WO2022089327A1 - 光学镜头及成像设备 - Google Patents
光学镜头及成像设备 Download PDFInfo
- Publication number
- WO2022089327A1 WO2022089327A1 PCT/CN2021/125793 CN2021125793W WO2022089327A1 WO 2022089327 A1 WO2022089327 A1 WO 2022089327A1 CN 2021125793 W CN2021125793 W CN 2021125793W WO 2022089327 A1 WO2022089327 A1 WO 2022089327A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical
- object side
- optical lens
- focal length
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Definitions
- the present invention relates to the technical field of lens imaging, in particular to an optical lens and an imaging device.
- wide-angle lenses have the characteristics of short focus and large field of view, which can produce large barrel distortion to create special effects and bring strong visual impact to the observer.
- the wide-angle lens uses the large field of view to obtain more data in a single imaging to capture more scene information.
- the market's requirements for the miniaturization of lenses are getting higher and higher.
- the purpose of the present invention is to provide an optical lens and an imaging device for solving the above problems.
- the present invention provides an optical lens, which sequentially includes from the object side to the imaging plane along the optical axis: a first lens, a second lens, a third lens, a diaphragm, a fourth lens, a fifth lens, a sixth lens lens and seventh lens.
- the first lens has negative refractive power, the object side is convex, and the image side is concave;
- the second lens has negative refractive power, and the object side is convex and the image side is concave;
- the third lens It has positive refractive power, the object side is concave, and the image side is convex;
- the fourth lens has positive refractive power, and its object side and image side are convex;
- the fifth lens has positive refractive power, and its object side is The concave surface and the image side are convex;
- the sixth lens has negative refractive power, and the object side and the image side are concave;
- the seventh lens has negative refractive power, and the object side is convex at the near optical axis,
- the image side surface is concave at the near optical axis, and both the object side surface and the image side surface of the seventh lens have at least one inflection point.
- the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens are all plastic aspherical lenses.
- the optical lens satisfies the following conditional formula: 3.0 ⁇ IH/EPD ⁇ 3.2; wherein, IH represents the maximum half image height on the imaging plane of the optical lens, and EPD represents the entrance pupil diameter of the optical lens.
- the present invention provides an imaging device, comprising an imaging element and the optical lens provided in the first aspect, where the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
- the optical lens and imaging device provided by the present invention can meet the requirements of high pixels and at the same time have a better structure by reasonably matching the shape of the lens among the seven lenses with specific refractive power and a reasonable combination of refractive power. It is compact, thereby better realizing the miniaturization of the wide-angle lens and the balance of high pixels.
- the optical lens provided by the present invention can be matched with a chip of 48 million pixels, which can effectively improve the camera experience of users.
- FIG. 1 is a schematic structural diagram of an optical lens provided by the present invention.
- Fig. 2 shows the field curvature curve diagram of the optical lens provided by the first embodiment of the present invention
- Fig. 3 shows the f- ⁇ distortion curve diagram of the optical lens provided by the first embodiment of the present invention
- Fig. 4 shows the vertical axis chromatic aberration curve diagram of the optical lens provided by the first embodiment of the present invention
- Fig. 5 shows the axial chromatic aberration curve diagram of the optical lens provided by the first embodiment of the present invention
- Fig. 6 shows the field curvature curve diagram of the optical lens provided by the second embodiment of the present invention.
- Fig. 7 shows the f- ⁇ distortion curve diagram of the optical lens provided by the second embodiment of the present invention.
- Fig. 8 shows the vertical axis chromatic aberration curve diagram of the optical lens provided by the second embodiment of the present invention
- Fig. 9 shows the axial chromatic aberration curve diagram of the optical lens provided by the second embodiment of the present invention.
- Fig. 10 shows the field curvature curve diagram of the optical lens provided by the third embodiment of the present invention.
- Fig. 11 shows the f- ⁇ distortion curve diagram of the optical lens provided by the third embodiment of the present invention.
- Fig. 12 shows the vertical axis chromatic aberration curve diagram of the optical lens provided by the third embodiment of the present invention.
- Fig. 13 shows the axial chromatic aberration curve diagram of the optical lens provided by the third embodiment of the present invention.
- FIG. 14 shows a schematic structural diagram of an imaging device provided by a fourth embodiment of the present invention.
- the optical lens sequentially includes from the object side to the image side along the optical axis: a first lens L1 , a second lens L2 , and a third lens L3 , diaphragm ST, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7 and filter G1, where the image side refers to the side where the imaging plane S17 is located, and the object side is the same as the image side opposite side.
- the first lens L1 has negative refractive power, the object side S1 of the first lens is convex, and the image side S2 of the first lens is concave.
- the second lens L2 has negative refractive power, the object side S3 of the second lens is convex, and the image side S4 of the second lens is concave.
- the third lens L3 has positive refractive power, the object side S5 of the third lens is concave, and the image side S6 of the third lens is convex.
- the fourth lens L4 has positive refractive power, and both the object side S7 of the fourth lens and the image side S8 of the fourth lens are convex.
- the fifth lens L5 has positive refractive power, the object side S9 of the fifth lens is concave, and the image side S10 of the fifth lens is convex.
- the sixth lens L6 has negative refractive power, and both the object side S11 of the sixth lens and the image side S12 of the sixth lens are concave.
- the seventh lens L7 has negative refractive power
- the object side S13 of the seventh lens is convex at the near optical axis and has at least one inflection point
- the image side S14 of the seventh lens is concave at the near optical axis and has at least one Inflection point.
- optical lens satisfies the following conditional formula:
- IH represents the maximum half image height on the imaging plane of the optical lens
- EPD represents the entrance pupil diameter of the optical lens
- the optical lens satisfies the following conditional formula:
- TTL represents the total optical length of the optical lens
- f represents the focal length of the optical lens
- f1 represents the focal length of the first lens
- R1 represents the radius of curvature of the object side surface of the first lens.
