WO2022097645A1 - 分離方法 - Google Patents
分離方法 Download PDFInfo
- Publication number
- WO2022097645A1 WO2022097645A1 PCT/JP2021/040408 JP2021040408W WO2022097645A1 WO 2022097645 A1 WO2022097645 A1 WO 2022097645A1 JP 2021040408 W JP2021040408 W JP 2021040408W WO 2022097645 A1 WO2022097645 A1 WO 2022097645A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- pulp
- absorbent polymer
- bubble
- separation method
- Prior art date
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 36
- 229920000642 polymer Polymers 0.000 claims abstract description 153
- 239000002250 absorbent Substances 0.000 claims abstract description 145
- 239000007788 liquid Substances 0.000 claims abstract description 57
- 238000011084 recovery Methods 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 239000002101 nanobubble Substances 0.000 claims abstract description 15
- 239000011259 mixed solution Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 17
- 238000003756 stirring Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 9
- 229920000247 superabsorbent polymer Polymers 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 7
- 229920002125 Sokalan® Polymers 0.000 claims description 6
- 239000004584 polyacrylic acid Substances 0.000 claims description 6
- 229910052756 noble gas Inorganic materials 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000003570 air Substances 0.000 claims description 3
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 claims description 3
- 238000004062 sedimentation Methods 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 61
- 230000002745 absorbent Effects 0.000 abstract description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 27
- 238000001612 separation test Methods 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 8
- 230000005484 gravity Effects 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 238000004064 recycling Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000011358 absorbing material Substances 0.000 description 5
- 230000005587 bubbling Effects 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 229920000058 polyacrylate Polymers 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- -1 and for example Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 3
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 3
- KRQUFUKTQHISJB-YYADALCUSA-N 2-[(E)-N-[2-(4-chlorophenoxy)propoxy]-C-propylcarbonimidoyl]-3-hydroxy-5-(thian-3-yl)cyclohex-2-en-1-one Chemical compound CCC\C(=N/OCC(C)OC1=CC=C(Cl)C=C1)C1=C(O)CC(CC1=O)C1CCCSC1 KRQUFUKTQHISJB-YYADALCUSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920001131 Pulp (paper) Polymers 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 238000005339 levitation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000002835 noble gases Chemical class 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000002175 menstrual effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920005614 potassium polyacrylate Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004583 superabsorbent polymers (SAPs) Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/30—Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/02—Separating plastics from other materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/68—Superabsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/02—Froth-flotation processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B2101/00—Type of solid waste
- B09B2101/65—Medical waste
- B09B2101/67—Diapers or nappies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- This disclosure relates to the separation method.
- a general disposable diaper contains a water-absorbent polymer and pulp, and in order to improve the recycling efficiency, it is desired to separate and recover them.
- Patent Document 1 describes a method for producing recycled fibers by removing the water-absorbing polymer from the fiber containing the water-absorbing polymer.
- a mixed liquid containing a fiber containing a water-absorbent polymer and water is supplied into a treatment tank having a treatment liquid capable of dissolving the water-absorbent polymer, and the water-absorbent polymer is dissolved and removed.
- the present invention comprises a step of discharging the treatment liquid containing the obtained fibers to the outside of the treatment tank.
- recycled fibers can be efficiently produced by dissolving and removing the water-absorbent polymer from the fiber containing the water-absorbent polymer.
- an object of the present disclosure is to provide a separation method capable of recovering a water-absorbent polymer from a mixture containing a water-absorbent polymer and pulp.
- the separation method includes a supply step of supplying a bubble containing at least one of nanobubbles and microbubbles to a mixture containing a water-absorbent polymer and pulp.
- the water-absorbent polymer to which bubbles are attached floats in the mixed liquid containing the water-absorbent polymer and the pulp, and the pulp is settled to recover the water-absorbent polymer separated in the mixed liquid. Includes recovery step.
- the water-absorbent polymer and pulp are separated.
- the water-absorbent polymer may float in the mixed solution while maintaining the solid state.
- the water-absorbent polymer may include a polyacrylic acid salt-based water-absorbent polymer.
- the average bubble diameter of the bubbles may be 1 nm to 100 ⁇ m.
- the bubble may contain at least one gas selected from the group consisting of hydrogen, nitrogen, oxygen, carbon dioxide, air and noble gases.
- the separation method may further include a sedimentation step of precipitating the pulp in the mixture between the supply step and the recovery step.
- the separation method may further include a stirring step of stirring the mixture between the feeding step and the settling step.
- the separation method includes a supply step of supplying a charged bubble to a mixture containing a water-absorbent polymer and pulp.
- the water-absorbent polymer to which bubbles are attached floats in the mixed liquid containing the water-absorbent polymer and the pulp, and the pulp is settled to recover the water-absorbent polymer separated in the mixed liquid. Includes recovery step.
- the water-absorbent polymer and pulp are separated.
- FIG. 1 is a flowchart showing the flow of the separation method according to the present embodiment.
- the separation method according to this embodiment is a method for separating a water-absorbent polymer and pulp.
