[go: up one dir, main page]

WO2022049956A1 - Rotating electric machine for internal combustion engine - Google Patents

Rotating electric machine for internal combustion engine Download PDF

Info

Publication number
WO2022049956A1
WO2022049956A1 PCT/JP2021/028531 JP2021028531W WO2022049956A1 WO 2022049956 A1 WO2022049956 A1 WO 2022049956A1 JP 2021028531 W JP2021028531 W JP 2021028531W WO 2022049956 A1 WO2022049956 A1 WO 2022049956A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine cover
sensor
sensor case
stator
internal combustion
Prior art date
Application number
PCT/JP2021/028531
Other languages
French (fr)
Japanese (ja)
Inventor
誠一 水谷
優太 小寺
知也 大原
Original Assignee
株式会社デンソートリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソートリム filed Critical 株式会社デンソートリム
Priority to CN202180054056.3A priority Critical patent/CN116171520A/en
Priority to JP2022512838A priority patent/JP7074945B1/en
Publication of WO2022049956A1 publication Critical patent/WO2022049956A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements

Definitions

  • the description in this specification relates to a rotary electric machine that can be used as a generator or a starter for a two-wheeled vehicle.
  • Patent Document 1 and Patent Document 2 disclose that a three-phase brushless motor is used as a rotary electric machine that can be used as a generator or a starter for a two-wheeled vehicle.
  • the rotational position of the rotor is detected from the magnetic flux change of the magnet provided in the rotor, and the reference position signal for ignition control of the internal combustion engine is detected.
  • the Hall sensor is an electronic component, there is a limit to the heat resistant temperature.
  • the mounting portion of the starting generator is outside the engine, and the structure is such that the outside air constantly flows in and is cooled. Therefore, the heat resistance of the Hall sensor is not a big problem.
  • the starting generator will be sealed in a high temperature environment and in engine oil. Therefore, when the sensor is fixed to the engine block side, the temperature becomes high and exceeds or approaches the heat resistant temperature.
  • the life of the resin that protects the sensor and the attached substrate is shortened due to the high temperature in the environment where the engine oil is scattered.
  • the rotary electric machine described in Patent Document 2 is a type in which a starting generator is arranged inside the engine, and the stator is fixed to the engine cover.
  • the Hall sensor is arranged on the stator, and the electric wire of the Hall sensor is taken out from the engine cover together with the power line of the coil.
  • the Hall sensor disclosed in Patent Document 2 is also used in a high temperature engine internal environment, and has a problem of heat resistance.
  • the subject of this disclosure is to improve the heat resistance of the hall sensor used in a high temperature environment on the premise that the rotary electric machine to be the starting generator is arranged inside the engine.
  • the first of the present disclosure is a rotor that rotates integrally with the crankshaft, a plurality of magnets arranged in the circumferential direction on the rotor, a base portion attached to the engine cover, and a plurality of portions extending radially outward from the base portion.
  • It is a rotary electric machine for an internal combustion engine including a teeth portion and a coil arranged in the teeth portion, and a stator having a radially outer end portion of the teeth portion facing a magnet.
  • the first aspect of the present disclosure stipulates the premise that the rotary electric machine is arranged inside the engine by assembling the rotor to the crankshaft and the stator to the engine cover.
  • the first of the present disclosure is provided with a sensor case which is arranged between adjacent coils of a plurality of coils so as to face the magnet and holds a hall sensor for detecting the magnetic flux of the magnet and a substrate of the hall sensor.
  • the case is arranged on the engine cover side of the stator, and the sensor case is fixed to the base portion of the stator and also to the engine cover.
  • the first of the present disclosure is that the Hall sensor is held in the sensor case together with its substrate, and the sensor case is directly fixed to the engine cover, so that the heat of the Hall sensor is transferred to the engine cover via the substrate and the sensor case. do. Since the engine cover is in contact with the outside air, heat can be released to the outside air from the engine cover, and the heat resistance of the hall sensor can be improved.
  • the second of the present disclosure is that the rotary electric machine for an internal combustion engine is a three-phase starting generator, and the Hall sensor has three sensors for detecting the rotation positions of the U phase, the V phase, and the W phase, and a reference position of the crankshaft. There are four sensors in total, one sensor for detecting the above, and each Hall sensor is arranged between adjacent coil portions.
  • the positional relationship between the Hall sensor and the U-phase, V-phase, and W-phase of the coil portion is accurately determined.
  • the stator fixed to the engine cover can be positioned via the sensor case. for that reason.
  • the rotation position of the rotor can be detected accurately, and the reference position for ignition control can be detected accurately.
  • the third of the present disclosure has a plurality of Hall sensors, at least one of which is arranged on the engine cover side from the intermediate position of the axial length of the teeth portion. Therefore, the distance between the hall sensor and the engine cover becomes relatively short, and heat is smoothly dissipated from the hall sensor to the engine cover.
  • the fourth aspect of this disclosure is the structure of the sensor case.
  • the sensor case includes the hall sensor, the sensor body that holds the hall sensor board, the stator fixing part that is located inward in the radial direction of the sensor body, and the engine cover that is located in the radial direction of the sensor body. Provided with a fixed portion.
  • the senor main body portion can be arranged so as to correspond to the tooth portion and the coil of the stator, and the stator fixing portion can be arranged so as to correspond to the base portion of the stator.
  • the engine cover fixing portion is located radially outside, the sensor case can be compactly stored inside the engine cover.
  • the fifth of the present disclosure is a fixed structure of the stator and the sensor case.
  • a fixing bolt hole is formed in the stator fixing portion of the sensor case, and a sensor case bolt through hole is also formed in the base portion of the stator.
  • the stator and the sensor case are fixed by screwing the stator bolts into the fixing portion bolt holes of the stator fixing portion of the sensor case through the sensor case bolt through holes of the stator.
  • the sensor case is fixed to the stator by using a base portion for fixing the stator to the engine cover.
  • the sixth of the present disclosure is a fixed structure of the sensor case and the engine cover.
  • a positioning hole is formed in the engine cover fixing portion, and the sensor case is fixed to the engine cover by a positioning screw.
  • the positioning screw includes a positioning cylinder portion corresponding to the positioning hole of the engine cover fixing portion, a bolt portion formed on one end side of the positioning cylinder portion and screwed with the screw portion of the engine cover, and the positioning cylinder portion. It has a wrench head formed on the end side.
