WO2022054753A1 - Immunological analysis kit for septicemia-causing bacteria - Google Patents
Immunological analysis kit for septicemia-causing bacteria Download PDFInfo
- Publication number
- WO2022054753A1 WO2022054753A1 PCT/JP2021/032629 JP2021032629W WO2022054753A1 WO 2022054753 A1 WO2022054753 A1 WO 2022054753A1 JP 2021032629 W JP2021032629 W JP 2021032629W WO 2022054753 A1 WO2022054753 A1 WO 2022054753A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- monoclonal antibody
- antibody
- analysis kit
- immunological analysis
- sepsis
- Prior art date
Links
- 206010040047 Sepsis Diseases 0.000 title claims abstract description 65
- 238000004458 analytical method Methods 0.000 title claims abstract description 61
- 241000894006 Bacteria Species 0.000 title claims abstract description 59
- 230000001900 immune effect Effects 0.000 title claims abstract description 49
- 208000013223 septicemia Diseases 0.000 title abstract description 10
- 239000002158 endotoxin Substances 0.000 claims abstract description 116
- 229920006008 lipopolysaccharide Polymers 0.000 claims abstract description 114
- 239000012472 biological sample Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims description 79
- 239000000126 substance Substances 0.000 claims description 53
- 238000002372 labelling Methods 0.000 claims description 32
- 239000007790 solid phase Substances 0.000 claims description 31
- 241000588724 Escherichia coli Species 0.000 claims description 25
- 238000002965 ELISA Methods 0.000 claims description 23
- 210000004408 hybridoma Anatomy 0.000 claims description 21
- 238000005259 measurement Methods 0.000 claims description 17
- 241000588747 Klebsiella pneumoniae Species 0.000 claims description 15
- 210000004369 blood Anatomy 0.000 claims description 11
- 239000008280 blood Substances 0.000 claims description 11
- 210000002966 serum Anatomy 0.000 claims description 10
- 210000002381 plasma Anatomy 0.000 claims description 6
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 31
- 241000239218 Limulus Species 0.000 abstract description 30
- 230000035945 sensitivity Effects 0.000 abstract description 25
- 230000009257 reactivity Effects 0.000 abstract description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 26
- 238000001514 detection method Methods 0.000 description 22
- 239000000427 antigen Substances 0.000 description 19
- 102000036639 antigens Human genes 0.000 description 19
- 108091007433 antigens Proteins 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- 239000000523 sample Substances 0.000 description 14
- 238000003118 sandwich ELISA Methods 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 13
- 239000011616 biotin Substances 0.000 description 13
- 229960002685 biotin Drugs 0.000 description 13
- 235000020958 biotin Nutrition 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 12
- 238000005406 washing Methods 0.000 description 12
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 11
- 230000003053 immunization Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 239000002671 adjuvant Substances 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 238000002649 immunization Methods 0.000 description 9
- 206010035664 Pneumonia Diseases 0.000 description 8
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 239000012634 fragment Substances 0.000 description 7
- 238000003018 immunoassay Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 6
- 238000008157 ELISA kit Methods 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 241000588748 Klebsiella Species 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 239000012327 Ruthenium complex Substances 0.000 description 5
- 239000012620 biological material Substances 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 239000006249 magnetic particle Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- 108090001008 Avidin Proteins 0.000 description 4
- 108010090804 Streptavidin Proteins 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000004816 latex Substances 0.000 description 4
- 229920000126 latex Polymers 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 101710099705 Anti-lipopolysaccharide factor Proteins 0.000 description 3
- 241000193830 Bacillus <bacterium> Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000012089 stop solution Substances 0.000 description 3
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 2
- 108010039206 Biotinidase Proteins 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 241001529572 Chaceon affinis Species 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 206010029719 Nonspecific reaction Diseases 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 206010040070 Septic Shock Diseases 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 210000000683 abdominal cavity Anatomy 0.000 description 2
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 2
- 210000000628 antibody-producing cell Anatomy 0.000 description 2
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000007910 cell fusion Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011984 electrochemiluminescence immunoassay Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 239000007764 o/w emulsion Substances 0.000 description 2
- 230000008816 organ damage Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000012887 quadratic function Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000036303 septic shock Effects 0.000 description 2
- JJGWLCLUQNFDIS-GTSONSFRSA-M sodium;1-[6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCNC(=O)CCCC[C@H]1[C@H]2NC(=O)N[C@H]2CS1 JJGWLCLUQNFDIS-GTSONSFRSA-M 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- QZTKDVCDBIDYMD-UHFFFAOYSA-N 2,2'-[(2-amino-2-oxoethyl)imino]diacetic acid Chemical compound NC(=O)CN(CC(O)=O)CC(O)=O QZTKDVCDBIDYMD-UHFFFAOYSA-N 0.000 description 1
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- AJTVSSFTXWNIRG-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanesulfonic acid Chemical compound OCC[NH+](CCO)CCS([O-])(=O)=O AJTVSSFTXWNIRG-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 1
- NUFBIAUZAMHTSP-UHFFFAOYSA-N 3-(n-morpholino)-2-hydroxypropanesulfonic acid Chemical compound OS(=O)(=O)CC(O)CN1CCOCC1 NUFBIAUZAMHTSP-UHFFFAOYSA-N 0.000 description 1
- 239000007991 ACES buffer Substances 0.000 description 1
- 239000007988 ADA buffer Substances 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 239000007992 BES buffer Substances 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 206010065929 Cardiovascular insufficiency Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 241000028466 Escherichia coli O111 Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- DBXNUXBLKRLWFA-UHFFFAOYSA-N N-(2-acetamido)-2-aminoethanesulfonic acid Chemical compound NC(=O)CNCCS(O)(=O)=O DBXNUXBLKRLWFA-UHFFFAOYSA-N 0.000 description 1
- JOCBASBOOFNAJA-UHFFFAOYSA-N N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid Chemical compound OCC(CO)(CO)NCCS(O)(=O)=O JOCBASBOOFNAJA-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000007990 PIPES buffer Substances 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 206010035717 Pneumonia klebsiella Diseases 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000007994 TES buffer Substances 0.000 description 1
- -1 TMB Chemical compound 0.000 description 1
- 241001416177 Vicugna pacos Species 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940024546 aluminum hydroxide gel Drugs 0.000 description 1
- SMYKVLBUSSNXMV-UHFFFAOYSA-K aluminum;trihydroxide;hydrate Chemical compound O.[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-K 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 230000003497 anti-pneumococcal effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical group 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 210000004908 prostatic fluid Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
Definitions
- the present invention relates to an analysis kit for sepsis-causing bacteria.
- Sepsis means a condition in which an infectious disease causes serious organ damage.
- the prognosis of sepsis varies depending on the pathogenic microorganism, background factors of the infected patient, and the quality of intervention. Although it cannot be said unconditionally, it is estimated that 100,000 people die in one year in Japan.
- LPS lipopolysaccharide
- a Limulus reagent using the blood coagulation reaction of horseshoe crab is used (Patent Document 1).
- Limulus reagents have been used to diagnose or assist in the diagnosis of sepsis.
- the method using the Limulus reagent requires blood of horseshoe crab, which is a natural resource, and in addition to the concern of resource depletion, it is costly to maintain a certain quality.
- Another drawback of this method is that it tends to vary because it is a method that requires a plurality of steps.
- Non-Patent Document 1 an ELISA kit (https://www.mybiosource.com/human-elisa-kits/klebsiella/9310934) for measuring LPS constituting the outer cell membrane of Gram-negative bacteria has been developed (Non-Patent Document 1). ..
- the sensitivity of these kits was inferior to that of the Limulus reagent, making it difficult to use as a substitute for the Limulus reagent.
- An object of the present invention is to provide an immunological analysis kit for sepsis-causing bacteria, which has a sensitivity equal to or higher than that of a Limulus reagent and can detect sepsis-causing bacteria with a simple operation.
- the present inventors have diligently studied to solve the above-mentioned problems, and have created an immunological analysis kit capable of detecting the lipopolysaccharide even if the biological sample contains a very small amount of lipopolysaccharide derived from the causative bacterium of sepsis. .. Then, it was confirmed that this kit was superior in sensitivity to the Limulus reagent, and the present invention was completed. Specifically, the lower limit of measurement of the Limulus reagent is 0.35 pg / mL for lipopolysaccharide derived from Escherichia coli O111, according to the package insert.
- the immunological analysis kit of the present invention can detect even lower concentrations of lipopolysaccharide.
- the present invention is as follows. ⁇ 1> An immunological analysis kit for detecting sepsis-causing bacteria in a biological sample. Contains monoclonal antibodies that react with lipopolysaccharides derived from sepsis-causing bacteria The immunological analysis kit in which the monoclonal antibody detects sepsis-causing bacteria of 0.023 pg / mL or more in a biological sample.
- ⁇ 2> The immunological analysis kit according to ⁇ 1>, wherein the biological sample is a biological sample containing lipopolysaccharide derived from a sepsis-causing bacterium of 0.023 pg / mL or more.
- the biological sample is a biological sample containing lipopolysaccharide derived from a sepsis-causing bacterium of 0.023 pg / mL or more.
- the causative bacterium for sepsis is Klebsiella pneumoniae or Escherichia coli.
- ⁇ 4> The immunological analysis kit according to any one of ⁇ 1> to ⁇ 3>, wherein the monoclonal antibody is a monoclonal antibody that specifically reacts with lipopolysaccharide derived from a sepsis-causing bacterium.
- the monoclonal antibody includes a first monoclonal antibody and a second monoclonal antibody. It contains a solid phase on which the first monoclonal antibody is immobilized and a labeling substance to which the second monoclonal antibody is bound, or is labeled with the solid phase on which the first monoclonal antibody is immobilized and the second monoclonal antibody.
- a secondary antibody against the second monoclonal antibody to which the substance was bound and Including The immunological analysis kit according to any one of ⁇ 1> to ⁇ 4>, wherein the first monoclonal antibody and the second monoclonal antibody are the same type of monoclonal antibody.
- ⁇ 6> The immunological analysis kit according to any one of ⁇ 1> to ⁇ 5>, wherein the biological sample is blood, plasma, or serum.
- ⁇ 7> The immunological analysis kit according to any one of ⁇ 1> to ⁇ 6>, which uses an ELISA method as a measurement principle.
- ⁇ 8> The immunological analysis kit according to any one of ⁇ 1> to ⁇ 7>, wherein the monoclonal antibody is an IgM antibody.
- ⁇ 9> Either ⁇ 1> to ⁇ 8>, wherein the monoclonal antibody is a monoclonal antibody produced by a hybridoma of accession number NITE BP-03241 or a monoclonal antibody produced by a hybridoma of accession number NITE BP-03242.
- an immunological analysis kit for sepsis-causing bacteria which exhibits superior sensitivity to Limulus reagent and can detect sepsis-causing bacteria with a simple operation.
- biological sample examples include solid tissues and body fluids derived from living organisms (organisms), and it is preferable to use body fluids.
- the biological sample in the present invention is more preferably blood, serum, plasma, urine, saliva, sputum, tears, ear leak, or prostatic fluid, more preferably blood, serum or plasma, and even more preferably septicemia. Blood, serum or plasma of the subject suspected of having. Living organisms or subjects include humans or animals (eg, monkeys, dogs, cats, mice, guinea pigs, rats, hamsters, etc.) and are preferably humans.
- the biological sample may be in vivo or in vitro.
- the term "sepsis-causing bacterium” means a bacterium that causes sepsis, such as pneumoniae, streptococcus, staphylococcus, Escherichia coli, and Pseudomonas aeruginosa.
- the term "sepsis” herein includes both sepsis and septic shock. Sepsis refers to a condition in which an infection causes serious organ damage. Septic shock refers to a condition in which acute circulatory insufficiency causes severe cell damage and metabolic disorders that can increase mortality.
- the "sepsis-causing bacterium” is preferably Klebsiella pneumoniae or Escherichia coli.
- pneumonia pneumoniae means Klebsiella pneumoniae, which is a gram-negative bacillus.
- Escherichia coli means Escherichia coli, which is a gram-negative bacillus.
- the reactivity is similar to that of the Limulus reagent, and therefore, it can be replaced with the Limulus reagent actually used in the medical field at present.
- the present invention has an advantage that lipopolysaccharide derived from a sepsis-causing bacterium can be detected with higher sensitivity than the Limulus reagent.
- lipopolysaccharide means a complex of a lipid and a polysaccharide linked by a covalent bond.
- lipopolysaccharide may be simply referred to as LPS (lipopolysaccharide).
- LPS lipopolysaccharide
- Lipopolysaccharide is present on the outer membrane of Gram-negative bacteria.
- a membrane structure is structurally formed so that lipid A, which is a lipid portion, is buried in the outer membrane, and the lipid A is mediated by oligosaccharide regions called cores (Outer Core and Inner Core).
- the O antigen which is a polysaccharide chain
- the antibody used in the present invention can recognize both lipopolysaccharide not detached from the cell wall of the sepsis-causing bacterium and lipopolysaccharide detached from the cell wall of the sepsis-causing bacterium.
- Sandwich analysis often uses two types of antibodies that recognize different epitopes in the solid phase antibody and the labeled antibody.
- the monoclonal antibody used in the present invention has the advantage that one type can form a sandwich system.
- the term "one type” or "same type" with respect to a monoclonal antibody means a monoclonal antibody that recognizes the same epitope.
- the monoclonal antibody used in the present invention is preferably the same antibody, i.e., a monoclonal antibody produced from the same hybridoma.
- the “sandwich system” means an experimental system in which an antigen is sandwiched between two types of antibodies, an antibody for capture (solid phase antibody) and an antibody for detection, to detect the antigen.
- a labeling substance is bound to the antibody for detection, and the detection target can be analyzed by measuring the intensity of the signal derived from the labeling substance.
- the detection antibody may bind directly to the labeling substance or indirectly to the labeling substance via the secondary antibody.
- the monoclonal antibody used in the present invention is a monoclonal antibody that reacts with lipopolysaccharide derived from septicemia-causing bacteria, preferably a monoclonal antibody that specifically reacts with lipopolysaccharide derived from septicemia-causing bacteria, and is more preferably contracted.
- an antibody that reacts with LPS derived from pneumonia rod may be referred to as an anti-Pneumococcal LPS antibody
- an antibody that reacts with LPS derived from Escherichia coli may be referred to as an anti-E. coli LPS antibody.
- No reaction between the antibody used in the present invention and a certain compound means that the antibody used in the present invention does not substantially react with a certain compound.
- Biacore® T100 or T200 is used based on the above SPR method, and the antibody used in the present invention is immobilized. Measurements can be made. It can be confirmed that "substantially no reaction” can be confirmed by a method or means well known to those skilled in the art other than the above SPR method.
- the monoclonal antibody used in the immunological analysis kit of the present invention contains a fragment having the function of the monoclonal antibody as long as the effect of the present invention can be obtained.
- a functional fragment containing the Fab portion of the monoclonal antibody obtained by enzymatic digestion of the monoclonal antibody a functional fragment containing the Fab portion of the monoclonal antibody produced by gene recombination, and a phage display method. Included are functional fragments containing scFv.
- the antibody used in the immunological analysis kit of the present invention is a phosphate buffered saline containing heat-killed cells derived from sepsis-causing bacteria such as pneumonia rod, pyogenic, and / or Escherichia coli as an antigen (immunogen). It can be produced by dissolving it in a solvent such as water and administering this solution to an animal to immunize it. If necessary, an appropriate adjuvant may be added to the solution, and then the emulsion may be used for immunization.
- a general-purpose adjuvant such as a water-in-oil emulsion, a water-in-oil-in-water emulsion, an oil-in-water emulsion, liposomes, and aluminum hydroxide gel can be used.
- a protein derived from a biological component, a peptide substance, or the like may be used.
- Freund's incomplete adjuvant or Freund's complete adjuvant can be preferably used.
- the route of administration, dose, and timing of administration of the adjuvant are not particularly limited, but it is desirable to appropriately select the adjuvant so as to enhance the desired immune response in the animal immunized with the antigen.
- the type of animal used for immunization is not particularly limited, but mammals are preferable, and for example, mice, rats, cows, rabbits, goats, sheep, alpaca and the like can be used, and more preferably mice or rats can be used.
- Animal immunization may be performed according to a general method. Immunization can be performed, for example, by injecting a solution of the antigen, preferably a mixture with an adjuvant, subcutaneously, intradermally, intravenously or intraperitoneally in the animal. Since the immune response generally depends on the type and strain of the animal to be immunized, it is desirable to set the immune schedule appropriately according to the animal used. Antigen administration is preferably repeated several times after the first immunization.
- the following operations can be continuously performed, but the procedure is not limited to this. Since the method for producing the monoclonal antibody itself is well known and widely used in the art, those skilled in the art can easily produce the antibody used in the immunological analysis kit of the present invention by using the above-mentioned antigen. (See, for example, Antibodies, A Laboratory Manual (Cold Spring Harbor Laboratory Press, (1988), Chapter 6 and the like).
- spleen cells or lymph node cells which are antibody-producing cells
- a hybridoma can be produced by fusing these cells with a cell line derived from myeloma having high proliferative ability. It is preferable to use cells having a high antibody-producing ability (quality / quantity) for cell fusion, and it is preferable that the cell line derived from myeloma is compatible with the animal from which the antibody-producing cells to be fused are derived.
- Cell fusion can be performed according to a method known in the art, and for example, a polyethylene glycol method, a method using Sendai virus, a method using an electric current, or the like can be adopted.
- the resulting hybridoma can be propagated according to conditions general in the art.
- a desired hybridoma can be selected while confirming the properties of the antibody produced.
- Cloning of hybridomas can be performed by well-known methods such as the limiting dilution method and the soft agar method.
- Hybridoma selection can also be done efficiently at the selection stage, taking into account the conditions used for actual measurement of the antibody produced. For example, an antibody obtained by immunizing an animal is reacted with a lipopolysaccharide derived from a septic disease-causing bacterium immobilized on a solid phase in the presence of a compound whose cross-reactivity is desired to be confirmed. Then, by comparing with the reactivity in the absence of the compound for which cross-reactivity is desired to be confirmed, a hybridoma producing a desired antibody can be selected more efficiently.
- the antibody obtained by immunizing an animal is reacted with lipopolysaccharide derived from a septic disease-causing bacterium immobilized on a solid phase in the presence of a component derived from a biological sample, and in the absence of the component derived from the biological sample.
- Hybridomas that produce the desired antibody can also be selected more efficiently by comparison with reactivity.
- the hybridoma selected is desired by assaying the binding ability of the produced antibody to the lipopolysaccharide derived from the bacterial cause of blood loss by using a method such as ELISA method, RIA method, or fluorescent antibody method. It can be confirmed whether or not a monoclonal antibody having properties is produced. By mass-culturing the hybridomas selected as described above, a monoclonal antibody having desired characteristics can be produced.
- the method of mass culturing is not particularly limited, but for example, a method of appropriately culturing a hybridoma in a medium to produce a monoclonal antibody in the medium, or a method of injecting a hybridoma into the abdominal cavity of a mammal to proliferate the antibody in ascites.
- a method for producing Purification of the monoclonal antibody shall be carried out by appropriately combining the above-mentioned methods for purifying the antibody from the antiserum, for example, DEAE anion exchange chromatography, affinity chromatography, sulfur fractionation method, PEG fractionation method, ethanol fractionation method and the like. Can be done.
- the antibody used in the immunological analysis kit of the present invention it is also possible to use a fragment of an antibody having an antigen-antibody reaction activity in addition to the entire antibody molecule.
- the antibody fragment is preferably a functional fragment, and examples thereof include F (ab') 2 , Fab', and scFv.
- These fragments can be obtained by treating the antibody obtained as described above with a proteolytic enzyme (for example, pepsin or papain), or by cloning the DNA of the antibody and expressing it in a culture system using Escherichia coli or yeast.
- a proteolytic enzyme for example, pepsin or papain
- the antibody in the immunological analysis kit of the present invention, can be used as a solid phase antibody immobilized on an insoluble carrier. Further, in the immunological analysis kit of the present invention, the antibody can be used as a labeled antibody labeled with a labeling substance well known to those skilled in the art described later. For example, a solid phase antibody by physically adsorbing a monoclonal antibody to an insoluble carrier, chemically binding (may be via an appropriate spacer), or binding via an antibody bound to an insoluble carrier. Can be manufactured.
- an insoluble carrier made of a polymer base material such as polystyrene resin, an inorganic base material such as glass, or a polysaccharide base material such as cellulose or agarose can be used.
- the shape of the insoluble carrier is not particularly limited, and any shape such as a plate (for example, a microplate or a membrane), beads or particles (for example, latex particles or magnetic particles), or a tubular shape (for example, a test tube) can be selected. ..
- labeling substance for producing a labeled antibody include enzymes, fluorescent substances, chemical luminescent substances, biotin, avidin, radioisotopes, colloidal gold particles, colored latex and the like.
- a method for binding the labeling substance to the antibody a method such as a glutaraldehyde method, a maleimide method, a pyridyl disulfide method, or a periodic acid method, which can be used by those skilled in the art, can be used.
- the types of the solid phase antibody and the labeled antibody, and the method for producing them are not limited to the above-mentioned examples of the binding method.
- an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (ALP)
- HRP horseradish peroxidase
- OPD O-phenylenediamine
- enzyme activity can be measured using 3,3', 5,5'-tetramethylbenzidine (TMB), p-nitrophenyl phosphate in the case of ALP, etc.).
- TMB 3,3', 5,5'-tetramethylbenzidine
- avidin or enzyme-modified avidin can be reacted.
- biotin or HRP it is preferable to use biotin or HRP as a labeling substance, and it is more preferable to use biotin.
- HRP-labeled streptavidin can be further used.
- the "insoluble carrier” means a substance in which an antibody or the like that recognizes the detected substance is immobilized on the detected substance. Examples thereof include, but are not limited to, immunoplates, membranes, latex particles, magnetic particles and the like.
- the term “insoluble carrier” is referred to as “solid phase”, and the state in which an antigen or antibody is physically or chemically supported on an insoluble carrier, or the state in which the carrier is supported is referred to as "fixation” or “immobilization”.
- the terms “analysis”, “detection”, or “measurement” include meanings such as proof and / or quantification of the presence of lipopolysaccharide derived from a septic disease-causing bacterium.
