WO2022085464A1 - Conductive film having gold layer - Google Patents
Conductive film having gold layer Download PDFInfo
- Publication number
- WO2022085464A1 WO2022085464A1 PCT/JP2021/037072 JP2021037072W WO2022085464A1 WO 2022085464 A1 WO2022085464 A1 WO 2022085464A1 JP 2021037072 W JP2021037072 W JP 2021037072W WO 2022085464 A1 WO2022085464 A1 WO 2022085464A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- copper
- conductive film
- thickness
- gold
- Prior art date
Links
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 239000010931 gold Substances 0.000 title claims abstract description 83
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 83
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 124
- 229910052802 copper Inorganic materials 0.000 claims abstract description 124
- 239000010949 copper Substances 0.000 claims abstract description 124
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 108
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 54
- 239000000463 material Substances 0.000 claims description 36
- 239000003795 chemical substances by application Substances 0.000 claims description 22
- 239000011347 resin Substances 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 17
- -1 thiol compound Chemical class 0.000 claims description 16
- 229920001721 polyimide Polymers 0.000 claims description 7
- 239000009719 polyimide resin Substances 0.000 claims description 7
- 150000002391 heterocyclic compounds Chemical class 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 abstract description 16
- 230000007797 corrosion Effects 0.000 abstract description 16
- 238000005452 bending Methods 0.000 abstract description 15
- 238000013508 migration Methods 0.000 abstract description 14
- 230000005012 migration Effects 0.000 abstract description 14
- 239000000758 substrate Substances 0.000 abstract description 7
- 238000002845 discoloration Methods 0.000 abstract description 6
- 238000010030 laminating Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 208
- 239000010408 film Substances 0.000 description 118
- 238000000034 method Methods 0.000 description 57
- 238000007747 plating Methods 0.000 description 47
- 238000012360 testing method Methods 0.000 description 27
- 238000011156 evaluation Methods 0.000 description 16
- 238000007789 sealing Methods 0.000 description 14
- 238000007740 vapor deposition Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 229920002799 BoPET Polymers 0.000 description 9
- 239000007921 spray Substances 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 7
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 235000005956 Cosmos caudatus Nutrition 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002932 luster Substances 0.000 description 4
- 150000002898 organic sulfur compounds Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000007719 peel strength test Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- HAZJTCQWIDBCCE-UHFFFAOYSA-N 1h-triazine-6-thione Chemical compound SC1=CC=NN=N1 HAZJTCQWIDBCCE-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- BIGYLAKFCGVRAN-UHFFFAOYSA-N 1,3,4-thiadiazolidine-2,5-dithione Chemical compound S=C1NNC(=S)S1 BIGYLAKFCGVRAN-UHFFFAOYSA-N 0.000 description 1
- OBDVFOBWBHMJDG-UHFFFAOYSA-N 3-mercapto-1-propanesulfonic acid Chemical compound OS(=O)(=O)CCCS OBDVFOBWBHMJDG-UHFFFAOYSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001356 alkyl thiols Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- MZGNSEAPZQGJRB-UHFFFAOYSA-N dimethyldithiocarbamic acid Chemical compound CN(C)C(S)=S MZGNSEAPZQGJRB-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 1
- 229940116202 nickel sulfate hexahydrate Drugs 0.000 description 1
- 150000002988 phenazines Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- OARRHUQTFTUEOS-UHFFFAOYSA-N safranin Chemical class [Cl-].C=12C=C(N)C(C)=CC2=NC2=CC(C)=C(N)C=C2[N+]=1C1=CC=CC=C1 OARRHUQTFTUEOS-UHFFFAOYSA-N 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- NJZLKINMWXQCHI-UHFFFAOYSA-N sodium;3-(3-sulfopropyldisulfanyl)propane-1-sulfonic acid Chemical compound [Na].[Na].OS(=O)(=O)CCCSSCCCS(O)(=O)=O NJZLKINMWXQCHI-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/044—Forming conductive coatings; Forming coatings having anti-static properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/48—Electroplating: Baths therefor from solutions of gold
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
- C25D5/56—Electroplating of non-metallic surfaces of plastics
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0614—Strips or foils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Definitions
- the present invention relates to a conductive film. More specifically, the present invention relates to a conductive film in which a gold layer is laminated on the surface and the bending resistance and corrosion resistance of the gold layer are improved while suppressing the migration of copper to the gold layer.
- an intermediate layer made of nickel, tin, etc. is provided.
- new problems such as cracks on the surface of the layer made of gold due to bending and pinholes, which reduce corrosion resistance, have been presented. Is required to be resolved.
- Patent Document 1 Japanese Patent Laid-Open No. 2009-176646
- the average crystal grain size of a metal constituting a surface side region under a surface layer made of gold or the like is 0.001 to 0.3 ⁇ m.
- a foil-like conductor provided with an intermediate (nickel) layer is proposed. It is said that this makes the area directly under the surface layer smooth and makes it difficult for pinholes to be formed in the surface layer, but the thickness of the intermediate layer cannot be made sufficiently thin, so that the bending resistance is inferior.
- An object of the present invention is to solve the above-mentioned problems and to provide a conductive film having improved bending resistance and corrosion resistance of the gold layer while suppressing the migration of copper to the gold layer. ..
- the conductive film of the present invention is a conductive film in which a metal layer composed of a copper layer, a nickel layer, and a gold layer is laminated in this order on one surface of an insulating film base material, and the thickness of the nickel layer is high. It is a conductive film characterized by having a thickness of 0.05 to 0.2 ⁇ m.
- the arithmetic mean roughness Ra of the surface of the copper layer on the side where the nickel layer is laminated is 0.02 ⁇ m or less. According to this, the corrosion resistance of the conductive film can be enhanced.
- the arithmetic mean roughness Ra of the surface of the gold layer is 0.03 ⁇ m or less. According to this, the corrosion resistance of the conductive film can be further improved.
- the thickness of the copper layer is preferably 1 to 5 ⁇ m. It is preferable to provide a resin layer having an elongation rate of 200 to 2000% on the surface of the insulating film opposite to the surface on which the metal layer is provided.
- a film made of at least one organic pore-treating agent selected from the group consisting of heterocyclic compounds, thiol compounds, and amine compounds is formed on the surface of the gold layer. It is desirable to seal a pinhole that is so small that it cannot be visually recognized.
- the insulating film base material is made of a polyimide resin. According to this, it is possible to obtain a conductive film having excellent heat resistance.
- the thickness of the insulating film substrate is preferably 4 to 25 ⁇ m.
- the present invention it is possible to obtain a conductive film in which the gold layer is not cracked due to bending while suppressing discoloration with time. Further, a conductive film having excellent corrosion resistance can be obtained.
- the conductive film of the present invention has a metal layer consisting of a copper layer, a nickel layer, and a gold layer on one surface of an insulating film base material, and a copper layer, a nickel layer, and gold on the insulating film base material. It is laminated in the order of layers. That is, the conductive film of the present invention has a layer structure of "insulating film base material / copper layer / nickel layer / gold layer", and one outermost layer is a gold layer.
- the conductive film of the present invention is based on an insulating film base material.
- a film made of a synthetic resin is preferably used as the insulating film base material.
- the synthetic resin is not particularly limited, and examples thereof include a polyimide resin, a polyester resin, a polypropylene resin, a polyvinyl chloride resin, and a polycarbonate resin.
- an insulating film base material made of a polyimide resin is preferable because a conductive film having excellent heat resistance can be obtained.
- the thickness of the insulating film base material is not particularly limited, but the lower limit is preferably 2 ⁇ m, more preferably 3 ⁇ m, and particularly preferably 4 ⁇ m.
- the upper limit of the thickness is preferably 100 ⁇ m, more preferably 50 ⁇ m, still more preferably 25 ⁇ m, and particularly preferably 13 ⁇ m.
- the thickness of the insulating film substrate is 4 to 25 ⁇ m.
- the insulating property of the insulating film base material is not particularly limited, but a preferable resistance value is 1 ⁇ 10 14 ⁇ / ⁇ or more.
- the thickness of the copper layer is not particularly limited, but the lower limit is preferably 0.5 ⁇ m, more preferably 1 ⁇ m, and particularly preferably 1.5 ⁇ m.
- the upper limit of the thickness is preferably 8 ⁇ m, more preferably 6 ⁇ m, and particularly preferably 5 ⁇ m. When the thickness of the copper layer is within this range, sufficient conductivity can be ensured and a conductive film having excellent flexibility can be obtained. Desirably, the thickness of the copper layer is 1 to 5 ⁇ m.
- the method for forming the copper layer is not particularly limited, but is preferably formed on an insulating film substrate by a known vapor deposition method such as a vacuum vapor deposition method, formed by a sputtering method, or a known electrolytic copper plating method. And the like.
- the copper layer may be composed of a plurality of layers formed by two or more different methods.
- the first copper layer has a copper vapor deposition layer formed on an insulating film base material by a vapor deposition method
- the second copper layer is a copper plating layer formed on the first copper layer by an electrolytic copper plating method.
- a copper layer having a desired thickness can be efficiently obtained.
- the thickness of the first copper layer is preferably 0.1 to 2.0 ⁇ m, and the thickness of the second copper layer is preferably 0.5 to 5.0 ⁇ m. It is better to have a layer thickness. Further, the arithmetic mean roughness Ra of the copper layer surface is the roughness of the surface of the second copper layer in contact with the nickel layer when the first copper layer and the second copper layer are provided.
- Ra arithmetic mean roughness
- the arithmetic mean roughness Ra shall be measured by a method compliant with JIS B 0601: 2001 using a device such as a scanning confocal laser scanning microscope (for example, manufactured by Olympus Corporation, trade name "LEXT OLS30-SU"). Can be done.
- a scanning confocal laser scanning microscope for example, manufactured by Olympus Corporation, trade name "LEXT OLS30-SU”
- Nickel layer A nickel layer is laminated on the surface of the copper layer (on the opposite side of the insulating film base material, between the copper layer and the gold layer). It is important that the thickness of the nickel layer is 0.05 to 0.2 ⁇ m. That is, the lower limit of the thickness is 0.05 ⁇ m, preferably 0.07 ⁇ m or more. The upper limit of the thickness is 0.2 ⁇ m, preferably 0.15 ⁇ m or less, and more preferably 0.12 ⁇ m or less. When the thickness of the nickel layer is within this range, it is possible to suppress the occurrence of cracks in the gold layer described later when the conductive film is bent while suppressing the migration of copper.
- the thickness of the nickel layer is extremely thin, the effect of suppressing the arithmetic mean roughness of the copper layer surface to a small value makes it possible to form not only the nickel layer but also the gold layer uniformly and thinly. There is.
- Gold layer A gold layer is laminated on the surface of the nickel layer (opposite to the copper layer, the outermost layer).
- the thickness of the gold layer is preferably 0.05 ⁇ m or less, more preferably 0.04 ⁇ m or less. When the thickness of the gold layer is not more than the above range, the cost can be suppressed and a low contact resistance value can be realized.
- the lower limit of the thickness of the gold layer is not particularly limited, but is preferably 0.02 ⁇ m or more, and more preferably 0.03 ⁇ m or more.
- the arithmetic mean roughness Ra of the surface of the gold layer is preferably 0.03 ⁇ m or less.
- the arithmetic mean roughness Ra of the surface of the gold layer is the average roughness of the surface of the surface (outermost surface of the conductive film) that is not in contact with the nickel layer.
- the arithmetic average roughness Ra of the surface of the copper layer is set within the above range (0.) by setting the arithmetic average roughness of the copper layer surface to 0.02 ⁇ m or less. It can be stored in (03 ⁇ m or less).
- the gold layer can be formed by adopting a vacuum vapor deposition method, a sputtering method, a gold film forming method by electroplating containing a brightener, etc., so that the arithmetic mean roughness Ra of the surface of the gold layer can be easily kept within the above range. It is preferable because it can be stored.
- the surface of the gold layer obtained by the electrogold plating method may have minute pinholes that cannot be visually recognized, and it is desirable to perform a treatment for sealing these.
- the organic sealing treatment agent is preferably one or a combination of a plurality of types selected from the group consisting of heterocyclic compounds, thiol compounds, and amine compounds.
- thiol compounds are preferable. Specific examples thereof include triazinethiol and mercaptobenzothiazole.
- the thickness of the film formed by the organic sealing treatment agent is not particularly limited, but is preferably 0.01 ⁇ m or less.
- a resin layer having excellent flexibility and high elongation can be provided on the other surface of the insulating film base material (the surface opposite to the surface on which the metal layer is provided).
- the layer structure of the conductive film of the present invention is "resin layer / insulating film base material / copper layer / nickel layer / gold layer”.
- the resin layer is preferably made of a resin film having a high elongation rate, and the lower limit is preferably 200%, more preferably 500%, and particularly preferably 1000%.
- the upper limit of the elongation rate is not particularly limited, but is preferably 2000%, more preferably 1500%, and particularly preferably 1300%.
- the bending resistance of the conductive film of the present invention is further improved, and metal cracks are generated even in a bending test under stricter conditions (the curvature of the bent portion is small). It can be suppressed.
- the type of the resin film examples include polyester, polyurethane, polyolefin, polyamide and the like.
- the thickness of the resin is preferably about 10 to 100 ⁇ m, more preferably 20 to 50 ⁇ m.
- the metal layer composed of the copper layer, the nickel layer, and the gold layer adheres to the insulating film base material.
- the peel strength is preferably 0.6 kgf / 15 mm 2 or more. That is, in the present invention, the adhesiveness between the conductive film base material and the copper layer in contact with the base material is good.
- the peel strength test follows the following procedure. First, the conductive film is cut into a length of 50 mm and a width of 5 mm to prepare a sample. Masking is performed so as to expose a length of 3 mm at the center of the sample in the length direction. Copper nail (Showa Electric Wire Cable System Co., Ltd.) is used on the exposed 3 mm x 5 mm sample surface (gold layer surface) using solder paste (manufactured by Senju Metal Industry Co., Ltd .; trade name "ECO SOLDER PASSE L20-BLT5-T7F"). With the head of a copper thin flat rivet M3 ⁇ 20) manufactured by the company attached, heat treatment is performed at 250 ° C. for 2 minutes.
- a constant temperature dryer manufactured by Advantech Toyo Co., Ltd .; trade name "DRA630DA"
- DVA630DA trade name "DRA630DA”
- the sample is cooled to room temperature, folded in half at the position where the copper nail is connected, and the sample and the copper nail are pulled in the opposite directions with a tensile strength tester to measure the peel strength.
- a tensile strength tester for example, a digital load meter SV-55 manufactured by Imada Seisakusho Co., Ltd. is used.
- the tensile speed is 25 mm / min.
- the conductive film of the present invention is less likely to cause cracks in the gold layer in the bending resistance test.
- a schematic diagram showing the method of the bending resistance test is shown in FIG.
- the conductive film 1 is cut into a sample having a length of 100 mm and a width of 30 mm, bent so that the conductive layer (metal layer 3) of the conductive film 1 is on the outside, and a PET film 4 (Toray Industries, Inc.) having a thickness of 163 ⁇ m is bent between them.
- the bent portion 8 has a curvature of 82 ⁇ m by sandwiching the mirror 38S10 and 125S10).
- evaluation method 1 The sample (conductive film 1) bent with the PET film 4 sandwiched between them is placed on a horizontal workbench 7 as shown in FIG. A 2.0 kg weight 5 is placed on the sample at the position shown in FIG. 1 via a slide glass 6 and allowed to stand for 1 second so that a predetermined load is applied to the bent portion 8. After removing the weight 5, the bent portion 8 is observed with a microscope or the like to confirm the occurrence of cracks. This method is referred to as evaluation method 1.
- evaluation method 2 After changing the thickness of the PET film to 100 ⁇ m so that the bent portion of the sample has a curvature of a radius of 50 ⁇ m, the same method as described above is performed, and then the occurrence of cracks is confirmed by the same method. This method is referred to as evaluation method 2.
- evaluation method 3 the same method as above was performed except that the bent portion of the sample had a curvature of 0 ⁇ m without sandwiching the PET film, and then the occurrence of cracks was confirmed by the same method. This method is referred to as evaluation method 3.
- the corrosion resistance of the conductive film of the present invention can be evaluated in accordance with JIS standard 2371: 2015 neutral salt spray test method. That is, using an ISO type salt spray tester (for example, STP-90VR manufactured by Suga Test Instruments Co., Ltd.), a 5% sodium chloride aqueous solution (pH 6.8) was used as a spray liquid, and the spray liquid temperature was 35 ° C. and the air saturation temperature was 47. The treatment is carried out at ° C for a test time of 48 hours.
- ISO type salt spray tester for example, STP-90VR manufactured by Suga Test Instruments Co., Ltd.
- a 5% sodium chloride aqueous solution pH 6.8
- the surface of the gold layer of the treated sample is visually observed, and the degree of corrosion is evaluated according to the following criteria. ⁇ : No change in metallic luster on the surface of the gold layer ⁇ : Metallic luster on the surface of the gold layer decreased, but no pinholes occurred ⁇ : Pinholes occurred on the surface of the gold layer.
- the conductive film of the present invention suppresses the migration of copper to the gold layer.
- the method for evaluating this characteristic include discoloration before and after the accelerated test by heat treatment and measurement of contact resistance value. As an accelerated test, heat treatment is performed at 260 ° C. for 15 minutes. Each sample before and after the accelerated test is color-measured by the SCI method with a colorimeter (for example, a spectrocolorimeter CM-2600d manufactured by Konica Minolta Japan Co., Ltd.), and a color difference ( ⁇ E) is calculated and evaluated. When the color difference ( ⁇ E) is 3.0 or less, it can be evaluated that the migration of copper is effectively suppressed.
- a colorimeter for example, a spectrocolorimeter CM-2600d manufactured by Konica Minolta Japan Co., Ltd.
- the migration suppressing effect of copper can be evaluated by measuring the contact resistance value of the samples before and after the accelerated test.
- the contact resistance value (m ⁇ ) For the contact resistance value (m ⁇ ), prepare two gold-plated jigs with a contact resistance value (m ⁇ ) of 30 mm ⁇ 30 mm ⁇ 10 mm and a mass of 50 g, and place them side by side on the sample surface so that the surface with an area of 900 mm 2 is facing down and an interval of 1 mm is opened. ..
- the resistance value (m ⁇ ) between the two jigs can be measured with a milliohm high tester (such as 3540 manufactured by Hioki Electric Co., Ltd.).
- the contact resistance value is preferably 3.0 m ⁇ or less both before and after the accelerated test.
- Method for manufacturing a conductive film includes a first step of forming a copper layer on one surface of an insulating film substrate by a vapor deposition method and a nickel layer on the surface of the copper layer by an electroplating method.
- the second step of forming a gold layer on the surface of the nickel layer by an electroplating method is included in this order.
- a copper layer is formed on one surface of the insulating film base material.
- the method for forming the copper layer include a vapor deposition method and a copper film forming method by electroless copper plating. Of these, the vapor deposition method is preferable. As the vapor deposition method, a known vapor deposition apparatus and method can be adopted.
- the surface of the insulating film base material may be pretreated and modified by plasma treatment, ion irradiation treatment, or the like.
- the surface of the copper layer formed by the first step is preferably smooth, and its arithmetic mean roughness Ra is preferably 0.02 ⁇ m or less. If a thin-film deposition method is used to form the copper layer, a copper layer having high surface smoothness can be formed.
- a copper layer may be further formed by using an electrolytic copper plating method following the vapor deposition method. According to this, the thickness of the copper layer can be formed thicker more efficiently.
- the second copper layer by the electrolytic copper plating method is laminated on the surface of the copper layer formed by the vapor deposition method. Therefore, it is preferable that the arithmetic mean roughness Ra of the surface of the second copper layer is 0.02 ⁇ m or less.
- bis (3-sulfopropyl) disulfide disodium, 2,5-dimercapto-1,3,4-thiadiazole, 3-mercapto-1-propanesulfonic acid, N, N-dimethyldithiocarbamic acid examples include organic sulfur compounds such as 3-sulfopropyl) esters.
- examples of the treatment agent for plating include organic nitrogen compounds such as phenazine compounds, safranin compounds, polyalkyleneimines, thiourea derivatives, and polyacrylic acid amides.
- the organic nitrogen compound is considered to have an effect as a leveling agent for forming a uniform copper layer.
- organic sulfur compounds and organic nitrogen compounds may be used alone or in combination of both.
- nonionic polyether-based polymer surfactants such as polyethylene glycol and polyoxyethylene polyoxypropylene copolymer
- water-soluble polymer compounds such as dextrin and glycerin
- More preferable ones include a combination of an organic nitrogen compound and a surfactant, and a combination of an organic sulfur compound, an organic nitrogen compound and a surfactant.
- additives for plating treatment can also be used.
- organic sulfur compounds and / or organic nitrogen compounds mixed with a polymer surfactant or the like as appropriate are commercially available, and they can also be used.
- All of the above-mentioned commercial products can be used in combination of 2 to 3 products.
- the above-mentioned "Top Lucina SF Base WR”, “Top Lucina SF-QB” and “Top Lucina SF-Leveler-Z” are combinations that can be mixed and used.
- the above-mentioned “DAINCOPPER LS004R” and “DAINCOPPER LS004S” are combinations that can be mixed and used.
- KOTAC MU” and “KOTAC 1" are combinations that can be mixed and used.
- a second step of forming a nickel layer on the surface of the copper layer is carried out.
- the nickel layer is formed by a known electroplating method. As described above, it is important that the thickness of the nickel layer is 0.05 to 0.2 ⁇ m.
- Each condition of the electrolytic nickel plating method in the second step is not particularly limited and may be set within a range in which a nickel layer having a desired thickness can be formed.
- the temperature of the plating solution can be 20 to 60 ° C.
- the current density can be 0.5 to 5.0 A / dm 2
- the processing time can be 5 to 300 sec.
- a third step of forming a gold layer on the surface of the nickel layer is carried out.
- a known electroplating method is also adopted for forming the gold layer.
- the arithmetic mean roughness Ra of the surface of the gold layer is preferably 0.03 ⁇ m or less. According to this, the corrosion resistance can be improved.
- Each condition of the electrogold plating method in the third step is not particularly limited and may be set within a range in which a gold layer having a desired thickness can be formed.
- the temperature of the plating solution can be 40 to 60 ° C.
- the current density can be 0.1 to 3.0 A / dm 2
- the processing time can be 5 to 300 sec.
- a step of contacting the surface of the gold layer with a treatment liquid in which an organic sealing treatment agent is dissolved may be carried out.
- a film made of the organic sealing treatment agent is formed on the surface of the gold layer, and fine pinholes can be sealed.
- the organic sealing treatment agent is preferably one or a combination of a plurality of types selected from the group consisting of heterocyclic compounds, thiol compounds, and amine compounds.
- thiol compounds are preferable. Specific examples thereof include alkylthiols, alkyldisulfides, triazinethiols, and mercaptobenzothiazoles.
- Examples of the solvent for dissolving the organic sealing treatment agent include water, alcohols and the like.
- a surfactant or the like may be added to disperse the organic sealing treatment agent.
- Examples of such surfactants include polyoxyethylene nonylphenyl ether and the like.
- a commercially available product can also be used as the organic sealing treatment agent dispersed with a surfactant or the like.
- Examples of such commercially available products include EL-8000B (manufactured by Nikkei Seisei Co., Ltd.), CT-3 (manufactured by JX Nippon Mining & Metals Co., Ltd.), KG-230 (manufactured by JX Nippon Mining & Metals Co., Ltd.) and the like.
- the commercially available product When the commercially available product is used, it is preferably used by diluting it to a concentration of 20 to 100 mL / L and bringing it into contact with the surface of the gold layer.
- the first step, the second step, and the third step may be continuously carried out.
- the step of contacting the treatment liquid in which the organic sealing treatment agent is dissolved may also be continuously carried out following the third step. Further, a washing step and a drying step may be appropriately carried out between each of these steps.
- the step of forming the resin layer is the insulating film base material.
- a resin film can be attached to or laminated with an insulating film base material in advance.
- the resin film is attached or laminated on the surface opposite to the surface on which the metal layer of the insulating film base material is provided. Can be done.
- Peeling strength test (adhesion evaluation) The conductive film was cut into a length of 50 mm and a width of 5 mm to prepare a sample. Masking is performed so that the length of 3 mm is exposed at the center of the sample in the length direction, and solder paste (manufactured by Senju Metal Industry Co., Ltd .; trade name " ECO solder paste L20-BLT5-T7F ”) with the head of a copper nail (copper thin flat rivet M3 x 20 manufactured by Showa Densen Cable System Co., Ltd.) attached, heat treatment at 250 ° C for 2 minutes. Was carried out. A constant temperature dryer (manufactured by Advantech Toyo Co., Ltd .; trade name "DRA630DA”) was used for the heat treatment.
- the sample was cooled to room temperature, folded in half at the position where the copper nail was connected, and the sample and the copper nail were pulled in the opposite directions with a tensile strength tester to measure the peel strength.
- a tensile strength tester a digital load meter (manufactured by Imada Seisakusho Co., Ltd., trade name "SV-55") was used.
- the tensile speed was 25 mm / min.
- FIG. 1 shows a schematic diagram showing the method of the bending resistance test carried out in this example.
- the conductive film 1 is cut into a sample having a length of 100 mm and a width of 30 mm, bent so that the conductive layer (metal layer 3) of the conductive film 1 is on the outside, and a PET film 4 (Toray Industries, Inc.) having a thickness of 163 ⁇ m is bent between them.
- the bent portion 8 has a curvature with a radius of 82 ⁇ m by sandwiching the mirror 38S10 and 125S10).
- the sample (conductive film 1) bent with the PET film 4 sandwiched between them was placed on a horizontal workbench 7 as shown in FIG.
- a 2.0 kg weight 5 was placed on the sample at the position shown in FIG. 1 via a slide glass 6 and allowed to stand for 1 second so that a predetermined load was applied to the bent portion 8.
- the bent portion 8 was observed with a microscope (trade name "Digital Microscope VHX-5000"; manufactured by KEYENCE CORPORATION), and the occurrence of cracks was confirmed. This method was used as evaluation method 1.
- the same method as above was performed except that the thickness of the PET film was changed to 100 ⁇ m so that the bent portion of the sample had a curvature with a radius of 50 ⁇ m, and then the occurrence of cracks was confirmed by the same method (.
- This method was used as evaluation method 2).
- the surface of the gold layer of the treated sample is visually observed, and the degree of corrosion is evaluated according to the following criteria. ⁇ : No change in metallic luster on the surface of the gold layer ⁇ : Metallic luster on the surface of the gold layer decreased, but no pinholes occurred ⁇ : Pinholes occurred on the surface of the gold layer.
- Copper migration suppression effect (change in contact resistance value) The effect of suppressing copper migration was evaluated by measuring the contact resistance values of the samples before and after the accelerated test by the heat treatment described above.
- the contact resistance value (m ⁇ ) For the contact resistance value (m ⁇ ), prepare two gold plating jigs with a contact resistance value (m ⁇ ) of 30 mm ⁇ 30 mm ⁇ 10 mm and a mass of 50 g, and place them side by side on the sample surface so that the surface with an area of 900 mm 2 is facing down and an interval of 1 mm is opened.
- the resistance value (m ⁇ ) between the two jigs was measured with a milliohm high tester (manufactured by Hioki Electric Co., Ltd., trade name "3540").
- Arithmetic Mean Roughness Ra is measured by a method based on JIS B 0601: 2001 using a scanning confocal laser scanning microscope (manufactured by Olympus Co., Ltd., trade name "LEXT OLS30-SU"). bottom.
- Elongation rate measurement method The elongation rate of the resin layer was calculated by the following formula from the elongation length until the resin layer broke by a tensile strength tester. Lo was the sample length before the test (mm), and L was the sample length at break (mm).
- a single resin film for a resin layer of 20 mm x 5 mm was masked with tape (trade name "No. 642", manufactured by Teraoka Seisakusho) so that the center of 5 mm x 5 mm remained, and the two masked locations were masked with a tensile strength tester.
- tape trade name "No. 642", manufactured by Teraoka Seisakusho
- L was calculated from the numerical value of the tensile speed.
- the Lo value is 5.
- a digital load meter manufactured by Imada Seisakusho Co., Ltd., trade name "SV-55" was used, and the tensile speed was set to 30 mm / min.
- Example 1 A copper vapor-deposited film manufactured by Toray KP Film Co., Ltd. (manufactured by Toray DuPont Co., Ltd.) in which a copper layer having a thickness of 1.5 ⁇ m is formed on one surface of a polyimide resin film having a thickness of 25 ⁇ m as an insulating film base material. Copper 100 V with a thick film vapor-deposited) was acid-washed with an aqueous solution of sulfuric acid 50 mL / L at 20 ° C. for 30 seconds. The arithmetic mean roughness Ra of the copper layer surface was measured and found to be 0.014 ⁇ m.
- nickel plating was performed to form a nickel layer on the surface of the copper layer.
- nickel sulfate hexahydrate was 200 g / L
- trisodium citrate dihydrate was 60 g / L
- the pH was 5.5
- the temperature was 40 ° C.
- the conditions for electrolytic nickel plating were a current density of 3.0 A / dm 2 , a processing time of 15 seconds, and an Anodec 100 (manufactured by Nikkei Seisei Co., Ltd.) as the anode.
- the thickness of the obtained nickel layer was 0.12 ⁇ m.
- electrogold plating was carried out to form a gold layer on the surface of the nickel layer, and a conductive film was obtained.
- Eco Gold 24 manufactured by Nikkei Seisei Co., Ltd., gold concentration 8.0 g / L
- Anodec 100 manufactured by Nikkei Seisei Co., Ltd. was used as the anode at a plating bath temperature of 40 ° C. and a current density of 0.32 A / dm 2 for 15 seconds.
- the thickness of the obtained gold layer was 0.031 ⁇ m, and the arithmetic mean roughness Ra of the surface of the gold layer was 0.025 ⁇ m.
- a conductive film having a gold layer formed in a 50 mL / L aqueous solution of the trade name "EL-8000B" manufactured by Nikkei Seisei Co., Ltd .; thiol compounds was placed at a treatment temperature of 40 ° C. Soaked for 16 seconds.
- Example 2 In electrogold plating, a conductive film was obtained in the same manner as in Example 1 except that the treatment time was 22.5 seconds and the thickness of the gold layer was 0.046 ⁇ m. The arithmetic mean roughness Ra on the surface of the gold layer was 0.026 ⁇ m. Table 1 shows the results of each evaluation / measurement.
- Example 3 A copper vapor-deposited film manufactured by Toray KP Film Co., Ltd. (Toray DuPont Co., Ltd.) in which a copper layer with a thickness of 0.3 ⁇ m is formed on one surface of a polyimide resin film having a thickness of 12.5 ⁇ m as an insulating film base material. A thick film of copper vapor-deposited on 100 V of DuPont manufactured by the company) was acid-washed with an aqueous solution of 50 mL / L of sulfuric acid at 20 ° C. for 30 seconds.
- the copper plating bath 200 g / L of copper sulfate pentahydrate, 55 mL / L of sulfuric acid, 20 mL / L of soft copper film forming agent (trade name "CU-SOFT", manufactured by JCU Co., Ltd.), and sodium chloride.
- the plating bath temperature was set to 40 ° C. using one containing 85 mg / L.
- the conditions for electrolytic copper plating were 150 seconds at a current density of 3.0 A / dm 2 .
- the arithmetic mean roughness Ra of the copper layer surface was measured and found to be 0.085 ⁇ m.
- electrolytic nickel plating was performed to form a nickel layer on the surface of the copper layer.
- the electrolytic nickel plating bath was the same as in Example 1, and the current density was 0.6 A / dm 2 and the processing time was 69.4 seconds.
- the thickness of the obtained nickel layer was 0.11 ⁇ m.
- Example 2 film formation by electrogold plating and an organic sealing treatment agent was carried out under the same conditions as in Example 1 to form a gold layer having a thickness of 0.033 ⁇ m and a surface arithmetic mean roughness Ra of 0.118 ⁇ m. bottom.
- Table 1 shows the results of each evaluation / measurement.
- Example 4 A copper vapor-deposited film manufactured by Toray KP Film Co., Ltd. (manufactured by Toray DuPont Co., Ltd.) in which a copper layer having a thickness of 0.3 ⁇ m is formed on one surface of a polyimide resin film having a thickness of 4 ⁇ m as an insulating film base material. A thick film of copper vapor-deposited on 100 V of Capton) was acid-washed with an aqueous solution of 50 ml / L of sulfuric acid at 20 ° C. for 30 seconds.
- electrolytic nickel plating was performed to form a nickel layer on the surface of the copper layer.
- the electrolytic nickel plating bath was the same as in Example 1, and the current density was 0.38 A / dm 2 and the processing time was 56 seconds.
- the thickness of the obtained nickel layer was 0.07 ⁇ m.
- Example 2 film formation by electrogold plating and an organic sealing treatment agent was carried out under the same conditions as in Example 1 to form a gold layer having a thickness of 0.046 ⁇ m and a surface arithmetic mean roughness Ra of 0.025 ⁇ m. bottom.
- Table 1 shows the results of each evaluation / measurement.
- Example 5 Regarding the conductive film obtained under the same conditions as in Example 4, a polyurethane resin film having a thickness of 30 ⁇ m (trade name “UH-203”, Japan) was placed on the surface opposite to the surface on which the metal layer of the insulating film substrate was provided. (Mattai Co., Ltd.) was bonded, and a 5 kg weight was placed on a hot plate (trade name "HT-1000", manufactured by AS ONE Co., Ltd.) at 100 ° C. for 10 seconds to bond the two. The elongation rate of the polyurethane resin film used in this experiment was 1300%. Table 1 shows the evaluation / measurement results of the obtained conductive film.
- Example 1 A conductive film was obtained in the same manner as in Example 1 except that the treatment time for electrolytic nickel plating was 69.4 seconds and the thickness of the nickel layer was 0.61 ⁇ m. The arithmetic mean roughness Ra on the surface of the gold layer was 0.026. Table 1 shows the results of each evaluation / measurement.
- Example 2 A conductive film was obtained in the same manner as in Example 1 except that the treatment time for electrolytic nickel plating was 1.0 second and the thickness of the nickel layer was 0.012 ⁇ m. The arithmetic mean roughness Ra on the surface of the gold layer was 0.017. Table 1 shows the results of each evaluation / measurement.
- the conductive film of the present invention can be used as a conductive film for grounding. It can be wound around an elastic material to form a gasket, which can be sandwiched inside an electronic device housing and used as a countermeasure against electromagnetic interference. It is possible to shield noise generated from the electronic device itself, noise affecting the electronic device from the outside, and the like. Since it has a film shape, it can also be used as an electrical connection member to an electric circuit formed on a flexible base material such as a wearable device.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
Abstract
[Problem] The present invention addresses the problem of obtaining a conductive film in which the migration of copper into a gold layer is suppressed, discoloration of the gold layer over time is suppressed, and cracks in the gold layer do not occur due to bending. Furthermore, a conductive film having excellent corrosion resistance can be obtained. [Solution] The conductive film is formed by laminating a copper layer, a nickel layer, and a gold layer on one surface of an insulating film substrate in this order, the conductive film being characterized in that the thickness of the nickel layer is 0.05-0.2 μm. The arithmetic average roughness (Ra) of the surface of the copper layer on the side in which the nickel layer is laminated is preferably 0.02 μm or less.
Description
本発明は、導電フィルムに関する。詳しくは、表面に金層が積層され且つ金層への銅のマイグレーションを抑制しながら金層の耐屈曲性や耐腐食性が改善された導電フィルムに関する。
The present invention relates to a conductive film. More specifically, the present invention relates to a conductive film in which a gold layer is laminated on the surface and the bending resistance and corrosion resistance of the gold layer are improved while suppressing the migration of copper to the gold layer.
電子機器の小型化、軽量化に伴い、可撓性のフィルム表面に回路が形成されたフレキシブルプリント基板が利用されている。フィルム表面に形成される回路には、導電性の高い銅が用いられることが多い。更に、銅からなる回路表面の保護や接触抵抗を下げる目的で、銅表面に金からなる層を積層することが行われている。銅の表面に金からなる層を直接積層した場合、経時による銅のマイグレーションが起こって金層の表面に銅が蓄積し、変色したり接触抵抗値が増大したりするという問題があった。
With the miniaturization and weight reduction of electronic devices, flexible printed substrates in which circuits are formed on the surface of flexible films are being used. Highly conductive copper is often used for circuits formed on the film surface. Further, for the purpose of protecting the circuit surface made of copper and lowering the contact resistance, a layer made of gold is laminated on the copper surface. When a layer made of gold is directly laminated on the surface of copper, there is a problem that migration of copper occurs over time and copper accumulates on the surface of the gold layer, causing discoloration and an increase in contact resistance value.
この問題を解決するために、ニッケルや錫などからなる中間層を設けることが行われている。しかしながら、中間層を設けた結果、屈曲によって金からなる層の表面にクラックが発生したりピンホールが出来たりすることによって耐腐食性が低下するといった新たな問題も提示されており、これらの問題の解決が求められている。
In order to solve this problem, an intermediate layer made of nickel, tin, etc. is provided. However, as a result of providing the intermediate layer, new problems such as cracks on the surface of the layer made of gold due to bending and pinholes, which reduce corrosion resistance, have been presented. Is required to be resolved.
例えば、特許文献1(特開2009-176646)には、金等からなる表面層の下に表面側領域を構成する金属の平均結晶粒径が0.001~0.3μmであることを特徴とする中間(ニッケル)層を設けた箔状導体が提案されている。これにより表面層の直下が平滑になり表面層にピンホールが形成されにくくなるとのことであるが、中間層の厚みを十分に薄くできないため耐屈曲性に劣る。
For example, Patent Document 1 (Japanese Patent Laid-Open No. 2009-176646) is characterized in that the average crystal grain size of a metal constituting a surface side region under a surface layer made of gold or the like is 0.001 to 0.3 μm. A foil-like conductor provided with an intermediate (nickel) layer is proposed. It is said that this makes the area directly under the surface layer smooth and makes it difficult for pinholes to be formed in the surface layer, but the thickness of the intermediate layer cannot be made sufficiently thin, so that the bending resistance is inferior.
上述した問題を解決し、金からなる層への銅のマイグレーションを抑制しながら、金からなる層の耐屈曲性や耐腐食性が改善された導電フィルムを提供することを本発明の課題とする。
An object of the present invention is to solve the above-mentioned problems and to provide a conductive film having improved bending resistance and corrosion resistance of the gold layer while suppressing the migration of copper to the gold layer. ..
本発明の導電フィルムは、絶縁性フィルム基材の一方の面に銅層、ニッケル層、及び金層からなる金属層がこの順に積層されてなる導電フィルムであって、前記ニッケル層の厚さが0.05~0.2μmであることを特徴とする導電フィルムである。
The conductive film of the present invention is a conductive film in which a metal layer composed of a copper layer, a nickel layer, and a gold layer is laminated in this order on one surface of an insulating film base material, and the thickness of the nickel layer is high. It is a conductive film characterized by having a thickness of 0.05 to 0.2 μm.
これによれば、金層への銅のマイグレーションを抑制しながら、屈曲した場合でも金層にクラックの発生がない導電フィルムを得ることができる。
According to this, it is possible to obtain a conductive film in which cracks do not occur in the gold layer even when it is bent, while suppressing the migration of copper to the gold layer.
前記銅層において、前記ニッケル層が積層される側の銅層表面の算術平均粗さRaが0.02μm以下であることが好ましい。これによれば、導電フィルムの耐腐食性を高めることができる。
In the copper layer, it is preferable that the arithmetic mean roughness Ra of the surface of the copper layer on the side where the nickel layer is laminated is 0.02 μm or less. According to this, the corrosion resistance of the conductive film can be enhanced.
前記金層表面の算術平均粗さRaが、0.03μm以下であることが好ましい。これによれば、導電フィルムの耐腐食性をさらに高めることができる。
It is preferable that the arithmetic mean roughness Ra of the surface of the gold layer is 0.03 μm or less. According to this, the corrosion resistance of the conductive film can be further improved.
前記銅層の厚さが1~5μmであることが好ましい。
前記絶縁性フィルムの金属層を設けた面とは反対の面に、伸び率が200~2000%である樹脂層を設けることが好ましい。 The thickness of the copper layer is preferably 1 to 5 μm.
It is preferable to provide a resin layer having an elongation rate of 200 to 2000% on the surface of the insulating film opposite to the surface on which the metal layer is provided.
前記絶縁性フィルムの金属層を設けた面とは反対の面に、伸び率が200~2000%である樹脂層を設けることが好ましい。 The thickness of the copper layer is preferably 1 to 5 μm.
It is preferable to provide a resin layer having an elongation rate of 200 to 2000% on the surface of the insulating film opposite to the surface on which the metal layer is provided.
前記金層の表面に、複素環式化合物、チオール類化合物、及びアミン類化合物からなる群より選ばれる少なくとも一種の有機系封孔処理剤からなる膜が形成されていることが好ましい。これにより、視認できないほどの微小なピンホールを封止することが望ましい。
It is preferable that a film made of at least one organic pore-treating agent selected from the group consisting of heterocyclic compounds, thiol compounds, and amine compounds is formed on the surface of the gold layer. It is desirable to seal a pinhole that is so small that it cannot be visually recognized.
前記絶縁性フィルム基材が、ポリイミド樹脂からなることが好ましい。これによれば、耐熱性に優れた導電フィルムを得ることができる。
前記絶縁性フィルム基材の厚さが、4~25μmであることが好ましい。 It is preferable that the insulating film base material is made of a polyimide resin. According to this, it is possible to obtain a conductive film having excellent heat resistance.
The thickness of the insulating film substrate is preferably 4 to 25 μm.
前記絶縁性フィルム基材の厚さが、4~25μmであることが好ましい。 It is preferable that the insulating film base material is made of a polyimide resin. According to this, it is possible to obtain a conductive film having excellent heat resistance.
The thickness of the insulating film substrate is preferably 4 to 25 μm.
本発明によれば、経時による変色を抑制しながら、屈曲による金層のクラック発生がない導電フィルムを得ることができる。更に、耐腐食性に優れた導電フィルムを得ることができる。
According to the present invention, it is possible to obtain a conductive film in which the gold layer is not cracked due to bending while suppressing discoloration with time. Further, a conductive film having excellent corrosion resistance can be obtained.
本発明の導電フィルムは、絶縁性フィルム基材の一方の面に、銅層、ニッケル層、及び金層の3層からなる金属層が、絶縁性フィルム基材上に銅層、ニッケル層、金層の順に積層されている。すなわち本発明の導電フィルムは「絶縁性フィルム基材/銅層/ニッケル層/金層」という層構成を有し、一方の最外層が金層となっている。
The conductive film of the present invention has a metal layer consisting of a copper layer, a nickel layer, and a gold layer on one surface of an insulating film base material, and a copper layer, a nickel layer, and gold on the insulating film base material. It is laminated in the order of layers. That is, the conductive film of the present invention has a layer structure of "insulating film base material / copper layer / nickel layer / gold layer", and one outermost layer is a gold layer.
1.絶縁性フィルム基材
本発明の導電フィルムは、絶縁性フィルム基材をベースとする。絶縁性フィルム基材としては、合成樹脂からなるフィルムが好ましく用いられる。合成樹脂としては特に限定されないが、ポリイミド樹脂、ポリエステル樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂などが挙げられる。なかでも、耐熱性に優れた導電フィルムが得られることから、ポリイミド樹脂からなる絶縁性フィルム基材であることが好ましい。 1. 1. Insulating film base material The conductive film of the present invention is based on an insulating film base material. As the insulating film base material, a film made of a synthetic resin is preferably used. The synthetic resin is not particularly limited, and examples thereof include a polyimide resin, a polyester resin, a polypropylene resin, a polyvinyl chloride resin, and a polycarbonate resin. Among them, an insulating film base material made of a polyimide resin is preferable because a conductive film having excellent heat resistance can be obtained.
本発明の導電フィルムは、絶縁性フィルム基材をベースとする。絶縁性フィルム基材としては、合成樹脂からなるフィルムが好ましく用いられる。合成樹脂としては特に限定されないが、ポリイミド樹脂、ポリエステル樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂などが挙げられる。なかでも、耐熱性に優れた導電フィルムが得られることから、ポリイミド樹脂からなる絶縁性フィルム基材であることが好ましい。 1. 1. Insulating film base material The conductive film of the present invention is based on an insulating film base material. As the insulating film base material, a film made of a synthetic resin is preferably used. The synthetic resin is not particularly limited, and examples thereof include a polyimide resin, a polyester resin, a polypropylene resin, a polyvinyl chloride resin, and a polycarbonate resin. Among them, an insulating film base material made of a polyimide resin is preferable because a conductive film having excellent heat resistance can be obtained.
前記絶縁性フィルム基材の厚さは特に制限されないが、下限が好ましくは2μm、より好ましくは3μm、特に好ましくは4μmである。厚さの上限は好ましくは100μm、より好ましくは50μm、さらに好ましくは25μm、特に好ましは13μmである。前記絶縁性フィルム基材の厚さがこの範囲であれば、適度な可撓性を有する導電フィルムを得ることができる。望ましくは、前記絶縁性フィルム基材の厚さは4~25μmである。
The thickness of the insulating film base material is not particularly limited, but the lower limit is preferably 2 μm, more preferably 3 μm, and particularly preferably 4 μm. The upper limit of the thickness is preferably 100 μm, more preferably 50 μm, still more preferably 25 μm, and particularly preferably 13 μm. When the thickness of the insulating film base material is within this range, a conductive film having appropriate flexibility can be obtained. Desirably, the thickness of the insulating film substrate is 4 to 25 μm.
絶縁性フィルム基材の絶縁性は特に制限されないが、好ましい抵抗値は1×1014Ω/□以上である。
The insulating property of the insulating film base material is not particularly limited, but a preferable resistance value is 1 × 10 14 Ω / □ or more.
2.銅層
前記絶縁性フィルム基材の一方の面に銅層が積層されており、銅層は絶縁性フィルム基材に接している。前記銅層の厚さは特に制限されないが、下限が好ましくは0.5μm、より好ましくは1μm、特に好ましくは1.5μmである。厚さの上限は好ましくは8μm、より好ましくは6μm、特に好ましは5μmである。前記銅層の厚さがこの範囲であれば、十分な導電性を確保し、可撓性に優れた導電フィルムを得ることができる。望ましくは、前記銅層の厚みは1~5μmである。 2. 2. Copper layer A copper layer is laminated on one surface of the insulating film base material, and the copper layer is in contact with the insulating film base material. The thickness of the copper layer is not particularly limited, but the lower limit is preferably 0.5 μm, more preferably 1 μm, and particularly preferably 1.5 μm. The upper limit of the thickness is preferably 8 μm, more preferably 6 μm, and particularly preferably 5 μm. When the thickness of the copper layer is within this range, sufficient conductivity can be ensured and a conductive film having excellent flexibility can be obtained. Desirably, the thickness of the copper layer is 1 to 5 μm.
前記絶縁性フィルム基材の一方の面に銅層が積層されており、銅層は絶縁性フィルム基材に接している。前記銅層の厚さは特に制限されないが、下限が好ましくは0.5μm、より好ましくは1μm、特に好ましくは1.5μmである。厚さの上限は好ましくは8μm、より好ましくは6μm、特に好ましは5μmである。前記銅層の厚さがこの範囲であれば、十分な導電性を確保し、可撓性に優れた導電フィルムを得ることができる。望ましくは、前記銅層の厚みは1~5μmである。 2. 2. Copper layer A copper layer is laminated on one surface of the insulating film base material, and the copper layer is in contact with the insulating film base material. The thickness of the copper layer is not particularly limited, but the lower limit is preferably 0.5 μm, more preferably 1 μm, and particularly preferably 1.5 μm. The upper limit of the thickness is preferably 8 μm, more preferably 6 μm, and particularly preferably 5 μm. When the thickness of the copper layer is within this range, sufficient conductivity can be ensured and a conductive film having excellent flexibility can be obtained. Desirably, the thickness of the copper layer is 1 to 5 μm.
銅層の形成方法は特に制限されないが、好ましくは絶縁性フィルム基材上に真空蒸着法等の公知の蒸着法により形成するか、スパッタリング法を用いて形成するか、あるいは公知の電気銅めっき法により形成する方法などが挙げられる。
The method for forming the copper layer is not particularly limited, but is preferably formed on an insulating film substrate by a known vapor deposition method such as a vacuum vapor deposition method, formed by a sputtering method, or a known electrolytic copper plating method. And the like.
銅層は、2種類以上の異なる方法で形成された複数層から構成されていても良い。例えば、第一銅層として絶縁性フィルム基材上に蒸着法により形成された銅蒸着層を有し、第二銅層として前記第一銅層上に電気銅めっき法により形成された銅めっき層を有することができる。これにより,効率よく所望の厚みの銅層を得ることができる。
The copper layer may be composed of a plurality of layers formed by two or more different methods. For example, the first copper layer has a copper vapor deposition layer formed on an insulating film base material by a vapor deposition method, and the second copper layer is a copper plating layer formed on the first copper layer by an electrolytic copper plating method. Can have. As a result, a copper layer having a desired thickness can be efficiently obtained.
第一銅層の厚みは好ましくは0.1~2.0μm、第二銅層の厚みは好ましくは0.5~5.0μmであり、第一銅層と第二銅層を合わせて上記銅層厚みになるようにするのがよい。また、前記銅層表面の算術平均粗さRaは、第一銅層と第二銅層とを有する場合、ニッケル層と接する第二銅層の表面の粗さとなる。
The thickness of the first copper layer is preferably 0.1 to 2.0 μm, and the thickness of the second copper layer is preferably 0.5 to 5.0 μm. It is better to have a layer thickness. Further, the arithmetic mean roughness Ra of the copper layer surface is the roughness of the surface of the second copper layer in contact with the nickel layer when the first copper layer and the second copper layer are provided.
前記銅層の表面に関して、その算術平均粗さRaが0.02μm以下であることが好ましく、0.01~0.02μmであることがより好ましい。Raがこの範囲内であれば、その上に形成されるニッケル層及び金層の厚さがより均一になり、表面(金)層のピンホールを抑制して耐腐食性を向上させることができる。
With respect to the surface of the copper layer, its arithmetic mean roughness Ra is preferably 0.02 μm or less, and more preferably 0.01 to 0.02 μm. When Ra is within this range, the thickness of the nickel layer and the gold layer formed on the nickel layer and the gold layer becomes more uniform, pinholes in the surface (gold) layer can be suppressed, and corrosion resistance can be improved. ..
算術平均粗さRaは、走査型共焦点レーザー顕微鏡(例えば、オリンパス株式会社製、商品名「LEXT OLS30-SU」)などの装置を用いて、JIS B 0601:2001に準拠した方法で測定することができる。
The arithmetic mean roughness Ra shall be measured by a method compliant with JIS B 0601: 2001 using a device such as a scanning confocal laser scanning microscope (for example, manufactured by Olympus Corporation, trade name "LEXT OLS30-SU"). Can be done.
銅層の算術平均粗さRaを上記範囲にするには、銅層を形成する方法として真空蒸着法やスパッタリング法、光沢剤を含む電気銅めっきによる銅膜形成法を採用するのが好ましい。
In order to keep the arithmetic mean roughness Ra of the copper layer within the above range, it is preferable to adopt a vacuum vapor deposition method, a sputtering method, or a copper film forming method by electrolytic copper plating containing a brightener as a method for forming the copper layer.
3.ニッケル層
前記銅層の表面(絶縁性フィルム基材とは反対側、銅層と金層との間)には、ニッケル層が積層されている。前記ニッケル層の厚さは0.05~0.2μmであることが肝要である。すなわち、厚さの下限は0.05μmであり、好ましくは0.07μm以上である。厚さの上限は0.2μmであり、好ましくは0.15μm以下、より好ましくは0.12μm以下である。前記ニッケル層の厚さがこの範囲内であれば、銅のマイグレーションを抑制しながら導電フィルムを屈曲した際に、後述する金層にクラックが発生することを抑制することができる。 3. 3. Nickel layer A nickel layer is laminated on the surface of the copper layer (on the opposite side of the insulating film base material, between the copper layer and the gold layer). It is important that the thickness of the nickel layer is 0.05 to 0.2 μm. That is, the lower limit of the thickness is 0.05 μm, preferably 0.07 μm or more. The upper limit of the thickness is 0.2 μm, preferably 0.15 μm or less, and more preferably 0.12 μm or less. When the thickness of the nickel layer is within this range, it is possible to suppress the occurrence of cracks in the gold layer described later when the conductive film is bent while suppressing the migration of copper.
前記銅層の表面(絶縁性フィルム基材とは反対側、銅層と金層との間)には、ニッケル層が積層されている。前記ニッケル層の厚さは0.05~0.2μmであることが肝要である。すなわち、厚さの下限は0.05μmであり、好ましくは0.07μm以上である。厚さの上限は0.2μmであり、好ましくは0.15μm以下、より好ましくは0.12μm以下である。前記ニッケル層の厚さがこの範囲内であれば、銅のマイグレーションを抑制しながら導電フィルムを屈曲した際に、後述する金層にクラックが発生することを抑制することができる。 3. 3. Nickel layer A nickel layer is laminated on the surface of the copper layer (on the opposite side of the insulating film base material, between the copper layer and the gold layer). It is important that the thickness of the nickel layer is 0.05 to 0.2 μm. That is, the lower limit of the thickness is 0.05 μm, preferably 0.07 μm or more. The upper limit of the thickness is 0.2 μm, preferably 0.15 μm or less, and more preferably 0.12 μm or less. When the thickness of the nickel layer is within this range, it is possible to suppress the occurrence of cracks in the gold layer described later when the conductive film is bent while suppressing the migration of copper.
さらに本発明では、ニッケル層の厚さが極めて薄いため、銅層表面の算術平均粗さを小さく抑えることによる効果が、ニッケル層のみならず金層をも均一に薄く形成することを可能にしている。
Further, in the present invention, since the thickness of the nickel layer is extremely thin, the effect of suppressing the arithmetic mean roughness of the copper layer surface to a small value makes it possible to form not only the nickel layer but also the gold layer uniformly and thinly. There is.
4.金層
前記ニッケル層の表面(銅層とは反対側、最外層)には、金層が積層されている。前記金層の厚さは0.05μm以下であることが好ましく、より好ましくは0.04μm以下である。前記金層の厚さが上記範囲以下であれば、コストを抑えて低い接触抵抗値を実現することができる。金層の厚さの下限は特に制限されないが、好ましくは0.02μm以上、より好ましくは0.03μm以上である。 4. Gold layer A gold layer is laminated on the surface of the nickel layer (opposite to the copper layer, the outermost layer). The thickness of the gold layer is preferably 0.05 μm or less, more preferably 0.04 μm or less. When the thickness of the gold layer is not more than the above range, the cost can be suppressed and a low contact resistance value can be realized. The lower limit of the thickness of the gold layer is not particularly limited, but is preferably 0.02 μm or more, and more preferably 0.03 μm or more.
前記ニッケル層の表面(銅層とは反対側、最外層)には、金層が積層されている。前記金層の厚さは0.05μm以下であることが好ましく、より好ましくは0.04μm以下である。前記金層の厚さが上記範囲以下であれば、コストを抑えて低い接触抵抗値を実現することができる。金層の厚さの下限は特に制限されないが、好ましくは0.02μm以上、より好ましくは0.03μm以上である。 4. Gold layer A gold layer is laminated on the surface of the nickel layer (opposite to the copper layer, the outermost layer). The thickness of the gold layer is preferably 0.05 μm or less, more preferably 0.04 μm or less. When the thickness of the gold layer is not more than the above range, the cost can be suppressed and a low contact resistance value can be realized. The lower limit of the thickness of the gold layer is not particularly limited, but is preferably 0.02 μm or more, and more preferably 0.03 μm or more.
前記金層表面の算術平均粗さRaは0.03μm以下であることが好ましい。金層表面の算術平均粗さRaが0.03μm以下であれば、優れた耐腐食性を有する導電フィルムを得ることができる。なお、金層表面の算術平均粗さRaはニッケル層と接していない方の面(導電フィルムの最外面)の表面の平均粗さである。
The arithmetic mean roughness Ra of the surface of the gold layer is preferably 0.03 μm or less. When the arithmetic mean roughness Ra of the surface of the gold layer is 0.03 μm or less, a conductive film having excellent corrosion resistance can be obtained. The arithmetic mean roughness Ra of the surface of the gold layer is the average roughness of the surface of the surface (outermost surface of the conductive film) that is not in contact with the nickel layer.
本発明ではニッケル層及び金層の厚さが極めて薄いため、銅層表面の算術平均粗さを0.02μm以下とすることによって、金層表面の算術平均粗さRaを上記範囲内(0.03μm以下)に収めることができる。さらに、真空蒸着法、スパッタリング法、光沢剤を含む電気金めっきによる金成膜法などを採用して金層を形成することも、金層表面の算術平均粗さRaを容易に上記範囲内に収めることができるので、好ましい。
Since the thickness of the nickel layer and the gold layer is extremely thin in the present invention, the arithmetic average roughness Ra of the surface of the copper layer is set within the above range (0.) by setting the arithmetic average roughness of the copper layer surface to 0.02 μm or less. It can be stored in (03 μm or less). Further, the gold layer can be formed by adopting a vacuum vapor deposition method, a sputtering method, a gold film forming method by electroplating containing a brightener, etc., so that the arithmetic mean roughness Ra of the surface of the gold layer can be easily kept within the above range. It is preferable because it can be stored.
前記金層表面の算術平均粗さRaを0.03μm以下とすることに加え、前記金層の表面(導電フィルムの最外面)に有機系封孔処理剤による膜が形成されていることが耐腐食性の観点から好ましい。一般的に、電気金めっき法によって得られた前記金層の表面には、視認できないほどの微小なピンホールが存在することがあるため、これらを封止する処理を行うことが望ましい。
In addition to setting the arithmetic mean roughness Ra of the gold layer surface to 0.03 μm or less, it is resistant to the formation of a film with an organic sealing treatment agent on the surface of the gold layer (outermost surface of the conductive film). It is preferable from the viewpoint of corrosiveness. In general, the surface of the gold layer obtained by the electrogold plating method may have minute pinholes that cannot be visually recognized, and it is desirable to perform a treatment for sealing these.
前記有機系封孔処理剤としては、複素環式化合物、チオール類化合物、アミン類化合物からなる群より選ばれる1種または複数種の組み合わせであることが好ましい。このうち好ましくは、チオール類化合物である。具体的にはトリアジンチオール、メルカプトベンゾチアゾール等が挙げられる。
The organic sealing treatment agent is preferably one or a combination of a plurality of types selected from the group consisting of heterocyclic compounds, thiol compounds, and amine compounds. Of these, thiol compounds are preferable. Specific examples thereof include triazinethiol and mercaptobenzothiazole.
有機系封孔処理剤により形成される膜の厚みは特に制限されないが、好ましくは0.01μm以下である。
The thickness of the film formed by the organic sealing treatment agent is not particularly limited, but is preferably 0.01 μm or less.
5.その他の層
本発明では、絶縁性フィルム基材の他方の面(金属層を設けた面とは反対の面)に、柔軟性に優れ高い伸び率を有する樹脂層を設けることができる。その場合、本発明の導電フィルムの層構成は「樹脂層/絶縁性フィルム基材/銅層/ニッケル層/金層」となる。 5. Other Layers In the present invention, a resin layer having excellent flexibility and high elongation can be provided on the other surface of the insulating film base material (the surface opposite to the surface on which the metal layer is provided). In that case, the layer structure of the conductive film of the present invention is "resin layer / insulating film base material / copper layer / nickel layer / gold layer".
本発明では、絶縁性フィルム基材の他方の面(金属層を設けた面とは反対の面)に、柔軟性に優れ高い伸び率を有する樹脂層を設けることができる。その場合、本発明の導電フィルムの層構成は「樹脂層/絶縁性フィルム基材/銅層/ニッケル層/金層」となる。 5. Other Layers In the present invention, a resin layer having excellent flexibility and high elongation can be provided on the other surface of the insulating film base material (the surface opposite to the surface on which the metal layer is provided). In that case, the layer structure of the conductive film of the present invention is "resin layer / insulating film base material / copper layer / nickel layer / gold layer".
前記樹脂層は、高い伸び率を有する樹脂フィルムからなることが好ましく、その伸び率は、下限が好ましくは200%、より好ましくは500%、特に好ましくは1000%である。伸び率の上限は特に制限されないが、好ましくは2000%、より好ましくは1500%、特に好ましくは1300%である。
The resin layer is preferably made of a resin film having a high elongation rate, and the lower limit is preferably 200%, more preferably 500%, and particularly preferably 1000%. The upper limit of the elongation rate is not particularly limited, but is preferably 2000%, more preferably 1500%, and particularly preferably 1300%.
伸び率の高い樹脂フィルムからなる樹脂層を設けることにより、本発明の導電フィルムの耐屈曲性がさらに向上し、より厳しい(折り曲げ部の曲率が小さい)条件の屈曲試験においても金属のクラック発生を抑えることができる。
By providing a resin layer made of a resin film having a high elongation rate, the bending resistance of the conductive film of the present invention is further improved, and metal cracks are generated even in a bending test under stricter conditions (the curvature of the bent portion is small). It can be suppressed.
前記樹脂フィルムの種類としては、ポリエステル、ポリウレタン、ポリオレフィン、ポリアミド等が挙げられる。樹脂の厚さは10~100μm程度が好ましく、より好ましくは20~50μmである。
Examples of the type of the resin film include polyester, polyurethane, polyolefin, polyamide and the like. The thickness of the resin is preferably about 10 to 100 μm, more preferably 20 to 50 μm.
6.密着性、耐屈曲性、耐腐食性、銅マイグレーション抑制
本発明の導電フィルムは、前記銅層、前記ニッケル層、前記金層の3層からなる金属層と、前記絶縁性フィルム基材との密着性を評価する剥離強度試験において、剥離強度が0.6kgf/15mm2以上であることが好ましい。すなわち本発明においては、導電フィルム基材と、該基材と接する銅層との接着性が良好である。 6. Adhesion, bending resistance, corrosion resistance, suppression of copper migration In the conductive film of the present invention, the metal layer composed of the copper layer, the nickel layer, and the gold layer adheres to the insulating film base material. In the peel strength test for evaluating the property, the peel strength is preferably 0.6 kgf / 15 mm 2 or more. That is, in the present invention, the adhesiveness between the conductive film base material and the copper layer in contact with the base material is good.
本発明の導電フィルムは、前記銅層、前記ニッケル層、前記金層の3層からなる金属層と、前記絶縁性フィルム基材との密着性を評価する剥離強度試験において、剥離強度が0.6kgf/15mm2以上であることが好ましい。すなわち本発明においては、導電フィルム基材と、該基材と接する銅層との接着性が良好である。 6. Adhesion, bending resistance, corrosion resistance, suppression of copper migration In the conductive film of the present invention, the metal layer composed of the copper layer, the nickel layer, and the gold layer adheres to the insulating film base material. In the peel strength test for evaluating the property, the peel strength is preferably 0.6 kgf / 15 mm 2 or more. That is, in the present invention, the adhesiveness between the conductive film base material and the copper layer in contact with the base material is good.
ここで剥離強度試験は以下の手順に従う。まず、導電フィルムを長さ50mm、幅5mmに裁断して試料とする。試料の長さ方向中心部において長さ3mm分を露出するようにマスキングを行う。露出した3mm×5mmの試料表面(金層の表面)に、はんだペースト(千住金属工業株式会社製;商品名「ECO SOLDER PASTE L20-BLT5-T7F」)を用いて銅釘(昭和電線ケーブルシステム株式会社製、銅薄平リベットM3×20)の頭部を貼りつけた状態で、250℃にて2分間の熱処理を実施する。
Here, the peel strength test follows the following procedure. First, the conductive film is cut into a length of 50 mm and a width of 5 mm to prepare a sample. Masking is performed so as to expose a length of 3 mm at the center of the sample in the length direction. Copper nail (Showa Electric Wire Cable System Co., Ltd.) is used on the exposed 3 mm x 5 mm sample surface (gold layer surface) using solder paste (manufactured by Senju Metal Industry Co., Ltd .; trade name "ECO SOLDER PASSE L20-BLT5-T7F"). With the head of a copper thin flat rivet M3 × 20) manufactured by the company attached, heat treatment is performed at 250 ° C. for 2 minutes.
熱処理には、例えば定温乾燥機(アドバンテック東洋株式会社製;商品名「DRA630DA」)などを用いることができる。熱処理後、試料を室温まで冷まし、銅釘が接続された位置で二つ折りとし、引張強度試験機にて試料と銅釘を反対方向に引っ張り、剥離強度を測定する。引張強度試験機としては、例えば株式会社今田製作所製デジタル荷重計SV-55が用いられる。引張速度は25mm/分である。
For the heat treatment, for example, a constant temperature dryer (manufactured by Advantech Toyo Co., Ltd .; trade name "DRA630DA") or the like can be used. After the heat treatment, the sample is cooled to room temperature, folded in half at the position where the copper nail is connected, and the sample and the copper nail are pulled in the opposite directions with a tensile strength tester to measure the peel strength. As the tensile strength tester, for example, a digital load meter SV-55 manufactured by Imada Seisakusho Co., Ltd. is used. The tensile speed is 25 mm / min.
本発明の導電フィルムは、耐屈曲性試験において金層にクラックが発生し難いものである。耐屈曲性試験の方法を示す概略図を図1に示す。導電フィルム1は長さ100mm、幅30mmに裁断して試料とし、該導電フィルム1の導電層(金属層3)が外側になるように折り曲げ、その間に厚さ163μmのPETフィルム4(東レ株式会社製ルミラー38S10と125S10とを重ねたもの)を挟み込んで、前記折り曲げ部8が半径82μmの曲率となるようにする。
The conductive film of the present invention is less likely to cause cracks in the gold layer in the bending resistance test. A schematic diagram showing the method of the bending resistance test is shown in FIG. The conductive film 1 is cut into a sample having a length of 100 mm and a width of 30 mm, bent so that the conductive layer (metal layer 3) of the conductive film 1 is on the outside, and a PET film 4 (Toray Industries, Inc.) having a thickness of 163 μm is bent between them. The bent portion 8 has a curvature of 82 μm by sandwiching the mirror 38S10 and 125S10).
このPETフィルム4を挟み込んで折り曲げた試料(導電フィルム1)を、図1のように水平の作業台7上にねかせて配置する。試料の上から2.0kgの錘5を図1に示す位置にスライドガラス6を介して載せ、折り曲げ部8に所定の負荷が掛かるようにして、1秒間静置する。錘5を取り除いたのち、折り曲げ部8をマイクロスコープ等で観察し、クラックの発生を確認する。この手法を評価法1とする。
The sample (conductive film 1) bent with the PET film 4 sandwiched between them is placed on a horizontal workbench 7 as shown in FIG. A 2.0 kg weight 5 is placed on the sample at the position shown in FIG. 1 via a slide glass 6 and allowed to stand for 1 second so that a predetermined load is applied to the bent portion 8. After removing the weight 5, the bent portion 8 is observed with a microscope or the like to confirm the occurrence of cracks. This method is referred to as evaluation method 1.
また、PETフィルムの厚さを100μmに変更し、試料の折り曲げ部が半径50μmの曲率となるようにした以外は前記の方法と同様に行ったのち、同様の方法でクラックの発生を確認する。この手法を評価法2とする。
Further, after changing the thickness of the PET film to 100 μm so that the bent portion of the sample has a curvature of a radius of 50 μm, the same method as described above is performed, and then the occurrence of cracks is confirmed by the same method. This method is referred to as evaluation method 2.
加えて、PETフィルムを挟まずに、試料の折り曲げ部が半径0μmの曲率となるようにした以外は前記の方法と同様に行ったのち、同様の方法でクラックの発生を確認する。この手法を評価法3とする。
In addition, the same method as above was performed except that the bent portion of the sample had a curvature of 0 μm without sandwiching the PET film, and then the occurrence of cracks was confirmed by the same method. This method is referred to as evaluation method 3.
上記評価法1、2及び3のそれぞれにおいて、次の基準で割れ具合を確認する。
〇:クラックの発生なし
△:微細なクラックあり
×:断裂レベルのクラックあり。 In each of the above evaluation methods 1, 2 and 3, the cracking condition is confirmed according to the following criteria.
〇: No cracks occur △: Fine cracks are present ×: Cracks at the tear level are present.
〇:クラックの発生なし
△:微細なクラックあり
×:断裂レベルのクラックあり。 In each of the
〇: No cracks occur △: Fine cracks are present ×: Cracks at the tear level are present.
本発明の導電フィルムの耐腐食性は、JIS規格2371:2015の中性塩水噴霧試験方法に準拠して評価することができる。すなわち、ISO型塩水噴霧試験機(例えば、スガ試験機株式会社製STP-90VRなど)を用い、5%塩化ナトリウム水溶液(pH6.8)を噴霧液とし、噴霧液温度35℃、空気飽和温度47℃にて試験時間48時間の処理を行う。
The corrosion resistance of the conductive film of the present invention can be evaluated in accordance with JIS standard 2371: 2015 neutral salt spray test method. That is, using an ISO type salt spray tester (for example, STP-90VR manufactured by Suga Test Instruments Co., Ltd.), a 5% sodium chloride aqueous solution (pH 6.8) was used as a spray liquid, and the spray liquid temperature was 35 ° C. and the air saturation temperature was 47. The treatment is carried out at ° C for a test time of 48 hours.
処理後の試料の金層表面を目視にて観察し、腐食具合を次の基準にて評価する。
〇:金層表面の金属光沢に変化なし
△:金層表面の金属光沢が低下したがピンホールの発生なし
×:金層表面にピンホールが発生。 The surface of the gold layer of the treated sample is visually observed, and the degree of corrosion is evaluated according to the following criteria.
〇: No change in metallic luster on the surface of the gold layer △: Metallic luster on the surface of the gold layer decreased, but no pinholes occurred ×: Pinholes occurred on the surface of the gold layer.
〇:金層表面の金属光沢に変化なし
△:金層表面の金属光沢が低下したがピンホールの発生なし
×:金層表面にピンホールが発生。 The surface of the gold layer of the treated sample is visually observed, and the degree of corrosion is evaluated according to the following criteria.
〇: No change in metallic luster on the surface of the gold layer △: Metallic luster on the surface of the gold layer decreased, but no pinholes occurred ×: Pinholes occurred on the surface of the gold layer.
本発明の導電フィルムは、金層への銅のマイグレーションが抑制されている。この特性を評価する方法としては、熱処理による促進試験前後の変色や接触抵抗値の測定が挙げられる。促進試験として260℃にて15分間の熱処理を実施する。促進試験前後の試料についてそれぞれ測色機(例えば、コニカミノルタジャパン株式会社製分光測色計CM-2600dなど)でSCI方式の測色をし、色差(ΔE)を算出して評価する。色差(ΔE)が3.0以下であれば、銅のマイグレーションが効果的に抑制されていると評価できる。
The conductive film of the present invention suppresses the migration of copper to the gold layer. Examples of the method for evaluating this characteristic include discoloration before and after the accelerated test by heat treatment and measurement of contact resistance value. As an accelerated test, heat treatment is performed at 260 ° C. for 15 minutes. Each sample before and after the accelerated test is color-measured by the SCI method with a colorimeter (for example, a spectrocolorimeter CM-2600d manufactured by Konica Minolta Japan Co., Ltd.), and a color difference (ΔE) is calculated and evaluated. When the color difference (ΔE) is 3.0 or less, it can be evaluated that the migration of copper is effectively suppressed.
同じく、促進試験前後の試料について、接触抵抗値を測定することで銅のマイグレーション抑制効果を評価できる。接触抵抗値(mΩ)は、30mm×30mm×10mm、質量50gの金めっき冶具を2つ用意し、900mm2の面積になる面を下とし、1mmの間隔が開くように、試料表面に並べて置く。その2つの治具間の抵抗値(mΩ)をミリオームハイテスタ(日置電機株式会社製3540など)にて測定することができる。促進試験の前後共に接触抵抗値は3.0mΩ以下であることが好ましい。
Similarly, the migration suppressing effect of copper can be evaluated by measuring the contact resistance value of the samples before and after the accelerated test. For the contact resistance value (mΩ), prepare two gold-plated jigs with a contact resistance value (mΩ) of 30 mm × 30 mm × 10 mm and a mass of 50 g, and place them side by side on the sample surface so that the surface with an area of 900 mm 2 is facing down and an interval of 1 mm is opened. .. The resistance value (mΩ) between the two jigs can be measured with a milliohm high tester (such as 3540 manufactured by Hioki Electric Co., Ltd.). The contact resistance value is preferably 3.0 mΩ or less both before and after the accelerated test.
7.導電フィルムの製造方法
本発明の導電フィルムの製造方法は、絶縁性フィルム基材の一方の面に蒸着法により銅層を形成する第一工程と、前記銅層の表面に電気めっき法によりニッケル層を形成する第二工程と、前記ニッケル層の表面に電気めっき法により金層を形成する第三工程と、をこの順に含む。 7. Method for manufacturing a conductive film The method for manufacturing a conductive film of the present invention includes a first step of forming a copper layer on one surface of an insulating film substrate by a vapor deposition method and a nickel layer on the surface of the copper layer by an electroplating method. The second step of forming a gold layer on the surface of the nickel layer by an electroplating method is included in this order.
本発明の導電フィルムの製造方法は、絶縁性フィルム基材の一方の面に蒸着法により銅層を形成する第一工程と、前記銅層の表面に電気めっき法によりニッケル層を形成する第二工程と、前記ニッケル層の表面に電気めっき法により金層を形成する第三工程と、をこの順に含む。 7. Method for manufacturing a conductive film The method for manufacturing a conductive film of the present invention includes a first step of forming a copper layer on one surface of an insulating film substrate by a vapor deposition method and a nickel layer on the surface of the copper layer by an electroplating method. The second step of forming a gold layer on the surface of the nickel layer by an electroplating method is included in this order.
前記第一工程では、絶縁性フィルム基材の一方の面に銅層を形成する。銅層の形成方法としては、蒸着法、無電解銅めっきによる銅成膜法等が挙げられる。これらのうち、蒸着法が好ましい。蒸着法としては、公知の蒸着装置及び方法を採用することができる。
In the first step, a copper layer is formed on one surface of the insulating film base material. Examples of the method for forming the copper layer include a vapor deposition method and a copper film forming method by electroless copper plating. Of these, the vapor deposition method is preferable. As the vapor deposition method, a known vapor deposition apparatus and method can be adopted.
前記銅層を形成するに先立ち、前記絶縁性フィルム基材の表面はプラズマ処理、イオン照射処理などで前処理され、改質されていてもよい。前記第一工程によって形成された前記銅層の表面は、平滑であることが望ましく、その算術平均粗さRaが0.02μm以下であることが好ましい。銅層の形成に蒸着法を用いれば、表面平滑性の高い銅層を形成することができる。
Prior to forming the copper layer, the surface of the insulating film base material may be pretreated and modified by plasma treatment, ion irradiation treatment, or the like. The surface of the copper layer formed by the first step is preferably smooth, and its arithmetic mean roughness Ra is preferably 0.02 μm or less. If a thin-film deposition method is used to form the copper layer, a copper layer having high surface smoothness can be formed.
前記第一工程において、蒸着法に続けて電気銅めっき法を用いてさらに銅層を形成してもよい。これによれば、銅層の厚さをより効率的に厚く形成することができる。この場合、蒸着法で形成された銅層の表面に、電気銅めっき法による第二の銅層が積層されることになる。したがって、第二の銅層に関して、その表面の算術平均粗さRaが0.02μm以下であることが好ましい。
In the first step, a copper layer may be further formed by using an electrolytic copper plating method following the vapor deposition method. According to this, the thickness of the copper layer can be formed thicker more efficiently. In this case, the second copper layer by the electrolytic copper plating method is laminated on the surface of the copper layer formed by the vapor deposition method. Therefore, it is preferable that the arithmetic mean roughness Ra of the surface of the second copper layer is 0.02 μm or less.
電気銅めっき法による前記第二の銅層表面の算術平均粗さRaを0.02μm以下とするためには、めっき浴中に特定のめっき用処理剤を添加するなどの方法を採用するのが好ましい。かかるめっき用処理剤のなかには、光沢剤と呼ばれるものもある。
In order to reduce the arithmetic mean roughness Ra of the surface of the second copper layer by the electrolytic copper plating method to 0.02 μm or less, it is necessary to adopt a method such as adding a specific plating treatment agent to the plating bath. preferable. Some of such plating treatment agents are called brighteners.
めっき用処理剤としては、ビス(3-スルホプロピル)ジスルフィド2ナトリウム、2,5-ジメルカプト-1,3,4-チアジアゾール、3-メルカプト-1-プロパンスルホン酸、N,N-ジメチルジチオカルバミン酸(3-スルホプロピル)エステルなどの有機硫黄化合物が挙げられる。
As the treatment agent for plating, bis (3-sulfopropyl) disulfide disodium, 2,5-dimercapto-1,3,4-thiadiazole, 3-mercapto-1-propanesulfonic acid, N, N-dimethyldithiocarbamic acid ( Examples include organic sulfur compounds such as 3-sulfopropyl) esters.
また、めっき用処理剤として、フェナジン化合物やサフラニン化合物、ポリアルキレンイミン、チオ尿素誘導体、ポリアクリル酸アミド等の有機窒素化合物を挙げることもできる。有機窒素化合物は均一な銅層を形成するためのレベリング剤としての効果を有すると考えられる。
Further, examples of the treatment agent for plating include organic nitrogen compounds such as phenazine compounds, safranin compounds, polyalkyleneimines, thiourea derivatives, and polyacrylic acid amides. The organic nitrogen compound is considered to have an effect as a leveling agent for forming a uniform copper layer.
これら有機硫黄化合物や有機窒素化合物は、それぞれ単独でも、両者を組み合わせて使用してもよい。また、これらに加えて、ポリエチレングリコール、ポリオキシエチレンポリオキシプロピレン共重合体等の非イオン性ポリエーテル系高分子界面活性剤、デキストリン、グリセリン等の水溶性高分子化合物等を配合して用いることもできる。
より好ましいものとしては、有機窒素化合物と界面活性剤とを組み合わせたもの、及び有機硫黄化合物と有機窒素化合物と界面活性剤とを組み合わせたものが挙げられる。 These organic sulfur compounds and organic nitrogen compounds may be used alone or in combination of both. In addition to these, nonionic polyether-based polymer surfactants such as polyethylene glycol and polyoxyethylene polyoxypropylene copolymer, and water-soluble polymer compounds such as dextrin and glycerin may be blended and used. You can also.
More preferable ones include a combination of an organic nitrogen compound and a surfactant, and a combination of an organic sulfur compound, an organic nitrogen compound and a surfactant.
より好ましいものとしては、有機窒素化合物と界面活性剤とを組み合わせたもの、及び有機硫黄化合物と有機窒素化合物と界面活性剤とを組み合わせたものが挙げられる。 These organic sulfur compounds and organic nitrogen compounds may be used alone or in combination of both. In addition to these, nonionic polyether-based polymer surfactants such as polyethylene glycol and polyoxyethylene polyoxypropylene copolymer, and water-soluble polymer compounds such as dextrin and glycerin may be blended and used. You can also.
More preferable ones include a combination of an organic nitrogen compound and a surfactant, and a combination of an organic sulfur compound, an organic nitrogen compound and a surfactant.
本発明では、めっき処理用添加剤として市販されているものを用いることもできる。特に、有機硫黄化合物及び/又は有機窒素化合物に、適宜高分子界面活性剤等が配合されたものが市販されており、それらを用いることもできる。
In the present invention, commercially available additives for plating treatment can also be used. In particular, organic sulfur compounds and / or organic nitrogen compounds mixed with a polymer surfactant or the like as appropriate are commercially available, and they can also be used.
そのようなめっき用処理剤の市販品としては、光沢銅めっき用添加剤として商品名「COSMO S-MU」(大和特殊株式会社製)、商品名「KOTAC MU」(大和特殊株式会社製)、商品名「COSMO S-1」(大和特殊株式会社製)、商品名「KOTAC 1」(大和特殊株式会社製)等が挙げられる。
Commercially available products of such plating treatment agents include the trade name "COSMO S-MU" (manufactured by Daiwa Special Co., Ltd.) and the trade name "KOTAC MU" (manufactured by Daiwa Special Co., Ltd.) as additives for glossy copper plating. Examples include the product name "COSMO S-1" (manufactured by Yamato Special Co., Ltd.) and the product name "KOTAC 1" (manufactured by Yamato Special Co., Ltd.).
その他に、商品名「トップルチナSFベースWR」(奥野製薬工業株式会社製)、商品名「トップルチナSF-QB」(奥野製薬工業株式会社製)、商品名「トップルチナSF-レベラ―Z」(奥野製薬工業株式会社製)、商品名「DAINCOPPER LS004R」(大和化成株式会社製)、商品名「DAINCOPPER LS004S」(大和化成株式会社製)等を挙げることもできる。
In addition, the product name "Top Lucina SF Base WR" (manufactured by Okuno Pharmaceutical Industry Co., Ltd.), the product name "Top Lucina SF-QB" (manufactured by Okuno Pharmaceutical Industry Co., Ltd.), and the product name "Top Lucina SF-Leveler-Z" (Okuno Pharmaceutical Co., Ltd.) (Manufactured by Kogyo Co., Ltd.), product name "DAINCOPPER LS004R" (manufactured by Daiwa Kasei Co., Ltd.), product name "DAINCOPPER LS004S" (manufactured by Daiwa Kasei Co., Ltd.) and the like can also be mentioned.
上記した市販品は、いずれも2~3品を組み合わせて使用することができる。
例えば、上記「トップルチナSFベースWR」、「トップルチナSF-QB」及び「トップルチナSF-レベラ―Z」は、混合して使用することができる組み合わせである。
また、上記「DAINCOPPER LS004R」及び「DAINCOPPER LS004S」は、混合して使用することができる組み合わせである。
また、上記「KOTAC MU」及び「KOTAC 1」は、混合して使用することができる組み合わせである。 All of the above-mentioned commercial products can be used in combination of 2 to 3 products.
For example, the above-mentioned "Top Lucina SF Base WR", "Top Lucina SF-QB" and "Top Lucina SF-Leveler-Z" are combinations that can be mixed and used.
Further, the above-mentioned "DAINCOPPER LS004R" and "DAINCOPPER LS004S" are combinations that can be mixed and used.
Further, the above-mentioned "KOTAC MU" and "KOTAC 1" are combinations that can be mixed and used.
例えば、上記「トップルチナSFベースWR」、「トップルチナSF-QB」及び「トップルチナSF-レベラ―Z」は、混合して使用することができる組み合わせである。
また、上記「DAINCOPPER LS004R」及び「DAINCOPPER LS004S」は、混合して使用することができる組み合わせである。
また、上記「KOTAC MU」及び「KOTAC 1」は、混合して使用することができる組み合わせである。 All of the above-mentioned commercial products can be used in combination of 2 to 3 products.
For example, the above-mentioned "Top Lucina SF Base WR", "Top Lucina SF-QB" and "Top Lucina SF-Leveler-Z" are combinations that can be mixed and used.
Further, the above-mentioned "DAINCOPPER LS004R" and "DAINCOPPER LS004S" are combinations that can be mixed and used.
Further, the above-mentioned "KOTAC MU" and "
前記第一工程に続けて、前記銅層の表面にニッケル層を形成する第二工程が実施される。前記ニッケル層は、公知の電気めっき法によって形成される。前述のとおり、前記ニッケル層の厚さは0.05~0.2μmであることが肝要である。前記第二工程における電気ニッケルめっき法の各条件は、特に限定されず所望の厚さのニッケル層を形成できる範囲で設定されていればよい。一般的な条件を挙げると、めっき液の温度は20~60℃、電流密度は0.5~5.0A/dm2、処理時間は5~300secとすることができる。
Following the first step, a second step of forming a nickel layer on the surface of the copper layer is carried out. The nickel layer is formed by a known electroplating method. As described above, it is important that the thickness of the nickel layer is 0.05 to 0.2 μm. Each condition of the electrolytic nickel plating method in the second step is not particularly limited and may be set within a range in which a nickel layer having a desired thickness can be formed. As general conditions, the temperature of the plating solution can be 20 to 60 ° C., the current density can be 0.5 to 5.0 A / dm 2 , and the processing time can be 5 to 300 sec.
更に、前記第二工程に続けて、前記ニッケル層の表面に金層を形成する第三工程が実施される。前記金層の形成についても、公知の電気めっき法が採用される。前記金層表面の算術平均粗さRaは0.03μm以下であることが好ましい。これによれば、耐腐食性を向上することができる。前記第三工程における電気金めっき法の各条件は、特に限定されず所望の厚さの金層を形成できる範囲で設定されていればよい。一般的な条件を挙げると、めっき液の温度は40~60℃、電流密度は0.1~3.0A/dm2、処理時間は5~300secとすることができる。
Further, following the second step, a third step of forming a gold layer on the surface of the nickel layer is carried out. A known electroplating method is also adopted for forming the gold layer. The arithmetic mean roughness Ra of the surface of the gold layer is preferably 0.03 μm or less. According to this, the corrosion resistance can be improved. Each condition of the electrogold plating method in the third step is not particularly limited and may be set within a range in which a gold layer having a desired thickness can be formed. As general conditions, the temperature of the plating solution can be 40 to 60 ° C., the current density can be 0.1 to 3.0 A / dm 2 , and the processing time can be 5 to 300 sec.
前記第三工程に続けて、前記金層の表面に有機系封孔処理剤を溶解した処理液を接触させる工程が実施されてもよい。これによって、前記金層の表面に前記有機系封孔処理剤による膜が形成され、微細なピンホールを封止することができる。
Following the third step, a step of contacting the surface of the gold layer with a treatment liquid in which an organic sealing treatment agent is dissolved may be carried out. As a result, a film made of the organic sealing treatment agent is formed on the surface of the gold layer, and fine pinholes can be sealed.
前記有機系封孔処理剤としては、複素環式化合物、チオール類化合物、アミン類化合物からなる群より選ばれる1種または複数種の組み合わせであることが好ましい。このうち好ましくは、チオール類化合物である。具体的にはアルキルチオール、アルキルジスルフィド、トリアジンチオール、メルカプトベンゾチアゾール等が挙げられる。
The organic sealing treatment agent is preferably one or a combination of a plurality of types selected from the group consisting of heterocyclic compounds, thiol compounds, and amine compounds. Of these, thiol compounds are preferable. Specific examples thereof include alkylthiols, alkyldisulfides, triazinethiols, and mercaptobenzothiazoles.
前記有機系封孔処理剤を溶解する溶媒としては、水、アルコール類等が挙げられる。前記有機系封孔処理剤を分散させるために界面活性剤等が添加されていてもよい。そのような界面活性剤の例としては、ポリオキシエチレンノニルフェニルエーテル等が挙げられる。
Examples of the solvent for dissolving the organic sealing treatment agent include water, alcohols and the like. A surfactant or the like may be added to disperse the organic sealing treatment agent. Examples of such surfactants include polyoxyethylene nonylphenyl ether and the like.
前記有機系封孔処理剤を界面活性剤等で分散したものとしては、市販品を用いることもできる。そのような市販品としては、EL-8000B(日進化成株式会社製)、CT-3(JX金属株式会社製)、KG-230(JX金属株式会社製)などが挙げられる。
A commercially available product can also be used as the organic sealing treatment agent dispersed with a surfactant or the like. Examples of such commercially available products include EL-8000B (manufactured by Nikkei Seisei Co., Ltd.), CT-3 (manufactured by JX Nippon Mining & Metals Co., Ltd.), KG-230 (manufactured by JX Nippon Mining & Metals Co., Ltd.) and the like.
前記市販品を用いる場合、好ましくは20~100mL/Lの濃度に希釈して金層の表面に接触させる方法で用いられる。
When the commercially available product is used, it is preferably used by diluting it to a concentration of 20 to 100 mL / L and bringing it into contact with the surface of the gold layer.
前記第一工程と前記第二工程、および前記第三工程は、連続的に実施されてもよい。前記有機系封孔処理剤を溶解した処理液を接触させる工程についても、前記第三工程に続けて連続的に実施されてもよい。また、これら各工程の間には、適宜水洗工程や乾燥工程が実施されてもよい。
The first step, the second step, and the third step may be continuously carried out. The step of contacting the treatment liquid in which the organic sealing treatment agent is dissolved may also be continuously carried out following the third step. Further, a washing step and a drying step may be appropriately carried out between each of these steps.
なお、絶縁性フィルム基材の他方の面(金属層を設けた面とは反対の面)に高い伸び率を有する樹脂層を設ける場合、該樹脂層を形成する工程は、絶縁性フィルム基材に各金属層を設ける上記第一~三工程より前に、予め絶縁性フィルム基材に樹脂フィルムを貼り付けるか、ラミネートする等の方法で設けることができる。あるいは、絶縁性フィルム基材に各金属層を設けた後に、絶縁性フィルム基材の金属層が設けられた面とは反対の面に樹脂フィルムを貼り付けるか、ラミネートする等の方法で設けることができる。
When a resin layer having a high elongation rate is provided on the other surface of the insulating film base material (the surface opposite to the surface on which the metal layer is provided), the step of forming the resin layer is the insulating film base material. Prior to the first to third steps of providing each metal layer, a resin film can be attached to or laminated with an insulating film base material in advance. Alternatively, after each metal layer is provided on the insulating film base material, the resin film is attached or laminated on the surface opposite to the surface on which the metal layer of the insulating film base material is provided. Can be done.
以下に本発明を実施例により説明するが、本発明はこれらの実施例により何らの制限を受けるものではない。
The present invention will be described below by way of examples, but the present invention is not limited by these examples.
[各種物性試験]
(1)剥離強度試験(密着性評価)
導電フィルムを長さ50mm、幅5mmに裁断して試料とした。試料の長さ方向中心部において長さ3mm分を露出するようにマスキングを行い、露出した3mm×5mmの試料表面(金層の表面)に、はんだペースト(千住金属工業株式会社製;商品名「ECO solder paste L20-BLT5-T7F」)を用いて銅釘(昭和電線ケーブルシステム株式会社製、銅薄平リベットM3×20)の頭部を貼りつけた状態で、250℃にて2分間の熱処理を実施した。熱処理には、定温乾燥機(アドバンテック東洋株式会社製;商品名「DRA630DA」)を用いた。 [Various physical property tests]
(1) Peeling strength test (adhesion evaluation)
The conductive film was cut into a length of 50 mm and a width of 5 mm to prepare a sample. Masking is performed so that the length of 3 mm is exposed at the center of the sample in the length direction, and solder paste (manufactured by Senju Metal Industry Co., Ltd .; trade name " ECO solder paste L20-BLT5-T7F ") with the head of a copper nail (copper thin flat rivet M3 x 20 manufactured by Showa Densen Cable System Co., Ltd.) attached, heat treatment at 250 ° C for 2 minutes. Was carried out. A constant temperature dryer (manufactured by Advantech Toyo Co., Ltd .; trade name "DRA630DA") was used for the heat treatment.
(1)剥離強度試験(密着性評価)
導電フィルムを長さ50mm、幅5mmに裁断して試料とした。試料の長さ方向中心部において長さ3mm分を露出するようにマスキングを行い、露出した3mm×5mmの試料表面(金層の表面)に、はんだペースト(千住金属工業株式会社製;商品名「ECO solder paste L20-BLT5-T7F」)を用いて銅釘(昭和電線ケーブルシステム株式会社製、銅薄平リベットM3×20)の頭部を貼りつけた状態で、250℃にて2分間の熱処理を実施した。熱処理には、定温乾燥機(アドバンテック東洋株式会社製;商品名「DRA630DA」)を用いた。 [Various physical property tests]
(1) Peeling strength test (adhesion evaluation)
The conductive film was cut into a length of 50 mm and a width of 5 mm to prepare a sample. Masking is performed so that the length of 3 mm is exposed at the center of the sample in the length direction, and solder paste (manufactured by Senju Metal Industry Co., Ltd .; trade name " ECO solder paste L20-BLT5-T7F ") with the head of a copper nail (copper thin flat rivet M3 x 20 manufactured by Showa Densen Cable System Co., Ltd.) attached, heat treatment at 250 ° C for 2 minutes. Was carried out. A constant temperature dryer (manufactured by Advantech Toyo Co., Ltd .; trade name "DRA630DA") was used for the heat treatment.
熱処理後、試料を室温まで冷まし、銅釘が接続された位置で二つ折りとし、引張強度試験機にて試料と銅釘を反対方向に引っ張り、剥離強度を測定した。引張強度試験機としては、デジタル荷重計(株式会社今田製作所製、商品名「SV-55」)を用いた。引張速度は25mm/分とした。
After the heat treatment, the sample was cooled to room temperature, folded in half at the position where the copper nail was connected, and the sample and the copper nail were pulled in the opposite directions with a tensile strength tester to measure the peel strength. As the tensile strength tester, a digital load meter (manufactured by Imada Seisakusho Co., Ltd., trade name "SV-55") was used. The tensile speed was 25 mm / min.
(2)耐屈曲性試験
本実施例で実施した耐屈曲性試験の方法を示す概略図を図1に示す。導電フィルム1は長さ100mm、幅30mmに裁断して試料とし、該導電フィルム1の導電層(金属層3)が外側になるように折り曲げ、その間に厚さ163μmのPETフィルム4(東レ株式会社製ルミラー38S10と125S10とを重ねたもの)を挟み込んで、前記折り曲げ部8が半径82μmの曲率となるようにした。 (2) Bending resistance test FIG. 1 shows a schematic diagram showing the method of the bending resistance test carried out in this example. Theconductive film 1 is cut into a sample having a length of 100 mm and a width of 30 mm, bent so that the conductive layer (metal layer 3) of the conductive film 1 is on the outside, and a PET film 4 (Toray Industries, Inc.) having a thickness of 163 μm is bent between them. The bent portion 8 has a curvature with a radius of 82 μm by sandwiching the mirror 38S10 and 125S10).
本実施例で実施した耐屈曲性試験の方法を示す概略図を図1に示す。導電フィルム1は長さ100mm、幅30mmに裁断して試料とし、該導電フィルム1の導電層(金属層3)が外側になるように折り曲げ、その間に厚さ163μmのPETフィルム4(東レ株式会社製ルミラー38S10と125S10とを重ねたもの)を挟み込んで、前記折り曲げ部8が半径82μmの曲率となるようにした。 (2) Bending resistance test FIG. 1 shows a schematic diagram showing the method of the bending resistance test carried out in this example. The
このPETフィルム4を挟み込んで折り曲げた試料(導電フィルム1)を、図1のように水平の作業台7上にねかせて配置した。試料の上から2.0kgの錘5を図1に示す位置にスライドガラス6を介して載せ、折り曲げ部8に所定の負荷が掛かるようにして、1秒間静置した。錘5を取り除いたのち、折り曲げ部8をマイクロスコープ(商品名「デジタルマイクロスコープ VHX-5000」;キーエンス株式会社製)で観察し、クラックの発生を確認した。この手法を評価法1とした。
The sample (conductive film 1) bent with the PET film 4 sandwiched between them was placed on a horizontal workbench 7 as shown in FIG. A 2.0 kg weight 5 was placed on the sample at the position shown in FIG. 1 via a slide glass 6 and allowed to stand for 1 second so that a predetermined load was applied to the bent portion 8. After removing the weight 5, the bent portion 8 was observed with a microscope (trade name "Digital Microscope VHX-5000"; manufactured by KEYENCE CORPORATION), and the occurrence of cracks was confirmed. This method was used as evaluation method 1.
また、PETフィルムの厚さを100μmに変更し、試料の折り曲げ部が半径50μmの曲率となるようにした以外は前記の方法と同様に行ったのち、同様の方法でクラックの発生を確認した(この手法を評価法2とした)。
Further, the same method as above was performed except that the thickness of the PET film was changed to 100 μm so that the bent portion of the sample had a curvature with a radius of 50 μm, and then the occurrence of cracks was confirmed by the same method (. This method was used as evaluation method 2).
加えて、PETフィルムを挟まずに、試料の折り曲げ部が半径0μmの曲率となるようにした以外は前記の方法と同様に行ったのち、同様の方法でクラックの発生を確認した(この手法を評価法3とした)。なお評価法3については、実施例4,5のみで行った。
In addition, the same method as above was performed except that the bent portion of the sample had a curvature of 0 μm without sandwiching the PET film, and then the occurrence of cracks was confirmed by the same method (this method was used. Evaluation method 3). The evaluation method 3 was performed only in Examples 4 and 5.
上記評価法1、2及び3のそれぞれにおいて、次の基準で割れ具合を確認した。
〇:クラックの発生なし
△:微細なクラックあり
×:断裂レベルのクラックあり。 In each of the above evaluation methods 1, 2 and 3, the cracking condition was confirmed according to the following criteria.
〇: No cracks occur △: Fine cracks are present ×: Cracks at the tear level are present.
〇:クラックの発生なし
△:微細なクラックあり
×:断裂レベルのクラックあり。 In each of the
〇: No cracks occur △: Fine cracks are present ×: Cracks at the tear level are present.
(3)耐腐食性試験
JIS規格2371:2015の中性塩水噴霧試験方法に準拠し、ISO型塩水噴霧試験機(スガ試験機株式会社製、商品名「STP-90VR」)を用い、5%塩化ナトリウム水溶液(pH6.8)を噴霧液とし、噴霧液温度35℃、空気飽和温度47℃にて試験時間48時間の処理を行った。 (3) Corrosion resistance test Compliant with JIS standard 2371: 2015 neutral salt spray test method, using ISO type salt spray tester (manufactured by Suga Test Instruments Co., Ltd., trade name "STP-90VR"), 5% An aqueous sodium chloride solution (pH 6.8) was used as a spray solution, and the treatment was performed at a spray solution temperature of 35 ° C. and an air saturation temperature of 47 ° C. for a test time of 48 hours.
JIS規格2371:2015の中性塩水噴霧試験方法に準拠し、ISO型塩水噴霧試験機(スガ試験機株式会社製、商品名「STP-90VR」)を用い、5%塩化ナトリウム水溶液(pH6.8)を噴霧液とし、噴霧液温度35℃、空気飽和温度47℃にて試験時間48時間の処理を行った。 (3) Corrosion resistance test Compliant with JIS standard 2371: 2015 neutral salt spray test method, using ISO type salt spray tester (manufactured by Suga Test Instruments Co., Ltd., trade name "STP-90VR"), 5% An aqueous sodium chloride solution (pH 6.8) was used as a spray solution, and the treatment was performed at a spray solution temperature of 35 ° C. and an air saturation temperature of 47 ° C. for a test time of 48 hours.
処理後の試料の金層表面を目視にて観察し、腐食具合を次の基準にて評価する。
〇:金層表面の金属光沢に変化なし
△:金層表面の金属光沢が低下したがピンホールの発生なし
×:金層表面にピンホールが発生。 The surface of the gold layer of the treated sample is visually observed, and the degree of corrosion is evaluated according to the following criteria.
〇: No change in metallic luster on the surface of the gold layer △: Metallic luster on the surface of the gold layer decreased, but no pinholes occurred ×: Pinholes occurred on the surface of the gold layer.
〇:金層表面の金属光沢に変化なし
△:金層表面の金属光沢が低下したがピンホールの発生なし
×:金層表面にピンホールが発生。 The surface of the gold layer of the treated sample is visually observed, and the degree of corrosion is evaluated according to the following criteria.
〇: No change in metallic luster on the surface of the gold layer △: Metallic luster on the surface of the gold layer decreased, but no pinholes occurred ×: Pinholes occurred on the surface of the gold layer.
(4)銅マイグレーション抑制効果(変色の有無)
熱処理による促進試験として260℃にて15分間の熱処理を実施した。促進試験前後の試料についてそれぞれ分光測色計(コニカミノルタジャパン株式会社製、商品名「CM-2600d」)でSCI方式の測色をし、色差(ΔE)を算出して評価した。 (4) Copper migration suppression effect (presence or absence of discoloration)
As an accelerated test by heat treatment, heat treatment was carried out at 260 ° C. for 15 minutes. The samples before and after the accelerated test were measured by the SCI method using a spectrocolorimeter (manufactured by Konica Minolta Japan Co., Ltd., trade name "CM-2600d"), and the color difference (ΔE) was calculated and evaluated.
熱処理による促進試験として260℃にて15分間の熱処理を実施した。促進試験前後の試料についてそれぞれ分光測色計(コニカミノルタジャパン株式会社製、商品名「CM-2600d」)でSCI方式の測色をし、色差(ΔE)を算出して評価した。 (4) Copper migration suppression effect (presence or absence of discoloration)
As an accelerated test by heat treatment, heat treatment was carried out at 260 ° C. for 15 minutes. The samples before and after the accelerated test were measured by the SCI method using a spectrocolorimeter (manufactured by Konica Minolta Japan Co., Ltd., trade name "CM-2600d"), and the color difference (ΔE) was calculated and evaluated.
(5)銅マイグレーション抑制効果(接触抵抗値の変化)
上述した熱処理による促進試験の前後の試料について、接触抵抗値を測定することで銅のマイグレーション抑制効果を評価した。接触抵抗値(mΩ)は、30mm×30mm×10mm、質量50gの金めっき冶具を2つ用意し、900mm2の面積になる面を下とし、1mmの間隔が開くように試料表面に並べて置き、その2つの治具間の抵抗値(mΩ)をミリオームハイテスタ(日置電機株式会社製、商品名「3540」)にて測定した。 (5) Copper migration suppression effect (change in contact resistance value)
The effect of suppressing copper migration was evaluated by measuring the contact resistance values of the samples before and after the accelerated test by the heat treatment described above. For the contact resistance value (mΩ), prepare two gold plating jigs with a contact resistance value (mΩ) of 30 mm × 30 mm × 10 mm and a mass of 50 g, and place them side by side on the sample surface so that the surface with an area of 900 mm 2 is facing down and an interval of 1 mm is opened. The resistance value (mΩ) between the two jigs was measured with a milliohm high tester (manufactured by Hioki Electric Co., Ltd., trade name "3540").
上述した熱処理による促進試験の前後の試料について、接触抵抗値を測定することで銅のマイグレーション抑制効果を評価した。接触抵抗値(mΩ)は、30mm×30mm×10mm、質量50gの金めっき冶具を2つ用意し、900mm2の面積になる面を下とし、1mmの間隔が開くように試料表面に並べて置き、その2つの治具間の抵抗値(mΩ)をミリオームハイテスタ(日置電機株式会社製、商品名「3540」)にて測定した。 (5) Copper migration suppression effect (change in contact resistance value)
The effect of suppressing copper migration was evaluated by measuring the contact resistance values of the samples before and after the accelerated test by the heat treatment described above. For the contact resistance value (mΩ), prepare two gold plating jigs with a contact resistance value (mΩ) of 30 mm × 30 mm × 10 mm and a mass of 50 g, and place them side by side on the sample surface so that the surface with an area of 900 mm 2 is facing down and an interval of 1 mm is opened. The resistance value (mΩ) between the two jigs was measured with a milliohm high tester (manufactured by Hioki Electric Co., Ltd., trade name "3540").
(6)算術平均粗さ
算術平均粗さRaは、走査型共焦点レーザー顕微鏡(オリンパス株式会社製、商品名「LEXT OLS30-SU」)を用いて、JIS B 0601:2001に準拠した方法で測定した。 (6) Arithmetic Mean Roughness Arithmetic Mean Roughness Ra is measured by a method based on JIS B 0601: 2001 using a scanning confocal laser scanning microscope (manufactured by Olympus Co., Ltd., trade name "LEXT OLS30-SU"). bottom.
算術平均粗さRaは、走査型共焦点レーザー顕微鏡(オリンパス株式会社製、商品名「LEXT OLS30-SU」)を用いて、JIS B 0601:2001に準拠した方法で測定した。 (6) Arithmetic Mean Roughness Arithmetic Mean Roughness Ra is measured by a method based on JIS B 0601: 2001 using a scanning confocal laser scanning microscope (manufactured by Olympus Co., Ltd., trade name "LEXT OLS30-SU"). bottom.
(7)伸び率測定方法
樹脂層の伸び率は、引張強度試験機により、樹脂層が破断するまでの伸び長から以下の式より計算することで求めた。Loを試験前の試料長さ(mm)、Lを破断時の試料長さ(mm)とした。 (7) Elongation rate measurement method The elongation rate of the resin layer was calculated by the following formula from the elongation length until the resin layer broke by a tensile strength tester. Lo was the sample length before the test (mm), and L was the sample length at break (mm).
樹脂層の伸び率は、引張強度試験機により、樹脂層が破断するまでの伸び長から以下の式より計算することで求めた。Loを試験前の試料長さ(mm)、Lを破断時の試料長さ(mm)とした。 (7) Elongation rate measurement method The elongation rate of the resin layer was calculated by the following formula from the elongation length until the resin layer broke by a tensile strength tester. Lo was the sample length before the test (mm), and L was the sample length at break (mm).
(数1)
伸び率(%)=100×(L―Lo)/Lo (Number 1)
Growth rate (%) = 100 × (L-Lo) / Lo
伸び率(%)=100×(L―Lo)/Lo (Number 1)
Growth rate (%) = 100 × (L-Lo) / Lo
20mm×5mmの樹脂層用樹脂フィルム単体を、中心5mm×5mmが残るようにテープ(商品名「No.642」、寺岡製作所製)でマスキングし、引張強度試験機にて、マスキングされた2箇所のテープ部分を摘まみ、反対方向に引っ張ることで、樹脂フィルムが破断するまでの時間を測定し、引張速度の数値からLを算出した。なお本試験の場合、Loの値は5となる。引張強度試験としては、デジタル荷重計(株式会社今田製作所製、商品名「SV-55」)を用い、引張速度を30mm/minとした。
A single resin film for a resin layer of 20 mm x 5 mm was masked with tape (trade name "No. 642", manufactured by Teraoka Seisakusho) so that the center of 5 mm x 5 mm remained, and the two masked locations were masked with a tensile strength tester. By pinching the tape portion of No. 1 and pulling it in the opposite direction, the time until the resin film broke was measured, and L was calculated from the numerical value of the tensile speed. In the case of this test, the Lo value is 5. As a tensile strength test, a digital load meter (manufactured by Imada Seisakusho Co., Ltd., trade name "SV-55") was used, and the tensile speed was set to 30 mm / min.
[実施例1]
絶縁性フィルム基材として厚さ25μmのポリイミド樹脂フィルムの一方の表面に、蒸着による厚さ1.5μmの銅層が形成された東レKPフィルム株式会社製の銅蒸着フィルム(東レ・デュポン株式会社製カプトン100Vに銅を厚膜蒸着したもの)を硫酸50mL/Lの水溶液にて20℃で30秒間酸洗浄した。銅層表面の算術平均粗さRaを測定したところ、0.014μmであった。 [Example 1]
A copper vapor-deposited film manufactured by Toray KP Film Co., Ltd. (manufactured by Toray DuPont Co., Ltd.) in which a copper layer having a thickness of 1.5 μm is formed on one surface of a polyimide resin film having a thickness of 25 μm as an insulating film base material. Copper 100 V with a thick film vapor-deposited) was acid-washed with an aqueous solution of sulfuric acid 50 mL / L at 20 ° C. for 30 seconds. The arithmetic mean roughness Ra of the copper layer surface was measured and found to be 0.014 μm.
絶縁性フィルム基材として厚さ25μmのポリイミド樹脂フィルムの一方の表面に、蒸着による厚さ1.5μmの銅層が形成された東レKPフィルム株式会社製の銅蒸着フィルム(東レ・デュポン株式会社製カプトン100Vに銅を厚膜蒸着したもの)を硫酸50mL/Lの水溶液にて20℃で30秒間酸洗浄した。銅層表面の算術平均粗さRaを測定したところ、0.014μmであった。 [Example 1]
A copper vapor-deposited film manufactured by Toray KP Film Co., Ltd. (manufactured by Toray DuPont Co., Ltd.) in which a copper layer having a thickness of 1.5 μm is formed on one surface of a polyimide resin film having a thickness of 25 μm as an insulating film base material. Copper 100 V with a thick film vapor-deposited) was acid-washed with an aqueous solution of sulfuric acid 50 mL / L at 20 ° C. for 30 seconds. The arithmetic mean roughness Ra of the copper layer surface was measured and found to be 0.014 μm.
次に電気ニッケルめっきを実施して、銅層の表面にニッケル層を形成した。ニッケルめっき浴は、硫酸ニッケル六水和物を200g/L、クエン酸三ナトリウム二水和物を60g/L、pHを5.5、温度を40℃とした。電気ニッケルめっきの条件は、電流密度を3.0A/dm2、処理時間を15秒とし、アノードにはアノデック100(日進化成株式会社製)を用いた。得られたニッケル層の厚さは0.12μmであった。
Next, electrolytic nickel plating was performed to form a nickel layer on the surface of the copper layer. In the nickel plating bath, nickel sulfate hexahydrate was 200 g / L, trisodium citrate dihydrate was 60 g / L, the pH was 5.5, and the temperature was 40 ° C. The conditions for electrolytic nickel plating were a current density of 3.0 A / dm 2 , a processing time of 15 seconds, and an Anodec 100 (manufactured by Nikkei Seisei Co., Ltd.) as the anode. The thickness of the obtained nickel layer was 0.12 μm.
次に電気金めっきを実施してニッケル層の表面に金層を形成し、導電フィルムを得た。金めっき浴は、エコゴールド24(日進化成株式会社製、金濃度8.0g/L)を用いた。めっき浴温度40℃、電流密度0.32A/dm2にて15秒間、アノードにアノデック100(日進化成株式会社製)を用いた。得られた金層の厚さは0.031μmであり、金層表面の算術平均粗さRaは0.025μmであった。
Next, electrogold plating was carried out to form a gold layer on the surface of the nickel layer, and a conductive film was obtained. As the gold plating bath, Eco Gold 24 (manufactured by Nikkei Seisei Co., Ltd., gold concentration 8.0 g / L) was used. Anodec 100 (manufactured by Nikkei Seisei Co., Ltd.) was used as the anode at a plating bath temperature of 40 ° C. and a current density of 0.32 A / dm 2 for 15 seconds. The thickness of the obtained gold layer was 0.031 μm, and the arithmetic mean roughness Ra of the surface of the gold layer was 0.025 μm.
次に有機系封孔処理剤として、商品名「EL-8000B」(日進化成株式会社製;チオール類化合物)の50mL/L水溶液に、金層が形成された導電フィルムを処理温度40℃にて16秒間浸漬した。
Next, as an organic sealing treatment agent, a conductive film having a gold layer formed in a 50 mL / L aqueous solution of the trade name "EL-8000B" (manufactured by Nikkei Seisei Co., Ltd .; thiol compounds) was placed at a treatment temperature of 40 ° C. Soaked for 16 seconds.
得られた導電フィルムについて、剥離強度試験による密着性、耐屈曲性試験、塩水噴霧試験による耐腐食性、銅のマイグレーションを抑制する効果としては熱処理による促進試験前後の変色と接触抵抗値について評価・測定をした結果を表1に示す。
Regarding the obtained conductive film, adhesion by peel strength test, bending resistance test, corrosion resistance by salt spray test, and discoloration and contact resistance value before and after accelerated test by heat treatment were evaluated as the effect of suppressing copper migration. The results of the measurements are shown in Table 1.
[実施例2]
電気金めっきにおいて、処理時間を22.5秒とし金層の厚さを0.046μmとした以外は実施例1と同様にして導電フィルムを得た。金層表面の算術平均粗さRaは0.026μmであった。各評価・測定結果を表1に示す。 [Example 2]
In electrogold plating, a conductive film was obtained in the same manner as in Example 1 except that the treatment time was 22.5 seconds and the thickness of the gold layer was 0.046 μm. The arithmetic mean roughness Ra on the surface of the gold layer was 0.026 μm. Table 1 shows the results of each evaluation / measurement.
電気金めっきにおいて、処理時間を22.5秒とし金層の厚さを0.046μmとした以外は実施例1と同様にして導電フィルムを得た。金層表面の算術平均粗さRaは0.026μmであった。各評価・測定結果を表1に示す。 [Example 2]
In electrogold plating, a conductive film was obtained in the same manner as in Example 1 except that the treatment time was 22.5 seconds and the thickness of the gold layer was 0.046 μm. The arithmetic mean roughness Ra on the surface of the gold layer was 0.026 μm. Table 1 shows the results of each evaluation / measurement.
[実施例3]
絶縁性フィルム基材として厚さ12.5μmのポリイミド樹脂フィルムの一方の表面に、蒸着による厚さ0.3μmの銅層が形成された東レKPフィルム株式会社製の銅蒸着フィルム(東レ・デュポン株式会社製カプトン100Vに銅を厚膜蒸着したもの)を硫酸50mL/Lの水溶液にて20℃で30秒間酸洗浄した。 [Example 3]
A copper vapor-deposited film manufactured by Toray KP Film Co., Ltd. (Toray DuPont Co., Ltd.) in which a copper layer with a thickness of 0.3 μm is formed on one surface of a polyimide resin film having a thickness of 12.5 μm as an insulating film base material. A thick film of copper vapor-deposited on 100 V of DuPont manufactured by the company) was acid-washed with an aqueous solution of 50 mL / L of sulfuric acid at 20 ° C. for 30 seconds.
絶縁性フィルム基材として厚さ12.5μmのポリイミド樹脂フィルムの一方の表面に、蒸着による厚さ0.3μmの銅層が形成された東レKPフィルム株式会社製の銅蒸着フィルム(東レ・デュポン株式会社製カプトン100Vに銅を厚膜蒸着したもの)を硫酸50mL/Lの水溶液にて20℃で30秒間酸洗浄した。 [Example 3]
A copper vapor-deposited film manufactured by Toray KP Film Co., Ltd. (Toray DuPont Co., Ltd.) in which a copper layer with a thickness of 0.3 μm is formed on one surface of a polyimide resin film having a thickness of 12.5 μm as an insulating film base material. A thick film of copper vapor-deposited on 100 V of DuPont manufactured by the company) was acid-washed with an aqueous solution of 50 mL / L of sulfuric acid at 20 ° C. for 30 seconds.
これに電気銅めっき処理して銅層の厚さを1.99μmとした。銅めっき浴としては、硫酸銅五水和物を200g/L、硫酸を55mL/L、軟質銅皮膜形成剤(商品名「CU-SOFT」、株式会社JCU製)を20mL/L、塩化ナトリウムを85mg/L含むものを用い、めっき浴温度を40℃とした。電気銅めっきの条件は、電流密度3.0A/dm2にて150秒間とした。銅層表面の算術平均粗さRaを測定したところ、0.085μmであった。
This was subjected to electrolytic copper plating to make the thickness of the copper layer 1.99 μm. As the copper plating bath, 200 g / L of copper sulfate pentahydrate, 55 mL / L of sulfuric acid, 20 mL / L of soft copper film forming agent (trade name "CU-SOFT", manufactured by JCU Co., Ltd.), and sodium chloride. The plating bath temperature was set to 40 ° C. using one containing 85 mg / L. The conditions for electrolytic copper plating were 150 seconds at a current density of 3.0 A / dm 2 . The arithmetic mean roughness Ra of the copper layer surface was measured and found to be 0.085 μm.
次に電気ニッケルめっきを実施して、銅層の表面にニッケル層を形成した。電気ニッケルめっき浴は、実施例1と同様であり、電流密度を0.6A/dm2、処理時間を69.4秒とした。得られたニッケル層の厚さは0.11μmであった。
Next, electrolytic nickel plating was performed to form a nickel layer on the surface of the copper layer. The electrolytic nickel plating bath was the same as in Example 1, and the current density was 0.6 A / dm 2 and the processing time was 69.4 seconds. The thickness of the obtained nickel layer was 0.11 μm.
更に、実施例1と同条件にて電気金めっきと有機系封孔処理剤による膜形成を実施し、厚さが0.033μm、表面の算術平均粗さRaが0.118μmの金層を形成した。各評価・測定結果を表1に示す。
Further, film formation by electrogold plating and an organic sealing treatment agent was carried out under the same conditions as in Example 1 to form a gold layer having a thickness of 0.033 μm and a surface arithmetic mean roughness Ra of 0.118 μm. bottom. Table 1 shows the results of each evaluation / measurement.
[実施例4]
絶縁性フィルム基材として厚さ4μmのポリイミド樹脂フィルムの一方の表面に、蒸着による厚さ0.3μmの銅層が形成された東レKPフィルム株式会社製の銅蒸着フィルム(東レ・デュポン株式会社製カプトン100Vに銅を厚膜蒸着したもの)を硫酸50ml/Lの水溶液にて20℃で30秒間酸洗浄した。 [Example 4]
A copper vapor-deposited film manufactured by Toray KP Film Co., Ltd. (manufactured by Toray DuPont Co., Ltd.) in which a copper layer having a thickness of 0.3 μm is formed on one surface of a polyimide resin film having a thickness of 4 μm as an insulating film base material. A thick film of copper vapor-deposited on 100 V of Capton) was acid-washed with an aqueous solution of 50 ml / L of sulfuric acid at 20 ° C. for 30 seconds.
絶縁性フィルム基材として厚さ4μmのポリイミド樹脂フィルムの一方の表面に、蒸着による厚さ0.3μmの銅層が形成された東レKPフィルム株式会社製の銅蒸着フィルム(東レ・デュポン株式会社製カプトン100Vに銅を厚膜蒸着したもの)を硫酸50ml/Lの水溶液にて20℃で30秒間酸洗浄した。 [Example 4]
A copper vapor-deposited film manufactured by Toray KP Film Co., Ltd. (manufactured by Toray DuPont Co., Ltd.) in which a copper layer having a thickness of 0.3 μm is formed on one surface of a polyimide resin film having a thickness of 4 μm as an insulating film base material. A thick film of copper vapor-deposited on 100 V of Capton) was acid-washed with an aqueous solution of 50 ml / L of sulfuric acid at 20 ° C. for 30 seconds.
これに電気銅めっき処理して銅層の厚さを3.13μmとした。銅めっき浴としては、硫酸銅五水和物を220g/L、硫酸を35ml/L、光沢銅めっき用添加剤(商品名「COSMO S-MU」、大和特殊株式会社製)を5ml/L、光沢銅めっき用添加剤(商品名「COSMO S-1」、大和特殊株式会社製)を2ml/L、塩化ナトリウムを170mg/L含むものを用い、めっき温度を35℃とした。電気銅めっきの条件は、電流密度3.0A/dm2にて336秒間とした。銅層表面の算術平均粗さRa0.019μmであった。
This was subjected to electrolytic copper plating to make the thickness of the copper layer 3.13 μm. As a copper plating bath, 220 g / L of copper sulfate pentahydrate, 35 ml / L of sulfuric acid, 5 ml / L of an additive for bright copper plating (trade name "COSMO S-MU", manufactured by Daiwa Special Co., Ltd.), An additive for bright copper plating (trade name "COSMO S-1", manufactured by Daiwa Special Co., Ltd.) was used at 2 ml / L and sodium chloride was 170 mg / L, and the plating temperature was 35 ° C. The conditions for electrolytic copper plating were 336 seconds at a current density of 3.0 A / dm 2 . The arithmetic mean roughness of the copper layer surface was Ra 0.019 μm.
次に電気ニッケルめっきを実施して、銅層の表面にニッケル層を形成した。電気ニッケルめっき浴は、実施例1と同様であり、電流密度を0.38A/dm2、処理時間を56秒とした。得られたニッケル層の厚さは0.07μmであった。
Next, electrolytic nickel plating was performed to form a nickel layer on the surface of the copper layer. The electrolytic nickel plating bath was the same as in Example 1, and the current density was 0.38 A / dm 2 and the processing time was 56 seconds. The thickness of the obtained nickel layer was 0.07 μm.
更に、実施例1と同条件にて電気金めっきと有機系封孔処理剤による膜形成を実施し、厚さが0.046μm、表面の算術平均粗さRaが0.025μmの金層を形成した。各評価・測定結果を表1に示す。
Further, film formation by electrogold plating and an organic sealing treatment agent was carried out under the same conditions as in Example 1 to form a gold layer having a thickness of 0.046 μm and a surface arithmetic mean roughness Ra of 0.025 μm. bottom. Table 1 shows the results of each evaluation / measurement.
[実施例5]
実施例4と同条件で得た導電フィルムについて、絶縁性フィルム基材の金属層を設けた面とは反対の面に、厚さ30μmのポリウレタン系樹脂フィルム(商品名「UH-203」、日本マタイ株式会社製)を貼り合わせ、100℃のホットプレート(商品名「HT-1000」、アズワン株式会社製)上に10秒間、5kgの重りを載せて両者を接着した。本実験で使用したポリウレタン系樹脂フィルムの伸び率は、1300%であった。得られた導電フィルムについての各評価・測定結果を表1に示す。 [Example 5]
Regarding the conductive film obtained under the same conditions as in Example 4, a polyurethane resin film having a thickness of 30 μm (trade name “UH-203”, Japan) was placed on the surface opposite to the surface on which the metal layer of the insulating film substrate was provided. (Mattai Co., Ltd.) was bonded, and a 5 kg weight was placed on a hot plate (trade name "HT-1000", manufactured by AS ONE Co., Ltd.) at 100 ° C. for 10 seconds to bond the two. The elongation rate of the polyurethane resin film used in this experiment was 1300%. Table 1 shows the evaluation / measurement results of the obtained conductive film.
実施例4と同条件で得た導電フィルムについて、絶縁性フィルム基材の金属層を設けた面とは反対の面に、厚さ30μmのポリウレタン系樹脂フィルム(商品名「UH-203」、日本マタイ株式会社製)を貼り合わせ、100℃のホットプレート(商品名「HT-1000」、アズワン株式会社製)上に10秒間、5kgの重りを載せて両者を接着した。本実験で使用したポリウレタン系樹脂フィルムの伸び率は、1300%であった。得られた導電フィルムについての各評価・測定結果を表1に示す。 [Example 5]
Regarding the conductive film obtained under the same conditions as in Example 4, a polyurethane resin film having a thickness of 30 μm (trade name “UH-203”, Japan) was placed on the surface opposite to the surface on which the metal layer of the insulating film substrate was provided. (Mattai Co., Ltd.) was bonded, and a 5 kg weight was placed on a hot plate (trade name "HT-1000", manufactured by AS ONE Co., Ltd.) at 100 ° C. for 10 seconds to bond the two. The elongation rate of the polyurethane resin film used in this experiment was 1300%. Table 1 shows the evaluation / measurement results of the obtained conductive film.
[比較例1]
電気ニッケルめっきの処理時間を69.4秒間とし、ニッケル層の厚さを0.61μmとした以外は実施例1と同様にして導電フィルムを得た。金層表面の算術平均粗さRaは0.026であった。各評価・測定結果を表1に示す。 [Comparative Example 1]
A conductive film was obtained in the same manner as in Example 1 except that the treatment time for electrolytic nickel plating was 69.4 seconds and the thickness of the nickel layer was 0.61 μm. The arithmetic mean roughness Ra on the surface of the gold layer was 0.026. Table 1 shows the results of each evaluation / measurement.
電気ニッケルめっきの処理時間を69.4秒間とし、ニッケル層の厚さを0.61μmとした以外は実施例1と同様にして導電フィルムを得た。金層表面の算術平均粗さRaは0.026であった。各評価・測定結果を表1に示す。 [Comparative Example 1]
A conductive film was obtained in the same manner as in Example 1 except that the treatment time for electrolytic nickel plating was 69.4 seconds and the thickness of the nickel layer was 0.61 μm. The arithmetic mean roughness Ra on the surface of the gold layer was 0.026. Table 1 shows the results of each evaluation / measurement.
[比較例2]
電気ニッケルめっきの処理時間を1.0秒間とし、ニッケル層の厚さを0.012μmとした以外は実施例1と同様にして導電フィルムを得た。金層表面の算術平均粗さRaは0.017であった。各評価・測定結果を表1に示す。 [Comparative Example 2]
A conductive film was obtained in the same manner as in Example 1 except that the treatment time for electrolytic nickel plating was 1.0 second and the thickness of the nickel layer was 0.012 μm. The arithmetic mean roughness Ra on the surface of the gold layer was 0.017. Table 1 shows the results of each evaluation / measurement.
電気ニッケルめっきの処理時間を1.0秒間とし、ニッケル層の厚さを0.012μmとした以外は実施例1と同様にして導電フィルムを得た。金層表面の算術平均粗さRaは0.017であった。各評価・測定結果を表1に示す。 [Comparative Example 2]
A conductive film was obtained in the same manner as in Example 1 except that the treatment time for electrolytic nickel plating was 1.0 second and the thickness of the nickel layer was 0.012 μm. The arithmetic mean roughness Ra on the surface of the gold layer was 0.017. Table 1 shows the results of each evaluation / measurement.
本発明の導電フィルムは、グラウンディング用導電フィルムとして利用できる。弾性材料に回巻することでガスケットとし、電子機器筐体内部に挟み込んで電磁妨害対策用として使用することができる。電子機器そのものから発生するノイズ、外部から電子機器に影響を与えるノイズ等を遮蔽することが可能となる。フィルム形状であるため、ウェアラブル・デバイス等、フレキシブル基材上に形成された電気回路への電気的な接続部材としても利用可能である。
The conductive film of the present invention can be used as a conductive film for grounding. It can be wound around an elastic material to form a gasket, which can be sandwiched inside an electronic device housing and used as a countermeasure against electromagnetic interference. It is possible to shield noise generated from the electronic device itself, noise affecting the electronic device from the outside, and the like. Since it has a film shape, it can also be used as an electrical connection member to an electric circuit formed on a flexible base material such as a wearable device.
1.導電性フィルム
2.絶縁性フィルム基材
3.金属層
4.PETフィルム
5.錘
6.スライドガラス
7.作業台
8.折り曲げ部
1. 1.Conductive film 2. Insulating film base material 3. Metal layer 4. PET film 5. Weight 6. Slide glass 7. Workbench 8. Bent part
2.絶縁性フィルム基材
3.金属層
4.PETフィルム
5.錘
6.スライドガラス
7.作業台
8.折り曲げ部
1. 1.
Claims (8)
- 絶縁性フィルム基材の一方の面に銅層、ニッケル層、及び金層からなる金属層がこの順に積層されてなる導電フィルムであって、前記ニッケル層の厚さが0.05~0.2μmであることを特徴とする導電フィルム。 A conductive film in which a metal layer composed of a copper layer, a nickel layer, and a gold layer is laminated in this order on one surface of an insulating film base material, and the thickness of the nickel layer is 0.05 to 0.2 μm. A conductive film characterized by being.
- 前記銅層において、前記ニッケル層が積層される側の銅層表面の算術平均粗さRaが、0.02μm以下であることを特徴とする、請求項1に記載の導電フィルム。 The conductive film according to claim 1, wherein the arithmetic average roughness Ra of the surface of the copper layer on the side where the nickel layer is laminated is 0.02 μm or less in the copper layer.
- 前記金層表面の算術平均粗さRaが、0.03μm以下であることを特徴とする、請求項1又は2に記載の導電フィルム。 The conductive film according to claim 1 or 2, wherein the arithmetic mean roughness Ra of the surface of the gold layer is 0.03 μm or less.
- 前記銅層の厚さが1~5μmであることを特徴とする、請求項1~3のいずれかに記載の導電フィルム。 The conductive film according to any one of claims 1 to 3, wherein the copper layer has a thickness of 1 to 5 μm.
- 前記絶縁性フィルムの金属層を設けた面とは反対の面に、伸び率が200~2000%である樹脂層を設けることを特徴とする、請求項1~4のいずれかに記載の導電フィルム。 The conductive film according to any one of claims 1 to 4, wherein a resin layer having an elongation rate of 200 to 2000% is provided on a surface of the insulating film opposite to the surface on which the metal layer is provided. ..
- 前記金層の表面に、複素環式化合物、チオール類化合物、及びアミン類化合物からなる群より選ばれる少なくとも一種の有機系封孔処理剤からなる膜が形成されていることを特徴とする、請求項1~5のいずれかに記載の導電フィルム。 The claim is characterized in that a film made of at least one organic pore-treating agent selected from the group consisting of a heterocyclic compound, a thiol compound, and an amine compound is formed on the surface of the gold layer. Item 2. The conductive film according to any one of Items 1 to 5.
- 前記絶縁性フィルム基材が、ポリイミド樹脂からなることを特徴とする、請求項1~6のいずれかに記載の導電フィルム。 The conductive film according to any one of claims 1 to 6, wherein the insulating film base material is made of a polyimide resin.
- 前記絶縁性フィルム基材の厚さが、4~25μmであることを特徴とする、請求項1~7のいずれかに記載の導電フィルム。
The conductive film according to any one of claims 1 to 7, wherein the thickness of the insulating film base material is 4 to 25 μm.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180053408.3A CN116096942A (en) | 2020-10-20 | 2021-10-06 | Conductive film with gold layer |
JP2022557418A JPWO2022085464A1 (en) | 2020-10-20 | 2021-10-06 | |
KR1020237013500A KR20230091902A (en) | 2020-10-20 | 2021-10-06 | Conductive film with gold layer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020176079 | 2020-10-20 | ||
JP2020-176079 | 2020-10-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022085464A1 true WO2022085464A1 (en) | 2022-04-28 |
Family
ID=81290331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/037072 WO2022085464A1 (en) | 2020-10-20 | 2021-10-06 | Conductive film having gold layer |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2022085464A1 (en) |
KR (1) | KR20230091902A (en) |
CN (1) | CN116096942A (en) |
WO (1) | WO2022085464A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4343039A1 (en) * | 2022-09-26 | 2024-03-27 | Rohm and Haas Electronic Materials LLC | Nickel electroplating compositions for rough nickel |
KR20240083665A (en) * | 2022-12-05 | 2024-06-12 | 에스피텍 주식회사 | Gold Electrolytic Plating Method for High Speed using Thallium at Low Gold Concentration |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4378999A4 (en) | 2022-10-21 | 2024-12-18 | LG Chem, Ltd. | THERMOPLASTIC RESIN COMPOSITION, METHOD FOR MAKING SAME AND MOLDED ARTICLES THEREOF |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102590A (en) * | 1985-10-29 | 1987-05-13 | 古河電気工業株式会社 | Flexible printed circuit substrate |
JP2007103648A (en) * | 2005-10-04 | 2007-04-19 | Hitachi Chem Co Ltd | Printed circuit board, manufacturing metehod thereof, semiconductor chip mounting substrate, manufacturing method thereof and semiconductor package |
JP2009176646A (en) * | 2008-01-28 | 2009-08-06 | Sumitomo Electric Ind Ltd | Foil-shaped conductor, wiring member, and manufacturing method of wiring member |
JP2019007068A (en) * | 2017-06-28 | 2019-01-17 | 小島化学薬品株式会社 | Electroless nickel strike plating solution and method for depositing nickel plating coating |
JP2020167224A (en) * | 2019-03-28 | 2020-10-08 | 大日本印刷株式会社 | Wiring board and manufacturing method of wiring board |
-
2021
- 2021-10-06 WO PCT/JP2021/037072 patent/WO2022085464A1/en active Application Filing
- 2021-10-06 JP JP2022557418A patent/JPWO2022085464A1/ja active Pending
- 2021-10-06 KR KR1020237013500A patent/KR20230091902A/en active Pending
- 2021-10-06 CN CN202180053408.3A patent/CN116096942A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102590A (en) * | 1985-10-29 | 1987-05-13 | 古河電気工業株式会社 | Flexible printed circuit substrate |
JP2007103648A (en) * | 2005-10-04 | 2007-04-19 | Hitachi Chem Co Ltd | Printed circuit board, manufacturing metehod thereof, semiconductor chip mounting substrate, manufacturing method thereof and semiconductor package |
JP2009176646A (en) * | 2008-01-28 | 2009-08-06 | Sumitomo Electric Ind Ltd | Foil-shaped conductor, wiring member, and manufacturing method of wiring member |
JP2019007068A (en) * | 2017-06-28 | 2019-01-17 | 小島化学薬品株式会社 | Electroless nickel strike plating solution and method for depositing nickel plating coating |
JP2020167224A (en) * | 2019-03-28 | 2020-10-08 | 大日本印刷株式会社 | Wiring board and manufacturing method of wiring board |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4343039A1 (en) * | 2022-09-26 | 2024-03-27 | Rohm and Haas Electronic Materials LLC | Nickel electroplating compositions for rough nickel |
KR20240083665A (en) * | 2022-12-05 | 2024-06-12 | 에스피텍 주식회사 | Gold Electrolytic Plating Method for High Speed using Thallium at Low Gold Concentration |
KR102762017B1 (en) | 2022-12-05 | 2025-02-05 | 에스피텍 주식회사 | Gold Electrolytic Plating Method for High Speed using Thallium at Low Gold Concentration |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022085464A1 (en) | 2022-04-28 |
CN116096942A (en) | 2023-05-09 |
KR20230091902A (en) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022085464A1 (en) | Conductive film having gold layer | |
US10190225B2 (en) | Electrodeposited copper foil with low repulsive force | |
CN101998776B (en) | Copper foil for printed circuit boards and method for manufacturing the same | |
US20040241487A1 (en) | Electrodeposited copper foil with carrier foil | |
EP2899298A1 (en) | Surface-treated plated material and method for producing same, and electronic component | |
WO2007125994A1 (en) | Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil | |
EP1802183A2 (en) | Ultrathin copper foil with carrier and printed circuit board using same | |
CN101687390A (en) | L layer laminate with metal surface roughened layer and process for producing the same | |
JP2011174146A (en) | Electrolytic copper foil and method for producing the same | |
TW201825717A (en) | Copper foil and copper-clad laminate comprising same | |
CN1400855A (en) | Copper alloy foil for integrated board | |
JP7276025B2 (en) | COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES | |
EP2873752A1 (en) | Electroless gold plating method and gold-plate-coated material | |
GB1558919A (en) | Electrolytic surface treating process for copper foil for use in printed circuit | |
EP2620530A1 (en) | Method for manufacturing copper foil for printed circuit board and copper foil for printed circuit board | |
JP3944027B2 (en) | Manufacturing method of flexible printed wiring board and flexible printed wiring board obtained by the manufacturing method | |
US11622445B2 (en) | Surface-treated copper foil, manufacturing method thereof, copper foil laminate including the same, and printed wiring board including the same | |
US20040099340A1 (en) | Reduction of surface oxidation during electroplating | |
WO2009157457A1 (en) | Composite material for electrical/electronic component and electrical/electronic component using the same | |
CN103459679B (en) | Possess calendering copper or the copper alloy foil in roughening treatment face | |
US20030096082A1 (en) | Copper alloy foil | |
US20060240272A1 (en) | Stabilized aluminum laminate having aluminum and stabilizing layer laminated thereon | |
US20110088932A1 (en) | Wiring circuit board and method of manufacturing the same | |
JP2004319918A (en) | Method for manufacturing flexible printed-wiring board, and flexible printed-wiring board obtained by the manufacturing method | |
EP1137331A2 (en) | Copper on polymer component having improved adhesion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21882605 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022557418 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21882605 Country of ref document: EP Kind code of ref document: A1 |