  • the diameter of the positioning cylinder portion is larger than the diameter of the bolt portion.
  • the sensor case and the engine cover are fixed at accurate positions by the positioning hole of the engine cover fixing portion and the cylindrical portion of the positioning screw.
  • the diameter of the positioning cylinder portion is larger than the diameter of the bolt portion, the heat of the sensor case easily escapes to the engine cover through the cylinder portion and the wrench head.
  • the seventh of the present disclosure is to position the stator fixing part and the engine cover fixing part in the substantially central part of the sensor main body part to improve the balance of the sensor case at the time of fixing.
  • the eighth of the present disclosure is the placement position of the sensor case.
  • the sensor case is arranged above the intermediate position of the engine cover including the intermediate position in the vertical direction. Splashes of engine oil are scattered inside the engine cover, and this engine oil is relatively abundant in the lower part. Therefore, if the sensor case is arranged above, the possibility that the high temperature engine oil directly scatters on the hall sensor can be reduced.
  • the ninth of the present disclosure is also the placement position of the sensor case.
  • the sensor case is arranged below the intermediate position of the engine cover including the intermediate position in the vertical direction. In a situation where the engine is stopped after rotating the engine at high speed for a long time, the hot air inside the engine flows upward. If the sensor case is located in the upper part in such a state, it is easily affected by the heat of the high temperature air, but if it is arranged in the lower part, it is less likely to be affected by the high temperature air.
  • the tenth of the present disclosure has a gap between the hall sensor and the coil.
  • the Hall sensor has a structure that does not come into direct contact with the coil, and the heat of the coil can be prevented from being directly transferred to the Hall sensor.
  • the eleventh of this disclosure is that the engine cover is ribbed. That is, the engine cover has a cylindrical portion provided in the central portion corresponding to the crankshaft, a bolt through hole provided in the peripheral portion, and a rib extending from the cylindrical portion toward the bolt through hole. There is. Then, the sensor case is fixed on the rib or on the line of the rib in the engine cover. This makes it possible to improve the seismic resistance of the sensor case.
  • the sensor case is fixed to the engine cover on the rib or on the line of the rib at a position where the distance to the bolt through hole is shorter than the distance to the cylindrical portion.
  • the earthquake resistance of the sensor case can be further improved.
  • the sensor case includes a sensor main body made of a resin material that holds the hall sensor and the substrate, and a metal heat dissipation plate portion that is arranged on the engine cover side of the sensor main body. Since a metal heat sink is formed on the sensor case and the heat sink is arranged on the engine cover side, the heat transfer efficiency from the hall sensor to the engine cover side can be improved. As a result, the heat resistance of the Hall sensor can be further improved.
  • the sensor case has a sensor main body made of a resin material that holds the hall sensor and the substrate, a metal heat sink arranged on the engine cover side of the sensor main body, and the heat sink. It is equipped with a metal cooling plate portion that extends from the portion to the hall sensor side.
  • the sensor case includes a sensor main body portion that holds the hall sensor and the substrate, and an engine cover fixing portion that fixes the sensor case to the engine cover. Further, the sensor case is fixed to the engine cover by a positioning screw.
  • the positioning screw has a bolt portion that sandwiches the engine cover fixing portion and the heat sink portion of the sensor case and is screwed with the screw portion of the engine cover. Since the heat sink of the sensor case is screwed to the engine cover, the metal heat sink comes into direct contact with the engine cover. As a result, heat is smoothly transferred from the sensor case to the engine cover.
  • the sensor case is fixed to the engine cover by the positioning screw.
  • the positioning screw has a bolt portion that sandwiches only the heat sink portion of the sensor case and is screwed with the screw portion of the engine cover. Since the engine cover fixing part of the sensor case is made of a resin material, the dimensional accuracy may be inferior if warpage occurs due to the influence of heat. On the other hand, the metal heat sink is less affected by warpage, and the position can be easily adjusted when it is fixed to the engine cover with the positioning screw.
  • the engine cover fixing part made of resin material may cause creep deformation when screwed with the positioning screw, but the metal heat dissipation plate part may not cause creep deformation.
  • the metal heat dissipation plate part since it is screwed to the engine cover only through the metal heat sink portion, heat transfer from the sensor case to the engine cover is made smoother.
  • the portion of the engine cover facing the heat sink portion has a shape corresponding to the heat sink portion.
  • the heat radiating plate portion has a structure in contact with a portion of the engine cover facing the radiating plate portion. Since the sensor case is arranged so as to straddle a plurality of tooth portions, it has a predetermined length in the circumferential direction. In the 17th aspect of the present disclosure, since the heat radiating plate portion is in contact with the engine cover over a predetermined length in the circumferential direction, heat transfer from the sensor case to the engine cover is further smoothed.
  • an adhesive layer is interposed between the heat sink portion and the portion of the engine cover facing the heat sink portion. Even if there is a gap between the heat sink and the engine cover, the gap can be filled with the adhesive layer. Therefore, heat is smoothly transferred from the sensor case to the engine cover.
  • FIG. 1 is a perspective view showing a state in which a rotary electric machine is combined with a crankshaft and an engine cover.
  • FIG. 2 is a perspective view showing a rotor, a stator, and a sensor case.
  • FIG. 3 is a front view showing the stator and the sensor case.
  • FIG. 4 is a perspective view showing the stator and the sensor case.
  • FIG. 5 is a perspective view showing the engine cover and the sensor case.
  • FIG. 6 is a cross-sectional perspective view showing the engine cover, the stator, and the sensor case.
  • FIG. 7 is a cross-sectional perspective view showing the engine cover, the stator, and the sensor case.
  • FIG. 8 is a cross-sectional perspective view showing the engine cover and the sensor case.
  • FIG. 9 is a perspective view showing the heat sink portion.
  • FIG. 10 is a perspective view showing a sensor case to which a heat sink portion is assembled.
  • FIG. 11 is a perspective sectional view showing an assembled state of the sensor case shown in FIG. 10 and the engine cover.
  • FIG. 12 is a cross-sectional view showing a part of a sensor case including a heat radiating plate portion and a cooling plate portion.
  • FIG. 13 is a perspective view showing a heat sink portion and a cooling plate portion.
