WO2022097216A1 - Method for producing recombinant insulin-like growth factor i - Google Patents
Method for producing recombinant insulin-like growth factor i Download PDFInfo
- Publication number
- WO2022097216A1 WO2022097216A1 PCT/JP2020/041283 JP2020041283W WO2022097216A1 WO 2022097216 A1 WO2022097216 A1 WO 2022097216A1 JP 2020041283 W JP2020041283 W JP 2020041283W WO 2022097216 A1 WO2022097216 A1 WO 2022097216A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sumo
- rigf
- elution
- eluate
- igf
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 title claims abstract description 11
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 title claims abstract description 11
- 238000010828 elution Methods 0.000 claims abstract description 90
- 102000002669 Small Ubiquitin-Related Modifier Proteins Human genes 0.000 claims abstract description 34
- 108010043401 Small Ubiquitin-Related Modifier Proteins Proteins 0.000 claims abstract description 34
- 101000708016 Caenorhabditis elegans Sentrin-specific protease Proteins 0.000 claims abstract description 28
- 238000005277 cation exchange chromatography Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 17
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 7
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 7
- 239000012488 sample solution Substances 0.000 claims description 45
- 150000003839 salts Chemical class 0.000 claims description 38
- 108090000623 proteins and genes Proteins 0.000 claims description 19
- 238000001042 affinity chromatography Methods 0.000 claims description 14
- 102000004169 proteins and genes Human genes 0.000 claims description 10
- FMYBFLOWKQRBST-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]acetic acid;nickel Chemical compound [Ni].OC(=O)CN(CC(O)=O)CC(O)=O FMYBFLOWKQRBST-UHFFFAOYSA-N 0.000 claims description 4
- 238000004007 reversed phase HPLC Methods 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 230000002934 lysing effect Effects 0.000 claims description 3
- 102000044159 Ubiquitin Human genes 0.000 abstract 1
- 108090000848 Ubiquitin Proteins 0.000 abstract 1
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 48
- 239000000872 buffer Substances 0.000 description 30
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 26
- 239000000243 solution Substances 0.000 description 21
- 239000011780 sodium chloride Substances 0.000 description 13
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 10
- 239000005695 Ammonium acetate Substances 0.000 description 10
- 229940043376 ammonium acetate Drugs 0.000 description 10
- 235000019257 ammonium acetate Nutrition 0.000 description 10
- 238000002835 absorbance Methods 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 239000007983 Tris buffer Substances 0.000 description 6
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 5
- 229960000723 ampicillin Drugs 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000006820 DNA synthesis Effects 0.000 description 4
- 239000007853 buffer solution Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 239000012149 elution buffer Substances 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 239000008004 cell lysis buffer Substances 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 229910021654 trace metal Inorganic materials 0.000 description 2
- 241001522878 Escherichia coli B Species 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- -1 SUMO-rIGF-1 Proteins 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000001295 genetical effect Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 102000044162 human IGF1 Human genes 0.000 description 1
- 230000014726 immortalization of host cell Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 108010000594 mecasermin Proteins 0.000 description 1
- 229960001311 mecasermin Drugs 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/12—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/16—Extraction; Separation; Purification by chromatography
- C07K1/18—Ion-exchange chromatography
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/16—Extraction; Separation; Purification by chromatography
- C07K1/22—Affinity chromatography or related techniques based upon selective absorption processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/65—Insulin-like growth factors, i.e. somatomedins, e.g. IGF-1, IGF-2
Definitions
- the present invention relates to a method for producing recombinant insulin-like growth factor I (rIGF-1).
- rIGF-1 insulin-like growth factor I
- SUMO-rIGF-1 a fusion protein
- HPLC reverse phase high performance liquid chromatography
- rIGF-1 is purified by a nickel column (Ni-NTA resin column). Specifically, a solution obtained by treating the expressed SUMO-rIGF-1 with SUMO protease (including SUMO-rIGF-1, SUMO protease, SUMO and rIGF-1) is subjected to Ni-NTA (nickel-nitrilotriacetic acid) affinity chromatography.
- Ni-NTA nickel-nitrilotriacetic acid
- the main object of the present invention is to provide an improved method for obtaining a correctly folded rIGF-1 with high purity with respect to a misfolded rIGF-1.
- [1] A method for producing recombinant insulin-like growth factor I (rIGF-1).
- rIGF-1 as a fusion protein (SUMO-IGF-1) with a ubiquitin-like protein SUMO (small ubiquitin-related modifier), and
- the step of treating SUMO-IGF-1 with SUMO protease and (3) A step of applying the treatment solution of step (2) to cation exchange chromatography to obtain an eluate containing rIGF-1 by gradient elution, and a step of obtaining an eluate.
- Manufacturing method including.
- Step (1) is a step (1-1) of lysing a host cell expressing SUMO-IGF-1 to obtain a first sample solution, and Ni-NTA (nickel-) for the first sample solution. nitrilotriacetic acid) Including the step (1-2) of obtaining a first eluate containing SUMO-IGF-1 by applying to affinity chromatography.
- Step (2) is a step of treating the first eluate with SUMO protease to obtain a second sample solution containing SUMO-IGF-1, SUMO protease, SUMO and rIGF-1.
- step (3) the second sample solution is applied to cation exchange chromatography to separate rIGF-1 from SUMO-IGF-1, SUMO protease and SUMO by gradient elution, and the third step contains rIGF-1.
- the process of obtaining a sample solution [1] The production method according to any one of [5]. [7] The production method according to any one of [1] to [6], which does not include a separation step by Ni-NTA affinity chromatography after the step (2). [8] The production method according to any one of [1] to [7], which does not include a step of separating misfolding proteins by reverse phase high performance liquid chromatography.
- the ratio of the correctly folded rIGF-1 amount to the total amount of protein is 60% or more, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more.
- a method for purifying recombinant insulin-like growth factor I (rIGF-1). (1) A step of obtaining rIGF-1 as a fusion protein (SUMO-IGF-1) with a ubiquitin-like protein SUMO (small ubiquitin-related modifier), and (2) The step of treating SUMO-IGF-1 with SUMO protease and (3) A step of applying the treatment solution of step (2) to cation exchange chromatography to obtain an eluate containing rIGF-1 by gradient elution, and a step of obtaining an eluate. Purification method including.
- gradient elution means salt concentration gradient elution.
- the gradient elution may include a step of elution in which the salt concentration is changed linearly (liner) or stepwise (stepwise), and the salt concentration is changed in all the steps. Does not need to be done. That is, the gradient elution may include a step of elution with a constant salt concentration.
- the present invention provides an improved method for obtaining high-purity rIGF-1 correctly folded with respect to misfolded rIGF-1.
- the chromatogram of the third sample solution obtained in Example 1 is shown.
- the horizontal axis shows the elution time and the vertical axis shows the absorbance (OD 220 nm).
- the black arrow indicates the peak of rIGF-1 (correctly folded rIGF-1), and the white arrow indicates the misfolded rIGF-1 (mis-folded isomer).
- the chromatogram of the eluate obtained in the elution step (i) of Example 2 is shown.
- the horizontal axis shows the elution time and the vertical axis shows the absorbance (OD 220 nm).
- the black arrow indicates the peak of rIGF-1, and the white arrow indicates mis-folded isomer.
- the chromatogram of the eluate (third sample solution) obtained in the elution step (ii) of Example 2 is shown.
- the horizontal axis shows the elution time and the vertical axis shows the absorbance (OD 220 nm).
- the black arrow indicates the peak of rIGF-1.
- the chromatogram of the sample solution obtained in the elution / washing step of Comparative Example 1 is shown.
- the horizontal axis shows the elution time and the vertical axis shows the absorbance (OD 220 nm).
- the black arrow indicates the peak of rIGF-1
- the white arrow indicates mis-folded isomer
- the diagonal arrow indicates SUMO.
- the method for producing and purifying recombinant insulin-like growth factor I (rIGF-1) according to the present invention includes the following steps (1)-(3).
- Step (1) A step of obtaining rIGF-1 as a fusion protein (SUMO-IGF-1) with a ubiquitin-like protein SUMO (small ubiquitin-related modifier).
- Step (2) A step of treating SUMO-IGF-1 with SUMO protease.
- rIGF-1 is obtained as a fusion protein (SUMO-IGF-1) with a ubiquitin-like protein SUMO (small ubiquitin-related modifier).
- This step is a step of lysing a host cell expressing SUMO-IGF-1 to obtain a first sample solution (1-1), and a Ni-NTA (nickel-nitrilotriacetic acid) affinity chromatograph of the first sample solution. It comprises a step (1-2) of obtaining a first eluate containing SUMO-IGF-1 by applying it to a graph.
