B is output. It enters the second amplifier 105 through the second matching network 104 and is amplified and then output. Since the same input terminal is used to receive the signal of the first frequency band (Band A) and the signal of the second frequency band (Band B) at the same time, the complexity of the design between the LNA and the slave antenna feeder is greatly reduced, and the management of the circuit is reduced. The number of pins also reduces the area of the circuit design.
- the above architecture will also bring about the problem of interference when reducing the area. Since the input terminal can receive the signal of the first frequency band (Band A) and the signal of the second frequency band (Band B) at the same time, the signal of the second frequency band will also be coupled to the first amplifier for output amplification, and the signal of the first frequency band will also be Coupled into the amplifier of the second stage, the output is amplified, which brings additional interference in the subsequent IF signal processing and affects the performance.
- the first matching network may be designed to have a frequency selection characteristic, exhibiting a matching characteristic for signals in the first frequency band, and exhibiting a suppression characteristic for signals in the second frequency band.
- the second matching network may also be designed to have a frequency selection characteristic, exhibiting a matching characteristic for signals in the second frequency band, and exhibiting a suppression characteristic for signals in the first frequency band. As shown in FIG. 4 , when the first frequency band is LB and the first frequency band is HB, based on the first matching network and the second matching network with frequency selection characteristics, the signal of the first frequency band mainly passes through the first matching network.
- the LNA10 can also support single-band signal reception, and receive signals in the first or second frequency band independently in time division.
- the first matching network may include an inductor 1021 connected in series.
- the optional first matching network may further include a ground switch 1022 coupled between the signal path and the ground terminal.
- the switch 1022 is coupled between the output terminal and the ground terminal, and the switch 1022 is used for the LNA to independently receive signals of the second frequency band and close, which further improves the suppression capability of the signals of the second frequency band.
- the switch 1022 is used for the LNA to disconnect the signal of the first frequency band alone, and will not affect the signal path of the first frequency band.
- the first matching network may also have other implementation forms, including but not limited to adopting an L-type matching network and a PI-type matching network, which are not introduced one by one in this embodiment.
- the second matching network may include a transformer (transformer) 1041, which is coupled between the input terminal and the output terminal of the second matching network.
- the transformer 1041 includes a primary coil 1041a and a secondary coil 1041b, one end of the primary coil 1041a is coupled to the input end of the second matching network, and the other end is coupled to ground; one end of the secondary coil 1041b is coupled to the output end of the second matching network, and the other end is coupled to the ground.
- the transformer 1041 resonates in the HB frequency band and forms a high impedance in the LB frequency band, so that the input end of the second matching network can present a high impedance in the first frequency band LB, and achieve matching characteristics in the second frequency band HB. Meanwhile, since the transformer 1041 is coupled to ground, the electrostatic protection (Electro-Static discharge: ESD) characteristic of the input end 101 of the LNA 10 can be further improved.
- ESD Electro-Static discharge
- the second matching network may also have other implementation forms, including but not limited to L-type or PI-type matching networks, which are not introduced one by one in this embodiment.
- the LNA 10 shown in FIG. 4 may further include an inductor 106, one end of the inductor 106 is coupled to the input end 101, and the other end of the inductor 104 is coupled to ground.
- the inductor 104 can be used to improve the ESD performance of the LNA 10, as well as to optimize the noise figure of the LNA.
- the first amplifier 103 and the second amplifier 105 shown in FIG. 4 are respectively used for amplifying signals in the LB and HB frequency bands, and adopt a typical existing amplifier structure, such as a common source, common gate and other structures.
- the amplifier can also adopt the architecture of a narrow-band low-noise amplifier.
- Extremely degenerate amplifier architectures include, but are not limited to, the cascode with source degeneration shown in Figure 7a, and the common source structure with source degeneration shown in Figure 7b.
- the size of the source-degenerated inductance is related to the working frequency band of the specific amplifier.
- the inductance value of the source-degenerated inductance used by the first amplifier used for amplifying the LB frequency band signal is greater than the source used by the second amplifier used for amplifying the HB frequency band signal. extremely degraded inductance.
- the superimposed structure with source degeneration shown in FIG. 7 b includes a first inductor 701 , a first transistor 702 , and a second inductor 704 .
- the gate/base of the first transistor 702 is coupled to the input terminal of the amplifier, and the source/emitter of the first transistor 702 is coupled to ground through the first inductor 701 .
- the drain/collector of the first crystal is coupled with the second inductor 704 and the output terminal of the amplifier to output an amplified signal.
- a second transistor 703 is further included, and 703 is coupled between the first transistor and the second inductor 704 to form a superposition structure cascode, that is, the structure of the LNA shown in FIG. 7a .
- the MOS transistors shown in FIG. 7 include, but are not limited to, NMOS transistors, and may also be a combination of PMOS transistors and NMOS transistors.
- the architecture of the LNA shown in FIG. 4 can also be used in an inter-band carrier aggregation single-channel transceiver. It should be understood that Band A and Band B shown in FIG. 4 are only used for example, and may also include more carrier aggregation scenarios.
- FIG. 8 is a schematic diagram of an architecture of a phase shifter for a multi-frequency phased array according to an embodiment of the present application.
- FIG. 8 includes a first phase-shifting branch 21 whose input terminal is coupled to LB and a second phase-shifting branch 22 whose input terminal is coupled to HB, which are respectively used for phase-shifting of carriers of different frequency bands in the above embodiment.
- the first phase-shifting branch 21 may include one or more combinations of phase-shifting units 210 , 213 and 212 , and similarly, the second phase-shifting branch 22 may also include phase-shifting units 220 , 223 and 222 one or more of the .
- the input terminal of the first phase-shifting branch 21 may be coupled with the output terminal of the LB of the LNA in the above-mentioned embodiment, and the input terminal of the second phase-shifting branch 22 may be coupled with the output terminal of the HB of the LNA in the above-mentioned embodiment.
- the first phase-shifting branch 21 may include a first radio frequency phase-shifting unit 210 , which is coupled between the first mixer 211 and the input end of the first phase-shifting branch 21 .
- the second phase-shifting branch 22 may also include a second radio frequency phase-shifting unit 220 , which is coupled between the second mixer 221 and the input end of the first phase-shifting branch 22 .