  • FIG. 14 is a perspective view showing another example of the heat sink portion and the cooling plate portion.
  • FIG. 15 is a perspective view showing another example of the sensor case to which the heat sink portion is assembled.
  • FIG. 16 is a perspective sectional view showing an assembled state of the sensor case shown in FIG. 15 and the engine cover.
  • FIG. 17 is a perspective view showing another example of the engine cover.
  • FIG. 18 is a perspective sectional view showing another example of the assembled state of the sensor case and the engine cover
  • FIG. 1 is a perspective view showing a state in which the rotary electric machine 1 is combined with the crankshaft 100 and the engine cover 200.
  • Reference numeral 101 denotes a web, which rotates a crankshaft 100 by receiving a movement of a piston (not shown) reciprocating in a cylinder (not shown) via a connecting rod (not shown).
  • the crankshaft 100 is made of an iron material having a diameter of about 20 mm, and is rotationally supported by a cylinder block (not shown).
  • the engine cover 200 covers the opening of the cylinder block and is bolted to the cylinder block by the bolt through hole 201.
  • the engine cover 200 is made of die-cast aluminum or an aluminum alloy, and has a wall thickness of about 4 mm. Since the engine cover 200 is continuous with the opening of the cylinder block, the internal environment is the same as that of the cylinder block.
  • the rotor 300 of the rotary electric machine 1 is fixed to the crankshaft 100 at the base 301 (shown in FIG. 2). Therefore, the rotor 300 rotates integrally with the crankshaft 100.
  • the rotor 300 is made of an iron material and includes a disk portion 302 extending radially outward from the base portion 301, and a cylindrical portion 303 formed in the radial outer portion of the disk portion 302.
  • 12 permanent magnets 304 are arranged side by side in the circumferential direction inside the cylindrical portion 303.
  • the thickness of the permanent magnet is about 4 to 5 mm.
  • the number of permanent magnets 304 is not limited to 12, but can be appropriately set to 20 or 24 depending on the required performance.
  • a stator 400 is arranged inside the rotor 300.
  • the stator 400 is configured by laminating a plurality of magnetic steel plates.
  • the stator 400 integrally forms a base portion 401 attached to the engine cover 200, and a plurality of tooth portions 402 (shown in FIG. 6) extending radially outward from the base portion 401.
  • the outer diameter of the stator 400 is about 110 to 130 mm. Therefore, the inner diameter of the rotor 300 is such that a minute gap is formed between the outer diameter of the stator 400 and the permanent magnet 304.
  • the base portion 401 is formed with three stator bolt through holes 403 for fixing the stator 400 to the engine cover 200. Further, the base portion 401 is also formed with one sensor case bolt through hole 410 (shown in FIG. 6) for fixing the sensor case 500, which will be described later, to the stator 400.
  • FIG. 3 is a front view showing the stator 400 and the sensor case 500 with the rotor 300 removed from FIG.
  • FIG. 4 is a perspective view showing the stator 400 and the sensor case 500 from the direction opposite to that of FIG.
  • the sensor case 500 includes a sensor main body 501 and first to fourth hole sensors 502 to 505 extending between the sensor main body 501 and the adjacent coil 404.
  • the sensor main body 501 holds the first to fourth hole sensors 502 to 505 and the substrate 521 (shown in FIG. 6).
  • the first to fourth hole sensors 502 to 505 are arranged so as not to come into contact with the coil 404 in the gap 405 between the adjacent coils 404.
  • Each Hall sensor 502 to 504 has a size of about 2 mm ⁇ about 3 mm.
  • the hall sensors 502 to 505 are covered with the sensor case 500 (sensor main body 501).
  • the sensor main body 501 is made of a resin material such as polyamide, and the substrate 521 is enclosed therein with a potting material 520.
  • the second to fourth Hall sensors 503, 504, and 505 detect the position where the N pole and the S pole alternate with each other facing the permanent magnet 304 in which the N pole and the S pole are alternately magnetized.
  • the detection positions of the second to fourth hole sensors 503, 504, and 505 correspond to the energization timings of the V phase, the W phase, and the U phase. According to these detection positions, when the rotary electric machine 1 is used as a motor as a starter, the supply of voltage to the coil 404 corresponding to the U phase, the V phase, and the W phase is controlled. Even when the rotary electric machine 1 is used as a generator, it is used as a timing signal for controlling the current from the coil 404 corresponding to the U phase, the V phase, and the W phase.
  • the first hole sensor 502 detects a reference position for ignition control.
  • the first hole sensor 502 is arranged at a position different from that of the other hall sensors 503, 504, and 505 in the axial direction of the crankshaft 100.
  • At the arrangement position of the first hole sensor 502 there is no inversion from the N pole to the S pole at the reference position, and the N poles are continuous with the three permanent magnets 304.
  • the reference position can be detected. Since the rotor 300 rotates integrally with the crankshaft 100, the reference position indicates the position of the crankshaft 100 in the rotation direction.
  • the ignition timing of a spark plug (not shown) arranged in the cylinder of the engine is controlled by utilizing the fact that the crankshaft 100 is in the reference position and the switching of the magnetic poles of other Hall sensors.
  • the first hole sensor 502 extends to an intermediate position in the axial direction
  • the first to fourth hole sensors 502 to 505 are set to have a short axial length.
  • all the first to fourth Hall sensors 502 to 505 are arranged at positions relatively close to the sensor main body portion 501.
  • at least one Hall sensor is arranged on the engine cover 200 side from the intermediate position of the axial length Lx of the teeth portion 402.
  • all the Hall sensors 502-505 are arranged on the engine cover 200 side from the intermediate position of the axial length of the teeth portion 402.
  • a substrate 521 (shown in FIGS. 6 to 8) to which a power line, a signal line, and a ground line from the hall sensors 502 to 505 are connected is arranged in the sensor main body 501.
  • the substrate 521 is embedded and fixed in the sensor main body 501 by a potting material 520 together with a power supply line, a signal line, and a ground wire.
  • a potting material 520 an epoxy resin or the like is used.
  • a stator fixing portion 506 is formed inward in the radial direction of the sensor main body portion 501.
  • the stator fixing portion 506 is formed with a fixing portion bolt hole 507 at a position corresponding to the sensor case bolt through hole 410 provided in the base portion 401 of the stator 400.