- the optical lens may also satisfy the following conditional formula:
- SAG1 represents the edge sag of the object side of the first lens
- SAG1 i represents the sag of any point on the object side of the first lens
- SAG2 i represents the sag of any point on the image side of the first lens
- CT1 represents the sag of the first lens.
- the central thickness, ET1 represents the edge thickness of the first lens.
- the object side of the first lens is usually more prominent, which is easy to cause the surface of the lens to be worn; and when the above conditional expressions (5), (6) and (7) are satisfied, the protrusion of the first lens can be reasonably controlled
- the height of the front end of the lens barrel is conducive to the protection of the optical lens; at the same time, it can ensure that the thickness of the first lens is moderate, which is conducive to reducing the difficulty of correcting field curvature, and making the volume of the optical lens meet the requirement of miniaturization.
- the optical lens may also satisfy the following conditional formula:
- R3 represents the curvature radius of the object side surface of the second lens
- R4 represents the curvature radius of the image side surface of the second lens
- the optical lens may also satisfy the following conditional formula:
- f represents the focal length of the optical lens
- f3 represents the focal length of the third lens
- CT3 represents the center thickness of the third lens
- ET3 represents the edge thickness of the third lens
- SAG5 i represents the sagittal height of any point on the object side of the third lens
- SAG6 i represents the sagittal height of any point on the image side of the third lens.
- the optical lens may also satisfy the following conditional formula:
- f represents the focal length of the optical lens
- f 123 represents the combined focal length of the first lens, the second lens and the third lens.
- the optical lens may also satisfy the following conditional formula:
- f represents the focal length of the optical lens
- f 456 represents the combined focal length of the fourth lens
- f4 represents the focal length of the fourth lens
- f5 represents the focal length of the fifth lens
- f6 represents the focal length of the sixth lens .
- the optical lens may also satisfy the following conditional formula:
- CT45 represents the separation distance between the fourth lens and the fifth lens on the optical axis
- CT56 represents the separation distance between the fifth lens and the sixth lens on the optical axis
- CT67 represents the distance between the sixth lens and the seventh lens on the optical axis interval distance.
- the optical lens may also satisfy the following conditional formula:
- f represents the focal length of the optical lens
- f7 represents the focal length of the seventh lens
- R13 represents the radius of curvature of the object side of the seventh lens
- R14 represents the radius of curvature of the image side of the seventh lens.
- the optical lens may also satisfy the following conditional formula:
- CT7 represents the central thickness of the seventh lens
- TTL represents the total optical length of the optical lens
- SAG13 i represents the sag height of any point on the object side of the seventh lens
- SAG14 i represents the sag height of any point on the image side of the seventh lens.
- the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, and the seventh lens L7 may be aspherical lenses.
- the above Lenses are made of plastic aspherical lenses. The use of aspherical lenses can effectively reduce the number of lenses, correct aberrations, and provide better optical performance.
- the present invention will be further described below with a plurality of embodiments.
- the thickness, radius of curvature, and material selection of each lens in the optical lens are different.
- the following examples are only preferred embodiments of the present invention, but the embodiments of the present invention are not only limited by the following examples, and any other changes, substitutions, combinations or simplifications that do not deviate from the innovations of the present invention, All should be regarded as equivalent replacement modes, and all are included in the protection scope of the present invention.
- each aspherical surface type of the optical lens may satisfy the following equation:
- z is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis
- c is the paraxial curvature radius of the surface
- k is the quadratic surface coefficient
- a 2i is the 2i-order a Spherical coefficient.
- the vertical distance between the inflection point of the object side S13 of the seventh lens and the optical axis is 1.935mm, and the sag relative to the center of the object side S13 of the seventh lens is 0.289mm.
- the vertical distance between the inflection point of the image side S14 and the optical axis is 2.035 mm, and the sag relative to the center of the image side S14 of the seventh lens is 0.371 mm.
- Table 2 shows the surface shape coefficients of each aspherical surface of the optical lens provided by the first embodiment of the present invention.
- FIG. 2 , FIG. 3 , FIG. 4 and FIG. 5 are the field curvature graph, f- ⁇ distortion graph, vertical chromatic aberration graph, and axial chromatic aberration graph of the optical lens according to the first embodiment, respectively.
- the field curvature curve in FIG. 2 represents the degree of curvature of the meridional image plane and the sagittal image plane, the horizontal axis represents the offset (unit: mm), and the vertical axis represents the field angle (unit: degree). It can be seen from Figure 2 that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05mm, indicating that the field curvature of the optical lens is well corrected.
- the f-theta distortion curve in Figure 3 represents the distortion at different image heights on the imaging plane, the horizontal axis in the figure represents the f-theta distortion percentage, and the vertical axis represents the field angle (unit: degree). It can be seen from Figure 3 that the f- ⁇ distortion at different image heights on the imaging surface is controlled within 5%, and the shape increases linearly, indicating that the distortion of the optical lens is well corrected.
- the vertical chromatic aberration curve in Figure 4 represents the chromatic aberration of the longest wavelength and the shortest wavelength at different image heights on the imaging plane. Normalized field of view. It can be seen from Figure 4 that the vertical axis chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 3 ⁇ m, indicating that the vertical axis chromatic aberration of the optical lens is well corrected.
- the axial chromatic aberration curve in FIG. 5 represents the aberration on the optical axis at the imaging plane, the vertical axis represents the nominal aperture (unit: ⁇ m), and the horizontal axis represents the normalized pupil radius (unit: mm). It can be seen from Figure 5 that the offset of the axial chromatic aberration is controlled within ⁇ 0.015mm, indicating that the optical lens can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
- the optical lens provided by the second embodiment of the present invention has substantially the same structure as the optical lens provided by the first embodiment, and the difference mainly lies in the curvature radius and material selection of each lens.