- the two phase-shifting units are respectively used for phase-shifting the radio frequency signals of the respective branches. This phase-shifting is called radio-frequency signal phase-shifting, and is the current mainstream phase-shifting method.
- the first phase shifting branch 21 may include a first local oscillator phase shifting unit 213 coupled between the first mixer 211 and the first local oscillator 214 .
- the second phase shifting branch 22 may also include a second local oscillator phase shifting unit 223 coupled between the second mixer 221 and the first local oscillator 224 .
- the two local oscillator phase shifters perform phase shifting on the local oscillator signals before entering the respective mixers, so as to realize the phase shifting on the respective branches. This phase shift is called local oscillator signal phase shift, which is more suitable for broadband signals than the previous RF signal phase shift.
- the first phase shifting branch 21 and the second phase shifting branch 22 may multiplex the same phase shifting unit 213 .
- the local oscillator signals generated by the local oscillator 214 and the local oscillator 224 are time-divisionally passed through the same phase shifting unit 213 and then selected to enter their respective mixers.
- the first phase shifting branch 21 and the second phase shifting branch 22 may also multiplex the same local oscillator.
- the oscillator is designed as a wide-band oscillator, which outputs local oscillation signals of different frequency bands in time division, and enters into the respective mixers through the same phase shifting unit to select time division.
- the first phase shifting branch 21 may further include a first intermediate frequency phase shifter 212, the intermediate frequency phase shifter 212 is coupled between the mixer 211 and the intermediate frequency signal processor 230 of the corresponding branch, and the second phase shifting
- the branch 22 may further include a second intermediate frequency phase shifter 222, and the second intermediate frequency phase shifter 222 is coupled between the mixer 221 and the intermediate frequency signal processor 230 of the corresponding branch.
- the intermediate frequency signal processor 230 includes, but is not limited to, a filter and an analog-to-digital converter, for implementing corresponding filtering and digital-to-analog conversion on the phase-shifted intermediate frequency signal. This phase-shifting is called IF signal phase-shifting.
- each radio frequency branch can combine the received signals after frequency-shifting at the intermediate frequency.
- the multi-frequency phase shifter can adopt a combination of multiple phase shifts. Including, but not limited to, RF phase shifting plus LO phase shifting, and LO phase shifting plus IF shift equalization.
- the combination of IF phase-shifting and LO phase-shifting simplifies the design of the phase-shifting circuit, and has smaller circuit area and better performance, compared to a separate RF signal phase-shifting and or LO-signal phase-shifting combination.
- the multi-frequency phase shifter may include various combinations of the above multiple phase-shifting units, making full use of the individual or combined advantages of various phase-shifting units.
- each radio frequency branch in the phased array has the same working frequency
- each radio frequency branch can use the same local oscillator signal generator, and then pass through the After the phase shift unit of the local oscillator signal is phase shifted, it is then supplied to the mixers of the respective branches.
- the embodiment of the present application also provides an electronic device 300, please refer to FIG. 9, the electronic device
- the electronic device 300 may include a transceiver 301, a memory 304 and a processor 303, where the transceiver 301 is provided with the above-mentioned phase control Array 302.
- the electronic device 300 here may specifically be a terminal device such as a smart phone, a computer, and a smart watch.
- the terminal device may specifically include a processor 3102, a memory 3103, a communication circuit, an antenna, and an input and output device.
- the processor 3102 is mainly used to process the communication protocol and communication data, control the entire smartphone, execute software programs, and process data of the software programs, for example, to support the smartphone 310 to perform the actions described in the above method embodiments .
- the memory 3103 is mainly used for storing software programs and data.
- the communication circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal, and the communication circuit includes the above-mentioned phased array.
- Communication circuits are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
- the processor 3102 can read the software program in the memory 3103, interpret and execute the instructions of the software program, and process the data of the software program.
- the processor 3102 performs baseband processing on the data to be sent, and outputs a baseband signal to a radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through an antenna in the form of electromagnetic waves.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 3102, and the processor 3102 converts the baseband signal into data and sends the data to the data. to be processed.
- FIG. 10 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
- the memory may also be referred to as a storage medium or a storage device or the like. It should be noted that the embodiment of the present application does not limit the type of the memory.
- the X-th frequency band mentioned in this application refers to a fixed frequency range defined by a standard organization or commercial use, including but not limited to the embodiments of this application.
- the mmWave frequency bands for 5G defined by 3GPP include n257 (26.5GHz-29.500GHz), n260 (37GHz-40GHz), n258 (24.25GHz-27.5GHz), and n261 (27.5GHz-28.35GHz).
- the signals in the Xth frequency band mentioned in this application refer to the signals transmitted in the Xth frequency band.
- the signal may be a full bandwidth or a partial bandwidth signal transmitted in the X-th frequency band.
- the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not constitute any implementation process of the embodiments of the present application. limited.
- the word "coupling” mentioned in this application is used to express the intercommunication or interaction between different components, which may include direct connection or indirect connection through other components.