  • an engine cover fixing portion 508 is formed on the outer side in the radial direction of the sensor main body portion 501.
  • the engine cover fixing portion 508 is formed with a positioning hole 509 having a diameter larger than that of the fixing portion bolt hole 507.
  • both the stator fixing portion 506 and the engine cover fixing portion 508 are formed on the substantially center line of the sensor case. That is, it is located at the center of the sensor main body 501 extending in the circumferential direction of the stator 400. Therefore, the sensor case 500 in a state where the bolt 512 and the positioning screw 515 are tightened and fixed is held in a well-balanced manner.
  • FIG. 5 is a perspective view showing a connected state between the engine cover 200 and the sensor case 500.
  • FIG. 5 shows the state of FIG. 1 with the crankshaft 100, the rotor 300, and the stator 400 removed.
  • FIG. 5 shows a base portion 401 (a part of the base portion 401) to which the sensor case 500 is fixed in the stator 400.
  • the sensor case 500 is attached to the engine cover 200 by inserting the positioning screw 515 into the positioning hole 509 of the engine cover fixing portion 508.
  • FIG. 5 shows the wrench head 510 of the positioning screw 515, and a hexagonal groove 511 is generated at the center of the wrench head 510.
  • FIG. 5 only a part of the base portion 401 of the stator 400 is shown.
  • the bolt 512 is screwed into the fixing portion bolt hole 507 of the stator fixing portion 506.
  • the stator 400 and the stator fixing portion 506 are coupled.
  • Reference numeral 220 is a rib formed on the engine cover 200, and the rib 220 improves the strength of the engine cover 200.
  • the bolt through holes 201 of the engine cover 200 are formed at seven locations apart from each other in the circumferential direction.
  • the engine cover 200 is formed around a position facing the crankshaft 100. Therefore, the rib 220 includes a radial portion 220a that extends radially from the central cylindrical portion 205 toward the bolt through holes 201 at seven locations. Further, the rib 220 includes a circular portion 220b formed concentrically with the cylindrical portion 205 and orthogonal to the radial portion 220a.
  • the sensor case 500 is arranged on the radial portion 220a of the rib 220 extending toward the bolt through hole 201a located on the right side of FIG. 5 in the bolt through hole 201.
  • the screw portion 210 is also located on the line of the radial portion 220a (FIG. 6 is shown). Therefore, the sensor case 500 is located in a portion of the engine cover 200 having excellent seismic strength, and the vibration of the sensor case 500 can be suppressed.
  • the screw portion 210 is formed in the engine cover 200 at a position close to the bolt through hole 201a, not the cylindrical portion 205.
  • the sensor case 500 is fixed on the rib 220 or on the line of the rib 220.
  • the sensor case 500 is fixed to the engine cover 200 by the screw portion 210 and the bolt portion 514 at a position where the distance L1 to the bolt through hole 201 is shorter than the distance L2 to the cylindrical portion 205. Therefore, the vibration suppressing effect of this embodiment is higher.
  • FIG. 6 is a cross-sectional perspective view illustrating an assembled state of the engine cover 200, the sensor case 500, and the stator 400.
  • the base portion 401 and the teeth portion 402 of the stator 400 are configured by laminating a large number of magnetic steel plates.
  • the base portion 401 is formed with a stator bolt through hole 403 for attaching the stator 400 to the engine cover 200. Further, the base portion 401 is formed with a sensor case bolt through hole 410 for fixing the sensor case 500 to the stator 400.
  • the above-mentioned insulator is indicated by reference numeral 420.
  • a female screw is formed in the fixing portion bolt hole 507 formed in the stator fixing portion 506 of the sensor case 500.
  • the bolt 512 inserted in the sensor case bolt through hole 410 is screwed with the female screw of the fixing portion bolt hole 507.
  • the bolt 512 has a diameter of about 6 mm.
  • the positioning screw 515 that fixes the sensor case 500 to the engine cover 200 is formed with a positioning cylindrical portion 513 corresponding to the positioning hole 509.
  • the positioning cylindrical portion 513 is also referred to as a cylindrical portion 513.
  • a bolt portion 514 is provided on one end side of the cylindrical portion 513, and the bolt portion 514 is screwed with the screw portion 210 of the engine cover 200.
  • the bolt portion 514 also has a diameter of about 6 mm. Further, the inner diameter of the positioning hole 509 and the outer diameter of the cylindrical portion 513 are both set to about 10 mm.
  • the sensor case 500 and the engine cover 200 are aligned by fitting the positioning hole 509 and the cylindrical portion 513.
  • the positioning hole 509 has a structure that is not easily deformed.
  • the positioning hole 509 is located in the vicinity of the hall sensors 503 and 504. Therefore, the sensor main body 501 and the engine side can be directly positioned via the engine cover 200, and in that sense, the position detection accuracy is improved.
  • a comparative example in which the sensor case 500 is not provided with the positioning hole 509 and the sensor case 500 is fixed to the stator 400 can be considered. In this comparative example, the position detection accuracy may not meet the predetermined required level due to the influence of the molding distortion of the sensor case 500 and the like.
  • the above-mentioned wrench head 510 is formed on the other end side of the cylindrical portion 513.
  • the above-mentioned potting material 520 is sealed in the sensor main body 501 of the sensor case 500 to protect the substrate 521.
  • the portion of the engine cover 200 facing the base portion 401 of the stator 400 is a cylindrical portion 205 having the same shape as the base portion 401.
  • the tip of the crankshaft 100 is arranged inside the base portion 401 of the stator 400 and the cylindrical portion 205.
  • FIG. 7 is a cross-sectional perspective view showing an assembled state of the engine cover 200, the stator 400, and the sensor case 500 as in FIG. However, it shows a cross section different from that of FIG.
  • a cover bolt hole 206 is formed in the cylindrical portion 205 of the engine cover 200.
  • the cover bolt hole 206 coincides with the stator bolt through hole 403 of the stator 400, and the stator 400 is fixed to the engine cover 200 by the stator bolt 430.
  • FIG. 8 is a cross-sectional perspective view showing an assembled state of the engine cover 200 and the sensor case 500 with the stator 400 removed from FIG.
  • the third hole sensor 504 and the fourth hole sensor 505 arranged between the adjacent coils 404 appear.