- the vertical distance between the inflection point of the object side S13 of the seventh lens and the optical axis is 1.835mm, and the sag relative to the center of the object side S13 of the seventh lens is 0.251mm.
- the vertical distance between the inflection point of the image side S14 and the optical axis is 1.955 mm, and the sag relative to the center of the image side S14 of the seventh lens is 0.336 mm.
- Table 4 shows the surface shape coefficients of each aspherical surface of the optical lens provided by the second embodiment of the present invention.
- FIG. 6 , FIG. 7 , FIG. 8 and FIG. 9 are the field curvature curve, f- ⁇ distortion curve, vertical chromatic aberration curve and axial chromatic aberration curve of the optical lens according to the second embodiment, respectively.
- FIG. 6 shows the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from Figure 6 that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05mm, indicating that the field curvature of the optical lens is well corrected.
- Figure 7 shows the distortion at different image heights on the imaging plane. It can be seen from Figure 7 that the f- ⁇ distortion at different image heights on the imaging surface is controlled within 7%, and the shape increases linearly, indicating that the distortion of the optical lens is well corrected.
- Fig. 8 shows the chromatic aberration of the longest wavelength and the shortest wavelength at different image heights on the imaging plane. It can be seen from Figure 8 that the vertical chromatic aberration between the longest wavelength and the shortest wavelength is controlled within ⁇ 3 ⁇ m, indicating that the vertical chromatic aberration of the optical lens is well corrected.
- FIG. 9 shows aberrations on the optical axis at the imaging plane. It can be seen from Figure 9 that the offset of the axial chromatic aberration is controlled within ⁇ 0.02mm, indicating that the optical lens can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
- the optical lens provided by the third embodiment of the present invention has substantially the same structure as the optical lens provided by the first embodiment, and the difference mainly lies in the curvature radius and material selection of each lens.
- the vertical distance between the inflection point of the object side S13 of the seventh lens and the optical axis is 1.795 mm, and the sag relative to the center of the object side S13 of the seventh lens is 0.217 mm.
- the vertical distance between the inflection point of the image side S14 and the optical axis is 1.912 mm, and the sagittal height relative to the center of the image side S14 of the seventh lens is 0.298 mm.
- Table 6 shows the surface shape coefficients of each aspherical surface of the optical lens in the third embodiment of the present invention.
- FIG. 10 , FIG. 11 , FIG. 12 and FIG. 13 are the field curvature, f- ⁇ distortion, vertical chromatic aberration, and axial chromatic aberration of the optical lens according to the third embodiment, respectively.
- FIG. 10 shows the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from Figure 10 that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05mm, indicating that the field curvature of the optical lens is well corrected.
- Figure 11 shows the distortion at different image heights on the imaging plane. It can be seen from Figure 11 that the f- ⁇ distortion at different image heights on the imaging surface is controlled within 6%, and the shape increases linearly, indicating that the distortion of the optical lens is well corrected.