- the XX terminal is coupled to the ground, which means that the XX terminal can be directly grounded or grounded through another device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
- Amplifiers (AREA)
Abstract
本申请公开了一种提供了一种多频段低噪声放大器,包括:输入端,第一输入匹配网络,第二输入匹配网络,第一放大器,第二放大器;输入端与天线耦合,用于接收带间载波聚合信号,带间载波聚合信号包括位于第一频段的第一载波信号和位于第二频段的第二载波信号,第一频段与第二频段不同且没有重叠;第一输入匹配网络耦合于输入端与第一放大器之间,用于对第一载波信号的阻抗匹配,第一放大器用于输出放大后的第一载波信号;第二输入匹配网络耦合于所述输入端与第二放大器之间,用于对第二载波信号的阻抗匹配,第二放大器用于输出放大后的第二载波信号。
Description
本申请涉及无线通信领域,尤其涉及一种多频段低噪声放大器、相控阵和电子设备。
无线通信由于在低频段频率资源的受限,高频发展的趋势成为了一个必然。比如毫米波频段由于其丰富的频谱资源受到广泛研究。随着频率的提高,高的路径损耗限制了它的发展。相控阵技术提供了一种可能的解决方案。在5G新无线电(new radio,NR)的高频通信领域、车载雷达领域以及相关的技术领域中,相控阵技术都成为了一种必选的技术手段。为了充分利用频率资源,支持多频段的相控阵也逐渐成为了一种重要的技术趋势。现有技术中的多频段相控阵通常采用多个单频段的接收机组合,这势必导致面积过大的问题。
发明内容
本申请实施例提供了一种多频段低噪声放大器、相控阵和电子设备,用于实现小型化的多频段信号的接收。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种多频段相控阵,包括与多个多频段天线耦合的多个支路,所述多个支路中的每个支路包括多频段低噪声放大器,所述多频段低噪声放大器用于接收带间载波聚合信号,所述带间载波聚合信号包括位于第一频段的第一载波信号和位于第二频段的第二载波信号,所述第一频段与所述第二频段不同且没有重叠;所述多频段低噪声放大器包括输入端,第一输入匹配网络,第二输入匹配网络,第一放大器,第二放大器;所述输入端与所述多频段天线耦合,用于接收所述带间载波聚合信号;所述第一输入匹配网络耦合于所述输入端与所述第一放大器之间,用于实现所述第一载波信号的阻抗匹配,所述第一放大器用于放大经过匹配后的第一载波信号;所述第二输入匹配网络耦合于所述输入端与所述第二放大器之间,用于实现所述第二载波信号的阻抗匹配,所述第二放大器用于放大经过匹配后的第二载波信号;所述多个支路中的每个支路还包括移相器,所述移相器用于对所述第一放大器输出端输出的所述第一载波信号进行移相,所述移相器还用于对所述第二放大器输出端输出的所述第二载波信号进行移相。基于此架构,可以实现带间载波聚合功能小型化的相控阵。
在一种可能的实施方式中,所述第一匹配网络还用于抑制所述第二载波信号的传输,所述第二匹配网络还用于抑制第一载波信号的传输。基于上述匹配网络的设计,多频段低噪声放大器可以具有更好的抗干扰特性。
在一种可能的实施方式中,所述第一频段的中心频率低于所述第二频段的中心频率;该第一匹配网络包括第一电感,该第一电感串联耦合于所述第一匹配网络的输入端和输出端之间;该第二匹配网络包括变压器,该变压器耦合于所述第二匹配网络的输入 端和输出端之间,所述变压器包括初级线圈和次级线圈,所述初级线圈的一端耦合于第二匹配网络输入端,另外一端与耦合接地;所述次级线圈的一端耦合于第二匹配网络输出端,另外一端耦合接地。基于以上匹配网络的设计,可以低成本的实现兼具匹配和抗干扰性能的匹配网络,同时可以改善ESD的性能。
在一种可能的实施方式中,所述第一匹配网络还包括一个接地的开关耦合于信号通路与接地端之间。基于引入的接地开关,进一步的提升对于第一匹配网络对于第二频段的信号的抑制能力。
在一种可能的实施方式中,多频段低噪声放大器还包括第二电感,所述第二电感一端耦合于所述输入端,所述第二电感另一端耦合接地。用于进一步的提升放大电路的匹配性能同时,还能改进ESD性能。
在一种可能的实施方式中,所述第一放大器包括第一源极退化电感,所述第二放大器包括第二源极退化电感;所述第一源极退化电感大于所述第二源极退化电感。采用源极退化结构,可以在放大电路中进一步的集成带外抑制功能,从而提升第一放大器对于第二载波的抑制以及第二放大器对于第一载波的抑制,提升放大电路的抗干扰能力。
在一种可能的实施方式中,所述天线为多频单馈天线,通过一个馈电点与所述输入端耦合。这样进一步的节约了面积,降低了馈线设计的难度。
在一种可能的实施方式中,所述移相器包括第一移相支路和第二移相支路,所述第一移相支路与所述第一放大器输出端耦合,用于对所述第一载波信号移相;所述第二移相支路与所述第二放大器输出端耦合,用于对所述第二载波信号移相。采用上述基于不同频段的不同移相支路,降低了移相器的设计难度,实现了成本和功能的优化。
在一种可能的实施方式中,所述第一移相支路包括第一混频器和第一移相单元,所述第二移相支路包括第二混频器和第二移相单元;所述第一移相单元耦合于所述第一混频器和本振信号产生器之间;所述第二移相单元耦合于所述第二混频器和所述本振信号产生器之间。采用上述本振移相架构,简化了多频移相器的设计。
在一种可能的实施方式中,所述本振信号产生器包括第一本振信号产生器和第二本振信号产生器;所述第一移相单元耦合于所述第一本振信号产生器与所述第一混频器之间;所述第二移相单元耦合于所述第二本振信号产生器与所述第二混频器之间。采用不同的本振信号产生器,提升了本振信号的频率覆盖范围,降低了设计难度。
在一种可能的实施方式中,所述第一移相支路包括第三移相单元,所述第三移相单元耦合于所述第一混频器与中频信号处理器之间,用于对下变频后的所述第一移相支路的中频信号移相;所述第二移相支路包括第四移相单元,所述第四移相单元耦合于所述第二混频器与所述中频信号处理器之间,用于对下变频后的所述第二移相支路的中频信号移相;所述中频处理器用于对移相后的中频信号进行滤波和模数转换。采用中频移相的架构,进一步的优化了移相器的设计。
在一种可能的实施方式中,还包括选择器,耦合于所述天线和所述多频段低噪声放大器的输入端之间。采用此架构的相控阵,可以具有收发双工的功能。
在一种可能的实施方式中,所述第一频段覆盖n257和n258以及n261,所述第二 频段覆盖n259和n260,基于此相控阵架构可以更大效率的充分利用以上频率资源。
第二方面,提供了一种多频段低噪声放大器,包括:输入端,第一输入匹配网络,第二输入匹配网络,第一放大器,第二放大器;该输入端与天线耦合,用于接收带间载波聚合信号,该带间载波聚合信号包括位于第一频段的第一载波信号和位于第二频段的第二载波信号,该第一频段与所述第二频段不同且没有重叠;该第一输入匹配网络耦合于所述输入端与所述第一放大器之间,用于对该第一载波信号的阻抗匹配,该第一放大器用于输出放大后的第一载波信号;该第二输入匹配网络耦合于所述输入端与所述第二放大器之间,用于对该第二载波信号的阻抗匹配,该第二放大器用于输出放大后的第二载波信号。基于以上的多频段低噪声放大器,由于使用了同一个输入端同时接收位于第一频段和第二频段带间载波聚合信号,大大降低了多频段低噪声放大器与天线之间设计的复杂度,降低了电路的面积。