  • the first to fourth Hall sensors 502 to 505 are positioned at predetermined axial positions between the predetermined coils 404.
  • the sensor case 500 is assembled to the stator 400.
  • the first to fourth hole sensors 502 to 505 do not directly touch the coil 404, but form a gap between the first and fourth hole sensors 502 to 504.
  • the sensor case bolt through hole 410 of the stator 400 and the fixing portion bolt hole 507 of the sensor case 500 coincide with each other within a certain tolerance.
  • the bolt 512 passes through the sensor case bolt through hole 410 and is screwed into the fixed portion bolt hole of the sensor case 500.
  • the stator 400 and the sensor case 500 are fixed.
  • the positioning hole 509 of the sensor case 500 and the screw portion 210 of the engine cover 200 are aligned.
  • the positioning screw 515 is tightened.
  • the cylindrical portion 513 of the positioning screw 515 fits into the positioning hole 509 of the sensor case 500.
  • the relative positional relationship between the sensor case 500 and the engine cover 200 is determined.
  • the relative positional relationship between the stator 400 fixed to the sensor case 500 and the engine cover 200 is also determined.
  • stator bolt 430 is screwed into the cover bolt hole 206 of the engine cover 200.
  • stator bolt through hole 403 of the stator 400 has a large tolerance.
  • the tolerance of the stator bolt through hole 403 is twice the tolerance of the positioning screw 515 of the sensor case 500.
  • the thermal states of the first to fourth hole sensors 502 to 505 in the usage environment will be described.
  • the engine cover 200 covers the opening of the cylinder block of the engine, it is in the same thermal environment as the cylinder block. At high temperatures, the temperature rises to about 150 degrees Celsius (same below). Further, due to the heat generated by the coil 404, the temperature of the coil 404 portion may exceed 150 degrees and rise to 180 to 200 degrees. Since the Hall sensor is an electronic component, in the worst case, it may exceed the heat resistant temperature.
  • the first to fourth hole sensors 502 to 505 of the present disclosure have a gap between them and the coil 404, the heat of the coil 404 is not directly transferred.
  • the sensor case 500 is fixed to the engine cover 200
  • the first to fourth hole sensors 502 to 505 are also arranged on the engine cover 200 side. Since the engine cover 200 is exposed to the outside air, it is lower than the temperature of the cylinder block, and is about 100 degrees even at a high temperature. Therefore, the temperature rise is the smallest in the cylinder block that becomes hot. By arranging the first to fourth hole sensors 502 to 505 at a position close to the engine cover 200, the possibility of exceeding the heat resistant temperature can be reduced.
  • the sensor case 500 of the present disclosure is directly fixed to the engine cover 200 by the positioning screw 515. Therefore, the heat of the first to fourth hole sensors 502 to 505 can be released to the engine cover 200. That is, the heat of each Hall sensor is transferred to the substrate 521 via the power supply line, signal line, and ground line. Next, heat is transferred from the potting material 520 to the engine cover fixing portion 508. Next, the heat is transferred to the engine cover 200 via the positioning screw 515 via the engine cover fixing portion 508. In this disclosure, a path is provided for heat to conduct directly to the engine cover 200. As a result, the temperature of the sensor case 500 can be suppressed to 120 to 130 degrees even when the temperature of the coil 404 is as high as 180 to 200 degrees.
  • the structure is such that heat can easily escape. This makes it possible to increase the heat resistance of the first to fourth hole sensors 502 to 505.
  • the placement position of the sensor case 500 in consideration of the influence of temperature will be described.
  • the inside of the cylinder block is filled with mist of air and engine oil. Therefore, the setting of the arrangement position of the sensor case 500 also differs depending on the design selection according to the usage environment, which of the air and the engine oil should be given more importance to the heat effect.
  • the sensor case 500 In a usage environment where the thermal effect of engine oil is important, it is desirable to arrange the sensor case 500 above the intermediate position of the engine cover 200 including the intermediate position in the vertical direction. This is because the splashes of engine oil are scattered in the engine cover 200, and this engine oil is relatively abundant in the lower part. Therefore, if the sensor case 500 is arranged above, the possibility that the high temperature engine oil directly scatters on the hall sensors 502 to 505 can be reduced. In particular, in the present disclosure, since the sensor case 500 is arranged on the engine cover 200 side, the rotor 300 and the stator 400 are interposed between the sensor case 500 and the cylinder block. Therefore, since the engine oil is inherently difficult to scatter, if the sensor case 500 is arranged above, the thermal influence of the engine oil can be minimized.
  • the sensor case 500 is arranged below the intermediate position of the engine cover 200 including the intermediate position in the vertical direction.
  • the temperature inside the engine rises sharply. Since the high-temperature air flows upward, if the sensor case 500 is located in the upper portion in such a state, it is likely to receive the heat of the high-temperature air.
  • the sensor case 500 is arranged below, it is less likely to be affected by high temperature air.
  • the sensor case 500 of the present disclosure is originally arranged at a position that is not easily affected by engine oil. Therefore, the influence of high temperature air becomes remarkable, and the lower arrangement is well-balanced.
  • a heat sink portion 550 (shown in FIG. 9) may be arranged in the sensor case 500.
  • the heat sink portion 550 has a heat sink main body portion 551 corresponding to the sensor main body portion 501 and a heat sink engine cover fixing portion 552 corresponding to the engine cover fixing portion 508.
  • the heat sink engine cover fixing portion 552 is formed with a positioning hole 509 having the same shape as the engine cover fixing portion 508.
  • the heat sink portion 550 is made of a metal material such as iron, aluminum, and copper, and has a structure that dissipates heat from the hall sensors 502 to 505 to the engine cover 200.
  • FIG. 11 shows a state in which the sensor case 500 including the heat sink portion 550 is fixed to the engine cover 200.
  • the cylindrical portion 513 of the positioning screw 515 is located in the positioning hole 509 provided in the engine cover fixing portion 508 and the heat sink engine cover fixing portion 552 of the sensor case 500.
  • the heat sink engine cover fixing portion 552 of the heat sink portion 550 is screwed to the screw portion 210 of the engine cover 200 with the bolt portion 514 of the positioning screw 515.
  • the heat sink main body portion 551 of the heat sink portion 550 is in contact with the rib 202 of the engine cover 200.