- Step (1-1) In this step, host cells expressing SUMO-IGF-1 are lysed to obtain a first sample solution.
- the gene construct for SUMO-IGF-1 expression may be prepared by a conventionally known method (for example, the method described in Non-Patent Document 1). Commercially available DNA synthesis genes and general-purpose vectors can be used for the SUMO-IGF-1 gene and the expression plasmid for producing the gene construct.
- the host cell is not particularly limited, but Escherichia coli is preferably used, and a commercially available Escherichia coli cell line can be used. Transformation of host cells with a gene construct and culturing of transformants can also be performed by conventionally known methods. After culturing, the cells are collected from the culture solution by centrifugation or the like, the cells are crushed using a high-pressure crusher or the like, and the insoluble matter is removed by centrifugation or the like to obtain a first sample solution.
- Step (1-2) the first sample solution is applied to Ni-NTA (nickel-nitrilotriacetic acid) affinity chromatography to obtain a first eluate containing SUMO-IGF-1.
- Ni-NTA nickel-nitrilotriacetic acid
- SUMO-IGF-1 is retained on the column carrier via a histidine tag attached to SUMO.
- elution with a concentration gradient of imidazole is performed to elute SUMO-IGF-1 retained on the column carrier to obtain a first eluate.
- imidazole concentration gradient elution for example, linear concentration gradient elution using an initiating buffer (50mM Tris, 300mM NaCl, 8M Urea, 20mM Imidazole, pH 7.8) and an elution buffer (50mM Tris, 300mM NaCl, 600mM Imidazole, pH 7.8). Can be done by.
- an initiating buffer 50mM Tris, 300mM NaCl, 8M Urea, 20mM Imidazole, pH 7.8
- elution buffer 50mM Tris, 300mM NaCl, 600mM Imidazole, pH 7.8.
- Step (2) This step is a step of treating SUMO-IGF-1 with SUMO protease.
- Treatment of the first eluate with SUMO protease gives a second sample solution containing SUMO-IGF-1, SUMO protease, SUMO and rIGF-1.
- the SUMO protease treatment may be carried out by a conventionally known method (for example, the method described in Non-Patent Document 1). After the SUMO protease treatment, the treatment solution containing SUMO-IGF-1, SUMO protease, SUMO and rIGF-1 may be appropriately concentrated or replaced with a buffer solution to obtain a second sample solution.
- Step (3) is a step of applying the second sample solution to cation exchange chromatography to obtain an eluate containing rIGF-1 by gradient elution.
- a SUMO protease-treated solution containing SUMO-IGF-1, SUMO protease, SUMO and rIGF-1 is applied again to Ni-NTA affinity chromatography, and His-tag is applied.
- SUMO-rIGF-1, SUMO protease and SUMO are adsorbed on the column and only rIGF-1 is eluted to purify rIGF-1 (see Comparative Example 1).
- the method according to the present invention purifies rIGF-1 by using cation exchange chromatography instead of Ni-NTA affinity chromatography.
- the second sample solution is cation exchange chromatography.
- To obtain a third sample solution containing rIGF-1 separate rIGF-1 from SUMO-IGF-1, SUMO protease and SUMO by gradient elution.
- the method according to the present invention does not include a separation step by Ni-NTA affinity chromatography after the step (2).
- a third sample solution is obtained by eluting rIGF-1 retained on the column carrier by performing salt concentration gradient elution.
- the salt concentration gradient elution can be performed, for example, by linear concentration gradient elution using the above buffer as a starting buffer and also using an elution buffer (20 mM Ammonium acetate, 200 mM Imidazole, 1M NaCl, pH 4.0).
- the elution volume and elution rate can be adjusted as appropriate.
- the eluate is, for example, a 4-column volume (CV), 1-16 CV, preferably 2-8 CV, more preferably 3-6 CV.
- CV 4-column volume
- rIGF-1 without SUMO contamination can be obtained with high purity and high yield as compared with the conventional method (see Comparative Example 1) (Example). 1).
- the salt concentration gradient elution preferably comprises the following elution steps (i)-(iii).
- misfolding rIGF-1 is mainly eluted.
- the eluate for example, an eluate containing ammonium acetate as a buffer and a salt (NaCl or the like) at the above concentration is used.
- the salt concentration in the eluate may be constant in the above concentration range, or may change linearly (liner) or stepwise (stepwise).
- the eluate may contain imidazole at an appropriate concentration (eg, 200 mM).
- the elution volume and elution rate can be adjusted as appropriate.
- the eluate is, for example, 12 CV, in the range of 3-48 CV, preferably 6-24 CV, more preferably 9-15 CV.
- elution step (i) specifically, elution of 1.5-6 column volume (CV) at a salt concentration of 200 mM, then elution of 3-12 CV at a salt concentration of 250 mM, and a linear concentration gradient from a salt concentration of 250 mM to 300 mM. It is said that 1.5-3 CV is eluted.
- rIGF-1 is mainly eluted.
- highly purified rIGF-1 can be obtained.
- the eluate for example, an eluate containing ammonium acetate as a buffer and a salt (NaCl or the like) at the above concentration is used.
- the salt concentration in the eluate may be constant in the above concentration range, or may change linearly (liner) or stepwise (stepwise).
- the eluate may contain imidazole at an appropriate concentration (eg, 200 mM). The elution volume and elution rate can be adjusted as appropriate.
- the elution solution is, for example, 6 CV, preferably in the range of 1.5-24 CV, preferably 3-12 CV, more preferably 4.5-8 CV.
- the elution step (ii) is specifically defined as elution of 1.5-6 CV at a salt concentration of 300 mM and then elution of 1.5-3 CV with a linear concentration gradient from a salt concentration of 300 mM to 400 mM.
- SUMO-IGF1, SUMO protease and SUMO are mainly eluted.
- the eluate for example, an eluate containing ammonium acetate as a buffer and a salt (NaCl or the like) at the above concentration is used.
- the salt concentration in the eluate may be constant in the above concentration range, or may change linearly (liner) or stepwise (stepwise).
- the eluate may contain imidazole at an appropriate concentration (eg, 200 mM). The elution volume and elution rate can be adjusted as appropriate.
- the elution solution is, for example, 3 CV, in the range of 0.75-12 V, preferably 1.5-6 CV, more preferably 2-4 CV.
- the elution step (iii) is specifically elution of 1.5-6 CV at a salt concentration of 1 M.
- rIGF-1 reverse phase high performance liquid chromatography
- a misfolding rIGF-1 is used by using an inexpensive cation exchange chromatography column (step (3)) without using an expensive HPLC column.
- RIGF-1 which is correctly folded, can be obtained with high purity and high recovery rate. It should be noted that it is not excluded that further HPLC separation is performed following the process of the present invention for the purpose of removing MetO 59 -IGF-1 among the correctly folded rIGF-1.
- the ratio of the correctly folded rIGF-1 amount to the total amount of protein in the eluate (third sample solution) of step (3) is 60%.
- it can be preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 95% or more.
- Example 1 (1) Material (1-1) SUMO-IGF-1 DNA synthesis gene A commercially available DNA synthesis gene (MISSION BIOTECH, GS3075) was used for the SUMO-IGF-1 gene.
- pET22b Expression regulatory plasmid
- pET22b EMD Millipore, 69744-3CN
- pET22b EMD Millipore, 69744-3CN
- pET22b EMD Millipore, 69744-3CN
- 1-3 Gene expression construct (pET22b SUMO-IGF-1) The SUMO-IGF-1 gene expression construct (pET22b SUMO-IGF-1) was constructed by integrating the SUMO-IGF-1 DNA synthesis gene into pET22b.
- (1-4) Host cell As the host cell, a cell line BL21 (DE3) derived from Escherichia coli B strain was used. (1-5) Preparation of seed cell line for preparation of master working cell bank A mecasermin (genetical recombination) gene expression construct was introduced into a host cell BL21 (BD3) strain by an Escherichia coli transformation method. Eight single colonies were selected by culturing at 37 ° C. on LB plate medium containing ampicillin. These single colonies were cultured in LB medium containing ampicillin at 37 ° C. to a culture turbidity (OD 600 nm) of 0.6-0.8, and 1 mM isopropyl- ⁇ -thiogalactopyranoside for 2.5 hours.