应理解,第二方面的一种多频段低噪声放大器还可以有其他可能的实现方式,具体可以参考第一方面各种可能实现方式中关于多频段低噪声放大器的特征,此处不再重复。
第三方面,提供了一种电子设备,包括收发器、存储器和处理器;其中,所述收发器中设置前述的多频段相控阵。
图1为本申请实施例一种无线通信系统的结构示意图;
图2为本申请实施例一种相控阵收发机架构示意图
图3为本申请实施例一种载波聚合的示意图;
图4为本申请实施例一种支持inter-band CA多频段LNA的架构示意图;
图5为本申请实施例一种低频匹配网络示意图;
图6为本申请实施例一种高频匹配网络示意图;
图7为本申请实施例一种源极退化放大器示意图;
图8为本申请实施例一种用于多频相控阵移相器架构示意图;
图9为本申请实施例一种电子设备示意图;
图10为本申请实施例一种智能手机示意图。
以下将结合附图,对本发明实施例中的技术方案进行详细地描述。显然,所描述的实施例只是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应属于本发明保护的范围。
无线通信系统中,设备可分为提供无线网络服务的设备和使用无线网络服务的设备。提供无线网络服务的设备是指那些组成无线通信网络的设备,可简称为网络设备(network equipment),或网络单元(network element)。网络设备通常归属于运营商(如中国移动 和Vodafone)或基础设施提供商(如铁塔公司),并由这些厂商负责运营或维护。网络设备还可进一步分为无线接入网(radio access network,RAN)设备以及核心网(core network,CN)设备。典型的RAN设备包括基站(base station,BS)。
应理解,基站有时也可以被称为无线接入点(access point,AP),或发送接收点(transmission reception point,TRP)。具体地,基站可以是5G新无线电(new radio,NR)系统中的通用节点B(generation Node B,gNB),4G长期演进(long term evolution,LTE)系统的演进节点B(evolutional Node B,eNB)。根据基站的物理形态或发射功率的不同,基站可被分为宏基站(macro base station)或微基站(micro base station)。微基站有时也被称为小基站或小小区(small cell)。
使用无线网络服务的设备通常位于网络的边缘,可简称为终端(terminal)。终端能够与网络设备建立连接,并基于网络设备的服务为用户提供具体的无线通信业务。应理解,由于终端与用户的关系更加紧密,有时也被称为用户设备(user equipment,UE),或订户单元(subscriber unit,SU)。此外,相对于通常在固定地点放置的基站,终端往往随着用户一起移动,有时也被称为移动台(mobile station,MS)。此外,有些网络设备,例如中继节点(relay node,RN)或者无线路由器等,由于具备UE身份,或者归属于用户,有时也可被认为是终端。
具体地,终端可以是移动电话(mobile phone),平板电脑(tablet computer),膝上型电脑(laptop computer),可穿戴设备(比如智能手表,智能手环,智能头盔,智能眼镜),以及其他具备无线接入能力的设备,如智能汽车,各种物联网(internet of thing,IOT)设备,包括各种智能家居设备(比如智能电表和智能家电)以及智能城市设备(比如安防或监控设备,智能道路交通设施)等。
为了便于表述,本申请中将以基站和终端为例,详细说明本申请实施例的技术方案。
图1为本申请实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统包括终端,基站A,基站B,基站C。该无线通信系统中,该无线通信系统可以遵从第三代合作伙伴计划(third generation partnership project,3GPP)的无线通信标准,也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。
图1中虽然仅示出了三个基站和一个终端,该无线通信系统也可包括其他数目的终端和基站。此外,该无线通信系统还可包括其他的网络设备,比如核心网设备。
终端和基站应知晓该无线通信系统预定义的配置,包括系统支持的无线电接入技术(radio access technology,RAT)以及系统规定的无线资源配置等,比如无线电的频段和载波的基本配置。载波是符合系统规定的一段频率范围。这段频率范围可由载波的中心频率(记为载频)和载波的带宽共同确定。这些系统预定义的配置可作为无线通信系统的标准协议的一部分,或者通过终端和基站间的交互确定。相关标准协议的内容,可能会预先存储在终端和基站的存储器中,或者体现为终端和基站的硬件电路或软件代码。
该无线通信系统中,终端和基站支持一种或多种相同的RAT,例如5G NR、或未来演进系统的RAT。具体地,终端和基站采用相同的空口参数、编码方案和调制方案 等,并基于系统规定的无线资源相互通信。
图1中集成了相控阵的终端可以通过不同的配置,可以分别定向指向基站A、基站B、基站C。相比于传统的终端,具有相控阵功能的终端可以通过相控阵的功能实现能量更集中的传输,从而一定程度缓解了在高频,特别是毫米波频率范围下,信号传输的路径损耗。
图2为本申请实施例一种相控阵收发机架构示意图。以射频相控阵为例,如图所示的相控阵包括多个射频支路,多个射频支路的每个支路可以包括相应的射频前端1,以及相应的移相器2。射频前端1包括低噪声放大器(low noise amplifier,LNA)10、功率放大器(power amplifier,PA)11。低噪声放大器10用于将从对应支路的天线耦合来的接收信号进行放大,功率放大器11用于将发射信号进行功率放大后输出给支路对应的天线。可选的,相控阵也可以设计仅仅具有接收或者发射的功能之一,相应的每个支路也可以仅包括低噪声放大器10和功率放大器11其中之一。
进一步的,所述每个支路还可以包括一个选择器12,用于实现收发双工。当该相控阵的发射和接收处于不同频段时,选择器可以是双工器(duplexer),用于将发射和接收的信号分离到不同的频段。当发射和接收处于不同的时隙时,选择器可以是开关,不同的时刻选通和关闭发射信号和接收信号。可选的,选择器12可以位于支路的前端,也就是耦合在如图2所示的LNA的输入端和PA的输出端;选择器12也可以位于支路的后端,也就是耦合在LNA的输出端和PA的输入端,而PA和LNA直接与天线耦合。
相控阵的多个射频支路的每个支路还包括移相器,用于实现每个支路的移相功能。示例性的,移相器2与PA11和LNA10的后端公共节点耦合,也就是LNA的输出端和PA的输入端。可选的,移相器2也可以与LNA的输入端和PA的输出端耦合。PA和LNA可以复用移相器2,但是这种收发复用同一移相器的架构仅仅适用于时分双工的模式。当PA和LNA同时工作在不同的频段时,PA和LNA一般需要各自配置一个单独的移相器位于各自发射和接收路径上。