  • the heat sink portion 550 having good thermal conductivity is arranged on the engine cover 200 side so as to be in direct contact with the engine cover 200. Therefore, the heat transfer from the Hall sensors 502 to 505 to the engine cover 200 is made smoother.
  • FIG. 12 is an example in which a cooling plate portion 553 extending from the heat sink portion 550 toward the hall sensors 502 to 505 is added.
  • the cooling plate portion 553 is made of the same metal material as the heat sink portion 550.
  • the metal cooling plate portion 555 extends from the heat sink portion 550 to the Hall sensors 502 to 505.
  • the metal cooling plate portion 555 provides a heat transfer path between the heat sink portion 550 and the Hall sensors 502 to 505.
  • the cooling plate portion 553 and the heat sink portion 550 may be fixed by welding, brazing, or soldering. Further, as shown in FIG. 14, it may be integrally molded. In the example of FIG. 14, the cooling plate portion 553 is bent and molded from the heat sink main body portion 551.
  • the substrate 521, the sensor elements 522 of the Hall sensors 502 to 505, and the lead wire 523 are both enclosed and fixed by a potting material 520.
  • three lead wires 523 are arranged for each sensor element 522, that is, a power supply line, a ground wire, and a signal line. Further, the lead wire 523 is soldered to the substrate 521.
  • the potting material 520 also encloses and fixes the cooling plate portion 553. Moreover, the potting material 520 is also in contact with the heat radiating plate main body 551 of the heat radiating plate 550. Therefore, the heat sink portion 550 is adhesively fixed to the sensor case 500 by the potting material 520.
  • the sensor case 500 is screwed to the engine cover 200 with two members, an engine cover fixing portion 508 and a heat sink engine cover fixing portion 552. That is, in the examples of FIGS. 10 and 11, the positioning screw 515 has a bolt portion 514 that sandwiches the engine cover fixing portion 508 and the heat sink portion 550 of the sensor case 500 and is screwed with the screw portion 210 of the engine cover 200. .. In the example of FIG. 16, the positioning screw 515 has a bolt portion 514 that sandwiches only the heat sink portion 550 of the sensor case 500 and is screwed with the screw portion 210 of the engine cover 200. As shown in FIGS. 15 and 16, the engine cover fixing portion 508 may be abolished.
  • the engine cover fixing portion 508 made of a resin material may be warped due to heat, and in that case, the dimensional accuracy may be inferior.
  • the heat sink made of a metal material is fixed to the engine cover 200 only by the engine cover fixing portion 552, there is no risk of warping.
  • the heat radiating plate portion 550 is adhesively fixed to the sensor main body portion 501 by the potting material 520, the dimensions can be adjusted at the time of the adhesive fixing.
  • the engine cover fixing portion 508 made of resin material receives the axial force of the positioning screw 515 for a long period of time, the risk of creep deformation cannot be ignored.
  • the heat sink engine cover fixing portion 552 made of metal material smoothly conducts heat. Therefore, the heat from the Hall sensors 502 to 505 can be better released to the engine cover 200 side.
  • the heat sink portion 550 is in full contact with the engine cover 200.
  • a heat radiating portion 220C having a shape corresponding to the heat radiating plate portion 550 is formed in a portion of the engine cover 200 corresponding to the sensor case 500.
  • the portion of the engine cover 200 facing the heat sink portion 550 (heat sink portion 220c) has a shape corresponding to the heat sink portion 550.
  • the heat radiating plate portion 550 is in contact with a portion (heat radiating portion 220c) of the engine cover 200 facing the heat radiating plate portion 550.
  • the heat radiating plate portion 550 is in full contact with the radiating portion 220C of the engine cover 200.
  • the adhesive layer is not limited to the example in which the heat radiating portion 220C is formed on the engine cover 200. Moreover, the present invention is not limited to the example in which the heat sink portion 550 is formed on the sensor case 500.
  • FIG. 18 is an example in which the sensor case 500 is not provided with the heat sink portion 550 as in FIG. 6, but the adhesive layer 560 is interposed between the sensor case 500 and the engine cover 200. More specifically, the adhesive layer 560 is interposed between the potting material 520 of the sensor case 500 and the engine cover 200. The heat from the Hall sensors 502 to 505 is released to the engine cover 200 side via the potting material 520 and the adhesive layer 560.
  • the sensor case 500 is not placed on the rib 220 either. Placing the sensor case 500 on the rib is desirable for increasing strength and heat transfer, but it is not always an essential requirement. In particular, if the adhesive layer 560 is interposed as in the example of FIG. 18, even if the distance between the sensor case 500 and the engine cover 200 is widened, the heat transfer property to the engine cover 200 can be maintained. Is possible.
  • the engine cover fixing portion 508 of the sensor case 500 is located substantially in the center of the sensor main body portion 501.
  • the stator fixing portion 506 and the engine cover fixing portion 508 are located at substantially the center of the sensor main body portion 501 in the circumferential direction.
  • the engine cover fixing portion 508 may be outside the radial direction of the sensor main body portion 501. Therefore, the position of the engine cover fixing portion 508 in the circumferential direction can be appropriately changed.
  • the position of the stator fixing portion 506 can also be changed in the circumferential direction.
  • the second, third, and fourth Hall sensors 503, 504, and 505 obtain signals that serve as a reference for the timing of energization of the U, V, W phases, and each coil. Since these sensors measure the magnetic flux of one rotor, a signal reflecting the positional deviation in each angular direction on the time axis is output. Therefore, it is possible to estimate another signal from the signal of any one of the hall sensors.
  • the first hall sensor 502 outputs an ignition reference signal
  • the ignition reference signal may be obtained from a source other than the hall sensor.
  • a crank angle signal from a crank angle sensor.
  • the crank angle sensor outputs a pulsed crank angle signal capable of detecting a predetermined crank angle by using a detection disk that rotates with the rotation of the crank shaft.
  • the crank angle sensor is configured to generate an output signal having a continuous pass pulse portion and a non-passing pulse portion during one rotation of the crankshaft 100.