- the separation method is, for example, a method for separating a water-absorbent polymer and pulp from an absorbent article containing the water-absorbent polymer and pulp.
- absorbent articles include disposable diapers, urine absorbing pads, menstrual napkins, bed sheets, pet sheets and the like.
- the absorbent article comprises, for example, a water permeable top sheet, a waterproof back sheet, and a water absorbing material disposed between the top sheet and the back sheet.
- the water-absorbing material contains a water-absorbing polymer and pulp, and can absorb water that has passed through the top sheet.
- the separation method includes a supply step, S2, and a recovery step S5.
- the separation method may further include a pretreatment step S1, a stirring step S3, and a settling step S4.
- Pretreatment step S1 The pretreatment step S1 is performed before the supply step S2.
- the absorbent article is treated so that the water-absorbent polymer and the pulp can be easily separated in a later step.
- the water-absorbing material and the material other than the water-absorbing material are separated by at least one of mechanical treatment and chemical treatment, and the separated water-absorbing material is recovered.
- the mechanical treatment include pulverization and pressurization.
- the chemical treatment include a chemical treatment in which a chemical is added to dissolve the adhesive. Residues other than the water-absorbent material that could not be completely separated may be attached to the water-absorbent material containing the water-absorbent polymer and pulp obtained in the pretreatment step S1.
- Bubbles are supplied to the mixture containing the water-absorbent polymer and pulp.
- the method of supplying the bubbles is not particularly limited, and for example, a bubble liquid in which the bubbles are dispersed in the liquid is prepared, and the bubble liquid is added into a container containing a mixture containing a water-absorbing polymer and pulp. May be good. Further, bubbles may be generated in a mixed liquid containing a water-absorbent polymer, pulp and a liquid.
- the water-absorbent polymer is, for example, a hydrogel having a three-dimensional network structure formed by cross-linking and capable of absorbing water in the mixed solution.
- the water-absorbent polymer is at least one selected from the group consisting of, for example, a polyacrylic acid salt type, a polysulfonate type, an anhydrous maleate type, a polyaspartic acid salt type, a polyglutamate type, and a polyarginate type. It may be a polymer of.
- the water-absorbent polymer preferably contains a polyacrylic acid salt-based water-absorbent polymer. This is because the polyacrylic acid salt-based superabsorbent polymer is generally widely used and can be widely used as a recycling technique.
- the polyacrylate-based water-absorbent polymer contains, for example, at least one polyacrylate structure selected from the group consisting of sodium polyacrylate, potassium polyacrylate, calcium polyacrylate, and magnesium polyacrylate. It is a water-absorbent polymer.
- the shape and size of the water-absorbent polymer are not particularly limited, and those having a desired shape and size can be used.
- Pulp is, for example, an aggregate of cellulose fibers.
- the pulp includes, for example, at least one pulp selected from the group consisting of wood pulp made from wood, non-wood pulp made from plants other than wood, and recycled pulp made from recycled paper and the like. Pulp can be produced by mechanical treatment, chemical treatment, or a combination thereof.
- the shape and size of the pulp are not particularly limited, and those having a desired shape and size can be used.
- Bubbles include at least one of nanobubbles and microbubbles. Such bubbles easily adhere to the water-absorbent polymer, and the water-absorbent polymer can be levitated. Further, the smaller the diameter of such a bubble, the smaller the buoyancy, the easier it is to be held in water, and the less likely it is to disappear due to floating on the water surface.
- the bubble is not limited to a bubble containing at least one of microbubbles and nanobubbles, and a charged bubble may be used.
- the average bubble diameter of the bubble is, for example, 1 nm to 100 ⁇ m.
- the average bubble diameter of the bubble may be smaller than the diameter of the water-absorbing polymer after swelling.
- the average bubble diameter of the bubbles is, for example, the average value of the diameters of about 100 bubbles measured by image analysis.
- the gas contained in the bubble is not particularly limited as long as the water-absorbent polymer can be floated in the mixed solution, and for example, hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide, air, noble gas, methane and the like.
- Inert gases that do not decompose water-absorbing polymers, such as hydrocarbons and nitrogen oxides such as nitrogen monoxide, can be used.
- the bubble preferably contains at least one gas selected from the group consisting of hydrogen, nitrogen, oxygen, carbon dioxide, air and noble gases.
- the noble gas include helium and argon. These gases are readily available, have low activity, and are resistant to damage to the superabsorbent polymer, making them suitable for recycling superabsorbent polymers.
- the method of generating a bubble is not particularly limited, and is a swirling liquid flow type, a static mixer type, an ejector type, a cavitation type, a Venturi type, a pressure melting type, a pore type, a rotary type, an ultrasonic type, a steam condensing type, and a type.
- a known method such as an electrolysis method can be used.
- Bubbles may be generated directly in a mixture containing a water-absorbent polymer and pulp, or bubbles may be generated in a liquid containing no water-absorbent polymer and pulp to prepare a bubble liquid containing bubbles, and then the bubble liquid. May be added to the mixture containing the water-absorbent polymer and the pulp.