- the immunological analysis kit of the present invention includes electrochemiluminescence immunoassay (ECL method), enzyme immunoassay (ELISA method), latex aggregation immunoassay (LTIA method), chemiluminescence immunoassay, and immunofluorescence method. , And analysis kits using high performance liquid chromatography (HPLC), but are not limited to these.
- the immunological analysis kit of the present invention is an electrochemical luminescence immunoassay (ECL method), a high performance liquid chromatograph method (HPLC), or an enzyme-linked immunosorbent assay (ELISA method) in consideration of measurement sensitivity and ease of operation. ) Is preferable, and it is more preferable that the analysis kit is for sandwich ELISA.
- the order of adding the monoclonal antibody and the lipopolysaccharide to the analysis system may be any first as long as the effect of the present invention can be obtained.
- the kit provided by the present invention preferably comprises (a) a solid phase such as a plate on which the first monoclonal antibody is immobilized, and (b) a second monoclonal antibody labeled with a labeling substance, or the present invention.
- the kit provided by is preferably comprising a solid phase on which the first monoclonal antibody is immobilized, a second monoclonal antibody, and a secondary antibody against the second monoclonal antibody to which a labeling substance is bound.
- the first monoclonal antibody and the second monoclonal antibody can be the same type of monoclonal antibody.
- the same type of monoclonal antibody means a monoclonal antibody that recognizes the same epitope.
- the monoclonal antibody used in the kit of the present invention is preferably the same antibody, i.e., a monoclonal antibody produced from the same hybridoma.
- the solid phase on which the first monoclonal antibody is immobilized captures the lipopolysaccharide derived from the septic disease-causing bacterium in the biological sample to form the lipopolysaccharide-antibody complex.
- the second monoclonal antibody labeled with the labeling substance reacts with this lipopolysaccharide-antibody complex to form a sandwich.
- kits such as a method for immobilizing the first monoclonal antibody on the solid phase and a method for labeling the second monoclonal antibody with a labeling substance, are described in the methods described in the present specification.
- methods well known to those skilled in the art can be used without limitation.
- the first monoclonal antibody and the second monoclonal antibody are not particularly limited as long as they are monoclonal antibodies that react with lipopolysaccharide derived from the causative bacterium of sepsis.
- the labeling substance for example, a labeling substance known to those skilled in the art such as a fluorescent substance, a chemical luminescent substance, biotin, and avidin can be used.
- the binding method between the labeling substance and the antibody can be appropriately selected from known binding methods depending on the labeling substance and the antibody to be used, for example, glutaraldehyde method, maleimide method, pyridyl disulfide method, or periodic acid.
- a method such as an acid method can be used. It is preferable to use biotin or HRP as the labeling substance, and it is more preferable to use biotin.
- the immunological analysis kit of the present invention uses a monoclonal antibody that reacts with lipopolysaccharide derived from Pseudomonas aeruginosa but does not react with lipopolysaccharide derived from Pseudomonas aeruginosa and lipopolysaccharide derived from Escherichia coli, a biological sample is used.
- the measured value is lower than the cutoff value, it can be determined that the subject does not have sepsis due to the causative agent of sepsis. If the measured value is higher than the cutoff value, it can be determined that the subject has sepsis derived from the sepsis-causing bacterium.
- the immunological analysis kit of the present invention may contain a buffer component (buffer solution) in addition to the above.
- the buffer solution that can be used in the present invention may be any commonly used buffer, such as tris-hydrogen, boric acid, phosphoric acid, acetic acid, citric acid, succinic acid, phthalic acid, glutaric acid, and maleic acid. , Glycin and salts thereof, and Gut buffers such as MES, Bis-Tris, ADA, PIPES, ACES, MOPSO, BES, MOPS, TES, HEPES and the like.
- the immunological analysis kit of the present invention contains saccharides, proteins and the like, if necessary, for the purpose of improving measurement sensitivity and suppressing non-specific reactions.
- components that promote antigen-antibody reactions include polymers such as polyethylene glycol, polyvinylpyrrolidone, and phospholipid polymers), proteins and peptides (albumin, casein, etc.), amino acids, sugars (sucrose, cyclodextrin, etc.), preservatives. (Sodium azide, ProClin300, etc.) can be mentioned.
- the reagent used in the immunological analysis kit of the present invention can be adjusted to an appropriate concentration and used by those skilled in the art.
- the immunological analysis kit of the present invention may also include instructions for use, stabilizers, reaction vessels, pretreatment liquids, sample extracts and the like.
- the electrochemiluminescence immunoassay means a method of measuring the amount of a substance to be detected by causing a labeled substance to emit light by energization and detecting the amount of the light emitted.
- ECL method a ruthenium complex can be used as a labeling substance. An electrode is placed on a solid phase (microplate, etc.) and radicals are generated on the electrode to make the ruthenium complex excited and emit light. Then, the amount of light emitted from this ruthenium complex can be detected.
- an electrochemical luminescence immunoassay is performed using a first monoclonal antibody as a solid phase antibody and a second monoclonal antibody that recognizes an epitope different from the first monoclonal antibody as a labeled antibody. Can be done.
- an antibody that recognizes the same epitope can be used for both the first monoclonal antibody and the second monoclonal antibody.
- the immunological analysis kit of the present invention can include (A) and (B) below.
- A Labeling reagent containing a conjugate of a first monoclonal antibody (labeled antibody) that reacts with lipopolysaccharide derived from septicemia-causing bacteria and an electrochemical luminescent substance (for example, ruthenium complex, etc.), and (B) derived from septicemia-causing bacteria.
- Monoclonal antibodies that recognize the same epitope can be used for both the first monoclonal antibody and the second monoclonal antibody.
- a biological sample is added to the magnetic particles on which a solid phase antibody is immobilized and reacted, and then the biological sample is removed and washed. Subsequently, a conjugate of the labeled antibody and an electrochemically chemiluminescent substance (for example, a ruthenium complex or the like) is added and reacted. After washing the magnetic particles, electric energy is applied to emit light, and the amount of light emitted from the labeling substance is measured, whereby lipopolysaccharide derived from the causative bacterium of sepsis can be analyzed.
- an electrochemically chemiluminescent substance for example, a ruthenium complex or the like
- an enzyme-linked immunosorbent assay (ELISA method) using an enzyme label is also preferable because the target can be measured easily and quickly.
- ELISA means a method of capturing an antigen or an antibody, which is a substance to be detected, contained in a sample by using an antibody or an antigen against the substance to be detected, and then detecting the substance by using an enzymatic reaction. do.
- sandwich ELISA is preferable.
- the sandwich ELISA means an ELISA in which an antigen is sandwiched between two types of antibodies, an antibody for capture (solid phase antibody) and an antibody for detection, to detect and quantify the antigen.
- an insoluble carrier on which a first monoclonal antibody (solid phase antibody) that recognizes a substance to be detected is immobilized and a second monoclonal antibody (labeled antibody) labeled with a labeling substance are used.
- the insoluble carrier is preferably a plate (immunoplate).
- an enzyme immunoassay ELISA method
- ELISA method can be performed using a first monoclonal antibody as a solid phase antibody and a second monoclonal antibody that recognizes an epitope different from the first monoclonal antibody as a labeled antibody.
- the immunological analysis kit of the present invention can include the following (A) and (B).
- a biological sample is added to an insoluble carrier on which a solid phase antibody is immobilized, and then the sample is incubated, and the sample is removed and washed.
- the labeling reagent is added and then incubated, and the substrate is added to develop color.
- the substance to be detected can be analyzed by measuring the color development using a plate reader or the like. It is preferable to use biotin as the labeling substance, and when biotin is used, HRP-labeled streptavidin can be further used.
- the analysis kit of the present invention can include the following (A) to (D).
- (A) Second monoclonal antibody as the primary antibody (B) Solid phase (C) labeled substance (HRP, ALP, etc.) on which the first monoclonal antibody is immobilized, antibody to the second monoclonal antibody (D) Labeled substance Substrate (OPD, TMB, or p-nitrophenyl phosphate, etc.)
- B Solid phase
- C labeled substance on which the first monoclonal antibody is immobilized
- antibody to the second monoclonal antibody (D) Labeled substance Substrate (OPD, TMB, or p-nitrophenyl phosphate, etc.)
- OPD Labeled substance Substrate
- a primary antibody secondary monoclonal antibody
- an enzyme-labeled secondary antibody is further added for incubation.
- the substrate is added to develop the color.
- Test Example 1 Method for producing a monoclonal antibody used in the present invention 1. Acquisition of antibody Heat-treated cells of Escherichia coli and Pseudomonas aeruginosa diluted with PBS or heat-treated cells of Pneumonia bacillus, Escherichia coli, and Pseudomonas aeruginosa diluted with PBS were placed in the abdominal cavity of a rat (F344 / Jc1, ⁇ ). I was immunized every week. Test blood was collected 10 weeks after the initial immunization (after 10 immunizations), and the antibody titer in the blood was confirmed for each.
- the antibody titer in blood was evaluated by an antigen solid-phase ELISA using LPS derived from each of the main causative bacteria of sepsis, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae.
- the specific procedure of the antigen solid phase ELISA is as follows.
- HRP-labeled goat anti-rat IgG (H + L) antibody diluted 17,000 times with an antibody diluted solution was dispensed (50 ⁇ L / well) and allowed to stand at room temperature for 1 hour.
- the OPD color-developing solution was dispensed (50 ⁇ L / well) and reacted at room temperature for 10 minutes.
- the stop solution was dispensed (50 ⁇ L / well) and the reaction was stopped. The absorbance at a wavelength of 492 nm was measured with a plate reader.
- An anti-rat IgG or anti-rat IgM antibody solution diluted with PBS was dispensed into a 96-well plate for ELISA (5 ⁇ g / mL, 50 ⁇ L / well) and allowed to stand at room temperature for 2 hours or 4 ° C overnight. -After washing 3 times (400 ⁇ L / well), the blocking solution was dispensed (100 ⁇ L / well) and allowed to stand at room temperature for 1 hour or at 4 ° C. overnight. -After removing the blocking solution, the antibody solution diluted to each concentration was dispensed (50 ⁇ L / well) and allowed to stand at room temperature for 1 hour.
- Example 1 Evaluation of sensitivity of an experimental system using the monoclonal antibody obtained in Test Example 1 Whether a sandwich system can be formed with the same antibody in each of S28201R and S2803R was evaluated by sandwich ELISA.
- the specific procedure of the sandwich ELISA is as follows.
- An antibody solution (S28201R or S28203R) diluted with PBS was dispensed (5 ⁇ g / mL, 50 ⁇ L / well) into a 96-well plate for ELISA and allowed to stand at room temperature for 2 hours or 4 ° C. overnight.
- the same operation was performed using a rat IgM monoclonal antibody under control.
- the blocking solution was dispensed (100 ⁇ L / well) and allowed to stand at room temperature for 1 hour or at 4 ° C. overnight.
- LPS diluted to each concentration was dispensed (50 ⁇ L / well) and allowed to stand at room temperature for 1 hour.
- biotin-labeled antibody S28201R or S28023R
- EZ-LinkTM Sulfo-NHS-LC-Biotin Thermo Fisher Scientific
- HRP-labeled streptavidin was dispensed (0.2 ⁇ g / mL, 50 ⁇ L / well) and allowed to stand at room temperature for 30 minutes.
- the OPD color-developing solution was dispensed (50 ⁇ L / well) and reacted at room temperature for 10 minutes.
- the stop solution was dispensed (50 ⁇ L / well) and the reaction was stopped.
- the absorbance at a wavelength of 492 nm was measured with a plate reader.
- the results are shown in Tables 1 and 2, and FIGS. 2 and 3. As a result, it was shown that it is possible to form a sandwich system.
- the S28201R sandwich ELISA system was able to detect the antigen up to a concentration of about 2 ng / mL (display value).
- the S28203R sandwich ELISA system was able to detect the antigen up to a concentration of about 30 ng / mL (displayed value).
- the anti-Klebsiella pneumoniae LPS antibody (S28201R) can be detected up to a concentration of 0.011 pg / mL
- the anti-E. coli LPS antibody (S28203R) can be detected up to a concentration of 0.22 pg / mL. rice field.
- Example 3 Measurement of LPS in a biological sample Whether or not the produced kit can detect LPS present in a biological sample, and the minimum detection limit at that time were calculated. The procedure was the same as in Example 2 except that the commercially available LPS was diluted with the serum of a healthy person. The same sample was also measured with Limulus HS-T Single Test Wako to confirm whether LPS could be detected. The results are shown in Tables 9 and 10 and FIGS. 8 and 9.
- the prepared kit can detect LPS in a biological sample with the same sensitivity as LPS in PBS.
- the anti-Klebsiella pneumoniae LPS antibody (S28201R) was able to detect LPS in a biological sample up to a concentration of 0.023 pg / mL, which was more than 200 times more sensitive than the Limulus reagent.
- the anti-E. coli LPS antibody (S28203R) was able to detect LPS up to a concentration of 0.10 pg / mL, 94 times more sensitive than the Limulus reagent.
- the kit prepared in this example can detect Escherichia coli LPS with a sensitivity 5 times or more higher than that of ELISA using a commercially available anti-LPS antibody.
- the minimum detection limit was calculated by the 2.6SD method. Specifically, when "0 pg / mL O.D. + 2.6 SD" ⁇ "O.D.-2.6 SD of each sample", it is judged that LPS at that concentration can be detected. The minimum detection limit was set to the minimum LPS concentration in which all the samples having a certain concentration or higher satisfy the above conditions. The results are shown in Table 12.
- the kit prepared in this example can detect Klebsiella pneumoniae LPS with 2000 times or more higher sensitivity than the commercially available LPS detection ELISA kit. If the criteria described in the kit manual for positive judgment with a sensitivity of OD + 0.15 or higher of the Negative Control are adopted, the sample measured this time is negative judgment, that is, undetectable at any concentration. Is. Therefore, it was found that the kit prepared in this example can detect Klebsiella pneumoniae LPS with higher sensitivity even when the determination method is changed.
- an immunological analysis kit for sepsis-causing bacteria which has the same reactivity as the Limulus reagent and shows superior sensitivity to the Limulus reagent.
- Hybridoma that produces antibody number S2803R Name and address of the depositary institution that deposited the biological material Independent Administrative Institution Product Evaluation Technology Infrastructure Organization 2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan (Postal code 292-0818) Date of deposit of biomaterials to Loi's depositary agency July 3, 2nd year Deposit number NITE BP-03242 assigned by Hai's depositary agency for deposits
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Provided is an immunological analysis kit for septicemia-causing bacteria, wherein the immunological analysis kit exhibits the same reactivity as Limulus reagent and exhibits a better sensitivity than Limulus reagent. The problem can be solved by an immunological analysis kit for detecting septicemia-causing bacteria in a biological sample, wherein the immunological analysis kit contains monoclonal antibody that reacts with lipopolysaccharide originating with the septicemia-causing bacteria and the monoclonal antibody detects septicemia-causing bacteria present at 0.023 pg/mL or more in a biological sample.
Description
本発明は、敗血症原因細菌の分析キットに関する。
The present invention relates to an analysis kit for sepsis-causing bacteria.
敗血症は、感染症によって重篤な臓器障害が引き起こされる状態を意味する。敗血症の予後は病原微生物、感染した患者の背景因子、及び治療介入の質により様々である。一概にはいえないが、日本においては1年で10万人が死亡していると推定されている。
Sepsis means a condition in which an infectious disease causes serious organ damage. The prognosis of sepsis varies depending on the pathogenic microorganism, background factors of the infected patient, and the quality of intervention. Although it cannot be said unconditionally, it is estimated that 100,000 people die in one year in Japan.
敗血症の原因菌となるグラム陰性菌の細胞外膜を構成するLPS(リポ多糖)を測定する方法として、カブトガニの血液凝固反応を利用したリムルス試薬が用いられている(特許文献1)。リムルス試薬は、敗血症の診断又は診断の補助に用いられている。しかしながら、リムルス試薬を使用する方法は、天然資源であるカブトガニの血液を必要としており、資源の枯渇が懸念されることに加え、一定の品質を保つことにコストがかかる。また、複数工程を必要とする用手法であるためバラつきが出やすいこともこの方法の欠点として挙げられる。
As a method for measuring LPS (lipopolysaccharide) constituting the outer cell membrane of Gram-negative bacteria that cause sepsis, a Limulus reagent using the blood coagulation reaction of horseshoe crab is used (Patent Document 1). Limulus reagents have been used to diagnose or assist in the diagnosis of sepsis. However, the method using the Limulus reagent requires blood of horseshoe crab, which is a natural resource, and in addition to the concern of resource depletion, it is costly to maintain a certain quality. Another drawback of this method is that it tends to vary because it is a method that requires a plurality of steps.
近年、グラム陰性菌の細胞外膜を構成するLPSを測定するELISAキット(https://www.mybiosource.com/human-elisa-kits/klebsiella/9310934)が開発されている(非特許文献1)。しかしながら、これらのキットの感度は、リムルス試薬と比較して劣っており、リムルス試薬の代替として使用するには困難であった。
In recent years, an ELISA kit (https://www.mybiosource.com/human-elisa-kits/klebsiella/9310934) for measuring LPS constituting the outer cell membrane of Gram-negative bacteria has been developed (Non-Patent Document 1). .. However, the sensitivity of these kits was inferior to that of the Limulus reagent, making it difficult to use as a substitute for the Limulus reagent.
本発明の課題は、リムルス試薬と同等以上の感度を有し、簡便な操作で敗血症原因細菌を検出できる、敗血症原因細菌の免疫学的分析キットを提供することである。
An object of the present invention is to provide an immunological analysis kit for sepsis-causing bacteria, which has a sensitivity equal to or higher than that of a Limulus reagent and can detect sepsis-causing bacteria with a simple operation.
本発明者らは上記課題を解決するために鋭意検討し、生体試料が非常に微量の敗血症原因細菌由来のリポ多糖を含有する場合でも、該リポ多糖を検出できる免疫学的分析キットを作出した。そして、このキットが、リムルス試薬よりも感度が優れることを確認して、本発明を完成するに至った。具体的には、リムルス試薬の測定下限は、添付文書によると、大腸菌O111由来のリポ多糖で0.35pg/mLである。ただし、測定用サンプルの調整の段階で検体が10倍希釈されるため、実質の測定下限は3.5pg/mLである。一方、本発明の免疫学的分析キットでは、さらに低濃度で含まれるリポ多糖まで検出可能である。
具体的に、本発明は以下の通りである。
<1>生体試料中の敗血症原因細菌を検出するための免疫学的分析キットであって、
敗血症原因細菌由来のリポ多糖と反応するモノクローナル抗体を含み、
前記モノクローナル抗体が、生体試料中の0.023pg/mL以上の敗血症原因細菌を検出する、前記免疫学的分析キット。
<2>前記生体試料が、0.023pg/mL以上の敗血症原因細菌由来のリポ多糖を含有する生体試料である、<1>に記載の免疫学的分析キット。
<3>前記敗血症原因細菌が、肺炎桿菌又は大腸菌である、<1>又は<2>に記載の免疫学的分析キット。
<4>前記モノクローナル抗体が、敗血症原因細菌由来のリポ多糖に特異的に反応するモノクローナル抗体である、<1>~<3>のいずれかに記載の免疫学的分析キット。
<5>前記モノクローナル抗体として、第一モノクローナル抗体及び第二モノクローナル抗体を含み、
前記第一モノクローナル抗体が固定化された固相と
前記第二モノクローナル抗体を結合させた標識物質と
を含むか、又は
前記第一モノクローナル抗体が固定化された固相と
前記第二モノクローナル抗体と
標識物質を結合させた、前記第二モノクローナル抗体に対する二次抗体と、
を含み、
前記第一モノクローナル抗体及び前記第二モノクローナル抗体が、同じ種類のモノクローナル抗体である、<1>~<4>のいずれかに記載の免疫学的分析キット。
<6>前記生体試料が、血液、血漿、又は血清である、<1>~<5>のいずれかに記載の免疫学的分析キット。
<7>ELISA法を測定原理とする、 <1>~<6>のいずれかに記載の免疫学的分析キット。
<8>前記モノクローナル抗体が、IgM抗体である、<1>~<7>のいずれかに記載の免疫学的分析キット。
<9>前記モノクローナル抗体が、受託番号NITE BP-03241のハイブリドーマより産生されるモノクローナル抗体又は受託番号NITE BP-03242のハイブリドーマより産生されるモノクローナル抗体である、<1>~<8>のいずれかに記載の免疫学的分析キット。 The present inventors have diligently studied to solve the above-mentioned problems, and have created an immunological analysis kit capable of detecting the lipopolysaccharide even if the biological sample contains a very small amount of lipopolysaccharide derived from the causative bacterium of sepsis. .. Then, it was confirmed that this kit was superior in sensitivity to the Limulus reagent, and the present invention was completed. Specifically, the lower limit of measurement of the Limulus reagent is 0.35 pg / mL for lipopolysaccharide derived from Escherichia coli O111, according to the package insert. However, since the sample is diluted 10-fold at the stage of preparing the measurement sample, the actual lower limit of measurement is 3.5 pg / mL. On the other hand, the immunological analysis kit of the present invention can detect even lower concentrations of lipopolysaccharide.
Specifically, the present invention is as follows.
<1> An immunological analysis kit for detecting sepsis-causing bacteria in a biological sample.
Contains monoclonal antibodies that react with lipopolysaccharides derived from sepsis-causing bacteria
The immunological analysis kit in which the monoclonal antibody detects sepsis-causing bacteria of 0.023 pg / mL or more in a biological sample.
<2> The immunological analysis kit according to <1>, wherein the biological sample is a biological sample containing lipopolysaccharide derived from a sepsis-causing bacterium of 0.023 pg / mL or more.
<3> The immunological analysis kit according to <1> or <2>, wherein the causative bacterium for sepsis is Klebsiella pneumoniae or Escherichia coli.
<4> The immunological analysis kit according to any one of <1> to <3>, wherein the monoclonal antibody is a monoclonal antibody that specifically reacts with lipopolysaccharide derived from a sepsis-causing bacterium.
<5> The monoclonal antibody includes a first monoclonal antibody and a second monoclonal antibody.
