[go: up one dir, main page]

WO2022091548A1 - Propylene-based polymer composition, biaxially stretched film, method for manufacturing biaxially stretched film, and packaging bag - Google Patents

Propylene-based polymer composition, biaxially stretched film, method for manufacturing biaxially stretched film, and packaging bag Download PDF

Info

Publication number
WO2022091548A1
WO2022091548A1 PCT/JP2021/031320 JP2021031320W WO2022091548A1 WO 2022091548 A1 WO2022091548 A1 WO 2022091548A1 JP 2021031320 W JP2021031320 W JP 2021031320W WO 2022091548 A1 WO2022091548 A1 WO 2022091548A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
based polymer
stretched film
mass
biaxially stretched
Prior art date
Application number
PCT/JP2021/031320
Other languages
French (fr)
Japanese (ja)
Inventor
直 井上
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2021559934A priority Critical patent/JPWO2022091548A1/ja
Publication of WO2022091548A1 publication Critical patent/WO2022091548A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Definitions

  • the present invention used a propylene-based polymer composition containing a propylene-based polymer, a biaxially stretched film using the propylene-based polymer composition, a method for producing the biaxially stretched film, and the biaxially stretched film. Regarding packaging bags.
  • a polyethylene terephthalate-based biaxially stretched film is used as a base film, and a polypropylene-based non-stretched film or a polyethylene-based non-stretched film is laminated as a sealant film on the base film.
  • the film having such a structure can exhibit excellent functions as various packaging bags because the base film has high rigidity and high heat resistance and the sealant film has heat sealing property at low temperature. It has become.
  • a polypropylene-based biaxially stretched film which is an olefin-based resin of the same type as a sealant film composed of an olefin-based resin such as polypropylene or polyethylene, as a base film.
  • the polypropylene-based biaxially stretched film has a lower tensile elastic modulus (Young's modulus) than the polyethylene terephthalate-based biaxially stretched film and the like. Therefore, a film using a polypropylene-based biaxially stretched film as a base film has a problem that its use is limited.
  • Patent Document 1 As a polypropylene-based biaxially stretched film having an improved tensile elastic modulus (Young's modulus), the film described in Patent Document 1 below is conventionally known. Specifically, Patent Document 1 describes a tensile elastic modulus (Young's modulus) by forming a biaxially stretched film using a propylene-based polymer composition containing a propylene-based polymer and a ⁇ -crystal nucleating agent. Methods for improvement are disclosed.
  • the polypropylene-based biaxially stretched film described in Patent Document 1 has a direction intersecting the flow direction at the time of manufacture (hereinafter, also referred to as "MD direction”) (hereinafter, also referred to as "TD direction"). It cannot be said that the heat shrinkage rate of the above is sufficiently low.
  • the present invention is a propylene-based polymer composition capable of producing a biaxially stretched film having a relatively high tensile elastic modulus (Young's modulus) and a relatively low heat shrinkage in the TD direction, the propylene-based polymer composition. It is an object of the present invention to provide a biaxially stretched film using an article and a packaging bag using the biaxially stretched film.
  • the propylene-based polymer composition according to the present invention is A propylene-based polymer composition containing a propylene-based polymer and a ⁇ -crystal nucleating agent.
  • the melt flow rate measured at a temperature of 230 ° C. and a load of 21.18 N is 1 g / 10 minutes to 5 g / 10 minutes.
  • the amount of the soluble part of cold xylene is 0.1% by mass to 1.0% by mass,
  • the concentration of the ⁇ crystal nucleating agent is 100 mass ppm or more and less than 500 mass ppm.
  • the biaxially stretched film according to the present invention contains the above-mentioned propylene-based polymer composition.
  • the biaxially stretched film according to the present invention is A propylene-based polymer composition containing a propylene-based polymer and a ⁇ -crystal nucleating agent and satisfying the following requirements (1) and (2) is contained.
  • a biaxially stretched film that satisfies the following requirements (3) and (4).
  • (1) The melt flow rate measured at a temperature of 230 ° C. and a load of 21.18 N is 1 g / 10 minutes to 30 g / 10 minutes.
  • the amount of the soluble part of cold xylene is 0.1% by mass to 1.0% by mass.
  • the degree of orientation in the ND direction calculated from the birefringence is ⁇ 0.30 or less.
  • the difference between the degree of orientation in the MD direction and the degree of orientation in the TD direction calculated from the birefringence is 0.10 to 1.00.
  • the method for producing a biaxially stretched film according to the present invention is as follows.
  • An unstretched sheet is obtained by heating and melting a propylene-based polymer composition containing a propylene-based polymer and a ⁇ -crystal nucleating agent and satisfying the above requirements (1) and (2) and extruding it onto a cooling roll.
  • Process and A step of obtaining a uniaxially stretched film by multiplying the obtained unstretched sheet 3 to 12 times in the MD direction.
  • a step of obtaining a biaxially stretched film by stretching the obtained uniaxially stretched film 4 to 20 times in the TD direction and then relaxing by 1% to 30% in the TD direction. It is a method for producing a biaxially stretched film including.
  • the packaging bag according to the present invention includes the above-mentioned biaxially stretched film.
  • a propylene-based polymer composition capable of producing a biaxially stretched film having a relatively high tensile elastic modulus (Young's modulus) and a relatively low heat shrinkage in the TD direction, the propylene-based weight.
  • a biaxially stretched film using the combined composition and a packaging bag using the biaxially stretched film can be provided.
  • the propylene-based polymer composition according to the present invention contains a propylene-based polymer and a ⁇ -crystal nucleating agent, and is a raw material for a biaxially stretched film.
  • the propylene-based polymer used in the present invention for example, a propylene homopolymer or a propylene-based random copolymer can be used.
  • the propylene-based polymer is preferably a propylene homopolymer from the viewpoint of relatively low heat shrinkage and relatively high rigidity of the obtained biaxially stretched film.
  • the propylene-based polymer used in the present invention is a propylene-based random copolymer
  • the propylene-based random copolymer is selected from, for example, propylene, ethylene, and an ⁇ -olefin having 4 to 20 carbon atoms. Examples thereof include those obtained by copolymerizing with at least one kind of copolymer.
  • Examples of ⁇ -olefins having 4 to 20 carbon atoms include 1-butene, 2-methyl-1-propene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, and 1-hexene. , 2-Ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl-1 -Buten, 1-hexene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1-butene, methylethyl-1-butene, 1-octene, methyl-1-pentene, ethyl- 1-hexene, dimethyl-1-hexene, propyl-1-heptene, methylethyl-1-heptene, trimethyl-1-pentene, propyl-1-pentene, diethyl
  • propylene-based random copolymer used as the propylene-based polymer in the present invention examples include a propylene-ethylene random copolymer and a propylene- ⁇ -olefin random copolymer.
  • propylene- ⁇ -olefin random copolymer examples include a propylene-1-butene random copolymer, a propylene-1-hexene random copolymer, a propylene-1-octene random copolymer, and a propylene-ethylene-1-.
  • Examples thereof include a butene random copolymer, a propylene-ethylene-1-hexene random copolymer, a propylene-ethylene-1-octene random copolymer and the like, preferably a propylene-ethylene random copolymer and a propylene-1-butene random.
  • the copolymer is a propylene-ethylene-1-butene random copolymer.
  • the propylene-based random copolymer used as the propylene-based polymer in the present invention is a propylene-ethylene random copolymer
  • the ethylene content relatively lowers the heat shrinkage rate of the obtained biaxially stretched film and at the same time, it makes the heat shrinkage rate of the obtained biaxially stretched film relatively low.
  • it is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.4% by mass or less.
  • the propylene-based random copolymer used as the propylene-based polymer in the present invention is a propylene- ⁇ -olefin random copolymer
  • the ⁇ -olefin content is relatively high in the heat shrinkage rate of the obtained biaxially stretched film. From the viewpoint of lowering and relatively increasing the rigidity, it is preferably 8.0% by mass or less, more preferably 3.0% by mass or less, and further preferably 1.0% by mass or less.
  • the propylene-based random copolymer used as the propylene-based polymer in the present invention is a propylene-ethylene- ⁇ -olefin random copolymer
  • the total content of ethylene and ⁇ -olefin is the obtained biaxially stretched film.
  • the amount is preferably 8.0% by mass or less, more preferably 3.0% by mass or less, still more preferably 1.0% by mass. % Or less.
  • the content of the propylene-based polymer in the propylene-based polymer composition is preferably 99.0% by mass to 99.9% by mass, more preferably 99.5% by mass to 99.9% by mass. , More preferably 99.7% by mass to 99.9% by mass.
  • the propylene-based polymer used in the present invention has a cold xylene-soluble portion (hereinafter abbreviated as CXS) in an amount of preferably 0.1% by mass to 1.0% by mass, more preferably 0.3% by mass. % To 1.0% by mass, more preferably 0.3% by mass to 0.8% by mass.
  • CXS cold xylene-soluble portion
  • the CXS of the propylene-based polymer can be adjusted to the above range, for example, by selecting the type of external donor used in the polymerization of propylene.
  • CXS can be obtained by the method described in the following [Example].
  • the propylene-based polymer used in the present invention has a melt flow rate (hereinafter abbreviated as MFR) of preferably 1 g / 10 minutes to 5 g / 10 minutes, and more preferably 1.8 g / 10 minutes to 2. It is 8 g / 10 minutes, more preferably 2.2 g / 10 minutes to 2.8 g / 10 minutes.
  • MFR melt flow rate
  • polypropylene hereinafter, also referred to as “PP”
  • PP polypropylene
  • the biaxially stretched film has the effect of being able to exhibit relatively high rigidity and a relatively low shrinkage rate at a relatively high temperature.
  • the MFR of the propylene-based polymer can be adjusted to the above range by, for example, adjusting the hydrogen concentration used during the polymerization of propylene to 0.04 mol% to 0.29 mol%.
  • MFR can be obtained by the method described in the following [Example].
  • the propylene-based polymer used in the present invention may contain a plurality of types of propylene-based polymers having different MFRs.
  • the propylene-based polymer is a propylene-based polymer (a) having an MFR of 0.1 g / 10 min to 3.0 g / 10 min and a propylene having an MFR of 10 g / 10 min to 200 g / 10 min. It can contain the system polymer (b).
  • the content of the propylene-based polymer (a) and the propylene-based polymer (b) in the propylene-based polymer composition is relative to the total content of the propylene-based polymer (a) and the propylene-based polymer (b).
  • the propylene-based polymer (a) is preferably 50% by mass to 90% by mass
  • the propylene-based polymer (b) is preferably 10% by mass to 50% by mass
  • the propylene-based polymer (a) is. It is more preferably 50% by mass to 85% by mass, and more preferably 15% by mass to 50% by mass of the propylene-based polymer (b).
  • the propylene-based polymer composition according to the present invention contains a plurality of types of propylene-based polymers having different MFRs, thickness unevenness during stretching is reduced, good stretching processability is exhibited, and the obtained biaxial structure is exhibited.
  • the stretched film has the effect of being able to exhibit relatively high rigidity and a relatively low shrinkage rate at a relatively high temperature.
  • the propylene-based polymer used in the present invention has an isotactic pentad fraction of preferably 97% to 99%, more preferably 98% to 99%.
  • the isotactic pentad fraction of the propylene-based polymer can be adjusted to the above range, for example, by selecting the type of external donor used during the polymerization of propylene.
  • Specific examples of the external donor include cyclohexylethyldimethoxysilane, dicyclopentyldimethoxysilane, di-tert-butyldimethoxysilane, and the like.
  • Examples of the method for producing the propylene-based polymer include known polymerization methods. For example, a solvent polymerization method performed in the presence of an inert solvent, a massive polymerization method performed in the presence of a liquid monomer, a gas phase polymerization method performed in the absence of a substantially liquid medium, and the like can be mentioned. A gas phase polymerization method is preferable. Further, a polymerization method in which two or more of the above polymerization methods are combined, a method of multi-stage polymerization of two or more stages, and the like can be mentioned.
  • a catalyst for stereoregular polymerization of propylene can be used in any of the above polymerization methods.
  • an organic aluminum compound or an organic aluminum compound is required as a solid catalyst component such as a titanium trichloride catalyst, a Ti-Mg-based catalyst containing titanium, magnesium, halogen, and an electron donor as essential components.
  • Examples thereof include catalysts described in JP-A-61-287904, JP-A-7-216017, JP-A-2004-182876 and the like.
  • the ⁇ -crystal nucleating agent refers to a compound capable of forming ⁇ -crystals having a hexagonal structure in a propylene-based polymer.
  • the ⁇ -crystal nucleating agent is not particularly limited, and various conventionally known ⁇ -crystal nucleating agents can be used.
  • amide compounds typified by N, N'-dicyclohexyl-2,6-naphthalenedicarboxyamide, N, N'-dicyclohexylterephthalamide, N, N'-diphenylhexanediamide, tetraoxaspiryl compounds, quinacridone, etc.
  • Kinacridone Kinacridones typified by quinone, iron oxide having a nanoscale size, calcium pimelliate, potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, carboxylic acid typified by magnesium phthalate, etc.
  • Alkaline or alkaline earth metal salts, aromatic sulfonic acid compounds typified by sodium benzenesulfonate or sodium naphthalene sulfonate, diesters or triesters of di- or tribasic carboxylic acids, phthalocyanine blue, etc.
  • the amide compounds N, N'-dicyclohexyl-2,6-naphthalene carboxamide, N, N'-dicyclohexylterephthalamide, N, N'-diphenylhexanediamide are preferable, and N, N'-Dicyclohexyl-2,6-naphthalenedicarboxamide is more preferred.
  • Examples of the method for producing the propylene-based polymer composition include a method of melt-kneading the above-mentioned propylene-based polymer and a ⁇ -crystal nucleating agent.
  • a method of mixing a propylene-based polymer and a ⁇ -crystal nucleating agent with a ribbon blender, a Henschel mixer, a tumbler mixer or the like, and melting and kneading the mixture with an extruder or the like can be mentioned.
  • a masterbatch containing 1 to 10 parts by mass of the ⁇ crystal nucleating agent is prepared in advance with respect to 100 parts by mass of the propylene-based polymer, and the concentration of the ⁇ crystal nucleating agent in the propylene-based polymer composition becomes a predetermined value.
  • a method of appropriately mixing the propylene-based polymer and the masterbatch of the ⁇ -crystal nucleating agent can also be mentioned.
  • the propylene-based polymer containing the above-mentioned propylene-based polymer (a) and the propylene-based polymer (b) is used, the propylene-based polymer (a) and the propylene-based polymer (b) are individually melted.
  • the propylene-based polymer (a) pelleted by kneading and pelletizing, the pelletized propylene-based polymer (b), and the masterbatch containing the ⁇ -crystal nucleating agent are mixed in the same manner as described above, and further, the above.
  • a method of melt-kneading in the same manner as in the above can be mentioned.
  • a masterbatch containing a ⁇ -crystal nucleating agent is directly used in a film processing machine. Examples thereof include a method of mixing and melting and kneading.
  • pelletized propylene-based polymer (a), the pelletized propylene-based polymer (b), and the masterbatch containing the ⁇ -crystal nucleating agent are individually fed to the extruder of the film processing machine as described above. Examples thereof include a method of mixing and melt-kneading.
  • a stabilizer when mixing the propylene-based polymer and the ⁇ -crystal nucleating agent, a stabilizer, a lubricant, an antistatic agent, an anti-blocking agent, various inorganic or organic fillers and the like may be added, if necessary.
  • the propylene-based polymer composition according to the present invention has an MFR of 1 g / 10 min to 5 g / 10 min, preferably 1.8 g / 10 min to 2.8 g / 10 min, and more preferably 2.2 g. It is / 10 minutes to 2.8 g / 10 minutes. Further, the propylene-based polymer composition according to the present invention has a CXS of 0.1% by mass to 1.0% by mass, preferably 0.3% by mass to 1.0% by mass, and more preferably 0. .3% by mass to 0.8% by mass.
  • the concentration of the ⁇ crystal nucleating agent in the propylene-based polymer composition is 100 mass ppm or more and less than 500 mass ppm, preferably 250 mass ppm to 450 mass ppm. Yes, more preferably 250 mass ppm to 400 mass ppm.
  • the MFR of the propylene-based polymer composition can be adjusted to the above range by adjusting the MFR of the propylene-based polymer as described above.
  • the CXS of the propylene-based polymer composition can be adjusted to the above range by adjusting the CXS of the propylene-based polymer as described above.
  • the propylene-based polymer composition according to the present invention has an isotactic-pentad fraction of preferably 97% to 99%, more preferably 98% to 99%.
  • the isotactic-pentad fraction of the propylene-based polymer composition can be adjusted to the above range by adjusting the isotactic-pentad fraction of the propylene-based polymer as described above.
  • the maximum meso-chain length of the propylene-based polymer is preferably 80 or more, more preferably 82 or more.
  • the maximum meso-chain length of the propylene-based polymer was measured with the composition obtained by removing the ⁇ -crystal nucleating agent from the propylene-based polymer composition. Since most of the composition being measured is a propylene-based polymer, the measured value of the composition containing no ⁇ -crystal nucleating agent can be regarded as the measured value of the propylene-based polymer.
  • the maximum meso-chain length of the propylene-based polymer can be determined, for example, by selecting the type of external donor used during the polymerization of propylene and / or by adjusting the hydrogen concentration to 0.04 mol% to 0.29 mol%. , Can be adjusted to the above range.
  • the external donor examples include cyclohexylethyldimethoxysilane, dicyclopentyldimethoxysilane, di-tert-butyldimethoxysilane, and the like.
  • the maximum meso-chain length can be determined by the method described in the following [Example].
  • the propylene-based polymer composition according to the present invention has a Young's modulus in the TD direction (hereinafter, "" (Also referred to as “TD Young's modulus”) is relatively high, and the heat shrinkage rate in the TD direction (hereinafter, also referred to as “TD heat shrinkage rate”) is relatively low.
  • the TD Young's modulus is increased by orienting the PP constituting the propylene-based polymer composition in the TD direction by stretching in the TD direction in the production of the biaxially stretched film.
  • the heat shrinkage of the biaxially stretched film is considered to be caused by the orientation of the tie molecules (amorphous chains connecting the crystals) of PP, the TD heat shrinkage rate is that of the tie molecules (amorphous part) of PP. It becomes lower by reducing the ratio.
  • the MFR of the propylene-based polymer composition is an index of the molecular weight of PP, and it is shown that the lower the MFR, the larger the molecular weight of PP, and the easier it is for PP to be oriented by stretching. Since the propylene-based polymer composition according to the present invention has an MFR of 1 g / 10 minutes to 5 g / 10 minutes, PP is likely to be oriented in the TD direction due to stretching in the TD direction in the production of the biaxially stretched film. Therefore, a relatively high TD Young's modulus can be obtained for the obtained biaxially stretched film.
  • the MFR is less than 1 g / 10 minutes
  • the molecular weight of PP is very large and the molecular chain of PP is too long, so that there is a high possibility that the molecular chain of one PP is contained in a plurality of crystals, and PP.
  • the proportion of tie molecules (amorphous part) in the above increases. Therefore, it is not possible to obtain a relatively low TD heat shrinkage rate for the obtained biaxially stretched film.
  • the MFR exceeds 5 g / 10 minutes, it is difficult for PP to be oriented in the TD direction, so that a relatively high TD Young's modulus cannot be obtained for the obtained biaxially stretched film.
  • the CXS of the propylene-based polymer composition is an index of the crystallinity of PP, and the lower the CXS, the higher the crystallinity of the PP and the smaller the proportion of the tie molecule (amorphous portion) of the PP.
  • the propylene-based polymer composition according to the present invention has a CXS of 0.1% by mass to 1.0% by mass, a relatively small proportion of tie molecules (amorphous parts) in PP, and by stretching. PP tends to be oriented in the TD direction. Therefore, a relatively high TD Young's modulus and a relatively low TD heat shrinkage can be obtained for the obtained biaxially stretched film.
  • the melting point of the PP sheet before stretching formed from the propylene-based polymer composition can be lowered.
  • the crystal nucleating agent is not contained, ⁇ crystals (melting point of about 165 ° C.) are formed on the PP sheet. Since the oriented crystals responsible for the rigidity of the biaxially stretched film are ⁇ crystals, when the PP sheet is heated and stretched in the MD direction and the TD direction, the stretching temperature is limited to the melting temperature of the ⁇ crystals. .. Therefore, the ⁇ crystals in the PP sheet are stretched in a solid state, and the orientation of the amorphous portion is likely to occur.
  • the obtained biaxially stretched film tends to undergo heat shrinkage.
  • ⁇ crystals (melting point of about 152 ° C.) are generated on the PP sheet before stretching. Since the ⁇ crystal has a lower melting point than the ⁇ crystal, the ⁇ crystal melts at a higher rate by stretching at a temperature equal to or higher than the melting point of the ⁇ crystal during stretching in the production of the biaxially stretched film.
  • the PP sheet is stretched while the ⁇ crystals are melted and the structure is changed to the oriented ⁇ crystals that bear the rigidity of the biaxially stretched film, the PP sheet is in a solid state as described above.
  • the orientation of the amorphous part is less likely to occur as compared with the case of stretching. As a result, a relatively low TD heat shrinkage rate can be obtained for the obtained biaxially stretched film.
  • the propylene-based polymer composition according to the present invention has a ⁇ -crystal nucleating agent having a concentration of 100% by mass or more and less than 500% by mass, so that when a PP sheet before stretching is formed, ⁇ -crystals in the PP sheet are formed. The amount of production is appropriate. Therefore, a relatively low TD heat shrinkage rate can be obtained for the obtained biaxially stretched film.
  • the propylene-based polymer composition according to the present invention has an MFR of 1 g / 10 min to 5 g / 10 min, a CXS of 0.1 mass% to 1.0 mass%, and ⁇ crystal nuclei.
  • concentration of the agent is 100 mass ppm or more and less than 500 mass ppm, it is possible to achieve both a relatively high TD Young's modulus and a relatively low TD heat shrinkage rate for the obtained biaxially stretched film.
  • the propylene-based polymer composition according to the present invention has a higher TD Young's modulus and a lower TD heat shrinkage rate for the obtained biaxially stretched film because the isotactic pentad fraction is in the above range. Can be obtained.
  • the maximum meso-chain length of the propylene-based polymer is in the above range, a higher TD Young's modulus and a lower TD heat shrinkage can be obtained for the obtained biaxially stretched film.
  • the first form of the biaxially stretched film according to the present invention is the biaxially stretched film containing the above-mentioned propylene-based polymer composition according to the present invention.
  • the second form of the biaxially stretched film according to the present invention contains a propylene-based polymer and a ⁇ -crystal nucleating agent, and contains a propylene-based polymer composition satisfying the following requirements (1) and (2).
  • (1) The melt flow rate measured at a temperature of 230 ° C. and a load of 21.18 N is 1 g / 10 minutes to 30 g / 10 minutes.
  • the amount of the soluble part of cold xylene is 0.1% by mass to 1.0% by mass.
  • the degree of orientation in the ND direction calculated from the birefringence is ⁇ 0.30 or less.
  • the difference between the degree of orientation in the MD direction and the degree of orientation in the TD direction calculated from the birefringence is 0.10 to 1.00.
  • the MFR specified in the above requirement (1) is preferably 1 g / 10 minutes to 5 g / 10 minutes, more preferably 1.8 g / 10 minutes to 2.8 g / 10 minutes, and further preferably 2.2 g. / 10 minutes to 2.8 g / 10 minutes.
  • MFR can be obtained by the method described in the following [Example].
  • the CXS specified in the above requirement (2) is preferably 0.3% by mass to 1.0% by mass, and more preferably 0.3% by mass to 0.8% by mass.
  • CXS can be obtained by the method described in the following [Example].
  • the degree of orientation in the ND direction calculated from the birefringence specified in the above requirement (3) is preferably ⁇ 0.5 to ⁇ 0.3, and more preferably ⁇ 0.4 to ⁇ 0.3. ..
  • the degree of orientation in the ND direction calculated from the birefringence in the present invention can be determined by the method described in the following [Example].
  • the difference between the degree of orientation in the MD direction and the degree of orientation in the TD direction calculated from the birefringence specified in the above requirement (4) is preferably 0.10 to 0.70, and more preferably 0.40 to 0.40. It is 0.70.
  • the difference between the degree of orientation in the MD direction and the degree of orientation in the TD direction calculated from the birefringence can be obtained by the method described in the following [Example].
  • the concentration of the ⁇ crystal nucleating agent contained in the second form of the biaxially stretched film according to the present invention is preferably 100% by mass to 5000% by mass, more preferably 100% by mass or more and less than 500% by mass. It is more preferably 250 mass ppm to 450 mass ppm, and particularly preferably 250 mass ppm to 400 mass ppm.
  • the density of the biaxially stretched film according to the present invention is preferably 0.900 g / cm 3 to 0.912 g / cm 3 .
  • the density of the biaxially stretched film can be determined by the method described in the following [Example].
  • a method for producing a biaxially stretched film using the propylene-based polymer composition according to the present invention will be described.
  • a method for producing such a biaxially stretched film for example, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used.
  • a propylene-based polymer composition containing a propylene-based polymer and a ⁇ -crystal nucleating agent and satisfying the above requirements (1) and (2) is heated and melted.
  • a method for producing a biaxially stretched film which comprises a step of obtaining a biaxially stretched film by stretching 4 to 20 times in the TD direction and then relaxing by 1% to 30% in the TD direction.
  • the propylene-based polymer composition is heated and melted using an extruder, extruded from a T-die onto a cooling roll, and cooled and fixed in the form of a sheet to cool and fix the unstretched sheet (the above PP sheet). ), And a step of obtaining a uniaxially stretched film by stretching the obtained unstretched sheet 3 to 12 times in the MD direction using a series of stretching rolls, and both sides of the obtained uniaxially stretched film.
  • the end is grasped by two rows of chucks arranged along the MD direction, and the uniaxially stretched film is stretched 4 to 20 times in the TD direction in a heating furnace equipped with a preheating part, a stretching part, and a heat treatment part.
  • a step of obtaining a biaxially stretched film by relaxing (relaxing) 1% to 30% in the TD direction, preferably 5% to 30% by narrowing the distance between the chucks in the two rows can be included.
  • a step of performing corona treatment or the like may be included as needed.
  • the temperature at which the propylene-based polymer composition is heated and melted is preferably, for example, 230 ° C to 290 ° C.
  • the temperature of the cooling roll is preferably, for example, 10 ° C to 60 ° C.
  • the temperature of the stretched roll when the unstretched sheet is stretched in the MD direction is preferably 110 ° C. to 165 ° C., more preferably 110 ° C. to 150 ° C.
  • the heating temperature for stretching the uniaxially stretched film in the TD direction is preferably 150 ° C. to 200 ° C.
  • the heating temperature for relaxing in the TD direction is preferably 150 ° C. to 200 ° C.
  • the polypropylene-based polymer composition is heated and melted using an extruder, extruded from a T-die onto a cooling roll, and cooled and fixed in the form of a sheet to cool and fix the unstretched sheet (the above-mentioned).
  • the unstretched sheet can be increased 3 to 12 times in the MD direction and 4 to 20 times in the TD direction.
  • a step of performing corona treatment or the like may be included as needed.
  • the temperature of heating and melting in the simultaneous biaxial stretching method, the temperature of the cooling roll, and the heating temperature at the time of stretching can be the same as each condition in the above-mentioned sequential biaxial stretching method.
  • the relaxation rate when relaxing the film is 1% or more (preferably 5% or more, more preferably 15% or more) as described above, and thus heat shrinkage.
  • a biaxially stretched film having a relatively low rate and excellent heat resistance can be obtained.
  • the relaxation rate is 30% or less (preferably 25% or less) as described above, unevenness in the thickness of the film can be suppressed.
  • the relaxation rate R is obtained by the following formula (1').
  • R (L1-L2) / L1 ⁇ 100 (1') (In the formula, L1 indicates the distance between the chucks in the TD direction before the film is relaxed, and L2 indicates the distance between the chucks in the TD direction after the film is relaxed).
  • the thickness of the biaxially stretched film formed by using the propylene-based polymer composition according to the present invention is preferably, for example, 10 ⁇ m to 70 ⁇ m.
  • the biaxially stretched film formed by using the propylene-based polymer composition according to the present invention can be used as a film for forming a part of a layer of a multilayer film.
  • the multilayer film at least one layer is formed of the biaxially stretched film according to the present invention, and any other layer is laminated on the layer of the biaxially stretched film.
  • the other layer laminated on the layer of the biaxially stretched film include any layer such as a sealant layer, a gas barrier layer, an adhesive layer, and a printing layer.
  • the obtained multilayer film can be easily recycled.
  • the method for producing the multilayer film include an extrusion laminating method, a thermal laminating method, and a dry laminating method, which are usually used.
  • the biaxially stretched film formed by using the propylene-based polymer composition according to the present invention can be used as a material for a packaging bag.
  • the packaging bag can be formed by using the above-mentioned multilayer film including a layer of the biaxially stretched film.
  • the packaging bag can be used for packaging any packaging object such as food, clothing, and miscellaneous goods.
  • MFR unit: g / 10 minutes
  • the MFR of the propylene-based polymer composition was measured at a temperature of 230 ° C. and a load of 21.18 N according to the method A specified in JIS K7210-1: 2014.
  • the propylene-based polymer composition was held at 50 ° C. for 3 minutes and then heated to a temperature 5 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 5 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then heated to a temperature 10 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min.
  • the propylene-based polymer composition was held at a temperature 10 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then heated to a temperature 15 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 15 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min.
  • the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then heated to a temperature 20 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 20 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes and then heated to a temperature 25 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Further, the mixture was kept at a temperature 25 ° C.
  • the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then heated to a temperature 30 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 30 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. After further holding at 50 ° C. for 3 minutes, the mixture was heated to a temperature 35 ° C.
  • the propylene-based polymer composition was held at a temperature 35 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes and then heated to a temperature 40 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 40 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C.
  • the propylene-based polymer composition was held at 50 ° C. for 3 minutes and then heated to a temperature 45 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 45 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then heated to a temperature 50 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min.
  • the propylene-based polymer composition was held at a temperature 50 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, after holding the propylene-based polymer composition at 50 ° C. for 3 minutes, the melting curve when heated to 230 ° C. at a heating rate of 10 ° C./min was measured, and the temperature showing the maximum endothermic peak was set to Tm . Was defined as.
  • the refractive index in the MD direction ( NMD ), the refractive index in the TD direction (NTD), and the refractive index in the ND direction ( NND ) were calculated.
  • the degree of orientation in the MD direction (f MD ), the degree of orientation in the TD direction (f TD ), and the degree of orientation in the ND direction (f TD) are calculated by the following formulas.
  • f ND was calculated.
  • the intrinsic birefringence ( ⁇ n 0 ) of polypropylene was set to 0.04.
  • ⁇ Propene-based polymer intermediate composition 1> Using a Ziegler-Natta type catalyst, triethylaluminum as a co-catalyst, and cyclohexylethyldimethoxysilane as an external donor, propylene is polymerized in an environment with a hydrogen concentration of 0.14 mol% by a vapor phase polymerization method to polymerize a propylene-based polymer.
  • ⁇ Propene-based polymer intermediate composition 2> Using a Ziegler-Natta type catalyst, triethylaluminum as a co-catalyst, and n-propylmethyldimethoxysilane and cyclohexylethyldimethoxysilane as external donors, propylene is polymerized in an environment with a hydrogen concentration of 0.06 mol% by a vapor phase polymerization method. Then, a propylene-based polymer 2 was obtained.
  • ⁇ Propylene-based polymer intermediate composition 3> The above-mentioned propylene-based polymer intermediate composition 1 (50 parts by mass) and the above-mentioned propylene-based polymer intermediate composition 2 (50 parts by mass) are mixed using a Henshell mixer, and then melt-extruded to form pellets.
  • the propylene-based polymer intermediate composition 3 of the above was obtained.
  • the MFR of the obtained propylene-based polymer intermediate composition 3 was 2.3 g / 10 minutes, CXS was 2.1% by mass, [mm mm] was 95.5%, and the maximum meso-chain length was 84.
  • ⁇ crystal nucleating agent masterbatch> Using a Ziegler-Natta type catalyst, triethylaluminum as a co-catalyst, and cyclohexylethyldimethoxysilane as an external donor, propylene is polymerized in an environment with a hydrogen concentration of 0.95 mol% by a vapor phase polymerization method to polymerize the propylene-based polymer 3.
  • NU-100 ⁇ crystal nucleating agent, manufactured by Shin Nihon Rika Co., Ltd.
  • DHT-4C neutralizing agent, manufactured by Kyowa Chemical Industry Co., Ltd.
  • a propylene-based polymer intermediate composition 1 (99.5 parts by mass) and a ⁇ -crystal nucleating agent masterbatch (0.5 parts by mass) are mixed using a Henschel mixer, and then melt-extruded to obtain a propylene-based polymer.
  • the composition 11 was prepared.
  • the concentration of the ⁇ crystal nucleating agent in the propylene-based polymer composition 11 was 250 mass ppm.
  • the MFR of the pellet obtained by melt-extruding the propylene-based polymer composition 11 was 2.2 g / 10 minutes, the CXS was 0.7% by mass, and the [mm mm] was 98.2%.
  • This propylene-based polymer composition 11 is heated and melted at a resin temperature of 260 ° C. using a T-die film forming machine equipped with an extruder having a screw diameter of 65 mm ⁇ , and is extruded onto a cooling roll at 30 ° C. to be unstretched. I got a sheet. The obtained unstretched sheet was stretched 5 times in the MD direction using a stretching roll heated to 142 ° C. to obtain a uniaxially stretched film. By grasping both ends of the obtained uniaxially stretched film with two rows of chucks arranged along the MD direction and widening the distance between the two rows of chucks in the TD direction in a heating furnace heated to 170 ° C.
  • the uniaxially stretched film is stretched 8 times in the TD direction, and then in a heating furnace heated to 165 ° C., the chuck spacing between the two rows is narrowed and relaxed by 19.5% in the TD direction to stretch the uniaxially stretched film. I got a film.
  • Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
  • Example 2 The content of the propylene-based polymer intermediate composition 1 was changed from 99.5 parts by mass to 99.4 parts by mass, and the content of the ⁇ crystal nucleating agent masterbatch was changed from 0.5 parts by mass to 0.6 parts by mass.
  • a biaxially stretched film was obtained in the same manner as in Example 1 except that the propylene-based polymer composition 12 was prepared.
  • the concentration of the ⁇ crystal nucleating agent in the propylene-based polymer composition 12 was set to 300 mass ppm.
  • the MFR of the pellet obtained by melt-extruding the propylene-based polymer composition 12 was 2.2 g / 10 minutes, the CXS was 0.6% by mass, and the [mmmm] was 98.2%.
  • Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
  • Example 3 The content of the propylene-based polymer intermediate composition 1 was changed from 99.5 parts by mass to 99.2 parts by mass, and the content of the ⁇ crystal nucleating agent masterbatch was changed from 0.5 parts by mass to 0.8 parts by mass.
  • a biaxially stretched film was obtained in the same manner as in Example 1 except that the propylene-based polymer composition 13 was prepared.
  • the concentration of the ⁇ crystal nucleating agent in the propylene-based polymer composition 13 was 400 mass ppm.
  • the MFR of the pellet obtained by melt-extruding the propylene-based polymer composition 13 was 2.2 g / 10 minutes, the CXS was 0.6% by mass, and the [mmmm] was 98.3%.
  • Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
  • Example 4 The propylene-based polymer composition 13 is heated and melted at a resin temperature of 260 ° C. using a T-die film forming machine equipped with an extruder having a screw diameter of 65 mm ⁇ , and extruded onto a cooling roll at 30 ° C. to form an unstretched sheet.
  • Got The obtained unstretched sheet was stretched 5 times in the MD direction using a stretching roll heated to 152 ° C. to obtain a uniaxially stretched film.
  • the uniaxially stretched film is stretched 8 times in the TD direction, and then in a heating furnace heated to 165 ° C., the chuck spacing between the two rows is narrowed and relaxed by 19.5% in the TD direction to stretch the uniaxially stretched film. I got a film.
  • Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
  • ⁇ Comparative Example 1> The content of the propylene-based polymer intermediate composition 1 was changed from 99.5 parts by mass to 99.9 parts by mass, and the content of the ⁇ crystal nucleating agent masterbatch was changed from 0.5 parts by mass to 0.1 parts by mass.
  • a biaxially stretched film was obtained in the same manner as in Example 1 except that the propylene-based polymer composition C11 was prepared.
  • the concentration of the ⁇ crystal nucleating agent in the propylene-based polymer composition C11 was 50 mass ppm.
  • the MFR of the pellet obtained by melt-extruding the propylene-based polymer composition C11 was 2.2 g / 10 minutes, the CXS was 0.6% by mass, and the [mmmm] was 98.3%.
  • Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
  • ⁇ Comparative Example 2> A propylene-based polymer intermediate composition 1 (99.0 parts by mass) and a ⁇ -crystal nucleating agent masterbatch (1.0 part by mass) are mixed using a Henschel mixer, and then melt-extruded to obtain a propylene-based polymer.
  • the composition C12 was prepared.
  • the concentration of the ⁇ crystal nucleating agent in the propylene-based polymer composition C12 was 500 mass ppm.
  • the MFR of the pellet obtained by melt-extruding the propylene-based polymer composition C12 was 2.2 g / 10 minutes, the CXS was 0.6% by mass, and the [mmmm] was 98.4%.
  • This propylene-based polymer composition C12 is heated and melted at a resin temperature of 260 ° C. using a T-die film forming machine equipped with an extruder having a screw diameter of 65 mm ⁇ , and is extruded onto a cooling roll at 30 ° C. to be unstretched. I got a sheet. The obtained unstretched sheet was stretched 5 times in the MD direction using a stretching roll heated to 152 ° C. to obtain a uniaxially stretched film. By grasping both ends of the obtained uniaxially stretched film with two rows of chucks arranged along the MD direction and widening the distance between the two rows of chucks in the TD direction in a heating furnace heated to 170 ° C.
  • the uniaxially stretched film is stretched 8 times in the TD direction, and then in a heating furnace heated to 165 ° C., the chuck spacing between the two rows is narrowed and the biaxially stretched film is relaxed by 13% in the TD direction. Obtained.
  • Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
  • Example 3 A biaxially stretched film was obtained in the same manner as in Example 2 except that the propylene-based polymer intermediate composition 1 was changed to the propylene-based polymer intermediate composition 3 to prepare the propylene-based polymer composition C13.
  • the concentration of the ⁇ crystal nucleating agent in the propylene-based polymer composition C13 was set to 300 mass ppm.
  • the MFR of the pellet obtained by melt-extruding the propylene-based polymer composition C13 was 2.1 g / 10 minutes, the CXS was 1.8% by mass, and the [mm mm] was 95.7%.
  • Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
  • the uniaxially stretched film is multiplied by 8 in the TD direction, and then in a heating furnace heated to 165 ° C., the chuck spacing between the two rows is narrowed and relaxed by 19.5% in the TD direction to stretch the uniaxially stretched film. I got a film.
  • Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
  • a propylene-based polymer intermediate composition 1 (98.0 parts by mass) and a ⁇ -crystal nucleating agent masterbatch (2.0 parts by mass) are mixed using a Henschel mixer, and then melt-extruded to obtain a propylene-based polymer.
  • the composition C14 was prepared.
  • the concentration of the ⁇ crystal nucleating agent in the propylene-based polymer composition C14 was 1000 mass ppm.
  • the MFR of the pellet obtained by melt-extruding the propylene-based polymer composition C14 was 2.2 g / 10 minutes, the CXS was 0.6% by mass, and the [mmmm] was 98.2%.
  • This propylene-based polymer composition C13 is heated and melted at a resin temperature of 250 ° C. using a T-die film forming machine equipped with an extruder having a screw diameter of 20 mm ⁇ , and extruded onto a cooling roll at 90 ° C. to obtain a thickness.
  • An unstretched sheet of 1.0 mm was obtained. The four sides of the obtained unstretched sheet were grasped with a chuck, preheated in a heating furnace heated to 140 ° C. for 3 minutes, and then stretched twice in the MD direction and the TD direction at the same time. After that, the temperature inside the heating furnace was raised to 160 ° C.
  • the biaxially stretched film of the example has a high TD Young's modulus and a low TD heat shrinkage rate as compared with the biaxially stretched film of the comparative example, and is excellent in the balance between them. You can see that.
  • a propylene-based polymer composition capable of producing a biaxially stretched film having a relatively high tensile elastic modulus (Young's modulus) and a relatively low heat shrinkage in the TD direction, the propylene-based weight.
  • a biaxially stretched film using the combined composition and a packaging bag using the biaxially stretched film can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention addresses the problem of providing a propylene-based polymer composition with which it is possible to manufacture a biaxially stretched film that has a higher Young's modulus than in the prior art and that has a lower heating shrinkage rate than in the prior art. A propylene-based polymer composition containing a propylene-based polymer and a β crystal nucleating agent, wherein the melt flow rate measured at a temperature of 230°C and under a load of 21.18 N is 1 to 5 g/10 min, the amount of cold xylene soluble matter is 0.1-1.0 mass%, and the concentration of the β crystal nucleating agent is100 mass ppm or more and less than 500 mass ppm.