- a culture turbidity OD 600 nm
- Highly expressed cell lines were selected by inducing at 28 ° C. (1-6) Preparation of Master Working Cell Bank One selected colony was inoculated into LB medium containing ampicillin and cultured at 37 ° C. with a turbidity (OD 600 nm) of 0.6 to 0.8. After culturing, centrifuge, discard the medium, add the LB medium containing ampicillin so that the turbidity (OD 600 nm) is 2, add sterile glycerol to a final concentration of 20%, and suspend. , The final turbidity (OD 600 nm) was adjusted to 1.2. The cell suspension was dispensed into cryotubes in 1 mL increments.
- Ni-NTA affinity chromatography column (height 25 cm) equilibrated with a cell lysis buffer. After washing the column with cell lysis buffer, use nickel buffer B (50 mM Tris, 300 mM NaCl, 8M Urea, 20 mM Imidazole, pH 7.8) as the starting buffer and nickel buffer C (50 mM Tris, 300 mM NaCl, 600 mM).
- a first eluate containing SUMO-IGF-1 was obtained by linear concentration gradient elution (linear velocity 60 cm / h) using Imidazole, pH 7.8) as the elution buffer.
- SUMO Protease Treatment A 1/2000 times volume of SUMO protease solution was added to the first eluate, and the mixture was reacted at 15 ° C. or higher for 1 hour.
- the reaction solution was concentrated with an ultrafiltration membrane (molecular weight cut off of 2 kDa).
- the buffer was replaced with TFF buffer B (20 mM Ammonium acetate, 200 mM Imidazole, pH 4.0) in an amount of 7 times or more that of the concentrate. Then, it was concentrated again.
- the concentrate was recovered with TFF buffer B to give a second sample solution containing SUMO-IGF-1, SUMO protease, SUMO and rIGF-1.
- the chromatogram of the obtained third sample solution is shown in FIG.
- the horizontal axis shows the elution time and the vertical axis shows the absorbance (OD 220 nm).
- the black arrow is the peak of rIGF-1 (correctly folded rIGF-1), and the white arrow is the misfolded rIGF-1 (mis-folded isomer).
- the ratios of rIGF-1 and mis-folded isomers to the total amount of protein calculated from the peak intensity were 64.2% and 28.9%, respectively (see Table 1).
- the amount of rIGF-1 (recovery rate) of the third sample solution was 80% with respect to the amount of rIGF-1 in the second sample solution. In the third sample solution, rIGF-1 without SUMO contamination could be obtained with high purity (64.2%) and high recovery rate (80%).
- Example 2 Purification of cation exchange chromatography The entire amount of the second sample solution obtained in the same manner as in Example 1 was placed on a cation exchange chromatography column (SP cellulose, height 20 cm) equilibrated with SP buffer A. Loaded. Then, gradient elution consisting of the following elution steps (i)-(iii) was performed.
- Dissolution step (i) SP buffer A 33% / SP buffer B1 (20 mM ammonium acetate, 200 mM imidazole, 300 mM NaCl, pH 4.0) 67% eluate (salt concentration 200 mM) was eluted with 3 CV (linear velocity 60 cm / h). Then, elution was performed with 6 CV of eluate (salt concentration 250 mM) of SP buffer A 17% / SP buffer B1 83% (linear velocity 60 cm / h).
- the horizontal axis shows the elution time and the vertical axis shows the absorbance (OD 220 nm).
- the black arrow is rIGF-1.
- the ratios of rIGF-1 and mis-folded isomers to the total amount of protein calculated from the peak intensities were 95.7% and 0.4%, respectively (see Table 1).
- the recovery rate of rIGF-1 was 70%.
- rIGF-1 In the eluate (third sample solution) of the elution step (ii), rIGF-1 can be obtained with high purity (95.7%) and high recovery rate (70%) with respect to mis-folded isomer (0.4%). rice field.
- Example 1 (1) Ni-NTA affinity chromatography purification 2 The second sample solution obtained in the same manner as in Example 1 was fully loaded onto a Ni-NTA affinity chromatography column (linear velocity 60 cm / h). The eluate eluted during full loading and the eluate by subsequent washing (20 mM Tris buffer, 300 mM NaCl, pH 7.8) were obtained as a sample solution containing IGF-1.
- the chromatogram of the obtained sample solution is shown in FIG.
- the horizontal axis shows the elution time and the vertical axis shows the absorbance (OD 220 nm).
- the black arrow is the peak of rIGF-1 (correctly folded rIGF-1), the white arrow is the misfolded rIGF-1 (mis-folded isomer), and the diagonal arrow is SUMO.
- the ratios of rIGF-1 and mis-folded isomers to the total amount of protein calculated from the peak intensity were 49.6% and 21.5%, respectively, and SUMO was included in a high ratio of 21.7% (see Table 1).
- the rIGF-1 recovery rate was also low at 31%.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Endocrinology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Diabetes (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
[1] 組み換えインスリン様成長因子I(rIGF-1)の製造方法であって、
(1)rIGF-1をユビキチン様タンパク質SUMO(small ubiquitin-related modifier)との融合タンパク質(SUMO-IGF-1)として得る工程と、
(2)SUMO-IGF-1をSUMOプロテアーゼにより処理する工程と、
(3)工程(2)の処理液を陽イオン交換クロマトグラフィーに適用し、グラジエント溶出によりrIGF-1を含む溶出液を得る工程と、
を含む製造方法。
[2] 前記グラジエント溶出が、
(i)塩濃度200 mM以上300 mM未満の溶出液での1カラム容積以上の溶出工程、
(ii)塩濃度300 mM以上500 mM未満の溶出液での1カラム容積以上の溶出工程、
(iii)塩濃度500 mM以上の溶出液での溶出工程、
を含み、
rIGF-1を前記溶出工程(ii)の溶出液中に回収する、[1]の製造方法。
[3] 溶出工程(i)の溶出条件が次のとおりである、[2]の製造方法。
塩濃度200mMで1.5-6カラム容積(CV)の溶出、次いで塩濃度250mMで3-12CVの溶出、さらに塩濃度250mMから300mMまでの直線濃度勾配による1.5-3CVの溶出。
[4] 溶出工程(ii)
塩濃度300mMで1.5-6CVの溶出、次いで塩濃度300mMから400mMまでの直線濃度勾配による1.5-3CVの溶出。
[5] 溶出工程(iii)の溶出条件が次のとおりである、[2]-[4]のいずれかの製造方法。
塩濃度1Mでの1.5-6CVの溶出。
[6] 工程(1)は、SUMO-IGF-1を発現する宿主細胞を溶解して第1の試料溶液を得る工程(1-1)と、第1の試料溶液をNi-NTA(nickel-nitrilotriacetic acid)アフィニティークロマトグラフィーに適用して、SUMO-IGF-1を含む第1の溶出液を得る工程(1-2)を含み、
工程(2)は、前記第1の溶出液をSUMOプロテアーゼにより処理して、SUMO-IGF-1、SUMOプロテアーゼ、SUMO及びrIGF-1を含む第2の試料溶液を得る工程であり、
工程(3)は、第2の試料溶液を陽イオン交換クロマトグラフィーに適用してグラジエント溶出によりSUMO-IGF-1、SUMOプロテアーゼ及びSUMOからrIGF-1を分離してrIGF-1を含む第3の試料溶液を得る工程である、
[1][5]のいずれかの製造方法。
[7] 工程(2)よりも後段に、Ni-NTAアフィニティークロマトグラフィーによる分離工程を含まない、[1]-[6]のいずれかの製造方法。
[8] 逆相高速液体クロマトグラフィーによるミスフォールディングタンパクの分離工程を含まない、[1]-[7]のいずれかの製造方法。
[9] 前記第3の試料溶液中において、タンパク質全量に占める正しくフォールディングされたrIGF-1量の比率が60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である、[1]-[8]のいずれかの製造方法。
[10] 前記宿主細胞が、大腸菌である、[1]-[9]のいずれかの製造方法。 In order to solve the above problems, the present invention provides the following [1]-[11].
[1] A method for producing recombinant insulin-like growth factor I (rIGF-1).
(1) A step of obtaining rIGF-1 as a fusion protein (SUMO-IGF-1) with a ubiquitin-like protein SUMO (small ubiquitin-related modifier), and
(2) The step of treating SUMO-IGF-1 with SUMO protease and
(3) A step of applying the treatment solution of step (2) to cation exchange chromatography to obtain an eluate containing rIGF-1 by gradient elution, and a step of obtaining an eluate.
Manufacturing method including.
[2] The gradient elution
(I) Elution step of 1 column volume or more with an eluate having a salt concentration of 200 mM or more and less than 300 mM.
(Ii) Elution step of 1 column volume or more with an eluate having a salt concentration of 300 mM or more and less than 500 mM.
(Iii) Elution step with an eluate having a salt concentration of 500 mM or more,
Including
The production method of [1], wherein rIGF-1 is recovered in the eluate of the elution step (ii).