It contains a solid phase on which the first monoclonal antibody is immobilized and a labeling substance to which the second monoclonal antibody is bound, or is labeled with the solid phase on which the first monoclonal antibody is immobilized and the second monoclonal antibody. A secondary antibody against the second monoclonal antibody to which the substance was bound, and
Including
The immunological analysis kit according to any one of <1> to <4>, wherein the first monoclonal antibody and the second monoclonal antibody are the same type of monoclonal antibody.
<6> The immunological analysis kit according to any one of <1> to <5>, wherein the biological sample is blood, plasma, or serum.
<7> The immunological analysis kit according to any one of <1> to <6>, which uses an ELISA method as a measurement principle.
<8> The immunological analysis kit according to any one of <1> to <7>, wherein the monoclonal antibody is an IgM antibody.
<9> Either <1> to <8>, wherein the monoclonal antibody is a monoclonal antibody produced by a hybridoma of accession number NITE BP-03241 or a monoclonal antibody produced by a hybridoma of accession number NITE BP-03242. The immunological analysis kit described in.
具体的に、本発明は以下の通りである。
<1>生体試料中の敗血症原因細菌を検出するための免疫学的分析キットであって、
敗血症原因細菌由来のリポ多糖と反応するモノクローナル抗体を含み、
前記モノクローナル抗体が、生体試料中の0.023pg/mL以上の敗血症原因細菌を検出する、前記免疫学的分析キット。
<2>前記生体試料が、0.023pg/mL以上の敗血症原因細菌由来のリポ多糖を含有する生体試料である、<1>に記載の免疫学的分析キット。
<3>前記敗血症原因細菌が、肺炎桿菌又は大腸菌である、<1>又は<2>に記載の免疫学的分析キット。
<4>前記モノクローナル抗体が、敗血症原因細菌由来のリポ多糖に特異的に反応するモノクローナル抗体である、<1>~<3>のいずれかに記載の免疫学的分析キット。
<5>前記モノクローナル抗体として、第一モノクローナル抗体及び第二モノクローナル抗体を含み、
前記第一モノクローナル抗体が固定化された固相と
前記第二モノクローナル抗体を結合させた標識物質と
を含むか、又は
前記第一モノクローナル抗体が固定化された固相と
前記第二モノクローナル抗体と
標識物質を結合させた、前記第二モノクローナル抗体に対する二次抗体と、
を含み、
前記第一モノクローナル抗体及び前記第二モノクローナル抗体が、同じ種類のモノクローナル抗体である、<1>~<4>のいずれかに記載の免疫学的分析キット。
<6>前記生体試料が、血液、血漿、又は血清である、<1>~<5>のいずれかに記載の免疫学的分析キット。
<7>ELISA法を測定原理とする、 <1>~<6>のいずれかに記載の免疫学的分析キット。
<8>前記モノクローナル抗体が、IgM抗体である、<1>~<7>のいずれかに記載の免疫学的分析キット。
<9>前記モノクローナル抗体が、受託番号NITE BP-03241のハイブリドーマより産生されるモノクローナル抗体又は受託番号NITE BP-03242のハイブリドーマより産生されるモノクローナル抗体である、<1>~<8>のいずれかに記載の免疫学的分析キット。 The present inventors have diligently studied to solve the above-mentioned problems, and have created an immunological analysis kit capable of detecting the lipopolysaccharide even if the biological sample contains a very small amount of lipopolysaccharide derived from the causative bacterium of sepsis. .. Then, it was confirmed that this kit was superior in sensitivity to the Limulus reagent, and the present invention was completed. Specifically, the lower limit of measurement of the Limulus reagent is 0.35 pg / mL for lipopolysaccharide derived from Escherichia coli O111, according to the package insert. However, since the sample is diluted 10-fold at the stage of preparing the measurement sample, the actual lower limit of measurement is 3.5 pg / mL. On the other hand, the immunological analysis kit of the present invention can detect even lower concentrations of lipopolysaccharide.
Specifically, the present invention is as follows.
<1> An immunological analysis kit for detecting sepsis-causing bacteria in a biological sample.
Contains monoclonal antibodies that react with lipopolysaccharides derived from sepsis-causing bacteria
The immunological analysis kit in which the monoclonal antibody detects sepsis-causing bacteria of 0.023 pg / mL or more in a biological sample.
<2> The immunological analysis kit according to <1>, wherein the biological sample is a biological sample containing lipopolysaccharide derived from a sepsis-causing bacterium of 0.023 pg / mL or more.
<3> The immunological analysis kit according to <1> or <2>, wherein the causative bacterium for sepsis is Klebsiella pneumoniae or Escherichia coli.
<4> The immunological analysis kit according to any one of <1> to <3>, wherein the monoclonal antibody is a monoclonal antibody that specifically reacts with lipopolysaccharide derived from a sepsis-causing bacterium.
<5> The monoclonal antibody includes a first monoclonal antibody and a second monoclonal antibody.
It contains a solid phase on which the first monoclonal antibody is immobilized and a labeling substance to which the second monoclonal antibody is bound, or is labeled with the solid phase on which the first monoclonal antibody is immobilized and the second monoclonal antibody. A secondary antibody against the second monoclonal antibody to which the substance was bound, and
Including
The immunological analysis kit according to any one of <1> to <4>, wherein the first monoclonal antibody and the second monoclonal antibody are the same type of monoclonal antibody.
<6> The immunological analysis kit according to any one of <1> to <5>, wherein the biological sample is blood, plasma, or serum.
<7> The immunological analysis kit according to any one of <1> to <6>, which uses an ELISA method as a measurement principle.
<8> The immunological analysis kit according to any one of <1> to <7>, wherein the monoclonal antibody is an IgM antibody.
<9> Either <1> to <8>, wherein the monoclonal antibody is a monoclonal antibody produced by a hybridoma of accession number NITE BP-03241 or a monoclonal antibody produced by a hybridoma of accession number NITE BP-03242. The immunological analysis kit described in.
本発明によれば、リムルス試薬よりも優れた感度を示し、簡便な操作で敗血症原因細菌を検出できる、敗血症原因細菌の免疫学的分析キットを提供することができる。
According to the present invention, it is possible to provide an immunological analysis kit for sepsis-causing bacteria, which exhibits superior sensitivity to Limulus reagent and can detect sepsis-causing bacteria with a simple operation.
(生体試料)
本発明における「生体試料」としては、主に生体(生物)由来の固形組織及び体液を挙げることができ、体液を用いることが好ましい。本発明における生体試料は、より好ましくは、血液、血清、血漿、尿、唾液、喀痰、涙液、耳漏、又は前立腺液であり、さらに好ましくは血液、血清又は血漿であり、さらに好ましくは敗血症を有する疑いのある対象の血液、血清又は血漿である。生体又は対象は、ヒト又は動物(例えば、サル、イヌ、ネコ、マウス、モルモット、ラット、ハムスターなど)を含み、好ましくはヒトである。生体試料は、インビボのものであってもよく、インビトロのものであってもよい。 (Biological sample)
Examples of the "biological sample" in the present invention include solid tissues and body fluids derived from living organisms (organisms), and it is preferable to use body fluids. The biological sample in the present invention is more preferably blood, serum, plasma, urine, saliva, sputum, tears, ear leak, or prostatic fluid, more preferably blood, serum or plasma, and even more preferably septicemia. Blood, serum or plasma of the subject suspected of having. Living organisms or subjects include humans or animals (eg, monkeys, dogs, cats, mice, guinea pigs, rats, hamsters, etc.) and are preferably humans. The biological sample may be in vivo or in vitro.
本発明における「生体試料」としては、主に生体(生物)由来の固形組織及び体液を挙げることができ、体液を用いることが好ましい。本発明における生体試料は、より好ましくは、血液、血清、血漿、尿、唾液、喀痰、涙液、耳漏、又は前立腺液であり、さらに好ましくは血液、血清又は血漿であり、さらに好ましくは敗血症を有する疑いのある対象の血液、血清又は血漿である。生体又は対象は、ヒト又は動物(例えば、サル、イヌ、ネコ、マウス、モルモット、ラット、ハムスターなど)を含み、好ましくはヒトである。生体試料は、インビボのものであってもよく、インビトロのものであってもよい。 (Biological sample)
Examples of the "biological sample" in the present invention include solid tissues and body fluids derived from living organisms (organisms), and it is preferable to use body fluids. The biological sample in the present invention is more preferably blood, serum, plasma, urine, saliva, sputum, tears, ear leak, or prostatic fluid, more preferably blood, serum or plasma, and even more preferably septicemia. Blood, serum or plasma of the subject suspected of having. Living organisms or subjects include humans or animals (eg, monkeys, dogs, cats, mice, guinea pigs, rats, hamsters, etc.) and are preferably humans. The biological sample may be in vivo or in vitro.
(敗血症原因細菌)
本明細書において、「敗血症原因細菌」は、肺炎桿菌、連鎖球菌、ブドウ球菌、大腸菌、及び緑膿菌などの敗血症を引き起こす細菌を意味する。本明細書における用語「敗血症」は、敗血症及び敗血症性ショックの両方を含む。敗血症とは、感染症によって重篤な臓器障害が引き起こされる状態を意味する。敗血症性ショックとは、急性循環不全により細胞障害および代謝異常が重度となり、死亡率を増加させる可能性のある状態を意味する。「敗血症原因細菌」は、好ましくは、肺炎桿菌又は大腸菌である。
本明細書において、「肺炎桿菌」は、グラム陰性の桿菌であるクレブシエラ・ニューモニエ(Klebsiella pneumoniae)を意味する。
本明細書において、「大腸菌」は、グラム陰性の桿菌であるエシェリキア・コリ(Escherichia coli)を意味する。
本発明では、リムルス試薬と同様の反応性を有し、したがって、現在医療現場で実際に用いられているリムルス試薬と代替可能である。さらに、本発明は、リムルス試薬より優れた感度で、敗血症原因細菌由来のリポ多糖を検出できるという利点を有する。 (Bacteria causing sepsis)
As used herein, the term "sepsis-causing bacterium" means a bacterium that causes sepsis, such as pneumoniae, streptococcus, staphylococcus, Escherichia coli, and Pseudomonas aeruginosa. The term "sepsis" herein includes both sepsis and septic shock. Sepsis refers to a condition in which an infection causes serious organ damage. Septic shock refers to a condition in which acute circulatory insufficiency causes severe cell damage and metabolic disorders that can increase mortality. The "sepsis-causing bacterium" is preferably Klebsiella pneumoniae or Escherichia coli.
As used herein, "pneumonia pneumoniae" means Klebsiella pneumoniae, which is a gram-negative bacillus.
As used herein, "Escherichia coli" means Escherichia coli, which is a gram-negative bacillus.
In the present invention, the reactivity is similar to that of the Limulus reagent, and therefore, it can be replaced with the Limulus reagent actually used in the medical field at present. Further, the present invention has an advantage that lipopolysaccharide derived from a sepsis-causing bacterium can be detected with higher sensitivity than the Limulus reagent.
本明細書において、「敗血症原因細菌」は、肺炎桿菌、連鎖球菌、ブドウ球菌、大腸菌、及び緑膿菌などの敗血症を引き起こす細菌を意味する。本明細書における用語「敗血症」は、敗血症及び敗血症性ショックの両方を含む。敗血症とは、感染症によって重篤な臓器障害が引き起こされる状態を意味する。敗血症性ショックとは、急性循環不全により細胞障害および代謝異常が重度となり、死亡率を増加させる可能性のある状態を意味する。「敗血症原因細菌」は、好ましくは、肺炎桿菌又は大腸菌である。
本明細書において、「肺炎桿菌」は、グラム陰性の桿菌であるクレブシエラ・ニューモニエ(Klebsiella pneumoniae)を意味する。
本明細書において、「大腸菌」は、グラム陰性の桿菌であるエシェリキア・コリ(Escherichia coli)を意味する。
本発明では、リムルス試薬と同様の反応性を有し、したがって、現在医療現場で実際に用いられているリムルス試薬と代替可能である。さらに、本発明は、リムルス試薬より優れた感度で、敗血症原因細菌由来のリポ多糖を検出できるという利点を有する。 (Bacteria causing sepsis)
As used herein, the term "sepsis-causing bacterium" means a bacterium that causes sepsis, such as pneumoniae, streptococcus, staphylococcus, Escherichia coli, and Pseudomonas aeruginosa. The term "sepsis" herein includes both sepsis and septic shock. Sepsis refers to a condition in which an infection causes serious organ damage. Septic shock refers to a condition in which acute circulatory insufficiency causes severe cell damage and metabolic disorders that can increase mortality. The "sepsis-causing bacterium" is preferably Klebsiella pneumoniae or Escherichia coli.
As used herein, "pneumonia pneumoniae" means Klebsiella pneumoniae, which is a gram-negative bacillus.
As used herein, "Escherichia coli" means Escherichia coli, which is a gram-negative bacillus.
In the present invention, the reactivity is similar to that of the Limulus reagent, and therefore, it can be replaced with the Limulus reagent actually used in the medical field at present. Further, the present invention has an advantage that lipopolysaccharide derived from a sepsis-causing bacterium can be detected with higher sensitivity than the Limulus reagent.
(リポ多糖)
本明細書において「リポ多糖」とは、共有結合で結ばれた脂質と多糖の複合体を意味する。本明細書では、「リポ多糖」を単にLPS(lipopolysaccharide)と称することもある。リポ多糖は、グラム陰性菌の外膜に存在する。リポ多糖では、構造的には、脂質部分であるリピッドAが外膜に埋もれるような形で膜構造が形成されており、リピッドAからコア(Outer Core及びInner Core)と呼ばれるオリゴ糖領域を介して、多糖鎖であるO抗原が伸長している(図1)。
本発明において使用される抗体は、敗血症原因細菌の細胞壁から脱離していないリポ多糖及び敗血症原因細菌の細胞壁から脱離したリポ多糖の両方を認識することができる。
サンドイッチ分析では、固相抗体と標識抗体で異なるエピトープを認識する2種類の抗体を使用することが多い。本発明において使用されるモノクローナル抗体は、一種類でサンドイッチ系を形成できるという利点を有する。本明細書において、モノクローナル抗体に関して「一種類」あるいは「同じ種類」とは、同じエピトープを認識するモノクローナル抗体を意味する。一種類でサンドイッチ系を形成できることにより、実験系の構築が容易になる。また、一種類でサンドイッチ系を形成できることにより、非特異反応が生じる可能性が減少する。本発明において使用されるモノクローナル抗体は、好ましくは、同一の抗体、すなわち同じハイブリドーマから生産されるモノクローナル抗体である。なお、本明細書において、「サンドイッチ系」とは、捕捉用の抗体(固相抗体)と検出用の抗体の二種類の抗体で、抗原をサンドイッチして抗原を検出する実験系を意味する。検出用の抗体には、標識物質が結合しており、その標識物質に由来するシグナルの強度を測定することで、検出対象物を分析できる。検出用の抗体は、標識物質に直接結合してもよく、二次抗体を介して標識物質と間接的に結合してもよい。 (Lipopolysaccharide)
As used herein, the term "lipopolysaccharide" means a complex of a lipid and a polysaccharide linked by a covalent bond. In the present specification, "lipopolysaccharide" may be simply referred to as LPS (lipopolysaccharide). Lipopolysaccharide is present on the outer membrane of Gram-negative bacteria. In lipopolysaccharide, a membrane structure is structurally formed so that lipid A, which is a lipid portion, is buried in the outer membrane, and the lipid A is mediated by oligosaccharide regions called cores (Outer Core and Inner Core). Therefore, the O antigen, which is a polysaccharide chain, is elongated (Fig. 1).
The antibody used in the present invention can recognize both lipopolysaccharide not detached from the cell wall of the sepsis-causing bacterium and lipopolysaccharide detached from the cell wall of the sepsis-causing bacterium.
Sandwich analysis often uses two types of antibodies that recognize different epitopes in the solid phase antibody and the labeled antibody. The monoclonal antibody used in the present invention has the advantage that one type can form a sandwich system. As used herein, the term "one type" or "same type" with respect to a monoclonal antibody means a monoclonal antibody that recognizes the same epitope. Being able to form a sandwich system with one type facilitates the construction of an experimental system. In addition, the ability to form a sandwich system with one type reduces the possibility of non-specific reactions occurring. The monoclonal antibody used in the present invention is preferably the same antibody, i.e., a monoclonal antibody produced from the same hybridoma. In the present specification, the “sandwich system” means an experimental system in which an antigen is sandwiched between two types of antibodies, an antibody for capture (solid phase antibody) and an antibody for detection, to detect the antigen. A labeling substance is bound to the antibody for detection, and the detection target can be analyzed by measuring the intensity of the signal derived from the labeling substance. The detection antibody may bind directly to the labeling substance or indirectly to the labeling substance via the secondary antibody.
本明細書において「リポ多糖」とは、共有結合で結ばれた脂質と多糖の複合体を意味する。本明細書では、「リポ多糖」を単にLPS(lipopolysaccharide)と称することもある。リポ多糖は、グラム陰性菌の外膜に存在する。リポ多糖では、構造的には、脂質部分であるリピッドAが外膜に埋もれるような形で膜構造が形成されており、リピッドAからコア(Outer Core及びInner Core)と呼ばれるオリゴ糖領域を介して、多糖鎖であるO抗原が伸長している(図1)。
本発明において使用される抗体は、敗血症原因細菌の細胞壁から脱離していないリポ多糖及び敗血症原因細菌の細胞壁から脱離したリポ多糖の両方を認識することができる。
サンドイッチ分析では、固相抗体と標識抗体で異なるエピトープを認識する2種類の抗体を使用することが多い。本発明において使用されるモノクローナル抗体は、一種類でサンドイッチ系を形成できるという利点を有する。本明細書において、モノクローナル抗体に関して「一種類」あるいは「同じ種類」とは、同じエピトープを認識するモノクローナル抗体を意味する。一種類でサンドイッチ系を形成できることにより、実験系の構築が容易になる。また、一種類でサンドイッチ系を形成できることにより、非特異反応が生じる可能性が減少する。本発明において使用されるモノクローナル抗体は、好ましくは、同一の抗体、すなわち同じハイブリドーマから生産されるモノクローナル抗体である。なお、本明細書において、「サンドイッチ系」とは、捕捉用の抗体(固相抗体)と検出用の抗体の二種類の抗体で、抗原をサンドイッチして抗原を検出する実験系を意味する。検出用の抗体には、標識物質が結合しており、その標識物質に由来するシグナルの強度を測定することで、検出対象物を分析できる。検出用の抗体は、標識物質に直接結合してもよく、二次抗体を介して標識物質と間接的に結合してもよい。 (Lipopolysaccharide)
As used herein, the term "lipopolysaccharide" means a complex of a lipid and a polysaccharide linked by a covalent bond. In the present specification, "lipopolysaccharide" may be simply referred to as LPS (lipopolysaccharide). Lipopolysaccharide is present on the outer membrane of Gram-negative bacteria. In lipopolysaccharide, a membrane structure is structurally formed so that lipid A, which is a lipid portion, is buried in the outer membrane, and the lipid A is mediated by oligosaccharide regions called cores (Outer Core and Inner Core). Therefore, the O antigen, which is a polysaccharide chain, is elongated (Fig. 1).
The antibody used in the present invention can recognize both lipopolysaccharide not detached from the cell wall of the sepsis-causing bacterium and lipopolysaccharide detached from the cell wall of the sepsis-causing bacterium.
Sandwich analysis often uses two types of antibodies that recognize different epitopes in the solid phase antibody and the labeled antibody. The monoclonal antibody used in the present invention has the advantage that one type can form a sandwich system. As used herein, the term "one type" or "same type" with respect to a monoclonal antibody means a monoclonal antibody that recognizes the same epitope. Being able to form a sandwich system with one type facilitates the construction of an experimental system. In addition, the ability to form a sandwich system with one type reduces the possibility of non-specific reactions occurring. The monoclonal antibody used in the present invention is preferably the same antibody, i.e., a monoclonal antibody produced from the same hybridoma. In the present specification, the “sandwich system” means an experimental system in which an antigen is sandwiched between two types of antibodies, an antibody for capture (solid phase antibody) and an antibody for detection, to detect the antigen. A labeling substance is bound to the antibody for detection, and the detection target can be analyzed by measuring the intensity of the signal derived from the labeling substance. The detection antibody may bind directly to the labeling substance or indirectly to the labeling substance via the secondary antibody.
(モノクローナル抗体)
本発明において使用されるモノクローナル抗体は、敗血症原因細菌由来のリポ多糖に反応するモノクローナル抗体であり、好ましくは、敗血症原因細菌由来のリポ多糖に特異的に反応するモノクローナル抗体であり、より好ましくは受託番号NITE BP-03241のハイブリドーマより産生されるS28201R抗体又は受託番号NITE BP-03242のハイブリドーマより産生されるS28203R抗体である。
なお、本明細書において、肺炎桿菌由来のLPSに反応する抗体を抗肺炎桿菌LPS抗体と称することがあり、大腸菌由来のLPSに反応する抗体を抗大腸菌LPS抗体と称することがある。 (Monclonal antibody)
The monoclonal antibody used in the present invention is a monoclonal antibody that reacts with lipopolysaccharide derived from septicemia-causing bacteria, preferably a monoclonal antibody that specifically reacts with lipopolysaccharide derived from septicemia-causing bacteria, and is more preferably contracted. The S28201R antibody produced by the hybridoma of No. NITE BP-03241 or the S28203R antibody produced by the hybridoma of accession No. NITE BP-03242.
In the present specification, an antibody that reacts with LPS derived from pneumonia rod may be referred to as an anti-Pneumococcal LPS antibody, and an antibody that reacts with LPS derived from Escherichia coli may be referred to as an anti-E. coli LPS antibody.
本発明において使用されるモノクローナル抗体は、敗血症原因細菌由来のリポ多糖に反応するモノクローナル抗体であり、好ましくは、敗血症原因細菌由来のリポ多糖に特異的に反応するモノクローナル抗体であり、より好ましくは受託番号NITE BP-03241のハイブリドーマより産生されるS28201R抗体又は受託番号NITE BP-03242のハイブリドーマより産生されるS28203R抗体である。
なお、本明細書において、肺炎桿菌由来のLPSに反応する抗体を抗肺炎桿菌LPS抗体と称することがあり、大腸菌由来のLPSに反応する抗体を抗大腸菌LPS抗体と称することがある。 (Monclonal antibody)
The monoclonal antibody used in the present invention is a monoclonal antibody that reacts with lipopolysaccharide derived from septicemia-causing bacteria, preferably a monoclonal antibody that specifically reacts with lipopolysaccharide derived from septicemia-causing bacteria, and is more preferably contracted. The S28201R antibody produced by the hybridoma of No. NITE BP-03241 or the S28203R antibody produced by the hybridoma of accession No. NITE BP-03242.