- recovery step S5 In the recovery step S5, the water-absorbent polymer to which bubbles are attached floats in the mixed liquid containing the water-absorbent polymer and the pulp, and the pulp is settled to recover the water-absorbent polymer separated in the mixed liquid. do.
- the mixed solution contains a water-absorbent polymer, pulp, and water will be described, but the present embodiment is not limited to such a form. Since general water-absorbent polymers and pulp have a higher specific gravity than water and settle in water even after they absorb water and swell, the difference in specific gravity is used to make use of these specific gravity differences. It is not easy to separate the pulp from the pulp.
- bubbles containing at least one of microbubbles and nanobubbles selectively adhere to the water-absorbing polymer rather than pulp. Since the apparent specific gravity of the water-absorbent polymer is smaller than that of water due to the adhesion of bubbles, the water-absorbent polymer floats in the mixed liquid. On the other hand, since bubbles are less likely to adhere to the pulp as compared with the water-absorbing polymer, the pulp having a specific density higher than that of water settles in the mixed solution. In this way, the water-absorbent polymer floats in the mixed liquid and the pulp settles in the mixed liquid, so that the water-absorbent polymer and the pulp are separated.
- the specific gravity of the polyacrylate-based superabsorbent polymer is larger than that of the liquid in the mixed solution.
- an example of the specific density of sodium polyacrylate is about 1.2 g / cm 3 .
- the specific gravity of pulp is larger than that of the liquid in the mixed solution.
- an example of the specific gravity of cellulose is about 1.5 g / cm 3 .
- the liquid in the mixed liquid is water
- the density is about 1 g / cm 3
- the liquid in the mixed liquid may be a liquid other than water.
- the liquid other than water are not particularly limited as long as the water-absorbent polymer adheres due to the adhesion of bubbles and the pulp settles, but a liquid containing an organic substance such as alcohol may be used.
- the water-absorbent polymer floats in the mixed solution while maintaining its solid state. This facilitates recovery of the superabsorbent polymer from the container containing the mixed solution.
- the recovered water-absorbent polymer can be recycled through steps such as cleaning.
- the solid referred to here also includes a gel. Further, floating in the mixed solution while maintaining the solid state means that the water-absorbent polymer floats in the mixed solution without being dissolved by reducing the molecular weight with an oxidizing agent such as ozone. Therefore, it is preferable that the bubble contains a gas having a smaller ability to decompose the superabsorbent polymer than ozone.
- the pH of the mixed solution is not particularly limited as long as the water-absorbent polymer and pulp can be separated. From the viewpoint of increasing the recovery rate of the water-absorbent polymer, the pH of the mixed solution is preferably 2.5 to 11. The pH of the mixture may be 6 or higher. Further, the pH of the mixed solution may be 8 or less. The pH of the mixed solution can be adjusted by adding citric acid, sodium hydroxide and the like to the above liquid.
- the water-absorbent polymer floats in the mixed liquid, so that the water-absorbent polymer can be easily recovered from the container containing the mixed liquid.
- the method for recovering the water-absorbent polymer is not particularly limited, and for example, the water-absorbent polymer floating on the liquid surface of the mixed liquid may be taken out from the container and recovered by tilting the container containing the mixed liquid. Further, the water-absorbent polymer floating on the liquid surface of the mixed solution may be scooped out and the water-absorbent polymer may be recovered from the container.
- the recovery step S5 not only the water-absorbent polymer but also the precipitated pulp may be recovered.
- the method for recovering the pulp is not particularly limited, and for example, the pulp may be sucked out from the bottom of the container containing the mixed solution to recover the pulp. Further, after removing the pulp and liquid above the precipitated pulp from the container, the pulp remaining at the bottom of the container may be recovered.
- the recovered pulp may be decomposed and removed from a trace amount of water-absorbing polymer adhering to the pulp by adding an oxidizing agent such as ozone.
- (Settling step S4) In the settling step S4, the pulp in the mixed solution is settled between the supply step S2 and the recovery step S5. Pulp has a higher specific density than water, and bubbles that cause the pulp to float are less likely to adhere to the surface of the pulp. Therefore, the pulp tends to settle in the mixed solution.
- the method for sedimenting the pulp is not particularly limited, and the pulp can be sedimented by a known method. As described above, since the specific gravity of pulp is higher than that of water, for example, the pulp can be settled by stopping the generation of bubbles and resting.
- stirring step S3 In the stirring step S3, the mixed liquid is stirred between the supply step S2 and the settling step S4.
- the bubbles adhere to the water-absorbent polymer while the entanglement between the water-absorbent polymer and the pulp is disentangled.
- pulp that exists in the levitation path of the water-absorbent polymer and inhibits the levitation of the water-absorbent polymer can be moved.
- the water-absorbent polymer floats and the pulp tends to settle, so that the separation between the water-absorbent polymer and the pulp can be promoted.
- the method of stirring the mixture is not particularly limited, and a known method can be used for stirring.