- FIG. 12 shows the chromatic aberration of the longest wavelength and the shortest wavelength at different image heights on the imaging plane. It can be seen from Figure 12 that the vertical chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 3.0 ⁇ m, indicating that the vertical chromatic aberration of the optical lens is well corrected.
- FIG. 13 shows aberrations on the optical axis at the imaging plane. It can be seen from Figure 13 that the offset of the axial chromatic aberration at the imaging plane is controlled within ⁇ 0.02mm, indicating that the optical lens can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
- the optical characteristics mainly include the focal length f of the optical lens, the aperture number F#, the entrance pupil diameter EPD, the optical total length TTL and the field of view angle FOV, as well as the relevant values corresponding to each of the aforementioned conditional expressions.
- the optical lens provided by the present invention has the following advantages:
- the field of view of the optical lens can reach 150°, which can effectively correct the optical distortion, control the f- ⁇ distortion to be less than 7%, and the shape increases linearly, which can meet the needs of large field of view and high-definition imaging.
- the imaging element 210 may be a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) image sensor, or may be a CCD (Charge Coupled Device, charge coupled device) image sensor.
- CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
- CCD Charge Coupled Device, charge coupled device
- the imaging device 200 may be a smart phone, a Pad, or any other portable electronic device that is loaded with the above-mentioned optical lens.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种光学镜头及成像设备(200),光学镜头沿光轴从物侧到成像面(S17)依次包括:具有负光焦度的第一透镜(L1),其物侧面(S1)为凸面、像侧面(S2)为凹面;具有负光焦度的第二透镜(L2),其物侧面(S3)为凸面、像侧面(S4)为凹面;具有正光焦度的第三透镜(L3),其物侧面(S5)为凹面、像侧面(S6)为凸面;具有正光焦度的第四透镜(L4),其物侧面(S7)和像侧面(S8)均为凸面;具有正光焦度的第五透镜(L5),其物侧面(S9)为凹面、像侧面(S10)为凸面;具有负光焦度的第六透镜(L6),其物侧面(S11)和像侧面(S12)均为凹面;具有负光焦度的第七透镜(L7),其物侧面(S13)在近光轴处为凸面,其像侧面(S14)在近光轴处为凹面,且第七透镜的物侧面(S13)和像侧面(S14)均具有至少一个反曲点。光学镜头较好地实现了大广角、小型化与高像素的合理均衡,能够有效提升用户的摄像体验。
Description
交叉引用
本申请要求2020年10月26日递交的发明名称为:“光学镜头及成像设备”的申请号202011152157.8的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
本发明涉及透镜成像技术领域,特别是涉及一种光学镜头及成像设备。
近年来摄像镜头在各领域都有广泛应用,尤其包括超广角镜头、鱼眼镜头在内的广角镜头在越来越多的场合发挥重要作用。在摄像方面,广角镜头具有短焦大视场特点,能够产生较大的桶形畸变,以创造特殊效果,给观察者带来强烈的视觉冲击。在测量方面,广角镜头利用大视场特点单次成像可获得更多的数据,以捕捉更多的场景信息。与此同时,市场对镜头的小型化要求也越来越高。
然而,镜头尺寸的减小对镜头的成像质量影响很大,尤其是对于大视场广角镜头。因此,需要一种兼具大视场角和小型化的高像素成像镜头。
发明内容
为此,本发明的目的在于提出一种光学镜头及成像设备,用于解决上述问题。
本发明实施例通过以下技术方案实施上述的目的。
第一方面,本发明提供了一种光学镜头,沿光轴从物侧到成像面依次包括:第一透镜、第二透镜、第三透镜、光阑、第四透镜、第五透镜、第六透镜及第七透镜。所述第一透镜具有负光焦度,其物侧面为凸面、像侧面为凹面;所述第二透镜具有负光焦度,其物侧面在为凸面、像侧面为凹面;所述第三透镜具有正光焦度,其物侧面为凹面、像侧面为凸面;所述第四透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第五透镜具有正光焦度,其物侧面为凹面、像侧面为凸面;所述第六透镜具有负光焦度,其物侧面和像侧面均为凹面;所述第七透镜具有负光焦度,其物侧面在近光轴处为凸面,其像侧面在近光轴处为凹面,且第七透镜的物侧面和像侧面均具有至少一个反曲点。其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜均为塑胶非球面镜片。所述光学镜头满足以下条件式:3.0<IH/EPD<3.2;其中,IH表示所述光学镜头的成像面上的最大半像高,EPD表示所述光学镜头的入瞳直径。
第二方面,本发明提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学镜头及成像设备,通过合理的搭配七个具有特定屈折力的透镜之间的镜片形状和合理的光焦度组合,在满足高像素的同时结构更加紧凑,从而较好地实现了广角镜头的小型化和高像素的均衡,本发明提供的光学镜头可匹配4800万像素的芯片,能够有效提升用户的摄像体验。
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明提供的光学镜头的结构示意图;
图2示出了本发明第一实施例提供的光学镜头的场曲曲线图;