In the present specification, an antibody that reacts with LPS derived from pneumonia rod may be referred to as an anti-Pneumococcal LPS antibody, and an antibody that reacts with LPS derived from Escherichia coli may be referred to as an anti-E. coli LPS antibody.
本明細書において、敗血症原因細菌由来のリポ多糖と「反応する」、敗血症原因細菌由来のリポ多糖を「認識する」、敗血症原因細菌由来のリポ多糖と「結合する」は、同義で用いられるが、これらの例示に限定されることはなく、最も広義に解釈する必要がある。抗体がリポ多糖などの抗原(化合物)と「反応する」か否かの確認は、抗原固定化ELISA法、競合ELISA法、サンドイッチELISA法などにより行うことができる。また、表面プラズモン共鳴(surface plasmon resonance)の原理を利用した方法(SPR法)などにより行うこともできる。SPR法は、Biacore(登録商標)の名称で市販されている、装置、センサー、試薬類を使用して行うことができる。
In the present specification, "reacting" with lipopolysaccharide derived from sepsis-causing bacteria, "recognizing" lipopolysaccharide derived from sepsis-causing bacteria, and "binding" with lipopolysaccharide derived from sepsis-causing bacteria are used interchangeably. , Not limited to these examples, but need to be interpreted in the broadest sense. Whether or not the antibody "reacts" with an antigen (compound) such as lipopolysaccharide can be confirmed by an antigen-immobilized ELISA method, a competitive ELISA method, a sandwich ELISA method, or the like. Further, it can also be performed by a method (SPR method) using the principle of surface plasmon resonance. The SPR method can be carried out using devices, sensors and reagents commercially available under the name of Biacore®.
本発明に使用される抗体と、ある化合物が「反応しない」とは、本発明に使用される抗体がある化合物と実質的に反応しないことをいう。ある化合物と「実質的に反応しない」か否かを確認するために、例えば、上記SPR法に基づき、Biacore(登録商標)T100やT200を使用し、本発明に使用される抗体を固定化して測定を行うことができる。上記SPR法以外の当業者に周知の方法又は手段によっても「実質的に反応しない」ことを確認できる。
"No reaction" between the antibody used in the present invention and a certain compound means that the antibody used in the present invention does not substantially react with a certain compound. In order to confirm whether or not it "substantially does not react" with a certain compound, for example, Biacore® T100 or T200 is used based on the above SPR method, and the antibody used in the present invention is immobilized. Measurements can be made. It can be confirmed that "substantially no reaction" can be confirmed by a method or means well known to those skilled in the art other than the above SPR method.
本発明の免疫学的分析キットにおいて使用されるモノクローナル抗体は、本発明の効果が得られる限りにおいて、該モノクローナル抗体の機能を有する断片を含む。例えば、モノクローナル抗体の酵素的消化により得られる該モノクローナル抗体のFab部分を含む機能性断片、遺伝子組換えによって作製される該モノクローナル抗体のFab部分を含む機能性断片、及びファージディスプレイ法で作製されたscFvを含む機能性断片が挙げられる。
The monoclonal antibody used in the immunological analysis kit of the present invention contains a fragment having the function of the monoclonal antibody as long as the effect of the present invention can be obtained. For example, a functional fragment containing the Fab portion of the monoclonal antibody obtained by enzymatic digestion of the monoclonal antibody, a functional fragment containing the Fab portion of the monoclonal antibody produced by gene recombination, and a phage display method. Included are functional fragments containing scFv.
本発明の免疫学的分析キットにおいて使用される抗体は、抗原(免疫原)として、敗血症原因細菌、例えば肺炎桿菌、緑膿菌、及び/又は大腸菌由来の加熱死菌体をリン酸緩衝生理食塩水などの溶媒に溶解し、この溶液を動物に投与して免疫することにより製造できる。必要に応じて前記溶液に適宜のアジュバントを添加した後、エマルジョンを用いて免疫を行ってもよい。アジュバントとしては、油中水型乳剤、水中油中水型乳剤、水中油型乳剤、リポソーム、水酸化アルミニウムゲルなどの汎用されるアジュバントを用いることができる。アジュバントとして、生体成分由来のタンパク質やペプチド性物質などを用いてもよい。例えば、フロイントの不完全アジュバント又はフロイントの完全アジュバントなどを好適に用いることができる。アジュバントの投与経路、投与量、投与時期は特に限定されないが、抗原を免疫する動物において所望の免疫応答を増強できるように適宜選択することが望ましい。
The antibody used in the immunological analysis kit of the present invention is a phosphate buffered saline containing heat-killed cells derived from sepsis-causing bacteria such as pneumonia rod, pyogenic, and / or Escherichia coli as an antigen (immunogen). It can be produced by dissolving it in a solvent such as water and administering this solution to an animal to immunize it. If necessary, an appropriate adjuvant may be added to the solution, and then the emulsion may be used for immunization. As the adjuvant, a general-purpose adjuvant such as a water-in-oil emulsion, a water-in-oil-in-water emulsion, an oil-in-water emulsion, liposomes, and aluminum hydroxide gel can be used. As an adjuvant, a protein derived from a biological component, a peptide substance, or the like may be used. For example, Freund's incomplete adjuvant or Freund's complete adjuvant can be preferably used. The route of administration, dose, and timing of administration of the adjuvant are not particularly limited, but it is desirable to appropriately select the adjuvant so as to enhance the desired immune response in the animal immunized with the antigen.
免疫に用いる動物の種類も特に限定されないが、哺乳動物が好ましく、例えばマウス、ラット、ウシ、ウサギ、ヤギ、ヒツジ、アルパカなどを用いることができ、より好ましくはマウス又はラットを用いることができる。動物の免疫は、一般的な手法に従って行えばよい。例えば、抗原の溶液、好ましくはアジュバントとの混合物を動物の皮下、皮内、静脈、又は腹腔内に注射することにより免疫を行うことができる。免疫応答は、一般的に免疫される動物の種類及び系統によって異なるので、免疫スケジュールは使用される動物に応じて適宜設定することが望ましい。抗原投与は最初の免疫後に何回か繰り返し行うことが好ましい。
The type of animal used for immunization is not particularly limited, but mammals are preferable, and for example, mice, rats, cows, rabbits, goats, sheep, alpaca and the like can be used, and more preferably mice or rats can be used. Animal immunization may be performed according to a general method. Immunization can be performed, for example, by injecting a solution of the antigen, preferably a mixture with an adjuvant, subcutaneously, intradermally, intravenously or intraperitoneally in the animal. Since the immune response generally depends on the type and strain of the animal to be immunized, it is desirable to set the immune schedule appropriately according to the animal used. Antigen administration is preferably repeated several times after the first immunization.
モノクローナル抗体を得るために、引き続き以下の操作が行われることができるが、これに限定されることはない。モノクローナル抗体それ自体の製造方法については当業界で周知されており、かつ汎用されているので当業者は前記の抗原を用いることによって本発明の免疫学的分析キットにおいて使用される抗体を容易に製造することが可能である(例えばAntibodies,A Laboratory Manual(Cold Spring Harbor Laboratory Press,(1988) 第6章などを参照のこと)。
In order to obtain a monoclonal antibody, the following operations can be continuously performed, but the procedure is not limited to this. Since the method for producing the monoclonal antibody itself is well known and widely used in the art, those skilled in the art can easily produce the antibody used in the immunological analysis kit of the present invention by using the above-mentioned antigen. (See, for example, Antibodies, A Laboratory Manual (Cold Spring Harbor Laboratory Press, (1988), Chapter 6 and the like).
最終免疫後、免疫した動物から抗体産生細胞である脾臓細胞あるいはリンパ節細胞を摘出する。そして、これらの細胞を高い増殖能を有する骨髄腫由来の細胞株と細胞融合することによりハイブリドーマを作製することができる。細胞融合には抗体産生能(質・量)が高い細胞を用いることが好ましく、また骨髄腫由来の細胞株は融合する抗体産生細胞の由来する動物と適合性があることが好ましい。細胞融合は、当該分野で公知の方法に従って行うことができるが、例えば、ポリエチレングリコール法、センダイウイルスを用いた方法、電流を利用する方法などを採用することができる。得られたハイブリドーマは当業界で汎用の条件に従って増殖させることができる。産生される抗体の性質を確認しつつ所望のハイブリドーマを選択することができる。ハイブリドーマのクローニングは、例えば限界希釈法や軟寒天法などの周知の方法により行うことが可能である。
After the final immunization, spleen cells or lymph node cells, which are antibody-producing cells, are removed from the immunized animal. Then, a hybridoma can be produced by fusing these cells with a cell line derived from myeloma having high proliferative ability. It is preferable to use cells having a high antibody-producing ability (quality / quantity) for cell fusion, and it is preferable that the cell line derived from myeloma is compatible with the animal from which the antibody-producing cells to be fused are derived. Cell fusion can be performed according to a method known in the art, and for example, a polyethylene glycol method, a method using Sendai virus, a method using an electric current, or the like can be adopted. The resulting hybridoma can be propagated according to conditions general in the art. A desired hybridoma can be selected while confirming the properties of the antibody produced. Cloning of hybridomas can be performed by well-known methods such as the limiting dilution method and the soft agar method.
ハイブリドーマの選択は、産生される抗体に関して実際の測定に用いられる条件を考慮し、選択の段階で効率的に行うこともできる。例えば、動物に免疫して得られた抗体を、交差反応性を確認したい化合物の存在下、固相に固定化した敗血病原因細菌由来のリポ多糖と反応させる。そして、交差反応性を確認したい化合物の非存在下での反応性と比較することにより、所望の抗体を産生するハイブリドーマをより効率よく選抜することができる。また、動物に免疫して得られた抗体を、生体試料由来成分の存在下、固相に固定化した敗血病原因細菌由来のリポ多糖と反応させ、生体試料由来成分の非存在下での反応性と比較することにより所望の抗体を産生するハイブリドーマをより効率よく選択することもできる。
Hybridoma selection can also be done efficiently at the selection stage, taking into account the conditions used for actual measurement of the antibody produced. For example, an antibody obtained by immunizing an animal is reacted with a lipopolysaccharide derived from a septic disease-causing bacterium immobilized on a solid phase in the presence of a compound whose cross-reactivity is desired to be confirmed. Then, by comparing with the reactivity in the absence of the compound for which cross-reactivity is desired to be confirmed, a hybridoma producing a desired antibody can be selected more efficiently. In addition, the antibody obtained by immunizing an animal is reacted with lipopolysaccharide derived from a septic disease-causing bacterium immobilized on a solid phase in the presence of a component derived from a biological sample, and in the absence of the component derived from the biological sample. Hybridomas that produce the desired antibody can also be selected more efficiently by comparison with reactivity.
クローニング工程後、産生される抗体と敗血病原因細菌由来のリポ多糖との結合能をELISA法、RIA法、蛍光抗体法などの方法を用いてアッセイすることにより、選択されたハイブリドーマが所望の性質を有するモノクローナル抗体を産生するか否かを確認することができる。
前記のようにして選別されたハイブリドーマを大量培養することにより、所望の特性を有するモノクローナル抗体を製造することができる。大量培養の方法は特に限定されないが、例えば、ハイブリドーマを適宜培地中で培養してモノクローナル抗体を培地中に産生させる方法や、哺乳動物の腹腔内にハイブリドーマを注射して増殖させ、腹水中に抗体を産生させる方法などを挙げることができる。モノクローナル抗体の精製は、先述した抗血清からの抗体の精製法、例えばDEAE陰イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、硫安分画法、PEG分画法、エタノール分画法などを適宜組み合わせて行うことができる。 After the cloning step, the hybridoma selected is desired by assaying the binding ability of the produced antibody to the lipopolysaccharide derived from the bacterial cause of blood loss by using a method such as ELISA method, RIA method, or fluorescent antibody method. It can be confirmed whether or not a monoclonal antibody having properties is produced.
By mass-culturing the hybridomas selected as described above, a monoclonal antibody having desired characteristics can be produced. The method of mass culturing is not particularly limited, but for example, a method of appropriately culturing a hybridoma in a medium to produce a monoclonal antibody in the medium, or a method of injecting a hybridoma into the abdominal cavity of a mammal to proliferate the antibody in ascites. Can be mentioned as a method for producing. Purification of the monoclonal antibody shall be carried out by appropriately combining the above-mentioned methods for purifying the antibody from the antiserum, for example, DEAE anion exchange chromatography, affinity chromatography, sulfur fractionation method, PEG fractionation method, ethanol fractionation method and the like. Can be done.
前記のようにして選別されたハイブリドーマを大量培養することにより、所望の特性を有するモノクローナル抗体を製造することができる。大量培養の方法は特に限定されないが、例えば、ハイブリドーマを適宜培地中で培養してモノクローナル抗体を培地中に産生させる方法や、哺乳動物の腹腔内にハイブリドーマを注射して増殖させ、腹水中に抗体を産生させる方法などを挙げることができる。モノクローナル抗体の精製は、先述した抗血清からの抗体の精製法、例えばDEAE陰イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、硫安分画法、PEG分画法、エタノール分画法などを適宜組み合わせて行うことができる。 After the cloning step, the hybridoma selected is desired by assaying the binding ability of the produced antibody to the lipopolysaccharide derived from the bacterial cause of blood loss by using a method such as ELISA method, RIA method, or fluorescent antibody method. It can be confirmed whether or not a monoclonal antibody having properties is produced.
By mass-culturing the hybridomas selected as described above, a monoclonal antibody having desired characteristics can be produced. The method of mass culturing is not particularly limited, but for example, a method of appropriately culturing a hybridoma in a medium to produce a monoclonal antibody in the medium, or a method of injecting a hybridoma into the abdominal cavity of a mammal to proliferate the antibody in ascites. Can be mentioned as a method for producing. Purification of the monoclonal antibody shall be carried out by appropriately combining the above-mentioned methods for purifying the antibody from the antiserum, for example, DEAE anion exchange chromatography, affinity chromatography, sulfur fractionation method, PEG fractionation method, ethanol fractionation method and the like. Can be done.
本発明の免疫学的分析キットにおいて使用される抗体としては、抗体分子全体のほかに抗原抗体反応活性を有する抗体のフラグメントを使用することも可能である。前記のように動物への免疫工程を経て得られたもののほか、遺伝子組み換え技術を使用して得られるもの又はキメラ抗体を用いることも可能である。抗体の断片としては機能性の断片であることが好ましく、例えば、F(ab’)2、Fab’、scFvなどが挙げられる。これらのフラグメントは前記のようにして得られる抗体をタンパク質分解酵素(例えば、ペプシンやパパインなど)で処理すること、あるいは該抗体のDNAをクローニングして大腸菌や酵母を用いた培養系で発現させることにより製造できる。
As the antibody used in the immunological analysis kit of the present invention, it is also possible to use a fragment of an antibody having an antigen-antibody reaction activity in addition to the entire antibody molecule. In addition to those obtained through the immunization step to animals as described above, those obtained by using genetic recombination technology or chimeric antibodies can also be used. The antibody fragment is preferably a functional fragment, and examples thereof include F (ab') 2 , Fab', and scFv. These fragments can be obtained by treating the antibody obtained as described above with a proteolytic enzyme (for example, pepsin or papain), or by cloning the DNA of the antibody and expressing it in a culture system using Escherichia coli or yeast. Can be manufactured by
(固相抗体)
本発明の免疫学的分析キットにおいて、抗体は、不溶性担体上に固定された固相抗体として使用することができる。また、本発明の免疫学的分析キットにおいて抗体は、後述する当業者に周知慣用の標識物質で標識した標識抗体として使用することができる。例えば、不溶性担体にモノクローナル抗体を物理的に吸着させること、化学的に結合させること(適当なスペーサーを介してよい)、又は不溶性担体に結合させた抗体を介して結合させることにより、固相抗体を製造することができる。不溶性担体としては、ポリスチレン樹脂などの高分子基材、ガラスなどの無機基材、セルロースやアガロースなどの多糖類基材などからなる不溶性担体を用いることができる。不溶性担体の形状は特に限定されず、板状(例えば、マイクロプレートやメンブレン)、ビーズあるいは粒子状(例えば、ラテックス粒子、磁性粒子)、筒状(例えば、試験管)など任意の形状を選択できる。 (Solid phase antibody)
In the immunological analysis kit of the present invention, the antibody can be used as a solid phase antibody immobilized on an insoluble carrier. Further, in the immunological analysis kit of the present invention, the antibody can be used as a labeled antibody labeled with a labeling substance well known to those skilled in the art described later. For example, a solid phase antibody by physically adsorbing a monoclonal antibody to an insoluble carrier, chemically binding (may be via an appropriate spacer), or binding via an antibody bound to an insoluble carrier. Can be manufactured. As the insoluble carrier, an insoluble carrier made of a polymer base material such as polystyrene resin, an inorganic base material such as glass, or a polysaccharide base material such as cellulose or agarose can be used. The shape of the insoluble carrier is not particularly limited, and any shape such as a plate (for example, a microplate or a membrane), beads or particles (for example, latex particles or magnetic particles), or a tubular shape (for example, a test tube) can be selected. ..
本発明の免疫学的分析キットにおいて、抗体は、不溶性担体上に固定された固相抗体として使用することができる。また、本発明の免疫学的分析キットにおいて抗体は、後述する当業者に周知慣用の標識物質で標識した標識抗体として使用することができる。例えば、不溶性担体にモノクローナル抗体を物理的に吸着させること、化学的に結合させること(適当なスペーサーを介してよい)、又は不溶性担体に結合させた抗体を介して結合させることにより、固相抗体を製造することができる。不溶性担体としては、ポリスチレン樹脂などの高分子基材、ガラスなどの無機基材、セルロースやアガロースなどの多糖類基材などからなる不溶性担体を用いることができる。不溶性担体の形状は特に限定されず、板状(例えば、マイクロプレートやメンブレン)、ビーズあるいは粒子状(例えば、ラテックス粒子、磁性粒子)、筒状(例えば、試験管)など任意の形状を選択できる。 (Solid phase antibody)
In the immunological analysis kit of the present invention, the antibody can be used as a solid phase antibody immobilized on an insoluble carrier. Further, in the immunological analysis kit of the present invention, the antibody can be used as a labeled antibody labeled with a labeling substance well known to those skilled in the art described later. For example, a solid phase antibody by physically adsorbing a monoclonal antibody to an insoluble carrier, chemically binding (may be via an appropriate spacer), or binding via an antibody bound to an insoluble carrier. Can be manufactured. As the insoluble carrier, an insoluble carrier made of a polymer base material such as polystyrene resin, an inorganic base material such as glass, or a polysaccharide base material such as cellulose or agarose can be used. The shape of the insoluble carrier is not particularly limited, and any shape such as a plate (for example, a microplate or a membrane), beads or particles (for example, latex particles or magnetic particles), or a tubular shape (for example, a test tube) can be selected. ..
(標識抗体)
本発明の免疫学的分析キットにおいて使用される抗体と結合可能な標識を用いることにより、敗血症原因細菌由来のリポ多糖に結合した抗体の量を測定することができる。それにより生体試料中の敗血病原因細菌由来のリポ多糖を検出することができる。標識抗体を製造するための標識物質としては、例えば酵素、蛍光物質、化学発光物質、ビオチン、アビジン、放射性同位体、金コロイド粒子、着色ラテックスなどが挙げられる。標識物質と抗体との結合法としては、当業者に利用可能なグルタルアルデヒド法、マレイミド法、ピリジルジスルフィド法、又は過ヨウ素酸法などの方法を用いることができる。固相抗体及び標識抗体の種類、及びそれらの製造方法は前記の結合法の例に限定されることはない。例えば、ホースラディッシュ・ペルオキシダーゼ(HRP)やアルカリホスファターゼ(ALP)などの酵素を標識物質として用いる場合には、その酵素の特異的基質(酵素がHRPの場合には、例えばO-フェニレンジアミン(OPD)あるいは3,3’,5,5’-テトラメチルベンジジン(TMB)、ALPの場合にはp-ニトロフェニル・ホスフェートなど)を用いて酵素活性を測定することができる。ビオチンを標識物質として用いる場合には、アビジン又は酵素修飾アビジンを反応させることができる。本発明の免疫学的分析キットにおいては、標識物質としてビオチン又はHRPを使用することが好ましく、ビオチンを使用することがより好ましい。ビオチンを使用する場合、HRPで標識したストレプトアビジンをさらに使用することができる。 (Labeled antibody)
By using a label that can bind to the antibody used in the immunological analysis kit of the present invention, the amount of the antibody bound to the lipopolysaccharide derived from the sepsis-causing bacterium can be measured. Thereby, lipopolysaccharide derived from the causative bacterium of sepsis disease can be detected in the biological sample. Examples of the labeling substance for producing a labeled antibody include enzymes, fluorescent substances, chemical luminescent substances, biotin, avidin, radioisotopes, colloidal gold particles, colored latex and the like. As a method for binding the labeling substance to the antibody, a method such as a glutaraldehyde method, a maleimide method, a pyridyl disulfide method, or a periodic acid method, which can be used by those skilled in the art, can be used. The types of the solid phase antibody and the labeled antibody, and the method for producing them are not limited to the above-mentioned examples of the binding method. For example, when an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (ALP) is used as a labeling substance, the specific substrate of the enzyme (when the enzyme is HRP, for example, O-phenylenediamine (OPD)). Alternatively, enzyme activity can be measured using 3,3', 5,5'-tetramethylbenzidine (TMB), p-nitrophenyl phosphate in the case of ALP, etc.). When biotin is used as a labeling substance, avidin or enzyme-modified avidin can be reacted. In the immunological analysis kit of the present invention, it is preferable to use biotin or HRP as a labeling substance, and it is more preferable to use biotin. When biotin is used, HRP-labeled streptavidin can be further used.