- the mixture may be stirred using, for example, a stirrer, a glass rod, or the like.
- the mixed liquid may be stirred, for example, by shaking the container containing the mixed liquid.
- the separation method includes a supply step S2 for supplying a bubble containing at least one of nanobubbles and microbubbles to a mixture containing a water-absorbent polymer and pulp.
- the water-absorbent polymer to which bubbles are attached floats in the mixed liquid containing the water-absorbent polymer and the pulp, and the pulp is settled to recover the water-absorbent polymer separated in the mixed liquid.
- the recovery step S5 is included. In the separation method, the water-absorbent polymer and pulp are separated.
- the separation method includes a supply step S2 for supplying a charged bubble to a mixture containing a water-absorbent polymer and pulp.
- the water-absorbent polymer to which bubbles are attached floats in the mixed liquid containing the water-absorbent polymer and the pulp, and the pulp is settled to recover the water-absorbent polymer separated in the mixed liquid.
- the recovery step S5 is included. In the separation method, the water-absorbent polymer and pulp are separated.
- the water-absorbent polymer can be recovered from the mixture containing the water-absorbent polymer and pulp.
- Example 1 (Preparation of bubble water) First, bubble water was prepared. Specifically, first, 1 L of ion-exchanged water was placed in a pressurized container (Unicontrols, TA90N). Next, nitrogen was sent from the gas cylinder to the pressurized container at 0.2 MPa, and the container was shaken manually. The nitrogen inlet pipe was closed and bubble water containing at least one of nanobubbles and microbubbles was poured from the pressurized vessel into an empty beaker.
- a pressurized container Unicontrols, TA90N
- nitrogen was sent from the gas cylinder to the pressurized container at 0.2 MPa, and the container was shaken manually.
- the nitrogen inlet pipe was closed and bubble water containing at least one of nanobubbles and microbubbles was poured from the pressurized vessel into an empty beaker.
- the mixture containing the water-absorbent polymer, pulp, and bubble water was stirred with a spatula 10 times and allowed to stand for about 3 minutes.
- the beaker was tilted to collect the upper layer and the lower layer, and the liquid collected from each layer was suction-filtered, and the obtained sample was air-dried and weighed.
- the mass of the upper layer after drying is divided by the mass of the first added water-absorbent polymer (30 mg), and the mass of the lower layer after drying is divided by the mass of the first added pulp (70 mg).
- the recovery rate was calculated. The results are shown in Table 1.
- Example 2 In the separation test, the water-absorbent polymer and pulp were swollen with ion-exchanged water, 100 mg of citric acid was added so that the concentration of citric acid was about 1% by mass, and the mixture was stirred for 30 seconds. Other than this, the recovery rate of each layer was calculated in the same manner as in Example 1.
- Example 3 (Preparation of bubble water) First, bubble water was prepared. Specifically, first, 300 mL of a NaOH aqueous solution having a pH of 13.5 was placed in a pressurized container (Unicontrols, TA90N). Next, nitrogen was sent from the gas cylinder to the pressurized container at 0.2 MPa, and the container was shaken manually. The nitrogen inlet pipe was closed and bubble water containing at least one of nanobubbles and microbubbles was poured from the pressurized vessel into an empty beaker.
- a pressurized container Unicontrols, TA90N
- Example 4 (Preparation of bubble water) First, 1.5 L of ion-exchanged water was placed in a beaker. Next, using a microbubble generator (AURA TEC: OM4-MDG-045), bubbling with air until the water in the beaker becomes white and bubbles appear on the liquid surface, and at least one of nanobubbles and microbubbles is blown. Bubble water containing was prepared. The average bubble diameter of the bubbles when the cumulative value of the particle size distribution based on the number is 50%, which is measured by the laser diffraction / scattering method, is about 1 ⁇ m.
- AURA TEC OM4-MDG-045
- Example 5 In the separation test, after swelling the water-absorbent polymer and pulp with ion-exchanged water, 200 mg of citric acid was added so that the concentration of citric acid was about 1% by mass, and the mixture was stirred for 30 seconds. Other than this, the recovery rate of each layer was calculated in the same manner as in Example 4.
- Example 6 First, 1 L of ion-exchanged water was placed in a beaker. Next, using a microbubble generator (AURA TEC: OM4-MDG-045), bubbling is performed until the water in the beaker becomes white and bubbles appear on the liquid surface, and bubbles containing at least one of nanobubbles and microbubbles are generated. Water was prepared. The average bubble diameter of the bubbles when the cumulative value of the particle size distribution based on the number is 50%, which is measured by the laser diffraction / scattering method, is about 1 ⁇ m. Next, 200 mL of the above bubble water was added to a beaker containing 100 mL of a 1.78 g / L NaOH aqueous solution to prepare bubble water consisting of a pH 12.3 NaOH aqueous solution.