此外,为了增加通信带宽,实现更高的用户数据吞吐率,从3GPP(第三代合作伙伴计划)协议R10(Release 10,版本10)开始,采用了载波聚合(Carrier Aggregation,CA)技术,CA技术的原理是将用户通信数据承载在多个载波上进行通信;在3GPP(第三代合作伙伴计划)协议R10(Release 10,版本10)中,定义了以下三种CA应用场景,如图3所示:频段内连续CA(intra-band,contiguous CA);频段内不连续CA(intra-band,non-contiguous CA);跨频段不连续CA(inter-band,non-contiguous CA),或称为跨频段CA;其中,A和B分别表示两个聚合的载波。应理解,图3所示的载波聚合的载波数目不限于A和B两个载波,也可以包括其他数目的更多的载波。以毫米波频段为例,3GPP定义的5G的毫米波频段包括n257(26.5GHz-29.500GHz),n259(39.5GHz-43.5GHz),n260(37GHz-40GHz),n258(24.25GHz-27.5G Hz),和n261(27.5GHz-28.35GHz)。其中,覆盖n257,n258,n261的频段一般称为低频段(low band,LB),覆盖n259,n260的频段一般称为高频段(high band,HB)。LB+HB组合的载波聚合由于跨频段,也称为带间载波聚合,inter-band CA。示例性的,inter-band CA可以包括但是不限于n257+n259,n257+n260,n258+n259,n258+n260等多种组合。需要说明的是,这里提到的毫米波各个频段具体的频率范围只是示例性,具体实现时,也可以是其它数值,本申请对此不作具体限制。应当理解,本申请提供的技术方案也适用于其他射频频段。
集成有inter-band CA的相控阵将同时利用CA和相控阵的优势,更大效率的提升通信质量。但是对于接收机而言,特别是用于相控阵中的LNA,在支持频段相隔较远的inter-band CA的同时实现小型化,是一个巨大的挑战。
图4为本申请实施例一种支持inter-band CA多频段LNA的架构示意图。在上述实施例的基础上,LNA(10)可以包括输入端(101),第一匹配网络(102),第二匹配网络(104),第一放大器(103)和第二放大器(105)。输入端(101)与天线耦合,用于接收带间载波聚合信号,所述带间载波聚合信号可以包括位于第一频段的第一载波信号和位于第二频段的第二载波信号,所述第一频段与所述第二频段不同且没有重叠。
优选的,跟输入端耦合的天线为多频单馈的天线,这样通过一个馈电点可以跟LNA的输入端耦合,节约了系统面积。在输入端和天线之间可以进一步包括一个如图2所示的选择器12,以进一步的实现收发双工。
第一匹配网络(102)和第二匹配网络(104)共同耦合于输入端(101),通过一个输入端接收第一频段信号和第二频段的信号。第一匹配网络(102)耦合于输入端(101)和第一放大器(103)之间,用于实现从输入端(101)到第一放大器(105)之间的匹配。第二匹配网络(104)耦合于输入端(101)和第二放大器(105)之间,用于实现从输入端(101)到第二放大器(105)之间的匹配。第一放大器用于对第一频段信号的接收放大,第二放大器用于对第二频段信号的接收放大。
示例性的,Band A+Band B构成的inter-band CA的信号耦合到输入端(101),Band A的信号通过第一匹配网络102进入到第一放大器103经过放大后输出,Band B的信号通过第二匹配网络104进入到第二放大器105经过放大后输出。由于使用了同一个输入端同时接收第一频段的信号(Band A)和第二频段的信号(Band B),这样大大降低了LNA与从天线馈线之间设计的复杂度,降低了电路的管脚的数量,也降低了电路设计的面积。
但是以上架构在降低面积的也会带来干扰的问题。由于输入端同时可以接收第一频段的信号(Band A)和第二频段的信号(Band B),因此第二频段的信号也会耦合到第一放大器中输出放大,第一频段的信号也会耦合进入到第二段的放大器中输出放大,从而在后续的中频信号处理中带来额外的干扰,影响性能。
优选的,第一匹配网络可以设计成具有选频特性,对于第一频段内的信号呈现匹配特性,对于第二频段内的信号呈现抑制特性。类似的,第二匹配网络也可以设计成具有选频特性,对于第二频段内的信号呈现匹配特性,对于第一频段内的信号呈现抑制特性。如图4所示的,当第一频段为LB时,第一频段为HB时,基于具有选频特性的第一匹配网络和第二匹配网络,第一频段的信号主要通过第一匹配网路和第一放大 器构成的第一信号路径,而第二频段的信号主要通过第二匹配网络和第二放大器构成的第二信号路径,因此LNA可以具有更好的抗干扰特性。除了用于接收inter-band的CA的信号,LNA10也可以支持单频段的信号接收,分时单独接收第一频段或者第二频段的信号。
示例性的,如图5所示,第一匹配网络可以包括串联的电感1021。电感1021串联耦合于第一匹配网络输入端和输出端之间。由于电感的等效阻抗R=jwL,随着频率升高,等效阻抗也随之增加,加上电感的自谐振特性,可以使得输入匹配网络的输入端在第一频段LB用于匹配阻抗,在第二频段HB呈现抑制特性。
可选的,可选的第一匹配网络还可以进步包括一个用于接地的开关1022耦合于信号通路与接地端之间。具体的,如图5所示,开关1022耦合于输出端与接地端之间,开关1022用于LNA单独接收第二频段的信号闭合,进一步的提升对于第二频段的信号的抑制能力。开关1022用于LNA单独接收第一频段的信号断开,不会影响第一频段的信号通路。
可选的,第一匹配网络还可以有其他的实现形式,包括但是不限于采用L型匹配网络,PI型匹配网络,本实施例不作一一介绍。
示例性的,如图6所示,第二匹配网络可以包括一个变压器(transformer)1041,该变压器耦合于第二匹配网络输入端和输出端之间。变压器1041包括初级线圈1041a跟次级线圈1041b,初级线圈1041a一端耦合于第二匹配网络输入端,另外一端与耦合接地;次级线圈1041b一端耦合于第二匹配网络输出端,另外一端耦合接地。变压器1041谐振在HB频段,会在LB频段形成一个高阻,从而可以使得第二匹配网络的输入端在第一频段LB呈现高阻,在第二频段HB实现匹配特性。同时,由于变压器1041耦合接地,还可以进一步的改善LNA 10输入端101的静电防护(Electro-Static discharge:ESD)特性。
可选的,第二匹配网络还可以有其他的实现形式,包括但是不限于L型或者PI型匹配网络,本实施例不作一一介绍。
可选的,图4所述的LNA 10还可以进一步的包括一个电感106,电感106一端耦合于输入端101,电感104另一端耦合接地。电感104可以用于改善LNA10的ESD性能,以及优化LNA的噪声系数。
图4所示的第一放大器103和第二放大器105分别用于LB和HB频段内信号的放大,采用典型的现有的放大器的架构,比如共源,共栅等结构。