本発明の免疫学的分析キットにおいて使用される抗体と結合可能な標識を用いることにより、敗血症原因細菌由来のリポ多糖に結合した抗体の量を測定することができる。それにより生体試料中の敗血病原因細菌由来のリポ多糖を検出することができる。標識抗体を製造するための標識物質としては、例えば酵素、蛍光物質、化学発光物質、ビオチン、アビジン、放射性同位体、金コロイド粒子、着色ラテックスなどが挙げられる。標識物質と抗体との結合法としては、当業者に利用可能なグルタルアルデヒド法、マレイミド法、ピリジルジスルフィド法、又は過ヨウ素酸法などの方法を用いることができる。固相抗体及び標識抗体の種類、及びそれらの製造方法は前記の結合法の例に限定されることはない。例えば、ホースラディッシュ・ペルオキシダーゼ(HRP)やアルカリホスファターゼ(ALP)などの酵素を標識物質として用いる場合には、その酵素の特異的基質(酵素がHRPの場合には、例えばO-フェニレンジアミン(OPD)あるいは3,3’,5,5’-テトラメチルベンジジン(TMB)、ALPの場合にはp-ニトロフェニル・ホスフェートなど)を用いて酵素活性を測定することができる。ビオチンを標識物質として用いる場合には、アビジン又は酵素修飾アビジンを反応させることができる。本発明の免疫学的分析キットにおいては、標識物質としてビオチン又はHRPを使用することが好ましく、ビオチンを使用することがより好ましい。ビオチンを使用する場合、HRPで標識したストレプトアビジンをさらに使用することができる。 (Labeled antibody)
By using a label that can bind to the antibody used in the immunological analysis kit of the present invention, the amount of the antibody bound to the lipopolysaccharide derived from the sepsis-causing bacterium can be measured. Thereby, lipopolysaccharide derived from the causative bacterium of sepsis disease can be detected in the biological sample. Examples of the labeling substance for producing a labeled antibody include enzymes, fluorescent substances, chemical luminescent substances, biotin, avidin, radioisotopes, colloidal gold particles, colored latex and the like. As a method for binding the labeling substance to the antibody, a method such as a glutaraldehyde method, a maleimide method, a pyridyl disulfide method, or a periodic acid method, which can be used by those skilled in the art, can be used. The types of the solid phase antibody and the labeled antibody, and the method for producing them are not limited to the above-mentioned examples of the binding method. For example, when an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (ALP) is used as a labeling substance, the specific substrate of the enzyme (when the enzyme is HRP, for example, O-phenylenediamine (OPD)). Alternatively, enzyme activity can be measured using 3,3', 5,5'-tetramethylbenzidine (TMB), p-nitrophenyl phosphate in the case of ALP, etc.). When biotin is used as a labeling substance, avidin or enzyme-modified avidin can be reacted. In the immunological analysis kit of the present invention, it is preferable to use biotin or HRP as a labeling substance, and it is more preferable to use biotin. When biotin is used, HRP-labeled streptavidin can be further used.
本明細書において、「不溶性担体」とは、被検出物質に対して、被検出物質を認識する抗体等を固定している物質をいう。例えば、イムノプレート、メンブレン、ラテックス粒子、磁性粒子等が挙げられるが、これらに限定されない。本明細書において、「不溶性担体」を「固相」、抗原又は抗体を不溶性担体に物理的又は化学的に担持させること、又は担持させた状態を「固定」又は「固定化」と表現することがある。また、「分析」、「検出」、又は「測定」という用語は、敗血病原因細菌由来のリポ多糖の存在の証明及び/又は定量などの意味を含む。
In the present specification, the "insoluble carrier" means a substance in which an antibody or the like that recognizes the detected substance is immobilized on the detected substance. Examples thereof include, but are not limited to, immunoplates, membranes, latex particles, magnetic particles and the like. In the present specification, the term "insoluble carrier" is referred to as "solid phase", and the state in which an antigen or antibody is physically or chemically supported on an insoluble carrier, or the state in which the carrier is supported is referred to as "fixation" or "immobilization". There is. In addition, the terms "analysis", "detection", or "measurement" include meanings such as proof and / or quantification of the presence of lipopolysaccharide derived from a septic disease-causing bacterium.
本発明の免疫学的分析キットとしては、電気化学発光免疫測定法(ECL法)、酵素免疫測定法(ELISA法)、ラテックス凝集免疫測定法(LTIA法)、化学発光免疫測定法、蛍光抗体法、及び高速液体クロマトグラフ法(HPLC)を使用した分析キットが挙げられるが、これらに限定されるものではない。本発明の免疫学的分析キットは、測定感度及び操作の簡便性を考慮して、電気化学発光免疫測定法(ECL法)、高速液体クロマトグラフ法(HPLC)、又は酵素免疫測定法(ELISA法)を使用した分析キットであることが好ましく、サンドイッチELISA用の分析キットであることがさらに好ましい。
The immunological analysis kit of the present invention includes electrochemiluminescence immunoassay (ECL method), enzyme immunoassay (ELISA method), latex aggregation immunoassay (LTIA method), chemiluminescence immunoassay, and immunofluorescence method. , And analysis kits using high performance liquid chromatography (HPLC), but are not limited to these. The immunological analysis kit of the present invention is an electrochemical luminescence immunoassay (ECL method), a high performance liquid chromatograph method (HPLC), or an enzyme-linked immunosorbent assay (ELISA method) in consideration of measurement sensitivity and ease of operation. ) Is preferable, and it is more preferable that the analysis kit is for sandwich ELISA.
分析系へのモノクローナル抗体とリポ多糖の添加順序は、本発明の効果が得られる限りにおいて、いずれが先でもよい。
The order of adding the monoclonal antibody and the lipopolysaccharide to the analysis system may be any first as long as the effect of the present invention can be obtained.
本発明により提供されるキットは、好ましくは(a)第一モノクローナル抗体を固定化したプレートなどの固相、及び(b)標識物質で標識された第二モノクローナル抗体を含むか、または、本発明により提供されるキットは、好ましくは、第一モノクローナル抗体が固定化された固相と、第二モノクローナル抗体と、標識物質を結合させた、前記第二モノクローナル抗体に対する二次抗体とを含む。この場合、第一モノクローナル抗体と第二モノクローナル抗体とは、同じ種類のモノクローナル抗体であることができる。同じ種類のモノクローナル抗体とは、同じエピトープを認識するモノクローナル抗体を意味する。本発明のキットにおいて使用されるモノクローナル抗体は、好ましくは、同一の抗体、すなわち同じハイブリドーマから生産されるモノクローナル抗体である。
The kit provided by the present invention preferably comprises (a) a solid phase such as a plate on which the first monoclonal antibody is immobilized, and (b) a second monoclonal antibody labeled with a labeling substance, or the present invention. The kit provided by is preferably comprising a solid phase on which the first monoclonal antibody is immobilized, a second monoclonal antibody, and a secondary antibody against the second monoclonal antibody to which a labeling substance is bound. In this case, the first monoclonal antibody and the second monoclonal antibody can be the same type of monoclonal antibody. The same type of monoclonal antibody means a monoclonal antibody that recognizes the same epitope. The monoclonal antibody used in the kit of the present invention is preferably the same antibody, i.e., a monoclonal antibody produced from the same hybridoma.
第一モノクローナル抗体を固定化した固相は、生体試料中の敗血病原因細菌由来のリポ多糖を捕捉して、リポ多糖-抗体複合体を形成する。標識物質で標識された第二モノクローナル抗体は、このリポ多糖-抗体複合体に反応してサンドイッチを形成する。標識物質に応じた方法を用いて標識物質の量を測定することにより、試料中の敗血病原因細菌由来のリポ多糖を測定することができる。第一モノクローナル抗体の固相への固定化の方法、第二モノクローナル抗体の標識物質との標識の方法など、キットを構成する上での具体的な方法は本明細書中に記載された方法のほか、当業者に周知の方法を制限なく使用することができる。
The solid phase on which the first monoclonal antibody is immobilized captures the lipopolysaccharide derived from the septic disease-causing bacterium in the biological sample to form the lipopolysaccharide-antibody complex. The second monoclonal antibody labeled with the labeling substance reacts with this lipopolysaccharide-antibody complex to form a sandwich. By measuring the amount of the labeling substance using a method according to the labeling substance, lipopolysaccharide derived from the septic disease-causing bacterium in the sample can be measured. Specific methods for constructing the kit, such as a method for immobilizing the first monoclonal antibody on the solid phase and a method for labeling the second monoclonal antibody with a labeling substance, are described in the methods described in the present specification. In addition, methods well known to those skilled in the art can be used without limitation.
第一モノクローナル抗体及び第二モノクローナル抗体としては、敗血病原因細菌由来のリポ多糖と反応するモノクローナル抗体であれば特に限定されない。
The first monoclonal antibody and the second monoclonal antibody are not particularly limited as long as they are monoclonal antibodies that react with lipopolysaccharide derived from the causative bacterium of sepsis.
標識物質としては、例えば、蛍光物質、化学発光物質、ビオチン、アビジンなどの当業者に公知の標識物質を使用することができる。標識物質と抗体との結合法としては、使用する標識物質及び抗体に応じて公知の結合法の中から適宜選択することができ、例えば、グルタルアルデヒド法、マレイミド法、ピリジルジスルフィド法、又は過ヨウ素酸法などの方法を用いることができる。標識物質として、ビオチン又はHRPを使用することが好ましく、ビオチンを使用することがより好ましい。
(敗血症の診断、診断補助、及び治療)
本発明の免疫学的分析キットの分析結果に基づき、対象が敗血症原因細菌を原因とする敗血症に罹患しているか否かを診断することができ、又は診断の補助とすることができる。 As the labeling substance, for example, a labeling substance known to those skilled in the art such as a fluorescent substance, a chemical luminescent substance, biotin, and avidin can be used. The binding method between the labeling substance and the antibody can be appropriately selected from known binding methods depending on the labeling substance and the antibody to be used, for example, glutaraldehyde method, maleimide method, pyridyl disulfide method, or periodic acid. A method such as an acid method can be used. It is preferable to use biotin or HRP as the labeling substance, and it is more preferable to use biotin.
(Diagnosis, diagnostic assistance, and treatment of sepsis)
Based on the analysis results of the immunological analysis kit of the present invention, it is possible to diagnose whether or not the subject has sepsis caused by a sepsis-causing bacterium, or it can be used as an aid to the diagnosis.
(敗血症の診断、診断補助、及び治療)
本発明の免疫学的分析キットの分析結果に基づき、対象が敗血症原因細菌を原因とする敗血症に罹患しているか否かを診断することができ、又は診断の補助とすることができる。 As the labeling substance, for example, a labeling substance known to those skilled in the art such as a fluorescent substance, a chemical luminescent substance, biotin, and avidin can be used. The binding method between the labeling substance and the antibody can be appropriately selected from known binding methods depending on the labeling substance and the antibody to be used, for example, glutaraldehyde method, maleimide method, pyridyl disulfide method, or periodic acid. A method such as an acid method can be used. It is preferable to use biotin or HRP as the labeling substance, and it is more preferable to use biotin.
(Diagnosis, diagnostic assistance, and treatment of sepsis)
Based on the analysis results of the immunological analysis kit of the present invention, it is possible to diagnose whether or not the subject has sepsis caused by a sepsis-causing bacterium, or it can be used as an aid to the diagnosis.
本発明の免疫学的分析キットは、肺炎桿菌由来のリポ多糖とは反応するが、緑膿菌由来のリポ多糖及び大腸菌由来のリポ多糖とはいずれも反応しないモノクローナル抗体を使用する場合、生体試料中、好ましくは血液、血清又は血漿中に含まれる0.023pg/mL~10μg/mL、0.1pg/mL~10μg/mL、0.3pg/mL~10μg/mL、0.5pg/mL~10μg/mL、1pg/mL~10μg/mL、又は5pg/mL~10μg/mLの敗血症原因細菌由来のリポ多糖を検出することができる。
カットオフ値は生体試料の種類または分析キットの種類に応じて適宜設定することができる。測定値がカットオフ値より低い場合は、対象が敗血症原因細菌由来の敗血症を罹患していないと判定することができる。測定値がカットオフ値より高い場合は、対象が敗血症原因細菌由来の敗血症を罹患していると判定することができる。 When the immunological analysis kit of the present invention uses a monoclonal antibody that reacts with lipopolysaccharide derived from Pseudomonas aeruginosa but does not react with lipopolysaccharide derived from Pseudomonas aeruginosa and lipopolysaccharide derived from Escherichia coli, a biological sample is used. Medium, preferably 0.023 pg / mL to 10 μg / mL, 0.1 pg / mL to 10 μg / mL, 0.3 pg / mL to 10 μg / mL, 0.5 pg / mL to 10 μg contained in blood, serum or plasma. It is possible to detect lipopolysaccharide derived from sepsis-causing bacteria at / mL, 1 pg / mL to 10 μg / mL, or 5 pg / mL to 10 μg / mL.
The cutoff value can be appropriately set according to the type of biological sample or the type of analysis kit. If the measured value is lower than the cutoff value, it can be determined that the subject does not have sepsis due to the causative agent of sepsis. If the measured value is higher than the cutoff value, it can be determined that the subject has sepsis derived from the sepsis-causing bacterium.
カットオフ値は生体試料の種類または分析キットの種類に応じて適宜設定することができる。測定値がカットオフ値より低い場合は、対象が敗血症原因細菌由来の敗血症を罹患していないと判定することができる。測定値がカットオフ値より高い場合は、対象が敗血症原因細菌由来の敗血症を罹患していると判定することができる。 When the immunological analysis kit of the present invention uses a monoclonal antibody that reacts with lipopolysaccharide derived from Pseudomonas aeruginosa but does not react with lipopolysaccharide derived from Pseudomonas aeruginosa and lipopolysaccharide derived from Escherichia coli, a biological sample is used. Medium, preferably 0.023 pg / mL to 10 μg / mL, 0.1 pg / mL to 10 μg / mL, 0.3 pg / mL to 10 μg / mL, 0.5 pg / mL to 10 μg contained in blood, serum or plasma. It is possible to detect lipopolysaccharide derived from sepsis-causing bacteria at / mL, 1 pg / mL to 10 μg / mL, or 5 pg / mL to 10 μg / mL.
The cutoff value can be appropriately set according to the type of biological sample or the type of analysis kit. If the measured value is lower than the cutoff value, it can be determined that the subject does not have sepsis due to the causative agent of sepsis. If the measured value is higher than the cutoff value, it can be determined that the subject has sepsis derived from the sepsis-causing bacterium.
(その他)
本発明の免疫学的分析キットは、それぞれ上記の他に、緩衝成分(緩衝液)を含んでもよい。本発明に用いることが出来る緩衝液としては、一般的に使用されるものであればよく、例えばトリス塩酸、ホウ酸、リン酸、酢酸、クエン酸、コハク酸、フタル酸、グルタル酸、マレイン酸、グリシン及びそれらの塩などや、MES、Bis-Tris、ADA、PIPES、ACES、MOPSO、BES、MOPS、TES、HEPES等のグット緩衝液などが挙げられる。
また、本発明の免疫学的分析キットは、測定感度向上や非特異的反応抑制の目的で、必要に応じて糖類やタンパク質などを含む。例えば、抗原抗体反応を促進する成分(ポリエチレングリコール、ポリビニルピロリドン、リン脂質ポリマーなどの高分子など)、タンパク質やペプチド(アルブミン、カゼインなど)、アミノ酸、糖類(ショ糖、シクロデキストリンなど)、防腐剤(アジ化ナトリウム、ProClin300など)が挙げられる。
本発明の免疫学的分析キットに使用される試薬は、当業者であれば適切な濃度に調整して使用可能である。
本発明の免疫学的分析キットには、他に使用説明書、安定化剤、反応容器、前処理液、及び検体抽出液などを含むこともできる。 (others)
The immunological analysis kit of the present invention may contain a buffer component (buffer solution) in addition to the above. The buffer solution that can be used in the present invention may be any commonly used buffer, such as tris-hydrogen, boric acid, phosphoric acid, acetic acid, citric acid, succinic acid, phthalic acid, glutaric acid, and maleic acid. , Glycin and salts thereof, and Gut buffers such as MES, Bis-Tris, ADA, PIPES, ACES, MOPSO, BES, MOPS, TES, HEPES and the like.
In addition, the immunological analysis kit of the present invention contains saccharides, proteins and the like, if necessary, for the purpose of improving measurement sensitivity and suppressing non-specific reactions. For example, components that promote antigen-antibody reactions (polymers such as polyethylene glycol, polyvinylpyrrolidone, and phospholipid polymers), proteins and peptides (albumin, casein, etc.), amino acids, sugars (sucrose, cyclodextrin, etc.), preservatives. (Sodium azide, ProClin300, etc.) can be mentioned.
The reagent used in the immunological analysis kit of the present invention can be adjusted to an appropriate concentration and used by those skilled in the art.
The immunological analysis kit of the present invention may also include instructions for use, stabilizers, reaction vessels, pretreatment liquids, sample extracts and the like.
本発明の免疫学的分析キットは、それぞれ上記の他に、緩衝成分(緩衝液)を含んでもよい。本発明に用いることが出来る緩衝液としては、一般的に使用されるものであればよく、例えばトリス塩酸、ホウ酸、リン酸、酢酸、クエン酸、コハク酸、フタル酸、グルタル酸、マレイン酸、グリシン及びそれらの塩などや、MES、Bis-Tris、ADA、PIPES、ACES、MOPSO、BES、MOPS、TES、HEPES等のグット緩衝液などが挙げられる。
また、本発明の免疫学的分析キットは、測定感度向上や非特異的反応抑制の目的で、必要に応じて糖類やタンパク質などを含む。例えば、抗原抗体反応を促進する成分(ポリエチレングリコール、ポリビニルピロリドン、リン脂質ポリマーなどの高分子など)、タンパク質やペプチド(アルブミン、カゼインなど)、アミノ酸、糖類(ショ糖、シクロデキストリンなど)、防腐剤(アジ化ナトリウム、ProClin300など)が挙げられる。
本発明の免疫学的分析キットに使用される試薬は、当業者であれば適切な濃度に調整して使用可能である。
本発明の免疫学的分析キットには、他に使用説明書、安定化剤、反応容器、前処理液、及び検体抽出液などを含むこともできる。 (others)
The immunological analysis kit of the present invention may contain a buffer component (buffer solution) in addition to the above. The buffer solution that can be used in the present invention may be any commonly used buffer, such as tris-hydrogen, boric acid, phosphoric acid, acetic acid, citric acid, succinic acid, phthalic acid, glutaric acid, and maleic acid. , Glycin and salts thereof, and Gut buffers such as MES, Bis-Tris, ADA, PIPES, ACES, MOPSO, BES, MOPS, TES, HEPES and the like.
In addition, the immunological analysis kit of the present invention contains saccharides, proteins and the like, if necessary, for the purpose of improving measurement sensitivity and suppressing non-specific reactions. For example, components that promote antigen-antibody reactions (polymers such as polyethylene glycol, polyvinylpyrrolidone, and phospholipid polymers), proteins and peptides (albumin, casein, etc.), amino acids, sugars (sucrose, cyclodextrin, etc.), preservatives. (Sodium azide, ProClin300, etc.) can be mentioned.
The reagent used in the immunological analysis kit of the present invention can be adjusted to an appropriate concentration and used by those skilled in the art.
The immunological analysis kit of the present invention may also include instructions for use, stabilizers, reaction vessels, pretreatment liquids, sample extracts and the like.
電気化学発光免疫測定法(ECL法)とは、通電により標識物質を発光させ、その発光量を検出することで被検出物質の量を測定する方法を意味する。電気化学発光免疫測定法(ECL法)では、標識物質として、ルテニウム錯体を用いることができる。固相(マイクロプレート等)に電極を設置してこの電極上でラジカルを発生させることによりルテニウム錯体を励起状態にして発光させる。そして、このルテニウム錯体の発光量を検出することができる。
通常は、第一モノクローナル抗体を固相抗体として用い、第一モノクローナル抗体とは別のエピトープを認識する第二モノクローナル抗体を標識抗体として用いて、電気化学発光免疫測定法(ECL法)を行うことができる。一方で、本発明の免疫学的分析キットでは、第一モノクローナル抗体及び第二モノクローナル抗体のいずれにも同じエピトープを認識する抗体を使用することができる。
ECL法を使用する場合、本発明の免疫学的分析キットは、以下(A)及び(B)を含むことができる。
(A)敗血症原因細菌由来のリポ多糖と反応する第一モノクローナル抗体(標識抗体)と電気化学発光物質(例えば、ルテニウム錯体等)とのコンジュゲートを含む標識試薬、及び
(B)敗血症原因細菌由来のリポ多糖と反応する第二モノクローナル抗体(固相抗体)を固定化した不溶性担体。
第一モノクローナル抗体及び第二モノクローナル抗体のいずれにも同じエピトープを認識するモノクローナル抗体を使用することができる。
例えば、固相として磁性粒子を用いたキットでは、固相抗体を固定化した磁性粒子に、生体試料を添加して反応させた後、生体試料を除去して洗浄する。続いて、標識抗体と電気化学発光物質(例えば、ルテニウム錯体等)とのコンジュゲートを添加して反応させる。磁性粒子を洗浄後、電気エネルギーを加えて発光させ標識物質の発光量を測定することにより、敗血症原因細菌由来のリポ多糖を分析することができる。 The electrochemiluminescence immunoassay (ECL method) means a method of measuring the amount of a substance to be detected by causing a labeled substance to emit light by energization and detecting the amount of the light emitted. In the electrochemical luminescence immunoassay (ECL method), a ruthenium complex can be used as a labeling substance. An electrode is placed on a solid phase (microplate, etc.) and radicals are generated on the electrode to make the ruthenium complex excited and emit light. Then, the amount of light emitted from this ruthenium complex can be detected.
Usually, an electrochemical luminescence immunoassay (ECL method) is performed using a first monoclonal antibody as a solid phase antibody and a second monoclonal antibody that recognizes an epitope different from the first monoclonal antibody as a labeled antibody. Can be done. On the other hand, in the immunological analysis kit of the present invention, an antibody that recognizes the same epitope can be used for both the first monoclonal antibody and the second monoclonal antibody.
When using the ECL method, the immunological analysis kit of the present invention can include (A) and (B) below.
(A) Labeling reagent containing a conjugate of a first monoclonal antibody (labeled antibody) that reacts with lipopolysaccharide derived from septicemia-causing bacteria and an electrochemical luminescent substance (for example, ruthenium complex, etc.), and (B) derived from septicemia-causing bacteria. An insoluble carrier on which a second monoclonal antibody (solid phase antibody) that reacts with lipopolysaccharide is immobilized.
Monoclonal antibodies that recognize the same epitope can be used for both the first monoclonal antibody and the second monoclonal antibody.
For example, in a kit using magnetic particles as a solid phase, a biological sample is added to the magnetic particles on which a solid phase antibody is immobilized and reacted, and then the biological sample is removed and washed. Subsequently, a conjugate of the labeled antibody and an electrochemically chemiluminescent substance (for example, a ruthenium complex or the like) is added and reacted. After washing the magnetic particles, electric energy is applied to emit light, and the amount of light emitted from the labeling substance is measured, whereby lipopolysaccharide derived from the causative bacterium of sepsis can be analyzed.
通常は、第一モノクローナル抗体を固相抗体として用い、第一モノクローナル抗体とは別のエピトープを認識する第二モノクローナル抗体を標識抗体として用いて、電気化学発光免疫測定法(ECL法)を行うことができる。一方で、本発明の免疫学的分析キットでは、第一モノクローナル抗体及び第二モノクローナル抗体のいずれにも同じエピトープを認識する抗体を使用することができる。
ECL法を使用する場合、本発明の免疫学的分析キットは、以下(A)及び(B)を含むことができる。
(A)敗血症原因細菌由来のリポ多糖と反応する第一モノクローナル抗体(標識抗体)と電気化学発光物質(例えば、ルテニウム錯体等)とのコンジュゲートを含む標識試薬、及び
(B)敗血症原因細菌由来のリポ多糖と反応する第二モノクローナル抗体(固相抗体)を固定化した不溶性担体。
第一モノクローナル抗体及び第二モノクローナル抗体のいずれにも同じエピトープを認識するモノクローナル抗体を使用することができる。
例えば、固相として磁性粒子を用いたキットでは、固相抗体を固定化した磁性粒子に、生体試料を添加して反応させた後、生体試料を除去して洗浄する。続いて、標識抗体と電気化学発光物質(例えば、ルテニウム錯体等)とのコンジュゲートを添加して反応させる。磁性粒子を洗浄後、電気エネルギーを加えて発光させ標識物質の発光量を測定することにより、敗血症原因細菌由来のリポ多糖を分析することができる。 The electrochemiluminescence immunoassay (ECL method) means a method of measuring the amount of a substance to be detected by causing a labeled substance to emit light by energization and detecting the amount of the light emitted. In the electrochemical luminescence immunoassay (ECL method), a ruthenium complex can be used as a labeling substance. An electrode is placed on a solid phase (microplate, etc.) and radicals are generated on the electrode to make the ruthenium complex excited and emit light. Then, the amount of light emitted from this ruthenium complex can be detected.
Usually, an electrochemical luminescence immunoassay (ECL method) is performed using a first monoclonal antibody as a solid phase antibody and a second monoclonal antibody that recognizes an epitope different from the first monoclonal antibody as a labeled antibody. Can be done. On the other hand, in the immunological analysis kit of the present invention, an antibody that recognizes the same epitope can be used for both the first monoclonal antibody and the second monoclonal antibody.
When using the ECL method, the immunological analysis kit of the present invention can include (A) and (B) below.
(A) Labeling reagent containing a conjugate of a first monoclonal antibody (labeled antibody) that reacts with lipopolysaccharide derived from septicemia-causing bacteria and an electrochemical luminescent substance (for example, ruthenium complex, etc.), and (B) derived from septicemia-causing bacteria. An insoluble carrier on which a second monoclonal antibody (solid phase antibody) that reacts with lipopolysaccharide is immobilized.
Monoclonal antibodies that recognize the same epitope can be used for both the first monoclonal antibody and the second monoclonal antibody.
For example, in a kit using magnetic particles as a solid phase, a biological sample is added to the magnetic particles on which a solid phase antibody is immobilized and reacted, and then the biological sample is removed and washed. Subsequently, a conjugate of the labeled antibody and an electrochemically chemiluminescent substance (for example, a ruthenium complex or the like) is added and reacted. After washing the magnetic particles, electric energy is applied to emit light, and the amount of light emitted from the labeling substance is measured, whereby lipopolysaccharide derived from the causative bacterium of sepsis can be analyzed.
酵素標識を用いる酵素免疫測定法(ELISA法)も、簡便且つ迅速に標的を測定することができて好ましい。本明細書においてELISAとは、試料中に含まれる被検出物質である抗原又は抗体を、前記被検出物質に対する抗体又は抗原を利用して捕捉した後に、酵素反応を利用して検出する方法を意味する。
ELISAとしてはサンドイッチELISAが好ましい。本明細書において、サンドイッチELISAとは、捕捉用の抗体(固相抗体)と検出用の抗体の二種類の抗体で、抗原をサンドイッチして抗原を検出し、定量するELISAを意味する。
サンドイッチELISAの場合、被検出物質を認識する第一モノクローナル抗体(固相抗体)を固定化した不溶性担体と、標識物質で標識された第二モノクローナル抗体(標識抗体)とを使用する。不溶性担体はプレート(イムノプレート)が好ましい。
通常は、第一モノクローナル抗体を固相抗体として用い、第一モノクローナル抗体とは別のエピトープを認識する第二モノクローナル抗体を標識抗体として用いて、酵素免疫測定法(ELISA法)を行うことができるが、本発明の免疫学的分析キットでは、第一モノクローナル抗体及び第二モノクローナル抗体のいずれにも同じエピトープを認識する抗体を使用することができる。
サンドイッチELISA法を使用する場合、本発明の免疫学的分析用キットは、以下(A)及び(B)を含むことができる。
(A)標識物質で標識した、敗血症原因細菌由来のリポ多糖と反応する第一モノクローナル抗体を含む標識試薬
(B)固相抗体を固定化した不溶性担体。
このようなキットでは、まず、固相抗体を固定化した不溶性担体に生体試料を添加した後インキュベートし、試料を除去して洗浄する。次に、標識試薬を添加した後インキュベートし、基質を加えて発色させる。プレートリーダー等を用いて発色を測定することにより、被検出物質を分析することができる。標識物質としてビオチンを使用することが好ましく、ビオチンを使用する場合、HRPで標識したストレプトアビジンをさらに使用することができる。 An enzyme-linked immunosorbent assay (ELISA method) using an enzyme label is also preferable because the target can be measured easily and quickly. As used herein, the term ELISA means a method of capturing an antigen or an antibody, which is a substance to be detected, contained in a sample by using an antibody or an antigen against the substance to be detected, and then detecting the substance by using an enzymatic reaction. do.
As the ELISA, sandwich ELISA is preferable. As used herein, the sandwich ELISA means an ELISA in which an antigen is sandwiched between two types of antibodies, an antibody for capture (solid phase antibody) and an antibody for detection, to detect and quantify the antigen.
In the case of sandwich ELISA, an insoluble carrier on which a first monoclonal antibody (solid phase antibody) that recognizes a substance to be detected is immobilized and a second monoclonal antibody (labeled antibody) labeled with a labeling substance are used. The insoluble carrier is preferably a plate (immunoplate).
Usually, an enzyme immunoassay (ELISA method) can be performed using a first monoclonal antibody as a solid phase antibody and a second monoclonal antibody that recognizes an epitope different from the first monoclonal antibody as a labeled antibody. However, in the immunological analysis kit of the present invention, an antibody that recognizes the same epitope can be used for both the first monoclonal antibody and the second monoclonal antibody.
When using the sandwich ELISA method, the immunological analysis kit of the present invention can include the following (A) and (B).
(A) Labeling reagent containing a first monoclonal antibody that reacts with lipopolysaccharide derived from sepsis-causing bacteria labeled with a labeling substance (B) An insoluble carrier on which a solid-phase antibody is immobilized.
In such a kit, first, a biological sample is added to an insoluble carrier on which a solid phase antibody is immobilized, and then the sample is incubated, and the sample is removed and washed. Next, the labeling reagent is added and then incubated, and the substrate is added to develop color. The substance to be detected can be analyzed by measuring the color development using a plate reader or the like. It is preferable to use biotin as the labeling substance, and when biotin is used, HRP-labeled streptavidin can be further used.
ELISAとしてはサンドイッチELISAが好ましい。本明細書において、サンドイッチELISAとは、捕捉用の抗体(固相抗体)と検出用の抗体の二種類の抗体で、抗原をサンドイッチして抗原を検出し、定量するELISAを意味する。
サンドイッチELISAの場合、被検出物質を認識する第一モノクローナル抗体(固相抗体)を固定化した不溶性担体と、標識物質で標識された第二モノクローナル抗体(標識抗体)とを使用する。不溶性担体はプレート(イムノプレート)が好ましい。
通常は、第一モノクローナル抗体を固相抗体として用い、第一モノクローナル抗体とは別のエピトープを認識する第二モノクローナル抗体を標識抗体として用いて、酵素免疫測定法(ELISA法)を行うことができるが、本発明の免疫学的分析キットでは、第一モノクローナル抗体及び第二モノクローナル抗体のいずれにも同じエピトープを認識する抗体を使用することができる。
サンドイッチELISA法を使用する場合、本発明の免疫学的分析用キットは、以下(A)及び(B)を含むことができる。
(A)標識物質で標識した、敗血症原因細菌由来のリポ多糖と反応する第一モノクローナル抗体を含む標識試薬
(B)固相抗体を固定化した不溶性担体。
このようなキットでは、まず、固相抗体を固定化した不溶性担体に生体試料を添加した後インキュベートし、試料を除去して洗浄する。次に、標識試薬を添加した後インキュベートし、基質を加えて発色させる。プレートリーダー等を用いて発色を測定することにより、被検出物質を分析することができる。標識物質としてビオチンを使用することが好ましく、ビオチンを使用する場合、HRPで標識したストレプトアビジンをさらに使用することができる。 An enzyme-linked immunosorbent assay (ELISA method) using an enzyme label is also preferable because the target can be measured easily and quickly. As used herein, the term ELISA means a method of capturing an antigen or an antibody, which is a substance to be detected, contained in a sample by using an antibody or an antigen against the substance to be detected, and then detecting the substance by using an enzymatic reaction. do.
As the ELISA, sandwich ELISA is preferable. As used herein, the sandwich ELISA means an ELISA in which an antigen is sandwiched between two types of antibodies, an antibody for capture (solid phase antibody) and an antibody for detection, to detect and quantify the antigen.
In the case of sandwich ELISA, an insoluble carrier on which a first monoclonal antibody (solid phase antibody) that recognizes a substance to be detected is immobilized and a second monoclonal antibody (labeled antibody) labeled with a labeling substance are used. The insoluble carrier is preferably a plate (immunoplate).
Usually, an enzyme immunoassay (ELISA method) can be performed using a first monoclonal antibody as a solid phase antibody and a second monoclonal antibody that recognizes an epitope different from the first monoclonal antibody as a labeled antibody. However, in the immunological analysis kit of the present invention, an antibody that recognizes the same epitope can be used for both the first monoclonal antibody and the second monoclonal antibody.
When using the sandwich ELISA method, the immunological analysis kit of the present invention can include the following (A) and (B).
(A) Labeling reagent containing a first monoclonal antibody that reacts with lipopolysaccharide derived from sepsis-causing bacteria labeled with a labeling substance (B) An insoluble carrier on which a solid-phase antibody is immobilized.
In such a kit, first, a biological sample is added to an insoluble carrier on which a solid phase antibody is immobilized, and then the sample is incubated, and the sample is removed and washed. Next, the labeling reagent is added and then incubated, and the substrate is added to develop color. The substance to be detected can be analyzed by measuring the color development using a plate reader or the like. It is preferable to use biotin as the labeling substance, and when biotin is used, HRP-labeled streptavidin can be further used.
サンドイッチELISA法において、二次抗体を用いることもできる。二次抗体を用いることにより、反応が増幅され、検出感度をさらに高めることができる。二次抗体を用いる場合、本発明の分析キットは、以下(A)~(D)を含むことができる。
(A)一次抗体としての第二モノクローナル抗体
(B)第一モノクローナル抗体を固定化した固相
(C)標識物質(HRP又はALP等)で標識した、第二モノクローナル抗体に対する抗体
(D)標識物質の基質(OPD、TMB、又はp-ニトロフェニル・ホスフェートなど)
このようなキットでは、まず、第一モノクローナル抗体を固定化した固相に適宜処理し希釈した生体試料を添加した後インキュベートし、生体試料を除去して洗浄する。続いて、一次抗体(第二モノクローナル抗体)を添加してインキュベートおよび洗浄を行い、さらに酵素標識した二次抗体を添加してインキュベートを行う。その後、基質を加えて発色させる。プレートリーダー等を用いて発色を測定することにより、敗血症原因細菌由来のリポ多糖を分析することができる。 Secondary antibodies can also be used in the sandwich ELISA method. By using the secondary antibody, the reaction is amplified and the detection sensitivity can be further increased. When a secondary antibody is used, the analysis kit of the present invention can include the following (A) to (D).
(A) Second monoclonal antibody as the primary antibody (B) Solid phase (C) labeled substance (HRP, ALP, etc.) on which the first monoclonal antibody is immobilized, antibody to the second monoclonal antibody (D) Labeled substance Substrate (OPD, TMB, or p-nitrophenyl phosphate, etc.)
In such a kit, first, the first monoclonal antibody is appropriately treated on the immobilized solid phase, a diluted biological sample is added, and then the incubation is performed, and the biological sample is removed and washed. Subsequently, a primary antibody (secondary monoclonal antibody) is added for incubation and washing, and an enzyme-labeled secondary antibody is further added for incubation. Then, the substrate is added to develop the color. By measuring the color development using a plate reader or the like, lipopolysaccharide derived from the causative bacterium of sepsis can be analyzed.
(A)一次抗体としての第二モノクローナル抗体
(B)第一モノクローナル抗体を固定化した固相
(C)標識物質(HRP又はALP等)で標識した、第二モノクローナル抗体に対する抗体
(D)標識物質の基質(OPD、TMB、又はp-ニトロフェニル・ホスフェートなど)
このようなキットでは、まず、第一モノクローナル抗体を固定化した固相に適宜処理し希釈した生体試料を添加した後インキュベートし、生体試料を除去して洗浄する。続いて、一次抗体(第二モノクローナル抗体)を添加してインキュベートおよび洗浄を行い、さらに酵素標識した二次抗体を添加してインキュベートを行う。その後、基質を加えて発色させる。プレートリーダー等を用いて発色を測定することにより、敗血症原因細菌由来のリポ多糖を分析することができる。 Secondary antibodies can also be used in the sandwich ELISA method. By using the secondary antibody, the reaction is amplified and the detection sensitivity can be further increased. When a secondary antibody is used, the analysis kit of the present invention can include the following (A) to (D).
(A) Second monoclonal antibody as the primary antibody (B) Solid phase (C) labeled substance (HRP, ALP, etc.) on which the first monoclonal antibody is immobilized, antibody to the second monoclonal antibody (D) Labeled substance Substrate (OPD, TMB, or p-nitrophenyl phosphate, etc.)
In such a kit, first, the first monoclonal antibody is appropriately treated on the immobilized solid phase, a diluted biological sample is added, and then the incubation is performed, and the biological sample is removed and washed. Subsequently, a primary antibody (secondary monoclonal antibody) is added for incubation and washing, and an enzyme-labeled secondary antibody is further added for incubation. Then, the substrate is added to develop the color. By measuring the color development using a plate reader or the like, lipopolysaccharide derived from the causative bacterium of sepsis can be analyzed.
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。また、特に説明のない限り、%は質量%を示す。
Hereinafter, the present invention will be specifically described with reference to Examples, but these do not limit the scope of the present invention. Further, unless otherwise specified,% indicates mass%.
〔試験例1〕本発明に使用するモノクローナル抗体の製造方法
1.抗体の取得
PBSで希釈した大腸菌と緑膿菌の加熱処理菌体、又は、PBSで希釈した肺炎桿菌、大腸菌、及び緑膿菌の加熱処理菌体をラット(F344/Jc1、♀)の腹腔に毎週免疫した。初回免疫から10週後(10回免疫後)に試験採血し、それぞれ血中抗体価を確認した。血中抗体価は、主とした敗血症原因細菌の緑膿菌、大腸菌、肺炎桿菌のそれぞれ由来のLPSを抗原とした抗原固相ELISAで評価した。抗原固相ELISAの具体的な手順は以下の通りである。 [Test Example 1] Method for producing a monoclonal antibody used in thepresent invention 1. Acquisition of antibody Heat-treated cells of Escherichia coli and Pseudomonas aeruginosa diluted with PBS or heat-treated cells of Pneumonia bacillus, Escherichia coli, and Pseudomonas aeruginosa diluted with PBS were placed in the abdominal cavity of a rat (F344 / Jc1, ♀). I was immunized every week. Test blood was collected 10 weeks after the initial immunization (after 10 immunizations), and the antibody titer in the blood was confirmed for each. The antibody titer in blood was evaluated by an antigen solid-phase ELISA using LPS derived from each of the main causative bacteria of sepsis, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. The specific procedure of the antigen solid phase ELISA is as follows.
1.抗体の取得
PBSで希釈した大腸菌と緑膿菌の加熱処理菌体、又は、PBSで希釈した肺炎桿菌、大腸菌、及び緑膿菌の加熱処理菌体をラット(F344/Jc1、♀)の腹腔に毎週免疫した。初回免疫から10週後(10回免疫後)に試験採血し、それぞれ血中抗体価を確認した。血中抗体価は、主とした敗血症原因細菌の緑膿菌、大腸菌、肺炎桿菌のそれぞれ由来のLPSを抗原とした抗原固相ELISAで評価した。抗原固相ELISAの具体的な手順は以下の通りである。 [Test Example 1] Method for producing a monoclonal antibody used in the
・ELISA用96穴プレートにPBSで希釈した各種LPSを分注し(1μg/mL,50μL/well)、室温で2時間または4℃で一晩静置した。
・3回洗浄後(400μL/well)、ブロッキング液を分注し(100μL/well)、室温で1時間または4℃で一晩静置した。
・ブロッキング液を除去後、培養上清または血清を分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、抗体希釈液で17000倍希釈したHRP標識ヤギ抗ラットIgG(H+L)抗体を分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、OPD発色液を分注(50μL/well)し、室温で10分間反応させた。
・停止液を分注し(50μL/well)、反応を停止した。プレートリーダーで波長492nmの吸光度を測定した。 Various LPS diluted with PBS were dispensed into a 96-well plate for ELISA (1 μg / mL, 50 μL / well) and allowed to stand at room temperature for 2 hours or at 4 ° C. overnight.
-After washing 3 times (400 μL / well), the blocking solution was dispensed (100 μL / well) and allowed to stand at room temperature for 1 hour or at 4 ° C. overnight.
-After removing the blocking solution, the culture supernatant or serum was dispensed (50 μL / well) and allowed to stand at room temperature for 1 hour.
After washing 3 times (400 μL / well), HRP-labeled goat anti-rat IgG (H + L) antibody diluted 17,000 times with an antibody diluted solution was dispensed (50 μL / well) and allowed to stand at room temperature for 1 hour.
-After washing 3 times (400 μL / well), the OPD color-developing solution was dispensed (50 μL / well) and reacted at room temperature for 10 minutes.
-The stop solution was dispensed (50 μL / well) and the reaction was stopped. The absorbance at a wavelength of 492 nm was measured with a plate reader.
・3回洗浄後(400μL/well)、ブロッキング液を分注し(100μL/well)、室温で1時間または4℃で一晩静置した。
・ブロッキング液を除去後、培養上清または血清を分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、抗体希釈液で17000倍希釈したHRP標識ヤギ抗ラットIgG(H+L)抗体を分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、OPD発色液を分注(50μL/well)し、室温で10分間反応させた。
・停止液を分注し(50μL/well)、反応を停止した。プレートリーダーで波長492nmの吸光度を測定した。 Various LPS diluted with PBS were dispensed into a 96-well plate for ELISA (1 μg / mL, 50 μL / well) and allowed to stand at room temperature for 2 hours or at 4 ° C. overnight.
-After washing 3 times (400 μL / well), the blocking solution was dispensed (100 μL / well) and allowed to stand at room temperature for 1 hour or at 4 ° C. overnight.
-After removing the blocking solution, the culture supernatant or serum was dispensed (50 μL / well) and allowed to stand at room temperature for 1 hour.
After washing 3 times (400 μL / well), HRP-labeled goat anti-rat IgG (H + L) antibody diluted 17,000 times with an antibody diluted solution was dispensed (50 μL / well) and allowed to stand at room temperature for 1 hour.
-After washing 3 times (400 μL / well), the OPD color-developing solution was dispensed (50 μL / well) and reacted at room temperature for 10 minutes.
-The stop solution was dispensed (50 μL / well) and the reaction was stopped. The absorbance at a wavelength of 492 nm was measured with a plate reader.
その結果、免疫原である大腸菌由来のLPSと緑膿菌由来のLPSに対しての力価上昇が確認された。抗体価上昇を確認後、電気融合法により脾臓細胞、腸骨リンパ節細胞をミエローマ細胞SP2/Oと融合した。融合に供さなかった細胞は凍結保存した。融合細胞は96wellプレートで培養し、融合から7日後に培養上清を回収してスクリーニングを行った。なお、スクリーニング前日に培地交換を行った。
As a result, it was confirmed that the titers of LPS derived from Escherichia coli, which is an immunogen, and LPS derived from Pseudomonas aeruginosa increased. After confirming the increase in antibody titer, spleen cells and iliac lymph node cells were fused with myeloma cells SP2 / O by an electric fusion method. Cells that were not subjected to fusion were cryopreserved. The fused cells were cultured on 96-well plates, and the culture supernatant was collected and screened 7 days after the fusion. The medium was exchanged the day before the screening.