- AURA TEC OM4-MDG-045
- Example 7 (Preparation of bubble water) First, 1 L of ion-exchanged water was placed in a beaker. Next, using a microbubble generator (Fresh by Design, PY101CF-E), bubbling with nitrogen gas in a gas cylinder was performed to prepare bubble water containing at least one of nanobubbles and microbubbles.
- a microbubble generator Frash by Design, PY101CF-E
- Example 8 In the separation test, after swelling the water-absorbent polymer and pulp with ion-exchanged water, 200 mg of citric acid was added so that the concentration of citric acid was about 1% by mass, and the mixture was stirred for 30 seconds. Other than this, the recovery rate of each layer was calculated in the same manner as in Example 7.
- bubbles containing at least one of microbubbles and nanobubbles were generated using three types of fine bubble generating devices.
- the bubbles selectively adhered to the water-absorbent polymer, the water-absorbent polymer floated in the mixed solution, and the pulp settled on the bottom of the beaker due to its own weight, so that the water-absorbent polymer was mainly used. It was separated into an upper layer as a component and a lower layer containing pulp as a main component. Since the water-absorbent polymer was separated from the pulp and floated, the water-absorbent polymer could be easily recovered.
- the visual bubble generation density differs depending on the fine bubble generating device, and the higher the bubble density, the higher the recovery rate of the water-absorbing polymer.
- the superabsorbent polymer was separated into upper and lower layers under any of acidic, neutral, and basic conditions, but the recovery rate of the water-absorbing polymer was higher in the acidic and neutral conditions than in the basic conditions. ..
- Comparative Examples 1 to 3 bubbles having an average bubble diameter of more than 1 mm were generated, but neither the water-absorbent polymer nor the pulp floated in the mixed solution and settled to the bottom of the beaker due to its own weight. The water-absorbent polymer could not be recovered. In Comparative Examples 1 to 3, it is considered that the bubbles having an average bubble diameter of more than 1 mm were difficult to adhere to both the water-absorbent polymer and the pulp.
- the reason why bubbles adhere to the water-absorbent polymer more than pulp is as follows. That is, the water-absorbent polymer such as the above-mentioned polyacrylic acid salt-based water-absorbent polymer has a high degree of ionization, and is formed by a carboxylate ion (R - COO-) formed in a liquid and a counterion having a positive charge. It is believed that an electric double layer is formed. On the other hand, pulp has a smaller degree of ionization than a water-absorbing polymer.
- the bubble containing at least one of the microbubbles and the nanobubbles has a negative zeta potential, it is considered that the bubble adheres to the water-absorbent polymer in which more counterions are formed than the pulp and levitates the water-absorbent polymer. ..
- pulp has a small positive charge and bubbles are difficult to adhere to it, so it is considered that the pulp has settled due to its own weight.
