WO2022079861A1 - Terminal - Google Patents
Terminal Download PDFInfo
- Publication number
- WO2022079861A1 WO2022079861A1 PCT/JP2020/038957 JP2020038957W WO2022079861A1 WO 2022079861 A1 WO2022079861 A1 WO 2022079861A1 JP 2020038957 W JP2020038957 W JP 2020038957W WO 2022079861 A1 WO2022079861 A1 WO 2022079861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pdsch
- frequency direction
- repetition
- physical downlink
- frequency
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
Definitions
- This disclosure relates to a terminal that receives a physical downlink data channel.
- the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
- 5G New Radio
- NG Next Generation
- Non-Patent Document 1 coverage enhancement (CE: Coverage Enhancement) in NR (Non-Patent Document 1).
- Link budget (Hardware link) of physical channels (PDSCH (Physical Downlink Shared Channel), PUSCH (Physical Uplink Shared Channel), PDCCH (Physical Downlink Control Channel) and PUCCH (Physical Uplink Control Channel)) toward the realization of coverage expansion in NR.
- PDSCH Physical Downlink Shared Channel
- PUSCH Physical Uplink Shared Channel
- PDCCH Physical Downlink Control Channel
- PUCCH Physical Uplink Control Channel
- the power density (PSD: Power Spectrum Density) is generally constant regardless of the bandwidth of the transmission signal, so the resource block allocated to the resource to be transmitted. (RB) The larger the number, the larger the total transmission power.
- PDSCH time / frequency resources can be flexibly allocated. For example, it is possible to increase the total transmission power by increasing the number of RBs and decreasing the coding rate.
- MCS Modulation and Coding Scheme
- the following disclosure was made in view of such a situation, and aims to provide a terminal capable of more efficient PDSCH reception corresponding to the coverage expansion.
- One aspect of the present disclosure is a control unit that assumes that a receiving unit (radio signal transmission / reception unit 210) that receives a physical downlink data channel and the physical downlink data channel are repeated in the frequency direction within the same time domain. It is a terminal (UE200) provided with (control unit 270).
- FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
- FIG. 2 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
- FIG. 3 is a functional block configuration diagram of the UE 200.
- FIG. 4 is a diagram showing the MIL evaluation result of the physical channel in FR1.
- FIG. 5 is a diagram showing the MIL evaluation result of the physical channel in FR2.
- FIG. 6 is a diagram showing an example of the relationship between the bandwidth of the transmission signal and the power density (PSD).
- FIG. 7 is a diagram showing an example (continuous arrangement) of PDSCH resource allocation according to the operation example 1.
- FIG. 8 is a diagram showing an example of PDSCH resource allocation (discontinuous arrangement) according to operation example 1.
- FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
- FIG. 2 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless
- FIG. 9 is a diagram showing an example of a communication sequence related to the Repetition setting in the frequency direction of PDSCH.
- FIG. 10 is a diagram showing a configuration example of PDSCH-Config.
- FIG. 11 is a diagram showing an example of the hardware configuration of the UE 200.
- FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
- the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200).
- NR 5G New Radio
- NG-RAN20 Next Generation-Radio Access Network
- UE200 terminal 200
- the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution, or 6G.
- NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
- gNB100A radio base station 100A
- gNB100B radio base station 100B
- the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
- the NG-RAN20 actually contains multiple NG-RANNodes, specifically gNB, and is connected to a core network (5GC, not shown) according to 5G.
- NG-RAN20 and 5GC may be simply expressed as "network”.
- GNB100A and gNB100B are radio base stations according to NR, and execute wireless communication according to UE200 and NR.
- gNB100A, gNB100B and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle. ), And dual connectivity (DC) that communicates between the UE and multiple NG-RAN Nodes at the same time.
- Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements
- CA carrier aggregation
- CC component carriers
- DC dual connectivity
- the wireless communication system 10 corresponds to FR1 and FR2.
- the frequency bands of each FR are as follows.
- FR1 uses a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and may use a bandwidth (BW) of 5-100 MHz.
- SCS Sub-Carrier Spacing
- BW bandwidth
- FR2 has a higher frequency than FR1, and SCS of 60 or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
- the wireless communication system 10 may support a higher frequency band than the frequency band of FR2. Specifically, the wireless communication system 10 can support a frequency band exceeding 52.6 GHz and up to 114.25 GHz.
- Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
- DFT-S-OFDM Discrete Fourier Transform-Spread
- SCS Sub-Carrier Spacing
- DFT-S-OFDM may be applied not only to the uplink (UL) but also to the downlink (DL).
- FIG. 2 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
- one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
- the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
- the number of slots per subframe may differ depending on the SCS.
- the SCS may use a wider interval, for example, 480 kHz, 960 kHz, or the like.
- the time direction (t) shown in FIG. 2 may be referred to as a time domain, a symbol period, a symbol time, or the like.
- the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a BWP (Bandwidth part), or the like.
- the wireless communication system 10 can support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells formed by gNB100A (and gNB100B, the same applies hereinafter).
- CE Coverage Enhancement
- Coverage extension may provide a mechanism for increasing the reception success rate of various physical channels.
- the wireless communication system 10 can support repeated transmission of a physical downlink data channel, specifically, a PDSCH (Physical Downlink Shared Channel).
- a physical downlink data channel specifically, a PDSCH (Physical Downlink Shared Channel).
- FIG. 3 is a functional block configuration diagram of UE200.
- the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
- the radio signal transmission / reception unit 210 transmits / receives a radio signal according to NR.
- the wireless signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between a UE and each of two NG-RAN Nodes.
- the wireless signal transmission / reception unit 210 transmits / receives a wireless signal via various physical channels.
- the radio signal transmission / reception unit 210 constitutes a reception unit that receives the physical downlink data channel.
- the physical downlink data channel may be interpreted as PDSCH (Physical Downlink Shared Channel).
- PDSCH may be referred to as a physical downlink shared channel.
- the radio signal transmission / reception unit 210 constitutes a transmission unit that transmits the capability information of the UE 200 regarding the reception of the physical downlink data channel to the network.
- the radio signal transmission / reception unit 210 can transmit capacity information indicating the ability to respond to repetition in the frequency direction of PDSCH (physical downlink data channel) to the network.
- the capability information of UE200 may be interpreted as UE capability information specified in 3GPP TS38.331 or the like.
- the wireless signal transmission / reception unit 210 can transmit UE capability information via a predetermined uplink physical channel.
- the contents of UE capability information regarding PDSCH reception will be described later.
- the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
- the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
- the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100A, etc.).
- Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, the DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
- the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
- control signal / reference signal processing unit 240 controls various control signals transmitted from the gNB100A (or gNB100B, the same applies hereinafter) via a predetermined control channel, for example, a radio resource control layer (RRC). Receive a signal. Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB100A via a predetermined control channel.
- a predetermined control channel for example, a radio resource control layer (RRC).
- RRC radio resource control layer
- the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
- RS reference signal
- DMRS Demodulation Reference Signal
- PTRS Phase Tracking Reference Signal
- DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
- PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
- the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for location information.
- CSI-RS ChannelStateInformation-ReferenceSignal
- SRS SoundingReferenceSignal
- PRS PositioningReferenceSignal
- Control channels include control channels and data channels.
- Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI)), and Physical. Broadcast Channel (PBCH) etc. are included.
- PDCCH Physical Downlink Control Channel
- PUCCH Physical Uplink Control Channel
- RACH Random Access Radio Network Temporary Identifier
- DCI Downlink Control Information
- PBCH Broadcast Channel
- Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data may mean data transmitted over a data channel.
- PDSCH Physical Downlink Shared Channel
- PUSCH Physical Uplink Shared Channel
- the physical channel may include at least PDCCH, PUCCH, PUSCH and PDSCH.
- the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100A, etc.).
- the coding / decoding unit 250 divides the data output from the data transmission / reception unit 260 into predetermined sizes, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
- the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
- the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the.
- the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
- the control unit 270 controls each functional block constituting the UE 200.
- the control unit 270 can execute various controls related to the physical channel in order to support the coverage expansion (CE).
- CE coverage expansion
- control unit 270 may assume that PDSCH (physical downlink data channel) is repeated in the frequency direction. Repeating PDSCHs in the frequency direction means that multiple PDSCHs allocated to a certain area (resources such as symbols or slots) in the time direction are allocated in the area in the time direction also in the frequency direction. good.
- PDSCH physical downlink data channel
- control unit 270 may assume that the PDSCH is repeated in the frequency direction within the same time domain.
- PDSCHs (which may be called PDSCH resources) that are repeated in the frequency direction may be adjacent in the frequency direction or may be separated so as to be provided with a certain interval. That is, a plurality of PDSCHs may be continuously assigned to adjacent subcarriers, or may be assigned to several subcarriers at intervals.
- control unit 270 may assume that the PDSCH is repeated at intervals in the frequency direction, or that the PDSCH is continuously repeated in the frequency direction.
- the control unit 270 may change at least one of the modulation coding scheme (MCS: Modulation and Coding Scheme) and the coding rate (coding rate) based on the repetition in the frequency direction of the PDSCH.
- MCS Modulation and Coding Scheme
- coding rate coding rate
- the control unit 270 when the number of repetitions of PDSCH (referred to as the number of repetitions) is 4 (that is, 4 PDSCHs are repeated), the coding rate may be 1/4 of the case where there is no repetition. Further, the control unit 270 may also change the MCS according to the number of repetitions or the presence or absence of repetitions. For example, if the number of PDSCH iterations is 2, an MCS 3 less than the indicated MCS may be set.
- the control unit 270 may assume the repetition (Repetition) in the frequency direction of PDSCH as described above based on the signaling from the network. Specifically, the control unit 270 is in the frequency direction of the PDSCH based on the signaling of the downlink control information (DCI), the control element of the medium access control layer (MAC-CE), or the radio resource control layer (RRC). You may assume repetition.
- DCI downlink control information
- MAC-CE medium access control layer
- RRC radio resource control layer
- the DCI, MAC-CE or RRC signaling may include information indicating the presence or absence of repetition in the frequency direction of PDSCH, the number of repetitions, and the interval of repetitions. A specific example of the signaling will be further described later.
- Target scenarios include service provision from outdoor (O) gNB to indoor (I) UE (in the case of FR1) and service provision from indoor gNB to indoor UE (in the case of FR2).
- coverage expansion including rural areas for long-distance communication) in urban areas, suburbs and rural areas (countryside) is targeted.
- the main target services are VoIP (Voice over IP) and eMBB (enhanced Mobile Broadband).
- VoIP Voice over IP
- eMBB enhanced Mobile Broadband
- FIG. 4 shows the MIL evaluation result of the physical channel in FR1.
- FIG. 5 shows the MIL evaluation result of the physical channel in FR2.
- the following describes the operation related to the improvement of PDSCH to support coverage expansion.
- FIG. 6 shows an example of the relationship between the bandwidth of the transmission signal and the power density (PSD).
- PSD Power Spectrum Density
- PDSCH time / frequency resources can be flexibly allocated. For example, it is possible to increase the total transmission power by increasing the number of RBs and decreasing the coding rate.
- MCS Modulation and Coding Scheme
- the wireless communication system 10 can execute the following operations.
- FDRA Frequency Domain Resource Assignment
- UE capability information The UE (terminal) reports, for example, the ability to support the following repetitions in the frequency direction of PDSCH: ⁇ Repetition support in the frequency direction of PDSCH ⁇ Number of repetitions in the frequency direction of PDSCH, Repetition interval
- FIG. 7 shows an example of PDSCH resource allocation (continuous allocation) according to operation example 1.
- FIG. 8 shows an example (discontinuous arrangement) of PDSCH resource allocation according to the operation example 1. 7 and 8 show an example in which the number of repetitions is 4.
- the PDSCH resource set by DCI can be repeatedly set in the frequency direction. That is, PDSCH resources may be repeatedly allocated in the frequency direction.
- At least one of the MCS and the coding rate may be changed according to the number of repetitions.
- the coding rate may be 1/4 of the case where there is no repetition. In other words, the coding rate may be lowered as the number of repetitions increases.
- the Repetitioned PDSCH resources may be continuously set (allocated) in the frequency direction or at regular intervals. It may be set (allocated) with a (gap).
- the UE200 may assume such Repetition in the frequency direction of PDSCH in advance. Specifically, the Repetition may be assumed in advance based on the setting method described below.
- FIG. 9 shows an example of a communication sequence related to the Repetition setting in the PDSCH frequency direction.
- the UE200 may transmit the capability information (UEcapability information) indicating the capability of the UE200 regarding Repetition in the frequency direction of the PDSCH to the network (S10).
- UEcapability information indicating the capability of the UE200 regarding Repetition in the frequency direction of the PDSCH
- the UE capability information may include whether or not Repetition is supported in the frequency direction of PDSCH, the number of Repetitions that can be supported, and the Repetition interval.
- the UE capability information may include only one of these elements (for example, whether or not Repetition is supported). Further, a specific example of the UE capability information will be further described in Operation Example 3.
- the network determines PDSCH resources based on the received UE capability information and the capabilities of the network side (S20). Specifically, the network may determine the presence or absence of repetition, the number of repetitions, and the repetition interval in the frequency direction of PDSCH.
- the network notifies UE200 of the determined PDSCH resource information (S30). Specifically, as described above, the information may be notified by DCI, MAC-CE or RRC signaling.
- the UE200 sets PDSCH reception based on the notified PDSCH resource information (S40). Specifically, the UE 200 may execute the setting regarding Repetition in the frequency direction of PDSCH based on the information of the notified PDSCH resource.
- the network may notify the determined PDSCH resource information by DCI, MAC-CE or RRC signaling, but specifically, it can be notified as follows.
- a new DCI format may be specified, and the presence / absence of Repetition and / or the number of Repetitions may be set at the time of scheduling PDSCH.
- the start position of the existing allocated resource, the number of RBs and / or the resource block group (RBG), as well as the number and / or intervals of repetitions are notified by joint coding. May be good.
- a new field for notifying the number of repetitions and / or the interval may be provided in the existing DCI format.
- a new MAC-CE separate from the existing MAC-CE may be used.
- FIG. 10 shows a configuration example of PDSCH-Config.
- the number of Repetitions in the frequency direction of PDSCH may be notified using the field of pdsch-Repetition_FrequencyDomain.
- an arbitrary value for example, INTEGER (0 ... 20) may be set.
- the Repetition interval may be the same as the number of RBs (assigned) set in PDSCH, or may be an arbitrary value. In the case of an arbitrary value, as shown in FIG. 10, the Repetition interval may be notified using the field of Repetition_offset.
- Operation example 3 The UE 200 capability information regarding Repetition in the frequency direction of PDSCH may include the following elements.
- the UE200 may report at least one of the following with respect to the corresponding frequency.
- the UE200 may report at least one of the following regarding the corresponding duplex method.
- the following action / effect can be obtained.
- the UE 200 can assume that the PDSCH is repeated in the frequency direction within the same time domain. Therefore, the UE200 can easily obtain the frequency diversity gain of PDSCH.
- the TB size can be determined from the amount of (partial) resources allocated to PDSCH, and the remaining resources can be allocated to Repetition in the frequency direction. It is easy to realize transmission with a lower error rate.
- the UE 200 can support more efficient reception of PDSCH corresponding to the coverage expansion, and can realize a higher quality coverage expansion.
- the UE200 can further obtain the frequency diversity gain of PDSCH, and can realize higher quality coverage expansion.
- the UE 200 can change at least either the MCS or the coding rate based on the repetition in the frequency direction of the PDSCH. Therefore, it is possible to realize efficient data transmission according to the amount of resources allocated to PDSCH.
- UE200 can assume Repetition in the frequency direction of PDSCH based on DCI, MAC-CE or RRC signaling. Therefore, the UE 200 can surely recognize the setting of Repetition in the frequency direction of PDSCH in advance.
- the UE200 can transmit UE capability information indicating the ability to respond to Repetition in the frequency direction of PDSCH to the network. Therefore, the network can set an appropriate PDSCH according to the capability of the UE200.
- PDSCH has been described as an example, but PDSCH may be referred to by another name. Specifically, if it is a data channel in the downlink (DL) direction, it may be called by a name different from PDSCH.
- DL downlink
- the UE 200 assumes Repetition in the frequency direction of PDSCH based on DCI, but when the presence or absence of the Repetition is notified by MAC-CE or RRC signaling. Does not have to be based on the DCI for receiving PDSCH (for example, Format1_1) for the assumption of the Repetition.
- each functional block is realized by any combination of at least one of hardware and software.
- the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
- the functional block may be realized by combining the software with the one device or the plurality of devices.
- Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
- a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
- the realization method is not particularly limited.
- FIG. 11 is a diagram showing an example of the hardware configuration of the UE 200.
- the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
- the word “device” can be read as a circuit, device, unit, etc.
- the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
- Each functional block of UE200 (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
- each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
- predetermined software program
- Processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
- CPU central processing unit
- the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program code
- a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
- the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
- Processor 1001 may be implemented by one or more chips.
- the program may be transmitted from the network via a telecommunication line.
- the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
- the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
- Storage 1003 may be referred to as auxiliary storage.
- the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
- FDD frequency division duplex
- TDD time division duplex
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
- the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA).
- the hardware may implement some or all of each functional block.
- processor 1001 may be implemented using at least one of these hardware.
- information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
- DCI Downlink Control Information
- UCI Uplink Control Information
- RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)).
- MIB System Information Block
- SIB System Information Block
- RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
- LTE LongTermEvolution
- LTE-A LTE-Advanced
- SUPER3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- FutureRadioAccess FAA
- NewRadio NR
- W-CDMA registered trademark
- GSM registered trademark
- CDMA2000 Code Division Multiple Access 2000
- UMB UltraMobileBroadband
- IEEE802.11 Wi-Fi (registered trademark)
- IEEE802.16 WiMAX®
- IEEE802.20 Ultra-WideBand
- Bluetooth® Ultra-WideBand
- other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one.
- a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
- the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
- various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
- S-GW network node
- the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
- Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
- Input / output may be performed via a plurality of network nodes.
- the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. I / O information can be overwritten, updated, or added. The output information may be deleted. The entered information may be transmitted to other devices.
- the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
- the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
- wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
- wireless technology infrared, microwave, etc.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
- a channel and a symbol may be a signal (signaling).
- the signal may be a message.
- the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
- system and “network” used in this disclosure are used interchangeably.
- the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
- the radio resource may be indexed.
- Base Station BS
- Wireless Base Station Wireless Base Station
- Fixed Station NodeB
- eNodeB eNodeB
- gNodeB gNodeB
- Access point "transmission point”
- reception point "transmission / reception point”
- cell “sector”
- Cell group “cell group”
- Terms such as “carrier” and “component carrier” may be used interchangeably.
- Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
- a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head: RRH).
- a base station subsystem eg, a small indoor base station (Remote Radio).
- Communication services can also be provided by Head: RRH).
- cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
- MS Mobile Station
- UE user equipment
- terminal terminal
- Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
- At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
- the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
- at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
- at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
- communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the mobile station may have the functions of the base station.
- words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
- the upstream channel, the downstream channel, and the like may be read as a side channel.
- the mobile station in the present disclosure may be read as a base station.
- the base station may have the functions of the mobile station.
- the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
- the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
- Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
- the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time area.
- the slot may be a unit of time based on numerology.
- the slot may include a plurality of mini slots.
- Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
- a minislot may consist of a smaller number of symbols than the slot.
- PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
- the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
- the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
- the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
- one subframe may be referred to as a transmission time interval (TTI)
- TTI transmission time interval
- TTI transmission time interval
- TTI transmission time interval
- TTI transmission time interval
- TTI transmission time interval
- TTI slot or one minislot
- at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
- the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
- a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
- the definition of TTI is not limited to this.
- TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- the time interval for example, the number of symbols
- the transport block, code block, code word, etc. may be shorter than the TTI.
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
- the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
- the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
- the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
- the number of subcarriers contained in the RB may be determined based on numerology.
- the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
- Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
- One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
- Physical RB Physical RB: PRB
- sub-carrier groups Sub-Carrier Group: SCG
- resource element groups Resource Element Group: REG
- PRB pairs RB pairs, etc. May be called.
- the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
- RE resource elements
- 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
- Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good.
- the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
- BWP for UL
- DL BWP BWP for DL
- One or more BWPs may be set in one carrier for the UE.
- At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
- “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
- the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
- the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
- the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
- connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “joined” elements.
- the connection or connection between the elements may be physical, logical, or a combination thereof.
- connection may be read as "access”.
- the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
- the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
- RS Reference Signal
- Pilot pilot
- each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
- references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
- determining and “determining” used in this disclosure may include a wide variety of actions.
- “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
- judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
- judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
- the term "A and B are different” may mean “A and B are different from each other”.
- the term may mean that "A and B are different from C”.
- Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
- Wireless communication system 20 NG-RAN 100A, 100B gNB UE 200 210 Wireless signal transmitter / receiver 220 Amplifier 230 Modulator / demodulator 240 Control signal / reference signal processing 250 Encoding / decoding 260 Data transmitter / receiver 270 Control 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
UE assumes that a physical downlink data channel is repeated in the frequency direction in the same time domain.
Description
本開示は、物理下りデータチャネルを受信する端末に関する。
This disclosure relates to a terminal that receives a physical downlink data channel.
3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
例えば、3GPP Release-17では、NRにおけるカバレッジ拡張(CE: Coverage Enhancement)について検討することが合意されている(非特許文献1)。
For example, in 3GPP Release-17, it has been agreed to consider coverage enhancement (CE: Coverage Enhancement) in NR (Non-Patent Document 1).
NRにおけるカバレッジ拡張の実現に向けて、物理チャネル(PDSCH(Physical Downlink Shared Channel)、PUSCH(Physical Uplink Shared Channel)、PDCCH(Physical Downlink Control Channel)及びPUCCH(Physical Uplink Control Channel)のリンクバジェット(Hardware link budget)を評価した結果、少なくともPDSCH(物理下りデータチャネル)について改善の余地があることが判明している。
Link budget (Hardware link) of physical channels (PDSCH (Physical Downlink Shared Channel), PUSCH (Physical Uplink Shared Channel), PDCCH (Physical Downlink Control Channel) and PUCCH (Physical Uplink Control Channel)) toward the realization of coverage expansion in NR. As a result of evaluating the budget), it has been found that there is room for improvement at least for PDSCH (physical downlink data channel).
無線基地局(gNB)の下りリンク(DL)送信電力に関して、一般的に送信信号の帯域幅によらず電力密度(PSD:Power Spectrum Density)は一定となるため、送信するリソースに割り当てられるリソースブロック(RB)数が多いほど、総送信電力は大きくなる。
Regarding the downlink (DL) transmission power of a radio base station (gNB), the power density (PSD: Power Spectrum Density) is generally constant regardless of the bandwidth of the transmission signal, so the resource block allocated to the resource to be transmitted. (RB) The larger the number, the larger the total transmission power.
NRでは、PDSCHの時間・周波数リソースを柔軟に割り当てることができる。例えば、RB数を多くし、かつ符号化レートを小さくすることによって、総送信電力を高めることが可能である。
In NR, PDSCH time / frequency resources can be flexibly allocated. For example, it is possible to increase the total transmission power by increasing the number of RBs and decreasing the coding rate.
符号化レートは、Modulation and Coding Scheme(MCS)インデックス毎に決まっており、トランスポートブロック(TB)サイズは、MCS及び割当リソース量によって決まる。このため、割当リソース量を増やしてもMCS=0の符号化レート以下にはならない。さらに、総送信電力を高めるために割当リソース量を増やすとTBサイズが大きくなり、小さいサイズのデータを送りたい場合にはリソースの無駄が生じる。
The coding rate is determined for each Modulation and Coding Scheme (MCS) index, and the transport block (TB) size is determined by the MCS and the amount of allocated resources. Therefore, even if the amount of allocated resources is increased, the code rate does not fall below MCS = 0. Furthermore, if the amount of allocated resources is increased in order to increase the total transmission power, the TB size will increase, and if you want to send data of a small size, resources will be wasted.
従って、割り当てたリソースを活用して小さいサイズのデータをより低い誤り率で送信できるようにすることが望ましい。
Therefore, it is desirable to utilize the allocated resources so that small size data can be transmitted with a lower error rate.
そこで、以下の開示は、このような状況に鑑みてなされたものであり、カバレッジ拡張に対応したより効率的なPDSCHの受信に対応し得る端末の提供を目的とする。
Therefore, the following disclosure was made in view of such a situation, and aims to provide a terminal capable of more efficient PDSCH reception corresponding to the coverage expansion.
本開示の一態様は、物理下りデータチャネルを受信する受信部(無線信号送受信部210)と、前記物理下りデータチャネルが、同一時間領域内において、周波数方向に繰り返されていると想定する制御部(制御部270)とを備える端末(UE200)である。
One aspect of the present disclosure is a control unit that assumes that a receiving unit (radio signal transmission / reception unit 210) that receives a physical downlink data channel and the physical downlink data channel are repeated in the frequency direction within the same time domain. It is a terminal (UE200) provided with (control unit 270).
以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
(1)無線通信システムの全体概略構成
図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(User Equipment 200、以下、UE200)を含む。 (1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of thewireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200).
図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(User Equipment 200、以下、UE200)を含む。 (1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the
なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
The wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution, or 6G.
NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNBを含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。
The NG-RAN20 actually contains multiple NG-RANNodes, specifically gNB, and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
gNB100A及びgNB100Bは、NRに従った無線基地局であり、UE200とNRに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
GNB100A and gNB100B are radio base stations according to NR, and execute wireless communication according to UE200 and NR. gNB100A, gNB100B and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle. ), And dual connectivity (DC) that communicates between the UE and multiple NG-RAN Nodes at the same time.
無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。
The wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR are as follows.
・FR1:410 MHz~7.125 GHz
・FR2:24.25 GHz~52.6 GHz
FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。 ・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
FR1 uses a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and may use a bandwidth (BW) of 5-100 MHz. FR2 has a higher frequency than FR1, and SCS of 60 or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
・FR2:24.25 GHz~52.6 GHz
FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。 ・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
FR1 uses a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and may use a bandwidth (BW) of 5-100 MHz. FR2 has a higher frequency than FR1, and SCS of 60 or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
さらに、無線通信システム10は、FR2の周波数帯域よりも高周波数帯域にも対応してもよい。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯域に対応し得る。
Further, the wireless communication system 10 may support a higher frequency band than the frequency band of FR2. Specifically, the wireless communication system 10 can support a frequency band exceeding 52.6 GHz and up to 114.25 GHz.
また、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。さらに、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも適用されてもよい。
Further, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) having a larger Sub-Carrier Spacing (SCS) may be applied. Further, DFT-S-OFDM may be applied not only to the uplink (UL) but also to the downlink (DL).
図2は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。
FIG. 2 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
図2に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。なお、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。また、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。さらに、図示されていないが、SCSは、より広い間隔、例えば、480kHz, 960kHzなどが用いられてもよい。
As shown in FIG. 2, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols). Further, the number of slots per subframe may differ depending on the SCS. Further, although not shown, the SCS may use a wider interval, for example, 480 kHz, 960 kHz, or the like.
なお、図2に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、BWP (Bandwidth part)などと呼ばれてもよい。
The time direction (t) shown in FIG. 2 may be referred to as a time domain, a symbol period, a symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a BWP (Bandwidth part), or the like.
また、無線通信システム10は、gNB100A(及びgNB100B、以下同)が形成するセルのカバレッジを広げるカバレッジ拡張(CE: Coverage Enhancement)をサポートできる。カバレッジ拡張では、各種の物理チャネルの受信成功率を高めるための仕組みが提供されてよい。
In addition, the wireless communication system 10 can support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells formed by gNB100A (and gNB100B, the same applies hereinafter). Coverage extension may provide a mechanism for increasing the reception success rate of various physical channels.
本実施形態では、無線通信システム10(gNB100A)は、物理下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)の繰り返し送信に対応できる。
In the present embodiment, the wireless communication system 10 (gNB100A) can support repeated transmission of a physical downlink data channel, specifically, a PDSCH (Physical Downlink Shared Channel).
(2)無線通信システムの機能ブロック構成
次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。 (2) Functional block configuration of the wireless communication system Next, the functional block configuration of thewireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。 (2) Functional block configuration of the wireless communication system Next, the functional block configuration of the
図3は、UE200の機能ブロック構成図である。図3に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。
FIG. 3 is a functional block configuration diagram of UE200. As shown in FIG. 3, the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
The radio signal transmission / reception unit 210 transmits / receives a radio signal according to NR. The wireless signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between a UE and each of two NG-RAN Nodes.
具体的には、無線信号送受信部210は、各種の物理チャネルを介して無線信号を送受信する。特に、本実施形態では、無線信号送受信部210は、物理下りデータチャネルを受信する受信部を構成する。物理下りデータチャネルとは、具体的には、PDSCH(Physical Downlink Shared Channel)と解釈されてよい。PDSCHは、物理下り共有チャネルと呼ばれてもよい。
Specifically, the wireless signal transmission / reception unit 210 transmits / receives a wireless signal via various physical channels. In particular, in the present embodiment, the radio signal transmission / reception unit 210 constitutes a reception unit that receives the physical downlink data channel. Specifically, the physical downlink data channel may be interpreted as PDSCH (Physical Downlink Shared Channel). PDSCH may be referred to as a physical downlink shared channel.
また、無線信号送受信部210は、物理下りデータチャネルの受信に関するUE200の能力情報をネットワークに送信する送信部を構成する。
Further, the radio signal transmission / reception unit 210 constitutes a transmission unit that transmits the capability information of the UE 200 regarding the reception of the physical downlink data channel to the network.
具体的には、無線信号送受信部210は、PDSCH(物理下りデータチャネル)の周波数方向における繰り返しへの対応能力を示す能力情報をネットワークに送信できる。なお、UE200の能力情報とは、3GPP TS38.331などにおいて規定されるUE capability informationと解釈されてもよい。
Specifically, the radio signal transmission / reception unit 210 can transmit capacity information indicating the ability to respond to repetition in the frequency direction of PDSCH (physical downlink data channel) to the network. The capability information of UE200 may be interpreted as UE capability information specified in 3GPP TS38.331 or the like.
無線信号送受信部210は、所定の上り物理チャネルを介してUE capability informationを送信することができる。なお、PDSCHの受信に関するUE capability informationの内容については、さらに後述する。
The wireless signal transmission / reception unit 210 can transmit UE capability information via a predetermined uplink physical channel. The contents of UE capability information regarding PDSCH reception will be described later.
アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。
The amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like. The amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
変復調部230は、所定の通信先(gNB100Aなど)毎に、データ変調/復調、送信電力設定及びリソースブロック割り当てなどを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。
The modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100A, etc.). Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, the DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。
The control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
具体的には、制御信号・参照信号処理部240は、gNB100A(またはgNB100B、以下同)から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100Aに向けて、所定の制御チャネルを介して各種の制御信号を送信する。
Specifically, the control signal / reference signal processing unit 240 controls various control signals transmitted from the gNB100A (or gNB100B, the same applies hereinafter) via a predetermined control channel, for example, a radio resource control layer (RRC). Receive a signal. Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB100A via a predetermined control channel.
制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。
The control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。
DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。
In addition to DMRS and PTRS, the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for location information.
チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。
Channels include control channels and data channels. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI)), and Physical. Broadcast Channel (PBCH) etc. are included.
データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味してよい。
Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data may mean data transmitted over a data channel.
また、物理チャネルには、少なくともPDCCH、PUCCH、PUSCH及びPDSCHが含まれてよい。
Further, the physical channel may include at least PDCCH, PUCCH, PUSCH and PDSCH.
符号化/復号部250は、所定の通信先(gNB100Aなど)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
The coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100A, etc.).
具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。
Specifically, the coding / decoding unit 250 divides the data output from the data transmission / reception unit 260 into predetermined sizes, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。
The data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the. Further, the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
制御部270は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部270は、カバレッジ拡張(CE)をサポートするため、物理チャネルに関する各種制御を実行できる。
The control unit 270 controls each functional block constituting the UE 200. In particular, in the present embodiment, the control unit 270 can execute various controls related to the physical channel in order to support the coverage expansion (CE).
具体的には、制御部270は、PDSCH(物理下りデータチャネル)が、周波数方向において繰り返されていると想定してよい。PDSCHが周波数方向において繰り返されるとは、時間方向において一定の領域(シンボルまたはスロットなどのリソース)に割り当てられるPDSCHが、当該時間方向の領域内において、周波数方向においても複数割り当てられることを意味してよい。
Specifically, the control unit 270 may assume that PDSCH (physical downlink data channel) is repeated in the frequency direction. Repeating PDSCHs in the frequency direction means that multiple PDSCHs allocated to a certain area (resources such as symbols or slots) in the time direction are allocated in the area in the time direction also in the frequency direction. good.
つまり、制御部270は、PDSCHが、同一時間領域内において、周波数方向に繰り返されていると想定してよい。
That is, the control unit 270 may assume that the PDSCH is repeated in the frequency direction within the same time domain.
周波数方向に繰り返されるPDSCH(PDSCHリソースと呼んでもよい)は、周波数方向において隣接していてもよいし、一定の間隔が設けられるように離れていてもよい。つまり、PDSCHは、隣接するサブキャリアに連続して複数割り当てられてもよいし、幾つかのサブキャリアを隔てて割り当てられてもよい。
PDSCHs (which may be called PDSCH resources) that are repeated in the frequency direction may be adjacent in the frequency direction or may be separated so as to be provided with a certain interval. That is, a plurality of PDSCHs may be continuously assigned to adjacent subcarriers, or may be assigned to several subcarriers at intervals.
このように、制御部270は、PDSCHが周波数方向において間隔を設けて繰り返されていると想定してもよいし、PDSCHが周波数方向において連続して繰り返されていると想定してもよい。
As described above, the control unit 270 may assume that the PDSCH is repeated at intervals in the frequency direction, or that the PDSCH is continuously repeated in the frequency direction.
制御部270は、PDSCHの周波数方向における繰り返しに基づいて、変調符号化スキーム(MCS:Modulation and Coding Scheme)及び符号化レート(coding rate)の少なくとも何れかを変更してもよい。
The control unit 270 may change at least one of the modulation coding scheme (MCS: Modulation and Coding Scheme) and the coding rate (coding rate) based on the repetition in the frequency direction of the PDSCH.
例えば、制御部270は、PDSCHの繰り返し数(Repetition数という)が4(つまり、4つのPDSCHが繰り返される)である場合、符号化レートは、繰り返しがない場合の1/4としてもよい。また、制御部270は、MCSについても、Repetition数或いはRepetitionの有無に応じて、変更してよい。例えば、PDSCHの繰り返し数が2である場合、指示されたMCSより3つ小さいMCSを設定してもよい。
For example, in the control unit 270, when the number of repetitions of PDSCH (referred to as the number of repetitions) is 4 (that is, 4 PDSCHs are repeated), the coding rate may be 1/4 of the case where there is no repetition. Further, the control unit 270 may also change the MCS according to the number of repetitions or the presence or absence of repetitions. For example, if the number of PDSCH iterations is 2, an MCS 3 less than the indicated MCS may be set.
制御部270は、上述したようなPDSCHの周波数方向における繰り返し(Repetition)をネットワークからのシグナリングに基づいて想定してよい。具体的には、制御部270は、下りリンク制御情報(DCI)、媒体アクセス制御レイヤの制御要素(MAC-CE)、または無線リソース制御レイヤ(RRC)のシグナリングに基づいて、PDSCHの周波数方向における繰り返しを想定してよい。
The control unit 270 may assume the repetition (Repetition) in the frequency direction of PDSCH as described above based on the signaling from the network. Specifically, the control unit 270 is in the frequency direction of the PDSCH based on the signaling of the downlink control information (DCI), the control element of the medium access control layer (MAC-CE), or the radio resource control layer (RRC). You may assume repetition.
当該DCI、MAC-CEまたはRRCのシグナリングは、PDSCHの周波数方向におけるRepetitionの有無、Repetition数、Repetitionの間隔を示す情報を含んでよい。なお、当該シグナリングの具体例については、さらに後述する。
The DCI, MAC-CE or RRC signaling may include information indicating the presence or absence of repetition in the frequency direction of PDSCH, the number of repetitions, and the interval of repetitions. A specific example of the signaling will be further described later.
(3)無線通信システムの動作
次に、無線通信システム10の動作について説明する。具体的には、カバレッジ拡張(CE)に対応した物理下りデータチャネル(PDSCH)の受信に関する動作について説明する。 (3) Operation of wireless communication system Next, the operation of thewireless communication system 10 will be described. Specifically, the operation related to the reception of the physical downlink data channel (PDSCH) corresponding to the coverage extension (CE) will be described.
次に、無線通信システム10の動作について説明する。具体的には、カバレッジ拡張(CE)に対応した物理下りデータチャネル(PDSCH)の受信に関する動作について説明する。 (3) Operation of wireless communication system Next, the operation of the
(3.1)前提
3GPPが設定したStudy Item(RP-193240参照)では、FR1及びFR2の両方の周波数帯域におけるカバレッジ拡張の実現が想定されている。 (3.1) Assumption In the Study Item (see RP-193240) set by 3GPP, it is assumed that coverage will be expanded in both the FR1 and FR2 frequency bands.
3GPPが設定したStudy Item(RP-193240参照)では、FR1及びFR2の両方の周波数帯域におけるカバレッジ拡張の実現が想定されている。 (3.1) Assumption In the Study Item (see RP-193240) set by 3GPP, it is assumed that coverage will be expanded in both the FR1 and FR2 frequency bands.
対象となるシナリオには、屋外(O)のgNBから屋内(I)のUEへのサービス提供(FR1の場合)、屋内のgNBから屋内のUEへのサービス提供(FR2の場合)が含まれる。また、都市部、郊外及び地方(田舎)でのカバレッジ拡張(長距離通信となる地方を含む)が対象とされている。
Target scenarios include service provision from outdoor (O) gNB to indoor (I) UE (in the case of FR1) and service provision from indoor gNB to indoor UE (in the case of FR2). In addition, coverage expansion (including rural areas for long-distance communication) in urban areas, suburbs and rural areas (countryside) is targeted.
また、主な対象サービスは、VoIP(Voice over IP)及びeMBB(enhanced Mobile Broadband)である。
The main target services are VoIP (Voice over IP) and eMBB (enhanced Mobile Broadband).
このようなシナリオ及び対象サービスに基づいて、物理チャネル、具体的には、PDSCH, PUSCH, PDCCH, PUCCHに関して、3GPPにおいて規定されたリンクバジェット(Hardware link budget、MILと呼ばれてもよい)を評価した結果、以下に示すように、改善の必要性があると想定される。
Based on such scenarios and target services, evaluate the link budget (Hardware link budget, MIL) specified in 3GPP for physical channels, specifically PDSCH, PUSCH, PDCCH, and PUCCH. As a result, it is assumed that there is a need for improvement as shown below.
(FR1)
・PUSCH:約13 dB(eMBB)
・PDSCH:約5~6 dB(VoIP及びeMBB)
・PDCCH:約5 dB(VoIP)
(FR2)
・PUSCH:約21 dB(eMBB)
・PDSCH:約16 dB(VoIP)、約8 dB(eMBB)
・PDCCH:約18 dB(VoIP)
図4は、FR1における物理チャネルのMIL評価結果を示す。図5は、FR2における物理チャネルのMIL評価結果を示す。 (FR1)
・ PUSCH: Approximately 13 dB (eMBB)
・ PDSCH: Approximately 5 to 6 dB (VoIP and eMBB)
・ PDCCH: Approximately 5 dB (VoIP)
(FR2)
・ PUSCH: Approximately 21 dB (eMBB)
・ PDSCH: Approximately 16 dB (VoIP), Approximately 8 dB (eMBB)
・ PDCCH: Approximately 18 dB (VoIP)
FIG. 4 shows the MIL evaluation result of the physical channel in FR1. FIG. 5 shows the MIL evaluation result of the physical channel in FR2.
・PUSCH:約13 dB(eMBB)
・PDSCH:約5~6 dB(VoIP及びeMBB)
・PDCCH:約5 dB(VoIP)
(FR2)
・PUSCH:約21 dB(eMBB)
・PDSCH:約16 dB(VoIP)、約8 dB(eMBB)
・PDCCH:約18 dB(VoIP)
図4は、FR1における物理チャネルのMIL評価結果を示す。図5は、FR2における物理チャネルのMIL評価結果を示す。 (FR1)
・ PUSCH: Approximately 13 dB (eMBB)
・ PDSCH: Approximately 5 to 6 dB (VoIP and eMBB)
・ PDCCH: Approximately 5 dB (VoIP)
(FR2)
・ PUSCH: Approximately 21 dB (eMBB)
・ PDSCH: Approximately 16 dB (VoIP), Approximately 8 dB (eMBB)
・ PDCCH: Approximately 18 dB (VoIP)
FIG. 4 shows the MIL evaluation result of the physical channel in FR1. FIG. 5 shows the MIL evaluation result of the physical channel in FR2.
以下では、カバレッジ拡張をサポートするためのPDSCHの改善に関する動作について説明する。
The following describes the operation related to the improvement of PDSCH to support coverage expansion.
図6は、送信信号の帯域幅と電力密度(PSD)との関係例を示す。図6に示すように、gNB100A(及びgNB100B、以下同)の下りリンク(DL)送信電力に関して、一般的に送信信号の帯域幅によらず電力密度(PSD:Power Spectrum Density)は一定となるため、送信するリソースに割り当てられるリソースブロック(RB)数が多いほど、総送信電力は大きくなる。
FIG. 6 shows an example of the relationship between the bandwidth of the transmission signal and the power density (PSD). As shown in FIG. 6, regarding the downlink (DL) transmission power of gNB100A (and gNB100B, the same applies hereinafter), the power density (PSD: Power Spectrum Density) is generally constant regardless of the bandwidth of the transmission signal. , The larger the number of resource blocks (RBs) allocated to the resource to be transmitted, the larger the total transmission power.
NRでは、PDSCHの時間・周波数リソースを柔軟に割り当てることができる。例えば、RB数を多くし、かつ符号化レートを小さくすることによって、総送信電力を高めることが可能である。
In NR, PDSCH time / frequency resources can be flexibly allocated. For example, it is possible to increase the total transmission power by increasing the number of RBs and decreasing the coding rate.
符号化レートは、Modulation and Coding Scheme(MCS)インデックス毎に決まっており、トランスポートブロック(TB)サイズは、MCS及び割当リソース量によって決まる。このため、割当リソース量を増やしてもMCS=0の符号化レート以下にはならない。さらに、総送信電力を高めるために割当リソース量を増やすとTBサイズが大きくなり、小さいサイズのデータを送りたい場合にはリソースの無駄が生じる。
The coding rate is determined for each Modulation and Coding Scheme (MCS) index, and the transport block (TB) size is determined by the MCS and the amount of allocated resources. Therefore, even if the amount of allocated resources is increased, the code rate does not fall below MCS = 0. Furthermore, if the amount of allocated resources is increased in order to increase the total transmission power, the TB size will increase, and if you want to send data of a small size, resources will be wasted.
従って、割り当てたリソースを活用して小さいサイズのデータをより低い誤り率で送信できるようにすることが望ましい。
Therefore, it is desirable to utilize the allocated resources so that small size data can be transmitted with a lower error rate.
割り当てたリソースを活用して小さいサイズのデータをより低い誤り率で送信できるようにするためには、以下のような方法が考えられる。
In order to utilize the allocated resources and send small size data with a lower error rate, the following methods can be considered.
(i)より低い符号化レートを規定したMCSテーブルを新たに導入する
(ii)トランスポートブロック(TB)サイズを、割り当てた(一部の)リソース量から決定し、残りのリソースを周波数方向において繰り返し送信(repetition)する (I) Introduce a new MCS table with a lower code rate (ii) Determine the transport block (TB) size from the amount of (partial) resources allocated and the remaining resources in the frequency direction Repeat transmission (repetition)
(ii)トランスポートブロック(TB)サイズを、割り当てた(一部の)リソース量から決定し、残りのリソースを周波数方向において繰り返し送信(repetition)する (I) Introduce a new MCS table with a lower code rate (ii) Determine the transport block (TB) size from the amount of (partial) resources allocated and the remaining resources in the frequency direction Repeat transmission (repetition)
(3.2)動作概要
以下では、上述した(ii)の方法をPDSCHに適用した場合における動作例について説明する。これにより、PDSCHの周波数方向におけるRepetition導入によるカバレッジ拡張を実現し得る。 (3.2) Outline of operation The following describes an operation example when the method (ii) described above is applied to PDSCH. As a result, coverage can be expanded by introducing Repetition in the frequency direction of PDSCH.
以下では、上述した(ii)の方法をPDSCHに適用した場合における動作例について説明する。これにより、PDSCHの周波数方向におけるRepetition導入によるカバレッジ拡張を実現し得る。 (3.2) Outline of operation The following describes an operation example when the method (ii) described above is applied to PDSCH. As a result, coverage can be expanded by introducing Repetition in the frequency direction of PDSCH.
具体的には、無線通信システム10は、以下のような動作を実行し得る。
Specifically, the wireless communication system 10 can execute the following operations.
・(動作例1):PDSCHの周波数方向におけるRepetition
・DCIによって設定されたPDSCHリソースを周波数方向において繰り返して設定される
・Repetition数は任意に設定されてよい
・Repetition数に応じてMCS及び/または符号化レートが変更されてもよい
・Repetitionの間隔は任意に設定されてもよい
・(動作例2)::PDSCHの周波数方向におけるRepetitionの設定方法
・DCIによって通知する(例えば、新規なDCIフォーマットを規定し、Frequency Domain Resource Assignment(FDRA)または通知するフィールドを拡張する
・MAC-CEによって通知する
・RRCのシグナリングによって設定する(例えば、PDSCH-Configを用いて設定する)
・(動作例3):UEの能力情報(UE capability information)
UE(端末)は、PDSCHの周波数方向におけるRepetitionに関して、例えば、以下の対応可否に関する能力を報告する
・PDSCHの周波数方向におけるRepetition対応可否
・PDSCHの周波数方向におけるRepetition数、Repetition間隔 -(Operation example 1): Repetition in the frequency direction of PDSCH
-The PDSCH resource set by DCI is repeatedly set in the frequency direction.-The number of repetitions may be set arbitrarily.-The MCS and / or the coding rate may be changed according to the number of repetitions.-Repetition interval. May be set arbitrarily ・ (Operation example 2) :: How to set Repetition in the frequency direction of PDSCH ・ Notify by DCI (For example, specify a new DCI format and specify Frequency Domain Resource Assignment (FDRA) or notification. -Extend the fields to be used-Notify by MAC-CE-Set by RRC signaling (for example, set using PDSCH-Config)
-(Operation example 3): UE capability information
The UE (terminal) reports, for example, the ability to support the following repetitions in the frequency direction of PDSCH: ・ Repetition support in the frequency direction of PDSCH ・ Number of repetitions in the frequency direction of PDSCH, Repetition interval
・DCIによって設定されたPDSCHリソースを周波数方向において繰り返して設定される
・Repetition数は任意に設定されてよい
・Repetition数に応じてMCS及び/または符号化レートが変更されてもよい
・Repetitionの間隔は任意に設定されてもよい
・(動作例2)::PDSCHの周波数方向におけるRepetitionの設定方法
・DCIによって通知する(例えば、新規なDCIフォーマットを規定し、Frequency Domain Resource Assignment(FDRA)または通知するフィールドを拡張する
・MAC-CEによって通知する
・RRCのシグナリングによって設定する(例えば、PDSCH-Configを用いて設定する)
・(動作例3):UEの能力情報(UE capability information)
UE(端末)は、PDSCHの周波数方向におけるRepetitionに関して、例えば、以下の対応可否に関する能力を報告する
・PDSCHの周波数方向におけるRepetition対応可否
・PDSCHの周波数方向におけるRepetition数、Repetition間隔 -(Operation example 1): Repetition in the frequency direction of PDSCH
-The PDSCH resource set by DCI is repeatedly set in the frequency direction.-The number of repetitions may be set arbitrarily.-The MCS and / or the coding rate may be changed according to the number of repetitions.-Repetition interval. May be set arbitrarily ・ (Operation example 2) :: How to set Repetition in the frequency direction of PDSCH ・ Notify by DCI (For example, specify a new DCI format and specify Frequency Domain Resource Assignment (FDRA) or notification. -Extend the fields to be used-Notify by MAC-CE-Set by RRC signaling (for example, set using PDSCH-Config)
-(Operation example 3): UE capability information
The UE (terminal) reports, for example, the ability to support the following repetitions in the frequency direction of PDSCH: ・ Repetition support in the frequency direction of PDSCH ・ Number of repetitions in the frequency direction of PDSCH, Repetition interval
(3.3)動作例1
本動作例では、PDSCHの周波数ダイバーシチゲインを得るために、周波数方向におけるRepetitionが実行される。 (3.3) Operation example 1
In this operation example, repetition in the frequency direction is executed in order to obtain the frequency diversity gain of PDSCH.
本動作例では、PDSCHの周波数ダイバーシチゲインを得るために、周波数方向におけるRepetitionが実行される。 (3.3) Operation example 1
In this operation example, repetition in the frequency direction is executed in order to obtain the frequency diversity gain of PDSCH.
図7は、動作例1に係るPDSCHリソースの割り当て例(連続配置)を示す。図8は、動作例1に係るPDSCHリソースの割り当て例(非連続配置)を示す。図7及び図8では、Repetition数が4である例が示されている。
FIG. 7 shows an example of PDSCH resource allocation (continuous allocation) according to operation example 1. FIG. 8 shows an example (discontinuous arrangement) of PDSCH resource allocation according to the operation example 1. 7 and 8 show an example in which the number of repetitions is 4.
図7及び図8に示すように、本動作例では、DCIによって設定されたPDSCHリソースを周波数方向において繰り返し設定できる。つまり、PDSCHリソースが周波数方向において繰り返し割り当てられてよい。
As shown in FIGS. 7 and 8, in this operation example, the PDSCH resource set by DCI can be repeatedly set in the frequency direction. That is, PDSCH resources may be repeatedly allocated in the frequency direction.
なお、Repetition数は、4に限らず、任意の数(例えば、Number of Repetition = 2, 4, 8, 16)が設定されてよい。
The number of repetitions is not limited to 4, and any number (for example, Number of Repetition = 2, 4, 8, 16) may be set.
また、Repetition数に応じてMCS及び符号化レート(coding rate)の少なくとも何れかが変更されてもよい。例えば、Repetition数=4の場合、coding rateは、繰り返しがない場合の1/4としてもよい。つまり、Repetition数が増えるに連れて、coding rateを下げてもよい。
Further, at least one of the MCS and the coding rate may be changed according to the number of repetitions. For example, when the number of repetitions = 4, the coding rate may be 1/4 of the case where there is no repetition. In other words, the coding rate may be lowered as the number of repetitions increases.
また、図7(連続配置)及び図8(非連続配置)に示されるように、RepetitionされたPDSCHリソースは,周波数方向において連続して設定されて(割り当てられて)もよいし、一定の間隔(ギャップ)を設けて設定されて(割り当てられて)もよい。
Also, as shown in FIGS. 7 (continuous arrangement) and 8 (non-continuous arrangement), the Repetitioned PDSCH resources may be continuously set (allocated) in the frequency direction or at regular intervals. It may be set (allocated) with a (gap).
UE200は、このようなPDSCHの周波数方向におけるRepetitionを予め想定してよい。具体的には、以下に説明する設定方法に基づいて、当該Repetitionを予め想定してよい。
UE200 may assume such Repetition in the frequency direction of PDSCH in advance. Specifically, the Repetition may be assumed in advance based on the setting method described below.
(3.4)動作例2
図9は、PDSCHの周波数方向におけるRepetition設定に関連する通信シーケンスの例を示す。 (3.4) Operation example 2
FIG. 9 shows an example of a communication sequence related to the Repetition setting in the PDSCH frequency direction.
図9は、PDSCHの周波数方向におけるRepetition設定に関連する通信シーケンスの例を示す。 (3.4) Operation example 2
FIG. 9 shows an example of a communication sequence related to the Repetition setting in the PDSCH frequency direction.
図9に示すように、UE200は、PDSCHの周波数方向におけるRepetitionに関するUE200の能力を示す能力情報(UE capability information)をネットワークに送信してよい(S10)。
As shown in FIG. 9, the UE200 may transmit the capability information (UEcapability information) indicating the capability of the UE200 regarding Repetition in the frequency direction of the PDSCH to the network (S10).
当該UE capability informationには、PDSCHの周波数方向におけるRepetition対応可否、対応可能なRepetition数及びRepetition間隔が含まれてよい。なお、当該UE capability informationには、これらの要素の何れか(例えば、Repetition対応可否)のみが含まれるようにしてもよい。また、当該UE capability informationの具体例については、動作例3においてさらに説明する。
The UE capability information may include whether or not Repetition is supported in the frequency direction of PDSCH, the number of Repetitions that can be supported, and the Repetition interval. The UE capability information may include only one of these elements (for example, whether or not Repetition is supported). Further, a specific example of the UE capability information will be further described in Operation Example 3.
ネットワークは、受信したUE capability information及びネットワーク側の能力などに基づいて、PDSCHリソースを決定する(S20)。具体的には、ネットワークは、PDSCHの周波数方向におけるRepetitionの有無、Repetition数及びRepetition間隔を決定してよい。
The network determines PDSCH resources based on the received UE capability information and the capabilities of the network side (S20). Specifically, the network may determine the presence or absence of repetition, the number of repetitions, and the repetition interval in the frequency direction of PDSCH.
ネットワークは、決定したPDSCHリソースの情報をUE200に通知する(S30)。具体的には、上述したように、DCI、MAC-CEまたはRRCのシグナリングによって当該情報が通知されてよい。
The network notifies UE200 of the determined PDSCH resource information (S30). Specifically, as described above, the information may be notified by DCI, MAC-CE or RRC signaling.
UE200は、通知されたPDSCHリソースの情報に基づいて、PDSCH受信を設定する(S40)。具体的には、UE200は、通知されたPDSCHリソースの情報に基づいて、PDSCHの周波数方向におけるRepetitionに関する設定を実行してよい。
UE200 sets PDSCH reception based on the notified PDSCH resource information (S40). Specifically, the UE 200 may execute the setting regarding Repetition in the frequency direction of PDSCH based on the information of the notified PDSCH resource.
上述したように、ネットワークは、DCI、MAC-CEまたはRRCのシグナリングによって、決定したPDSCHリソースの情報を通知してよいが、具体的には、以下のように通知できる。
As mentioned above, the network may notify the determined PDSCH resource information by DCI, MAC-CE or RRC signaling, but specifically, it can be notified as follows.
例えば、DCIによって通知する場合、新たなDCIフォーマットが規定されてもよく、PDSCHをスケジューリングする際に、合わせてRepetitionの有無及び/またはRepetition数が設定されてもよい。
For example, when notifying by DCI, a new DCI format may be specified, and the presence / absence of Repetition and / or the number of Repetitions may be set at the time of scheduling PDSCH.
また、この場合、FDRAを拡張することによって、既存の割当リソースの開始位置、RB数及び/またはリソースブロックグループ(RBG)に加え、repetitionの数及び/または間隔をjoint codingすることによって通知されてもよい。
Also, in this case, by extending the FDRA, the start position of the existing allocated resource, the number of RBs and / or the resource block group (RBG), as well as the number and / or intervals of repetitions are notified by joint coding. May be good.
或いは、既存のDCIフォーマット内に、Repetition数及び/または間隔を通知するためのフィールドが新規に設けられてもよい。
Alternatively, a new field for notifying the number of repetitions and / or the interval may be provided in the existing DCI format.
MAC-CEによって通知する場合、既存のMAC-CEとは別個の新規なMAC-CEが用いられてよい。
When notifying by MAC-CE, a new MAC-CE separate from the existing MAC-CE may be used.
RRCのシグナリング、つまり、RRCパラメータによって通知する場合、例えば、PDSCH-Configの情報要素(information element)が用いられてよい。図10は、PDSCH-Configの構成例を示す。
When notifying by RRC signaling, that is, RRC parameters, for example, the information element of PDSCH-Config may be used. FIG. 10 shows a configuration example of PDSCH-Config.
図10に示すように、pdsch-Repetition_FrequencyDomainのフィールドを用いて、PDSCHの周波数方向におけるRepetition数(例えば、ENUMERATED (n2, n4, n8, n16))が通知されてもよい。或いは、任意の値(例えば、INTEGER(0…20))が設定されてもよい。
As shown in FIG. 10, the number of Repetitions in the frequency direction of PDSCH (for example, ENUMERATED (n2, n4, n8, n16)) may be notified using the field of pdsch-Repetition_FrequencyDomain. Alternatively, an arbitrary value (for example, INTEGER (0 ... 20)) may be set.
また、Repetition間隔は、PDSCHに設定された(割り当てられた)RB数と同じでもよいし、任意の値としてもよい。なお、任意の値の場合は、図10に示すように、Repetition_offsetのフィールドを用いてRepetition間隔が通知されてもよい。
Further, the Repetition interval may be the same as the number of RBs (assigned) set in PDSCH, or may be an arbitrary value. In the case of an arbitrary value, as shown in FIG. 10, the Repetition interval may be notified using the field of Repetition_offset.
(3.5)動作例3
PDSCHの周波数方向におけるRepetitionに関するUE200の能力情報(UE capability information)には、以下のような要素が含まれてよい。 (3.5) Operation example 3
TheUE 200 capability information regarding Repetition in the frequency direction of PDSCH may include the following elements.
PDSCHの周波数方向におけるRepetitionに関するUE200の能力情報(UE capability information)には、以下のような要素が含まれてよい。 (3.5) Operation example 3
The
・PDSCHの周波数方向におけるRepetition対応可否
・PDSCHの周波数方向におけるRepetition数及び/またはRepetition間隔
また、UE200は、対応する周波数に関して、少なくとも以下の何れかを報告してよい。 -Whether or not Repetition is supported in the PDSCH frequency direction-Number of Repetitions and / or Repetition intervals in the PDSCH frequency direction The UE200 may report at least one of the following with respect to the corresponding frequency.
・PDSCHの周波数方向におけるRepetition数及び/またはRepetition間隔
また、UE200は、対応する周波数に関して、少なくとも以下の何れかを報告してよい。 -Whether or not Repetition is supported in the PDSCH frequency direction-Number of Repetitions and / or Repetition intervals in the PDSCH frequency direction The UE200 may report at least one of the following with respect to the corresponding frequency.
・全周波数に対する一括した対応可否(UEとしての対応可否)
・周波数(バンド)毎の対応可否
・周波数レンジ(FR1, FR2)毎に対応可否
さらに、UE200は、対応する複信方式に関して、少なくとも以下の何れかを報告してよい。 ・ Whether or not all frequencies can be handled collectively (whether or not it can be supported as a UE)
-Availability for each frequency (band) -Availability for each frequency range (FR1, FR2) Furthermore, the UE200 may report at least one of the following regarding the corresponding duplex method.
・周波数(バンド)毎の対応可否
・周波数レンジ(FR1, FR2)毎に対応可否
さらに、UE200は、対応する複信方式に関して、少なくとも以下の何れかを報告してよい。 ・ Whether or not all frequencies can be handled collectively (whether or not it can be supported as a UE)
-Availability for each frequency (band) -Availability for each frequency range (FR1, FR2) Furthermore, the UE200 may report at least one of the following regarding the corresponding duplex method.
・UEとしての復信方式への対応可否
・複信方式(TDD, FDD)毎の対応可否 -Whether or not it is possible to support the recovery method as a UE-Whether or not it is possible to support each duplex method (TDD, FDD)
・複信方式(TDD, FDD)毎の対応可否 -Whether or not it is possible to support the recovery method as a UE-Whether or not it is possible to support each duplex method (TDD, FDD)
(4)作用・効果
上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、PDSCHが、同一時間領域内において、周波数方向に繰り返されていると想定できる。このため、UE200は、PDSCHの周波数ダイバーシチゲインを得やすくなる。 (4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, theUE 200 can assume that the PDSCH is repeated in the frequency direction within the same time domain. Therefore, the UE200 can easily obtain the frequency diversity gain of PDSCH.
上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、PDSCHが、同一時間領域内において、周波数方向に繰り返されていると想定できる。このため、UE200は、PDSCHの周波数ダイバーシチゲインを得やすくなる。 (4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, the
また、PDSCHに割り当てた(一部の)リソース量からTBサイズを決定し、残りのリソースを周波数方向におけるRepetitionに割り当てることができるため、PDSCHに割り当てた当該リソースを活用して小さいサイズのデータをより低い誤り率で送信することを実現し易い。
In addition, the TB size can be determined from the amount of (partial) resources allocated to PDSCH, and the remaining resources can be allocated to Repetition in the frequency direction. It is easy to realize transmission with a lower error rate.
すなわち、無線通信システム10によれば、UE200は、カバレッジ拡張に対応したより効率的なPDSCHの受信に対応でき、より高品質なカバレッジ拡張を実現し得る。
That is, according to the wireless communication system 10, the UE 200 can support more efficient reception of PDSCH corresponding to the coverage expansion, and can realize a higher quality coverage expansion.
本実施形態では、UE200は、PDSCHが周波数方向において間隔を設けて繰り返されていると想定できる。このため、UE200は、PDSCHの周波数ダイバーシチゲインをさらに得やすくなり、より高品質なカバレッジ拡張を実現し得る。
In the present embodiment, it can be assumed that the PDSCH is repeated at intervals in the frequency direction in the UE200. Therefore, the UE200 can further obtain the frequency diversity gain of PDSCH, and can realize higher quality coverage expansion.
本実施形態では、UE200は、PDSCHの周波数方向におけるRepetitionに基づいて、MCSまたはcoding rateの少なくとも何れかを変更できる。このため、PDSCHへの割当リソース量に応じた効率的なデータ送信を実現し得る。
In this embodiment, the UE 200 can change at least either the MCS or the coding rate based on the repetition in the frequency direction of the PDSCH. Therefore, it is possible to realize efficient data transmission according to the amount of resources allocated to PDSCH.
本実施形態では、UE200は、DCI、MAC-CEまたはRRCのシグナリングに基づいて、PDSCHの周波数方向におけるRepetitionを想定できる。このため、UE200は、PDSCHの周波数方向におけるRepetitionの設定を予め確実に認識し得る。
In this embodiment, UE200 can assume Repetition in the frequency direction of PDSCH based on DCI, MAC-CE or RRC signaling. Therefore, the UE 200 can surely recognize the setting of Repetition in the frequency direction of PDSCH in advance.
本実施形態では、UE200は、PDSCHの周波数方向におけるRepetitionへの対応能力を示すUE capability informationをネットワークに送信できる。このため、ネットワークは、UE200の能力に応じた適切なPDSCHを設定し得る。
In this embodiment, the UE200 can transmit UE capability information indicating the ability to respond to Repetition in the frequency direction of PDSCH to the network. Therefore, the network can set an appropriate PDSCH according to the capability of the UE200.
(5)その他の実施形態
以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 (5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that various modifications and improvements are possible without limitation to the description of the embodiments.
以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 (5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that various modifications and improvements are possible without limitation to the description of the embodiments.
例えば、上述した実施形態では、PDSCHを例に説明したが、PDSCHは、別の名称で呼ばれてもよい。具体的には、下りリンク(DL)方向のデータチャネルであれば、PDSCHとは異なる名称で呼ばれても構わない。
For example, in the above-described embodiment, PDSCH has been described as an example, but PDSCH may be referred to by another name. Specifically, if it is a data channel in the downlink (DL) direction, it may be called by a name different from PDSCH.
また、上述した実施形態では、UE200は、DCIに基づいてPDSCHの周波数方向におけるRepetitionを想定することを説明したが、当該Repetitionの有無などが、MAC-CE或いはRRCのシグナリングによって通知される場合には、当該Repetitionの想定については、PDSCH受信用のDCI(例えば、Format 1_1)に基づかなくても構わない。
Further, in the above-described embodiment, it has been described that the UE 200 assumes Repetition in the frequency direction of PDSCH based on DCI, but when the presence or absence of the Repetition is notified by MAC-CE or RRC signaling. Does not have to be based on the DCI for receiving PDSCH (for example, Format1_1) for the assumption of the Repetition.
また、上述した実施形態の説明に用いたブロック構成図(図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
Further, the block configuration diagram (FIG. 3) used in the description of the above-described embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
さらに、上述したUE200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、UE200のハードウェア構成の一例を示す図である。図11に示すように、UE200は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
Further, the UE 200 described above may function as a computer that processes the wireless communication method of the present disclosure. FIG. 11 is a diagram showing an example of the hardware configuration of the UE 200. As shown in FIG. 11, the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
UE200の各機能ブロック(図3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
Each functional block of UE200 (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
また、UE200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
In addition, each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobileBroadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
In some cases, the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. I / O information can be overwritten, updated, or added. The output information may be deleted. The entered information may be transmitted to other devices.
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software, whether called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
The terms "system" and "network" used in this disclosure are used interchangeably.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
Further, the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented. For example, the radio resource may be indexed.
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", " Terms such as "carrier" and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head: RRH).
「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time area. The slot may be a unit of time based on numerology.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
リソースブロック(RB)は、時間領域及び周波数領域のリソース割り当て単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "joined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended to be non-exclusive.
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include the plural nouns following these articles.
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure as determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
10 無線通信システム
20 NG-RAN
100A, 100B gNB
UE 200
210 無線信号送受信部
220 アンプ部
230 変復調部
240 制御信号・参照信号処理部
250 符号化/復号部
260 データ送受信部
270 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス 10Wireless communication system 20 NG-RAN
100A, 100B gNB
UE 200
210 Wireless signal transmitter /receiver 220 Amplifier 230 Modulator / demodulator 240 Control signal / reference signal processing 250 Encoding / decoding 260 Data transmitter / receiver 270 Control 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus
20 NG-RAN
100A, 100B gNB
UE 200
210 無線信号送受信部
220 アンプ部
230 変復調部
240 制御信号・参照信号処理部
250 符号化/復号部
260 データ送受信部
270 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス 10
100A, 100B gNB
210 Wireless signal transmitter /
Claims (5)
- 物理下りデータチャネルを受信する受信部と、
前記物理下りデータチャネルが、同一時間領域内において、周波数方向に繰り返されていると想定する制御部と
を備える端末。 A receiver that receives physical downlink data channels,
A terminal including a control unit that assumes that the physical downlink data channel is repeated in the frequency direction within the same time domain. - 前記制御部は、前記物理下りデータチャネルが周波数方向において間隔を設けて繰り返されていると想定する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit assumes that the physical downlink data channels are repeated at intervals in the frequency direction.
- 前記制御部は、前記物理下りデータチャネルの周波数方向における繰り返しに基づいて、変調符号化スキーム及び符号化レートの少なくとも何れかを変更する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit changes at least one of a modulation coding scheme and a coding rate based on repetition in the frequency direction of the physical downlink data channel.
- 前記制御部は、下りリンク制御情報、媒体アクセス制御レイヤの制御要素または無線リソース制御レイヤのシグナリングに基づいて、前記物理下りデータチャネルの周波数方向における繰り返しを想定する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit assumes repetition in the frequency direction of the physical downlink data channel based on downlink control information, a control element of a medium access control layer, or signaling of a radio resource control layer.
- 前記物理下りデータチャネルの周波数方向における繰り返しへの対応能力を示す能力情報を送信する送信部を備える請求項1に記載の端末。 The terminal according to claim 1, further comprising a transmission unit that transmits capacity information indicating the ability of the physical downlink data channel to respond to repetition in the frequency direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022556779A JPWO2022079861A1 (en) | 2020-10-15 | 2020-10-15 | |
PCT/JP2020/038957 WO2022079861A1 (en) | 2020-10-15 | 2020-10-15 | Terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/038957 WO2022079861A1 (en) | 2020-10-15 | 2020-10-15 | Terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022079861A1 true WO2022079861A1 (en) | 2022-04-21 |
Family
ID=81208988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/038957 WO2022079861A1 (en) | 2020-10-15 | 2020-10-15 | Terminal |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022079861A1 (en) |
WO (1) | WO2022079861A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015114695A1 (en) * | 2014-01-30 | 2015-08-06 | 日本電気株式会社 | Base station, machine-to-machine (m2m) terminal, method, and computer-readable medium |
WO2016163502A1 (en) * | 2015-04-09 | 2016-10-13 | 株式会社Nttドコモ | User terminal, wireless base station, and wireless communication method |
JP2018514110A (en) * | 2015-04-10 | 2018-05-31 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | Wireless communication method, eNodeB, and user equipment |
JP2020507964A (en) * | 2017-01-27 | 2020-03-12 | クアルコム,インコーポレイテッド | Resource Allocation for Narrowband Communication Using Increased Bandwidth |
-
2020
- 2020-10-15 WO PCT/JP2020/038957 patent/WO2022079861A1/en active Application Filing
- 2020-10-15 JP JP2022556779A patent/JPWO2022079861A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015114695A1 (en) * | 2014-01-30 | 2015-08-06 | 日本電気株式会社 | Base station, machine-to-machine (m2m) terminal, method, and computer-readable medium |
WO2016163502A1 (en) * | 2015-04-09 | 2016-10-13 | 株式会社Nttドコモ | User terminal, wireless base station, and wireless communication method |
JP2018514110A (en) * | 2015-04-10 | 2018-05-31 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | Wireless communication method, eNodeB, and user equipment |
JP2020507964A (en) * | 2017-01-27 | 2020-03-12 | クアルコム,インコーポレイテッド | Resource Allocation for Narrowband Communication Using Increased Bandwidth |
Non-Patent Citations (1)
Title |
---|
MODERATOR (ZTE CORPORATION): "Feature lead summary on coverage enhancement for channels other than PUSCH and PUCCH", 3GPP DRAFT; R1-2007392, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 29 August 2020 (2020-08-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051922984 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022079861A1 (en) | 2022-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021005663A1 (en) | Terminal | |
WO2021192065A1 (en) | Terminal | |
WO2022003785A1 (en) | Wireless base station and terminal | |
WO2021171594A1 (en) | Terminal | |
WO2022079876A1 (en) | Terminal | |
WO2022149268A1 (en) | Radio base station and terminal | |
WO2022149269A1 (en) | Terminal, base station, and radio communication method | |
WO2022137559A1 (en) | Terminal and wireless communication method | |
WO2021191983A1 (en) | Terminal | |
WO2022079861A1 (en) | Terminal | |
WO2022149287A1 (en) | Terminal and radio base station | |
WO2022153505A1 (en) | Terminal and radio base station | |
WO2022097724A1 (en) | Terminal | |
WO2022244097A1 (en) | Terminal and wireless communication method | |
WO2021261199A1 (en) | Communication device | |
WO2022244504A1 (en) | Terminal, wireless communication system, and wireless communication method | |
WO2022102669A1 (en) | Terminal | |
WO2022195787A1 (en) | Terminal, wireless communication system and wireless communication method | |
WO2021192063A1 (en) | Terminal | |
WO2022074842A1 (en) | Terminal | |
WO2022029980A1 (en) | Terminal | |
WO2022085156A1 (en) | Terminal | |
WO2021229778A1 (en) | Terminal | |
WO2022029981A1 (en) | Terminal | |
WO2022029972A1 (en) | Terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20957690 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022556779 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20957690 Country of ref document: EP Kind code of ref document: A1 |