2.スクリーニング
敗血症の原因となる肺炎桿菌、大腸菌、緑膿菌由来のLPSを抗原とした液相系ELISAにより、敗血病原因細菌由来のLPSに反応する抗体のスクリーニングを試みた。液相系ELISAの具体的な手順は以下の通りである。 2. 2. Screening We attempted to screen for antibodies that react with LPS derived from the bacteria that cause sepsis by liquid phase ELISA using LPS derived from pneumonia rod, Escherichia coli, and Pseudomonas aeruginosa that cause sepsis as antigens. The specific procedure of the liquid phase ELISA is as follows.
敗血症の原因となる肺炎桿菌、大腸菌、緑膿菌由来のLPSを抗原とした液相系ELISAにより、敗血病原因細菌由来のLPSに反応する抗体のスクリーニングを試みた。液相系ELISAの具体的な手順は以下の通りである。 2. 2. Screening We attempted to screen for antibodies that react with LPS derived from the bacteria that cause sepsis by liquid phase ELISA using LPS derived from pneumonia rod, Escherichia coli, and Pseudomonas aeruginosa that cause sepsis as antigens. The specific procedure of the liquid phase ELISA is as follows.
・ELISA用96穴プレートにPBSで希釈した抗ラットIgGもしくは抗ラットIgM抗体溶液を分注し(5μg/mL,50μL/well)、室温で2時間または4℃で一晩静置した。
・3回洗浄後(400μL/well)、ブロッキング液を分注し(100μL/well)、室温で1時間または4℃で一晩静置した。
・ブロッキング液を除去後、各濃度に希釈した抗体溶液を分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、EZ-LinkTM Sulfo-NHS-LC-Biotin(Thermo Fisher Scientific社)でビオチン標識した各濃度のLPSを分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、HRP標識ストレプトアビジンを分注し(0.2μg/mL,50μL/well)、室温で30分間静置した。
・3回洗浄後(400μL/well)、OPD発色液を分注(50μL/well)し、室温で10分間反応させた。
・停止液を分注し(50μL/well)、反応を停止した。プレートリーダーで波長492nmの吸光度を測定した。 An anti-rat IgG or anti-rat IgM antibody solution diluted with PBS was dispensed into a 96-well plate for ELISA (5 μg / mL, 50 μL / well) and allowed to stand at room temperature for 2 hours or 4 ° C overnight.
-After washing 3 times (400 μL / well), the blocking solution was dispensed (100 μL / well) and allowed to stand at room temperature for 1 hour or at 4 ° C. overnight.
-After removing the blocking solution, the antibody solution diluted to each concentration was dispensed (50 μL / well) and allowed to stand at room temperature for 1 hour.
-After 3 washes (400 μL / well), biotin-labeled LPS at each concentration was dispensed with EZ-LinkTM Sulfo-NHS-LC-Biotin (Thermo Fisher Scientific) (50 μL / well) and allowed to stand at room temperature for 1 hour. Placed.
-After washing 3 times (400 μL / well), HRP-labeled streptavidin was dispensed (0.2 μg / mL, 50 μL / well) and allowed to stand at room temperature for 30 minutes.
-After washing 3 times (400 μL / well), the OPD color-developing solution was dispensed (50 μL / well) and reacted at room temperature for 10 minutes.
-The stop solution was dispensed (50 μL / well) and the reaction was stopped. The absorbance at a wavelength of 492 nm was measured with a plate reader.
・3回洗浄後(400μL/well)、ブロッキング液を分注し(100μL/well)、室温で1時間または4℃で一晩静置した。
・ブロッキング液を除去後、各濃度に希釈した抗体溶液を分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、EZ-LinkTM Sulfo-NHS-LC-Biotin(Thermo Fisher Scientific社)でビオチン標識した各濃度のLPSを分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、HRP標識ストレプトアビジンを分注し(0.2μg/mL,50μL/well)、室温で30分間静置した。
・3回洗浄後(400μL/well)、OPD発色液を分注(50μL/well)し、室温で10分間反応させた。
・停止液を分注し(50μL/well)、反応を停止した。プレートリーダーで波長492nmの吸光度を測定した。 An anti-rat IgG or anti-rat IgM antibody solution diluted with PBS was dispensed into a 96-well plate for ELISA (5 μg / mL, 50 μL / well) and allowed to stand at room temperature for 2 hours or 4 ° C overnight.
-After washing 3 times (400 μL / well), the blocking solution was dispensed (100 μL / well) and allowed to stand at room temperature for 1 hour or at 4 ° C. overnight.
-After removing the blocking solution, the antibody solution diluted to each concentration was dispensed (50 μL / well) and allowed to stand at room temperature for 1 hour.
-After 3 washes (400 μL / well), biotin-labeled LPS at each concentration was dispensed with EZ-LinkTM Sulfo-NHS-LC-Biotin (Thermo Fisher Scientific) (50 μL / well) and allowed to stand at room temperature for 1 hour. Placed.
-After washing 3 times (400 μL / well), HRP-labeled streptavidin was dispensed (0.2 μg / mL, 50 μL / well) and allowed to stand at room temperature for 30 minutes.
-After washing 3 times (400 μL / well), the OPD color-developing solution was dispensed (50 μL / well) and reacted at room temperature for 10 minutes.
-The stop solution was dispensed (50 μL / well) and the reaction was stopped. The absorbance at a wavelength of 492 nm was measured with a plate reader.
液相系ELISAの結果、免疫原には含まれておらず、力価上昇も不十分であった肺炎桿菌由来のLPSに反応する1株の抗体(IgM型:S28201R)と大腸菌由来のLPSに反応する1株の抗体(IgM型:S28203R)の樹立に成功した。
As a result of the liquid-phase ELISA, one antibody (IgM type: S28201R) that reacts with LPS derived from pneumonia rod and LPS derived from Escherichia coli, which was not included in the immunogen and had an insufficient increase in titer. We succeeded in establishing one antibody (IgM type: S28203R) that reacts.
〔実施例1〕試験例1で得られたモノクローナル抗体を用いた実験系の感度の評価
S28201R、S28203Rそれぞれにおいて同一抗体でサンドイッチ系を組むことができるか、サンドイッチELISAによって評価した。サンドウィッチELISAの具体的な手順は以下の通りである。 [Example 1] Evaluation of sensitivity of an experimental system using the monoclonal antibody obtained in Test Example 1 Whether a sandwich system can be formed with the same antibody in each of S28201R and S2803R was evaluated by sandwich ELISA. The specific procedure of the sandwich ELISA is as follows.
S28201R、S28203Rそれぞれにおいて同一抗体でサンドイッチ系を組むことができるか、サンドイッチELISAによって評価した。サンドウィッチELISAの具体的な手順は以下の通りである。 [Example 1] Evaluation of sensitivity of an experimental system using the monoclonal antibody obtained in Test Example 1 Whether a sandwich system can be formed with the same antibody in each of S28201R and S2803R was evaluated by sandwich ELISA. The specific procedure of the sandwich ELISA is as follows.
・ELISA用96穴プレートにPBSで希釈した抗体溶液(S28201R又はS28203R)を分注し(5μg/mL,50μL/well)、室温で2時間または4℃で一晩静置した。また、コントロール・BR>ニしてラットIgMモノクローナル抗体を用いて同様の操作を行った。
・3回洗浄後(400μL/well)、ブロッキング液を分注し(100μL/well)、室温で1時間または4℃で一晩静置した。
・ブロッキング液を除去後、各濃度に希釈したLPSを分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、EZ-LinkTM Sulfo-NHS-LC-Biotin(Thermo Fisher Scientific社)でビオチン標識した各濃度の抗体(S28201R又はS28203R)を分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、HRP標識ストレプトアビジンを分注し(0.2μg/mL,50μL/well)、室温で30分間静置した。
・3回洗浄後(400μL/well)、OPD発色液を分注(50μL/well)し、室温で10分間反応させた。
・停止液を分注し(50μL/well)、反応を停止した。プレートリーダーで波長492nmの吸光度を測定した。 An antibody solution (S28201R or S28203R) diluted with PBS was dispensed (5 μg / mL, 50 μL / well) into a 96-well plate for ELISA and allowed to stand at room temperature for 2 hours or 4 ° C. overnight. In addition, the same operation was performed using a rat IgM monoclonal antibody under control.
-After washing 3 times (400 μL / well), the blocking solution was dispensed (100 μL / well) and allowed to stand at room temperature for 1 hour or at 4 ° C. overnight.
-After removing the blocking solution, LPS diluted to each concentration was dispensed (50 μL / well) and allowed to stand at room temperature for 1 hour.
After washing three times (400 μL / well), biotin-labeled antibody (S28201R or S28023R) at each concentration with EZ-LinkTM Sulfo-NHS-LC-Biotin (Thermo Fisher Scientific) was dispensed (50 μL / well). It was allowed to stand at room temperature for 1 hour.
-After washing 3 times (400 μL / well), HRP-labeled streptavidin was dispensed (0.2 μg / mL, 50 μL / well) and allowed to stand at room temperature for 30 minutes.
-After washing 3 times (400 μL / well), the OPD color-developing solution was dispensed (50 μL / well) and reacted at room temperature for 10 minutes.
-The stop solution was dispensed (50 μL / well) and the reaction was stopped. The absorbance at a wavelength of 492 nm was measured with a plate reader.
・3回洗浄後(400μL/well)、ブロッキング液を分注し(100μL/well)、室温で1時間または4℃で一晩静置した。
・ブロッキング液を除去後、各濃度に希釈したLPSを分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、EZ-LinkTM Sulfo-NHS-LC-Biotin(Thermo Fisher Scientific社)でビオチン標識した各濃度の抗体(S28201R又はS28203R)を分注し(50μL/well)、室温で1時間静置した。
・3回洗浄後(400μL/well)、HRP標識ストレプトアビジンを分注し(0.2μg/mL,50μL/well)、室温で30分間静置した。
・3回洗浄後(400μL/well)、OPD発色液を分注(50μL/well)し、室温で10分間反応させた。
・停止液を分注し(50μL/well)、反応を停止した。プレートリーダーで波長492nmの吸光度を測定した。 An antibody solution (S28201R or S28203R) diluted with PBS was dispensed (5 μg / mL, 50 μL / well) into a 96-well plate for ELISA and allowed to stand at room temperature for 2 hours or 4 ° C. overnight. In addition, the same operation was performed using a rat IgM monoclonal antibody under control.
-After washing 3 times (400 μL / well), the blocking solution was dispensed (100 μL / well) and allowed to stand at room temperature for 1 hour or at 4 ° C. overnight.
-After removing the blocking solution, LPS diluted to each concentration was dispensed (50 μL / well) and allowed to stand at room temperature for 1 hour.
After washing three times (400 μL / well), biotin-labeled antibody (S28201R or S28023R) at each concentration with EZ-LinkTM Sulfo-NHS-LC-Biotin (Thermo Fisher Scientific) was dispensed (50 μL / well). It was allowed to stand at room temperature for 1 hour.
-After washing 3 times (400 μL / well), HRP-labeled streptavidin was dispensed (0.2 μg / mL, 50 μL / well) and allowed to stand at room temperature for 30 minutes.
-After washing 3 times (400 μL / well), the OPD color-developing solution was dispensed (50 μL / well) and reacted at room temperature for 10 minutes.
-The stop solution was dispensed (50 μL / well) and the reaction was stopped. The absorbance at a wavelength of 492 nm was measured with a plate reader.
結果を表1及び2、並びに図2及び3に示す。その結果、サンドイッチ系を組むことは可能であることが示された。また、S28201RサンドウィッチELISA系は、約2ng/mL(表示値)の濃度まで抗原を検出可能であった。S28203RサンドイッチELISA系は約30ng/mL(表示値)の濃度まで抗原を検出可能であった。
The results are shown in Tables 1 and 2, and FIGS. 2 and 3. As a result, it was shown that it is possible to form a sandwich system. In addition, the S28201R sandwich ELISA system was able to detect the antigen up to a concentration of about 2 ng / mL (display value). The S28203R sandwich ELISA system was able to detect the antigen up to a concentration of about 30 ng / mL (displayed value).
〔参考例1〕リムルス試薬との感度の比較
肺炎桿菌由来のLPS及び大腸菌由来のLPSを用いて、リムルス試薬(製品名 リムルスES-Jテストワコー 富士フイルム和光純薬社製)の感度を測定し、実施例1において構築したサンドイッチ系の感度と比較した。リムルス試薬の実験手順は、添付の説明書に記載のプロトコルの通りに行った。肺炎桿菌由来のLPS(Sigma-Aldrich社)及び大腸菌由来のLPS(富士フィルム和光純薬株式会社)を段階希釈し、各濃度について、リムルス試薬を用いて検出可能かどうかを試験した。 [Reference Example 1] Comparison of Sensitivity with Limulus Reagent The sensitivity of Limulus Reagent (product name: Limulus ES-J Testwaco Fujifilm Wako Pure Chemical Industries, Ltd.) was measured using LPS derived from Klebsiella pneumoniae and LPS derived from Escherichia coli. , The sensitivity of the sandwich system constructed in Example 1 was compared. The experimental procedure for the Limulus reagent was performed according to the protocol described in the attached manual. LPS derived from pneumonia rod (Sigma-Aldrich) and LPS derived from Escherichia coli (Fuji Film Wako Pure Chemical Industries, Ltd.) were serially diluted, and each concentration was tested for detection using Limulus reagent.
肺炎桿菌由来のLPS及び大腸菌由来のLPSを用いて、リムルス試薬(製品名 リムルスES-Jテストワコー 富士フイルム和光純薬社製)の感度を測定し、実施例1において構築したサンドイッチ系の感度と比較した。リムルス試薬の実験手順は、添付の説明書に記載のプロトコルの通りに行った。肺炎桿菌由来のLPS(Sigma-Aldrich社)及び大腸菌由来のLPS(富士フィルム和光純薬株式会社)を段階希釈し、各濃度について、リムルス試薬を用いて検出可能かどうかを試験した。 [Reference Example 1] Comparison of Sensitivity with Limulus Reagent The sensitivity of Limulus Reagent (product name: Limulus ES-J Testwaco Fujifilm Wako Pure Chemical Industries, Ltd.) was measured using LPS derived from Klebsiella pneumoniae and LPS derived from Escherichia coli. , The sensitivity of the sandwich system constructed in Example 1 was compared. The experimental procedure for the Limulus reagent was performed according to the protocol described in the attached manual. LPS derived from pneumonia rod (Sigma-Aldrich) and LPS derived from Escherichia coli (Fuji Film Wako Pure Chemical Industries, Ltd.) were serially diluted, and each concentration was tested for detection using Limulus reagent.
結果を表3及び4に示す。リムルス試薬では、肺炎桿菌のLPSが125ng/mL(表示値)で検出不可能となった。したがって、実施例1において構築したサンドイッチ系は、肺炎桿菌のLPSの分析において、リムルス試薬よりも感度が高いことが示された。
また、リムルス試薬では、大腸菌のLPSが100ng/mL(表示値)で検出不可能となった。したがって、実施例1において構築したサンドイッチ系は、大腸菌のLPSの分析において、リムルス試薬よりも感度が高いことが示された。 The results are shown in Tables 3 and 4. With the Limulus reagent, LPS of Klebsiella pneumoniae became undetectable at 125 ng / mL (displayed value). Therefore, it was shown that the sandwich system constructed in Example 1 was more sensitive than the Limulus reagent in the analysis of LPS of Klebsiella pneumoniae.
In addition, with the Limulus reagent, LPS of Escherichia coli became undetectable at 100 ng / mL (displayed value). Therefore, it was shown that the sandwich system constructed in Example 1 was more sensitive than the Limulus reagent in the analysis of LPS of Escherichia coli.
また、リムルス試薬では、大腸菌のLPSが100ng/mL(表示値)で検出不可能となった。したがって、実施例1において構築したサンドイッチ系は、大腸菌のLPSの分析において、リムルス試薬よりも感度が高いことが示された。 The results are shown in Tables 3 and 4. With the Limulus reagent, LPS of Klebsiella pneumoniae became undetectable at 125 ng / mL (displayed value). Therefore, it was shown that the sandwich system constructed in Example 1 was more sensitive than the Limulus reagent in the analysis of LPS of Klebsiella pneumoniae.
In addition, with the Limulus reagent, LPS of Escherichia coli became undetectable at 100 ng / mL (displayed value). Therefore, it was shown that the sandwich system constructed in Example 1 was more sensitive than the Limulus reagent in the analysis of LPS of Escherichia coli.
〔実施例2〕キットの感度の算出
2-1 市販のLPS溶液の値付け
2-1-1 検量線作成
・市販のLPS(5mg/mL(表示値))をPBSで各濃度(400,300,200ng/mL)に希釈した。
・希釈したLPSをLimulus HS-T Single Test Wakoを用い、使用説明書に従い測定した。
・表示値ベースの市販LPS濃度とLimulus HS-T Single Test Wakoによる測定値とを用い、二次関数の近似式を作成した。結果を表5及び6と図4及び5に示す。 [Example 2] Calculation of kit sensitivity 2-1 Pricing of commercially available LPS solution 2-1-1 Preparation of calibration curve ・ Commercially available LPS (5 mg / mL (displayed value)) at each concentration (400, 300) in PBS , 200 ng / mL).
The diluted LPS was measured using Limulus HS-T Single Test Wako according to the instruction manual.
An approximate expression of the quadratic function was created using the commercially available LPS concentration based on the displayed value and the measured value by Limulus HS-T Single Test Wako. The results are shown in Tables 5 and 6 and FIGS. 4 and 5.
2-1 市販のLPS溶液の値付け
2-1-1 検量線作成
・市販のLPS(5mg/mL(表示値))をPBSで各濃度(400,300,200ng/mL)に希釈した。
・希釈したLPSをLimulus HS-T Single Test Wakoを用い、使用説明書に従い測定した。
・表示値ベースの市販LPS濃度とLimulus HS-T Single Test Wakoによる測定値とを用い、二次関数の近似式を作成した。結果を表5及び6と図4及び5に示す。 [Example 2] Calculation of kit sensitivity 2-1 Pricing of commercially available LPS solution 2-1-1 Preparation of calibration curve ・ Commercially available LPS (5 mg / mL (displayed value)) at each concentration (400, 300) in PBS , 200 ng / mL).
The diluted LPS was measured using Limulus HS-T Single Test Wako according to the instruction manual.
An approximate expression of the quadratic function was created using the commercially available LPS concentration based on the displayed value and the measured value by Limulus HS-T Single Test Wako. The results are shown in Tables 5 and 6 and FIGS. 4 and 5.
その結果、二次関数の近似式は以下の通りとなった。
・抗肺炎桿菌LPS抗体(S28201R):y=6×10-5x2+0.0057x
・抗大腸菌LPS抗体(S28203R):y=0.0001x2+0.0126x As a result, the approximate expression of the quadratic function is as follows.
-Anti-pneumonia Klebsiella LPS antibody (S28201R): y = 6 x 10-5 x 2 + 0.0057 x
-Anti-E. coli LPS antibody (S28203R): y = 0.0001x 2 + 0.0126x
・抗肺炎桿菌LPS抗体(S28201R):y=6×10-5x2+0.0057x
・抗大腸菌LPS抗体(S28203R):y=0.0001x2+0.0126x As a result, the approximate expression of the quadratic function is as follows.
-Anti-pneumonia Klebsiella LPS antibody (S28201R): y = 6 x 10-5 x 2 + 0.0057 x
-Anti-E. coli LPS antibody (S28203R): y = 0.0001x 2 + 0.0126x
2―1-2 市販のLPS溶液の濃度算出方法
市販のLPSの表示値濃度を上述の検量線式のxに代入し、エンドトキシン濃度を算出した。
例)100ng/mLの肺炎桿菌LPSを濃度換算する場合、x=100を適用すると、y=1.17となる。したがって、100ng/mLの肺炎桿菌LPS中のエンドトキシン量は1.17pg/mLとなる。 2-1-2 Concentration calculation method of commercially available LPS solution The endotoxin concentration was calculated by substituting the display value concentration of the commercially available LPS into x of the above-mentioned calibration curve formula.
Example) When converting the concentration of 100 ng / mL Klebsiella pneumoniae LPS, when x = 100 is applied, y = 1.17. Therefore, the amount of endotoxin in 100 ng / mL Klebsiella pneumoniae LPS is 1.17 pg / mL.
市販のLPSの表示値濃度を上述の検量線式のxに代入し、エンドトキシン濃度を算出した。
例)100ng/mLの肺炎桿菌LPSを濃度換算する場合、x=100を適用すると、y=1.17となる。したがって、100ng/mLの肺炎桿菌LPS中のエンドトキシン量は1.17pg/mLとなる。 2-1-2 Concentration calculation method of commercially available LPS solution The endotoxin concentration was calculated by substituting the display value concentration of the commercially available LPS into x of the above-mentioned calibration curve formula.
Example) When converting the concentration of 100 ng / mL Klebsiella pneumoniae LPS, when x = 100 is applied, y = 1.17. Therefore, the amount of endotoxin in 100 ng / mL Klebsiella pneumoniae LPS is 1.17 pg / mL.
2-2 最小検出限界評価
実施例1に記載の感度の評価の手順に従い、各LPS濃度のサンプルに対しn=8で測定を行った。8回の測定の結果から、平均値と2.6SD(標準偏差×2.6)を算出した。
2.6SD法により最小検出限界を算出した。具体的には、「0pg/mLの感度+2.6SD」<「各サンプルの感度-2.6SD」となった場合に、その濃度のLPSを検出可能であると判断し、前記条件を満たす最低LPS濃度を最小検出限界とした。結果を表7及び8と図6及び7に示す。 2-2 Minimum detection limit evaluation According to the procedure for evaluating the sensitivity described in Example 1, measurement was performed at n = 8 for each LPS concentration sample. From the results of eight measurements, the mean value and 2.6 SD (standard deviation x 2.6) were calculated.
The minimum detection limit was calculated by the 2.6SD method. Specifically, when "sensitivity of 0 pg / mL + 2.6 SD"<"sensitivity of each sample-2.6 SD", it is judged that LPS at that concentration can be detected, and the minimum condition satisfying the above conditions is satisfied. The LPS concentration was set as the minimum detection limit. The results are shown in Tables 7 and 8 and FIGS. 6 and 7.
実施例1に記載の感度の評価の手順に従い、各LPS濃度のサンプルに対しn=8で測定を行った。8回の測定の結果から、平均値と2.6SD(標準偏差×2.6)を算出した。
2.6SD法により最小検出限界を算出した。具体的には、「0pg/mLの感度+2.6SD」<「各サンプルの感度-2.6SD」となった場合に、その濃度のLPSを検出可能であると判断し、前記条件を満たす最低LPS濃度を最小検出限界とした。結果を表7及び8と図6及び7に示す。 2-2 Minimum detection limit evaluation According to the procedure for evaluating the sensitivity described in Example 1, measurement was performed at n = 8 for each LPS concentration sample. From the results of eight measurements, the mean value and 2.6 SD (standard deviation x 2.6) were calculated.
The minimum detection limit was calculated by the 2.6SD method. Specifically, when "sensitivity of 0 pg / mL + 2.6 SD"<"sensitivity of each sample-2.6 SD", it is judged that LPS at that concentration can be detected, and the minimum condition satisfying the above conditions is satisfied. The LPS concentration was set as the minimum detection limit. The results are shown in Tables 7 and 8 and FIGS. 6 and 7.
〔実施例3〕生体由来検体中のLPSの測定
作製したキットが、生体由来検体中に存在するLPSを検出できるかどうか、及びその際の最小検出限界を算出した。市販のLPSを健常人血清で希釈した以外は、実施例2と同様の方法で行った。また、同じ検体をLimulus HS-T Single Test Wakoでも測定し、LPSが検出可能であるかを確認した。結果を表9及び10と、図8及び9に示す。 [Example 3] Measurement of LPS in a biological sample Whether or not the produced kit can detect LPS present in a biological sample, and the minimum detection limit at that time were calculated. The procedure was the same as in Example 2 except that the commercially available LPS was diluted with the serum of a healthy person. The same sample was also measured with Limulus HS-T Single Test Wako to confirm whether LPS could be detected. The results are shown in Tables 9 and 10 and FIGS. 8 and 9.
作製したキットが、生体由来検体中に存在するLPSを検出できるかどうか、及びその際の最小検出限界を算出した。市販のLPSを健常人血清で希釈した以外は、実施例2と同様の方法で行った。また、同じ検体をLimulus HS-T Single Test Wakoでも測定し、LPSが検出可能であるかを確認した。結果を表9及び10と、図8及び9に示す。 [Example 3] Measurement of LPS in a biological sample Whether or not the produced kit can detect LPS present in a biological sample, and the minimum detection limit at that time were calculated. The procedure was the same as in Example 2 except that the commercially available LPS was diluted with the serum of a healthy person. The same sample was also measured with Limulus HS-T Single Test Wako to confirm whether LPS could be detected. The results are shown in Tables 9 and 10 and FIGS. 8 and 9.
表9及び10と図8及び9より、作製したキットが、生体試料中のLPSも、PBS中のLPSと同等の感度で検出可能であることが分かった。さらに、抗肺炎桿菌LPS抗体(S28201R)は、生体試料中において0.023pg/mLの濃度までと、リムルス試薬よりも200倍以上高感度にLPSを検出可能であった。また、抗大腸菌LPS抗体(S28203R)は、0.10pg/mLの濃度までと、リムルス試薬よりも94倍高感度にLPSを検出可能であった。
From Tables 9 and 10 and FIGS. 8 and 9, it was found that the prepared kit can detect LPS in a biological sample with the same sensitivity as LPS in PBS. Furthermore, the anti-Klebsiella pneumoniae LPS antibody (S28201R) was able to detect LPS in a biological sample up to a concentration of 0.023 pg / mL, which was more than 200 times more sensitive than the Limulus reagent. In addition, the anti-E. coli LPS antibody (S28203R) was able to detect LPS up to a concentration of 0.10 pg / mL, 94 times more sensitive than the Limulus reagent.
〔参考例2〕市販抗LPS抗体との感度比較
実施例1におけるサンドイッチELISAの抗体溶液及びビオチン標識抗体を、市販の抗LPS抗体(Anti-Lipopolysaccharide, Mouse IgG2a, Recombinant Monoclonal Antibody, clone WN1 222-5; Absolute antibody社製)に変更して、実施例3と同様に健常人血清中の大腸菌LPSを検出する場合の最小検出限界を算出した。結果を表11に示す。 [Reference Example 2] Sensitivity comparison with commercially available anti-LPS antibody The antibody solution of sandwich ELISA and the biotin-labeled antibody in Example 1 were used as a commercially available anti-LPS antibody (Anti-Lipoporysaccharide, Mouse IgG2a, Recombinant Monoclonal Antibody, clone22N1). The minimum detection limit for detecting Escherichia coli LPS in the serum of healthy subjects was calculated in the same manner as in Example 3 by changing to Absolute antibody (manufactured by Absolute antibody). The results are shown in Table 11.
実施例1におけるサンドイッチELISAの抗体溶液及びビオチン標識抗体を、市販の抗LPS抗体(Anti-Lipopolysaccharide, Mouse IgG2a, Recombinant Monoclonal Antibody, clone WN1 222-5; Absolute antibody社製)に変更して、実施例3と同様に健常人血清中の大腸菌LPSを検出する場合の最小検出限界を算出した。結果を表11に示す。 [Reference Example 2] Sensitivity comparison with commercially available anti-LPS antibody The antibody solution of sandwich ELISA and the biotin-labeled antibody in Example 1 were used as a commercially available anti-LPS antibody (Anti-Lipoporysaccharide, Mouse IgG2a, Recombinant Monoclonal Antibody, clone22N1). The minimum detection limit for detecting Escherichia coli LPS in the serum of healthy subjects was calculated in the same manner as in Example 3 by changing to Absolute antibody (manufactured by Absolute antibody). The results are shown in Table 11.
〔参考例3〕市販LPS検出ELISAキットとの感度比較
市販のLPS検出ELISAキット(Qualitative Human Klebsiella (KBSL) ELISA Kitを用い、マニュアルに従って、肺炎桿菌LPSを添加した健常人血清をサンプルとした場合の450nmにおけるO.D.を測定した。各LPS濃度のサンプルに対しn=3で測定した。同時にキットに付属のPositive ControlおよびNegative Controlも同様に測定した。Positive Control測定時のO.D.は1.14であり、Negative Control測定時のO.D.は0.049であった。サンプルの測定結果について、3回の測定の結果から、平均値と2.6SD(標準偏差×2.6)を算出した。
2.6SD法により最小検出限界を算出した。具体的には、「0pg/mLのO.D.+2.6SD」<「各サンプルのO.D.-2.6SD」となった場合に、その濃度のLPSを検出可能であると判断し、ある濃度以上のサンプルがすべて前記条件を満たす最低LPS濃度を最小検出限界とした。結果を表12に示す。 [Reference Example 3] Sensitivity comparison with commercially available LPS detection ELISA kit When using a commercially available LPS detection ELISA kit (Qualitative Human Klebsiella (KBSL) ELISA Kit) and using a healthy human serum supplemented with pneumonia rod LPS as a sample according to the manual. The OD at 450 nm was measured at n = 3 for each LPS concentration sample. At the same time, the Positive Control and Negative Control included in the kit were measured in the same manner. The OD at the time of the Positive Control measurement was measured. It was 1.14, and the O.D. at the time of Negative Control measurement was 0.049. Regarding the measurement results of the sample, from the results of three measurements, the average value and 2.6 SD (standard deviation × 2.6) ) Was calculated.
The minimum detection limit was calculated by the 2.6SD method. Specifically, when "0 pg / mL O.D. + 2.6 SD"<"O.D.-2.6 SD of each sample", it is judged that LPS at that concentration can be detected. The minimum detection limit was set to the minimum LPS concentration in which all the samples having a certain concentration or higher satisfy the above conditions. The results are shown in Table 12.
市販のLPS検出ELISAキット(Qualitative Human Klebsiella (KBSL) ELISA Kitを用い、マニュアルに従って、肺炎桿菌LPSを添加した健常人血清をサンプルとした場合の450nmにおけるO.D.を測定した。各LPS濃度のサンプルに対しn=3で測定した。同時にキットに付属のPositive ControlおよびNegative Controlも同様に測定した。Positive Control測定時のO.D.は1.14であり、Negative Control測定時のO.D.は0.049であった。サンプルの測定結果について、3回の測定の結果から、平均値と2.6SD(標準偏差×2.6)を算出した。
2.6SD法により最小検出限界を算出した。具体的には、「0pg/mLのO.D.+2.6SD」<「各サンプルのO.D.-2.6SD」となった場合に、その濃度のLPSを検出可能であると判断し、ある濃度以上のサンプルがすべて前記条件を満たす最低LPS濃度を最小検出限界とした。結果を表12に示す。 [Reference Example 3] Sensitivity comparison with commercially available LPS detection ELISA kit When using a commercially available LPS detection ELISA kit (Qualitative Human Klebsiella (KBSL) ELISA Kit) and using a healthy human serum supplemented with pneumonia rod LPS as a sample according to the manual. The OD at 450 nm was measured at n = 3 for each LPS concentration sample. At the same time, the Positive Control and Negative Control included in the kit were measured in the same manner. The OD at the time of the Positive Control measurement was measured. It was 1.14, and the O.D. at the time of Negative Control measurement was 0.049. Regarding the measurement results of the sample, from the results of three measurements, the average value and 2.6 SD (standard deviation × 2.6) ) Was calculated.
The minimum detection limit was calculated by the 2.6SD method. Specifically, when "0 pg / mL O.D. + 2.6 SD"<"O.D.-2.6 SD of each sample", it is judged that LPS at that concentration can be detected. The minimum detection limit was set to the minimum LPS concentration in which all the samples having a certain concentration or higher satisfy the above conditions. The results are shown in Table 12.
表12より、本実施例において作製したキットでは、市販のLPS検出ELISAキットよりも2000倍以上高感度に肺炎桿菌LPSを検出可能であることが分かった。なお、キットのマニュアルに記載のある、Negative ControlのO.D.+0.15以上の感度で陽性判定とする基準を採用する場合、今回測定したサンプルはいずれの濃度においても陰性判定、つまり検出不能である。したがって、判定方法を変更した場合においても、本実施例において作製したキットの方が高感度に肺炎桿菌LPSを検出可能であることが分かった。
From Table 12, it was found that the kit prepared in this example can detect Klebsiella pneumoniae LPS with 2000 times or more higher sensitivity than the commercially available LPS detection ELISA kit. If the criteria described in the kit manual for positive judgment with a sensitivity of OD + 0.15 or higher of the Negative Control are adopted, the sample measured this time is negative judgment, that is, undetectable at any concentration. Is. Therefore, it was found that the kit prepared in this example can detect Klebsiella pneumoniae LPS with higher sensitivity even when the determination method is changed.
本発明によれば、リムルス試薬と同様の反応性を有し、リムルス試薬よりも優れた感度を示す敗血症原因細菌の免疫学的分析キットを提供することができる。
According to the present invention, it is possible to provide an immunological analysis kit for sepsis-causing bacteria, which has the same reactivity as the Limulus reagent and shows superior sensitivity to the Limulus reagent.
[寄託生物材料への言及]
(1)抗体番号S28201Rを産生するハイブリドーマ
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人製品評価技術基盤機構
日本国千葉県木更津市かずさ鎌足2-5-8(郵便番号292-0818)
ロ イの寄託機関に生物材料を寄託した日付
令和2年7月3日
ハ イの寄託機関が寄託について付した受託番号
NITE BP-03241
(2)抗体番号S28203Rを産生するハイブリドーマ
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人製品評価技術基盤機構
日本国千葉県木更津市かずさ鎌足2-5-8(郵便番号292-0818)
ロ イの寄託機関に生物材料を寄託した日付
令和2年7月3日
ハ イの寄託機関が寄託について付した受託番号
NITE BP-03242 [Reference to deposited biomaterials]
(1) Hybridoma that produces antibody number S28201R Name and address of the depositary institution that deposited the biological material Independent Administrative Institution Product Evaluation Technology Infrastructure Organization
2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan (Postal code 292-0818)
Date of deposit of biomaterials to Loi's depositary agency July 3, 2nd year The deposit number NITE BP-03241 given by Hai's depositary agency for deposits.
(2) Hybridoma that produces antibody number S2803R Name and address of the depositary institution that deposited the biological material Independent Administrative Institution Product Evaluation Technology Infrastructure Organization
2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan (Postal code 292-0818)
Date of deposit of biomaterials to Loi's depositary agency July 3, 2nd year Deposit number NITE BP-03242 assigned by Hai's depositary agency for deposits
(1)抗体番号S28201Rを産生するハイブリドーマ
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人製品評価技術基盤機構
日本国千葉県木更津市かずさ鎌足2-5-8(郵便番号292-0818)
ロ イの寄託機関に生物材料を寄託した日付
令和2年7月3日
ハ イの寄託機関が寄託について付した受託番号
NITE BP-03241
(2)抗体番号S28203Rを産生するハイブリドーマ
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人製品評価技術基盤機構
日本国千葉県木更津市かずさ鎌足2-5-8(郵便番号292-0818)
ロ イの寄託機関に生物材料を寄託した日付
令和2年7月3日
ハ イの寄託機関が寄託について付した受託番号
NITE BP-03242 [Reference to deposited biomaterials]
(1) Hybridoma that produces antibody number S28201R Name and address of the depositary institution that deposited the biological material Independent Administrative Institution Product Evaluation Technology Infrastructure Organization
2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan (Postal code 292-0818)
Date of deposit of biomaterials to Loi's depositary agency July 3, 2nd year The deposit number NITE BP-03241 given by Hai's depositary agency for deposits.
(2) Hybridoma that produces antibody number S2803R Name and address of the depositary institution that deposited the biological material Independent Administrative Institution Product Evaluation Technology Infrastructure Organization
2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan (Postal code 292-0818)
Date of deposit of biomaterials to Loi's depositary agency July 3, 2nd year Deposit number NITE BP-03242 assigned by Hai's depositary agency for deposits
Claims (9)
- 生体試料中の敗血症原因細菌を検出するための免疫学的分析キットであって、
敗血症原因細菌由来のリポ多糖と反応するモノクローナル抗体を含み、
前記モノクローナル抗体が、生体試料中の0.023pg/mL以上の敗血症原因細菌を検出する、前記免疫学的分析キット。 An immunological analysis kit for detecting sepsis-causing bacteria in biological samples.
Contains monoclonal antibodies that react with lipopolysaccharides derived from sepsis-causing bacteria
The immunological analysis kit in which the monoclonal antibody detects sepsis-causing bacteria of 0.023 pg / mL or more in a biological sample. - 前記生体試料が、0.023pg/mL以上の敗血症原因細菌由来のリポ多糖を含有する生体試料である、請求項1に記載の免疫学的分析キット。 The immunological analysis kit according to claim 1, wherein the biological sample is a biological sample containing lipopolysaccharide derived from a sepsis-causing bacterium of 0.023 pg / mL or more.
- 前記敗血症原因細菌が、肺炎桿菌又は大腸菌である、請求項1又は2に記載の免疫学的分析キット。 The immunological analysis kit according to claim 1 or 2, wherein the causative bacterium for sepsis is Klebsiella pneumoniae or Escherichia coli.
- 前記モノクローナル抗体が、敗血症原因細菌由来のリポ多糖に特異的に反応するモノクローナル抗体である、請求項1~3のいずれかに記載の免疫学的分析キット。 The immunological analysis kit according to any one of claims 1 to 3, wherein the monoclonal antibody is a monoclonal antibody that specifically reacts with lipopolysaccharide derived from a sepsis-causing bacterium.
- 前記モノクローナル抗体として、第一モノクローナル抗体及び第二モノクローナル抗体を含み、
前記第一モノクローナル抗体が固定化された固相と
前記第二モノクローナル抗体を結合させた標識物質と
を含むか、又は
前記第一モノクローナル抗体が固定化された固相と
前記第二モノクローナル抗体と
標識物質を結合させた、前記第二モノクローナル抗体に対する二次抗体と、
を含み、
前記第一モノクローナル抗体及び前記第二モノクローナル抗体が、同じ種類のモノクローナル抗体である、請求項1~4のいずれかに記載の免疫学的分析キット。 The monoclonal antibody includes a first monoclonal antibody and a second monoclonal antibody.
It contains a solid phase on which the first monoclonal antibody is immobilized and a labeling substance to which the second monoclonal antibody is bound, or is labeled with the solid phase on which the first monoclonal antibody is immobilized and the second monoclonal antibody. A secondary antibody against the second monoclonal antibody to which the substance was bound, and
Including
The immunological analysis kit according to any one of claims 1 to 4, wherein the first monoclonal antibody and the second monoclonal antibody are the same type of monoclonal antibody. - 前記生体試料が、血液、血漿、又は血清である、請求項1~5のいずれかに記載の免疫学的分析キット。 The immunological analysis kit according to any one of claims 1 to 5, wherein the biological sample is blood, plasma, or serum.
- ELISA法を測定原理とする、請求項1~6のいずれかに記載の免疫学的分析キット。 The immunological analysis kit according to any one of claims 1 to 6, wherein the ELISA method is used as a measurement principle.
- 前記モノクローナル抗体が、IgM抗体である、請求項1~7のいずれかに記載の免疫学的分析キット。 The immunological analysis kit according to any one of claims 1 to 7, wherein the monoclonal antibody is an IgM antibody.
- 前記モノクローナル抗体が、受託番号NITE BP-03241のハイブリドーマより産生されるモノクローナル抗体又は受託番号NITE BP-03242のハイブリドーマより産生されるモノクローナル抗体である、請求項1~8のいずれかに記載の免疫学的分析キット。 The immunology according to any one of claims 1 to 8, wherein the monoclonal antibody is a monoclonal antibody produced by a hybridoma of Accession No. NITE BP-03241 or a monoclonal antibody produced by a hybridoma of Accession No. NITE BP-03242. Analysis kit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022547580A JPWO2022054753A1 (en) | 2020-09-08 | 2021-09-06 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020150247 | 2020-09-08 | ||
JP2020-150247 | 2020-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022054753A1 true WO2022054753A1 (en) | 2022-03-17 |
Family
ID=80631802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/032629 WO2022054753A1 (en) | 2020-09-08 | 2021-09-06 | Immunological analysis kit for septicemia-causing bacteria |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022054753A1 (en) |
WO (1) | WO2022054753A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60224068A (en) * | 1984-04-20 | 1985-11-08 | Sekisui Chem Co Ltd | Method for deciding pathogenic bacterium in opportunistic infection |
JPH01137993A (en) * | 1986-11-12 | 1989-05-30 | Roussel Uclaf | Method for production of monoclonal antigram (-)antibody and method for its use |
WO1997006436A1 (en) * | 1995-08-07 | 1997-02-20 | Quidel Corporation | Method and device for chlamydia detection |
JP2002541457A (en) * | 1999-04-07 | 2002-12-03 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Lipopolysaccharide immunoassay and test equipment |
-
2021
- 2021-09-06 JP JP2022547580A patent/JPWO2022054753A1/ja active Pending
- 2021-09-06 WO PCT/JP2021/032629 patent/WO2022054753A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60224068A (en) * | 1984-04-20 | 1985-11-08 | Sekisui Chem Co Ltd | Method for deciding pathogenic bacterium in opportunistic infection |
JPH01137993A (en) * | 1986-11-12 | 1989-05-30 | Roussel Uclaf | Method for production of monoclonal antigram (-)antibody and method for its use |
WO1997006436A1 (en) * | 1995-08-07 | 1997-02-20 | Quidel Corporation | Method and device for chlamydia detection |
JP2002541457A (en) * | 1999-04-07 | 2002-12-03 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Lipopolysaccharide immunoassay and test equipment |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022054753A1 (en) | 2022-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022193980A1 (en) | Antibody or antigen-binding fragment thereof for novel coronavirus nucleocapsid protein, and application thereof | |
US20190079104A1 (en) | Diagnostic method for urinary tract infection | |
JP7105970B1 (en) | SARS-CoV-2 immunoassay method and immunoassay kit | |
JP7385296B2 (en) | Immunological analysis method for β-D-glucan in biological samples and kit for β-D-glucan analysis | |
CN112424602B (en) | Immunoassay method of (1- > 3) -beta-D-glucan in biological sample, (1- > 3) -beta-D-glucan assay kit and biological sample alkaline pretreatment solution used in immunoassay method of (1- > 3) -beta-D-glucan | |
US20210148932A1 (en) | Method for measuring serum amyloid a of various animals and reagent for measurement thereof | |
JP2023026761A (en) | SARS-CoV-2 immunoassay method and immunoassay kit, and monoclonal antibody or antibody fragment thereof | |
KR101678428B1 (en) | Method for detection of pneumococcus | |
CN113711038B (en) | Immunoassay for free AIM in a biological sample and method for detecting NASH in a subject | |
WO2022054753A1 (en) | Immunological analysis kit for septicemia-causing bacteria | |
WO2022054754A1 (en) | Method for immunologically analyzing sepsis-causing bacteria, and monoclonal antibody used in said method | |
WO2022118947A1 (en) | Method and kit for assaying antibody | |
JP2019152666A (en) | Method and kit for detecting zika virus | |
WO2016194797A1 (en) | Test object detection method, and immunoassay instrument and monoclonal antibody for same | |
JP7315966B2 (en) | Immunological analysis method for free AIM in biological samples | |
JP2019207248A (en) | Method of detecting test target, immunoassay instrument, and monoclonal antibody | |
JP4850267B2 (en) | Immunoassay for casein phosphopeptide (CPP) | |
JP7157061B2 (en) | Method and kit for detecting Zika virus | |
WO2022202876A1 (en) | Immunological analysis method for type-i collagen c-terminal telopeptide | |
WO2021202495A2 (en) | Anti-acinetobacter baumannii polyclonal antibody (ab-pab), and uses thereof | |
JP2025012172A (en) | D-Thyroxine specific measurement method | |
JP2020012797A (en) | Methods and kits for detecting Zika virus antigens and anti-Zika virus antibodies | |
JPH1062423A (en) | Examination of staphylococcus aureuse infection | |
JP2005220044A (en) | Anti-mitis monoclonal antibody, cell strain producing the same, method for producing anti-mitis monoclonal antibody and mitis detection kit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21866712 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022547580 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21866712 Country of ref document: EP Kind code of ref document: A1 |