- the present embodiment is not limited to the above mechanism, but based on the above mechanism, the present embodiment is not limited to a bubble containing at least one of microbubbles and nanobubbles, and the same effect can be obtained even with a charged bubble. It is estimated that.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Water Treatments (AREA)
- Paper (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
前処理工程S1は、供給工程S2の前に実施される。前処理工程S1では、後の工程で吸水性高分子とパルプとが容易に分離できるように吸収性物品を処理する。前処理工程S1では、機械的処理及び化学的処理の少なくともいずれか一方によって、吸水材と吸水材以外の材料とに分離し、分離された吸水材を回収する。機械的処理としては、例えば、粉砕、加圧などが挙げられる。化学的処理としては、例えば、薬剤を添加して接着剤を溶解する薬剤処理等が挙げられる。前処理工程S1で得られた吸水性高分子とパルプとを含む吸水材には、分離しきれなかった吸水材以外の残留物が付着していてもよい。
供給工程S2では、吸水性高分子とパルプとを含む混合物にバブルを供給する。バブルを供給する方法は特に限定されず、例えば、液体中にバブルが分散されたバブル液を作製し、吸水性高分子とパルプとを含む混合物が収容された容器内にバブル液を添加してもよい。また、吸水性高分子とパルプと液体とを含む混合液にバブルを発生させてもよい。
回収工程S5では、吸水性高分子とパルプとを含む混合液内において、バブルが付着した吸水性高分子が浮上し、パルプが沈降することによって混合液内で分離された吸水性高分子を回収する。なお、混合液が吸水性高分子とパルプと水とを含む例について説明するが、本実施形態はこのような形態に限定されない。一般的な吸水性高分子及びパルプは、水よりも比重が大きく、これらが水を吸収して膨潤した後であっても水中で沈降するため、これらの比重差を利用して吸水性高分子とパルプとを分離することは容易ではない。しかしながら、マイクロバブル及びナノバブルの少なくともいずれか一方を含むバブルは、パルプよりも吸水性高分子に選択的に付着する。吸水性高分子は、バブルの付着によって見かけの比重が水より小さくなるため、混合液内を浮上する。一方、パルプには吸水性高分子と比較してバブルが付着しにくいため、水よりも比重の大きいパルプは混合液内で沈降する。このように、吸水性高分子は混合液内を浮上し、パルプは混合液内に沈降するため、吸水性高分子と、パルプとが分離される。
沈降工程S4では、供給工程S2と回収工程S5との間において混合液中のパルプを沈降させる。パルプは、水よりも比重が大きく、パルプを浮上させるほどのバブルはパルプの表面に付着しにくい。そのため、パルプは、混合液内で沈降しやすい。パルプを沈降させる方法は特に限定されず、公知の方法によってパルプを沈降させることができる。上述の通り、パルプの比重は水よりも大きいため、例えば、バブルの発生を停止させて静止することにより、パルプを沈降させることができる。
撹拌工程S3では、供給工程S2と沈降工程S4との間において混合液を撹拌する。混合液をバブルの存在下で撹拌することにより、吸水性高分子とパルプとの絡み合いがほぐれながらバブルが吸水性高分子に付着する。また、吸水性高分子の浮上経路に存在して吸水性高分子の浮上を阻害するパルプを移動させることができる。これにより、吸水性高分子が浮上し、パルプが沈降しやすくなるため、吸水性高分子とパルプとの分離を促進させることができる。混合液を撹拌する方法は特に限定されず、公知の方法で撹拌することができる。混合液は、例えば、スターラー、及びガラス棒等を用いて撹拌してもよい。また、混合液は、例えば混合液を収容する容器を振とうすることにより撹拌してもよい。
(バブル水の調製)
まず、バブル水を調製した。具体的には、まず、加圧容器(Unicontrols,TA90N)にイオン交換水1Lを入れた。次に、加圧容器にガスボンベから窒素を0.2MPaで送り込み、容器を手動で振とうした。窒素の入口配管を閉じ、ナノバブル及びマイクロバブルの少なくともいずれか一方を含むバブル水を加圧容器から空のビーカーに注いだ。
次に、分離試験を実施した。具体的には、まず、ポリアクリル酸ナトリウム製の吸水性高分子30mg(0.3質量%)及びセルロース製のパルプ70mg(0.7質量%)にイオン交換水を10mL加えて1分撹拌し、吸水性高分子及びパルプを膨潤させた。次に、上記のようにして得られたバブル水200mLを、膨潤させた吸水性高分子及びパルプに添加した。
分離試験において、吸水性高分子及びパルプをイオン交換水で膨潤させた後、クエン酸の濃度が約1質量%となるようにクエン酸100mgを加えて30秒間撹拌した。これ以外は、実施例1と同様にして各層の回収率を算出した。
(バブル水の調製)
まず、バブル水を調製した。具体的には、まず、加圧容器(Unicontrols,TA90N)にpH13.5のNaOH水溶液300mLを入れた。次に、加圧容器にガスボンベから窒素を0.2MPaで送り込み、容器を手動で振とうした。窒素の入口配管を閉じ、ナノバブル及びマイクロバブルの少なくともいずれか一方を含むバブル水を加圧容器から空のビーカーに注いだ。
次に、分離試験を実施した。具体的には、まず、吸水性高分子30mg(0.3質量%)及びパルプ70mg(0.7質量%)にイオン交換水を10mL加えて1分撹拌し、吸水性高分子及びパルプを膨潤させた。次に、上記のようにして得られたバブル水300mLを混合液に添加した。これ以外は、実施例1と同様にして各層の回収率を算出した。
(バブル水の調製)
まず、ビーカーにイオン交換水1.5Lを入れた。次に、マイクロバブル発生装置(AURA TEC:OM4-MDG-045)を用いて、ビーカー内の水が白くなり液面に泡が出るまで空気でバブリングし、ナノバブル及びマイクロバブルの少なくともいずれか一方を含むバブル水を調製した。なお、レーザ回折・散乱法により測定される、個数基準における粒度分布の累積値が50%の場合のバブルの平均気泡径は、約1μmである。
次に、分離試験を実施した。具体的には、まず、吸水性高分子60mg(0.3質量%)及びパルプ140mg(0.7質量%)にイオン交換水を20mL加えて1分撹拌し、吸水性高分子及びパルプを膨潤させた。次に、上記のようにして得られたバブル水150mLを膨潤させた吸水性高分子及びパルプに添加した。これ以外は、実施例1と同様にして各層の回収率を算出した。
分離試験において、吸水性高分子及びパルプをイオン交換水で膨潤させた後、クエン酸の濃度が約1質量%となるようにクエン酸200mgを加えて30秒間撹拌した。これ以外は、実施例4と同様にして各層の回収率を算出した。