  • the number of Hall sensors may be at least one. As described above, the number of hall sensors is appropriately changed depending on the method on the control circuit side in which the output of the hall sensors is input. When there is one hose sensor, it is preferable to arrange the one hall sensor on the side closer to the engine cover 200 in order to dissipate heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

The present invention comprises: a Hall sensor that is disposed between adjacent coils of a plurality of coils to face a magnet and detects the magnetic flux of the magnet; and a sensor case that holds a substrate of this Hall sensor. The sensor case is disposed on an engine cover side of a stator, and the sensor case is fixed to a base portion of the stator and also to the engine cover. The Hall sensor is held in the sensor case together with the substrate, and the sensor case is directly fixed to the engine cover. Therefore, heat of the Hall sensor can be released to the outside air from the engine cover through the sensor case, thereby improving the heat resistance of the Hall sensor.

Description

内燃機関用回転電機Rotating electric machine for internal combustion engine 関連出願の相互参照Cross-reference of related applications
 この出願は、2020年9月3日に日本に出願された特許出願第2020-148482号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2020-148482 filed in Japan on September 3, 2020, and the contents of the basic application are incorporated by reference as a whole.
 本明細書の記載は、二輪車の発電機や始動機として使用可能な回転電機に関する。 The description in this specification relates to a rotary electric machine that can be used as a generator or a starter for a two-wheeled vehicle.
 二輪車の発電機や始動機として使用可能な回転電機として、三相のブラシレスモータを用いることは、特許文献1及び特許文献2に開示されている。特許文献1及び特許文献2の技術では、ロータに設けられた磁石の磁束変化よりロータの回転位置を検出したり、内燃機関の点火制御のための基準位置信号を検出したりする。 Patent Document 1 and Patent Document 2 disclose that a three-phase brushless motor is used as a rotary electric machine that can be used as a generator or a starter for a two-wheeled vehicle. In the techniques of Patent Document 1 and Patent Document 2, the rotational position of the rotor is detected from the magnetic flux change of the magnet provided in the rotor, and the reference position signal for ignition control of the internal combustion engine is detected.
特開2016-111917号公報Japanese Unexamined Patent Publication No. 2016-11917 特開2014-152662号公報Japanese Unexamined Patent Publication No. 2014-152662
 特許文献1に記載の回転電機は、二輪用始動発電機のロータの位置を検出するホールセンサについて、ホールセンサのケースをステータに固定するとともに、エンジンブロック側にも締付けている。これにより、位置決め精度を向上させている。 In the rotary electric machine described in Patent Document 1, the case of the hall sensor is fixed to the stator and also tightened to the engine block side for the hall sensor that detects the position of the rotor of the start generator for two wheels. This improves the positioning accuracy.
 ところで、ホールセンサは電子部品であるため耐熱温度に制限がある。一般的にスクータの場合、始動発電機の取付部はエンジンの外部であり、外部の空気が常に流入し冷やされる構造にある。よって、ホールセンサの耐熱性はさほど問題となっていない。一方で、エンジン構造が異なり、エンジンの内部に始動発電機が配置される構造もある。この場合、始動発電機は高温環境かつエンジンオイル中に密閉されることとなる。このためエンジンブロック側にセンサを固定すると高温となり耐熱温度を超えるまたは近くなる。またエンジンオイルが飛散する環境で、かつ高温となることでセンサ及び付属の基板を保護する樹脂の寿命が短くなる問題がある。 By the way, since the Hall sensor is an electronic component, there is a limit to the heat resistant temperature. Generally, in the case of a scooter, the mounting portion of the starting generator is outside the engine, and the structure is such that the outside air constantly flows in and is cooled. Therefore, the heat resistance of the Hall sensor is not a big problem. On the other hand, there is also a structure in which the engine structure is different and the starting generator is arranged inside the engine. In this case, the starting generator will be sealed in a high temperature environment and in engine oil. Therefore, when the sensor is fixed to the engine block side, the temperature becomes high and exceeds or approaches the heat resistant temperature. In addition, there is a problem that the life of the resin that protects the sensor and the attached substrate is shortened due to the high temperature in the environment where the engine oil is scattered.
 特許文献1に記載の回転電機では、ホールセンサのケースをエンジンブロックに組付けることで温度上昇をきたし、耐熱上課題がある。特に、回転電機がエンジン内部に配置される場合には、より高温環境での使用となり、耐熱性の課題は一層顕著となる。 In the rotary electric machine described in Patent Document 1, the temperature rises by assembling the case of the hall sensor to the engine block, which causes a problem in heat resistance. In particular, when the rotary electric machine is arranged inside the engine, it is used in a higher temperature environment, and the problem of heat resistance becomes more remarkable.
 特許文献2に記載の回転電機は、エンジンの内部に始動発電機が配置されるタイプであり、ステータはエンジンカバーに固定されている。ホールセンサはステータに配置され、コイルの電力線とともに、ホールセンサの電線もエンジンカバーより外部に取り出される。この特許文献2に開示のホールセンサも、高温のエンジン内部環境で使用されることとなり、耐熱性の課題を含んでいる。 The rotary electric machine described in Patent Document 2 is a type in which a starting generator is arranged inside the engine, and the stator is fixed to the engine cover. The Hall sensor is arranged on the stator, and the electric wire of the Hall sensor is taken out from the engine cover together with the power line of the coil. The Hall sensor disclosed in Patent Document 2 is also used in a high temperature engine internal environment, and has a problem of heat resistance.
 本件の開示は、始動発電機となる回転電機がエンジン内部に配置されることを前提として、高温環境で使用されるホールセンサの耐熱性を高めることを課題とする。 The subject of this disclosure is to improve the heat resistance of the hall sensor used in a high temperature environment on the premise that the rotary electric machine to be the starting generator is arranged inside the engine.
 本開示の第1は、クランクシャフトと一体に回転するロータと、このロータに周方向に複数配置される磁石と、エンジンカバーに取り付けられる基盤部、この基盤部より径方向外方に延びる複数のティース部、及びこのティース部に配置されるコイルを備え、ティース部の径方向外方端部が磁石と対向するステータとを備える内燃機関用回転電機である。本開示の第1では、ロータがクランクシャフトに組付けられ、ステータがエンジンカバーに組付けられることで、回転電機がエンジン内部に配置される前提を規定している。 The first of the present disclosure is a rotor that rotates integrally with the crankshaft, a plurality of magnets arranged in the circumferential direction on the rotor, a base portion attached to the engine cover, and a plurality of portions extending radially outward from the base portion. It is a rotary electric machine for an internal combustion engine including a teeth portion and a coil arranged in the teeth portion, and a stator having a radially outer end portion of the teeth portion facing a magnet. The first aspect of the present disclosure stipulates the premise that the rotary electric machine is arranged inside the engine by assembling the rotor to the crankshaft and the stator to the engine cover.