Description

プロピレン系重合体組成物、二軸延伸フィルム、二軸延伸フィルムの製造方法、および包装袋Propylene-based polymer composition, biaxially stretched film, method for producing biaxially stretched film, and packaging bag.
 本発明は、プロピレン系重合体を含むプロピレン系重合体組成物、該プロピレン系重合体組成物を用いた二軸延伸フィルム、該二軸延伸フィルムの製造方法、および該二軸延伸フィルムを用いた包装袋に関する。 The present invention used a propylene-based polymer composition containing a propylene-based polymer, a biaxially stretched film using the propylene-based polymer composition, a method for producing the biaxially stretched film, and the biaxially stretched film. Regarding packaging bags.
 従来、例えば各種包装材料として用いられるフィルムとしては、ポリエチレンテレフタレート系二軸延伸フィルムを基材フィルムとし、該基材フィルムに、ポリプロピレン系無延伸フィルムやポリエチレン系無延伸フィルムをシーラントフィルムとして積層した構成のものが知られている。かかる構成のフィルムは、基材フィルムが高剛性および高耐熱性を有し、シーラントフィルムが低温でのヒートシール性を有していることで、各種包装袋として優れた機能を発揮しうるものとなっている。 Conventionally, for example, as a film used as various packaging materials, a polyethylene terephthalate-based biaxially stretched film is used as a base film, and a polypropylene-based non-stretched film or a polyethylene-based non-stretched film is laminated as a sealant film on the base film. Is known. The film having such a structure can exhibit excellent functions as various packaging bags because the base film has high rigidity and high heat resistance and the sealant film has heat sealing property at low temperature. It has become.
 近年、この種のフィルムに対してもリサイクルの要望が高まっており、モノマテリアル化が求められている。具体的には、ポリプロピレンやポリエチレンといったオレフィン系樹脂で構成されるシーラントフィルムと同種のオレフィン系樹脂であるポリプロピレン系二軸延伸フィルムを基材フィルムとして採用することが好適とされている。 In recent years, there has been an increasing demand for recycling of this type of film, and there is a demand for monomaterialization. Specifically, it is preferable to use a polypropylene-based biaxially stretched film, which is an olefin-based resin of the same type as a sealant film composed of an olefin-based resin such as polypropylene or polyethylene, as a base film.
 しかしながら、ポリプロピレン系二軸延伸フィルムは、ポリエチレンテレフタレート系二軸延伸フィルム等と比較して、引張弾性率(ヤング率)が低い。このため、ポリプロピレン系二軸延伸フィルムを基材フィルムとして用いたフィルムは、その用途が制限されるという問題がある。 However, the polypropylene-based biaxially stretched film has a lower tensile elastic modulus (Young's modulus) than the polyethylene terephthalate-based biaxially stretched film and the like. Therefore, a film using a polypropylene-based biaxially stretched film as a base film has a problem that its use is limited.
 引張弾性率(ヤング率)を改善したポリプロピレン系二軸延伸フィルムとしては、従来、下記特許文献1記載のフィルムが知られている。具体的には、特許文献1には、プロピレン系重合体とβ晶核剤とを含むプロピレン系重合体組成物を用いて二軸延伸フィルムを形成することで、引張弾性率(ヤング率)を改善する方法が開示されている。 As a polypropylene-based biaxially stretched film having an improved tensile elastic modulus (Young's modulus), the film described in Patent Document 1 below is conventionally known. Specifically, Patent Document 1 describes a tensile elastic modulus (Young's modulus) by forming a biaxially stretched film using a propylene-based polymer composition containing a propylene-based polymer and a β-crystal nucleating agent. Methods for improvement are disclosed.
 しかし、特許文献1記載のポリプロピレン系二軸延伸フィルムは、製造時の流れ方向(以下では、「MD方向」とも記す。)に対して交差する方向(以下では、「TD方向」とも記す。)の加熱収縮率が十分に低いものとはいえない。 However, the polypropylene-based biaxially stretched film described in Patent Document 1 has a direction intersecting the flow direction at the time of manufacture (hereinafter, also referred to as "MD direction") (hereinafter, also referred to as "TD direction"). It cannot be said that the heat shrinkage rate of the above is sufficiently low.
特開2016-199686号公報Japanese Unexamined Patent Publication No. 2016-199686
 本発明は、比較的高い引張弾性率(ヤング率)を有すると共に、TD方向において比較的低い加熱収縮率を有する二軸延伸フィルムを製造しうるプロピレン系重合体組成物、該プロピレン系重合体組成物を用いた二軸延伸フィルム、および該二軸延伸フィルムを用いた包装袋を提供することを課題とする。 The present invention is a propylene-based polymer composition capable of producing a biaxially stretched film having a relatively high tensile elastic modulus (Young's modulus) and a relatively low heat shrinkage in the TD direction, the propylene-based polymer composition. It is an object of the present invention to provide a biaxially stretched film using an article and a packaging bag using the biaxially stretched film.
 本発明に係るプロピレン系重合体組成物は、
 プロピレン系重合体と、β晶核剤とを含有するプロピレン系重合体組成物であって、
 温度230℃、荷重21.18Nで測定されるメルトフローレートが1g/10分~5g/10分であり、
 冷キシレン可溶部量が0.1質量%~1.0質量%であり、
 β晶核剤の濃度が100質量ppm以上500質量ppm未満である。
The propylene-based polymer composition according to the present invention is
A propylene-based polymer composition containing a propylene-based polymer and a β-crystal nucleating agent.
The melt flow rate measured at a temperature of 230 ° C. and a load of 21.18 N is 1 g / 10 minutes to 5 g / 10 minutes.
The amount of the soluble part of cold xylene is 0.1% by mass to 1.0% by mass,
The concentration of the β crystal nucleating agent is 100 mass ppm or more and less than 500 mass ppm.
 本発明に係る二軸延伸フィルムは、上記のプロピレン系重合体組成物を含む。 The biaxially stretched film according to the present invention contains the above-mentioned propylene-based polymer composition.
 本発明に係る二軸延伸フィルムは、
 プロピレン系重合体と、β晶核剤とを含有し、下記要件(1)および(2)を満たすプロピレン系重合体組成物を含有し、
 下記要件(3)および(4)を満たす二軸延伸フィルムである。
 
(1)温度230℃、荷重21.18Nで測定されるメルトフローレートが1g/10分~30g/10分である。
(2)冷キシレン可溶部量が0.1質量%~1.0質量%である。
(3)複屈折率から算出されるND方向の配向度が、-0.30以下である。
(4)複屈折率から算出されるMD方向の配向度とTD方向の配向度との差が、0.10~1.00である。
 
The biaxially stretched film according to the present invention is
A propylene-based polymer composition containing a propylene-based polymer and a β-crystal nucleating agent and satisfying the following requirements (1) and (2) is contained.
A biaxially stretched film that satisfies the following requirements (3) and (4).