进一步的,为了实现位于各自频段内信号的放大,同时对于频段外的信号有一定的抑制作用,放大器也可以采用窄带的低噪声放大器的架构,示例性的,可以采用如图7所示的源极退化的放大器架构,包括但是不限于图7a所示的带源极退化的叠加架构(cascode),图7b所示的带源极退化的共源(common source)结构。源极退化的电感的大小跟具体的放大器的工作频段相关,用于放大LB频段信号的第一放大器采用的源极 退化的电感的感值大于用于放大HB频段信号的第二放大器采用的源极退化的电感。虽然7采用的是MOS管,但是也可以采用BJT管。具体的,图7b所示的带源极退化的叠加架构包括第一电感701,第一晶体管702,以及第二电感704。第一晶体管702的栅/基级与放大器的输入端耦合,第一晶体管702源/发射极通过第一电感701耦合接地。第一晶体的漏/集电极与第二电感704和放大器的输出端耦合,输出放大信号。在图7b的基础上,还以进一步包括第二晶体管703,703耦合于第一晶体管与第二电感704之间构成叠加结构cascode,也就是图7a所示的LNA的架构。图7中所示的MOS管包括但是不限于NMOS管,也可以为PMOS管与NMOS管的组合。
图4所示的LNA的架构除了应用到图2所示的相控阵架构中,也可以用于inter-band载波聚合单通道收发机中。应理解,图4所示的Band A和Band B仅是用于示例,还可以包括更多的载波聚合的场景。
图8为本申请实施例一种用于多频相控阵移相器架构示意图。图8包括输入端耦合于LB的第一移相支路21和输入端耦合于HB的第二移相支路22,分别用于上述实施例中不同频段的载波的移相。
示例性的,第一移相支路21可以包括移相单元210,213以及212中的一个或者多个组合,类似的,第二移相支路22也可以包括移相单元220,223以及222中的一个或者多个。
第一移相支路21的输入端可以与上述实施例中的LNA的LB的输出端耦合,第二移相支路22的输入端可以与上述实施例中的LNA的HB的输出端耦合。
可选的,第一移相支路21可以包括第一射频移相单元210,耦合于第一混频器211和第一移相支路21的输入端之间。类似的,第二移相支路22也可以包括第二射频移相单元220,耦合于第二混频器221和第一移相支路22的输入端之间。两个移相单元分别用于对各自所在支路的射频信号移相,这种移相称为射频信号移相,是目前主流的移相方式。
可选的,第一移相支路21可以包括第一本振移相单元213,耦合于第一混频器211和第一本地振荡器214之间。类似的,第二移相支路22也可以包括第二本振移相单元223,耦合于第二混频器221和第一本地振荡器224之间。两个本振移相器对进入各自混频器之前的本振信号进行移相,以实现对各自支路的移相。这种移相称为本振信号移相,相比于前一种射频信号移相,更适合宽频的信号。
可选的,第一移相支路21和第二移相支路22可以复用同一个移相单元213。本地振荡器214和本地振荡器224产生的本振信号选择分时通过同一移相单元213后选择进入各自的混频器。
可选的,在复用同一个移相单元213的基础上,第一移相支路21和第二移相支路22还可以复用同一个本地振荡器。振荡器设计成宽频振荡器,分时输出不同频段的本地振荡信号,通过同一个移相单元进入选择分时进入各自的混频器。
可选的,第一移相支路21还可以包括第一中频移相器212,中频移相器212耦合于混频器211和对应支路的中频信号处理器230之间,第二移相支路22还可以包括第 二中频移相器222,第二中频移相器222耦合于混频器221和对应支路的中频信号处理器230之间。中频信号处理器230包括但是不限于滤波器,模数转换器,用于实现对于移相后的中频信号进行相应的滤波和数模转换。这种移相称为中频信号移相,相比于以上的两种移相方式,这种移相架构简化了相控阵中多个射频支路合路分路的设计。具体的,在接收信号处理上,各个射频支路可以在混频后将接收信号在中频移相后再进行合路。
可选的,多频移相器可以采用多种移相组合的方式。包括但是不限于,射频移相加本振移相,本振移相加中频移相等方式。中频移相和本振移相的组合,相比于单独的射频信号移相和或本振信号移相组合,简化了移相电路的设计,具有更小的电路面积和更优的性能。
可选的,在不用的多频移相场景下,多频移相器可以包括以上多个移相单元的各种组合,充分利用各种移相单元的单独或者组合优势。
可选的,在采用本振信号移相时,由于相控阵中的每个射频支路工作频率相同,因此每个射频支路可以采用同一个本振信号产生器,然后经过各自支路的本振信号移相单元移相后,再提供给各自支路的混频器。
本申请实施例还提供了一种电子设备300,请参照图9,该电子设备该电子设备300可以包括收发器301、存储器304和处理器303,此处的收发器301内设置有上述相控阵302。
应当理解,此处的电子设备300可以具体为智能手机、电脑、智能手表等终端设备。将终端设备以图10所示的智能手机310进行示例,其具体可以包括处理器3102、存储器3103、通信电路、天线以及输入输出装置。处理器3102主要用于对通信协议以及通信数据进行处理,以及对整个智能手机进行控制,执行软件程序,处理软件程序的数据,例如用于支持智能手机310执行上述方法实施例中所描述的动作。存储器3103主要用于存储软件程序和数据。通信电路主要用于基带信号与射频信号的转换以及对射频信号的处理,通信电路则包括有上述相控阵。通信电路主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当上述智能手机310开机后,处理器3102可以读取存储器3103的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器3102对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到智能手机310时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器3102,处理器3102将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。需要说明的是,本申请实施例对存储器的类型不做限定。
应理解,本申请提到的第X频段,比如第一频段、第二频段、第三频段、第四频 段是指标准组织定义的或者商用的固定的频率区间,包括但是不限于本申请实施例中的3GPP定义的5G的毫米波频段包括n257(26.5GHz-29.500GHz),n260(37GHz-40GHz),n258(24.25GHz-27.5G Hz),和n261(27.5GHz-28.35GHz)。
应理解,本申请提到的第X频段的信号,比如第一频段的信号、第二频段的信号、第三频段的信号、第四频段的信号,是指在第X频段传输的信号。该信号可以是在第X频段内传输的全部带宽或者部分带宽的信号。
应理解,在本申请中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。本申请提到的“耦合”一词,用于表达不同组件之间的互通或互相作用,可以包括直接相连或通过其他组件间接相连。例如,XX端耦合接地,这表示XX端可以直接接地,也可以通过另外的器件接地。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (12)
- 一种多频段相控阵,其特征在于,包括:与多个多频段天线耦合的多个支路,所述多个支路中的每个支路包括多频段低噪声放大器,所述多频段低噪声放大器用于接收带间载波聚合信号,所述带间载波聚合信号包括位于第一频段的第一载波信号和位于第二频段的第二载波信号,所述第一频段与所述第二频段不同且没有重叠;所述多频段低噪声放大器包括输入端,第一输入匹配网络,第二输入匹配网络,第一放大器,第二放大器;所述输入端与所述多频段天线耦合,用于接收所述带间载波聚合信号;所述第一输入匹配网络耦合于所述输入端与所述第一放大器之间,用于实现所述第一载波信号的阻抗匹配,所述第一放大器用于放大经过匹配后的第一载波信号;所述第二输入匹配网络耦合于所述输入端与所述第二放大器之间,用于实现所述第二载波信号的阻抗匹配,所述第二放大器用于放大经过匹配后的第二载波信号;所述多个支路中的每个支路还包括移相器,所述移相器用于对所述第一放大器输出端输出的所述第一载波信号进行移相,所述移相器还用于对所述第二放大器输出端输出的所述第二载波信号进行移相。