图3示出了本发明第一实施例提供的光学镜头的f-θ畸变曲线图;
图4示出了本发明第一实施例提供的光学镜头的垂轴色差曲线图;
图5示出了本发明第一实施例提供的光学镜头的轴向色差曲线图;
图6示出了本发明第二实施例提供的光学镜头的场曲曲线图;
图7示出了本发明第二实施例提供的光学镜头的f-θ畸变曲线图;
图8示出了本发明第二实施例提供的光学镜头的垂轴色差曲线图;
图9示出了本发明第二实施例提供的光学镜头的轴向色差曲线图;
图10示出了本发明第三实施例提供的光学镜头的场曲曲线图;
图11示出了本发明第三实施例提供的光学镜头的f-θ畸变曲线图;
图12示出了本发明第三实施例提供的光学镜头的垂轴色差曲线图;
图13示出了本发明第三实施例提供的光学镜头的轴向色差曲线图;
图14示出了本发明第四实施例提供的成像设备的结构示意图。
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,为本发明实施例提供的一种光学镜头的结构示意图,该光学镜头沿光轴从物侧到像侧依次包括:第一透镜L1、第二透镜L2、第三透镜L3、光阑ST、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7及滤光片G1,这里的像侧即指成像面S17所在的一侧,物侧为与像侧相对的一侧。
第一透镜L1具有负光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面。
第二透镜L2具有负光焦度,第二透镜的物侧面S3为凸面,第二透镜的像侧面S4为凹面。
第三透镜L3具有正光焦度,第三透镜的物侧面S5为凹面,第三透镜的像侧面S6为凸面。
第四透镜L4具有正光焦度,第四透镜的物侧面S7和第四透镜的像侧面S8均为凸面。
第五透镜L5具有正光焦度,第五透镜的物侧面S9为凹面,第五透镜的像侧面S10为凸面。
第六透镜L6具有负光焦度,第六透镜的物侧面S11和第六透镜的像侧面S12均为凹面。
第七透镜L7具有负光焦度,第七透镜的物侧面S13在近光轴处为凸面且具有至少一个反曲点,第七透镜的像侧面S14在近光轴处为凹面且具有至少一个反 曲点。
所述光学镜头满足以下条件式:
3.0<IH/EPD<3.2; (1)
其中,IH表示光学镜头的成像面上最大半像高,EPD表示光学镜头的入瞳直径。满足上述条件式(1)时,能够实现大通光量与大成像面的合理均衡,从而使镜头具有高清的成像品质。
在一些可选的实施例中,光学镜头满足以下条件式:
TTL/f<2.51; (2)
0.01<R1/f<0.02; (3)
-0.03<f/f1<-0.01; (4)
其中,TTL表示光学镜头的光学总长,f表示光学镜头的焦距,f1表示第一透镜的焦距,R1表示第一透镜的物侧面的曲率半径。满足上述条件式(2)、(3)时,能够使镜头实现超大广角和较小焦距的合理均衡,同时有利于缩短光学镜头的总长。满足条件式(4)时,能够使第一透镜具有足够大的负光焦度,在实现超大广角的同时,有效收缩光线,有利于减小后续透镜的口径,实现光学镜头的小型化。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
SAG1<0.13mm; (5)
0.30mm<SAG1
i-SAG2
i<0.50mm; (6)
0.9<CT1/ET1<1.1; (7)
其中,SAG1表示第一透镜的物侧面的边缘矢高,SAG1
i表示第一透镜的物侧面上任意一点的矢高,SAG2
i表示第一透镜的像侧面上任意一点的矢高,CT1表示第一透镜的中心厚度,ET1表示第一透镜的边缘厚度。为了实现镜头的广视角特性,第一透镜的物侧面通常较为突出,这样容易使镜片表面磨损;而满足上述条件式(5)、(6)、(7)时,能够合理控制第一透镜突出镜筒前端的高度,有利于光学镜头的保护;同时能够确保第一透镜的厚度适中,有利于降低校正场曲的难度,且使光学镜头的体积满足小型化的需求。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
-3.0<(R3+R4)/(R3-R4)<-2.7; (8)
其中,R3表示第二透镜的物侧面的曲率半径,R4表示第二透镜的像侧面的曲率半径。满足上述条件式(8)时,能够合理控制第二透镜的面型,缓和轴外视场的聚光强度,减小轴外视场与中心视场的像差,有利于提高光学镜头的解像质量。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
0.1<f/f3<0.15; (9)
0.8<CT3/ET3<0.9; (10)
0.52mm<SAG5
i-SAG6
i<0.62mm; (11)
其中,f表示光学镜头的焦距,f3表示第三透镜的焦距,CT3表示第三透镜的中心厚度,ET3表示第三透镜的边缘厚度,SAG5
i表示第三透镜的物侧面上任意一点的矢高,SAG6
i表示第三透镜的像侧面上任意一点的矢高。满足上述条件式(9)时,能够使第三透镜具有足够大的正光焦度,有利于减小后续透镜的口径;满足上述条件式(10)、(11)时,能够使第三透镜设计为薄透镜,有利于校正光学镜头的球差。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
2<f
123/f<3; (12)
其中,f表示光学镜头的焦距,f
123表示第一透镜、第二透镜和第三透镜的组合焦距。满足上述条件式(12)时,能够使处于光阑前的透镜组具有合理的正焦距,有利于校正F-θ畸变,提高光学镜头的解像质量。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
-1.5<f
456/f<-1; (13)
1.3<f4/f+f5/f+f6/f<1.5; (14)
其中,f表示光学镜头的焦距,f
456表示第四透镜、第五透镜和第六透镜的组合焦距,f4表示第四透镜的焦距,f5表示第五透镜的焦距,f6表示第六透镜的焦距。满足上述条件式(13)、(14)时,能够合理控制第四透镜至第六透镜组合后具有合理的负焦距,有利于控制中心视场和轴外视场的解像,校正光学镜头的色球差,提高光学镜头的解像质量。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
8<CT45/CT56<10; (15)
0.02<CT56/CT67<0.04; (16)
其中,CT45表示第四透镜与第五透镜在光轴上的间隔距离,CT56表示第五透镜与第六透镜在光轴上的间隔距离,CT67表示第六透镜与第七透镜在光轴上的间隔距离。满足上述条件式(15)、(16)时,能够合理控制光阑后的各透镜间的空气间隔比值,使得各透镜分布较均匀,有利于透镜之间的搭配,提高光学镜头的解像品质。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
-24<f7/f<-18; (17)
-13<(R13+R14)/(R13-R14)<-12; (18)
其中,f表示光学镜头的焦距,f7表示第七透镜的焦距,R13表示第七透镜的物侧面的曲率半径,R14表示第七透镜的像侧面的曲率半径。满足上述条件式(17)、(18)时,能够合理控制第七透镜的焦距和面型,使第七透镜的像侧面具有足够的屈折度,调整光线入射到成像面的角度,进而实现合理控制光学镜头的后焦,缩短光学镜头的总长和降低校正场曲的难度。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
0.07<CT7/TTL<0.10; (19)
0.5<SAG13
i-SAG14
i<0.8; (20)
其中,CT7表示第七透镜的中心厚度,TTL表示光学镜头的光学总长,SAG13
i表示第七透镜的物侧面上任意一点的矢高,SAG14
i表示第七透镜的像侧面上任意一点的矢高。满足上述条件式(19)、(20)时,能够合理控制第七透镜的厚度,有利于提高轴外视场的解像质量,同时,有利于提高光学镜头与图像传感器的匹配度。
作为一种实施方式,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7可以是非球面镜片,可选的,上述透镜均采用塑胶非球面镜片。采用非球面镜片,可以有效减少镜片的数量,修正像差,提供更好的光学性能。
下面分多个实施例对本发明进行进一步的说明。在各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。下述实施例仅为本发明的较佳实施方式,但本发明的实施方式并不仅仅受下述实施例的限制,其他的任何未背离本发明创新点所作的改变、替代、 组合或简化,都应视为等效的置换方式,都包含在本发明的保护范围之内。
在本发明各个实施例中,当光学镜头中的各个透镜均为非球面透镜时,光学镜头的各个非球面面型可以均满足下列方程:
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为二次曲面系数,A
2i为第2i阶的非球面面型系数。
第一实施例
在本发明第一实施例中,第七透镜的物侧面S13的反曲点与光轴的垂直距离为1.935mm,相对于第七透镜的物侧面S13中心的矢高为0.289mm,第七透镜的像侧面S14的反曲点与光轴的垂直距离为2.035mm,相对于第七透镜的像侧面S14中心的矢高为0.371mm。
请参照表1所示,本发明第一实施例提供的光学镜头中各个镜片的相关参数如表1所示。
表1
本发明第一实施例提供的光学镜头的各非球面的面型系数如表2所示。
表2
请参阅图2、图3、图4及图5,所示分别为第一实施例的光学镜头的场曲曲线图、f-θ畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图2的场曲曲线表示子午像面和弧矢像面的弯曲程度,图中横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度)。从图2中可以看出,子午像面和弧矢像面的场曲控制在±0.05mm以内,说明光学镜头的场曲校正良好。
图3的f-θ畸变曲线表示成像面上不同像高处的畸变,图中横轴表示f-θ畸变百分比,纵轴表示视场角(单位:度)。从图3中可以看出,成像面上不同像高处的f-θ畸变控制在5%以内,且形状呈线性递增,说明光学镜头的畸变得到良好的校正。
图4的垂轴色差曲线表示最长波长与最短波长在成像面上不同像高处的色差,图中横轴表示各波长相对中心波长的垂轴色差值(单位:μm),纵轴表示归一化视场角。从图4中可以看出,最长波长与最短波长的垂轴色差控制在±3μm以内,说明光学镜头的垂轴色差得到良好的校正。
图5的轴向色差曲线表示成像面处光轴上的像差,图中纵轴表示标称孔径(单位:μm),横轴表示归一化光瞳半径(单位:mm)。从图5中可以看出,轴向色差的偏移量控制在±0.015mm以内,说明光学镜头能够有效地校正边缘视场的像差以及整个像面的二级光谱。
第二实施例
本发明第二实施例提供的光学镜头与第一实施例提供的光学镜头的结构大致相同,不同之处主要在于,其各透镜的曲率半径、材料选择不同。
在本发明第二实施例中,第七透镜的物侧面S13的反曲点与光轴的垂直距离为1.835mm,相对于第七透镜的物侧面S13中心的矢高为0.251mm,第七透镜的像侧面S14的反曲点与光轴的垂直距离为1.955mm,相对于第七透镜的像侧面S14中心的矢高为0.336mm。
请参照表3所示,本发明第二实施例提供的光学镜头中各个镜片的相关参数如表3所示。
表3
本发明第二实施例提供的光学镜头的各非球面的面型系数如表4所示。
表4
请参照图6、图7、图8和图9,所示分别为第二实施例的光学镜头的场曲曲线图、f-θ畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图6表示子午像面和弧矢像面的弯曲程度。从图6中可以看出,子午像面和弧矢像面的场曲控制在±0.05mm以内,说明光学镜头的场曲校正良好。
图7表示成像面上不同像高处的畸变。从图7中可以看出,成像面上不同像高处的f-θ畸变控制7%以内,且形状呈线性递增,说明光学镜头的畸变得到良好的校正。
图8表示最长波长与最短波长在成像面上不同像高处的色差。从图8中可以看出,最长波长与最短波长的垂轴色差控制在±3μm以内,说明光学镜头的垂轴色差得到良好的校正。
图9表示成像面处光轴上的像差。从图9中可以看出,轴向色差的偏移量控制在±0.02mm以内,说明该光学镜头能够有效地校正边缘视场的像差以及整个像面的二级光谱。
第三实施例
本发明第三实施例提供的光学镜头与第一实施例提供的光学镜头的结构大致相同,不同之处主要在于,其各透镜的曲率半径、材料选择不同。
在本发明第三实施例中,第七透镜的物侧面S13的反曲点与光轴的垂直距离为1.795mm,相对于第七透镜的物侧面S13中心的矢高为0.217mm,第七透镜的像侧面S14的反曲点与光轴的垂直距离为1.912mm,相对于第七透镜的像侧面S14中心的矢高为0.298mm。
请参照表5所示,本发明第三实施例提供的光学镜头中各个镜片的相关参数如表5所示。
表5
本发明第三实施例中的光学镜头的各非球面的面型系数如表6所示。
表6
请参照图10、图11、图12和图13,所示分别为第三实施例的光学镜头的场曲曲线图、f-θ畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图10表示子午像面和弧矢像面的弯曲程度。从图10中可以看出,子午像面和弧矢像面的场曲控制在±0.05mm以内,说明光学镜头的场曲校正良好。
图11表示成像面上不同像高处的畸变。从图11中可以看出,成像面上不同像高处的f-θ畸变控制6%以内,且形状呈线性递增,说明光学镜头的畸变得到良好的校正。
图12表示最长波长与最短波长在成像面上不同像高处的色差。从图12中可以看出,最长波长与最短波长的垂轴色差控制在±3.0μm以内,说明光学镜头的垂轴色差得到良好的校正。
图13表示成像面处光轴上的像差。从图13中可以看出,成像面处轴向色差的偏移量控制在±0.02mm以内,说明该光学镜头能够有效地校正边缘视场的像差以及整个像面的二级光谱。
请参照表7,所示是上述三个实施例提供的光学镜头分别对应的光学特性。其中,光学特性主要包括光学镜头的焦距f、光圈数F#、入瞳直径EPD、光学总长TTL及视场角FOV,以及与前述每个条件式对应的相关数值。
表7
第一实施例 | 第二实施例 | 第三实施例 | |
f(mm) | 2.903 | 2.857 | 2.865 |
F# | 2.2 | 2.2 | 2.2 |
TTL(mm) | 7.170 | 7.151 | 7.170 |
FOV(°) | 150 | 150 | 150 |
EPD(mm) | 1.296 | 1.275 | 1.279 |
IH(mm) | 4.0 | 4.0 | 4.0 |
TTL/f | 2.470 | 2.503 | 2.503 |
R1/f | 0.014 | 0.015 | 0.015 |
IH/EPD | 3.086 | 3.136 | 3.127 |
SAG1 | 0.111 | 0.120 | 0.103 |
SAG1 i-SAG2 i | (0.340,0.469) | (0.330,0.444) | (0.338,0.460) |
CT1/ET1 | 1.077 | 1.027 | 0.992 |
f/f1 | -0.025 | -0.021 | -0.020 |
(R3+R4)/(R3-R4) | -2.980 | -2.792 | -2.780 |
f/f3 | 0.128 | 0.123 | 0.120 |
CT3/ET3 | 0.859 | 0.863 | 0.860 |
SAG5 i-SAG6 i | (0.532,0.570) | (0.562,0.611) | (0.554,0.597) |
f 123/f | 2.638 | 2.713 | 2.621 |
f 456/f | -1.027 | -1.034 | -1.025 |
f4/f+f5/f+f6/f | 1.353 | 1.404 | 1.464 |
CT45/CT56 | 8.010 | 9.913 | 8.688 |
CT56/CT67 | 0.030 | 0.031 | 0.031 |
f7/f | -22.044 | -19.327 | -21.819 |
(R13+R14)/(R13-R14) | -12.340 | -12.292 | -12.267 |
CT7/TTL | 0.082 | 0.079 | 0.089 |
SAG13 i-SAG14 i | (0.543,0.687) | (0.532,0.653) | (0.581,0.724) |
综上所述,本发明提供的光学镜头具有以下优点:
(1)由于光阑及各透镜形状设置合理,使得光学镜头的总长较短,体积较小,能够更好的满足便携式电子设备轻薄化的发展趋势。
(2)采用七个具有特定屈折力的塑胶非球面镜片,并且各个透镜通过特定的表面形状搭配组合,使得光学镜头具有超高像素的成像质量,可匹配4800万像素的芯片。
(3)光学镜头的视场角可达150°,可有效修正光学畸变,控制f-θ畸变小于7%,且形状呈线性递增,能够满足大视场角且高清晰成像需要。
第四实施例
如图14所示,为本发明第四实施例提供一种成像设备200的结构示意图,该成像设备200包括成像元件210和上述任一实施例中的光学镜头。成像元件210可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
该成像设备200可以是智能手机、Pad以及其它任意一种形态的装载了上述光学镜头的便携式电子设备。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特 征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (11)
- 一种光学镜头,其特征在于,沿光轴从物侧到成像面依次包括:第一透镜、第二透镜、第三透镜、光阑、第四透镜、第五透镜、第六透镜以及第七透镜;所述第一透镜具有负光焦度,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;所述第二透镜具有负光焦度,所述第二透镜的物侧面为凸面,所述第二透镜的像侧面为凹面;所述第三透镜具有正光焦度,所述第三透镜的物侧面为凹面,所述第三透镜的像侧面为凸面;所述第四透镜具有正光焦度,所述第四透镜的物侧面和像侧面均为凸面;所述第五透镜具有正光焦度,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面为凸面;所述第六透镜具有负光焦度,所述第六透镜的物侧面和像侧面均为凹面;所述第七透镜具有负光焦度,所述第七透镜的物侧面在近光轴处为凸面,所述第七透镜的像侧面在近光轴处为凹面,且所述第七透镜的物侧面和像侧面均具有至少一个反曲点;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜均为塑胶非球面镜片;所述光学镜头满足以下条件式:3.0<IH/EPD<3.2;其中,IH表示所述光学镜头的成像面上的最大半像高,EPD表示所述光学镜头的入瞳直径。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:TTL/f<2.51;0.01<R1/f<0.02;-0.03<f/f1<-0.01;其中,TTL表示所述光学镜头的光学总长,R1表示所述第一透镜的物侧面的曲率半径,f表示所述光学镜头的焦距,f1表示所述第一透镜的焦距。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:SAG1<0.13mm;0.30mm<SAG1 i-SAG2 i<0.50mm;0.9<CT1/ET1<1.1;其中,SAG1表示所述第一透镜的物侧面的边缘矢高,SAG1 i表示所述第一透镜的物侧面上任意一点的矢高,SAG2 i表示所述第一透镜的像侧面上任意一点的矢高,CT1表示所述第一透镜的中心厚度,ET1表示所述第一透镜的边缘厚度。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:-3.0<(R3+R4)/(R3-R4)<-2.7;其中,R3表示所述第二透镜的物侧面的曲率半径,R4表示所述第二透镜的像侧面的曲率半径。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:0.1<f/f3<0.15;0.8<CT3/ET3<0.9;0.52mm<SAG5 i-SAG6 i<0.62mm;其中,f表示所述光学镜头的焦距,f3表示所述第三透镜的焦距,CT3表示所述第三透镜的中心厚度,ET3表示所述第三透镜的边缘厚度,SAG5 i表示所述第三透镜的物侧面上任意一点的矢高,SAG6 i表示所述第三透镜的像侧面上任意一点的矢高。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:2<f 123/f<3;其中,f表示所述光学镜头的焦距,f 123表示所述第一透镜、所述第二透镜和所述第三透镜的组合焦距。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:-1.5<f 456/f<-1;1.3<f4/f+f5/f+f6/f<1.5;其中,f表示所述光学镜头的焦距,f4表示所述第四透镜的焦距,f5表示所述第五透镜的焦距,f6表示所述第六透镜的焦距,f 456表示所述第四透镜、所述第五透镜和所述第六透镜的组合焦距。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:8<CT45/CT56<10;0.02<CT56/CT67<0.04;其中,CT45表示所述第四透镜与所述第五透镜在光轴上的间隔距离,CT56表示所述第五透镜与所述第六透镜在光轴上的间隔距离,CT67表示所述第六透镜与所述第七透镜在光轴上的间隔距离。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:-24<f7/f<-18;-13<(R13+R14)/(R13-R14)<-12;其中,f表示所述光学镜头的焦距,f7表示所述第七透镜的焦距,R13表示所述第七透镜的物侧面的曲率半径,R14表示所述第七透镜的像侧面的曲率半径。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:0.07<CT7/TTL<0.10;0.5mm<SAG13 i-SAG14 i<0.8mm;其中,CT7表示所述第七透镜的中心厚度,TTL表示所述光学镜头的光学总长,SAG13 i表示所述第七透镜的物侧面上任意一点的矢高,SAG14 i表示所述第七透镜的像侧面上任意一点的矢高。
- 一种成像设备,其特征在于,包括如权利要求1-10任一项所述的光学镜头及成像元件,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011152157.8A CN112034600B (zh) | 2020-10-26 | 2020-10-26 | 光学镜头及成像设备 |
CN202011152157.8 | 2020-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022089327A1 true WO2022089327A1 (zh) | 2022-05-05 |
Family
ID=73573134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/125793 WO2022089327A1 (zh) | 2020-10-26 | 2021-10-22 | 光学镜头及成像设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112034600B (zh) |
WO (1) | WO2022089327A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114675405A (zh) * | 2022-05-27 | 2022-06-28 | 江西联创电子有限公司 | 光学镜头 |
CN114879343A (zh) * | 2022-05-08 | 2022-08-09 | 中山联拓光学有限公司 | 全景镜头及成像设备 |
CN117233938A (zh) * | 2023-11-13 | 2023-12-15 | 江西联益光学有限公司 | 光学镜头 |
CN117930470A (zh) * | 2024-03-22 | 2024-04-26 | 江西联益光学有限公司 | 光学镜头 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112034600B (zh) * | 2020-10-26 | 2021-01-29 | 江西联益光学有限公司 | 光学镜头及成像设备 |
TWI815265B (zh) * | 2021-12-08 | 2023-09-11 | 大陸商玉晶光電(廈門)有限公司 | 一種光學成像鏡頭 |
CN115576084B (zh) * | 2022-12-09 | 2023-04-18 | 江西联创电子有限公司 | 光学镜头 |
CN116184640B (zh) * | 2023-05-04 | 2023-09-12 | 江西联创电子有限公司 | 光学镜头 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090303614A1 (en) * | 2008-06-09 | 2009-12-10 | Astrium Gmbh | Apochromatic lens |
CN106772951A (zh) * | 2017-03-02 | 2017-05-31 | 舜宇光学(中山)有限公司 | 一种广角低畸变镜头 |
CN110632743A (zh) * | 2019-11-20 | 2019-12-31 | 江西联创电子有限公司 | 光学成像镜头及成像设备 |
CN210038306U (zh) * | 2018-05-29 | 2020-02-07 | 三星电机株式会社 | 光学成像系统 |
CN110837159A (zh) * | 2018-08-16 | 2020-02-25 | 先进光电科技股份有限公司 | 光学成像模块 |
CN112034600A (zh) * | 2020-10-26 | 2020-12-04 | 江西联益光学有限公司 | 光学镜头及成像设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111025567B (zh) * | 2019-12-26 | 2022-01-07 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
-
2020
- 2020-10-26 CN CN202011152157.8A patent/CN112034600B/zh active Active
-
2021
- 2021-10-22 WO PCT/CN2021/125793 patent/WO2022089327A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090303614A1 (en) * | 2008-06-09 | 2009-12-10 | Astrium Gmbh | Apochromatic lens |
CN106772951A (zh) * | 2017-03-02 | 2017-05-31 | 舜宇光学(中山)有限公司 | 一种广角低畸变镜头 |
CN210038306U (zh) * | 2018-05-29 | 2020-02-07 | 三星电机株式会社 | 光学成像系统 |
CN110837159A (zh) * | 2018-08-16 | 2020-02-25 | 先进光电科技股份有限公司 | 光学成像模块 |
CN110632743A (zh) * | 2019-11-20 | 2019-12-31 | 江西联创电子有限公司 | 光学成像镜头及成像设备 |
CN112034600A (zh) * | 2020-10-26 | 2020-12-04 | 江西联益光学有限公司 | 光学镜头及成像设备 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114879343A (zh) * | 2022-05-08 | 2022-08-09 | 中山联拓光学有限公司 | 全景镜头及成像设备 |
CN114879343B (zh) * | 2022-05-08 | 2024-04-19 | 中山联拓光学有限公司 | 全景镜头及成像设备 |
CN114675405A (zh) * | 2022-05-27 | 2022-06-28 | 江西联创电子有限公司 | 光学镜头 |
CN114675405B (zh) * | 2022-05-27 | 2022-10-25 | 江西联创电子有限公司 | 光学镜头 |
CN117233938A (zh) * | 2023-11-13 | 2023-12-15 | 江西联益光学有限公司 | 光学镜头 |
CN117233938B (zh) * | 2023-11-13 | 2024-02-20 | 江西联益光学有限公司 | 光学镜头 |
CN117930470A (zh) * | 2024-03-22 | 2024-04-26 | 江西联益光学有限公司 | 光学镜头 |
CN117930470B (zh) * | 2024-03-22 | 2024-06-11 | 江西联益光学有限公司 | 光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN112034600A (zh) | 2020-12-04 |
CN112034600B (zh) | 2021-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022089344A1 (zh) | 光学镜头及成像设备 | |
WO2022089327A1 (zh) | 光学镜头及成像设备 | |
CN106950681B (zh) | 摄像镜头 | |
CN107219613B (zh) | 光学成像镜头 | |
CN110554482B (zh) | 光学成像镜头 | |
WO2021233052A1 (zh) | 光学镜头及成像设备 | |
WO2022143647A1 (zh) | 光学镜头及成像设备 | |
CN110658611A (zh) | 光学成像镜头 | |
CN114114650B (zh) | 光学镜头及成像设备 | |
CN112859291B (zh) | 摄像镜头 | |
CN114185157B (zh) | 光学镜头 | |
CN110596865A (zh) | 摄像镜头组 | |
WO2022222926A1 (zh) | 光学镜头及成像设备 | |
CN109856780B (zh) | 摄像光学镜头 | |
CN112014957B (zh) | 光学镜头及成像设备 | |
CN112526730B (zh) | 光学镜头及成像设备 | |
WO2022105926A1 (zh) | 光学镜头及成像设备 | |
CN110749976A (zh) | 光学成像系统 | |
CN112130293A (zh) | 光学成像镜头 | |
CN109828355B (zh) | 摄像光学镜头 | |
CN108363189B (zh) | 摄像光学镜头 | |
CN211061764U (zh) | 摄像镜头组 | |
CN211086762U (zh) | 摄像镜头组 | |
CN210924082U (zh) | 摄像透镜组 | |
CN107918190B (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21885054 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21885054 Country of ref document: EP Kind code of ref document: A1 |