[3] The production method of [2], wherein the elution conditions of the elution step (i) are as follows.
Elution of 1.5-6 column volume (CV) at
[4] Dissolution step (ii)
Elution of 1.5-6 CV at a salinity of 300 mM, followed by elution of 1.5-3 CV with a linear concentration gradient from salinity 300 mM to 400 mM.
[5] The production method according to any one of [2] to [4], wherein the elution conditions in the elution step (iii) are as follows.
Elution of 1.5-6 CV at a salt concentration of 1 M.
[6] Step (1) is a step (1-1) of lysing a host cell expressing SUMO-IGF-1 to obtain a first sample solution, and Ni-NTA (nickel-) for the first sample solution. nitrilotriacetic acid) Including the step (1-2) of obtaining a first eluate containing SUMO-IGF-1 by applying to affinity chromatography.
Step (2) is a step of treating the first eluate with SUMO protease to obtain a second sample solution containing SUMO-IGF-1, SUMO protease, SUMO and rIGF-1.
In step (3), the second sample solution is applied to cation exchange chromatography to separate rIGF-1 from SUMO-IGF-1, SUMO protease and SUMO by gradient elution, and the third step contains rIGF-1. The process of obtaining a sample solution,
[1] The production method according to any one of [5].
[7] The production method according to any one of [1] to [6], which does not include a separation step by Ni-NTA affinity chromatography after the step (2).
[8] The production method according to any one of [1] to [7], which does not include a step of separating misfolding proteins by reverse phase high performance liquid chromatography.
[9] In the third sample solution, the ratio of the correctly folded rIGF-1 amount to the total amount of protein is 60% or more, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more. The production method according to any one of [1] to [8], which is particularly preferably 95% or more.
[10] The production method according to any one of [1] to [9], wherein the host cell is Escherichia coli.
(1)rIGF-1をユビキチン様タンパク質SUMO(small ubiquitin-related modifier)との融合タンパク質(SUMO-IGF-1)として得る工程と、
(2)SUMO-IGF-1をSUMOプロテアーゼにより処理する工程と、
(3)工程(2)の処理液を陽イオン交換クロマトグラフィーに適用し、グラジエント溶出によりrIGF-1を含む溶出液を得る工程と、
を含む精製方法。 [11] A method for purifying recombinant insulin-like growth factor I (rIGF-1).
(1) A step of obtaining rIGF-1 as a fusion protein (SUMO-IGF-1) with a ubiquitin-like protein SUMO (small ubiquitin-related modifier), and
(2) The step of treating SUMO-IGF-1 with SUMO protease and
(3) A step of applying the treatment solution of step (2) to cation exchange chromatography to obtain an eluate containing rIGF-1 by gradient elution, and a step of obtaining an eluate.
Purification method including.
工程(1):rIGF-1をユビキチン様タンパク質SUMO(small ubiquitin-related modifier)との融合タンパク質(SUMO-IGF-1)として得る工程。
工程(2):SUMO-IGF-1をSUMOプロテアーゼにより処理する工程。
工程(3):工程(2)の処理液を陽イオン交換クロマトグラフィーに適用し、グラジエント溶出によりrIGF-1を含む溶出液を得る工程。 The method for producing and purifying recombinant insulin-like growth factor I (rIGF-1) according to the present invention includes the following steps (1)-(3).
Step (1): A step of obtaining rIGF-1 as a fusion protein (SUMO-IGF-1) with a ubiquitin-like protein SUMO (small ubiquitin-related modifier).
Step (2): A step of treating SUMO-IGF-1 with SUMO protease.
Step (3): A step of applying the treatment solution of the step (2) to cation exchange chromatography to obtain an eluate containing rIGF-1 by gradient elution.
本工程では、rIGF-1をユビキチン様タンパク質SUMO(small ubiquitin-related modifier)との融合タンパク質(SUMO-IGF-1)として得る。本工程は、SUMO-IGF-1を発現する宿主細胞を溶解して第1の試料溶液を得る工程(1-1)と、第1の試料溶液をNi-NTA(nickel-nitrilotriacetic acid)アフィニティークロマトグラフィーに適用して、SUMO-IGF-1を含む第1の溶出液を得る工程(1-2)とを含む。 [Step (1)]
In this step, rIGF-1 is obtained as a fusion protein (SUMO-IGF-1) with a ubiquitin-like protein SUMO (small ubiquitin-related modifier). This step is a step of lysing a host cell expressing SUMO-IGF-1 to obtain a first sample solution (1-1), and a Ni-NTA (nickel-nitrilotriacetic acid) affinity chromatograph of the first sample solution. It comprises a step (1-2) of obtaining a first eluate containing SUMO-IGF-1 by applying it to a graph.
本工程では、SUMO-IGF-1を発現する宿主細胞を溶解して第1の試料溶液を得る。
SUMO-IGF-1発現のための遺伝子コンストラクトは従来公知の手法(例えば非特許文献1に記載の方法)により作製すればよい。遺伝子コンストラクト作製のためのSUMO-IGF-1遺伝子及び発現プラスミドには市販のDNA合成遺伝子及び汎用ベクターを利用できる。
宿主細胞は、特に限定されないが、大腸菌が好適に用いられ、市販の大腸菌細胞株を利用できる。遺伝子コンストラクトによる宿主細胞の形質転換及び形質転換体の培養も従来公知の手法により行うことができる。
培養後、培養液から遠心分離等によって細胞を回収し、高圧破砕機等を用いて細胞を破砕し、遠心分離等により不溶物を取り除くことで、第1の試料溶液を得る。 [Step (1-1)]
In this step, host cells expressing SUMO-IGF-1 are lysed to obtain a first sample solution.
The gene construct for SUMO-IGF-1 expression may be prepared by a conventionally known method (for example, the method described in Non-Patent Document 1). Commercially available DNA synthesis genes and general-purpose vectors can be used for the SUMO-IGF-1 gene and the expression plasmid for producing the gene construct.
The host cell is not particularly limited, but Escherichia coli is preferably used, and a commercially available Escherichia coli cell line can be used. Transformation of host cells with a gene construct and culturing of transformants can also be performed by conventionally known methods.
After culturing, the cells are collected from the culture solution by centrifugation or the like, the cells are crushed using a high-pressure crusher or the like, and the insoluble matter is removed by centrifugation or the like to obtain a first sample solution.
本工程では、第1の試料溶液をNi-NTA(nickel-nitrilotriacetic acid)アフィニティークロマトグラフィーに適用して、SUMO-IGF-1を含む第1の溶出液を得る。
平衡化したNi-NTAアフィニティクロマトグラフィーカラムに第1の試料溶液をロードする。SUMO-IGF-1は、SUMOに付加されたヒスチジンタグ(His-tag)を介してカラム担体に保持される。適当な緩衝液でカラムを洗浄した後、イミダゾールの濃度勾配による溶出を行ってカラム担体に保持されたSUMO-IGF-1を溶出させて第1の溶出液を得る。イミダゾール濃度勾配溶出は、例えば、開始バッファー(50mM Tris, 300mM NaCl, 8M Urea, 20mM Imidazole, pH 7.8)と、溶出バッファー(50mM Tris, 300mM NaCl, 600mM Imidazole, pH 7.8)を用いた直線濃度勾配溶出により行うことができる。 [Step (1-2)]
In this step, the first sample solution is applied to Ni-NTA (nickel-nitrilotriacetic acid) affinity chromatography to obtain a first eluate containing SUMO-IGF-1.
Load the first sample solution onto an equilibrated Ni-NTA affinity chromatography column. SUMO-IGF-1 is retained on the column carrier via a histidine tag attached to SUMO. After washing the column with an appropriate buffer solution, elution with a concentration gradient of imidazole is performed to elute SUMO-IGF-1 retained on the column carrier to obtain a first eluate. For imidazole concentration gradient elution, for example, linear concentration gradient elution using an initiating buffer (50mM Tris, 300mM NaCl, 8M Urea, 20mM Imidazole, pH 7.8) and an elution buffer (50mM Tris, 300mM NaCl, 600mM Imidazole, pH 7.8). Can be done by.
本工程は、SUMO-IGF-1をSUMOプロテアーゼにより処理する工程である。第1の溶出液をSUMOプロテアーゼにより処理することにより、SUMO-IGF-1、SUMOプロテアーゼ、SUMO及びrIGF-1を含む第2の試料溶液を得る。
SUMOプロテアーゼ処理は、従来公知の手法(例えば非特許文献1に記載の方法)により行えばよい。SUMOプロテアーゼ処理後に、SUMO-IGF-1、SUMOプロテアーゼ、SUMO及びrIGF-1を含む処理液を適宜濃縮や緩衝液置換して第2の試料溶液としてもよい。 [Step (2)]
This step is a step of treating SUMO-IGF-1 with SUMO protease. Treatment of the first eluate with SUMO protease gives a second sample solution containing SUMO-IGF-1, SUMO protease, SUMO and rIGF-1.