- 如权利要求1所述的多频段相控阵,其特征在于:所述第一匹配网络还用于抑制所述第二载波信号的传输,所述第二匹配网络还用于抑制第一载波信号的传输。
- 如权利要求1-2任一项所述的多频段相控阵,其特征在于:所述第一频段的中心频率低于所述第二频段的中心频率,所述第一匹配网络包括第一电感,所述第一电感串联耦合于所述第一匹配网络的输入端和输出端之间;所述第二匹配网络包括变压器,所述变压器耦合于所述第二匹配网络的输入端和输出端之间,所述变压器包括初级线圈和次级线圈,所述初级线圈的一端耦合于第二匹配网络输入端,另外一端与耦合接地;所述次级线圈的一端耦合于第二匹配网络输出端,另外一端耦合接地。
- 如权利要求3所述的多频段相控阵,其特征在于:所述第一匹配网络还包括开关,所述开关耦合于所述第一匹配网络中的信号通路与接地端之间。
- 如权利要求1-4任一项所述的多频段相控阵,其特征在于,所述多频段低噪声放大器还包括第二电感,所述第二电感的一端耦合于所述输入端,所述第二电感的另一端耦合接地。
- 如权利要求1-5任一项所述的多频段相控阵,其特征在于:所述第一放大器包括第一源极退化电感,所述第二放大器包括第二源极退化电感;所述第一源极退化电感的感值大于所述第二源极退化电感。
- 如权利要求1-6任一项所述的多频段相控阵,其特征在于:所述移相器包括第一移相支路和第二移相支路,所述第一移相支路与所述第一放大器输出端耦合,用于对所述第一载波信号移相;所述第二移相支路与所述第二放大器输出端耦合,用于对所述第二载波信号移相。
- 如权利要求7所述的多频段相控阵,其特征在于:所述第一移相支路包括第一混频器和第一移相单元,所述第二移相支路包括第二混频器和第二移相单元;所述第一移相单元耦合于所述第一混频器和本振信号产生器之间;所述第二移相单元耦合于所述第二混频器和所述本振信号产生器之间。
- 如权利要求8任一项所述的多频段相控阵,其特征在于:所述本振信号产生器包括第一本振信号产生器和第二本振信号产生器;所述第一移相单元耦合于所述第一本振信号产生器与所述第一混频器之间;所述第二移相单元耦合于所述第二本振信号产生器与所述第二混频器之间。
- 如权利要求7-9任一项所述的多频段相控阵,其特征在于:所述第一移相支路包括第三移相单元,所述第三移相单元耦合于所述第一混频器与中频信号处理器之间,用于对下变频后的所述第一移相支路的中频信号移相;所述第二移相支路包括第四移相单元,所述第四移相单元耦合于所述第二混频器与所述中频信号处理器之间,用于对下变频后的所述第二移相支路的中频信号移相;所述中频处理器用于对移相后的中频信号进行滤波和模数转换。
- 如权利要求1-10任一项所述的多频段相控阵,其特征在于:所述第一频段覆盖n257,n258和n261,所述第二频段覆盖n259和n260。
- 一种电子设备,其特征在于,包括收发器、存储器和处理器;其中,所述收发器中设置有如权利要求1-11中任一项所述的多频段相控阵。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080107414.8A CN116491233A (zh) | 2020-11-23 | 2020-11-23 | 多频段低噪声放大器、相控阵和电子设备 |
PCT/CN2020/130721 WO2022104762A1 (zh) | 2020-11-23 | 2020-11-23 | 多频段低噪声放大器、相控阵和电子设备 |
US18/321,090 US20240396504A1 (en) | 2020-11-23 | 2023-05-22 | Multi-Band Low Noise Amplifier, Phased Array, and Electronic Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/130721 WO2022104762A1 (zh) | 2020-11-23 | 2020-11-23 | 多频段低噪声放大器、相控阵和电子设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/321,090 Continuation US20240396504A1 (en) | 2020-11-23 | 2023-05-22 | Multi-Band Low Noise Amplifier, Phased Array, and Electronic Device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022104762A1 true WO2022104762A1 (zh) | 2022-05-27 |
Family
ID=81708232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/130721 WO2022104762A1 (zh) | 2020-11-23 | 2020-11-23 | 多频段低噪声放大器、相控阵和电子设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240396504A1 (zh) |
CN (1) | CN116491233A (zh) |
WO (1) | WO2022104762A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117335822A (zh) * | 2023-11-30 | 2024-01-02 | 上海安其威微电子科技有限公司 | 射频前端接收电路、相控阵天线电路及芯片 |
CN117728846A (zh) * | 2023-07-31 | 2024-03-19 | 荣耀终端有限公司 | 控制电路、开关控制方法和电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104685718A (zh) * | 2012-10-19 | 2015-06-03 | 华为技术有限公司 | 双频交织相控阵天线 |
CN109755763A (zh) * | 2019-01-31 | 2019-05-14 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | S/Ku双频共口径线极化相控阵扫描天线 |
CN109921819A (zh) * | 2019-03-07 | 2019-06-21 | 成都天锐星通科技有限公司 | 一种相控阵多频段tr模块及信号传输方法 |
CN110350926A (zh) * | 2019-08-06 | 2019-10-18 | 中国电子科技集团公司第五十四研究所 | 一种双频极化可调多波束射频组件 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7343146B2 (en) * | 2004-08-13 | 2008-03-11 | Nokia Corporation | Single chip LNA and VCO having similar resonant circuit topology and using same calibration signal to compensate for process variations |