(1) The melt flow rate measured at a temperature of 230 ° C. and a load of 21.18 N is 1 g / 10 minutes to 30 g / 10 minutes.
(2) The amount of the soluble part of cold xylene is 0.1% by mass to 1.0% by mass.
(3) The degree of orientation in the ND direction calculated from the birefringence is −0.30 or less.
(4) The difference between the degree of orientation in the MD direction and the degree of orientation in the TD direction calculated from the birefringence is 0.10 to 1.00.
 本発明に係る二軸延伸フィルムの製造方法は、
 プロピレン系重合体と、β晶核剤とを含有し、上記要件(1)および(2)を満たすプロピレン系重合体組成物を、加熱溶融して冷却ロール上に押し出すことにより未延伸シートを得る工程と、
 得られた未延伸シートを、MD方向に3倍~12倍することにより一軸延伸フィルムを得る工程と、
 得られた一軸延伸フィルムをTD方向に4倍~20倍に延伸した後、該TD方向に1%~30%緩和することにより二軸延伸フィルムを得る工程と、
を含む、二軸延伸フィルムの製造方法である。
The method for producing a biaxially stretched film according to the present invention is as follows.
An unstretched sheet is obtained by heating and melting a propylene-based polymer composition containing a propylene-based polymer and a β-crystal nucleating agent and satisfying the above requirements (1) and (2) and extruding it onto a cooling roll. Process and
A step of obtaining a uniaxially stretched film by multiplying the obtained unstretched sheet 3 to 12 times in the MD direction.
A step of obtaining a biaxially stretched film by stretching the obtained uniaxially stretched film 4 to 20 times in the TD direction and then relaxing by 1% to 30% in the TD direction.
It is a method for producing a biaxially stretched film including.
 本発明に係る包装袋は、上記の二軸延伸フィルムを含む。 The packaging bag according to the present invention includes the above-mentioned biaxially stretched film.
 本発明によれば、比較的高い引張弾性率(ヤング率)を有すると共に、TD方向において比較的低い加熱収縮率を有する二軸延伸フィルムを製造しうるプロピレン系重合体組成物、該プロピレン系重合体組成物を用いた二軸延伸フィルム、および該二軸延伸フィルムを用いた包装袋を提供することができる。 According to the present invention, a propylene-based polymer composition capable of producing a biaxially stretched film having a relatively high tensile elastic modulus (Young's modulus) and a relatively low heat shrinkage in the TD direction, the propylene-based weight. A biaxially stretched film using the combined composition and a packaging bag using the biaxially stretched film can be provided.
 本発明に係るプロピレン系重合体組成物は、プロピレン系重合体とβ晶核剤とを含有するものであり、二軸延伸フィルムの原料となるものである。 The propylene-based polymer composition according to the present invention contains a propylene-based polymer and a β-crystal nucleating agent, and is a raw material for a biaxially stretched film.
<プロピレン系重合体>
 本発明で用いられるプロピレン系重合体としては、例えば、プロピレン単独重合体またはプロピレン系ランダム共重合体を用いることができる。得られる二軸延伸フィルムの加熱収縮率を比較的低くする共に、剛性を比較的高くする観点から、プロピレン系重合体としては、好ましくはプロピレン単独重合体である。本発明で用いられるプロピレン系重合体がプロピレン系ランダム共重合体である場合、該プロピレン系ランダム共重合体としては、例えば、プロピレンと、エチレンおよび炭素原子数4~20のα-オレフィンから選択された少なくとも1種のコモノマーと、を共重合して得られるものが挙げられる。
<Propene polymer>
As the propylene-based polymer used in the present invention, for example, a propylene homopolymer or a propylene-based random copolymer can be used. The propylene-based polymer is preferably a propylene homopolymer from the viewpoint of relatively low heat shrinkage and relatively high rigidity of the obtained biaxially stretched film. When the propylene-based polymer used in the present invention is a propylene-based random copolymer, the propylene-based random copolymer is selected from, for example, propylene, ethylene, and an α-olefin having 4 to 20 carbon atoms. Examples thereof include those obtained by copolymerizing with at least one kind of copolymer.
 炭素原子数4~20のα-オレフィンとしては、例えば、1-ブテン、2-メチル-1-プロペン、1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ブテン、1-ヘプテン、メチル-1-ヘキセン、ジメチル-1-ペンテン、エチル-1-ペンテン、トリメチル-1-ブテン、メチルエチル-1-ブテン、1-オクテン、メチル-1-ペンテン、エチル-1-ヘキセン、ジメチル-1-ヘキセン、プロピル-1-ヘプテン、メチルエチル-1-ヘプテン、トリメチル-1-ペンテン、プロピル-1-ペンテン、ジエチル-1-ブテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン等が挙げられる。前記α-オレフィンとしては、好ましくは1-ブテン、1-ペンテン、1-ヘキセン、または1-オクテンであり、より好ましくは1-ブテンである。 Examples of α-olefins having 4 to 20 carbon atoms include 1-butene, 2-methyl-1-propene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, and 1-hexene. , 2-Ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl-1 -Buten, 1-hexene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1-butene, methylethyl-1-butene, 1-octene, methyl-1-pentene, ethyl- 1-hexene, dimethyl-1-hexene, propyl-1-heptene, methylethyl-1-heptene, trimethyl-1-pentene, propyl-1-pentene, diethyl-1-butene, 1-nonen, 1-decene, 1 -Undesen, 1-Dodesen, etc. can be mentioned. The α-olefin is preferably 1-butene, 1-pentene, 1-hexene, or 1-octene, and more preferably 1-butene.
 本発明でプロピレン系重合体として用いられるプロピレン系ランダム共重合体としては、例えば、プロピレン-エチレンランダム共重合体、プロピレン-α-オレフィンランダム共重合体等が挙げられる。プロピレン-α-オレフィンランダム共重合体としては、例えば、プロピレン-1-ブテンランダム共重合体、プロピレン-1-ヘキセンランダム共重合体、プロピレン-1-オクテンランダム共重合体、プロピレン-エチレン-1-ブテンランダム共重合体、プロピレン-エチレン-1-ヘキセンランダム共重合体、プロピレン-エチレン-1-オクテンランダム共重合体等が挙げられ、好ましくはプロピレン-エチレンランダム共重合体、プロピレン-1-ブテンランダム共重合体、プロピレン-エチレン-1-ブテンランダム共重合体である。 Examples of the propylene-based random copolymer used as the propylene-based polymer in the present invention include a propylene-ethylene random copolymer and a propylene-α-olefin random copolymer. Examples of the propylene-α-olefin random copolymer include a propylene-1-butene random copolymer, a propylene-1-hexene random copolymer, a propylene-1-octene random copolymer, and a propylene-ethylene-1-. Examples thereof include a butene random copolymer, a propylene-ethylene-1-hexene random copolymer, a propylene-ethylene-1-octene random copolymer and the like, preferably a propylene-ethylene random copolymer and a propylene-1-butene random. The copolymer is a propylene-ethylene-1-butene random copolymer.
 本発明でプロピレン系重合体として用いられるプロピレン系ランダム共重合体がプロピレン-エチレンランダム共重合体である場合、エチレン含有量は、得られる二軸延伸フィルムの加熱収縮率を比較的低くすると共に、剛性を比較的高くする観点から、好ましくは2.0質量%以下であり、より好ましくは1.0質量%以下であり、さらに好ましくは0.4質量%以下である。 When the propylene-based random copolymer used as the propylene-based polymer in the present invention is a propylene-ethylene random copolymer, the ethylene content relatively lowers the heat shrinkage rate of the obtained biaxially stretched film and at the same time, it makes the heat shrinkage rate of the obtained biaxially stretched film relatively low. From the viewpoint of relatively increasing the rigidity, it is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.4% by mass or less.
 本発明でプロピレン系重合体として用いられるプロピレン系ランダム共重合体がプロピレン-α-オレフィンランダム共重合体である場合、α-オレフィン含有量は、得られる二軸延伸フィルムの加熱収縮率を比較的低くすると共に、剛性を比較的高くする観点から、好ましくは8.0質量%以下であり、より好ましくは3.0質量%以下であり、さらに好ましくは1.0質量%以下である。 When the propylene-based random copolymer used as the propylene-based polymer in the present invention is a propylene-α-olefin random copolymer, the α-olefin content is relatively high in the heat shrinkage rate of the obtained biaxially stretched film. From the viewpoint of lowering and relatively increasing the rigidity, it is preferably 8.0% by mass or less, more preferably 3.0% by mass or less, and further preferably 1.0% by mass or less.
 本発明でプロピレン系重合体として用いられるプロピレン系ランダム共重合体がプロピレン-エチレン-α-オレフィンランダム共重合体である場合、エチレンとα-オレフィンの含有量の合計は、得られる二軸延伸フィルムの加熱収縮率を比較的低くすると共に、剛性を比較的高くする観点から、好ましくは8.0質量%以下であり、より好ましくは3.0質量%以下であり、さらに好ましくは1.0質量%以下である。 When the propylene-based random copolymer used as the propylene-based polymer in the present invention is a propylene-ethylene-α-olefin random copolymer, the total content of ethylene and α-olefin is the obtained biaxially stretched film. From the viewpoint of relatively low heat shrinkage and relatively high rigidity, the amount is preferably 8.0% by mass or less, more preferably 3.0% by mass or less, still more preferably 1.0% by mass. % Or less.
 プロピレン系重合体組成物中のプロピレン系重合体の含有量としては、好ましくは99.0質量%~99.9質量%であり、より好ましくは99.5質量%~99.9質量%であり、さらに好ましくは99.7質量%~99.9質量%である。 The content of the propylene-based polymer in the propylene-based polymer composition is preferably 99.0% by mass to 99.9% by mass, more preferably 99.5% by mass to 99.9% by mass. , More preferably 99.7% by mass to 99.9% by mass.
 本発明で用いられるプロピレン系重合体は、冷キシレン可溶部量(以下、CXSと略す。)が、好ましくは0.1質量%~1.0質量%であり、より好ましくは0.3質量%~1.0質量%であり、さらに好ましくは0.3質量%~0.8質量%である。CXSを上記範囲とすることにより、良好な延伸加工性を呈するとともに、得られる二軸延伸フィルムにおいて、比較的高い剛性および比較的高温での比較的低い収縮率を発現させうるという効果がある。プロピレン系重合体のCXSは、例えば、プロピレンの重合時に使用する外部ドナーの種類を選定することによって、上記の範囲に調整することができる。外部ドナーの具体例としては、シクロヘキシルエチルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジ-tert-ブチルジメトキシシラン等を例示することができる。
 尚、本発明においてCXSとは、下記の[実施例]に記載の方法によって求めることができる。
The propylene-based polymer used in the present invention has a cold xylene-soluble portion (hereinafter abbreviated as CXS) in an amount of preferably 0.1% by mass to 1.0% by mass, more preferably 0.3% by mass. % To 1.0% by mass, more preferably 0.3% by mass to 0.8% by mass. By setting CXS in the above range, there is an effect that good stretchability can be exhibited and that the obtained biaxially stretched film can exhibit relatively high rigidity and relatively low shrinkage rate at a relatively high temperature. The CXS of the propylene-based polymer can be adjusted to the above range, for example, by selecting the type of external donor used in the polymerization of propylene. Specific examples of the external donor include cyclohexylethyldimethoxysilane, dicyclopentyldimethoxysilane, di-tert-butyldimethoxysilane, and the like.
In the present invention, CXS can be obtained by the method described in the following [Example].
 本発明で用いられるプロピレン系重合体は、メルトフローレート(以下、MFRと略す。)が、好ましくは1g/10分~5g/10分であり、より好ましくは1.8g/10分~2.8g/10分であり、さらに好ましくは2.2g/10分~2.8g/10分である。MFRが上記範囲にあるプロピレン系重合体を用いることにより、ポリプロピレン(以下では、「PP」とも記す)が溶融状態のときに適度な粘度を有し、良好な延伸加工性を呈するとともに、得られる二軸延伸フィルムにおいて、比較的高い剛性および比較的高温での比較的低い収縮率を発現させうるという効果がある。プロピレン系重合体のMFRは、例えば、プロピレンの重合時に使用する水素濃度を0.04mol%~0.29mol%に調整することによって、上記の範囲に調整することができる。
 尚、本発明においてMFRとは、下記の[実施例]に記載の方法によって求めることができる。
The propylene-based polymer used in the present invention has a melt flow rate (hereinafter abbreviated as MFR) of preferably 1 g / 10 minutes to 5 g / 10 minutes, and more preferably 1.8 g / 10 minutes to 2. It is 8 g / 10 minutes, more preferably 2.2 g / 10 minutes to 2.8 g / 10 minutes. By using a propylene-based polymer having an MFR in the above range, polypropylene (hereinafter, also referred to as “PP”) has an appropriate viscosity when in a molten state, exhibits good stretchability, and is obtained. The biaxially stretched film has the effect of being able to exhibit relatively high rigidity and a relatively low shrinkage rate at a relatively high temperature. The MFR of the propylene-based polymer can be adjusted to the above range by, for example, adjusting the hydrogen concentration used during the polymerization of propylene to 0.04 mol% to 0.29 mol%.
In the present invention, MFR can be obtained by the method described in the following [Example].
 本発明で用いられるプロピレン系重合体は、MFRの異なる複数種類のプロピレン系重合体を含むものであってもよい。好ましい例として、プロピレン系重合体は、MFRが0.1g/10分~3.0g/10分であるプロピレン系重合体(a)と、MFRが10g/10分~200g/10分であるプロピレン系重合体(b)とを含むものとすることができる。 The propylene-based polymer used in the present invention may contain a plurality of types of propylene-based polymers having different MFRs. As a preferred example, the propylene-based polymer is a propylene-based polymer (a) having an MFR of 0.1 g / 10 min to 3.0 g / 10 min and a propylene having an MFR of 10 g / 10 min to 200 g / 10 min. It can contain the system polymer (b).
 プロピレン系重合体組成物におけるプロピレン系重合体(a)およびプロピレン系重合体(b)の含有量は、プロピレン系重合体(a)およびプロピレン系重合体(b)の合計含有量に対して、プロピレン系重合体(a)が50質量%~90質量%であることが好ましく、プロピレン系重合体(b)が10質量%~50質量%であることが好ましく、プロピレン系重合体(a)が50質量%~85質量%であることがより好ましく、プロピレン系重合体(b)が15質量%~50質量%であることがより好ましい。本発明に係るプロピレン系重合体組成物がMFRの異なる複数種類のプロピレン系重合体を含むものであることにより、延伸加工時の厚みムラが低減され、良好な延伸加工性を呈するとともに、得られる二軸延伸フィルムにおいて、比較的高い剛性および比較的高温での比較的低い収縮率を発現させうるという効果がある。 The content of the propylene-based polymer (a) and the propylene-based polymer (b) in the propylene-based polymer composition is relative to the total content of the propylene-based polymer (a) and the propylene-based polymer (b). The propylene-based polymer (a) is preferably 50% by mass to 90% by mass, the propylene-based polymer (b) is preferably 10% by mass to 50% by mass, and the propylene-based polymer (a) is. It is more preferably 50% by mass to 85% by mass, and more preferably 15% by mass to 50% by mass of the propylene-based polymer (b). Since the propylene-based polymer composition according to the present invention contains a plurality of types of propylene-based polymers having different MFRs, thickness unevenness during stretching is reduced, good stretching processability is exhibited, and the obtained biaxial structure is exhibited. The stretched film has the effect of being able to exhibit relatively high rigidity and a relatively low shrinkage rate at a relatively high temperature.
 本発明で用いられるプロピレン系重合体は、アイソタクチック・ペンタッド分率が、好ましくは97%~99%であり、より好ましくは98%~99%である。プロピレン系重合体のアイソタクチック・ペンタッド分率は、例えば、プロピレンの重合時に使用する外部ドナーの種類を選定することによって、上記の範囲に調整することができる。外部ドナーの具体例としては、シクロヘキシルエチルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジ-tert-ブチルジメトキシシラン等を例示することができる。 The propylene-based polymer used in the present invention has an isotactic pentad fraction of preferably 97% to 99%, more preferably 98% to 99%. The isotactic pentad fraction of the propylene-based polymer can be adjusted to the above range, for example, by selecting the type of external donor used during the polymerization of propylene. Specific examples of the external donor include cyclohexylethyldimethoxysilane, dicyclopentyldimethoxysilane, di-tert-butyldimethoxysilane, and the like.
<プロピレン系重合体の製造>
 プロピレン系重合体を製造する方法としては、公知の重合方法が挙げられる。例えば、不活性溶媒の存在下で行われる溶媒重合法、液状のモノマーの存在下で行われる塊状重合法、実質上液状の媒体の不存在下で行われる気相重合法等が挙げられる。好ましくは気相重合法である。また、上記の重合方法を2種類以上組み合わせる重合方法、2段以上の多段重合の方法等も挙げられる。
<Manufacturing of propylene polymer>
Examples of the method for producing the propylene-based polymer include known polymerization methods. For example, a solvent polymerization method performed in the presence of an inert solvent, a massive polymerization method performed in the presence of a liquid monomer, a gas phase polymerization method performed in the absence of a substantially liquid medium, and the like can be mentioned. A gas phase polymerization method is preferable. Further, a polymerization method in which two or more of the above polymerization methods are combined, a method of multi-stage polymerization of two or more stages, and the like can be mentioned.
 プロピレン系重合体の重合に用いられる触媒としては、上記何れの重合方法においても、プロピレンの立体規則性重合用触媒を用いることができる。 As the catalyst used for the polymerization of the propylene-based polymer, a catalyst for stereoregular polymerization of propylene can be used in any of the above polymerization methods.
 プロピレンの立体規則性重合用触媒としては、例えば、三塩化チタン触媒、チタン、マグネシウム、ハロゲン、および電子供与体を必須成分とするTi-Mg系触媒等の固体触媒成分に、有機アルミニウム化合物や必要に応じて電子供与性化合物等の第3成分を組み合わせた触媒、メタロセン系触媒等が挙げられる。好ましくはマグネシウム、チタン、ハロゲンおよび電子供与体を必須成分とする固体触媒成分、有機アルミニウム化合物および電子供与性化合物を組み合わせた触媒であり、その具体例としては、特開昭61-218606号公報、特開昭61-287904号公報、特開平7-216017号公報、特開2004-182876等に記載された触媒が挙げられる。 As the catalyst for stereoregular polymerization of propylene, for example, an organic aluminum compound or an organic aluminum compound is required as a solid catalyst component such as a titanium trichloride catalyst, a Ti-Mg-based catalyst containing titanium, magnesium, halogen, and an electron donor as essential components. Examples thereof include a catalyst in which a third component such as an electron donating compound is combined, a metallocene-based catalyst, and the like. It is preferably a catalyst in which a solid catalyst component containing magnesium, titanium, halogen and an electron donor as essential components, an organoaluminum compound and an electron donating compound are combined, and specific examples thereof include JP-A-61-218606. Examples thereof include catalysts described in JP-A-61-287904, JP-A-7-216017, JP-A-2004-182876 and the like.
 <β晶核剤>
 β晶核剤とは、プロピレン系重合体に六方晶構造であるβ晶を形成させることができる化合物をいう。β晶核剤としては、特に限定されず、従来公知の種々のβ晶核剤を利用することができる。例えば、N,N'―ジシクロヘキシル―2,6―ナフタレンジカルボキシアミド、N,N'―ジシクロヘキシルテレフタルアミド、N,N’-ジフェニルヘキサンジアミド等に代表されるアミド化合物、テトラオキサスピロ化合物、キナクリドン、キナクリドンキノン等に代表されるキナクリドン類、ナノスケールのサイズを有する酸化鉄、ピメリン酸カルシウム、1,2―ヒドロキシステアリン酸カリウム、安息香酸マグネシウム若しくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリ若しくはアルカリ土類金属塩、ベンゼンスルホン酸ナトリウム若しくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物、二若しくは三塩基カルボン酸のジエステル類若しくはトリエステル類、フタロシアニンブルーなどに代表されるフタロシアニン系顔料、有機二塩基酸である成分Aと周期律表第IIA族金属の酸化物、水酸化物若しくは塩である成分Bとからなる二成分系化合物、環状リン化合物とマグネシウム化合物からなる組成物などが挙げられ、これらのうちの1種類または2種類以上を混合して用いても良い。上記のβ晶核剤の中でも、アミド化合物のN,N'―ジシクロヘキシル―2,6―ナフタレンジカルボキシアミド、N,N'―ジシクロヘキシルテレフタルアミド、N,N’-ジフェニルヘキサンジアミドが好ましく、N,N'―ジシクロヘキシル―2,6―ナフタレンジカルボキシアミドがより好ましい。
<Β crystal nucleating agent>
The β-crystal nucleating agent refers to a compound capable of forming β-crystals having a hexagonal structure in a propylene-based polymer. The β-crystal nucleating agent is not particularly limited, and various conventionally known β-crystal nucleating agents can be used. For example, amide compounds typified by N, N'-dicyclohexyl-2,6-naphthalenedicarboxyamide, N, N'-dicyclohexylterephthalamide, N, N'-diphenylhexanediamide, tetraoxaspiryl compounds, quinacridone, etc. Kinacridone Kinacridones typified by quinone, iron oxide having a nanoscale size, calcium pimelliate, potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, carboxylic acid typified by magnesium phthalate, etc. Alkaline or alkaline earth metal salts, aromatic sulfonic acid compounds typified by sodium benzenesulfonate or sodium naphthalene sulfonate, diesters or triesters of di- or tribasic carboxylic acids, phthalocyanine blue, etc. A composition consisting of a phthalocyanine pigment, a two-component compound consisting of a component A which is an organic dibasic acid and a component B which is an oxide, a hydroxide or a salt of a Group IIA metal of the periodic table, a cyclic phosphorus compound and a magnesium compound. Items and the like may be mentioned, and one type or a mixture of two or more of these may be used. Among the above β crystal nucleating agents, the amide compounds N, N'-dicyclohexyl-2,6-naphthalene carboxamide, N, N'-dicyclohexylterephthalamide, N, N'-diphenylhexanediamide are preferable, and N, N'-Dicyclohexyl-2,6-naphthalenedicarboxamide is more preferred.
<プロピレン系重合体組成物の製造方法>
 プロピレン系重合体組成物を製造する方法としては、上記のプロピレン系重合体とβ晶核剤とを溶融混練する方法が挙げられる。例えば、プロピレン系重合体とβ晶核剤とをリボンブレンダー、ヘンシェルミキサー、タンブラーミキサー等で混合し、その混合物を押出機等で溶融混練する方法が挙げられる。また、プロピレン系重合体100質量部に対して、β晶核剤を1~10質量部含むマスターバッチをあらかじめ作製し、プロピレン系重合体組成物中のβ晶核剤の濃度が所定値となるように、プロピレン系重合体とβ晶核剤のマスターバッチとを適宜混合する方法も挙げられる。さらに、上記のプロピレン系重合体(a)およびプロピレン系重合体(b)を含むプロピレン系重合体を用いる場合、プロピレン系重合体(a)とプロピレン系重合体(b)とをそれぞれ個別に溶融混練してペレット化し、ペレット化したプロピレン系重合体(a)とペレット化したプロピレン系重合体(b)とβ晶核剤を含むマスターバッチとを、上記と同様の方法で混合し、さらに上記と同様の方法で溶融混練する方法が挙げられる。さらに、上記のようにペレット化したプロピレン系重合体(a)およびペレット化したプロピレン系重合体(b)をドライブレンド等でブレンドした後、β晶核剤を含むマスターバッチと共に直接フィルム加工機で混合して溶融混練する方法が挙げられる。また、上記のようにペレット化したプロピレン系重合体(a)およびペレット化したプロピレン系重合体(b)とβ晶核剤を含むマスターバッチとを個別にフィルム加工機の押出機にフィードして混合し、溶融混練する方法が挙げられる。
<Manufacturing method of propylene-based polymer composition>
Examples of the method for producing the propylene-based polymer composition include a method of melt-kneading the above-mentioned propylene-based polymer and a β-crystal nucleating agent. For example, a method of mixing a propylene-based polymer and a β-crystal nucleating agent with a ribbon blender, a Henschel mixer, a tumbler mixer or the like, and melting and kneading the mixture with an extruder or the like can be mentioned. Further, a masterbatch containing 1 to 10 parts by mass of the β crystal nucleating agent is prepared in advance with respect to 100 parts by mass of the propylene-based polymer, and the concentration of the β crystal nucleating agent in the propylene-based polymer composition becomes a predetermined value. As described above, a method of appropriately mixing the propylene-based polymer and the masterbatch of the β-crystal nucleating agent can also be mentioned. Further, when the propylene-based polymer containing the above-mentioned propylene-based polymer (a) and the propylene-based polymer (b) is used, the propylene-based polymer (a) and the propylene-based polymer (b) are individually melted. The propylene-based polymer (a) pelleted by kneading and pelletizing, the pelletized propylene-based polymer (b), and the masterbatch containing the β-crystal nucleating agent are mixed in the same manner as described above, and further, the above. A method of melt-kneading in the same manner as in the above can be mentioned. Further, after blending the pelletized propylene-based polymer (a) and the pelletized propylene-based polymer (b) with a dry blend or the like as described above, a masterbatch containing a β-crystal nucleating agent is directly used in a film processing machine. Examples thereof include a method of mixing and melting and kneading. Further, the pelletized propylene-based polymer (a), the pelletized propylene-based polymer (b), and the masterbatch containing the β-crystal nucleating agent are individually fed to the extruder of the film processing machine as described above. Examples thereof include a method of mixing and melt-kneading.
 また、プロピレン系重合体とβ晶核剤を混合する際に、必要に応じて、安定剤、滑剤、帯電防止剤、および抗ブロッキング剤、無機または有機の各種フィラー等を添加してもよい。 Further, when mixing the propylene-based polymer and the β-crystal nucleating agent, a stabilizer, a lubricant, an antistatic agent, an anti-blocking agent, various inorganic or organic fillers and the like may be added, if necessary.
 本発明に係るプロピレン系重合体組成物は、MFRが1g/10分~5g/10分であり、好ましくは1.8g/10分~2.8g/10分であり、より好ましくは2.2g/10分~2.8g/10分である。
 また、本発明に係るプロピレン系重合体組成物は、CXSが0.1質量%~1.0質量%であり、好ましくは0.3質量%~1.0質量%であり、より好ましくは0.3質量%~0.8質量%である。
 また、本発明に係るプロピレン系重合体組成物は、プロピレン系重合体組成物中のβ晶核剤の濃度が100質量ppm以上500質量ppm未満であり、好ましくは250質量ppm~450質量ppmであり、より好ましくは250質量ppm~400質量ppmである。
 プロピレン系重合体組成物のMFRは、上記のようにプロピレン系重合体のMFRを調整することにより、上記の範囲に調整することができる。また、プロピレン系重合体組成物のCXSは、上記のようにプロピレン系重合体のCXSを調整することにより、上記の範囲に調整することができる。
 また、本発明に係るプロピレン系重合体組成物は、アイソタクチック・ペンタッド分率が、好ましくは97%~99%であり、より好ましくは98%~99%である。プロピレン系重合体組成物のアイソタクチック・ペンタッド分率は、上記のようにプロピレン系重合体のアイソタクチック・ペンタッド分率を調整することにより、上記の範囲に調整することができる。
 また、本発明に係るプロピレン系重合体組成物は、プロピレン系重合体の最大メソ連鎖長が、好ましくは80以上であり、より好ましくは82以上である。尚、プロピレン系重合体の最大メソ連鎖長は、プロピレン系重合体組成物からβ晶核剤を除いた組成物で測定したものである。測定されている組成物の大部分はプロピレン系重合体のため、β晶核剤を含有しない組成物の測定値をプロピレン系重合体の測定値とみなすことができる。プロピレン系重合体の最大メソ連鎖長は、例えば、プロピレンの重合時に使用する外部ドナーの種類を選定することによって、および/または、水素濃度を0.04mol%~0.29mol%に調整することによって、上記の範囲に調整することができる。外部ドナーの具体例としては、シクロヘキシルエチルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジ-tert-ブチルジメトキシシラン等を例示することができる。
 尚、本発明において最大メソ連鎖長とは、下記の[実施例]に記載の方法によって求めることができる。
The propylene-based polymer composition according to the present invention has an MFR of 1 g / 10 min to 5 g / 10 min, preferably 1.8 g / 10 min to 2.8 g / 10 min, and more preferably 2.2 g. It is / 10 minutes to 2.8 g / 10 minutes.
Further, the propylene-based polymer composition according to the present invention has a CXS of 0.1% by mass to 1.0% by mass, preferably 0.3% by mass to 1.0% by mass, and more preferably 0. .3% by mass to 0.8% by mass.
Further, in the propylene-based polymer composition according to the present invention, the concentration of the β crystal nucleating agent in the propylene-based polymer composition is 100 mass ppm or more and less than 500 mass ppm, preferably 250 mass ppm to 450 mass ppm. Yes, more preferably 250 mass ppm to 400 mass ppm.
The MFR of the propylene-based polymer composition can be adjusted to the above range by adjusting the MFR of the propylene-based polymer as described above. Further, the CXS of the propylene-based polymer composition can be adjusted to the above range by adjusting the CXS of the propylene-based polymer as described above.
The propylene-based polymer composition according to the present invention has an isotactic-pentad fraction of preferably 97% to 99%, more preferably 98% to 99%. The isotactic-pentad fraction of the propylene-based polymer composition can be adjusted to the above range by adjusting the isotactic-pentad fraction of the propylene-based polymer as described above.
Further, in the propylene-based polymer composition according to the present invention, the maximum meso-chain length of the propylene-based polymer is preferably 80 or more, more preferably 82 or more. The maximum meso-chain length of the propylene-based polymer was measured with the composition obtained by removing the β-crystal nucleating agent from the propylene-based polymer composition. Since most of the composition being measured is a propylene-based polymer, the measured value of the composition containing no β-crystal nucleating agent can be regarded as the measured value of the propylene-based polymer. The maximum meso-chain length of the propylene-based polymer can be determined, for example, by selecting the type of external donor used during the polymerization of propylene and / or by adjusting the hydrogen concentration to 0.04 mol% to 0.29 mol%. , Can be adjusted to the above range. Specific examples of the external donor include cyclohexylethyldimethoxysilane, dicyclopentyldimethoxysilane, di-tert-butyldimethoxysilane, and the like.
In the present invention, the maximum meso-chain length can be determined by the method described in the following [Example].
 本発明に係るプロピレン系重合体組成物は、MFR、CXS、および、β晶核剤の濃度が上記範囲であることで、得られる二軸延伸フィルムにおいて、TD方向のヤング率(以下では、「TDヤング率」とも記す)が比較的高くなると共に、TD方向の加熱収縮率(以下では、「TD加熱収縮率」とも記す)が比較的低くなる。 The propylene-based polymer composition according to the present invention has a Young's modulus in the TD direction (hereinafter, "" (Also referred to as “TD Young's modulus”) is relatively high, and the heat shrinkage rate in the TD direction (hereinafter, also referred to as “TD heat shrinkage rate”) is relatively low.
 具体的には、TDヤング率は、プロピレン系重合体組成物を構成するPPが、二軸延伸フィルムの製造におけるTD方向の延伸によってTD方向に配向することにより高まる。
一方、二軸延伸フィルムの加熱収縮は、PPのタイ分子(結晶間を結ぶ非晶鎖)の配向によって引き起こされると考えられるため、TD加熱収縮率は、PPのタイ分子(非晶部)の割合を少なくすることにより低くなる。
Specifically, the TD Young's modulus is increased by orienting the PP constituting the propylene-based polymer composition in the TD direction by stretching in the TD direction in the production of the biaxially stretched film.
On the other hand, since the heat shrinkage of the biaxially stretched film is considered to be caused by the orientation of the tie molecules (amorphous chains connecting the crystals) of PP, the TD heat shrinkage rate is that of the tie molecules (amorphous part) of PP. It becomes lower by reducing the ratio.
 ここで、プロピレン系重合体組成物のMFRは、PPの分子量の指標であり、MFRが低いほど、PPの分子量が大きく、延伸よってPPが配向しやすいことを示す。
 本発明に係るプロピレン系重合体組成物は、MFRが1g/10分~5g/10分であるため、二軸延伸フィルムの製造におけるTD方向の延伸により、PPがTD方向に配向しやすい。このため、得られる二軸延伸フィルムについて比較的高いTDヤング率を得ることができる。
 一方、MFRが1g/10分未満である場合、PPの分子量が非常に大きく、PPの分子鎖が長過ぎるため、1つのPPの分子鎖が複数の結晶に含まれる可能性が高くなり、PPのタイ分子(非晶部)の割合が大きくなると考えられる。このため、得られる二軸延伸フィルムについて比較的低いTD加熱収縮率を得ることができない。
 また、MFRが5g/10分を超える場合、PPがTD方向に配向し難いため、得られる二軸延伸フィルムについて比較的高いTDヤング率を得ることができない。
Here, the MFR of the propylene-based polymer composition is an index of the molecular weight of PP, and it is shown that the lower the MFR, the larger the molecular weight of PP, and the easier it is for PP to be oriented by stretching.
Since the propylene-based polymer composition according to the present invention has an MFR of 1 g / 10 minutes to 5 g / 10 minutes, PP is likely to be oriented in the TD direction due to stretching in the TD direction in the production of the biaxially stretched film. Therefore, a relatively high TD Young's modulus can be obtained for the obtained biaxially stretched film.
On the other hand, when the MFR is less than 1 g / 10 minutes, the molecular weight of PP is very large and the molecular chain of PP is too long, so that there is a high possibility that the molecular chain of one PP is contained in a plurality of crystals, and PP. It is considered that the proportion of tie molecules (amorphous part) in the above increases. Therefore, it is not possible to obtain a relatively low TD heat shrinkage rate for the obtained biaxially stretched film.
Further, when the MFR exceeds 5 g / 10 minutes, it is difficult for PP to be oriented in the TD direction, so that a relatively high TD Young's modulus cannot be obtained for the obtained biaxially stretched film.
 また、プロピレン系重合体組成物のCXSは、PPの結晶性の指標であり、CXSが低いほど、PPの結晶性が高く、PPのタイ分子(非晶部)の割合が少ないことを示す。
 本発明に係るプロピレン系重合体組成物は、CXSが0.1質量%~1.0質量%であることで、PPのタイ分子(非晶部)の割合が比較的少なく、且つ、延伸によりPPがTD方向に配向しやすい。このため、得られる二軸延伸フィルムについて比較的高いTDヤング率および比較的低いTD加熱収縮率を得ることができる。
 CXSが0.1質量%未満である場合、PPの結晶性が高すぎて、PPの延伸性が低下し、二軸延伸フィルムを得ることができない可能性がある。また、CXSが1.0質量%を超える場合、PPのタイ分子(非晶部)の割合が高すぎて、比較的低いTD加熱収縮率を得ることができない。
Further, the CXS of the propylene-based polymer composition is an index of the crystallinity of PP, and the lower the CXS, the higher the crystallinity of the PP and the smaller the proportion of the tie molecule (amorphous portion) of the PP.
The propylene-based polymer composition according to the present invention has a CXS of 0.1% by mass to 1.0% by mass, a relatively small proportion of tie molecules (amorphous parts) in PP, and by stretching. PP tends to be oriented in the TD direction. Therefore, a relatively high TD Young's modulus and a relatively low TD heat shrinkage can be obtained for the obtained biaxially stretched film.
When CXS is less than 0.1% by mass, the crystallinity of PP is too high, the stretchability of PP is lowered, and it may not be possible to obtain a biaxially stretched film. Further, when CXS exceeds 1.0% by mass, the proportion of tie molecules (amorphous portions) of PP is too high, and a relatively low TD heat shrinkage rate cannot be obtained.
 また、本発明に係るプロピレン系重合体組成物がβ晶核剤を含むことで、該プロピレン系重合体組成物から形成される延伸前のPPシートの融点を下げることができる。結晶核剤を含まない場合、PPシートには、α晶(融点165℃程度)が生成する。二軸延伸フィルムの剛性を担う配向結晶がα晶であることから、PPシートを加熱してMD方向およびTD方向に延伸を行う際には、延伸温度は、α晶の溶融温度が上限になる。そのため、PPシート中のα晶は、固体状態で延伸されることとなり、非晶部の配向が起こりやすい。このため、得られる二軸延伸フィルムは、加熱収縮が生じやすいものとなる。
 一方、β晶核剤を含むことで、延伸前のPPシートには、β晶(融点152℃程度)が生成する。β晶は、α晶よりも融点が低いため、二軸延伸フィルムの製造における延伸時に、β晶の融点以上の温度で延伸することで、β晶が融解する割合が高くなる。これにより、β晶が溶融した状態でPPシートが延伸されて、β晶が二軸延伸フィルムの剛性を担う配向α晶へ構造変化した場合、上記のようにα晶が固体状態でPPシートが延伸された場合と比較して、非晶部の配向が起こりにくい。これにより、得られる二軸延伸フィルムについて比較的低いTD加熱収縮率を得ることができる。
 本発明に係るプロピレン系重合体組成物は、β晶核剤の濃度が100質量ppm以上500質量ppm未満であることで、延伸前のPPシートを形成した際に、該PPシート中のβ晶の生成量が適切なものとなる。このため、得られる二軸延伸フィルムについて比較的低いTD加熱収縮率を得ることができる。
Further, when the propylene-based polymer composition according to the present invention contains a β-crystal nucleating agent, the melting point of the PP sheet before stretching formed from the propylene-based polymer composition can be lowered. When the crystal nucleating agent is not contained, α crystals (melting point of about 165 ° C.) are formed on the PP sheet. Since the oriented crystals responsible for the rigidity of the biaxially stretched film are α crystals, when the PP sheet is heated and stretched in the MD direction and the TD direction, the stretching temperature is limited to the melting temperature of the α crystals. .. Therefore, the α crystals in the PP sheet are stretched in a solid state, and the orientation of the amorphous portion is likely to occur. Therefore, the obtained biaxially stretched film tends to undergo heat shrinkage.
On the other hand, by containing the β crystal nucleating agent, β crystals (melting point of about 152 ° C.) are generated on the PP sheet before stretching. Since the β crystal has a lower melting point than the α crystal, the β crystal melts at a higher rate by stretching at a temperature equal to or higher than the melting point of the β crystal during stretching in the production of the biaxially stretched film. As a result, when the PP sheet is stretched while the β crystals are melted and the structure is changed to the oriented α crystals that bear the rigidity of the biaxially stretched film, the PP sheet is in a solid state as described above. The orientation of the amorphous part is less likely to occur as compared with the case of stretching. As a result, a relatively low TD heat shrinkage rate can be obtained for the obtained biaxially stretched film.
The propylene-based polymer composition according to the present invention has a β-crystal nucleating agent having a concentration of 100% by mass or more and less than 500% by mass, so that when a PP sheet before stretching is formed, β-crystals in the PP sheet are formed. The amount of production is appropriate. Therefore, a relatively low TD heat shrinkage rate can be obtained for the obtained biaxially stretched film.
 以上のように、本発明に係るプロピレン系重合体組成物は、MFRが1g/10分~5g/10分であり、CXSが0.1質量%~1.0質量%であり、β晶核剤の濃度が100質量ppm以上500質量ppm未満であることで、得られる二軸延伸フィルムについて比較的高いTDヤング率と比較的低いTD加熱収縮率とを両立させることができる。 As described above, the propylene-based polymer composition according to the present invention has an MFR of 1 g / 10 min to 5 g / 10 min, a CXS of 0.1 mass% to 1.0 mass%, and β crystal nuclei. When the concentration of the agent is 100 mass ppm or more and less than 500 mass ppm, it is possible to achieve both a relatively high TD Young's modulus and a relatively low TD heat shrinkage rate for the obtained biaxially stretched film.
 また、本発明に係るプロピレン系重合体組成物は、アイソタクチック・ペンタッド分率が上記の範囲であることで、得られる二軸延伸フィルムについてより高いTDヤング率とより低いTD加熱収縮率とを得ることができる。 Further, the propylene-based polymer composition according to the present invention has a higher TD Young's modulus and a lower TD heat shrinkage rate for the obtained biaxially stretched film because the isotactic pentad fraction is in the above range. Can be obtained.
 また、プロピレン系重合体の最大メソ連鎖長が上記の範囲であることで、得られる二軸延伸フィルムについてより高いTDヤング率とより低いTD加熱収縮率とを得ることができる。 Further, when the maximum meso-chain length of the propylene-based polymer is in the above range, a higher TD Young's modulus and a lower TD heat shrinkage can be obtained for the obtained biaxially stretched film.
<二軸延伸フィルム>
 次に、本発明に係る二軸延伸フィルムについて説明する。本件発明に係る二軸延伸フィルムの第一の形態は、上記の本発明に係るプロピレン系重合体組成物を含有する二軸延伸フィルムである。
<Biaxial stretched film>
Next, the biaxially stretched film according to the present invention will be described. The first form of the biaxially stretched film according to the present invention is the biaxially stretched film containing the above-mentioned propylene-based polymer composition according to the present invention.
 本発明に係る二軸延伸フィルムの第二の形態は、プロピレン系重合体と、β晶核剤とを含有し、下記要件(1)および(2)を満たすプロピレン系重合体組成物を含有し、下記要件(3)および(4)を満たす二軸延伸フィルムである。
 
(1)温度230℃、荷重21.18Nで測定されるメルトフローレートが1g/10分~30g/10分である。
(2)冷キシレン可溶部量が0.1質量%~1.0質量%である。
(3)複屈折率から算出されるND方向の配向度が、-0.30以下である。
(4)複屈折率から算出されるMD方向の配向度とTD方向の配向度との差が、0.10~1.00である。
 
The second form of the biaxially stretched film according to the present invention contains a propylene-based polymer and a β-crystal nucleating agent, and contains a propylene-based polymer composition satisfying the following requirements (1) and (2). , A biaxially stretched film satisfying the following requirements (3) and (4).

(1) The melt flow rate measured at a temperature of 230 ° C. and a load of 21.18 N is 1 g / 10 minutes to 30 g / 10 minutes.
(2) The amount of the soluble part of cold xylene is 0.1% by mass to 1.0% by mass.
(3) The degree of orientation in the ND direction calculated from the birefringence is −0.30 or less.
(4) The difference between the degree of orientation in the MD direction and the degree of orientation in the TD direction calculated from the birefringence is 0.10 to 1.00.
 上記要件(1)で規定のMFRは、好ましくは1g/10分~5g/10分であり、より好ましくは1.8g/10分~2.8g/10分であり、さらに好ましくは2.2g/10分~2.8g/10分である。
 尚、本発明においてMFRとは、下記の[実施例]に記載の方法によって求めることができる。
The MFR specified in the above requirement (1) is preferably 1 g / 10 minutes to 5 g / 10 minutes, more preferably 1.8 g / 10 minutes to 2.8 g / 10 minutes, and further preferably 2.2 g. / 10 minutes to 2.8 g / 10 minutes.
In the present invention, MFR can be obtained by the method described in the following [Example].
 上記要件(2)で規定のCXSは、好ましくは0.3質量%~1.0質量%であり、より好ましくは0.3質量%~0.8質量%である。
 尚、本発明においてCXSとは、下記の[実施例]に記載の方法によって求めることができる。
The CXS specified in the above requirement (2) is preferably 0.3% by mass to 1.0% by mass, and more preferably 0.3% by mass to 0.8% by mass.
In the present invention, CXS can be obtained by the method described in the following [Example].
 上記要件(3)で規定の複屈折率から算出されるND方向の配向度は、好ましくは-0.5~-0.3であり、より好ましくは-0.4~-0.3である。
 尚、本発明において複屈折率から算出されるND方向の配向度とは、下記の[実施例]に記載の方法によって求めることができる。
The degree of orientation in the ND direction calculated from the birefringence specified in the above requirement (3) is preferably −0.5 to −0.3, and more preferably −0.4 to −0.3. ..
The degree of orientation in the ND direction calculated from the birefringence in the present invention can be determined by the method described in the following [Example].
 上記要件(4)で規定の複屈折率から算出されるMD方向の配向度とTD方向の配向度との差は、好ましくは0.10~0.70であり、より好ましくは0.40~0.70である。
 尚、本発明において複屈折率から算出されるMD方向の配向度とTD方向の配向度との差とは、下記の[実施例]に記載の方法によって求めることができる。
The difference between the degree of orientation in the MD direction and the degree of orientation in the TD direction calculated from the birefringence specified in the above requirement (4) is preferably 0.10 to 0.70, and more preferably 0.40 to 0.40. It is 0.70.
In the present invention, the difference between the degree of orientation in the MD direction and the degree of orientation in the TD direction calculated from the birefringence can be obtained by the method described in the following [Example].
 本発明に係る二軸延伸フィルムの第二の形態に含まれるβ晶核剤の濃度は、好ましくは100質量%~5000質量%であり、より好ましくは100質量ppm以上500質量ppm未満であり、さらに好ましくは250質量ppm~450質量ppmであり、特に好ましくは250質量ppm~400質量ppmである。 The concentration of the β crystal nucleating agent contained in the second form of the biaxially stretched film according to the present invention is preferably 100% by mass to 5000% by mass, more preferably 100% by mass or more and less than 500% by mass. It is more preferably 250 mass ppm to 450 mass ppm, and particularly preferably 250 mass ppm to 400 mass ppm.
 本発明に係る二軸延伸フィルムの密度は、好ましくは0.900g/cm~0.912g/cmである。
 尚、本発明において二軸延伸フィルムの密度とは、下記の[実施例]に記載の方法によって求めることができる。
The density of the biaxially stretched film according to the present invention is preferably 0.900 g / cm 3 to 0.912 g / cm 3 .
In the present invention, the density of the biaxially stretched film can be determined by the method described in the following [Example].
<二軸延伸フィルムの製造>
 次に、本発明に係るプロピレン系重合体組成物を用いて二軸延伸フィルムを製造する方法について説明する。斯かる二軸延伸フィルムの製造方法としては、例えば、逐次二軸延伸方式や同時二軸延伸方式を用いることができる。
<Manufacturing of biaxially stretched film>
Next, a method for producing a biaxially stretched film using the propylene-based polymer composition according to the present invention will be described. As a method for producing such a biaxially stretched film, for example, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used.
 本発明に係る二軸延伸フィルムの製造方法は、プロピレン系重合体と、β晶核剤とを含有し、上記要件(1)および(2)を満たすプロピレン系重合体組成物を、加熱溶融して冷却ロール上に押し出すことにより未延伸シートを得る工程と、得られた未延伸シートを、MD方向に3倍~12倍することにより一軸延伸フィルムを得る工程と、得られた一軸延伸フィルムをTD方向に4倍~20倍に延伸した後、該TD方向に1%~30%緩和することにより二軸延伸フィルムを得る工程と、を含む、二軸延伸フィルムの製造方法である。 In the method for producing a biaxially stretched film according to the present invention, a propylene-based polymer composition containing a propylene-based polymer and a β-crystal nucleating agent and satisfying the above requirements (1) and (2) is heated and melted. A step of obtaining an unstretched sheet by extruding it onto a cooling roll, a step of obtaining a uniaxially stretched film by multiplying the obtained unstretched sheet 3 to 12 times in the MD direction, and a step of obtaining the obtained uniaxially stretched film. A method for producing a biaxially stretched film, which comprises a step of obtaining a biaxially stretched film by stretching 4 to 20 times in the TD direction and then relaxing by 1% to 30% in the TD direction.
 逐次二軸延伸方式においては、プロピレン系重合体組成物を、押出機を用いて加熱溶融し、Tダイより冷却ロール上に押し出してシート状に冷却固定することで未延伸シート(上記のPPシート)を得る工程と、得られた未延伸シートを、一連の延伸ロールを用いてMD方向に3倍~12倍に延伸することで一軸延伸フィルムを得る工程と、得られた一軸延伸フィルムの両側端を、MD方向に沿って並んだ2列のチャックで掴み、予熱部、延伸部、熱処理部を備えた加熱炉内で、一軸延伸フィルムをTD方向に4倍~20倍に延伸した後、該2列のチャックの間隔を狭めることによりTD方向に1%~30%緩和(リラックス)、好ましくは5%~30%緩和させることで二軸延伸フィルムを得る工程と、を含むことができる。また、必要に応じてコロナ処理等を行う工程を含んでもよい。 In the sequential biaxial stretching method, the propylene-based polymer composition is heated and melted using an extruder, extruded from a T-die onto a cooling roll, and cooled and fixed in the form of a sheet to cool and fix the unstretched sheet (the above PP sheet). ), And a step of obtaining a uniaxially stretched film by stretching the obtained unstretched sheet 3 to 12 times in the MD direction using a series of stretching rolls, and both sides of the obtained uniaxially stretched film. The end is grasped by two rows of chucks arranged along the MD direction, and the uniaxially stretched film is stretched 4 to 20 times in the TD direction in a heating furnace equipped with a preheating part, a stretching part, and a heat treatment part. A step of obtaining a biaxially stretched film by relaxing (relaxing) 1% to 30% in the TD direction, preferably 5% to 30% by narrowing the distance between the chucks in the two rows can be included. In addition, a step of performing corona treatment or the like may be included as needed.
 逐次二軸延伸方式において、プロピレン系重合体組成物を加熱溶融する際の温度としては、例えば、230℃~290℃が好ましい。また、冷却ロールの温度としては、例えば、10℃~60℃が好ましい。未延伸シートをMD方向に延伸する際の延伸ロールの温度としては、例えば、110℃~165℃が好ましく、110℃~150℃がより好ましい。一軸延伸フィルムをTD方向に延伸する際の加熱温度としては、150℃~200℃が好ましく、TD方向に緩和する際の加熱温度としては、150℃~200℃が好ましい。 In the sequential biaxial stretching method, the temperature at which the propylene-based polymer composition is heated and melted is preferably, for example, 230 ° C to 290 ° C. The temperature of the cooling roll is preferably, for example, 10 ° C to 60 ° C. The temperature of the stretched roll when the unstretched sheet is stretched in the MD direction is preferably 110 ° C. to 165 ° C., more preferably 110 ° C. to 150 ° C. The heating temperature for stretching the uniaxially stretched film in the TD direction is preferably 150 ° C. to 200 ° C., and the heating temperature for relaxing in the TD direction is preferably 150 ° C. to 200 ° C.
 一方、同時二軸延伸方式においては、プロピレン系重合体組成物を、押出機を用いて加熱溶融し、Tダイより冷却ロール上に押し出してシート状に冷却固定することで未延伸シート(上記のPPシート)を得る工程と、得られた未延伸シートの両側端をMD方向に沿って並んだ2列のチャックで掴み、予熱部、延伸部、および熱処理部を備えた加熱炉内で、上記2列のチャックのTD方向の間隔と各列内の個々のチャックのMD方向の間隔とを広げることにより、未延伸シートをMD方向に3倍~12倍に、TD方向に4倍~20倍に、同時に延伸し、その後TD方向に1%~30%緩和、好ましくは5%~30%緩和させることで二軸延伸フィルムを得る工程と、を含むことができる。また、必要に応じてコロナ処理等を行う工程を含んでもよい。
 なお、同時二軸延伸方式における加熱溶融の温度、冷却ロールの温度、延伸時の加熱温度、については、上記の逐次二軸延伸方式における各条件と同じとすることができる。
On the other hand, in the simultaneous biaxial stretching method, the polypropylene-based polymer composition is heated and melted using an extruder, extruded from a T-die onto a cooling roll, and cooled and fixed in the form of a sheet to cool and fix the unstretched sheet (the above-mentioned). The above-mentioned step of obtaining a PP sheet) and grasping both ends of the obtained unstretched sheet with two rows of chucks arranged along the MD direction in a heating furnace provided with a preheating part, a stretching part, and a heat treatment part. By widening the distance between the two rows of chucks in the TD direction and the distance between the individual chucks in each row in the MD direction, the unstretched sheet can be increased 3 to 12 times in the MD direction and 4 to 20 times in the TD direction. Can also include a step of simultaneously stretching and then relaxing by 1% to 30%, preferably 5% to 30% in the TD direction to obtain a biaxially stretched film. In addition, a step of performing corona treatment or the like may be included as needed.
The temperature of heating and melting in the simultaneous biaxial stretching method, the temperature of the cooling roll, and the heating temperature at the time of stretching can be the same as each condition in the above-mentioned sequential biaxial stretching method.
 逐次二軸延伸方式および同時二軸延伸方式において、フィルムを緩和させる際の緩和率が上記のように1%以上(好ましくは5%以上、より好ましくは15%以上)であることで、加熱収縮率が比較的低くなり、耐熱性に優れた二軸延伸フィルムが得られる。また、緩和率が上記のように30%以下(好ましくは25%以下)であることで、フィルムの厚みムラを抑制できる。 In the sequential biaxial stretching method and the simultaneous biaxial stretching method, the relaxation rate when relaxing the film is 1% or more (preferably 5% or more, more preferably 15% or more) as described above, and thus heat shrinkage. A biaxially stretched film having a relatively low rate and excellent heat resistance can be obtained. Further, when the relaxation rate is 30% or less (preferably 25% or less) as described above, unevenness in the thickness of the film can be suppressed.
 なお、本発明において緩和率Rは、下記式(1’)により求められるものである。
 
  R=(L1-L2)/L1×100   (1’)
(式中、L1はフィルムを緩和する前のTD方向におけるチャック間の距離、L2はフィルムを緩和した後のTD方向におけるチャック間の距離を示す)
 
In the present invention, the relaxation rate R is obtained by the following formula (1').

R = (L1-L2) / L1 × 100 (1')
(In the formula, L1 indicates the distance between the chucks in the TD direction before the film is relaxed, and L2 indicates the distance between the chucks in the TD direction after the film is relaxed).
 本発明に係るプロピレン系重合体組成物を用いて形成される二軸延伸フィルムの厚みとしては、例えば、10μm~70μmであることが好ましい。 The thickness of the biaxially stretched film formed by using the propylene-based polymer composition according to the present invention is preferably, for example, 10 μm to 70 μm.
 また、本発明に係るプロピレン系重合体組成物を用いて形成される二軸延伸フィルムは、多層フィルムの一部の層を形成するものとして用いることができる。該多層フィルムは、少なくとも一つの層が本発明に係る二軸延伸フィルムで形成され、該二軸延伸フィルムの層に任意の他の層を積層させたものである。二軸延伸フィルムの層に積層する他の層としては、例えば、シーラント層、ガスバリア層、接着層、印刷層等の任意の層が挙げられる。特には、オレフィン系のフィルムを用いたシーラント層と二軸延伸フィルムの層とを積層することが好ましい。これにより、得られた多層フィルムのリサイクルを容易に行うことできる。多層フィルムを作製する方法としては、通常用いられる押出ラミネート法、熱ラミネート法、ドライラミネート法等が挙げられる。 Further, the biaxially stretched film formed by using the propylene-based polymer composition according to the present invention can be used as a film for forming a part of a layer of a multilayer film. In the multilayer film, at least one layer is formed of the biaxially stretched film according to the present invention, and any other layer is laminated on the layer of the biaxially stretched film. Examples of the other layer laminated on the layer of the biaxially stretched film include any layer such as a sealant layer, a gas barrier layer, an adhesive layer, and a printing layer. In particular, it is preferable to laminate a sealant layer using an olefin-based film and a layer of a biaxially stretched film. Thereby, the obtained multilayer film can be easily recycled. Examples of the method for producing the multilayer film include an extrusion laminating method, a thermal laminating method, and a dry laminating method, which are usually used.
 また、本発明に係るプロピレン系重合体組成物を用いて形成される二軸延伸フィルムは、包装袋の材料として用いることができる。具体的には、二軸延伸フィルムの層を含む上記の多層フィルムを用いて包装袋を形成することができる。該包装袋は、食品、衣料品、雑貨等の任意の包装対象物を包装する用途として使用し得る。 Further, the biaxially stretched film formed by using the propylene-based polymer composition according to the present invention can be used as a material for a packaging bag. Specifically, the packaging bag can be formed by using the above-mentioned multilayer film including a layer of the biaxially stretched film. The packaging bag can be used for packaging any packaging object such as food, clothing, and miscellaneous goods.
 実施例および比較例における各項目の測定値は、下記の方法で測定した。 The measured values of each item in the examples and comparative examples were measured by the following method.
(1)MFR(単位:g/10分)
 プロピレン系重合体組成物のMFRは、JIS K7210-1:2014に規定されたA法に従って、温度230℃、荷重21.18Nで測定した。
(1) MFR (unit: g / 10 minutes)
The MFR of the propylene-based polymer composition was measured at a temperature of 230 ° C. and a load of 21.18 N according to the method A specified in JIS K7210-1: 2014.
(2)CXS(単位:質量%)
 プロピレン系重合体組成物1gを、沸騰キシレン100mlに完全に溶解させた後、20℃に降温し、1時間攪拌した。得られた混合物を析出物と溶液とに濾別した後、溶液中に溶解している成分量を、下記の条件下にて液体クロマトグラフィーにより定量し、CXSを求めた。
 
 カラム:SHODEX GPC KF-801
 溶離液:テトラヒドロフラン
 カラムオーブン温度:40℃
 試料注入量:130μL
 流量:1mL/分
 検出器:示差屈折計
 
(2) CXS (unit: mass%)
After completely dissolving 1 g of the propylene-based polymer composition in 100 ml of boiling xylene, the temperature was lowered to 20 ° C., and the mixture was stirred for 1 hour. After the obtained mixture was filtered off into a precipitate and a solution, the amount of the component dissolved in the solution was quantified by liquid chromatography under the following conditions to determine CXS.

Column: SHODEX GPC KF-801
Eluent: Tetrahydrofuran Column oven temperature: 40 ° C
Sample injection volume: 130 μL
Flow rate: 1 mL / min Detector: Differential refractometer
(3)アイソタクチック・ペンタッド分率([mmmm]、単位:%)
 プロピレン系重合体組成物の[mmmm]は、下記の条件下にて13C-NMRにより測定した。プロピレン系重合体組成物に含有されるプロピレン系重合体のNMR吸収ピークの帰属は、A.Zambelliらによって発表された方法(Macromolecules 第8巻、第687頁、1975年)に従って行った。
 
 機種:Bruker AVANCE600
 プローブ:10mmクライオプローブ
 測定温度:135℃
 パルス繰り返し時間:4秒
 パルス幅:45°
 積算回数:256回
 
(3) Isotactic pentad fraction ([mmmm], unit:%)
The [mmmm] of the propylene-based polymer composition was measured by 13C-NMR under the following conditions. The attribution of the NMR absorption peak of the propylene-based polymer contained in the propylene-based polymer composition is as follows. This was done according to the method published by Zambelli et al. (Macropolymers Vol. 8, p. 687, 1975).

Model: Bruker AVANCE 600
Probe: 10mm cryoprobe Measurement temperature: 135 ℃
Pulse repetition time: 4 seconds Pulse width: 45 °
Accumulation number: 256 times
(4)最大メソ連鎖長(単位:なし)
 A.J.Mullerらによって発表されたSuccessive Self-nuculeation and Annealing法(SSA法、European PolymerJournal 第65巻、第132頁、2015年)に従って、プロピレン系重合体の最大メソ連鎖長(MSL)を測定した。測定条件を(4-1)~(4-4)に示す。
(4) Maximum meso-chain length (unit: none)
A. J. The maximum meso-chain length (MSL) of a propylene-based polymer was measured according to the Seccessive Self-Nuculation and Annealing method (SSA method, European Polymer Journal, Vol. 65, p. 132, 2015) published by Muller et al. The measurement conditions are shown in (4-1) to (4-4).
(4-1)Ts,ideal(単位:℃)の測定
 示差走査型熱量計(TAインスツルメント DSC250)を用いて、プロピレン系重合体組成物5mgを、窒素雰囲気下、200℃にて3分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にて所定の温度T(単位:℃)まで加熱した。その後、プロピレン系重合体組成物を温度Tにて5分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にて230℃まで加熱した際の融解曲線を測定した。温度Tを173℃とした測定で得られた融解曲線が単一の融解ピークを示すことを確認した後、温度Tを1℃ずつ下げて同様の測定を行い、前記単一の融解ピークよりも高温側に新たな融解ピークが観測される温度TをT(単位:℃)と定義し、次の式によりTs,idealを求めた。
 
 Ts,ideal=T+1
 
(4-1) Measurement of T s, ideal (unit: ° C.) Using a differential scanning calorimeter (TA Instrument DSC250), 5 mg of the propylene-based polymer composition was added to 3 at 200 ° C. under a nitrogen atmosphere. After holding for 1 minute, the mixture was cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes and then heated to a predetermined temperature T s (unit: ° C.) at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature of T s for 5 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then the melting curve when heated to 230 ° C. at a heating rate of 10 ° C./min was measured. After confirming that the melting curve obtained by the measurement at the temperature T s of 173 ° C. shows a single melting peak, the temperature T s was lowered by 1 ° C. to perform the same measurement, and the single melting peak was performed. The temperature T s at which a new melting peak is observed on the higher temperature side is defined as Ta (unit: ° C.), and T s and ideal are calculated by the following equation.

T s, ideal = T a +1
(4-2)T(単位:℃)の測定
 示差走査型熱量計(TAインスツルメント DSC250)を用いて、プロピレン系重合体組成物5mgを、窒素雰囲気下、200℃にて3分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealまで加熱した。その後、プロピレン系重合体組成物をTs,idealにて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealより5℃低い温度まで加熱した。その後、プロピレン系重合体組成物をTs,idealより5℃低い温度にて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealより10℃低い温度まで加熱した。その後、プロピレン系重合体組成物をTs,idealより10℃低い温度にて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealより15℃低い温度まで加熱した。その後、プロピレン系重合体組成物をTs,idealより15℃低い温度にて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealより20℃低い温度まで加熱した。その後、プロピレン系重合体組成物をTs,idealより20℃低い温度にて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealより25℃低い温度まで加熱した。さらにTs,idealより25℃低い温度にて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealより30℃低い温度まで加熱した。その後、プロピレン系重合体組成物をTs,idealより30℃低い温度にて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。さらに50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealより35℃低い温度まで加熱した。その後、プロピレン系重合体組成物をTs,idealより35℃低い温度にて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealより40℃低い温度まで加熱した。その後、プロピレン系重合体組成物をTs,idealより40℃低い温度にて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealより45℃低い温度まで加熱した。その後、プロピレン系重合体組成物をTs,idealより45℃低い温度にて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にてTs,idealより50℃低い温度まで加熱した。その後、プロピレン系重合体組成物をTs,idealより50℃低い温度にて10分間保持した後、降温速度10℃/分にて50℃まで冷却した。その後、プロピレン系重合体組成物を50℃にて3分間保持した後、昇温速度10℃/分にて230℃まで加熱した際の融解曲線を測定し、最大吸熱ピークを示す温度をTと定義した。
(4-2) Measurement of T m (unit: ° C) Using a differential scanning calorimeter (TA Instrument DSC250), hold 5 mg of the propylene-based polymer composition in a nitrogen atmosphere at 200 ° C for 3 minutes. After that, it was cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes and then heated to Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes and then heated to a temperature 5 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 5 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then heated to a temperature 10 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 10 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then heated to a temperature 15 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 15 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then heated to a temperature 20 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 20 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes and then heated to a temperature 25 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Further, the mixture was kept at a temperature 25 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then heated to a temperature 30 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 30 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. After further holding at 50 ° C. for 3 minutes, the mixture was heated to a temperature 35 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 35 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes and then heated to a temperature 40 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 40 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes and then heated to a temperature 45 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 45 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, the propylene-based polymer composition was held at 50 ° C. for 3 minutes, and then heated to a temperature 50 ° C. lower than Ts , ideal at a heating rate of 10 ° C./min. Then, the propylene-based polymer composition was held at a temperature 50 ° C. lower than Ts , ideal for 10 minutes, and then cooled to 50 ° C. at a temperature lowering rate of 10 ° C./min. Then, after holding the propylene-based polymer composition at 50 ° C. for 3 minutes, the melting curve when heated to 230 ° C. at a heating rate of 10 ° C./min was measured, and the temperature showing the maximum endothermic peak was set to Tm . Was defined as.
(4-3)ラメラ厚みL(単位:m)の算出
 J.Kangらによって発表された方法(Polymer Bulletin 第71巻、第563頁、2014年)に従って、次の式によりプロピレン系重合体組成物のラメラ厚みLを求めた。
 
 L=2σ/(ΔH×(1-(T+273)/T ))
(式中、表面自由エネルギーσ=0.0496J/m、平衡融解エンタルピーΔH=184×10J/m、平衡融点T =460Kの値を用いた。)
 
(4-3) Calculation of lamella thickness L c (unit: m) J. According to the method published by Kang et al. (Polymer Bulletin Vol. 71, pp. 563, 2014), the lamella thickness Lc of the propylene-based polymer composition was determined by the following formula.

L c = 2σ / (ΔH 0 × (1- (T m + 273) / T m 0 ))
(In the formula, the values of surface free energy σ = 0.0496 J / m 2 , equilibrium melting enthalpy ΔH 0 = 184 × 10 6 J / m 3 , and equilibrium melting point T m 0 = 460 K were used.)
(4-4)最大メソ連鎖長(MSL、単位:なし)の算出
 J.Kangらによって発表された方法(Polymer Bulletin 第71巻、第563頁、2014年)に従って、次の式によりプロピレン系重合体組成物のMSLを求めた。
 
 MSL=3L/Lhelix
(式中、結晶格子長Lhelix=0.65×10-9mの値を用いた。)
 
(4-4) Calculation of maximum meso-chain length (MSL, unit: none) J. According to the method published by Kang et al. (Polymer Bulletin Vol. 71, pp. 563, 2014), the MSL of the propylene-based polymer composition was determined by the following formula.

MSL = 3L c / L helix
(In the formula, the value of crystal lattice length L helix = 0.65 × 10-9 m was used.)
(5)フィルム厚み(単位:μm)
 二軸延伸フィルムの厚みは、JIS K7130-1999に記載のA法に従って、接触式のフィルム厚み計で測定した。
(5) Film thickness (unit: μm)
The thickness of the biaxially stretched film was measured with a contact-type film thickness gauge according to the method A described in JIS K7130-1999.
(6)透明性(Haze、単位:%)
 二軸延伸フィルムの透明性は、JIS K7105に従い測定した。Hazeが小さいほど、透明性に優れることを示す。
(6) Transparency (Haze, unit:%)
The transparency of the biaxially stretched film was measured according to JIS K7105. The smaller the Haze, the better the transparency.
(7)ヤング率(単位:GPa)
 120mm×20mmの二軸延伸フィルムを、長辺方向(120mm)が測定方向(MD方向、TD方向)と一致するように採取し、23℃、湿度50%の雰囲気下において、(株)エー・アンド・デイUNIVERSAL TESTING MACHINE STB-1225を用いて、つかみ間隔60mm、引張速度5mm/分で引張り試験を行い、引張-応力カーブのゼロ点での接線からヤング率(MD方向、TD方向)を測定した。
(7) Young's modulus (unit: GPa)
A 120 mm × 20 mm biaxially stretched film was collected so that the long side direction (120 mm) coincided with the measurement direction (MD direction, TD direction), and in an atmosphere of 23 ° C. and 50% humidity, A. Co., Ltd. Using the And Day UNIVERSAL TESTING MACHINE STB-1225, a tensile test is performed with a grip interval of 60 mm and a tensile speed of 5 mm / min, and Young's modulus (MD direction, TD direction) is measured from the tangent line at the zero point of the tensile-stress curve. bottom.
(8)加熱収縮率(単位:%)
 長軸がMD方向と平行になるように、A4サイズ(縦297mm×横210mm)のフィルムを二軸延伸フィルムから採取し、MD方向およびTD方向にそれぞれ200mmの標線を引き、150℃のオーブン中に吊るして30分間保持した。その後、フィルムを取り出し、室温にて30分間冷却した後に、各標線長さを測定した。各方向に対する加熱収縮率を、次の計算式から算出した。
 
 加熱収縮率(%)={(200-加熱後の標線長さ(mm))/200}×100
 
 加熱収縮率が小さいほど、高温下での寸法安定性に優れることを示す。
(8) Heat shrinkage rate (unit:%)
An A4 size (length 297 mm x width 210 mm) film is taken from a biaxially stretched film so that the long axis is parallel to the MD direction, and 200 mm marking lines are drawn in the MD and TD directions, respectively, and an oven at 150 ° C. It was hung inside and held for 30 minutes. Then, the film was taken out and cooled at room temperature for 30 minutes, and then the length of each marked line was measured. The heating shrinkage rate in each direction was calculated from the following formula.

Heat shrinkage rate (%) = {(200-marked line length after heating (mm)) / 200} x 100

The smaller the heat shrinkage rate, the better the dimensional stability at high temperature.
(9)配向度(単位:なし)
 二軸延伸フィルムの配向度は、鞠谷雄士、伊藤浩志、「プラスチック成形品の高次構造解析入門」、第72-74頁、プラスチック成形加工学会編、日刊工業新聞社(2006)に記載の方法に従って、セナルモン法を用いたリタデーション測定から算出した。波長632.8nm、532nm、473nmのレーザー光を用いて、二軸延伸フィルムのMD方向を回転軸として、二軸延伸フィルムを-40~40°まで10°刻みで回転させる条件で、各波長、各回転角でのリタデーションを得た。得られたリタデーションの値からMD方向の屈折率(NMD)、TD方向の屈折率(NTD)、ND方向の屈折率(NND)を算出した。ここで、次の計算式で表される平均の屈折率(Nave)は1.48とした。
 
 Nave=(NMD+NTD+NND)/3
 
(9) Degree of orientation (unit: none)
The degree of orientation of the biaxially stretched film is described in Yuji Kumatani, Hiroshi Ito, "Introduction to Higher-order Structural Analysis of Plastic Molded Products", pp. 72-74, edited by the Plastic Molding and Processing Society, Nikkan Kogyo Shimbun (2006). Therefore, it was calculated from the retardation measurement using the Senalmon method. Using laser light with wavelengths of 632.8 nm, 532 nm, and 473 nm, each wavelength, under the condition that the biaxially stretched film is rotated in 10 ° increments from -40 to 40 ° with the MD direction of the biaxially stretched film as the axis of rotation. A retardation was obtained at each rotation angle. From the obtained retardation values, the refractive index in the MD direction ( NMD ), the refractive index in the TD direction (NTD), and the refractive index in the ND direction ( NND ) were calculated. Here, the average refractive index ( Nave ) represented by the following formula is 1.48.

Nave = (NMD + NTD + NND ) / 3
 得られた各方向の屈折率NMD、NTD、NNDから、次の計算式により、MD方向の配向度(fMD)、TD方向の配向度(fTD)、ND方向の配向度(fND)を算出した。ここで、ポリプロピレンの固有複屈折(Δn)は0.04とした。
 
Figure JPOXMLDOC01-appb-I000001
 
From the obtained refractive indexes N MD , N TD , and N N D in each direction, the degree of orientation in the MD direction (f MD ), the degree of orientation in the TD direction (f TD ), and the degree of orientation in the ND direction (f TD) are calculated by the following formulas. f ND ) was calculated. Here, the intrinsic birefringence (Δn 0 ) of polypropylene was set to 0.04.

Figure JPOXMLDOC01-appb-I000001
(10)MD/TD配向度差(単位:なし)
 MD/TD配向度差は以下の式により定義した。
 
 MD/TD配向度差=fTD-fMD
 
(10) MD / TD orientation difference (unit: none)
The difference in MD / TD orientation was defined by the following formula.

MD / TD orientation difference = f TD -f MD
(11)密度(単位:g/cm
 二軸延伸フィルムの密度は、JIS K7112-1999に記載のD法(水/エタノール)に従って、密度勾配管法により測定した。
(11) Density (Unit: g / cm 3 )
The density of the biaxially stretched film was measured by the density gradient tube method according to the D method (water / ethanol) described in JIS K7112-1999.
 実施例および比較例で用いた各成分は、以下のとおりである。 The components used in the examples and comparative examples are as follows.
<プロピレン系重合体中間組成物1>
 チーグラー・ナッタ型触媒と、助触媒としてトリエチルアルミニウム、外部ドナーとしてシクロヘキシルエチルジメトキシシランを用いて、気相重合法により、水素濃度0.14mol%の環境下で、プロピレンを重合し、プロピレン系重合体1を得た。得られたプロピレン系重合体1の100質量部に対して、DHT-4C(中和剤、協和化学工業株式会社製)0.01質量部、IRGANOX1010(酸化防止剤、BASFジャパン株式会社製)0.09質量部、スミライザーGP(酸化防止剤、住友化学株式会社製)0.05質量部を配合した後、溶融押出を行って、ペレット状のプロピレン系重合体中間組成物1を得た。得られたプロピレン系重合体中間組成物1のMFRは2.3g/10分、CXSは0.4質量%、[mmmm]は98.2%、最大メソ連鎖長は84であった。
<Propene-based polymer intermediate composition 1>
Using a Ziegler-Natta type catalyst, triethylaluminum as a co-catalyst, and cyclohexylethyldimethoxysilane as an external donor, propylene is polymerized in an environment with a hydrogen concentration of 0.14 mol% by a vapor phase polymerization method to polymerize a propylene-based polymer. I got 1. 0.01 parts by mass of DHT-4C (neutralizing agent, manufactured by Kyowa Chemical Industry Co., Ltd.), IRGANOX1010 (antioxidant, manufactured by BASF Japan Co., Ltd.) 0 with respect to 100 parts by mass of the obtained propylene-based polymer 1. After blending .09 parts by mass and 0.05 parts by mass of Sumilyzer GP (antioxidant, manufactured by Sumitomo Chemical Co., Ltd.), melt extrusion was performed to obtain a pellet-shaped propylene-based polymer intermediate composition 1. The MFR of the obtained propylene-based polymer intermediate composition 1 was 2.3 g / 10 minutes, CXS was 0.4% by mass, [mm mm] was 98.2%, and the maximum meso-chain length was 84.
<プロピレン系重合体中間組成物2>
 チーグラー・ナッタ型触媒と、助触媒としてトリエチルアルミニウム、外部ドナーとしてn-プロピルメチルジメトキシシランとシクロヘキシルエチルジメトキシシランを用いて、気相重合法により、水素濃度0.06mol%の環境下でプロピレンを重合し、プロピレン系重合体2を得た。得られたプロピレン系重合体2の100質量%に対して、ステアリン酸カルシウム(中和剤、堺化学工業株式会社製)0.05質量部、DHT-4C(中和剤、協和化学工業株式会社製)0.005質量部、IRGANOX1010(酸化防止剤、BASFジャパン株式会社製)0.15質量部、IRGAFOS168(酸化防止剤、BASFジャパン株式会社製)0.10質量部を配合した後、溶融押出を行って、ペレット状のプロピレン系重合体中間組成物2を得た。プロピレン系重合体中間組成物2のMFRは2.2g/10分、CXSは2.9質量%、[mmmm]は92.4%、最大メソ連鎖長は79であった。
<Propene-based polymer intermediate composition 2>
Using a Ziegler-Natta type catalyst, triethylaluminum as a co-catalyst, and n-propylmethyldimethoxysilane and cyclohexylethyldimethoxysilane as external donors, propylene is polymerized in an environment with a hydrogen concentration of 0.06 mol% by a vapor phase polymerization method. Then, a propylene-based polymer 2 was obtained. 0.05 parts by mass of calcium stearate (neutralizing agent, manufactured by Sakai Chemical Industry Co., Ltd.) and DHT-4C (neutralizing agent, manufactured by Kyowa Chemical Industry Co., Ltd.) with respect to 100% by mass of the obtained propylene-based polymer 2. ) 0.005 part by mass, IRGANOX1010 (antioxidant, manufactured by BASF Japan Co., Ltd.) 0.15 part by mass, IRGAFOS168 (antioxidant, manufactured by BASF Japan Co., Ltd.) 0.10 part by mass, and then melt extrusion. This was carried out to obtain a pellet-shaped propylene-based polymer intermediate composition 2. The MFR of the propylene-based polymer intermediate composition 2 was 2.2 g / 10 minutes, the CXS was 2.9% by mass, the [mmmm] was 92.4%, and the maximum meso-chain length was 79.
<プロピレン系重合体中間組成物3>
 上記のプロピレン系重合体中間組成物1(50質量部)と上記のプロピレン系重合体中間組成物2(50質量部)とをヘンシェルミキサーを用いて混合した後、溶融押出を行って、ペレット状のプロピレン系重合体中間組成物3を得た。得られたプロピレン系重合体中間組成物3のMFRは2.3g/10分、CXSは2.1質量%、[mmmm]は95.5%、最大メソ連鎖長は84であった。
<Propylene-based polymer intermediate composition 3>
The above-mentioned propylene-based polymer intermediate composition 1 (50 parts by mass) and the above-mentioned propylene-based polymer intermediate composition 2 (50 parts by mass) are mixed using a Henshell mixer, and then melt-extruded to form pellets. The propylene-based polymer intermediate composition 3 of the above was obtained. The MFR of the obtained propylene-based polymer intermediate composition 3 was 2.3 g / 10 minutes, CXS was 2.1% by mass, [mm mm] was 95.5%, and the maximum meso-chain length was 84.
<β晶核剤マスターバッチ>
 チーグラー・ナッタ型触媒と、助触媒としてトリエチルアルミニウム、外部ドナーとしてシクロヘキシルエチルジメトキシシランを用いて、気相重合法により、水素濃度0.95mol%の環境下でプロピレンを重合し、プロピレン系重合体3を得た。得られたプロピレン系重合体3の95質量部に対して、NU-100(β晶核剤、新日本理化株式会社製)5質量部、DHT-4C(中和剤、協和化学工業株式会社製)0.005質量部、IRGANOX1010(酸化防止剤、BASFジャパン株式会社製)0.09質量部、スミライザーGP(酸化防止剤、住友化学株式会社製)0.05質量部を配合した後、溶融押出を行って、ペレット状のβ晶核剤マスターバッチを得た。
<Β crystal nucleating agent masterbatch>
Using a Ziegler-Natta type catalyst, triethylaluminum as a co-catalyst, and cyclohexylethyldimethoxysilane as an external donor, propylene is polymerized in an environment with a hydrogen concentration of 0.95 mol% by a vapor phase polymerization method to polymerize the propylene-based polymer 3. Got 5 parts by mass of NU-100 (β crystal nucleating agent, manufactured by Shin Nihon Rika Co., Ltd.) and DHT-4C (neutralizing agent, manufactured by Kyowa Chemical Industry Co., Ltd.) with respect to 95 parts by mass of the obtained propylene-based polymer 3. ) 0.005 parts by mass, IRGANOX1010 (antioxidant, manufactured by BASF Japan Co., Ltd.) 0.09 parts by mass, and Smilizer GP (antioxidant, manufactured by Sumitomo Chemical Co., Ltd.) 0.05 parts by mass, and then melt-extruded. Was carried out to obtain a pellet-shaped β-crystal nucleating agent master batch.
<実施例1>
 プロピレン系重合体中間組成物1(99.5質量部)とβ晶核剤マスターバッチ(0.5質量部)とをヘンシェルミキサーを用いて混合した後、溶融押出を行って、プロピレン系重合体組成物11を作製した。プロピレン系重合体組成物11中のβ晶核剤の濃度は、250質量ppmとした。プロピレン系重合体組成物11を溶融押出して得られたペレットのMFRは2.2g/10分、CXSは0.7質量%、[mmmm]は98.2%であった。このプロピレン系重合体組成物11を、スクリュー径65mmφの押出機を備えたTダイ製膜機を用いて、樹脂温度260℃で加熱溶融し、30℃の冷却ロール上に押し出すことにより、未延伸シートを得た。得られた未延伸シートを、142℃に加熱した延伸ロールを用いて、MD方向に5倍に延伸することにより、一軸延伸フィルムを得た。得られた一軸延伸フィルムの両側端を、MD方向に沿って並んだ2列のチャックで掴み、170℃に加熱した加熱炉内にて、上記2列のチャック間隔をTD方向に広げることにより、一軸延伸フィルムをTD方向に8倍に延伸し、その後165℃に加熱した加熱炉内にて、上記2列のチャック間隔を狭めて、TD方向に19.5%緩和することにより、二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を表1および表2に示す。
<Example 1>
A propylene-based polymer intermediate composition 1 (99.5 parts by mass) and a β-crystal nucleating agent masterbatch (0.5 parts by mass) are mixed using a Henschel mixer, and then melt-extruded to obtain a propylene-based polymer. The composition 11 was prepared. The concentration of the β crystal nucleating agent in the propylene-based polymer composition 11 was 250 mass ppm. The MFR of the pellet obtained by melt-extruding the propylene-based polymer composition 11 was 2.2 g / 10 minutes, the CXS was 0.7% by mass, and the [mm mm] was 98.2%. This propylene-based polymer composition 11 is heated and melted at a resin temperature of 260 ° C. using a T-die film forming machine equipped with an extruder having a screw diameter of 65 mmφ, and is extruded onto a cooling roll at 30 ° C. to be unstretched. I got a sheet. The obtained unstretched sheet was stretched 5 times in the MD direction using a stretching roll heated to 142 ° C. to obtain a uniaxially stretched film. By grasping both ends of the obtained uniaxially stretched film with two rows of chucks arranged along the MD direction and widening the distance between the two rows of chucks in the TD direction in a heating furnace heated to 170 ° C. The uniaxially stretched film is stretched 8 times in the TD direction, and then in a heating furnace heated to 165 ° C., the chuck spacing between the two rows is narrowed and relaxed by 19.5% in the TD direction to stretch the uniaxially stretched film. I got a film. Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
<実施例2>
 プロピレン系重合体中間組成物1の含有量を99.5質量部から99.4質量部に変更し、β晶核剤マスターバッチの含有量を0.5質量部から0.6質量部に変更して、プロピレン系重合体組成物12を作製した以外は、実施例1と同様にして、二軸延伸フィルムを得た。プロピレン系重合体組成物12中のβ晶核剤の濃度は、300質量ppmとした。プロピレン系重合体組成物12を溶融押出して得られたペレットのMFRは2.2g/10分、CXSは0.6質量%、[mmmm]は98.2%であった。得られた二軸延伸フィルムの製造条件および物性の測定値を表1および表2に示す。
<Example 2>
The content of the propylene-based polymer intermediate composition 1 was changed from 99.5 parts by mass to 99.4 parts by mass, and the content of the β crystal nucleating agent masterbatch was changed from 0.5 parts by mass to 0.6 parts by mass. A biaxially stretched film was obtained in the same manner as in Example 1 except that the propylene-based polymer composition 12 was prepared. The concentration of the β crystal nucleating agent in the propylene-based polymer composition 12 was set to 300 mass ppm. The MFR of the pellet obtained by melt-extruding the propylene-based polymer composition 12 was 2.2 g / 10 minutes, the CXS was 0.6% by mass, and the [mmmm] was 98.2%. Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
<実施例3>
 プロピレン系重合体中間組成物1の含有量を99.5質量部から99.2質量部に変更し、β晶核剤マスターバッチの含有量を0.5質量部から0.8質量部に変更して、プロピレン系重合体組成物13を作製した以外は、実施例1と同様にして、二軸延伸フィルムを得た。プロピレン系重合体組成物13中のβ晶核剤の濃度は、400質量ppmとした。プロピレン系重合体組成物13を溶融押出して得られたペレットのMFRは2.2g/10分、CXSは0.6質量%、[mmmm]は98.3%であった。得られた二軸延伸フィルムの製造条件および物性の測定値を表1および表2に示す。
<Example 3>
The content of the propylene-based polymer intermediate composition 1 was changed from 99.5 parts by mass to 99.2 parts by mass, and the content of the β crystal nucleating agent masterbatch was changed from 0.5 parts by mass to 0.8 parts by mass. A biaxially stretched film was obtained in the same manner as in Example 1 except that the propylene-based polymer composition 13 was prepared. The concentration of the β crystal nucleating agent in the propylene-based polymer composition 13 was 400 mass ppm. The MFR of the pellet obtained by melt-extruding the propylene-based polymer composition 13 was 2.2 g / 10 minutes, the CXS was 0.6% by mass, and the [mmmm] was 98.3%. Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
<実施例4>
 プロピレン系重合体組成物13を、スクリュー径65mmφの押出機を備えたTダイ製膜機を用いて、樹脂温度260℃で加熱溶融し、30℃の冷却ロール上に押し出すことにより、未延伸シートを得た。得られた未延伸シートを、152℃に加熱した延伸ロールを用いて、MD方向に5倍に延伸することにより、一軸延伸フィルムを得た。得られた一軸延伸フィルムの両側端を、MD方向に沿って並んだ2列のチャックで掴み、170℃に加熱した加熱炉内にて、上記2列のチャック間隔をTD方向に広げることにより、一軸延伸フィルムをTD方向に8倍に延伸し、その後165℃に加熱した加熱炉内にて、上記2列のチャック間隔を狭めて、TD方向に19.5%緩和することにより、二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を表1および表2に示す。
<Example 4>
The propylene-based polymer composition 13 is heated and melted at a resin temperature of 260 ° C. using a T-die film forming machine equipped with an extruder having a screw diameter of 65 mmφ, and extruded onto a cooling roll at 30 ° C. to form an unstretched sheet. Got The obtained unstretched sheet was stretched 5 times in the MD direction using a stretching roll heated to 152 ° C. to obtain a uniaxially stretched film. By grasping both ends of the obtained uniaxially stretched film with two rows of chucks arranged along the MD direction and widening the distance between the two rows of chucks in the TD direction in a heating furnace heated to 170 ° C. The uniaxially stretched film is stretched 8 times in the TD direction, and then in a heating furnace heated to 165 ° C., the chuck spacing between the two rows is narrowed and relaxed by 19.5% in the TD direction to stretch the uniaxially stretched film. I got a film. Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
<比較例1>
 プロピレン系重合体中間組成物1の含有量を99.5質量部から99.9質量部に変更し、β晶核剤マスターバッチの含有量を0.5質量部から0.1質量部に変更して、プロピレン系重合体組成物C11を作製した以外は、実施例1と同様にして、二軸延伸フィルムを得た。プロピレン系重合体組成物C11中のβ晶核剤の濃度は、50質量ppmとした。プロピレン系重合体組成物C11を溶融押出して得られたペレットのMFRは2.2g/10分、CXSは0.6質量%、[mmmm]は98.3%であった。得られた二軸延伸フィルムの製造条件および物性の測定値を表1および表2に示す。
<Comparative Example 1>
The content of the propylene-based polymer intermediate composition 1 was changed from 99.5 parts by mass to 99.9 parts by mass, and the content of the β crystal nucleating agent masterbatch was changed from 0.5 parts by mass to 0.1 parts by mass. A biaxially stretched film was obtained in the same manner as in Example 1 except that the propylene-based polymer composition C11 was prepared. The concentration of the β crystal nucleating agent in the propylene-based polymer composition C11 was 50 mass ppm. The MFR of the pellet obtained by melt-extruding the propylene-based polymer composition C11 was 2.2 g / 10 minutes, the CXS was 0.6% by mass, and the [mmmm] was 98.3%. Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
<比較例2>
 プロピレン系重合体中間組成物1(99.0質量部)とβ晶核剤マスターバッチ(1.0質量部)とをヘンシェルミキサーを用いて混合した後、溶融押出を行って、プロピレン系重合体組成物C12を作製した。プロピレン系重合体組成物C12中のβ晶核剤の濃度は、500質量ppmとした。プロピレン系重合体組成物C12を溶融押出して得られたペレットのMFRは2.2g/10分、CXSは0.6質量%、[mmmm]は98.4%であった。このプロピレン系重合体組成物C12を、スクリュー径65mmφの押出機を備えたTダイ製膜機を用いて、樹脂温度260℃で加熱溶融し、30℃の冷却ロール上に押し出すことにより、未延伸シートを得た。得られた未延伸シートを、152℃に加熱した延伸ロールを用いて、MD方向に5倍に延伸することにより、一軸延伸フィルムを得た。得られた一軸延伸フィルムの両側端を、MD方向に沿って並んだ2列のチャックで掴み、170℃に加熱した加熱炉内にて、上記2列のチャック間隔をTD方向に広げることにより、一軸延伸フィルムをTD方向に8倍に延伸し、その後165℃に加熱した加熱炉内にて、上記2列のチャック間隔を狭めて、TD方向に13%緩和することにより、二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を表1および表2に示す。
<Comparative Example 2>
A propylene-based polymer intermediate composition 1 (99.0 parts by mass) and a β-crystal nucleating agent masterbatch (1.0 part by mass) are mixed using a Henschel mixer, and then melt-extruded to obtain a propylene-based polymer. The composition C12 was prepared. The concentration of the β crystal nucleating agent in the propylene-based polymer composition C12 was 500 mass ppm. The MFR of the pellet obtained by melt-extruding the propylene-based polymer composition C12 was 2.2 g / 10 minutes, the CXS was 0.6% by mass, and the [mmmm] was 98.4%. This propylene-based polymer composition C12 is heated and melted at a resin temperature of 260 ° C. using a T-die film forming machine equipped with an extruder having a screw diameter of 65 mmφ, and is extruded onto a cooling roll at 30 ° C. to be unstretched. I got a sheet. The obtained unstretched sheet was stretched 5 times in the MD direction using a stretching roll heated to 152 ° C. to obtain a uniaxially stretched film. By grasping both ends of the obtained uniaxially stretched film with two rows of chucks arranged along the MD direction and widening the distance between the two rows of chucks in the TD direction in a heating furnace heated to 170 ° C. The uniaxially stretched film is stretched 8 times in the TD direction, and then in a heating furnace heated to 165 ° C., the chuck spacing between the two rows is narrowed and the biaxially stretched film is relaxed by 13% in the TD direction. Obtained. Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
<比較例3>
 プロピレン系重合体中間組成物1をプロピレン系重合体中間組成物3に変更し、プロピレン系重合体組成物C13を作製した以外は、実施例2と同様にして、二軸延伸フィルムを得た。プロピレン系重合体組成物C13中のβ晶核剤の濃度は、300質量ppmとした。プロピレン系重合体組成物C13を溶融押出して得られたペレットのMFRは2.1g/10分、CXSは1.8質量%、[mmmm]は95.7%であった。得られた二軸延伸フィルムの製造条件および物性の測定値を表1および表2に示す。
<Comparative Example 3>
A biaxially stretched film was obtained in the same manner as in Example 2 except that the propylene-based polymer intermediate composition 1 was changed to the propylene-based polymer intermediate composition 3 to prepare the propylene-based polymer composition C13. The concentration of the β crystal nucleating agent in the propylene-based polymer composition C13 was set to 300 mass ppm. The MFR of the pellet obtained by melt-extruding the propylene-based polymer composition C13 was 2.1 g / 10 minutes, the CXS was 1.8% by mass, and the [mm mm] was 95.7%. Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
<比較例4>
 プロピレン系重合体中間組成物1を、スクリュー径65mmφの押出機を備えたTダイ製膜機を用いて、樹脂温度260℃で加熱溶融し、30℃の冷却ロール上に押し出すことにより、未延伸シートを得た。得られた未延伸シートを、152℃に加熱した延伸ロールを用いて、MD方向に5倍に延伸することにより、一軸延伸フィルムを得た。得られた一軸延伸フィルムの両側端を、MD方向に沿って並んだ2列のチャックで掴み、170℃に加熱した加熱炉内にて、上記2列のチャック間隔をTD方向に広げることにより、一軸延伸フィルムをTD方向に8倍し、その後、165℃に加熱した加熱炉内にて、上記2列のチャック間隔を狭めて、該TD方向に19.5%緩和することにより、二軸延伸フィルムを得た。得られた二軸延伸フィルムの製造条件および物性の測定値を表1および表2に示す。
<Comparative Example 4>
The propylene-based polymer intermediate composition 1 is heated and melted at a resin temperature of 260 ° C. using a T-die film forming machine equipped with an extruder having a screw diameter of 65 mmφ, and is extruded onto a cooling roll at 30 ° C. to be unstretched. I got a sheet. The obtained unstretched sheet was stretched 5 times in the MD direction using a stretching roll heated to 152 ° C. to obtain a uniaxially stretched film. By grasping both ends of the obtained uniaxially stretched film with two rows of chucks arranged along the MD direction and widening the distance between the two rows of chucks in the TD direction in a heating furnace heated to 170 ° C. The uniaxially stretched film is multiplied by 8 in the TD direction, and then in a heating furnace heated to 165 ° C., the chuck spacing between the two rows is narrowed and relaxed by 19.5% in the TD direction to stretch the uniaxially stretched film. I got a film. Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained biaxially stretched film.
<比較例5>
 プロピレン系重合体中間組成物1(98.0質量部)とβ晶核剤マスターバッチ(2.0質量部)とをヘンシェルミキサーを用いて混合した後、溶融押出を行って、プロピレン系重合体組成物C14を作製した。プロピレン系重合体組成物C14中のβ晶核剤の濃度は、1000質量ppmとした。プロピレン系重合体組成物C14を溶融押出して得られたペレットのMFRは2.2g/10分、CXSは0.6質量%、[mmmm]は98.2%であった。このプロピレン系重合体組成物C13を、スクリュー径20mmφの押出機を備えたTダイ製膜機を用いて、樹脂温度250℃で加熱溶融し、90℃の冷却ロール上に押し出すことにより、厚さ1.0mmの未延伸シートを得た。得られた未延伸シートの四辺をチャックで掴み、140℃に加熱した加熱炉内にて3分間予熱した後、MD方向およびTD方向を同時に2倍に延伸した。その後、加熱炉内を160℃に昇温して3分予熱した後、トータル延伸倍率が、MD方向およびTD方向を同時に6.5倍となるよう、さらに延伸することにより、同時二軸延伸フィルムを得た。得られた同時二軸延伸フィルムの製造条件および物性の測定値を表1および表2に示す。
<Comparative Example 5>
A propylene-based polymer intermediate composition 1 (98.0 parts by mass) and a β-crystal nucleating agent masterbatch (2.0 parts by mass) are mixed using a Henschel mixer, and then melt-extruded to obtain a propylene-based polymer. The composition C14 was prepared. The concentration of the β crystal nucleating agent in the propylene-based polymer composition C14 was 1000 mass ppm. The MFR of the pellet obtained by melt-extruding the propylene-based polymer composition C14 was 2.2 g / 10 minutes, the CXS was 0.6% by mass, and the [mmmm] was 98.2%. This propylene-based polymer composition C13 is heated and melted at a resin temperature of 250 ° C. using a T-die film forming machine equipped with an extruder having a screw diameter of 20 mmφ, and extruded onto a cooling roll at 90 ° C. to obtain a thickness. An unstretched sheet of 1.0 mm was obtained. The four sides of the obtained unstretched sheet were grasped with a chuck, preheated in a heating furnace heated to 140 ° C. for 3 minutes, and then stretched twice in the MD direction and the TD direction at the same time. After that, the temperature inside the heating furnace was raised to 160 ° C. and preheated for 3 minutes, and then the film was further stretched so that the total stretching ratio was 6.5 times in the MD direction and the TD direction at the same time. Got Tables 1 and 2 show the production conditions and the measured values of the physical properties of the obtained simultaneous biaxially stretched film.
 表2から、実施例の二軸延伸フィルムは、比較例の二軸延伸フィルムに対して、TDヤング率が高く、且つTD加熱収縮率が低いものであり、これらのバランスに優れたものであることがわかる。 From Table 2, the biaxially stretched film of the example has a high TD Young's modulus and a low TD heat shrinkage rate as compared with the biaxially stretched film of the comparative example, and is excellent in the balance between them. You can see that.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 本発明によれば、比較的高い引張弾性率(ヤング率)を有すると共に、TD方向において比較的低い加熱収縮率を有する二軸延伸フィルムを製造しうるプロピレン系重合体組成物、該プロピレン系重合体組成物を用いた二軸延伸フィルム、および該二軸延伸フィルムを用いた包装袋を提供することができる。 According to the present invention, a propylene-based polymer composition capable of producing a biaxially stretched film having a relatively high tensile elastic modulus (Young's modulus) and a relatively low heat shrinkage in the TD direction, the propylene-based weight. A biaxially stretched film using the combined composition and a packaging bag using the biaxially stretched film can be provided.

Claims (12)

  1.  プロピレン系重合体と、β晶核剤とを含有するプロピレン系重合体組成物であって、
     温度230℃、荷重21.18Nで測定されるメルトフローレートが1g/10分~5g/10分であり、
     冷キシレン可溶部量が0.1質量%~1.0質量%であり、
     β晶核剤の濃度が100質量ppm以上500質量ppm未満である、プロピレン系重合体組成物。
    A propylene-based polymer composition containing a propylene-based polymer and a β-crystal nucleating agent.
    The melt flow rate measured at a temperature of 230 ° C. and a load of 21.18 N is 1 g / 10 minutes to 5 g / 10 minutes.
    The amount of the soluble part of cold xylene is 0.1% by mass to 1.0% by mass,
    A propylene-based polymer composition having a β-crystal nucleating agent having a concentration of 100% by mass or more and less than 500% by mass.
  2.  前記β晶核剤の濃度が250質量ppm~450質量ppmである、請求項1に記載のプロピレン系重合体組成物。 The propylene-based polymer composition according to claim 1, wherein the concentration of the β-crystal nucleating agent is 250 mass ppm to 450 mass ppm.
  3.  前記メルトフローレートが1.8g/10分~2.8g/10分である、請求項1または2に記載のプロピレン系重合体組成物。 The propylene-based polymer composition according to claim 1 or 2, wherein the melt flow rate is 1.8 g / 10 minutes to 2.8 g / 10 minutes.
  4.  アイソタクチック・ペンタッド分率が97%~99%である、請求項1~3のいずれか一項に記載のプロピレン系重合体組成物。 The propylene-based polymer composition according to any one of claims 1 to 3, wherein the isotactic pentad fraction is 97% to 99%.
  5.  プロピレン系重合体の最大メソ連鎖長が80以上である、請求項1~4のいずれか一項に記載のプロピレン系重合体組成物。 The propylene-based polymer composition according to any one of claims 1 to 4, wherein the maximum meso-chain length of the propylene-based polymer is 80 or more.
  6.  前記β晶核剤が、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド、N,N’-ジシクロヘキシルテレフタルアミドおよびN,N’-ジフェニルヘキサンジアミドからなる群から選ばれる少なくとも1種である、請求項1~5のいずれか一項に記載のプロピレン系重合体組成物。 The β-crystal nucleating agent is at least one selected from the group consisting of N, N'-dicyclohexyl-2,6-naphthalenedicarboxamide, N, N'-dicyclohexylterephthalamide and N, N'-diphenylhexanediamide. The propylene-based polymer composition according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか一項に記載のプロピレン系重合体組成物を含有する二軸延伸フィルム。 A biaxially stretched film containing the propylene-based polymer composition according to any one of claims 1 to 6.
  8.  プロピレン系重合体と、β晶核剤とを含有し、下記要件(1)および(2)を満たすプロピレン系重合体組成物を含有し、
     下記要件(3)および(4)を満たす二軸延伸フィルム。

    (1)温度230℃、荷重21.18Nで測定されるメルトフローレートが1g/10分~30g/10分である。
    (2)冷キシレン可溶部量が0.1質量%~1.0質量%である。
    (3)複屈折率から算出されるND方向の配向度が、-0.30以下である。
    (4)複屈折率から算出されるMD方向の配向度とTD方向の配向度との差が、0.10~1.00である。
    A propylene-based polymer composition containing a propylene-based polymer and a β-crystal nucleating agent and satisfying the following requirements (1) and (2) is contained.
    A biaxially stretched film that meets the following requirements (3) and (4).

    (1) The melt flow rate measured at a temperature of 230 ° C. and a load of 21.18 N is 1 g / 10 minutes to 30 g / 10 minutes.
    (2) The amount of the soluble part of cold xylene is 0.1% by mass to 1.0% by mass.
    (3) The degree of orientation in the ND direction calculated from the birefringence is −0.30 or less.
    (4) The difference between the degree of orientation in the MD direction and the degree of orientation in the TD direction calculated from the birefringence is 0.10 to 1.00.
  9.  密度が0.900g/cm~0.912g/cmである、請求項8に記載の二軸延伸フィルム The biaxially stretched film according to claim 8, which has a density of 0.900 g / cm 3 to 0.912 g / cm 3 .
  10.  プロピレン系重合体と、β晶核剤とを含有し、下記要件(1)および(2)を満たすプロピレン系重合体組成物を、加熱溶融して冷却ロール上に押し出すことにより未延伸シートを得る工程と、
     得られた未延伸シートを、MD方向に3倍~12倍することにより一軸延伸フィルムを得る工程と、
     得られた一軸延伸フィルムをTD方向に4倍~20倍に延伸した後、該TD方向に1%~30%緩和することにより二軸延伸フィルムを得る工程と、
    を含む、二軸延伸フィルムの製造方法。

    (1)温度230℃、荷重21.18Nで測定されるメルトフローレートが1g/10分~30g/10分である。
    (2)冷キシレン可溶部量が0.1質量%~1.0質量%である。
    An unstretched sheet is obtained by heating and melting a propylene-based polymer composition containing a propylene-based polymer and a β-crystal nucleating agent and satisfying the following requirements (1) and (2) and extruding it onto a cooling roll. Process and
    A step of obtaining a uniaxially stretched film by multiplying the obtained unstretched sheet 3 to 12 times in the MD direction.
    A step of obtaining a biaxially stretched film by stretching the obtained uniaxially stretched film 4 to 20 times in the TD direction and then relaxing by 1% to 30% in the TD direction.
    A method for producing a biaxially stretched film.

    (1) The melt flow rate measured at a temperature of 230 ° C. and a load of 21.18 N is 1 g / 10 minutes to 30 g / 10 minutes.
    (2) The amount of the soluble part of cold xylene is 0.1% by mass to 1.0% by mass.
  11.  前記未延伸シートを得る工程で用いる冷却ロールの温度が10℃~60℃であり、
     前記一軸延伸フィルムを得る工程で用いる延伸ロールの温度が110℃~150℃であり、
     前記二軸延伸フィルムを得る工程において延伸および緩和する際の加熱温度が150℃~200℃である、
    請求項10に記載の二軸延伸フィルムの製造方法。
    The temperature of the cooling roll used in the step of obtaining the unstretched sheet is 10 ° C to 60 ° C.
    The temperature of the stretched roll used in the step of obtaining the uniaxially stretched film is 110 ° C. to 150 ° C.
    The heating temperature for stretching and relaxing in the step of obtaining the biaxially stretched film is 150 ° C. to 200 ° C.
    The method for producing a biaxially stretched film according to claim 10.
  12.  請求項7~9のいずれか一項に記載の二軸延伸フィルムを含む包装袋。 A packaging bag containing the biaxially stretched film according to any one of claims 7 to 9.
PCT/JP2021/031320 2020-10-30 2021-08-26 Propylene-based polymer composition, biaxially stretched film, method for manufacturing biaxially stretched film, and packaging bag WO2022091548A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021559934A JPWO2022091548A1 (en) 2020-10-30 2021-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-183134 2020-10-30
JP2020183134 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022091548A1 true WO2022091548A1 (en) 2022-05-05

Family

ID=81382309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031320 WO2022091548A1 (en) 2020-10-30 2021-08-26 Propylene-based polymer composition, biaxially stretched film, method for manufacturing biaxially stretched film, and packaging bag

Country Status (2)

Country Link
JP (1) JPWO2022091548A1 (en)
WO (1) WO2022091548A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024132283A1 (en) * 2022-12-22 2024-06-27 Sabic Global Technologies B.V. Process for making polypropylene using a selectivity control agent and an activity limiting agent
EP4317269A4 (en) * 2021-03-30 2025-04-09 Sumitomo Chemical Co FILM, METHOD FOR PRODUCING A FILM AND PROPYLENE-BASED POLYMER COMPOSITION

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133388A (en) * 1993-11-09 1995-05-23 Chisso Corp Crystalline propylene polymer composition
JP2012007156A (en) * 2010-05-26 2012-01-12 Toray Ind Inc Porous polypropylene film
JP2012117078A (en) * 2004-04-22 2012-06-21 Toray Ind Inc Microporous polypropylene film and method for producing the same
JP2019056065A (en) * 2017-09-21 2019-04-11 三菱ケミカル株式会社 Method of producing porous resin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133388A (en) * 1993-11-09 1995-05-23 Chisso Corp Crystalline propylene polymer composition
JP2012117078A (en) * 2004-04-22 2012-06-21 Toray Ind Inc Microporous polypropylene film and method for producing the same
JP2012007156A (en) * 2010-05-26 2012-01-12 Toray Ind Inc Porous polypropylene film
JP2019056065A (en) * 2017-09-21 2019-04-11 三菱ケミカル株式会社 Method of producing porous resin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317269A4 (en) * 2021-03-30 2025-04-09 Sumitomo Chemical Co FILM, METHOD FOR PRODUCING A FILM AND PROPYLENE-BASED POLYMER COMPOSITION
WO2024132283A1 (en) * 2022-12-22 2024-06-27 Sabic Global Technologies B.V. Process for making polypropylene using a selectivity control agent and an activity limiting agent

Also Published As

Publication number Publication date
JPWO2022091548A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP6241039B2 (en) Stretched polypropylene film
EP2334732B1 (en) Random copolymer with enhanced ethylene content
US20100081760A1 (en) Film comprising a random copolymer with enhanced ethylene content
WO2007057224A1 (en) Multimodal polypropylene polymer composition
KR20010024527A (en) Polypropylene composition useful for making solid state oriented film
JP7409459B2 (en) Polypropylene laminated film
JP2014055283A (en) Stretched polypropylene film
WO2014024970A1 (en) Polypropylene film
WO2022091548A1 (en) Propylene-based polymer composition, biaxially stretched film, method for manufacturing biaxially stretched film, and packaging bag
WO2022091549A1 (en) Propylene polymer composition, biaxially stretched film and packaging bag
US20020198318A1 (en) Polypropylene-based resin composition, process for producing the same and stretched film containing the same
US6583254B2 (en) Propylene-based polymer and film made of the same
US6699574B2 (en) Polypropylene-based resin composition for stretched film, process for producing the same and stretched film
JP5703051B2 (en) Polypropylene composition and method for producing the same, unstretched polypropylene sheet, biaxially oriented polypropylene film and method for producing the same
WO2009100293A1 (en) Polypropylene/polyisobutylene blends and films prepared from same
JP2021161381A (en) Biaxially stretched film, multilayer film, packaging bag, and manufacturing method of biaxially stretched film
JP2002348423A (en) Polypropylene resin composition for stretched film, method for producing the resin composition, and stretched film
WO2023079785A1 (en) Propylene-based polymer composition, method for producing propylene-based polymer composition, and biaxially oriented film
US7750081B2 (en) Random copolymer with enhanced ethylene content
JP2019155703A (en) Method for producing polyolefin multilayer sheet or film
WO2022209190A1 (en) Film, method for producing film, and propylene-based polymer composition
WO2023139993A1 (en) Propylene-based polymer composition, biaxially stretched film, and packaging bag
US20100081755A1 (en) Method for preparing a random copolymer with enhanced ethylene content
CN110234686A (en) Method for producing the non-oriented film with improved oxygen barrier property
JPH0420542A (en) Production of void-containing stretched molding

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021559934

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885667

Country of ref document: EP

Kind code of ref document: A1