The SUMO protease treatment may be carried out by a conventionally known method (for example, the method described in Non-Patent Document 1). After the SUMO protease treatment, the treatment solution containing SUMO-IGF-1, SUMO protease, SUMO and rIGF-1 may be appropriately concentrated or replaced with a buffer solution to obtain a second sample solution.
本工程は、第2の試料溶液を陽イオン交換クロマトグラフィーに適用し、グラジエント溶出によりrIGF-1を含む溶出液を得る工程である。
従来手法(例えば非特許文献1に記載の方法)では、SUMO-IGF-1、SUMOプロテアーゼ、SUMO及びrIGF-1を含むSUMOプロテアーゼ処理液を再度Ni-NTAアフィニティークロマトグラフィーに適用し、His-tagを有するSUMO-rIGF-1、SUMOプロテアーゼ及びSUMOをカラムに吸着させrIGF-1のみを溶出させることによりrIGF-1を精製している(比較例1参照)。
本発明に係る方法は、Ni-NTAアフィニティークロマトグラフィーに替えて陽イオン交換クロマトグラフィーを用いてrIGF-1の精製を行うものであり、本工程では、第2の試料溶液を陽イオン交換クロマトグラフィーに適用し、グラジエント溶出によりSUMO-IGF-1、SUMOプロテアーゼ及びSUMOからrIGF-1を分離してrIGF-1を含む第3の試料溶液を得る。本発明に係る方法では、工程(2)よりも後段にNi-NTAアフィニティークロマトグラフィーによる分離工程が含まれない。 [Step (3)]
This step is a step of applying the second sample solution to cation exchange chromatography to obtain an eluate containing rIGF-1 by gradient elution.
In the conventional method (for example, the method described in Non-Patent Document 1), a SUMO protease-treated solution containing SUMO-IGF-1, SUMO protease, SUMO and rIGF-1 is applied again to Ni-NTA affinity chromatography, and His-tag is applied. SUMO-rIGF-1, SUMO protease and SUMO are adsorbed on the column and only rIGF-1 is eluted to purify rIGF-1 (see Comparative Example 1).
The method according to the present invention purifies rIGF-1 by using cation exchange chromatography instead of Ni-NTA affinity chromatography. In this step, the second sample solution is cation exchange chromatography. To obtain a third sample solution containing rIGF-1, separate rIGF-1 from SUMO-IGF-1, SUMO protease and SUMO by gradient elution. The method according to the present invention does not include a separation step by Ni-NTA affinity chromatography after the step (2).
陽イオン交換クロマトグラフィーカラムを用いた塩濃度勾配溶出により、従来方法(比較例1参照)に比して、SUMOの混入のないrIGF-1を高純度かつ高収量で得ることができる(実施例1参照)。 The salt concentration gradient elution can be performed, for example, by linear concentration gradient elution using the above buffer as a starting buffer and also using an elution buffer (20 mM Ammonium acetate, 200 mM Imidazole, 1M NaCl, pH 4.0). The elution volume and elution rate can be adjusted as appropriate. The eluate is, for example, a 4-column volume (CV), 1-16 CV, preferably 2-8 CV, more preferably 3-6 CV.
By salt concentration gradient elution using a cation exchange chromatography column, rIGF-1 without SUMO contamination can be obtained with high purity and high yield as compared with the conventional method (see Comparative Example 1) (Example). 1).
(i)塩濃度200 mM以上300 mM以下(あるいは200 mM以上300 mM未満)の溶出液での1カラム容積以上の溶出工程。
(ii)塩濃度300 mM以上500 mM未満の溶出液での1カラム容積以上の溶出工程。
(iii)塩濃度500 mM以上の溶出液での溶出工程。 The salt concentration gradient elution preferably comprises the following elution steps (i)-(iii).
(I) Elution step of 1 column volume or more with an eluate having a salt concentration of 200 mM or more and 300 mM or less (or 200 mM or more and less than 300 mM).
(Ii) Elution step of 1 column volume or more with an eluate having a salt concentration of 300 mM or more and less than 500 mM.
(Iii) Elution step with an eluate having a salt concentration of 500 mM or more.
溶出液には、例えば、酢酸アンモニウムをバッファーとし、上記濃度で塩(NaClなど)を含む溶出液が用いられる。溶出液中の塩濃度は、上記濃度範囲で一定であっても、直線的(ライナー)に又は段階的(ステップワイズ)に変化してもよい。溶出液はイミダゾールを適当な濃度(例えば200mM)で含んでいてもよい。溶出容積・溶出速度は、適宜調整され得る。溶出溶液は、例えば12CVであり、3-48CV、好ましくは6-24CV、より好ましくは9-15CVの範囲とされる。
溶出工程(i)は、特に具体的には、塩濃度200mMで1.5-6カラム容積(CV)の溶出、次いで塩濃度250mMで3-12CVの溶出、さらに塩濃度250mMから300mMまでの直線濃度勾配による1.5-3CVの溶出とされる。 In the elution step (i), misfolding rIGF-1 is mainly eluted.
As the eluate, for example, an eluate containing ammonium acetate as a buffer and a salt (NaCl or the like) at the above concentration is used. The salt concentration in the eluate may be constant in the above concentration range, or may change linearly (liner) or stepwise (stepwise). The eluate may contain imidazole at an appropriate concentration (eg, 200 mM). The elution volume and elution rate can be adjusted as appropriate. The eluate is, for example, 12 CV, in the range of 3-48 CV, preferably 6-24 CV, more preferably 9-15 CV.
In the elution step (i), specifically, elution of 1.5-6 column volume (CV) at a salt concentration of 200 mM, then elution of 3-12 CV at a salt concentration of 250 mM, and a linear concentration gradient from a salt concentration of 250 mM to 300 mM. It is said that 1.5-3 CV is eluted.
溶出液には、例えば、酢酸アンモニウムをバッファーとし、上記濃度で塩(NaClなど)を含む溶出液が用いられる。溶出液中の塩濃度は、上記濃度範囲で一定であっても、直線的(ライナー)に又は段階的(ステップワイズ)に変化してもよい。溶出液はイミダゾールを適当な濃度(例えば200mM)で含んでいてもよい。溶出容積・溶出速度は、適宜調整され得る。溶出溶液は、例えば6CVであり、1.5-24CV、好ましくは3-12CV、より好ましくは4.5-8CVの範囲とされる。
溶出工程(ii)は、特に具体的は、塩濃度300mMで1.5-6CVの溶出、次いで塩濃度300mMから400mMまでの直線濃度勾配による1.5-3CVの溶出とされる。 In the elution step (ii), correctly folded rIGF-1 is mainly eluted. By recovering this elution fraction, highly purified rIGF-1 can be obtained.
As the eluate, for example, an eluate containing ammonium acetate as a buffer and a salt (NaCl or the like) at the above concentration is used. The salt concentration in the eluate may be constant in the above concentration range, or may change linearly (liner) or stepwise (stepwise). The eluate may contain imidazole at an appropriate concentration (eg, 200 mM). The elution volume and elution rate can be adjusted as appropriate. The elution solution is, for example, 6 CV, preferably in the range of 1.5-24 CV, preferably 3-12 CV, more preferably 4.5-8 CV.
The elution step (ii) is specifically defined as elution of 1.5-6 CV at a salt concentration of 300 mM and then elution of 1.5-3 CV with a linear concentration gradient from a salt concentration of 300 mM to 400 mM.
溶出液には、例えば、酢酸アンモニウムをバッファーとし、上記濃度で塩(NaClなど)を含む溶出液が用いられる。溶出液中の塩濃度は、上記濃度範囲で一定であっても、直線的(ライナー)に又は段階的(ステップワイズ)に変化してもよい。溶出液はイミダゾールを適当な濃度(例えば200mM)で含んでいてもよい。溶出容積・溶出速度は、適宜調整され得る。溶出溶液は、例えば3CVであり、0.75-12V、好ましくは1.5-6CV、より好ましくは2-4CVの範囲とされる。
溶出工程(iii)は、特に具体的には、塩濃度1Mでの1.5-6CVの溶出とされる。 In the elution step (iii), SUMO-IGF1, SUMO protease and SUMO are mainly eluted.
As the eluate, for example, an eluate containing ammonium acetate as a buffer and a salt (NaCl or the like) at the above concentration is used. The salt concentration in the eluate may be constant in the above concentration range, or may change linearly (liner) or stepwise (stepwise). The eluate may contain imidazole at an appropriate concentration (eg, 200 mM). The elution volume and elution rate can be adjusted as appropriate. The elution solution is, for example, 3 CV, in the range of 0.75-12 V, preferably 1.5-6 CV, more preferably 2-4 CV.
The elution step (iii) is specifically elution of 1.5-6 CV at a salt concentration of 1 M.
本発明に係るrIGF-1の製造方法及び精製方法によれば、高価なHPLCカラムを用いることなく、安価な陽イオン交換クロマトグラフィーカラム(工程(3))を用いて、ミスフォールディングのrIGF-1に対して正しくフォールディングされたrIGF-1を高純度でかつ高い回収率で取得することができる。なお、正しくフォールディングされたrIGF-1のうち特にMetO59-IGF-1を除去することを目的として本発明の工程に続けてさらにHPLC分離を行うことは排除されない。
本発明に係るrIGF-1の製造方法及び精製方法によれば、工程(3)の溶出液(第3の試料溶液)において、タンパク質全量に占める正しくフォールディングされたrIGF-1量の比率を60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上とできる。 Conventionally, reverse phase high performance liquid chromatography (HPLC) has been used to separate correctly folded rIGF-1 from misfolded rIGF-1.
According to the method for producing and purifying rIGF-1 according to the present invention, a misfolding rIGF-1 is used by using an inexpensive cation exchange chromatography column (step (3)) without using an expensive HPLC column. RIGF-1, which is correctly folded, can be obtained with high purity and high recovery rate. It should be noted that it is not excluded that further HPLC separation is performed following the process of the present invention for the purpose of removing MetO 59 -IGF-1 among the correctly folded rIGF-1.
According to the method for producing and purifying rIGF-1 according to the present invention, the ratio of the correctly folded rIGF-1 amount to the total amount of protein in the eluate (third sample solution) of step (3) is 60%. As mentioned above, it can be preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 95% or more.
(1)材料
(1-1)SUMO-IGF-1 DNA合成遺伝子
SUMO-IGF-1遺伝子には、市販のDNA合成遺伝子(MISSION BIOTECH、GS3075)を用いた。
(1-2)発現調節用プラスミド(pET22b)
SUMO-IGF-1の発現プラスミドには、pET22b(EMD Millipore、69744-3CN)を用いた。
(1-3)遺伝子発現構成体(pET22b SUMO-IGF-1)
SUMO-IGF-1遺伝子発現構成体(pET22b SUMO-IGF-1)は、SUMO-IGF-1 DNA合成遺伝子をpET22bに組み込むことにより構築した。
(1-4)宿主細胞
宿主細胞には、大腸菌(Escherichia coli)B株由来の細胞株BL21(DE3)を用いた。
(1-5)マスター・ワーキング・セル・バンク作製のための種細胞株の調製
宿主細胞BL21(BD3)株に大腸菌形質転換法でメカセルミン(遺伝子組換え)遺伝子発現構成体を導入した。アンピシリンを含むLB平板培地で、37℃で培養し、8つのシングルコロニーを選択した。これらのシングルコロニーを、アンピシリンを含むLB培地で、37℃で培養液の濁度(OD 600 nm)が0.6~0.8まで培養し、1 mMのイソプロピル-β-チオガラクトピラノシドで2.5時間、28℃で誘導させ、高発現の細胞株を選択した。
(1-6)マスター・ワーキング・セル・バンクの調製
選択したひとつのコロニーを、アンピシリンを含むLB培地に接種し37℃で、濁度(OD 600nm)が0.6~0.8まで培養した。培養後、遠心分離し、培地を廃棄し、アンピシリンを含むLB培地の濁度(OD 600nm)が2になるように添加し、最終濃度が20%となるよう滅菌済みグリセロールを添加し、懸濁し、最終濁度(OD 600 nm)が1.2になるように調整した。この細胞懸濁液をクライオチューブに1 mLずつ分注した。 [Example 1]
(1) Material (1-1) SUMO-IGF-1 DNA synthesis gene A commercially available DNA synthesis gene (MISSION BIOTECH, GS3075) was used for the SUMO-IGF-1 gene.
(1-2) Expression regulatory plasmid (pET22b)
As the expression plasmid for SUMO-IGF-1, pET22b (EMD Millipore, 69744-3CN) was used.
(1-3) Gene expression construct (pET22b SUMO-IGF-1)
The SUMO-IGF-1 gene expression construct (pET22b SUMO-IGF-1) was constructed by integrating the SUMO-IGF-1 DNA synthesis gene into pET22b.
(1-4) Host cell As the host cell, a cell line BL21 (DE3) derived from Escherichia coli B strain was used.
(1-5) Preparation of seed cell line for preparation of master working cell bank A mecasermin (genetical recombination) gene expression construct was introduced into a host cell BL21 (BD3) strain by an Escherichia coli transformation method. Eight single colonies were selected by culturing at 37 ° C. on LB plate medium containing ampicillin. These single colonies were cultured in LB medium containing ampicillin at 37 ° C. to a culture turbidity (OD 600 nm) of 0.6-0.8, and 1 mM isopropyl-β-thiogalactopyranoside for 2.5 hours. Highly expressed cell lines were selected by inducing at 28 ° C.
(1-6) Preparation of Master Working Cell Bank One selected colony was inoculated into LB medium containing ampicillin and cultured at 37 ° C. with a turbidity (OD 600 nm) of 0.6 to 0.8. After culturing, centrifuge, discard the medium, add the LB medium containing ampicillin so that the turbidity (OD 600 nm) is 2, add sterile glycerol to a final concentration of 20%, and suspend. , The final turbidity (OD 600 nm) was adjusted to 1.2. The cell suspension was dispensed into cryotubes in 1 mL increments.
(2-1)前培養1
融解したワーキング・セル・バンク0.5mLを前培養培地5mLに加え、37℃、2~8時間、120rpmで培養した。その後、195mLの前培養培地に移し、濁度が5以上になるまで37℃、120rpmで培養した。
(2-2)前培養2
前培養1で得られた培養液を、前培養培地3.1L、グルコース溶液400 mL、微量金属溶液1025μL及びアンピシリン溶液3.5mLに加え、濁度が10以上となるまで37°Cで培養した。
(2-3)本培養
前培養2で得られた培養液を、本培養培地、グルコース溶液、微量金属溶液及びアンピリシン溶液に加え、濁度が50になるまで37℃で培養した。IPTG溶液を添加して培養を継続し、菌体内にSUMO-IGF-1を発現させた。 (2) Expression of SUMO-IGF-1 (2-1)
0.5 mL of thawed working cell bank was added to 5 mL of preculture medium and cultured at 37 ° C. for 2-8 hours at 120 rpm. Then, the cells were transferred to 195 mL of preculture medium and cultured at 37 ° C. and 120 rpm until the turbidity became 5 or more.
(2-2)
The culture solution obtained in
(2-3) Main culture The culture solution obtained in
本培養終了後、培養液を遠心分離し、菌体を回収した。菌体1gに対して菌体溶解緩衝液(50mM Tris, 300mM NaCl, 8M Urea, pH 7.8)10 mLを加えて、菌体を懸濁した。高圧破砕機(850 bar)により菌体を破砕した後、遠心分離を行って不溶物を取り除き、第1の試料溶液を得た。 (3) Recovery and lysis of bacterial cells After the completion of the main culture, the culture solution was centrifuged to recover the bacterial cells. 10 mL of cell lysis buffer (50 mM Tris, 300 mM NaCl, 8M Urea, pH 7.8) was added to 1 g of the cell to suspend the cell. After crushing the cells with a high-pressure crusher (850 bar), centrifugation was performed to remove insoluble matter, and a first sample solution was obtained.
菌体溶解緩衝液で平衡化したNi-NTAアフィニティクロマトグラフィーカラム(高さ25cm)に第1の試料溶液を全量負荷した。菌体溶解緩衝液でカラムを洗浄した後、ニッケル緩衝液B(50mM Tris, 300mM NaCl, 8M Urea, 20mM Imidazole, pH 7.8)を開始バッファーとし、ニッケル緩衝液C(50mM Tris, 300mM NaCl, 600 mM Imidazole, pH 7.8)を溶出バッファーとする直線濃度勾配溶出(線速度60cm/h)により、SUMO-IGF-1を含む第1の溶出液を得た。 (4) Purification of Ni-NTA Affinity Chromatography The entire amount of the first sample solution was loaded on a Ni-NTA affinity chromatography column (
第1の溶出液に1/2000倍容量のSUMOプロテアーゼ溶液を添加し、15℃以上で1時間反応させた。反応液を限外ろ過膜(分画分子量2kDa)で濃縮した。濃縮液の7倍量以上のTFF緩衝液B(20mM Ammonium acetate, 200mM Imidazole, pH 4.0)で緩衝液置換した。その後、再度濃縮した。濃縮物をTFF緩衝液Bにより回収し、SUMO-IGF-1、SUMOプロテアーゼ、SUMO及びrIGF-1を含む第2の試料溶液を得た。 (5) SUMO
第2の試料溶液を、SP緩衝液A(20mM Ammonium acetate, 200mM Imidazole, pH 4.0)で平衡化した陽イオン交換クロマトグラフィーカラム(SPセルロース、高さ20 cm)に全量負荷した。
SP緩衝液Aを開始バッファーとし、SP緩衝液B(20mM Ammonium acetate, 200mM Imidazole, 1M NaCl, pH 4.0)を溶出バッファーとする直線濃度勾配溶出(4カラム容積(CV)、線速度60 cm/h)により、IGF-1を含む第3の試料溶液を得た。 (6) Cation Exchange Chromatography Purification A cation exchange chromatography column (SP cellulose,
Linear concentration gradient elution (4 column volume (CV), linear velocity 60 cm / h) with SP buffer A as the starting buffer and SP buffer B (20 mM Ammonium acetate, 200 mM Imidazole, 1M NaCl, pH 4.0) as the elution buffer. ) To obtain a third sample solution containing IGF-1.
(1)陽イオン交換クロマトグラフィー精製
実施例1と同様にして得た第2の試料溶液を、SP緩衝液Aで平衡化した陽イオン交換クロマトグラフィーカラム(SPセルロース、高さ20 cm)に全量負荷した。その後、以下の溶出工程(i)-(iii)からなるグラジエント溶出を行った。 [Example 2]
(1) Purification of cation exchange chromatography The entire amount of the second sample solution obtained in the same manner as in Example 1 was placed on a cation exchange chromatography column (SP cellulose,
SP緩衝液A 33%/SP緩衝液B1(20mM ammonium acetate, 200mM imidazole, 300mM NaCl, pH 4.0)67%の溶出液(塩濃度200mM)3CVで溶出を行った(線速度60 cm/h)。
次いで、SP緩衝液A 17%/SP緩衝液B1 83%の溶出液(塩濃度250mM)6CVで溶出を行った(線速度60 cm/h)。
さらに、SP緩衝液A 17%/SP緩衝液A 83%の条件(塩濃度250mM)から、SP緩衝液A 0%/SP緩衝液B1 100%の条件(塩濃度300mM)まで、直線濃度勾配溶出(3CV、線速度60 cm/h)を行った。
得られた溶出液のクロマトグラムを図2に示す。図中、横軸は溶出時間、縦軸は吸光度(OD 220nm)を示す。黒塗りの矢印がrIGF-1のピークであり、白抜きの矢印がmis-folded isomerである。ピーク強度から算出したタンパク質全量に占めるrIGF-1の比率は、27.6%であった。 Dissolution step (i)
SP buffer A 33% / SP buffer B1 (20 mM ammonium acetate, 200 mM imidazole, 300 mM NaCl, pH 4.0) 67% eluate (
Then, elution was performed with 6 CV of eluate (salt concentration 250 mM) of SP buffer A 17% / SP buffer B1 83% (linear velocity 60 cm / h).
Furthermore, a linear concentration gradient elution is performed from the condition of SP buffer A 17% / SP buffer A 83% (salt concentration 250 mM) to the condition of
The chromatogram of the obtained eluate is shown in FIG. In the figure, the horizontal axis shows the elution time and the vertical axis shows the absorbance (
続いて、SP緩衝液B1 100%の溶出液(塩濃度300mM)3CVで溶出を行い(線速度60 cm/h)、IGF-1を含む第3の試料溶液を得た。
さらに、SP緩衝液A 70%/SP緩衝液B2(20mM ammonium acetate, 200mM imidazole, 1M NaCl, pH 4.0)30%の条件(塩濃度300mM)から、SP緩衝液60%/SP緩衝液B2 40%の条件(塩濃度400mM)まで、直線濃度勾配溶出(3CV、線速度60 cm/h)を行った。
得られた第3の試料溶液のクロマトグラムを図3に示す。図中、横軸は溶出時間、縦軸は吸光度(OD 220nm)を示す。黒塗りの矢印がrIGF-1である。ピーク強度から算出したタンパク質全量に占めるrIGF-1及びmis-folded isomerの比率は、それぞれ95.7%及び0.4%であった(表1参照)。また、rIGF-1回収率は70%であった。 Dissolution step (ii)
Subsequently, elution was performed with 3 CV of SP
Furthermore, from the condition of SP buffer A 70% / SP buffer B2 (20 mM ammonium acetate, 200 mM imidazole, 1M NaCl, pH 4.0) 30% (salt concentration 300 mM), SP buffer 60% /
The chromatogram of the obtained third sample solution is shown in FIG. In the figure, the horizontal axis shows the elution time and the vertical axis shows the absorbance (
最後に、SP緩衝液B2 100%の溶出液(塩濃度1M)3CVで溶出を行った(線速度60 cm/h)。 Dissolution step (iii)
Finally, elution was performed with 3 CV of SP
(1)Ni-NTAアフィニティークロマトグラフィー精製2
実施例1と同様にして得た第2の試料溶液を、Ni-NTAアフィニティクロマトグラフィーカラムに全量負荷した(線速度60cm/h)。全量負荷中に溶出する溶出液及びその後の洗浄(20mM Tris buffer, 300mM NaCl, pH 7.8)による溶出液を、IGF-1を含む試料溶液として取得した。 [Comparative Example 1]
(1) Ni-NTA
The second sample solution obtained in the same manner as in Example 1 was fully loaded onto a Ni-NTA affinity chromatography column (linear velocity 60 cm / h). The eluate eluted during full loading and the eluate by subsequent washing (20 mM Tris buffer, 300 mM NaCl, pH 7.8) were obtained as a sample solution containing IGF-1.
The chromatogram of the obtained sample solution is shown in FIG. In the figure, the horizontal axis shows the elution time and the vertical axis shows the absorbance (
Claims (6)
- 組み換えインスリン様成長因子I(rIGF-1)の製造方法であって、
(1)rIGF-1をユビキチン様タンパク質SUMO(small ubiquitin-related modifier)との融合タンパク質(SUMO-IGF-1)として得る工程と、
(2)SUMO-IGF-1をSUMOプロテアーゼにより処理する工程と、
(3)工程(2)の処理液を陽イオン交換クロマトグラフィーに適用し、グラジエント溶出によりrIGF-1を含む溶出液を得る工程と、
を含む製造方法。 A method for producing recombinant insulin-like growth factor I (rIGF-1).
(1) A step of obtaining rIGF-1 as a fusion protein (SUMO-IGF-1) with a ubiquitin-like protein SUMO (small ubiquitin-related modifier), and
(2) The step of treating SUMO-IGF-1 with SUMO protease and
(3) A step of applying the treatment solution of step (2) to cation exchange chromatography to obtain an eluate containing rIGF-1 by gradient elution, and a step of obtaining an eluate.
Manufacturing method including. - 前記グラジエント溶出が、
(i)塩濃度200 mM以上300 mM以下の溶出液での1カラム容積以上の溶出工程、
(ii)塩濃度300 mM以上500 mM未満の溶出液での1カラム容積以上の溶出工程、
(iii)塩濃度500 mM以上の溶出液での溶出工程、
を含み、
rIGF-1を前記溶出工程(ii)の溶出液中に回収する、請求項1に記載の製造方法。 The gradient elution
(I) Elution step of 1 column volume or more with an eluate having a salt concentration of 200 mM or more and 300 mM or less.
(Ii) Elution step of 1 column volume or more with an eluate having a salt concentration of 300 mM or more and less than 500 mM.
(Iii) Elution step with an eluate having a salt concentration of 500 mM or more,
Including
The production method according to claim 1, wherein rIGF-1 is recovered in the eluate of the elution step (ii). - 工程(1)は、SUMO-IGF-1を発現する宿主細胞を溶解して第1の試料溶液を得る工程(1-1)と、第1の試料溶液をNi-NTA(nickel-nitrilotriacetic acid)アフィニティークロマトグラフィーに適用して、SUMO-IGF-1を含む第1の溶出液を得る工程(1-2)を含み、
工程(2)は、前記第1の溶出液をSUMOプロテアーゼにより処理して、SUMO-IGF-1、SUMOプロテアーゼ、SUMO及びrIGF-1を含む第2の試料溶液を得る工程であり、
工程(3)は、第2の試料溶液を陽イオン交換クロマトグラフィーに適用してグラジエント溶出によりSUMO-IGF-1、SUMOプロテアーゼ及びSUMOからrIGF-1を分離してrIGF-1を含む第3の試料溶液を得る工程である、
請求項1又は2に記載の製造方法。 Step (1) is a step (1-1) of lysing a host cell expressing SUMO-IGF-1 to obtain a first sample solution, and a first sample solution of Ni-NTA (nickel-nitrilotriacetic acid). Including a step (1-2) of applying to affinity chromatography to obtain a first eluate containing SUMO-IGF-1.
Step (2) is a step of treating the first eluate with SUMO protease to obtain a second sample solution containing SUMO-IGF-1, SUMO protease, SUMO and rIGF-1.
In step (3), the second sample solution is applied to cation exchange chromatography to separate rIGF-1 from SUMO-IGF-1, SUMO protease and SUMO by gradient elution, and the third step contains rIGF-1. The process of obtaining a sample solution,
The manufacturing method according to claim 1 or 2. - 工程(2)よりも後段に、Ni-NTAアフィニティークロマトグラフィーによる分離工程を含まない、請求項1-3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1-3, which does not include a separation step by Ni-NTA affinity chromatography after the step (2).
- 逆相高速液体クロマトグラフィーによるミスフォールディングタンパクの分離工程を含まない、請求項1-4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1-4, which does not include a step of separating misfolding proteins by reverse phase high performance liquid chromatography.
- 前記第3の試料溶液中において、タンパク質全量に占める正しくフォールディングされたrIGF-1量の比率が60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である、請求項1-5のいずれか一項に記載の製造方法。
In the third sample solution, the ratio of the correctly folded rIGF-1 amount to the total amount of protein is 60% or more, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, particularly preferably. Is 95% or more, according to any one of claims 1-5.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022560551A JP7570428B2 (en) | 2020-11-05 | 2020-11-05 | Method for producing recombinant insulin-like growth factor I |
CN202080106934.7A CN116368149A (en) | 2020-11-05 | 2020-11-05 | Method for producing recombinant insulin-like growth factor I |
KR1020237018335A KR20230098304A (en) | 2020-11-05 | 2020-11-05 | Method for producing recombinant insulin-like growth factor I |
PCT/JP2020/041283 WO2022097216A1 (en) | 2020-11-05 | 2020-11-05 | Method for producing recombinant insulin-like growth factor i |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/041283 WO2022097216A1 (en) | 2020-11-05 | 2020-11-05 | Method for producing recombinant insulin-like growth factor i |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022097216A1 true WO2022097216A1 (en) | 2022-05-12 |
Family
ID=81457004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/041283 WO2022097216A1 (en) | 2020-11-05 | 2020-11-05 | Method for producing recombinant insulin-like growth factor i |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7570428B2 (en) |
KR (1) | KR20230098304A (en) |
CN (1) | CN116368149A (en) |
WO (1) | WO2022097216A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63109794A (en) * | 1986-08-07 | 1988-05-14 | インタ−ナシヨナル・ミネラルズ・アンド・ケミカル・コ−ポレイシヨン | Purification and isolation of somatomedin c composed of formation of two ions |
JPH06505010A (en) * | 1991-01-16 | 1994-06-09 | シビア・ニユーロサイエンシズ・インコーポレイテツド | Method for purifying correctly folded and complete insulin-like growth factor-1 |
JPH11503733A (en) * | 1995-04-14 | 1999-03-30 | セファロン,インコーポレイテッド | Methods for purifying IGF-I |
JP2000500023A (en) * | 1995-11-13 | 2000-01-11 | フアーマシア・アンド・アツプジヨン・アー・ベー | Method for producing correctly folded biologically active recombinant proteins |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5288931A (en) | 1991-12-06 | 1994-02-22 | Genentech, Inc. | Method for refolding insoluble, misfolded insulin-like growth factor-I into an active conformation |
-
2020
- 2020-11-05 CN CN202080106934.7A patent/CN116368149A/en active Pending
- 2020-11-05 WO PCT/JP2020/041283 patent/WO2022097216A1/en active Application Filing
- 2020-11-05 KR KR1020237018335A patent/KR20230098304A/en active Pending
- 2020-11-05 JP JP2022560551A patent/JP7570428B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63109794A (en) * | 1986-08-07 | 1988-05-14 | インタ−ナシヨナル・ミネラルズ・アンド・ケミカル・コ−ポレイシヨン | Purification and isolation of somatomedin c composed of formation of two ions |
JPH06505010A (en) * | 1991-01-16 | 1994-06-09 | シビア・ニユーロサイエンシズ・インコーポレイテツド | Method for purifying correctly folded and complete insulin-like growth factor-1 |
JPH11503733A (en) * | 1995-04-14 | 1999-03-30 | セファロン,インコーポレイテッド | Methods for purifying IGF-I |
JP2000500023A (en) * | 1995-11-13 | 2000-01-11 | フアーマシア・アンド・アツプジヨン・アー・ベー | Method for producing correctly folded biologically active recombinant proteins |
Non-Patent Citations (1)
Title |
---|
HUI MIN, FUYONG LI, LU TANGA, LONG ZHENG, XUECHAO JIA, PENG LIN, LINNA LI, XIAOKUN LI, XIAOJIE WANG: "Soluble expression of human insulin-like growth factor-1 with the assistance of SUMO fusion partne r", JOURNAL OF CHEMICAL AND PHARMACEUTICAL RESEARCH, vol. 6, no. 4, 1 January 2014 (2014-01-01), pages 1059 - 1066, XP055938557 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022097216A1 (en) | 2022-05-12 |
JP7570428B2 (en) | 2024-10-21 |
KR20230098304A (en) | 2023-07-03 |
CN116368149A (en) | 2023-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200199641A1 (en) | Method for enzymatic preparation of glutathione | |
CN108690854B (en) | Method for producing L-glufosinate-ammonium by using chemical-enzymatic method | |
WO2022097216A1 (en) | Method for producing recombinant insulin-like growth factor i | |
CN110791488A (en) | Lipase for resolving chiral compounds, preparation method and application thereof | |
CN118085023B (en) | Preparation method of short peptide | |
JP2007502609A (en) | Methods for preparing recombinant polypeptides | |
CN108774635A (en) | Recombinate production method of the TEV protease in Escherichia coli | |
JP4388698B2 (en) | Methods for recovering and purifying recombinant proteins from cells | |
TW202219055A (en) | Production method of recombinant insulin-like growth factor I including a rIGF-1 obtaining step, a SUMO-IGF-1 treatment step, and an eluent obtaining step | |
US11639515B2 (en) | Genetically engineered strain for producing porcine myoglobin and food-grade fermentation and purification thereof | |
CN108570016B (en) | PF1022A separation and purification method | |
RU2447149C1 (en) | RECOMBINANT PLASMID DNA pMSIN4, CODING HYBRIDE POLYPEPTIDE - HUMAN INSULIN PRECURSOR, BL21(DE3)VpMSIN4-PRODUCER STRAIN OF RECOMBINANT HUMAN INSULIN, METHOD FOR PRODUCING RECOMBINANT HUMAN INSULIN | |
CN116693659A (en) | A two-step mixed-mode chromatography method for the separation of recombinant human serum albumin | |
US20060003421A1 (en) | Method for purifying a fermentation-derived product | |
WO2014009515A1 (en) | Method for producing a recombinant protein of interest | |
CN110373440B (en) | Method for preparing DL-serine by one-pot enzyme method | |
CN112812969A (en) | System purification method for recombinant expression polypeptide in genetic engineering | |
CN106883286B (en) | Extraction and purification method of tyrosine derivative | |
CN116236819B (en) | Method for purifying polypeptide toxins in batches and composite double-layer chromatographic column | |
CN111172048A (en) | Coarse and pure process of CA16 virus-like particles expressed by recombinant hansenula polymorpha, CA16 virus vaccine and preparation method thereof | |
CN111004318B (en) | Purification method of rhPTH (1-34) protein stock solution | |
CN216321130U (en) | Extraction and concentration device for clavulanic acid fermentation liquor | |
CN107573403B (en) | Method for purifying ningnanmycin | |
CN116284222A (en) | Didemnin B separation and purification method | |
CN104928327A (en) | Method for preparing L-tryptophan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20960769 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022560551 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237018335 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20960769 Country of ref document: EP Kind code of ref document: A1 |