[go: up one dir, main page]

WO2022095099A1 - 一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法 - Google Patents

一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法 Download PDF

Info

Publication number
WO2022095099A1
WO2022095099A1 PCT/CN2020/128894 CN2020128894W WO2022095099A1 WO 2022095099 A1 WO2022095099 A1 WO 2022095099A1 CN 2020128894 W CN2020128894 W CN 2020128894W WO 2022095099 A1 WO2022095099 A1 WO 2022095099A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofibers
fibers
filter material
scale cellulose
air filter
Prior art date
Application number
PCT/CN2020/128894
Other languages
English (en)
French (fr)
Inventor
马翔
Original Assignee
苏州纳昇源新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州纳昇源新材料科技有限公司 filed Critical 苏州纳昇源新材料科技有限公司
Publication of WO2022095099A1 publication Critical patent/WO2022095099A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0216Bicomponent or multicomponent fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Definitions

  • the present application relates to a preparation method of a high-efficiency air filter material, in particular to a preparation method of a high-efficiency air filter material based on multi-scale cellulose nanofibers.
  • Cellulose the main structural component of plant cell walls, is usually combined with hemicellulose, pectin, and lignin, and the manner and extent of its binding greatly affects the texture of plant-derived foods.
  • the changes in texture of plants during ripening and post-ripening are caused by changes in pectin substances.
  • the fibers produced by electrospinning have low fiber strength, which is not conducive to the subsequent processing of fibers.
  • the state of the collector is not improved when the fibers are collected, which is not conducive to the arrangement and collection of nanofibers, and affects the spinning effect.
  • the single layer of the resulting filter material has limited filtering effect and is easily damaged, which is not conducive to the efficient filtration of air and inconvenient to use. Therefore, a preparation method of a high-efficiency air filter material based on multi-scale cellulose nanofibers is proposed to solve the above problems.
  • a preparation method of a high-efficiency air filter material based on multi-scale cellulose nanofibers comprises the following steps:
  • the physical treatment method adopts mechanical pulverization and steam explosion
  • the chemical treatment method includes the lye separation method and the organic solvent method.
  • the spinning solution in the electrospinning is a polymer solution, and its heating temperature is 160 ° C, the range of the nozzle aperture during electrospinning is 0.6-0.8mm, and the range of the receiving distance is 0.6-0.8mm. 15-25cm.
  • a rotating disc collector is used for electrospinning, and the nanofibers are arranged in parallel and regularly, and an additional electric field collector is used to improve the spinning effect.
  • the nanofibers form parallel alignment across both sides of the groove, and the prepared nanofibers can be transferred to other substrates for other purposes.
  • the nanofibers were highly oriented between the two plates of the cell, while the nanofibers on the plates were oriented the same as in standard electrospinning.
  • step (2) when collecting the nanofibers, a discus-type collecting wheel is used, and the nanofibers are placed on the grounded conical bobbin, and the electric field is mainly concentrated on the edge of the bobbin, in order to attract almost all initial The nanofibers were spun and wound continuously around the edge of the drum.
  • the polychitosan fiber and the ramie fiber are repeatedly cleaned and filtered, and the two kinds of fibers after air drying are evenly mixed.
  • the mixing ratio of the two fibers in the step (3) is 2:1.
  • the method of cotton bale mixing and drawing frame mixing is used to blend the antibacterial fibers and the multi-scale cellulose nanofibers.
  • step (5) self-adhesive bonding is used between the multi-layered textiles, and there are several pores between the textiles.
  • step (6) two filters are arranged at intervals, then the filter is embedded in the filter element, and the filter is dried at a high temperature of 80°C.
  • the present application provides a method for preparing a multi-scale cellulose nanofiber-based high-efficiency air filter material through electrospinning.
  • FIG. 1 is a flow chart of this application.
  • the terms “installed”, “set up”, “provided with”, “connected”, “connected”, “socketed” should be construed broadly. For example, it may be a fixed connection, a detachable connection, or an integral structure; it may be a mechanical connection, or an electrical connection; it may be directly connected, or indirectly connected through an intermediary, or between two devices, elements, or components. internal communication.
  • installed may be a fixed connection, a detachable connection, or an integral structure
  • it may be a mechanical connection, or an electrical connection
  • it may be directly connected, or indirectly connected through an intermediary, or between two devices, elements, or components. internal communication.
  • the specific meanings of the above terms in this application can be understood according to specific situations.
  • a preparation method of a high-efficiency air filter material based on multi-scale cellulose nanofibers comprises the following steps:
  • the physical treatment method adopts mechanical pulverization and steam explosion
  • the chemical treatment method includes the lye separation method and the organic solvent method.
  • the spinning solution in the electrospinning is a polymer solution, and its heating temperature is 160°C, the nozzle aperture is 0.6mm during the electrospinning process, and the receiving distance is 15cm.
  • a rotating disc collector is used for electrospinning, and the nanofibers are arranged in parallel and regularly, and an additional electric field collector is used to improve the spinning effect.
  • the nanofibers form parallel alignment across both sides of the groove, and the prepared nanofibers can be transferred to other substrates for other purposes.
  • the nanofibers were highly oriented between the two plates of the cell, while the nanofibers on the plates were oriented the same as in standard electrospinning.
  • step (2) when collecting the nanofibers, a discus-type collecting wheel is used, and the nanofibers are placed on the grounded conical bobbin, and the electric field is mainly concentrated on the edge of the bobbin, in order to attract almost all initial The nanofibers were spun and wound continuously around the edge of the drum.
  • the polychitosan fiber and the ramie fiber are repeatedly cleaned and filtered, and the two kinds of fibers after air drying are evenly mixed.
  • the mixing ratio of the two fibers in the step (3) is 2:1.
  • the method of cotton bale mixing and drawing frame mixing is used to blend the antibacterial fibers and the multi-scale cellulose nanofibers.
  • step (5) self-adhesive bonding is used between the multi-layered textiles, and there are several pores between the textiles.
  • step (6) two filters are arranged at intervals, then the filter is embedded in the filter element, and the filter is dried at a high temperature of 80°C.
  • the above method is applicable to the preparation method of high-efficiency air filter material based on multi-scale cellulose nanofibers with a voltage of 30 kV.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a preparation method of a high-efficiency air filter material based on multi-scale cellulose nanofibers comprises the following steps:
  • the physical treatment method adopts mechanical pulverization and steam explosion
  • the chemical treatment method includes the lye separation method and the organic solvent method.
  • the spinning solution in the electrospinning is a polymer solution, and its heating temperature is 160° C., the nozzle aperture is 0.8mm during the electrospinning process, and the receiving distance is 25cm.
  • a rotating disc collector is used for electrospinning, and the nanofibers are arranged in parallel and regularly, and an additional electric field collector is used to improve the spinning effect.
  • the nanofibers form parallel alignment across both sides of the groove, and the prepared nanofibers can be transferred to other substrates for other purposes.
  • the nanofibers were highly oriented between the two plates of the cell, while the nanofibers on the plates were oriented the same as in standard electrospinning.
  • step (2) when collecting the nanofibers, a discus-type collecting wheel is used, and the nanofibers are placed on the grounded conical bobbin, and the electric field is mainly concentrated on the edge of the bobbin, in order to attract almost all initial The nanofibers were spun and wound continuously around the edge of the drum.
  • the polychitosan fiber and the ramie fiber are repeatedly cleaned and filtered, and the two kinds of fibers after air drying are evenly mixed.
  • the mixing ratio of the two fibers in the step (3) is 2:1.
  • the method of cotton bale mixing and drawing frame mixing is used to blend the antibacterial fibers and the multi-scale cellulose nanofibers.
  • step (5) self-adhesive bonding is used between the multi-layered textiles, and there are several pores between the textiles.
  • step (6) two filters are arranged at intervals, then the filter is embedded in the filter element, and the filter is dried at a high temperature of 80°C.
  • the above method is applicable to the preparation method of high-efficiency air filter material based on multi-scale cellulose nanofibers with a voltage of 60 kV.
  • the fibers are blended with other fibers to enhance the strength of the fibers and improve the disadvantages of nanofibers after spinning; change the state of the collector and perform additional electric field treatment on the collector to make the nanofibers appear parallel and regular arrangement , to improve the spinning effect; the filter material is made of multi-layer composite to form a filter, the filtering effect is good, and the filtering effect of the air is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Filtering Materials (AREA)

Abstract

一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,所述基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法包括如下步骤:纤维素提取,对多尺度纤维素进行预处理,利用物理处理法和化学处理法辅助对多尺度纤维素纳米纤维进行提取;静电纺丝,对提取的多尺度纤维素进行静电纺丝处理,将纤维素纳米纤维加工成型;抗菌纤维处理,对聚壳糖纤维和苎麻纤维进行处理,将两种纤维混合均匀;混纺处理,将抗菌纤维与纺丝后的多尺度纤维素纳米纤维以及芳纶纤维混纺;多层组合,根据滤芯尺寸大小进行裁剪制成过滤片;嵌合、烘干。一种经过静电纺丝的基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法。

Description

一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法 技术领域
本申请涉及一种高效空气过滤材料的制备方法,具体是一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法。
背景技术
纤维素是植物细胞壁的主要结构成分,通常与半纤维素、果胶和木质素结合在一起,其结合方式和程度对植物源食品的质地影响很大。而植物在成熟和后熟时质地的变化则由果胶物质发生变化引起的。
一般纤维经过静电纺丝处理后产生的纤维强度较低,不利于纤维的后续加工,纤维在收集时收集器的状态未经过改善,不利于纳米纤维的排列和收集,影响纺丝效果,且制成的过滤材料单层使用过滤效果有限,也容易损坏,不利于对空气的高效过滤,使用不便。因此,针对上述问题提出一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法。
技术解决方案
一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,所述基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法包括如下步骤:
(1)纤维素提取,对多尺度纤维素进行预处理,利用物理处理法和化学处理法辅助对多尺度纤维素纳米纤维进行提取;
(2)静电纺丝,对提取的多尺度纤维素进行静电纺丝处理,将纤维素纳米纤维加工成型,然后对纺丝后的纤维进行排列,将排列后的纤维二次加工处理;
(3)抗菌纤维处理,对聚壳糖纤维和苎麻纤维进行处理,将两种纤维混合均匀;
(4)混纺处理,将抗菌纤维与纺丝后的多尺度纤维素纳米纤维以及芳纶纤维混纺;
(5)多层组合,将混纺后的层状纺织物多层粘合,堆叠组合,根据滤芯尺寸大小进行裁剪制成过滤片;
(6)嵌合、烘干,将裁剪后的过滤片嵌合在滤芯内部,对过滤片烘干,减少过滤片加工时残留的水分,并加速胶体的风干,利于过滤片的成型,利于过滤片的安装和使用。
进一步地,所述步骤(1)中物理处理法采用机械粉碎和蒸汽爆破,化学处理法为碱液分离法和有机溶剂法。
进一步地,所述步骤(2)中静电纺丝中纺丝液为高分子溶液,且其加热温度为160°C,静电纺丝加工时喷头孔径的范围为0.6-0.8mm,接收距离的范围为15-25cm。
进一步地,所述步骤(2)中静电纺丝采用旋转盘收集器,纳米纤维呈现平行规则排列,且利用附加电场收集器改善纺丝效果,在常规的收集器上凿开一个槽,在附加电场的作用下,纳米纤维横跨槽的两边形成平行取向排列,可以将制得的纳米纤维转移到其他基底上以作它用。在槽的两个极板间,纳米纤维的取向度很高,而在极板上纳米纤维的取向与标准电纺一样。
进一步地,所述步骤(2)中收集纳米纤维时采用铁饼型收集轮,将纳米纤维置于接地的锥形绕线筒上,电场主要集中在绕线筒边缘,目的在于吸引几乎所有的初纺纳米纤维,并连续卷绕于筒的边缘。
进一步地,所述步骤(3)中对聚壳糖纤维和苎麻纤维反复清洗过滤,将风干后的两种纤维均匀混合。
进一步地,所述步骤(3)中两种纤维的混合比例为2:1。
进一步地,所述步骤(4)中采用棉包混合和并条混合的方法对抗菌纤维和多尺度纤维素纳米纤维进行混纺。
进一步地,所述步骤(5)中多层纺织物之间采用不干胶粘合,且纺织物之间存在有若干孔隙。
进一步地,所述步骤(6)中将两个过滤片间隔排列,然后将过滤片嵌合在滤芯内部,并采用80°C的高温对过滤片烘干。
有益效果
本申请的有益效果是:本申请提供了一种经过静电纺丝的基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请流程图。
本发明的实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”、“套接”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
实施例一:
一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,所述基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法包括如下步骤:
(1)纤维素提取,对多尺度纤维素进行预处理,利用物理处理法和化学处理法辅助对多尺度纤维素纳米纤维进行提取;
(2)静电纺丝,对提取的多尺度纤维素进行静电纺丝处理,将纤维素纳米纤维加工成型,然后对纺丝后的纤维进行排列,将排列后的纤维二次加工处理;
(3)抗菌纤维处理,对聚壳糖纤维和苎麻纤维进行处理,将两种纤维混合均匀;
(4)混纺处理,将抗菌纤维与纺丝后的多尺度纤维素纳米纤维以及芳纶纤维混纺;
(5)多层组合,将混纺后的层状纺织物多层粘合,堆叠组合,根据滤芯尺寸大小进行裁剪制成过滤片;
(6)嵌合、烘干,将裁剪后的过滤片嵌合在滤芯内部,对过滤片烘干,减少过滤片加工时残留的水分,并加速胶体的风干,利于过滤片的成型,利于过滤片的安装和使用。
进一步地,所述步骤(1)中物理处理法采用机械粉碎和蒸汽爆破,化学处理法为碱液分离法和有机溶剂法。
进一步地,所述步骤(2)中静电纺丝中纺丝液为高分子溶液,且其加热温度为160°C,静电纺丝加工时喷头孔径为0.6mm,接收距离15cm。
进一步地,所述步骤(2)中静电纺丝采用旋转盘收集器,纳米纤维呈现平行规则排列,且利用附加电场收集器改善纺丝效果,在常规的收集器上凿开一个槽,在附加电场的作用下,纳米纤维横跨槽的两边形成平行取向排列,可以将制得的纳米纤维转移到其他基底上以作它用。在槽的两个极板间,纳米纤维的取向度很高,而在极板上纳米纤维的取向与标准电纺一样。
进一步地,所述步骤(2)中收集纳米纤维时采用铁饼型收集轮,将纳米纤维置于接地的锥形绕线筒上,电场主要集中在绕线筒边缘,目的在于吸引几乎所有的初纺纳米纤维,并连续卷绕于筒的边缘。
进一步地,所述步骤(3)中对聚壳糖纤维和苎麻纤维反复清洗过滤,将风干后的两种纤维均匀混合。
进一步地,所述步骤(3)中两种纤维的混合比例为2:1。
进一步地,所述步骤(4)中采用棉包混合和并条混合的方法对抗菌纤维和多尺度纤维素纳米纤维进行混纺。
进一步地,所述步骤(5)中多层纺织物之间采用不干胶粘合,且纺织物之间存在有若干孔隙。
进一步地,所述步骤(6)中将两个过滤片间隔排列,然后将过滤片嵌合在滤芯内部,并采用80°C的高温对过滤片烘干。
上述方法适用于电压30 kV的基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法。
实施例二:
一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,所述基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法包括如下步骤:
(1)纤维素提取,对多尺度纤维素进行预处理,利用物理处理法和化学处理法辅助对多尺度纤维素纳米纤维进行提取;
(2)静电纺丝,对提取的多尺度纤维素进行静电纺丝处理,将纤维素纳米纤维加工成型,然后对纺丝后的纤维进行排列,将排列后的纤维二次加工处理;
(3)抗菌纤维处理,对聚壳糖纤维和苎麻纤维进行处理,将两种纤维混合均匀;
(4)混纺处理,将抗菌纤维与纺丝后的多尺度纤维素纳米纤维以及芳纶纤维混纺;
(5)多层组合,将混纺后的层状纺织物多层粘合,堆叠组合,根据滤芯尺寸大小进行裁剪制成过滤片;
(6)嵌合、烘干,将裁剪后的过滤片嵌合在滤芯内部,对过滤片烘干,减少过滤片加工时残留的水分,并加速胶体的风干,利于过滤片的成型,利于过滤片的安装和使用。
进一步地,所述步骤(1)中物理处理法采用机械粉碎和蒸汽爆破,化学处理法为碱液分离法和有机溶剂法。
进一步地,所述步骤(2)中静电纺丝中纺丝液为高分子溶液,且其加热温度为160°C,静电纺丝加工时喷头孔径为0.8mm,接收距离25cm。
进一步地,所述步骤(2)中静电纺丝采用旋转盘收集器,纳米纤维呈现平行规则排列,且利用附加电场收集器改善纺丝效果,在常规的收集器上凿开一个槽,在附加电场的作用下,纳米纤维横跨槽的两边形成平行取向排列,可以将制得的纳米纤维转移到其他基底上以作它用。在槽的两个极板间,纳米纤维的取向度很高,而在极板上纳米纤维的取向与标准电纺一样。
进一步地,所述步骤(2)中收集纳米纤维时采用铁饼型收集轮,将纳米纤维置于接地的锥形绕线筒上,电场主要集中在绕线筒边缘,目的在于吸引几乎所有的初纺纳米纤维,并连续卷绕于筒的边缘。
进一步地,所述步骤(3)中对聚壳糖纤维和苎麻纤维反复清洗过滤,将风干后的两种纤维均匀混合。
进一步地,所述步骤(3)中两种纤维的混合比例为2:1。
进一步地,所述步骤(4)中采用棉包混合和并条混合的方法对抗菌纤维和多尺度纤维素纳米纤维进行混纺。
进一步地,所述步骤(5)中多层纺织物之间采用不干胶粘合,且纺织物之间存在有若干孔隙。
进一步地,所述步骤(6)中将两个过滤片间隔排列,然后将过滤片嵌合在滤芯内部,并采用80°C的高温对过滤片烘干。
上述方法适用于电压60 kV的基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法。
本申请的有益之处在于:
纤维素经过静电纺丝后将纤维与其余的纤维混纺,增强纤维的强度,改善纳米纤维纺丝后的弊端;改变收集器的状态并对收集器进行附加电场处理,使纳米纤维呈现平行规则排列,提升纺丝效果;制成的过滤材料经过多层复合形成过滤片,过滤效果好,提升对空气的过滤效果。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,其特征在于:所述基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法包括如下步骤:
    (1)纤维素提取,对多尺度纤维素进行预处理,利用物理处理法和化学处理法辅助对多尺度纤维素纳米纤维进行提取;
    (2)静电纺丝,对提取的多尺度纤维素进行静电纺丝处理,将纤维素纳米纤维加工成型,然后对纺丝后的纤维进行排列,将排列后的纤维二次加工处理;
    (3)抗菌纤维处理,对聚壳糖纤维和苎麻纤维进行处理,将两种纤维混合均匀;
    (4)混纺处理,将抗菌纤维与纺丝后的多尺度纤维素纳米纤维以及芳纶纤维混纺;
    (5)多层组合,将混纺后的层状纺织物多层粘合,堆叠组合,根据滤芯尺寸大小进行裁剪制成过滤片;
    (6)嵌合、烘干,将裁剪后的过滤片嵌合在滤芯内部,对过滤片烘干,减少过滤片加工时残留的水分,并加速胶体的风干,利于过滤片的成型,利于过滤片的安装和使用。
  2. 根据权利要求1所述的一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,其特征在于:所述步骤(1)中物理处理法采用机械粉碎和蒸汽爆破,化学处理法为碱液分离法和有机溶剂法。
  3. 根据权利要求1所述的一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,其特征在于:所述步骤(2)中静电纺丝中纺丝液为高分子溶液,且其加热温度为160°C,静电纺丝加工时喷头孔径的范围为0.6-0.8mm,接收距离的范围为15-25cm。
  4. 根据权利要求1所述的一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,其特征在于:所述步骤(2)中静电纺丝采用旋转盘收集器,纳米纤维呈现平行规则排列,且利用附加电场收集器改善纺丝效果,在常规的收集器上凿开一个槽,在附加电场的作用下,纳米纤维横跨槽的两边形成平行取向排列,可以将制得的纳米纤维转移到其他基底上以作它用。在槽的两个极板间,纳米纤维的取向度很高,而在极板上纳米纤维的取向与标准电纺一样。
  5. 根据权利要求1所述的一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,其特征在于:所述步骤(2)中收集纳米纤维时采用铁饼型收集轮,将纳米纤维置于接地的锥形绕线筒上,电场主要集中在绕线筒边缘,目的在于吸引几乎所有的初纺纳米纤维,并连续卷绕于筒的边缘。
  6. 根据权利要求1所述的一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,其特征在于:所述步骤(3)中对聚壳糖纤维和苎麻纤维反复清洗过滤,将风干后的两种纤维均匀混合。
  7. 根据权利要求1所述的一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,其特征在于:所述步骤(3)中两种纤维的混合比例为2:1。
  8. 根据权利要求1所述的一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,其特征在于:所述步骤(4)中采用棉包混合和并条混合的方法对抗菌纤维和多尺度纤维素纳米纤维进行混纺。
  9. 根据权利要求1所述的一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,其特征在于:所述步骤(5)中多层纺织物之间采用不干胶粘合,且纺织物之间存在有若干孔隙。
  10. 根据权利要求1所述的一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法,其特征在于:所述步骤(6)中将两个过滤片间隔排列,然后将过滤片嵌合在滤芯内部,并采用80°C的高温对过滤片烘干。
PCT/CN2020/128894 2020-11-09 2020-11-16 一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法 WO2022095099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011235925.6A CN112316565A (zh) 2020-11-09 2020-11-09 一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法
CN202011235925.6 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022095099A1 true WO2022095099A1 (zh) 2022-05-12

Family

ID=74317159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128894 WO2022095099A1 (zh) 2020-11-09 2020-11-16 一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法

Country Status (2)

Country Link
CN (1) CN112316565A (zh)
WO (1) WO2022095099A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225442A (en) * 1978-08-22 1980-09-30 Brunswick Corporation Core spun filtration roving
JP2001062224A (ja) * 1999-08-31 2001-03-13 Mitsubishi Paper Mills Ltd 除塵フィルター
CN103173892A (zh) * 2013-04-03 2013-06-26 北京石油化工学院 一种纳米竹纤维复合材料的制备方法
CN103520999A (zh) * 2012-07-06 2014-01-22 北京服装学院 一种抗菌的复合纳米纤维高效空气过滤材料及其制备方法
CN106987922A (zh) * 2017-05-26 2017-07-28 四川大学 中空多孔结构的纤维素纳米纤维静电纺丝制备方法
CN107042668A (zh) * 2017-05-27 2017-08-15 苏州盛达织带有限公司 一种防震抗菌防水旅行箱面料
CN107469614A (zh) * 2017-07-04 2017-12-15 中国科学院城市环境研究所 一种多功能空气净化过滤网

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225442A (en) * 1978-08-22 1980-09-30 Brunswick Corporation Core spun filtration roving
JP2001062224A (ja) * 1999-08-31 2001-03-13 Mitsubishi Paper Mills Ltd 除塵フィルター
CN103520999A (zh) * 2012-07-06 2014-01-22 北京服装学院 一种抗菌的复合纳米纤维高效空气过滤材料及其制备方法
CN103173892A (zh) * 2013-04-03 2013-06-26 北京石油化工学院 一种纳米竹纤维复合材料的制备方法
CN106987922A (zh) * 2017-05-26 2017-07-28 四川大学 中空多孔结构的纤维素纳米纤维静电纺丝制备方法
CN107042668A (zh) * 2017-05-27 2017-08-15 苏州盛达织带有限公司 一种防震抗菌防水旅行箱面料
CN107469614A (zh) * 2017-07-04 2017-12-15 中国科学院城市环境研究所 一种多功能空气净化过滤网

Also Published As

Publication number Publication date
CN112316565A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
US11383189B2 (en) Preparation method of cotton bast fiber and chitosan composite non-woven fabric for filtration
CN108166070B (zh) 一种短竹原纤维的制备方法
CN111394802A (zh) 一种模塑成型复合材料用长竹纤维的制备方法
CN100503907C (zh) 由造纸级竹浆粕直接制造再生竹纤维的方法
CN112709090B (zh) 一种制备含木素的纤维素纳米纤丝的方法
WO2022095099A1 (zh) 一种基于多尺度纤维素纳米纤维的高效空气过滤材料的制备方法
CN103103864B (zh) 一种利用新鲜棕榈空果串制瓦楞原纸用化学机械浆的方法
CN104018231B (zh) 一种羊毛纺前预处理方法
CN102823935A (zh) 一种烟草提取液的浓缩处理方法
CN202809045U (zh) 化纤棉短绒干法除杂装置
CN102418238A (zh) 芳纶水刺非织造布过滤材料及其制造方法
CN209890764U (zh) 一种剑麻叶渣汁分离生产线的捞渣辊
KR102309929B1 (ko) 닥나무 솜 제조장치
CN109021146A (zh) 用于粘胶纤维生产过程中压榨废碱液回收的方法及其装置
CN209144574U (zh) 一种封闭的浆料筛选设备
CN209292621U (zh) 湿法水刺油滤布
CN101519803B (zh) 汽爆麻纤维的水力开松方法与装置
CN206366316U (zh) 一种中空纤维膜在线脱水装置
CN105124751A (zh) 一种打浆酶处理改善茴香杆薄片基片物理性能的方法
CN109881529A (zh) 一种环保型中底纤维板加工方法
CN103668564A (zh) 一种散纤维湿开松系统
CN205171265U (zh) 一种造纸流水线过滤装置
CN209873183U (zh) 一种剑麻叶渣汁分离生产线的碎纤维辊
CN113882177B (zh) 一种菠萝全叶抗菌纤维及其制备方法
CN103938482A (zh) 复合抄造浆粕基片及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960556

Country of ref document: EP

Kind code of ref document: A1