JP4843455B2 (ja) * | 2006-10-30 | 2011-12-21 | 株式会社エヌ・ティ・ティ・ドコモ | 整合回路、マルチバンド増幅器 |
US9154356B2 (en) * | 2012-05-25 | 2015-10-06 | Qualcomm Incorporated | Low noise amplifiers for carrier aggregation |
US10862514B2 (en) * | 2018-04-12 | 2020-12-08 | Qualcomm Incorporated | Dual-band concurrent transceiver |
US10944441B2 (en) * | 2019-05-13 | 2021-03-09 | Qualcomm Incorporated | Receiver with broadband low-noise amplifier and filter bypass |
-
2020
- 2020-11-23 WO PCT/CN2020/130721 patent/WO2022104762A1/zh active Application Filing
- 2020-11-23 CN CN202080107414.8A patent/CN116491233A/zh active Pending
-
2023
- 2023-05-22 US US18/321,090 patent/US20240396504A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104685718A (zh) * | 2012-10-19 | 2015-06-03 | 华为技术有限公司 | 双频交织相控阵天线 |
CN109755763A (zh) * | 2019-01-31 | 2019-05-14 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | S/Ku双频共口径线极化相控阵扫描天线 |
CN109921819A (zh) * | 2019-03-07 | 2019-06-21 | 成都天锐星通科技有限公司 | 一种相控阵多频段tr模块及信号传输方法 |
CN110350926A (zh) * | 2019-08-06 | 2019-10-18 | 中国电子科技集团公司第五十四研究所 | 一种双频极化可调多波束射频组件 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117728846A (zh) * | 2023-07-31 | 2024-03-19 | 荣耀终端有限公司 | 控制电路、开关控制方法和电子设备 |
CN117335822A (zh) * | 2023-11-30 | 2024-01-02 | 上海安其威微电子科技有限公司 | 射频前端接收电路、相控阵天线电路及芯片 |
CN117335822B (zh) * | 2023-11-30 | 2024-02-23 | 上海安其威微电子科技有限公司 | 射频前端接收电路、相控阵天线电路及芯片 |
Also Published As
Publication number | Publication date |
---|---|
CN116491233A (zh) | 2023-07-25 |
US20240396504A1 (en) | 2024-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI741131B (zh) | 用於低損耗多頻帶多工的技術 | |
US9876525B1 (en) | Portable millimeter-wave communications device | |
US11683054B2 (en) | Multi-band radio frequency front-end device, multi-band receiver, and multi-band transmitter | |
WO2015154437A1 (zh) | 一种支持载波聚合的方法及终端 | |
WO2022170502A1 (zh) | 一种通信装置及电子设备 | |
US9236930B2 (en) | Methods and apparatus for antenna tuning | |
US20240396504A1 (en) | Multi-Band Low Noise Amplifier, Phased Array, and Electronic Device | |
EP4072012A1 (en) | Power divider, power division apparatus and wireless communication apparatus | |
US10193580B2 (en) | Multi-band radio-frequency reception | |
US20220140498A1 (en) | Systems and methods for patch antenna driving | |
US20250105815A1 (en) | Baluns with integrated matching networks | |
US12316028B2 (en) | Multi-band phased array and electronic device | |
CN105490714A (zh) | 终端、终端的多载波发送及接收方法 | |
US20240063831A1 (en) | Configurable filter bands for radio frequency communication | |
WO2022067591A1 (zh) | 一种射频接收机和无线通信装置 | |
JP7714448B2 (ja) | 集積型整合ネットワークを備えたバラン、無線デバイス、及びバランにおける信号変換の方法 | |
US20230105554A1 (en) | Radio frequency front end with differential paths | |
WO2024065713A1 (zh) | 一种射频系统及装置 | |
HK40076112A (zh) | 具有集成匹配網絡的巴倫 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20962053 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202080107414.8 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20962053 Country of ref document: EP Kind code of ref document: A1 |