まず、ビーカーにイオン交換水1Lを入れた。次に、マイクロバブル発生装置(AURA TEC:OM4-MDG-045)を用いて、ビーカー内の水が白くなり液面に泡が出るまでバブリングし、ナノバブル及びマイクロバブルの少なくともいずれか一方を含むバブル水を調製した。なお、レーザ回折・散乱法により測定される、個数基準における粒度分布の累積値が50%の場合のバブルの平均気泡径は、約1μmである。次に、1.78g/LのNaOH水溶液100mLを入れたビーカーに、上記バブル水を200mL加え、pH12.3のNaOH水溶液からなるバブル水を作製した。
(バブル水の調製)
まず、ビーカーにイオン交換水1Lを入れた。次に、マイクロバブル発生装置(Fresh by Design,PY101CF-E)を用いて、ガスボンベの窒素ガスでバブリングし、ナノバブル及びマイクロバブルの少なくともいずれか一方を含むバブル水を調製した。
分離試験において、吸水性高分子及びパルプをイオン交換水で膨潤させた後、クエン酸の濃度が約1質量%となるようにクエン酸200mgを加えて30秒間撹拌した。これ以外は、実施例7と同様にして各層の回収率を算出した。
まず、吸水性高分子60mg(0.3質量%)及びパルプ140mg(0.7質量%)にイオン交換水を20mL加えて1分撹拌し、吸水性高分子及びパルプを膨潤させた。次に、イオン交換水200mLを膨潤させた吸水性高分子及びパルプにさらに添加し、この混合液内に平均気泡径1mm超のバブルをバブリングにより発生させた。これ以外は、実施例1と同様にして各層の回収率を算出した。
分離試験において、吸水性高分子及びパルプをイオン交換水で膨潤させた後、クエン酸の濃度が約1質量%となるようにクエン酸200mgを加えて30秒間撹拌した。これ以外は、比較例1と同様にして各層の回収率を算出した。
分離試験において、吸水性高分子及びパルプをイオン交換水で膨潤させた後、実施例6で得られたpH12.3のバブル水200mLを膨潤させた吸水性高分子及びパルプにさらに添加し、この混合液内に平均気泡径1mm超のバブルをバブリングにより発生させた。これ以外は、比較例1と同様にして各層の回収率を算出した。
S2 供給工程
S3 撹拌工程
S4 沈降工程
S5 回収工程
Claims (8)
- 吸水性高分子とパルプとを含む混合物にナノバブル及びマイクロバブルの少なくともいずれか一方を含むバブルを供給する供給工程と、
前記吸水性高分子と前記パルプとを含む混合液内において、前記バブルが付着した前記吸水性高分子が浮上し、前記パルプが沈降することによって前記混合液内で分離された前記吸水性高分子を回収する回収工程と、
を含む、
前記吸水性高分子と前記パルプとを分離する、分離方法。 - 前記吸水性高分子は固体の状態を保ったまま前記混合液内を浮上する、請求項1に記載の分離方法。
- 前記吸水性高分子はポリアクリル酸塩系吸水性高分子を含む、請求項1又は2に記載の分離方法。
- 前記バブルの平均気泡径は1nm~100μmである、請求項1~3のいずれか一項に記載の分離方法。
- 前記バブルは水素、窒素、酸素、二酸化炭素、空気及び貴ガスからなる群より選択される少なくとも1以上の気体を含む、請求項1~4のいずれか一項に記載の分離方法。
- 前記供給工程と前記回収工程との間において前記混合液中の前記パルプを沈降させる沈降工程をさらに含む、請求項1~5のいずれか一項に記載の分離方法。
- 前記供給工程と前記沈降工程との間おいて前記混合液を撹拌する撹拌工程をさらに含む、請求項6に記載の分離方法。
- 吸水性高分子とパルプとを含む混合物に電荷を帯びたバブルを供給する供給工程と、
前記吸水性高分子と前記パルプとを含む混合液内において、前記バブルが付着した前記吸水性高分子が浮上し、前記パルプが沈降することによって前記混合液内で分離された前記吸水性高分子を回収する回収工程と、
を含む、
前記吸水性高分子と前記パルプとを分離する、分離方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022560789A JPWO2022097645A1 (ja) | 2020-11-04 | 2021-11-02 | |
CN202180072933.XA CN116419807A (zh) | 2020-11-04 | 2021-11-02 | 分离方法 |
EP21889198.4A EP4219034A4 (en) | 2020-11-04 | 2021-11-02 | SEPARATION PROCESS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020184207 | 2020-11-04 | ||
JP2020-184207 | 2020-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022097645A1 true WO2022097645A1 (ja) | 2022-05-12 |
Family
ID=81457241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040408 WO2022097645A1 (ja) | 2020-11-04 | 2021-11-02 | 分離方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4219034A4 (ja) |
JP (1) | JPWO2022097645A1 (ja) |
CN (1) | CN116419807A (ja) |
WO (1) | WO2022097645A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273260A (ja) * | 2001-03-16 | 2002-09-24 | Univ Fukuoka | 使用済み紙おむつの再利用のための循環分離装置 |
JP3139358U (ja) * | 2007-11-28 | 2008-02-14 | 田熊プラント株式会社 | 使用済み紙おむつ用破砕分離回収装置 |
WO2019003657A1 (ja) | 2017-06-28 | 2019-01-03 | ユニ・チャーム株式会社 | リサイクル繊維を製造する方法及びリサイクル繊維 |
WO2019087486A1 (ja) * | 2017-11-01 | 2019-05-09 | ユニ・チャーム株式会社 | 使用済み吸収性物品からパルプ繊維を回収する方法及びシステム |
JP2019084470A (ja) * | 2017-11-01 | 2019-06-06 | ユニ・チャーム株式会社 | 使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステム |
JP2020184207A (ja) | 2019-05-08 | 2020-11-12 | キヤノン株式会社 | 画像処理装置、画像処理方法、及びプログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4133699C2 (de) * | 1991-10-11 | 1998-02-19 | Johannes Prof Dr Rer N Gartzen | Verfahren zur Aufbereitung eines Gemisches aus Zellulose und granuliertem Polymer |
DE19821473A1 (de) * | 1998-05-13 | 1999-11-25 | Concordia Ind Holding Ag | Verfahren zum Behandeln von Hygieneprodukten aus absorbierenden Verbundstoffen zur Wertstoffgewinnung |
-
2021
- 2021-11-02 WO PCT/JP2021/040408 patent/WO2022097645A1/ja active Application Filing
- 2021-11-02 JP JP2022560789A patent/JPWO2022097645A1/ja active Pending
- 2021-11-02 CN CN202180072933.XA patent/CN116419807A/zh active Pending
- 2021-11-02 EP EP21889198.4A patent/EP4219034A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273260A (ja) * | 2001-03-16 | 2002-09-24 | Univ Fukuoka | 使用済み紙おむつの再利用のための循環分離装置 |
JP3139358U (ja) * | 2007-11-28 | 2008-02-14 | 田熊プラント株式会社 | 使用済み紙おむつ用破砕分離回収装置 |
WO2019003657A1 (ja) | 2017-06-28 | 2019-01-03 | ユニ・チャーム株式会社 | リサイクル繊維を製造する方法及びリサイクル繊維 |
WO2019087486A1 (ja) * | 2017-11-01 | 2019-05-09 | ユニ・チャーム株式会社 | 使用済み吸収性物品からパルプ繊維を回収する方法及びシステム |
JP2019084470A (ja) * | 2017-11-01 | 2019-06-06 | ユニ・チャーム株式会社 | 使用済み吸収性物品からパルプ繊維及び高吸水性ポリマーを回収する方法及びシステム |
JP2020184207A (ja) | 2019-05-08 | 2020-11-12 | キヤノン株式会社 | 画像処理装置、画像処理方法、及びプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP4219034A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4219034A1 (en) | 2023-08-02 |
CN116419807A (zh) | 2023-07-11 |
EP4219034A4 (en) | 2024-10-30 |
JPWO2022097645A1 (ja) | 2022-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2350382B1 (en) | Recycling of fibre products | |
CN111278901B (zh) | 自使用过的吸收性物品回收浆粕纤维的方法和系统 | |
TW200812921A (en) | Drainage water-treating method and drainage water-treating apparatus | |
CN111386304A (zh) | 高吸水性聚合物的再生方法、高吸水性再生聚合物的制造方法、和碱金属离子供给源的使用 | |
WO2022097645A1 (ja) | 分離方法 | |
JP2023010724A (ja) | 使用済み吸収性物品からパルプ繊維を回収する方法及びシステム | |
BR112020008506B1 (pt) | Método e sistema para recuperação de fibras de polpa e polímero altamente absorvente em água de artigos absorventes usados | |
CN114585592B (zh) | 使用了使用过的卫生用品的生物气的制造方法 | |
JP2022145739A (ja) | 高吸水性ポリマー、パルプ繊維及び排泄物を含む使用済みの吸収性物品からリサイクルパルプ繊維を製造する方法 | |
EP1499438A1 (en) | Oil recovery and environmental cleanup compositions | |
JP2019005732A (ja) | 糖化用パルプ繊維を製造する方法、及び糖化用パルプ繊維水溶液 | |
JP2004089858A (ja) | 有機性廃棄物の処理方法とその装置 | |
JP2002079036A (ja) | バイオガスの脱硫方法及びその装置並びに脱硫剤 | |
CN209383553U (zh) | 多能稳流气浮装置 | |
CN111233234B (zh) | 一种废水中表面活性剂的回收工艺 | |
CN108423928A (zh) | 一种净化工业废水的处理系统 | |
JP6818164B2 (ja) | 糖化用パルプ繊維の製造方法 | |
WO2019123580A1 (ja) | リサイクルパルプ繊維を製造する方法 | |
JP2009247959A (ja) | 汚水の分離方法 | |
JP2003190996A5 (ja) | ||
JP2025050045A (ja) | 使用済高吸水性樹脂の利用方法及び活性汚泥担体 | |
CN206486308U (zh) | 一种气浮除油机 | |
JP2006305784A (ja) | プラスチック混合物から塩素含有プラスチックを分離する方法および装置 | |
WO2023162781A1 (ja) | リサイクルパルプ繊維の製造方法 | |
CN113087236A (zh) | 一种含油工业污水用定点气泡分层处理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21889198 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022560789 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021889198 Country of ref document: EP Effective date: 20230425 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317034999 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |