[go: up one dir, main page]

WO2022061747A1 - 触控方法、触控电路和触控装置 - Google Patents

触控方法、触控电路和触控装置 Download PDF

Info

Publication number
WO2022061747A1
WO2022061747A1 PCT/CN2020/117857 CN2020117857W WO2022061747A1 WO 2022061747 A1 WO2022061747 A1 WO 2022061747A1 CN 2020117857 W CN2020117857 W CN 2020117857W WO 2022061747 A1 WO2022061747 A1 WO 2022061747A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
signal
driving
electrodes
control
Prior art date
Application number
PCT/CN2020/117857
Other languages
English (en)
French (fr)
Inventor
朱宁
赵剑
江鹏
刘建涛
Original Assignee
京东方科技集团股份有限公司
武汉京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 武汉京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080002094.XA priority Critical patent/CN114556265B/zh
Priority to PCT/CN2020/117857 priority patent/WO2022061747A1/zh
Priority to US17/422,427 priority patent/US11797122B2/en
Publication of WO2022061747A1 publication Critical patent/WO2022061747A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present disclosure relates to the field of touch control technology, and in particular, to a touch control method, a touch control circuit and a touch control device.
  • the mutual capacitive touch panel is susceptible to interference by signal fluctuations, and changing different environments may easily lead to touch failure, low signal-to-noise ratio, and many other advantages.
  • the amplitude of the touch driving signal loaded to the touch driving electrodes is as high as several tens of volts, and the accumulation of electrostatic signals, the scanning line touch driving electrodes and the non-scanning line touch
  • the driving electrodes are likely to cause static electricity to destroy a touch IC (Integrate Circuit, integrated circuit), so that the touch panel is seriously damaged and cannot function normally.
  • an embodiment of the present disclosure provides a touch control method, which is applied to a touch panel.
  • the touch panel includes A touch driving electrodes and a plurality of touch sensing electrodes disposed on a substrate, where A is A positive integer;
  • the touch cycle includes multiple touch time periods and multiple background data detection time periods;
  • the a-th background data detection time period is set after the a-th touch time period and is set in the a+1-th touch time period Before;
  • the touch method includes:
  • the touch-control drive signal is provided to the a-th touch-control drive electrode; a is a positive integer, and a is less than or equal to A;
  • the touch accompanying signals are provided to N touch-control driving electrodes adjacent to the a-th touch-control driving electrodes; N is a positive integer;
  • a-th touch-sensing signal on the touch-sensing electrode during the a-th touch-sensing period and the a-th background data voltage on the touch-sensing electrode during the a-th background data detection period signal for touch detection;
  • the amplitude of the touch accompanying signal is smaller than the amplitude of the touch driving signal.
  • the touch control method further includes: during the a-th touch time period and the a-th background data detection time period, controlling the items included in the touch panel except for the a-th item.
  • the touch driving electrodes and other touch driving electrodes other than the N touch driving electrodes provide ground voltages.
  • the type of the touch accompanying signal is the same as the type of the touch driving signal.
  • both the touch accompanying signal and the touch driving signal are square wave signals, or both the touch accompanying signal and the touch driving signal are sine wave signals.
  • the period of the touch accompanying signal is equal to the period of the touch driving signal
  • the pulse width of the touch accompanying signal is equal to the pulse width of the touch driving signal.
  • the ratio between the amplitude of the touch accompanying signal and the amplitude of the touch driving signal is greater than or equal to 0.05 and less than or equal to 0.3.
  • N is less than or equal to 10.
  • the a-th touch driving electrodes are the first touch driving electrodes included in the touch panel, and the N touch driving electrodes are the second touch driving electrodes included in the touch panel drive electrodes to the N+1 th touch drive electrodes included in the touch panel; or,
  • the a-th touch driving electrode is the last touch driving electrode included in the touch panel, and the N touch driving electrodes are the penultimate touch driving electrodes included in the touch panel to the touch panel.
  • the a-th touch driving electrode is the touch driving electrode except the first touch driving electrode and the last touch driving electrode included in the touch panel, and the touch driving electrodes in the N touch driving electrodes are A part is disposed before the a-th touch driving electrodes, and another part of the N touch-driving electrodes is disposed behind the a-th touch driving electrodes.
  • N is an even number
  • N/2 touch driving electrodes are arranged before the a-th touch driving electrodes
  • N/2 touch driving electrodes are arranged after the a-th touch driving electrodes.
  • the steps of performing touch detection include:
  • Touch detection is performed according to the amplified a-th touch difference signal.
  • a touch blank time period is set between two adjacent touch cycles, and the touch method further includes:
  • the initial touch state of the touch panel within the touch blank time period is detected, and touch detection is performed according to the initial touch state of the touch panel.
  • the step of detecting the initial touch state of the touch panel within the touch blank time period includes:
  • a touch driving signal is provided to the touch driving electrodes, and a touch sensing signal fed back by the touch driving electrodes is received, so as to determine the initial touch state of the touch panel; or ,
  • a touch driving signal is provided to the touch sensing electrodes, and a touch sensing signal fed back by the touch sensing electrodes is received, so as to determine the initial touch state of the touch panel.
  • the present disclosure also provides a touch circuit, which is applied to a touch panel, the touch panel includes A touch driving electrodes and A touch sensing electrodes disposed on a substrate.
  • A is a positive integer;
  • the touch cycle includes multiple touch time periods and multiple background data detection time periods;
  • the a-th background data detection time period is set after the a-th touch time period and is set at the a+1-th touch time period Before the paragraph;
  • the touch control circuit includes:
  • a touch driving circuit is used for providing a touch driving signal to the a-th touch driving electrodes during the a-th touch-control period, and for providing touch-driving signals to the a-th touch-driving electrodes during the a-th background data detection period N touch driving electrodes adjacent to the electrodes provide touch accompanying signals;
  • the touch detection circuit is used for, according to the a-th touch-sensing signal on the touch-sensing electrodes in the a-th touch time period, and, in the a-th background data detection time period, the touch-sensing electrodes touch detection is performed on the a-th background data voltage signal;
  • a is a positive integer, a is less than or equal to A; N is a positive integer; the amplitude of the touch accompanying signal is smaller than the amplitude of the touch driving signal.
  • the touch drive circuit is further configured to control the touch drive electrodes included in the touch panel except the touch drive electrodes and all the touch control electrodes included in the touch panel during the a-th touch time period and the a-th background data detection time period.
  • the other touch driving electrodes except the N touch driving electrodes provide the ground voltage.
  • the type of the touch accompanying signal is the same as the type of the touch driving signal
  • Both the touch accompanying signal and the touch driving signal are square wave signals, or both the touch accompanying signal and the touch driving signal are sine wave signals;
  • the ratio between the amplitude of the touch accompanying signal and the amplitude of the touch driving signal is greater than or equal to 0.05 and less than or equal to 0.3.
  • the a-th touch driving electrodes are the first touch driving electrodes included in the touch panel, and the N touch driving electrodes are the second touch driving electrodes included in the touch panel drive electrodes to the N+1 th touch drive electrodes included in the touch panel; or,
  • the a-th touch driving electrode is the last touch driving electrode included in the touch panel, and the N touch driving electrodes are the penultimate touch driving electrodes included in the touch panel to the touch panel.
  • the a-th touch driving electrode is the touch driving electrode except the first touch driving electrode and the last touch driving electrode included in the touch panel, and the touch driving electrodes in the N touch driving electrodes are A part is disposed before the a-th touch driving electrodes, and another part of the N touch-driving electrodes is disposed behind the a-th touch driving electrodes.
  • the touch control circuit described in at least one embodiment of the present disclosure further includes a comparison circuit and a signal amplification circuit;
  • the comparison circuit is used for comparing the a-th touch sensing signal and the a-th background data voltage signal to obtain the a-th touch difference value between the a-th touch-sensing signal and the a-th background data voltage signal Signal;
  • the signal amplifying circuit is used for amplifying the a-th touch difference signal to obtain the a-th touch difference signal after amplification;
  • the touch detection circuit is specifically configured to perform touch detection according to the amplified a-th touch difference signal.
  • the touch detection circuit is further configured to detect the initial touch state of the touch panel within the touch blank time period, and perform touch detection according to the initial touch state of the touch panel;
  • the touch blank time period is set between two adjacent touch cycles.
  • the touch driving circuit is configured to provide touch driving signals to the touch driving electrodes or the touch sensing electrodes during the touch blank time period;
  • the touch detection circuit is specifically configured to receive the touch sensing signal fed back by the touch driving electrodes or the touch sensing electrodes during the touch blank time period, so as to detect the initial touch state of the touch panel .
  • the present disclosure further provides a touch control device including the above touch control circuit.
  • FIG. 1 is a flowchart of a touch control method according to at least one embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of touch driving electrodes and touch sensing electrodes in a touch panel to which the touch method according to at least one embodiment of the present disclosure is applied;
  • 3 is a waveform diagram of a signal provided to each touch drive electrode
  • FIG. 4 is a structural block diagram of a touch control circuit according to at least one embodiment of the present disclosure.
  • FIG. 5 is a structural block diagram of a touch electrode according to at least one embodiment of the present disclosure.
  • the transistors used in all the embodiments of the present disclosure may be triodes, thin film transistors, field effect transistors, or other devices with the same characteristics.
  • one pole is called the first pole, and the other pole is called the second pole.
  • control electrode when the transistor is a triode, the control electrode may be the base electrode, the first electrode may be the collector electrode, and the second electrode may be the emitter electrode; or the control electrode may be the base electrode electrode, the first electrode can be an emitter electrode, and the second electrode can be a collector electrode.
  • the control electrode when the transistor is a thin film transistor or a field effect transistor, the control electrode may be a gate electrode, the first electrode may be a drain electrode, and the second electrode may be a source electrode;
  • the control electrode may be a gate electrode, the first electrode may be a source electrode, and the second electrode may be a drain electrode.
  • the touch method described in at least one embodiment of the present disclosure is applied to a touch panel.
  • the touch panel includes A touch driving electrodes and A touch sensing electrodes disposed on a substrate, where A is a positive integer;
  • the control period includes multiple touch time periods and multiple background data detection periods; the a-th background data detection time period is set after the a-th touch time period and before the a+1-th touch time period; as shown in the figure 1, the touch control method includes:
  • S1 in the a-th touch-control period, provide a touch-control drive signal to the a-th touch-control drive electrode; a is a positive integer, and a is less than or equal to A;
  • S2 in the a-th background data detection time period, provide touch accompanying signals to N touch-control driving electrodes adjacent to the a-th touch-control driving electrodes; N is a positive integer;
  • the amplitude of the touch accompanying signal is smaller than the amplitude of the touch driving signal.
  • the touch driving signal and the touch accompanying signal may both be voltage signals.
  • the touch panel may be a mutual capacitive touch panel, and the touch panel may include A touch driving electrodes and a plurality of touch sensing electrodes arranged in an array on the substrate, wherein , the touch driving electrodes may extend along the row direction, and the touch sensing electrodes may extend along the column direction, but not limited thereto.
  • the touch driving signal and the touch accompanying signal should be substantially the same; for example, the period of the touch driving signal should be substantially the same as the period of the touch accompanying signal ;
  • the pulse width of the touch driving signal may be approximately the same as the pulse width of the touch accompanying signal.
  • touch driving signals are sequentially provided to the A touch driving electrodes, and a background data detection time period set after the touch time period is provided to the touch driving electrodes adjacent to the a-th touch driving electrodes.
  • the N touch driving electrodes provide touch accompanying signals.
  • the a-th touch-sensing signal on the touch-sensing electrodes in the a-th touch time period, and the a-th background data detection time period the The a-th background data voltage signal on the touch sensing electrode is used for touch detection.
  • the conventional way for the touch screen to determine the environmental noise is to intercept the original data signal in the power-on or off screen as the background data signal, and according to the difference between the detected touch sensing signal and the background data signal during the touch time period
  • the difference value is used to detect touch events, and the obvious position of the difference value is regarded as the touch point.
  • touch accompanying signals are provided to N touch-control driving electrodes adjacent to the a-th touch-control driving electrodes, and a touch signal is selected in the In the a-th background data detection time period, the a-th background data voltage signal on the touch sensing electrodes is the background data signal. Since the N touch driving electrodes are loaded with touch accompanying signals, the touch accompanying The amplitude of the signal is smaller than the amplitude of the touch driving signal, and the stability of the a-th background data voltage signal provided by it is stronger than that of the background data signal provided by the related art, and the a-th background data voltage signal is selected. As the background data signal, the threshold can be appropriately increased, which can effectively shield the noise generated by the small signal, making the effective signal more obvious and the signal-to-noise ratio will be improved.
  • the signals on the touch driving electrodes in the scan row and the signals on the touch driving electrodes in the adjacent row form a stepped voltage drop, which can effectively reduce the risk of ESD (Electro-Static discharge, electrostatic discharge).
  • ESD Electro-Static discharge, electrostatic discharge
  • the step-by-step voltage reduction method can effectively prevent tip discharge caused by high voltage conditions.
  • the same type of touch driving signal loading is performed on the touch driving electrodes in the scanning row and the touch driving electrodes in the adjacent rows, and the touch driving signals are provided to the adjacent row touch driving electrodes at this time.
  • the touch accompanying signal of the electrode can make the voltage value of the noise excited by the related art higher than that of the related art, and can play the role of amplifying the interference data in the background data, so that the touch detection result is more accurate.
  • the same type of signal loading is performed on the touch drive electrodes in the scan row and the touch drive electrodes in the adjacent row.
  • the amplitude of the touch accompanying signal is small, which can couple a small amount of capacitance change, and it is easier to determine the position of the boundary of the finger or the touch object by driving the touch driving electrodes in the adjacent row, and the position accuracy of the touch is improved.
  • the touch control method described in at least one embodiment of the present disclosure it is possible to determine dirt and water stains.
  • the state of dirt and water stains is generally a state of aggregation in a relatively large area. It is difficult to rely on a certain row of touch drive electrodes. Achieve effective identification of dirty and water-stained areas.
  • the touch control method described in at least one embodiment of the present disclosure the range of water stains and dirt can be effectively covered by scanning the touch driving electrodes in the row and the touch driving electrodes in the adjacent row, thereby realizing effective screening and reporting.
  • the size of a single node of a large-size touch is 6mm, then the coverage of 5 single nodes of a large-size touch is 30mm, which can cover the size of a regular water droplet.
  • the driving electrodes When controlling the driving electrodes to scan the position at the same time and there is a large range of objects touching the touch panel, its properties can be judged by the change of the capacitance value.
  • Human touch will attract some electric field lines, which will reduce the electric field lines between the touch driving electrodes and the touch sensing electrodes, and the water droplets are usually in a suspended state, which will act as a dielectric layer for electric field transmission between the touch driving electrodes and the touch sensing electrodes. , the dielectric constant of which is greater than that of air, resulting in an increase in the electric field strength between the touch driving electrodes and the touch sensing electrodes.
  • the signals on the touch driving electrodes in the scanning row, the touch driving electrodes in adjacent rows and the remote touch driving electrodes form a stepped voltage drop, which can effectively reduce ESD (Electro-Static discharge, electrostatic discharge). Release) risk, the voltage is gradually reduced to prevent the tip discharge caused by high voltage conditions.
  • ESD Electro-Static discharge, electrostatic discharge. Release
  • the touch control method may further include: during the a-th touch time period and the a-th background data detection time period, controlling the touch panel included in the touch panel except for the a-th background data detection time period.
  • a touch driving electrode and other touch driving electrodes other than the N touch driving electrodes provide a ground voltage for deriving static electricity and shielding signal interference problems at remote locations.
  • the waveform of the voltage signal provided to each touch drive electrode can be controlled through an FPGA (Field Programmable Gate Array).
  • the signal processing method is a key factor of the touch control structure, which can not only solve the problem of removing water stains and other interference, but also adjust the waveform of the output voltage to realize signal processing and noise reduction.
  • the type of the touch accompanying signal is the same as the type of the touch driving signal.
  • both the touch accompanying signal and the touch driving signal are square wave signals, or both the touch accompanying signal and the touch driving signal are sine wave signals.
  • the touch driving signal and the touch accompanying signal may be sine wave signals, but not limited thereto.
  • the period of the touch accompanying signal is equal to the period of the touch driving signal
  • the pulse width of the touch accompanying signal is equal to the pulse width of the touch driving signal.
  • the ratio between the amplitude of the touch accompanying signal and the amplitude of the touch driving signal is greater than or equal to 0.05 and less than or equal to 0.3, so that the a-th touch can be effectively reduced while being noise-reduced.
  • the difference between the control sensing signal and the a-th background data voltage signal is sufficient to ensure the touch detection accuracy.
  • the ratio may be greater than or equal to 0.1 and less than or equal to 0.2, but not limited thereto.
  • N may be less than or equal to 10, but not limited thereto.
  • the amplitude of the touch accompanying signal may be determined according to the ambient temperature, which may be specifically implemented by sensing units such as a voltage follower and a temperature sensitive resistor.
  • the a-th touch driving electrodes are the first touch driving electrodes included in the touch panel, and the N touch driving electrodes are the second touch driving electrodes included in the touch panel. Controlling the driving electrodes to the N+1 th touch driving electrodes included in the touch panel; or,
  • the a-th touch driving electrode is the last touch driving electrode included in the touch panel, and the N touch driving electrodes are the penultimate touch driving electrodes included in the touch panel to the touch panel.
  • the a-th touch driving electrode is the touch driving electrode except the first touch driving electrode and the last touch driving electrode included in the touch panel, and the touch driving electrodes in the N touch driving electrodes are A part is disposed before the a-th touch driving electrodes, and another part of the N touch-driving electrodes is disposed behind the a-th touch driving electrodes.
  • the A part of the N touch driving electrodes is arranged before the a-th touch driving electrode, and another part of the N touch driving electrodes is arranged behind the a-th touch driving electrode.
  • the first two rows of touch driving electrodes adjacent to the a-th touch driving electrodes can be selected, and the rear adjacent to the a-th touch driving electrodes can be selected.
  • the two rows of touch driving electrodes are adjacent touch driving electrodes.
  • N is an even number
  • N/2 touch driving electrodes are arranged before the a-th touch driving electrodes
  • N/2 touch driving electrodes are arranged after the a-th touch driving electrodes.
  • the a-th touch driving electrode is a touch driving electrode other than the first touch driving electrode and the last touch driving electrode included in the touch panel
  • the direction and the The first N/2 touch driving electrodes adjacent to the a-th touch driving electrode, and the rear N/2 touch driving electrodes adjacent to the a-th touch driving electrode provide touch accompanying signals to enable Improve touch accuracy.
  • the first touch drive electrode included in the touch panel is labeled T1
  • the second touch drive electrode included in the touch panel is labeled T2
  • the touch panel is labeled T3
  • the third touch drive electrode included, the fourth touch drive electrode included in the touch panel is labeled T4
  • the fifth touch drive electrode included in the touch panel is labeled T5
  • the touch drive electrode is labeled T6.
  • the sixth touch driving electrodes included in the touch panel are marked as T7
  • the seventh touch driving electrodes are included in the touch panel.
  • T4 is the a-th touch driving electrode
  • T2 and T3 are the first two touch driving electrodes adjacent to T4
  • T5 and T6 are the last two touch driving electrodes adjacent to T4
  • T1 and T7 are the farther touch driving electrodes.
  • P1 , P2 , P3 , P4 , P5 , P6 , and P7 are the first touch sensing electrode, the second touch sensing electrode, the third touch sensing electrode, and the fourth touch sensing electrode, respectively , the fifth touch sensing electrode, the sixth touch sensing electrode and the seventh touch sensing electrode; in actual operation, the touch driving electrode and the touch sensing electrode can be arranged in different layers.
  • the touch drive signal is provided to T4; in the fourth background data detection time period t42, the touch accompanying signal is provided to T2, T3, T5 and T6;
  • the ground voltage is supplied to T1 and T7.
  • the touch driving signal provided to T4 and the touch accompanying signals provided to T2, T3, T5 and T6 are all square wave signals, and the amplitude of the touch driving signal is greater than that of the touch the amplitude of the accompanying signal;
  • the pulse width t1 of the touch driving signal is equal to the pulse width t2 of the touch accompanying signal
  • the period T11 of the touch driving signal is equal to the period T12 of the touch accompanying signal.
  • the touch detection step may include:
  • Touch detection is performed according to the amplified a-th touch difference signal.
  • the a-th touch sensing signal and the a-th background data voltage signal may be compared first to obtain the a-th touch difference between the a-th touch sensing signal and the a-th background data voltage signal value signal, and then amplify the a-th touch difference signal to obtain the a-th touch difference signal after amplification; perform touch detection according to the amplified a-th touch difference signal; Processing can resolve errors due to non-touch factors.
  • a touch blank period is set between two adjacent touch cycles, and the touch method further includes:
  • An initial touch state of the touch panel within the touch blank time period is detected, and touch detection is performed according to the initial touch state of the touch panel.
  • the initial touch state of the touch panel can be detected during the touch blank time period. Since the floating water droplets (or dirt) are different from the capacitance value changes generated by the actual human body or the active pen touching the touch panel, the The initial touch state can indicate the touch situation of the touch panel by objects other than the finger or the active pen, so that during the touch cycle, the object other than the finger or the active pen can avoid touching the touch panel according to the initial touch state.
  • the touch detection error caused by the touch of the touch panel can be detected during the touch blank time period.
  • the step of detecting the initial touch state of the touch panel within the touch blank time period may include:
  • a touch driving signal is provided to the touch driving electrodes, and a touch sensing signal fed back by the touch driving electrodes is received, so as to determine the initial touch state of the touch panel; or ,
  • a touch driving signal is provided to the touch sensing electrodes, and a touch sensing signal fed back by the touch sensing electrodes is received to determine the initial touch state of the touch panel.
  • the touch blank time period may be an unconventional driving scan time.
  • the touch driving electrode or the touch sensing electrode is used to perform self-capacitance scanning in the working mode to perform channel scanning.
  • the self-charging and discharging process can remove the static signal remaining on the touch panel, on the other hand, it can use self-capacitance touch to keep away from the detection of water stains, dirt, etc. interference.
  • the touch circuit described in at least one embodiment of the present disclosure is applied to a touch panel.
  • the touch panel includes A touch driving electrodes and A touch sensing electrodes disposed on a substrate, where A is a positive integer;
  • the control period includes multiple touch time periods and multiple background data detection periods; the a-th background data detection time period is set after the a-th touch time period and before the a+1-th touch time period; as shown in the figure 4, the touch control circuit includes:
  • the touch driving circuit 41 is electrically connected to the touch driving electrodes (not shown in FIG. 4 ) included in the touch panel 40 , and is used for driving the a-th touch-driving electrodes to the a-th touch-driving electrodes during the a-th touch time period. providing touch driving signals for providing touch accompanying signals to N touch driving electrodes adjacent to the a-th touch-driving electrodes during the a-th background data detection period; and,
  • the touch detection circuit 42 is electrically connected to the touch sensing electrodes (not shown in FIG. 4 ) included in the touch panel 40 , and is used for detecting the first touch sensing electrodes on the touch sensing electrodes according to the a-th touch time period. a touch sensing signal, and, in the a th background data detection time period, the a th background data voltage signal on the touch sensing electrode for touch detection;
  • a is a positive integer, a is less than or equal to A; N is a positive integer; the amplitude of the touch accompanying signal is smaller than the amplitude of the touch driving signal.
  • the touch driving signal and the touch accompanying signal should be substantially the same; for example, the period of the touch driving signal should be substantially the same as the period of the touch accompanying signal ;
  • the pulse width of the touch driving signal may be approximately the same as the pulse width of the touch accompanying signal.
  • the touch-control driving circuit 41 provides touch-control to N touch-driving electrodes adjacent to the a-th touch-driving electrodes.
  • control accompanying signal the touch detection circuit 42 selects the a-th background data detection time period, and the a-th background data voltage signal on the touch sensing electrodes is the background data signal, because the N touch driving electrodes are What is loaded is the touch accompanying signal, the amplitude of the touch accompanying signal is smaller than the amplitude of the touch driving signal, and the stability of the background data voltage signal provided by the a-th background data voltage signal is more stable than that of the background data signal provided by the related art. Selecting the a-th background data voltage signal as the background data signal can increase the threshold appropriately, effectively shield the noise generated by the small signal, the effective signal is more obvious and the signal-to-noise ratio will be improved.
  • the touch driving circuit is further configured to control the touch driving electrodes included in the touch panel except the touch driving electrodes and the The other touch driving electrodes other than the N touch driving electrodes provide ground voltages for deriving static electricity and shielding signal interference problems at remote locations.
  • the type of the touch accompanying signal is the same as the type of the touch driving signal
  • Both the touch accompanying signal and the touch driving signal are square wave signals, or both the touch accompanying signal and the touch driving signal are sine wave signals.
  • the period of the touch accompanying signal may be equal to the period of the touch driving signal
  • the pulse width of the touch accompanying signal may be equal to the pulse width of the touch driving signal.
  • the ratio between the amplitude of the touch accompanying signal and the amplitude of the touch driving signal is greater than or equal to 0.05 and less than or equal to 0.3, so that the a-th touch can be effectively reduced while being noise-reduced.
  • the difference between the control sensing signal and the a-th background data voltage signal is sufficient to ensure the touch detection accuracy.
  • the a-th touch driving electrode is the first touch driving electrode included in the touch panel, and the N touch driving electrodes are the touch driving electrodes included in the touch panel.
  • the second touch driving electrode is to the N+1 th touch driving electrode included in the touch panel; or,
  • the a-th touch driving electrode is the last touch driving electrode included in the touch panel, and the N touch driving electrodes are the penultimate touch driving electrodes included in the touch panel to the touch panel.
  • the a-th touch driving electrode is the touch driving electrode except the first touch driving electrode and the last touch driving electrode included in the touch panel, and the touch driving electrodes in the N touch driving electrodes are A part is disposed before the a-th touch driving electrodes, and another part of the N touch-driving electrodes is disposed behind the a-th touch driving electrodes.
  • the A part of the N touch driving electrodes is arranged before the a-th touch driving electrode, and another part of the N touch driving electrodes is arranged behind the a-th touch driving electrode.
  • the touch control circuit may further include a comparison circuit 51 and a signal amplification circuit 52;
  • the comparison circuit 51 is electrically connected to the touch detection circuit 42 for comparing the a-th touch sensing signal and the a-th background data voltage signal to obtain the a-th touch-sensing signal and the a-th background the a-th touch difference signal between the data voltage signals;
  • the signal amplification circuit 52 is electrically connected to the comparison circuit 51 and the touch detection circuit 42 respectively, and is used for amplifying the a-th touch difference signal to obtain an amplified a-th touch difference signal ;
  • the touch detection circuit 42 is specifically configured to perform touch detection according to the amplified a-th touch difference signal.
  • the comparison circuit 51 can first compare the a-th touch sensing signal and the a-th background data voltage signal to obtain the a-th touch sensing signal and the a-th background data voltage signal. a touch difference signal, and then the a-th touch difference signal is amplified by the signal amplification circuit 52 to obtain the a-th touch difference signal after amplification; the touch detection circuit 42 according to the amplified touch difference signal The touch detection is performed on the a-th touch difference signal, and the error caused by the non-touch factor can be distinguished by processing the signal.
  • the touch detection circuit is further configured to detect the initial touch state of the touch panel within the touch blank time period, and perform touch detection according to the initial touch state of the touch panel;
  • the touch blank time period is set between two adjacent touch cycles.
  • the touch detection circuit can detect the initial touch state of the touch panel during the touch blank time period, due to the contact between the floating water droplets (or dirt) and the actual human body or the active pen touching the touch panel.
  • the value changes differently, so the initial touch state can indicate the touch of an object other than a finger or an active pen on the touch panel, so that during the touch cycle, it can be The touch detection error caused by the touch of an object other than the pen on the touch panel.
  • the touch driving circuit is configured to provide a touch driving signal to the touch driving electrode or the touch sensing electrode during the touch blank time period;
  • the touch detection circuit is specifically configured to receive a touch sensing signal fed back by the touch driving electrodes or the touch sensing electrodes during the touch blank time period, so as to determine the initial touch state of the touch panel .
  • the touch blank time period may be an unconventional driving scan time.
  • the self-capacitive scanning operation mode of the touch driving electrode or the touch sensing electrode is used to perform the self-charging and discharging of the channel.
  • the process on the one hand, can remove the static signal remaining on the touch panel, on the other hand, it can use the self-capacitive touch principle to realize the detection of water stains, dirt, etc., and discharge the interference caused by water stains and dirt.
  • the self-capacitive touch principle can be used to detect water stains and dirt, and to discharge the interference caused by water stains and dirt.
  • the touch control device includes the above-mentioned touch control circuit.
  • the display device provided by at least one embodiment of the present disclosure may be any product or component with a display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • a display function such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, and a navigator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开提供一种触控方法、触控电路和触控装置。所述触控方法包括:在第a触控时间段,向所述第a条触控驱动电极提供触控驱动信号;a为正整数,a小于或等于A,A为正整数;在第a背景数据检测时间段,向与第a条触控驱动电极相邻的N条触控驱动电极提供触控伴随信号;N为正整数;根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测;所述触控伴随信号的幅值小于所述触控驱动信号的幅值。本公开能够有效屏蔽微小信号产生的噪点,使得有效信号更加明显并信噪比会提升,并能降低静电释放风险。

Description

触控方法、触控电路和触控装置 技术领域
本公开涉及触控技术领域,尤其涉及一种触控方法、触控电路和触控装置。
背景技术
在相关技术中,互容式触控面板易受信号波动的干扰,更换不同环境易导致触控失灵、信噪比不高等诸多有点。同时,由于在互容式触控面板中,加载至触控驱动电极的触控驱动信号的幅值多达几十伏,加之静电信号的积累,扫描行触控驱动电极与非扫描行触控驱动电极易导致静电击毁触控IC(Integrate Circuit,集成电路),从而使得触控面板受损严重,无法正常功能工作。
发明内容
在一个方面中,本公开实施例提供了一种触控方法,应用于触控面板,所述触控面板包括设置于基板上的A条触控驱动电极和多条触控感应电极,A为正整数;触控周期包括多个触控时间段以及多个背景数据检测时间段;第a背景数据检测时间段设置于第a触控时间段之后,并设置于第a+1触控时间段之前;所述触控方法包括:
在第a触控时间段,向所述第a条触控驱动电极提供触控驱动信号;a为正整数,a小于或等于A;
在第a背景数据检测时间段,向与第a条触控驱动电极相邻的N条触控驱动电极提供触控伴随信号;N为正整数;
根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测;
所述触控伴随信号的幅值小于所述触控驱动信号的幅值。
可选的,本公开至少一实施例所述的触控方法还包括:在第a触控时间 段和第a背景数据检测时间段,控制向所述触控面板包括的除了所述第a条触控驱动电极和所述N条触控驱动电极之外的其他触控驱动电极提供地电压。
可选的,所述触控伴随信号的类型与所述触控驱动信号的类型相同。
可选的,所述触控伴随信号和所述触控驱动信号都为方波信号,或者,所述触控伴随信号和所述触控驱动信号都为弦波信号。
可选的,所述触控伴随信号的周期与所述触控驱动信号的周期相等;
当所述触控伴随信号和所述触控驱动信号都为方波信号时,所述触控伴随信号的脉冲宽度等于所述触控驱动信号的脉冲宽度。
可选的,所述触控伴随信号的幅值与所述触控驱动信号的幅值之间的比值大于或等于0.05而小于或等于0.3。
可选的,N小于或等于10。
可选的,所述第a条触控驱动电极为所述触控面板包括的第一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的第二条触控驱动电极至所述触控面板包括的第N+1条触控驱动电极;或者,
所述第a条触控驱动电极为触控面板包括的最后一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的倒数第二条触控驱动电极至所述触控面板包括的倒数第N+1条触控驱动电极;或者,
所述第a条触控驱动电极为所述触控面板包括的除了第一条触控驱动电极与最后一条触控驱动电极之外的触控驱动电极,所述N条触控驱动电极中的一部分设置于所述第a条触控驱动电极之前,所述N条触控驱动电极中的另一部分设置于所述第a条触控驱动电极之后。
可选的,当所述第a条触控驱动电极为所述触控面板包括的除了第一条触控驱动电极与最后一条触控驱动电极之外的触控驱动电极时,N为偶数,N/2条触控驱动电极设置于所述第a条触控驱动电极之前,N/2条触控驱动电极设置于第a条触控驱动电极之后。
可选的,所述根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测的步骤包括:
比较所述第a触控感应信号和所述第a背景数据电压信号,得到第a触 控感应信号与所述第a背景数据电压信号之间的第a触控差值信号;
对所述第a触控差值信号进行放大,得到放大后的第a触控差值信号;
根据所述放大后的第a触控差值信号进行触控检测。
可选的,在相邻的两触控周期之间设有触控空白时间段,所述触控方法还包括:
检测所述触控面板在所述触控空白时间段内的初始触摸状态,根据所述触控面板的初始触摸状态进行触控检测。
可选的,所述检测所述触控面板在所述触控空白时间段内的初始触摸状态步骤包括:
在所述触控空白时间段,向所述触控驱动电极提供触控驱动信号,并接收所述触控驱动电极反馈的触控感应信号,以判断所述触控面板的初始触摸状态;或者,
在所述触控空白时间段,向所述触控感应电极提供触控驱动信号,并接收所述触控感应电极反馈的触控感应信号,以判断所述触控面板的初始触摸状态。
在第二个方面中,本公开还提供了一种触控电路,应用于触控面板,所述触控面板包括设置于基板上的A条触控驱动电极和A条触控感应电极,A为正整数;触控周期包括多个触控时间段以及多个背景数据检测时间段;第a背景数据检测时间段设置于第a触控时间段之后,并设置于第a+1触控时间段之前;所述触控电路包括:
触控驱动电路,用于在第a触控时间段,向所述第a条触控驱动电极提供触控驱动信号,并用于在第a背景数据检测时间段,向与第a条触控驱动电极相邻的N条触控驱动电极提供触控伴随信号;以及,
触控检测电路,用于根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测;
a为正整数,a小于或等于A;N为正整数;所述触控伴随信号的幅值小于所述触控驱动信号的幅值。
可选的,所述触控驱动电路还用于在第a触控时间段和第a背景数据检 测时间段,控制向所述触控面板包括的除了所述第a条触控驱动电极和所述N条触控驱动电极之外的其他触控驱动电极提供地电压。
可选的,所述触控伴随信号的类型与所述触控驱动信号的类型相同;
所述触控伴随信号和所述触控驱动信号都为方波信号,或者,所述触控伴随信号和所述触控驱动信号都为弦波信号;
所述触控伴随信号的幅值与所述触控驱动信号的幅值之间的比值大于或等于0.05而小于或等于0.3。
可选的,所述第a条触控驱动电极为所述触控面板包括的第一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的第二条触控驱动电极至所述触控面板包括的第N+1条触控驱动电极;或者,
所述第a条触控驱动电极为触控面板包括的最后一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的倒数第二条触控驱动电极至所述触控面板包括的倒数第N+1条触控驱动电极;或者,
所述第a条触控驱动电极为所述触控面板包括的除了第一条触控驱动电极与最后一条触控驱动电极之外的触控驱动电极,所述N条触控驱动电极中的一部分设置于所述第a条触控驱动电极之前,所述N条触控驱动电极中的另一部分设置于所述第a条触控驱动电极之后。
可选的,本公开至少一实施例所述的触控电路还包括比较电路和信号放大电路;
所述比较电路用于比较所述第a触控感应信号和所述第a背景数据电压信号,得到第a触控感应信号与所述第a背景数据电压信号之间的第a触控差值信号;
所述信号放大电路用于对所述第a触控差值信号进行放大,得到放大后的第a触控差值信号;
所述触控检测电路具体用于根据所述放大后的第a触控差值信号进行触控检测。
可选的,所述触控检测电路还用于检测所述触控面板在所述触控空白时间段内的初始触摸状态,并根据所述触控面板的初始触摸状态进行触控检测;
所述触控空白时间段设置于相邻的两触控周期之间。
可选的,所述触控驱动电路用于在所述触控空白时间段,向所述触控驱动电极或所述触控感应电极提供触控驱动信号;
所述触控检测电路具体用于在所述触控空白时间段,接收所述触控驱动电极或所述触控感应电极反馈的触控感应信号,以检测所述触控面板的初始触摸状态。
在第三个方面中,本公开还提供了一种触控装置,包括上述的触控电路。
附图说明
图1是本公开至少一实施例所述的触控方法的流程图;
图2是本公开至少一实施例所述的触控方法应用于的触控面板中的触控驱动电极和触控感应电极的结构示意图;
图3是向各触控驱动电极提供的信号的波形图;
图4是本公开至少一实施例所述的触控电路的结构框图;
图5是本公开至少一实施例所述的触控电极的结构框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开所有实施例中采用的晶体管均可以为三极管、薄膜晶体管或场效应管或其他特性相同的器件。在本公开实施例中,为区分晶体管除控制极之外的两极,将其中一极称为第一极,另一极称为第二极。
在实际操作时,当所述晶体管为三极管时,所述控制极可以为基极,所述第一极可以为集电极,所述第二极可以发射极;或者,所述控制极可以为基极,所述第一极可以为发射极,所述第二极可以集电极。
在实际操作时,当所述晶体管为薄膜晶体管或场效应管时,所述控制极可以为栅极,所述第一极可以为漏极,所述第二极可以为源极;或者,所述控制极可以为栅极,所述第一极可以为源极,所述第二极可以为漏极。
本公开至少一实施例所述的触控方法,应用于触控面板,所述触控面板包括设置于基板上的A条触控驱动电极和A条触控感应电极,A为正整数;触控周期包括多个触控时间段以及多个背景数据检测时间段;第a背景数据检测时间段设置于第a触控时间段之后,并设置于第a+1触控时间段之前;如图1所示,所述触控方法包括:
S1:在第a触控时间段,向所述第a条触控驱动电极提供触控驱动信号;a为正整数,a小于或等于A;
S2:在第a背景数据检测时间段,向与第a条触控驱动电极相邻的N条触控驱动电极提供触控伴随信号;N为正整数;
S3:根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测;
所述触控伴随信号的幅值小于所述触控驱动信号的幅值。
在本公开至少一实施例中,所述触控驱动信号和所述触控伴随信号可以都为电压信号。
在具体实施时,所述触控面板可以为互容式触控面板,所述触控面板可以包括设置于基板上的阵列排布的A条触控驱动电极和多条触控感应电极,其中,所述触控驱动电极可以沿行方向延伸,所述触控感应电极可以沿列方向延伸,但不以此为限。
在本公开至少一实施例中,除了幅值之外,所述触控驱动信号与所述触控伴随信号应大致一致;例如,触控驱动信号的周期应与触控伴随信号的周期大致相同;当所述触控驱动信号和所述触控伴随信号都为方波信号时,所述触控驱动信号的脉冲宽度可以与所述触控伴随信号的脉冲宽度大致相同。
本公开至少一实施例依次向A条触控驱动电极提供触控驱动信号,并在设置于触控时间段之后的背景数据检测时间段,向所述与第a条触控驱动电极相邻的N条触控驱动电极提供触控伴随信号,根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测。
在相关技术中,常规情况触控屏判定环境噪音的方式为截取开机或截止 画面中的原始数据信号作为背景数据信号,根据在触控时间段通过检测到的触控感应信号与背景数据信号的差值,以检测触摸事件,差值明显位置即视为触控点位。
而采用本公开至少一实施例所述的触控方法,在第a背景数据检测时间段,向与第a条触控驱动电极相邻的N条触控驱动电极提供触控伴随信号,选取在第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号为背景数据信号,由于所述N条触控驱动电极被加载的是触控伴随信号,所述触控伴随信号的幅值小于所述触控驱动信号的幅值,其提供的第a背景数据电压信号的稳定性比相关技术提供的背景数据信号的稳定性更强,选取所述第a背景数据电压信号为背景数据信号,可以使得阈值适量提升,能够有效屏蔽微小信号产生的噪点,使得有效信号更加明显并信噪比会提升。
在本公开至少一实施例中,扫描行触控驱动电极上的信号和相邻行触控驱动电极上的信号形成阶梯状电压下降,能够有效降低ESD(Electro-Static discharge,静电释放)风险,电压逐级降低的方式能有效防止高电压条件下引起的尖端放电。
并且,触控面板所处的环境经常发生变化,不同环境的湿度及净电荷积累程度均有所不同,合理的调整触控驱动信号的加载方式,能够使得触控面板具有自适应效果,提高触控效果。
采用本公开至少一实施例所述的触控方法,对扫描行触控驱动电极以及相邻行触控驱动电极都进行相同类型的触控驱动信号加载,此时提供至相邻行触控驱动电极的触控伴随信号能够使得较相关技术激发的噪声的电压值更高,可以起到放大背景数据中的干扰数据的作用,使得触控检测结果更准确。
并采用本公开至少一实施例所述的触控方法,对扫描行触控驱动电极以及相邻行触控驱动电极都进行相同类型的信号加载,此时提供至相邻行触控驱动电极的触控伴随信号的幅值较小,能够耦合较小量的电容变化,对相邻行触控驱动电极的驱动更容易判定手指或触摸物体的边界所在位置,提高触控的位置精度。
并且,采用本公开至少一实施例所述的触控方法,能够判定脏污及水渍,脏污及水渍一般呈现的状态为比较大面积的聚集状态,依靠某一行触控驱动 电极,难以实现有效识别出脏污及水渍的区域。采用本公开至少一实施例所述的触控方法,能够通过扫描行触控驱动电极和相邻行触控驱动电极,有效覆盖水渍及脏污的范围,从而实现有效筛选及报点。
例如,通常大尺寸触控单个节点的大小为6mm,则5个大尺寸触控单个节点的覆盖的范围为30mm,能够覆盖住常规水滴的大小,当扫描行触控驱动电极和相邻行触控驱动电极同时扫描到该位置存在较大范围物体触摸触控面板时,能够通过容值变化判断其属性,例如,悬浮状水滴和实际人体或主动笔触摸,容值变化正负存在差异,通常人体触摸会吸附部分电场线,造成触控驱动电极与触控感应电极之间的电场线减少,而水滴通常为悬浮状态,会作为触控驱动电极与触控感应电极之间电场传输的介质层,其介电常数大于空气,造成触控驱动电极与触控感应电极之间的电场强度增加。
在本公开至少一实施例中,扫描行触控驱动电极,相邻行触控驱动电极和较远触控驱动电极上的信号形成阶梯状电压下降,能够有效降低ESD(Electro-Static discharge,静电释放)风险,电压逐级降低的方式能有效防止高电压条件下引起的尖端放电。
在具体实施时,本公开至少一实施例所述的触控方法还可以包括:在第a触控时间段和第a背景数据检测时间段,控制向所述触控面板包括的除了所述第a条触控驱动电极和所述N条触控驱动电极之外的其他触控驱动电极提供地电压,用以导出静电以及屏蔽较远地点信号干扰问题。
在实际操作时,可以通过FPGA(Field Programmable Gate Array,现场可编程逻辑门阵列)控制提供至每个触控驱动电极的电压信号的波形,该方案设计可以定义为算法方向的优化,触控感应信号的处理方法为触控结构的关键因素,不但能够解决水渍等干扰的排出问题,还能调节输出电压的波形,实现信号处理及降噪。
在本公开至少一实施例中,所述触控伴随信号的类型与所述触控驱动信号的类型相同。
可选的,所述触控伴随信号和所述触控驱动信号都为方波信号,或者,所述触控伴随信号和所述触控驱动信号都为弦波信号。
在具体实施时,为了更好的降低EMI(Electromagnetic Interference,电 磁干扰)等问题,所述触控驱动信号和所述触控伴随信号可为弦波信号,但不以此为限。
可选的,所述触控伴随信号的周期与所述触控驱动信号的周期相等;
当所述触控伴随信号和所述触控驱动信号都为方波信号时,所述触控伴随信号的脉冲宽度等于所述触控驱动信号的脉冲宽度。
可选的,所述触控伴随信号的幅值与所述触控驱动信号的幅值之间的比值大于或等于0.05而小于或等于0.3,以在有效降噪的同时,能够使得第a触控感应信号与第a背景数据电压信号之间的差值足以保证触控检测精度。
在优选情况下,所述比值可以大于或等于0.1而小于或等于0.2,但不以此为限。
在具体实施时,N可以小于或等于10,但不以此为限。
在本公开至少一实施例中,可以根据环境温度来确定所述触控伴随信号的幅值,具体可以通过电压跟随器和温敏电阻等传感单元实现。
在实际操作时,所述第a条触控驱动电极为所述触控面板包括的第一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的第二条触控驱动电极至所述触控面板包括的第N+1条触控驱动电极;或者,
所述第a条触控驱动电极为触控面板包括的最后一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的倒数第二条触控驱动电极至所述触控面板包括的倒数第N+1条触控驱动电极;或者,
所述第a条触控驱动电极为所述触控面板包括的除了第一条触控驱动电极与最后一条触控驱动电极之外的触控驱动电极,所述N条触控驱动电极中的一部分设置于所述第a条触控驱动电极之前,所述N条触控驱动电极中的另一部分设置于所述第a条触控驱动电极之后。
在实际操作时,当所述第a条触控驱动电极并非所述触控面板包括的第一条触控驱动电极,也并非所述触控面板包括的最后一条触控驱动电极时,所述N条触控驱动电极中的一部分设置于所述第a条触控驱动电极之前,所述N条触控驱动电极中的另一部分设置于所述第a条触控驱动电极之后。
在本公开至少一实施例中,例如,可以选取与所述第a条触控驱动电极的相邻前两行触控驱动电极,以及,与所述第a条触控驱动电极的相邻后两 行触控驱动电极为相邻的触控驱动电极。
在优选情况下,当所述第a条触控驱动电极为所述触控面板包括的除了第一条触控驱动电极与最后一条触控驱动电极之外的触控驱动电极时,N为偶数,N/2条触控驱动电极设置于所述第a条触控驱动电极之前,N/2条触控驱动电极设置于第a条触控驱动电极之后。
在具体实施时,当所述第a条触控驱动电极为所述触控面板包括的除了第一条触控驱动电极与最后一条触控驱动电极之外的触控驱动电极时,选取向与第a条触控驱动电极相邻的前N/2条触控驱动电极,以及,与第a条触控驱动电极相邻的后N/2条触控驱动电极提供触控伴随信号,以能提升触控精度。
如图2所示,标号为T1的为触控面板包括的第一条触控驱动电极,标示为T2的为触控面板包括的第二条触控驱动电极,标示为T3的为触控面板包括的第三条触控驱动电极,标号为T4的为触控面板包括的第四条触控驱动电极,标示为T5的为触控面板包括的第五条触控驱动电极,标示为T6的为触控面板包括的第六条触控驱动电极,标示为T7的为触控面板包括的第七条触控驱动电极。
在图2所示的触控面板包括的触控驱动电极中,在第四触控时间段,T4为第a条触控驱动电极,T2和T3为与T4相邻的前两条触控驱动电极,T5和T6为与T4相邻的后两条触控驱动电极,T1和T7为较远的触控驱动电极。
在图2中,标示为P1、P2、P3、P4、P5、P6、P7的分别为第一触控感应电极、第二触控感应电极、第三触控感应电极、第四触控感应电极、第五触控感应电极、第六触控感应电极和第七触控感应电极;在实际操作时,触控驱动电极与触控感应电极可以设置于不同层。
如图3所示,在第四触控时间段t41,向T4提供触控驱动信号;在第四背景数据检测时间段t42,向T2、T3、T5和T6提供触控伴随信号;
在t41和t42,向T1和T7提供地电压。
如图3可知,提供至T4的触控驱动信号,以及,提供至T2、T3、T5和T6的触控伴随信号都为方波信号,所述触控驱动信号的幅值大于所述触控伴随信号的幅值;
所述触控驱动信号的脉冲宽度t1与所述触控伴随信号的脉冲宽度t2相等;
所述触控驱动信号的周期T11与所述触控伴随信号的周期T12相等。
可选的,所述根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测步骤可以包括:
比较所述第a触控感应信号和所述第a背景数据电压信号,得到第a触控感应信号与所述第a背景数据电压信号之间的第a触控差值信号;
对所述第a触控差值信号进行放大,得到放大后的第a触控差值信号;
根据所述放大后的第a触控差值信号进行触控检测。
在具体实施时,可以先比较所述第a触控感应信号和所述第a背景数据电压信号,得到第a触控感应信号与所述第a背景数据电压信号之间的第a触控差值信号,之后对所述第a触控差值信号进行放大,得到放大后的第a触控差值信号;根据所述放大后的第a触控差值信号进行触控检测,通过对信号进行处理能够分辨出因非触摸因素造成的误差。
在本公开至少一实施例中,在相邻的两触控周期之间设有触控空白时间段,所述触控方法还包括:
检测所述触控面板的在所述触控空白时间段内的初始触摸状态,根据所述触控面板的初始触摸状态进行触控检测。
在实际操作时,可以在触控空白时间段,检测触控面板的初始触摸状态,由于悬浮状水滴(或脏污)与实际人体或主动笔触摸触控面板产生的容值变化不同,因此所述初始触摸状态可以指示除了手指或主动笔之外的物体对所述触控面板的触摸情况,这样在触控周期内,即可以根据初始触摸状态避免由除了手指或主动笔之外的物体对所述触控面板的触摸产生的触控检测误差。
在具体实施时,所述检测所述触控面板的在所述触控空白时间段内的初始触摸状态步骤可以包括:
在所述触控空白时间段,向所述触控驱动电极提供触控驱动信号,并接收所述触控驱动电极反馈的触控感应信号,以判断所述触控面板的初始触摸状态;或者,
在所述触控空白时间段,向所述触控感应电极提供触控驱动信号,并接 收所述触控感应电极反馈的触控感应信号,以判断所述触控面板的初始触摸状态。
在实际操作时,所述触控空白时间段可以为非常规驱动扫描时间,在所述触控空白时间段,采用触控驱动电极或触控感应电极进行自容式扫描的工作模式,进行通道的自充电与放电过程,一方面能够清除残留在触控面板的静电信号,另一方面能够采用自容式触控远离实现水渍、脏污等的检测,排出因水渍、脏污等造成的干扰。
本公开至少一实施例所述的触控电路,应用于触控面板,所述触控面板包括设置于基板上的A条触控驱动电极和A条触控感应电极,A为正整数;触控周期包括多个触控时间段以及多个背景数据检测时间段;第a背景数据检测时间段设置于第a触控时间段之后,并设置于第a+1触控时间段之前;如图4所示,所述触控电路包括:
触控驱动电路41,与所述触控面板40包括的触控驱动电极(图4中未示出)电连接,用于在第a触控时间段,向所述第a条触控驱动电极提供触控驱动信号,并用于在第a背景数据检测时间段,向与第a条触控驱动电极相邻的N条触控驱动电极提供触控伴随信号;以及,
触控检测电路42,与所述触控面板40包括的触控感应电极电连接(图4中未示出),用于根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测;
a为正整数,a小于或等于A;N为正整数;所述触控伴随信号的幅值小于所述触控驱动信号的幅值。
在本公开至少一实施例中,除了幅值之外,所述触控驱动信号与所述触控伴随信号应大致一致;例如,触控驱动信号的周期应与触控伴随信号的周期大致相同;当所述触控驱动信号和所述触控伴随信号都为方波信号时,所述触控驱动信号的脉冲宽度可以与所述触控伴随信号的脉冲宽度大致相同。
本公开至少一实施例所述的触控电路在工作时,在第a背景数据检测时间段,触控驱动电路41向与第a条触控驱动电极相邻的N条触控驱动电极提供触控伴随信号,所述触控检测电路42选取在第a背景数据检测时间段,所 述触控感应电极上的第a背景数据电压信号为背景数据信号,由于所述N条触控驱动电极被加载的是触控伴随信号,所述触控伴随信号的幅值小于所述触控驱动信号的幅值,其提供的第a背景数据电压信号的稳定性比相关技术提供的背景数据信号的稳定性更强,选取所述第a背景数据电压信号为背景数据信号,可以使得阈值适量提升,能够有效屏蔽微小信号产生的噪点,有效信号更加明显并信噪比会提升。
在具体实施时,所述触控驱动电路还用于在第a触控时间段和第a背景数据检测时间段,控制向所述触控面板包括的除了所述第a条触控驱动电极和所述N条触控驱动电极之外的其他触控驱动电极提供地电压,用以导出静电以及屏蔽较远地点信号干扰问题。
可选的,所述触控伴随信号的类型与所述触控驱动信号的类型相同;
所述触控伴随信号和所述触控驱动信号都为方波信号,或者,所述触控伴随信号和所述触控驱动信号都为弦波信号。
在具体实施时,所述触控伴随信号的周期与所述触控驱动信号的周期可以相等;
当所述触控伴随信号和所述触控驱动信号都为方波信号时,所述触控伴随信号的脉冲宽度可以等于所述触控驱动信号的脉冲宽度。
可选的,所述触控伴随信号的幅值与所述触控驱动信号的幅值之间的比值大于或等于0.05而小于或等于0.3,以在有效降噪的同时,能够使得第a触控感应信号与第a背景数据电压信号之间的差值足以保证触控检测精度。
在本公开至少一实施例中,所述第a条触控驱动电极为所述触控面板包括的第一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的第二条触控驱动电极至所述触控面板包括的第N+1条触控驱动电极;或者,
所述第a条触控驱动电极为触控面板包括的最后一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的倒数第二条触控驱动电极至所述触控面板包括的倒数第N+1条触控驱动电极;或者,
所述第a条触控驱动电极为所述触控面板包括的除了第一条触控驱动电极与最后一条触控驱动电极之外的触控驱动电极,所述N条触控驱动电极中的一部分设置于所述第a条触控驱动电极之前,所述N条触控驱动电极中的 另一部分设置于所述第a条触控驱动电极之后。
在实际操作时,当所述第a条触控驱动电极并非所述触控面板包括的第一条触控驱动电极,也并非所述触控面板包括的最后一条触控驱动电极时,所述N条触控驱动电极中的一部分设置于所述第a条触控驱动电极之前,所述N条触控驱动电极中的另一部分设置于所述第a条触控驱动电极之后。
在具体实施时,如图5所示,在图4所示的触控电路的至少一实施例的基础上,本公开至少一实施例所述的触控电路还可以包括比较电路51和信号放大电路52;
所述比较电路51与所述触控检测电路42电连接,用于比较所述第a触控感应信号和所述第a背景数据电压信号,得到第a触控感应信号与所述第a背景数据电压信号之间的第a触控差值信号;
所述信号放大电路52分别与所述比较电路51和所述触控检测电路42电连接,用于对所述第a触控差值信号进行放大,得到放大后的第a触控差值信号;
所述触控检测电路42具体用于根据所述放大后的第a触控差值信号进行触控检测。
在具体实施时,可以先通过比较电路51比较所述第a触控感应信号和所述第a背景数据电压信号,得到第a触控感应信号与所述第a背景数据电压信号之间的第a触控差值信号,之后通过信号放大电路52对所述第a触控差值信号进行放大,得到放大后的第a触控差值信号;所述触控检测电路42根据所述放大后的第a触控差值信号进行触控检测,通过对信号进行处理能够分辨出因非触摸因素造成的误差。
可选的,所述触控检测电路还用于检测所述触控面板在所述触控空白时间段内的初始触摸状态,并根据所述触控面板的初始触摸状态进行触控检测;
所述触控空白时间段设置于相邻的两触控周期之间。
在实际操作时,所述触控检测电路可以在触控空白时间段,检测触控面板的初始触摸状态,由于悬浮状水滴(或脏污)与实际人体或主动笔触摸触控面板产生的容值变化不同,因此所述初始触摸状态可以指示除了手指或主动笔之外的物体对所述触控面板的触摸情况,这样在触控周期内,即可以根 据初始触摸状态避免由除了手指或主动笔之外的物体对所述触控面板的触摸产生的触控检测误差。
在具体实施时,所述触控驱动电路用于在所述触控空白时间段,向所述触控驱动电极或所述触控感应电极提供触控驱动信号;
所述触控检测电路具体用于在所述触控空白时间段,接收所述触控驱动电极或所述触控感应电极反馈的触控感应信号,以判断所述触控面板的初始触摸状态。
所述触控空白时间段可以为非常规驱动扫描时间,在所述触控空白时间段,采用触控驱动电极或触控感应电极进行自容式扫描的工作模式,进行通道的自充电与放电过程,一方面能够清除残留在触控面板的静电信号,另一方面能够采用自容式触控原理实现水渍、脏污等的检测,排出因水渍、脏污等造成的干扰。
在实际操作时,悬浮状水滴和实际人体或主动笔触摸,容值变化正负存在差异,通常人体触摸会吸附部分电场线,造成触控驱动电极与触控感应电极之间的电场线减少,而水滴通常为悬浮状态,会作为触控驱动电极与触控感应电极之间电场传输的介质层,其介电常数大于空气,造成触控驱动电极与触控感应电极之间的电场强度增加。水渍、脏污等非人体或主动笔触摸的物体接触触控面板,与人体或主动笔带来的容值变化不同,因此通过在触控空白时间段,通过采用触控驱动电极或触控感应电极进行自容式扫描的工作模式,可采用自容式触控原理实现水渍、脏污等的检测,排出因水渍、脏污等造成的干扰。
本公开至少一实施例所述的触控装置包括上述的触控电路。
本公开至少一实施例所提供的显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (20)

  1. 一种触控方法,应用于触控面板,所述触控面板包括设置于基板上的A条触控驱动电极和多条触控感应电极,A为正整数;触控周期包括多个触控时间段以及多个背景数据检测时间段;第a背景数据检测时间段设置于第a触控时间段之后,并设置于第a+1触控时间段之前;所述触控方法包括:
    在第a触控时间段,向所述第a条触控驱动电极提供触控驱动信号;a为正整数,a小于或等于A;
    在第a背景数据检测时间段,向与第a条触控驱动电极相邻的N条触控驱动电极提供触控伴随信号;N为正整数;
    根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测;
    所述触控伴随信号的幅值小于所述触控驱动信号的幅值。
  2. 如权利要求1所述的触控方法,其中,还包括:在第a触控时间段和第a背景数据检测时间段,控制向所述触控面板包括的除了所述第a条触控驱动电极和所述N条触控驱动电极之外的其他触控驱动电极提供地电压。
  3. 如权利要求1所述的触控方法,其中,所述触控伴随信号的类型与所述触控驱动信号的类型相同。
  4. 如权利要求3所述的触控方法,其中,所述触控伴随信号和所述触控驱动信号都为方波信号,或者,所述触控伴随信号和所述触控驱动信号都为弦波信号。
  5. 如权利要求4所述的触控方法,其中,所述触控伴随信号的周期与所述触控驱动信号的周期相等;
    当所述触控伴随信号和所述触控驱动信号都为方波信号时,所述触控伴随信号的脉冲宽度等于所述触控驱动信号的脉冲宽度。
  6. 如权利要求1至5中任一权利要求所述的触控方法,其中,所述触控伴随信号的幅值与所述触控驱动信号的幅值之间的比值大于或等于0.05而小于或等于0.3。
  7. 如权利要求1至5中任一权利要求所述的触控方法,其中,N小于或等于10。
  8. 如权利要求1至5中任一权利要求所述的触控方法,其中,所述第a条触控驱动电极为所述触控面板包括的第一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的第二条触控驱动电极至所述触控面板包括的第N+1条触控驱动电极;或者,
    所述第a条触控驱动电极为触控面板包括的最后一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的倒数第二条触控驱动电极至所述触控面板包括的倒数第N+1条触控驱动电极;或者,
    所述第a条触控驱动电极为所述触控面板包括的除了第一条触控驱动电极与最后一条触控驱动电极之外的触控驱动电极,所述N条触控驱动电极中的一部分设置于所述第a条触控驱动电极之前,所述N条触控驱动电极中的另一部分设置于所述第a条触控驱动电极之后。
  9. 如权利要求8所述的触控方法,其中,当所述第a条触控驱动电极为所述触控面板包括的除了第一条触控驱动电极与最后一条触控驱动电极之外的触控驱动电极时,N为偶数,N/2条触控驱动电极设置于所述第a条触控驱动电极之前,N/2条触控驱动电极设置于第a条触控驱动电极之后。
  10. 如权利要求1至5中任一权利要求所述的触控方法,其中,所述根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测的步骤包括:
    比较所述第a触控感应信号和所述第a背景数据电压信号,得到第a触控感应信号与所述第a背景数据电压信号之间的第a触控差值信号;
    对所述第a触控差值信号进行放大,得到放大后的第a触控差值信号;
    根据所述放大后的第a触控差值信号进行触控检测。
  11. 如权利要求1至5中任一权利要求所述的触控方法,其中,在相邻的两触控周期之间设有触控空白时间段,所述触控方法还包括:
    检测所述触控面板在所述触控空白时间段内的初始触摸状态,根据所述触控面板的初始触摸状态进行触控检测。
  12. 如权利要求11所述的触控方法,其中,所述检测所述触控面板在所述触控空白时间段内的初始触摸状态步骤包括:
    在所述触控空白时间段,向所述触控驱动电极提供触控驱动信号,并接收所述触控驱动电极反馈的触控感应信号,以判断所述触控面板的初始触摸状态;或者,
    在所述触控空白时间段,向所述触控感应电极提供触控驱动信号,并接收所述触控感应电极反馈的触控感应信号,以判断所述触控面板的初始触摸状态。
  13. 一种触控电路,应用于触控面板,所述触控面板包括设置于基板上的A条触控驱动电极和A条触控感应电极,A为正整数;触控周期包括多个触控时间段以及多个背景数据检测时间段;第a背景数据检测时间段设置于第a触控时间段之后,并设置于第a+1触控时间段之前;所述触控电路包括:
    触控驱动电路,用于在第a触控时间段,向所述第a条触控驱动电极提供触控驱动信号,并用于在第a背景数据检测时间段,向与第a条触控驱动电极相邻的N条触控驱动电极提供触控伴随信号;以及,
    触控检测电路,用于根据在第a触控时间段,所述触控感应电极上的第a触控感应信号,以及,在所述第a背景数据检测时间段,所述触控感应电极上的第a背景数据电压信号,进行触控检测;
    a为正整数,a小于或等于A;N为正整数;所述触控伴随信号的幅值小于所述触控驱动信号的幅值。
  14. 如权利要求13所述的触控电路,其中,所述触控驱动电路还用于在第a触控时间段和第a背景数据检测时间段,控制向所述触控面板包括的除了所述第a条触控驱动电极和所述N条触控驱动电极之外的其他触控驱动电极提供地电压。
  15. 如权利要求13所述的触控电路,其中,所述触控伴随信号的类型与所述触控驱动信号的类型相同;
    所述触控伴随信号和所述触控驱动信号都为方波信号,或者,所述触控伴随信号和所述触控驱动信号都为弦波信号;
    所述触控伴随信号的幅值与所述触控驱动信号的幅值之间的比值大于或 等于0.05而小于或等于0.3。
  16. 如权利要求13至15中任一权利要求所述的触控电路,其中,所述第a条触控驱动电极为所述触控面板包括的第一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的第二条触控驱动电极至所述触控面板包括的第N+1条触控驱动电极;或者,
    所述第a条触控驱动电极为触控面板包括的最后一条触控驱动电极,所述N条触控驱动电极为所述触控面板包括的倒数第二条触控驱动电极至所述触控面板包括的倒数第N+1条触控驱动电极;或者,
    所述第a条触控驱动电极为所述触控面板包括的除了第一条触控驱动电极与最后一条触控驱动电极之外的触控驱动电极,所述N条触控驱动电极中的一部分设置于所述第a条触控驱动电极之前,所述N条触控驱动电极中的另一部分设置于所述第a条触控驱动电极之后。
  17. 如权利要求13至15中任一权利要求所述的触控电路,其中,还包括比较电路和信号放大电路;
    所述比较电路用于比较所述第a触控感应信号和所述第a背景数据电压信号,得到第a触控感应信号与所述第a背景数据电压信号之间的第a触控差值信号;
    所述信号放大电路用于对所述第a触控差值信号进行放大,得到放大后的第a触控差值信号;
    所述触控检测电路具体用于根据所述放大后的第a触控差值信号进行触控检测。
  18. 如权利要求13至15中任一权利要求所述的触控电路,其中,
    所述触控检测电路还用于检测所述触控面板在所述触控空白时间段内的初始触摸状态,并根据所述触控面板的初始触摸状态进行触控检测;
    所述触控空白时间段设置于相邻的两触控周期之间。
  19. 如权利要求18所述的触控电路,其中,所述触控驱动电路用于在所述触控空白时间段,向所述触控驱动电极或所述触控感应电极提供触控驱动信号;
    所述触控检测电路具体用于在所述触控空白时间段,接收所述触控驱动 电极或所述触控感应电极反馈的触控感应信号,以检测所述触控面板的初始触摸状态。
  20. 一种触控装置,其中,包括如权利要求13至19中任一权利要求所述的触控电路。
PCT/CN2020/117857 2020-09-25 2020-09-25 触控方法、触控电路和触控装置 WO2022061747A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080002094.XA CN114556265B (zh) 2020-09-25 2020-09-25 触控方法、触控电路和触控装置
PCT/CN2020/117857 WO2022061747A1 (zh) 2020-09-25 2020-09-25 触控方法、触控电路和触控装置
US17/422,427 US11797122B2 (en) 2020-09-25 2020-09-25 Touch method, touch circuit and touch device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/117857 WO2022061747A1 (zh) 2020-09-25 2020-09-25 触控方法、触控电路和触控装置

Publications (1)

Publication Number Publication Date
WO2022061747A1 true WO2022061747A1 (zh) 2022-03-31

Family

ID=80844799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117857 WO2022061747A1 (zh) 2020-09-25 2020-09-25 触控方法、触控电路和触控装置

Country Status (3)

Country Link
US (1) US11797122B2 (zh)
CN (1) CN114556265B (zh)
WO (1) WO2022061747A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866228A (zh) * 2009-04-17 2010-10-20 上海天马微电子有限公司 触摸屏、液晶显示装置及触摸屏的驱动方法
US20120162121A1 (en) * 2010-12-22 2012-06-28 Shih Chang Chang Slew rate and shunting control separation
CN104834406A (zh) * 2015-05-29 2015-08-12 京东方科技集团股份有限公司 一种集成触摸功能的显示装置及其驱动方法
CN105373281A (zh) * 2015-12-04 2016-03-02 京东方科技集团股份有限公司 一种触控显示装置及其驱动方法
CN105528110A (zh) * 2015-12-04 2016-04-27 京东方科技集团股份有限公司 一种内嵌式触摸屏、显示装置及其驱动方法
CN106227385A (zh) * 2016-07-28 2016-12-14 武汉华星光电技术有限公司 触控扫描方法以及触控显示面板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955637B (zh) * 2012-11-02 2015-09-09 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
KR102023938B1 (ko) * 2012-12-26 2019-09-23 엘지디스플레이 주식회사 터치 센싱 장치 및 방법
JP2014186535A (ja) * 2013-03-22 2014-10-02 Japan Display Inc タッチセンサ装置、表示装置、及び電子機器
CN104090696B (zh) * 2014-06-19 2018-01-09 京东方科技集团股份有限公司 双面触控的显示面板、装置及驱动方法
CN105355186B (zh) * 2015-12-21 2018-10-30 厦门天马微电子有限公司 驱动电路、触控显示面板及其驱动方法、触控显示装置
CN105786247B (zh) * 2016-02-24 2019-05-03 京东方科技集团股份有限公司 一种触控面板及其驱动方法、显示装置
CN106773176B (zh) * 2017-01-03 2020-02-21 昆山龙腾光电股份有限公司 视角可切换的液晶显示装置及驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866228A (zh) * 2009-04-17 2010-10-20 上海天马微电子有限公司 触摸屏、液晶显示装置及触摸屏的驱动方法
US20120162121A1 (en) * 2010-12-22 2012-06-28 Shih Chang Chang Slew rate and shunting control separation
CN104834406A (zh) * 2015-05-29 2015-08-12 京东方科技集团股份有限公司 一种集成触摸功能的显示装置及其驱动方法
CN105373281A (zh) * 2015-12-04 2016-03-02 京东方科技集团股份有限公司 一种触控显示装置及其驱动方法
CN105528110A (zh) * 2015-12-04 2016-04-27 京东方科技集团股份有限公司 一种内嵌式触摸屏、显示装置及其驱动方法
CN106227385A (zh) * 2016-07-28 2016-12-14 武汉华星光电技术有限公司 触控扫描方法以及触控显示面板

Also Published As

Publication number Publication date
US11797122B2 (en) 2023-10-24
CN114556265A (zh) 2022-05-27
US20220342527A1 (en) 2022-10-27
CN114556265B (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
JP6621496B2 (ja) マルチポイントタッチ表面コントローラ
US9846499B2 (en) Touch panel and touch detection circuit
KR102267365B1 (ko) 다단 증분 스위칭 체계
US12189899B2 (en) Touch sensing with water rejection
KR101963316B1 (ko) 드라이빙 백 현상을 이용한 터치 검출수단, 검출방법 및 터치스크린패널과, 그러한 터치스크린패널을 내장한 표시장치
US20110181519A1 (en) System and method of driving a touch screen
US8395599B2 (en) Low voltage capacitive touchscreen charge acquisition and readout systems, circuits and methods for high system noise immunity
US9703422B2 (en) Sensor-based ESD detection
US9367190B2 (en) Touch recognition method and system for a capacitive touch apparatus
US11513632B2 (en) Touch display device, touch driving circuit and touch driving method thereof
US9910543B2 (en) Apparatus for improving signal-to-noise performance of projected capacitance touch screens and panels
US20170344173A1 (en) Touch-sensitive display device
JP2024016258A (ja) センサ電極からの電磁放射の緩和
WO2022061747A1 (zh) 触控方法、触控电路和触控装置
CN114077363A (zh) 平衡互电容系统和方法
KR20140148364A (ko) 드라이빙 백 현상을 이용한 터치 검출수단, 검출방법 및 터치스크린패널과, 그러한 터치스크린패널을 내장한 표시장치
KR101695231B1 (ko) 드라이빙 백 현상을 이용한 터치 검출수단
TWI588731B (zh) 電子裝置及其驅動方法
KR101179607B1 (ko) 터치 검출 방법 및 터치 검출 장치
US20250103163A1 (en) Touch sensing architecture for small form factors
CN107943353A (zh) 电子装置及其驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20954599

Country of ref document: EP

Kind code of ref document: A1