 そして、本開示の第1は、複数のコイルの隣接するコイル間に磁石と対向して配置されて磁石の磁束を検知するホールセンサとこのホールセンサの基板とを保持するセンサケースを備え、センサケースは、ステータのエンジンカバー側に配置され、かつ、センサケースは、ステータの基盤部に固定されると共に、エンジンカバーにも固定されている。 The first of the present disclosure is provided with a sensor case which is arranged between adjacent coils of a plurality of coils so as to face the magnet and holds a hall sensor for detecting the magnetic flux of the magnet and a substrate of the hall sensor. The case is arranged on the engine cover side of the stator, and the sensor case is fixed to the base portion of the stator and also to the engine cover.
 本開示の第1は、ホールセンサはその基板と共にセンサケースに保持され、センサケースは直接にエンジンカバーに固定されるので、ホールセンサの熱は、基板とセンサケースとを介してエンジンカバーに伝達する。エンジンカバーは外気に接しているので、エンジンカバーより熱を外気に逃がすことができて、ホールセンサの耐熱性を向上させることが出来る。 The first of the present disclosure is that the Hall sensor is held in the sensor case together with its substrate, and the sensor case is directly fixed to the engine cover, so that the heat of the Hall sensor is transferred to the engine cover via the substrate and the sensor case. do. Since the engine cover is in contact with the outside air, heat can be released to the outside air from the engine cover, and the heat resistance of the hall sensor can be improved.
 本開示の第2は、内燃機関用回転電機は三相の始動発電機であり、ホールセンサは、U相、V相、W相の回転位置を検出する3つのセンサと、クランクシャフトの基準位置を検出する1つのセンサの併せて4つのセンサであり、各ホールセンサは、隣接するコイル部間に配置される。 The second of the present disclosure is that the rotary electric machine for an internal combustion engine is a three-phase starting generator, and the Hall sensor has three sensors for detecting the rotation positions of the U phase, the V phase, and the W phase, and a reference position of the crankshaft. There are four sensors in total, one sensor for detecting the above, and each Hall sensor is arranged between adjacent coil portions.
 本開示の第2では、センサケースがステータに固定されているので、ホールセンサとコイル部のU相、V相、及びW相との位置関係が正確に定まる。加えて、センサケースがエンジンカバーにも固定されているので、このセンサケースを介して、エンジンカバーに固定されるステータの位置決めも行うことができる。そのため。本開示の第2では、ロータの回転位置検出が正確となり、かつ、点火制御のための基準位置検出も正確に行うことが出来る。 In the second aspect of the present disclosure, since the sensor case is fixed to the stator, the positional relationship between the Hall sensor and the U-phase, V-phase, and W-phase of the coil portion is accurately determined. In addition, since the sensor case is also fixed to the engine cover, the stator fixed to the engine cover can be positioned via the sensor case. for that reason. In the second aspect of the present disclosure, the rotation position of the rotor can be detected accurately, and the reference position for ignition control can be detected accurately.
 本開示の第3は、ホールセンサを複数有し、その少なくとも一つは、ティース部の軸方向長さの中間位置よりエンジンカバー側に配置されている。そのため、ホールセンサとエンジンカバーとの距離は比較的短くなり、ホールセンサからエンジンカバーへの熱の逃がしがスムーズとなる。 The third of the present disclosure has a plurality of Hall sensors, at least one of which is arranged on the engine cover side from the intermediate position of the axial length of the teeth portion. Therefore, the distance between the hall sensor and the engine cover becomes relatively short, and heat is smoothly dissipated from the hall sensor to the engine cover.
 本開示の第4は、センサケースの構造にある。センサケースは、ホールセンサとこのホールセンサの基板を保持するセンサ本体部と、このセンサ本体部の径方向内方に位置するステータ固定部と、センサ本体部の径方向外方に位置するエンジンカバー固定部とを備える。 The fourth aspect of this disclosure is the structure of the sensor case. The sensor case includes the hall sensor, the sensor body that holds the hall sensor board, the stator fixing part that is located inward in the radial direction of the sensor body, and the engine cover that is located in the radial direction of the sensor body. Provided with a fixed portion.
 本開示の第4では、センサ本体部をステータのティース部及びコイルに対応させ、ステータ固定部をステータの基盤部に対応させて配置することができる。その上で、エンジンカバー固定部を径方向外側に位置しているので、エンジンカバー内でセンサケースをコンパクトに収納することができる。 In the fourth aspect of the present disclosure, the sensor main body portion can be arranged so as to correspond to the tooth portion and the coil of the stator, and the stator fixing portion can be arranged so as to correspond to the base portion of the stator. On top of that, since the engine cover fixing portion is located radially outside, the sensor case can be compactly stored inside the engine cover.
 本開示の第5は、ステータとセンサケースとの固定構造である。センサケースのステータ固定部には固定部ボルト穴が形成されており、ステータの基盤部にもセンサケースボルト通し穴が形成されている。ステータボルトを、ステータのセンサケースボルト通し穴を通して、センサケースのステータ固定部の固定部ボルト穴に螺合することで、ステータとセンサケースとが固定される。本開示の第5では、ステータをエンジンカバーに固定する基盤部を用いて、センサケースをステータに固定するようにしている。 The fifth of the present disclosure is a fixed structure of the stator and the sensor case. A fixing bolt hole is formed in the stator fixing portion of the sensor case, and a sensor case bolt through hole is also formed in the base portion of the stator. The stator and the sensor case are fixed by screwing the stator bolts into the fixing portion bolt holes of the stator fixing portion of the sensor case through the sensor case bolt through holes of the stator. In the fifth aspect of the present disclosure, the sensor case is fixed to the stator by using a base portion for fixing the stator to the engine cover.
 本開示の第6は、センサケースとエンジンカバーとの固定構造である。エンジンカバー固定部には位置決め穴が形成されており、センサケースは、位置決めネジによりエンジンカバーに固定される。そして、位置決めネジは、エンジンカバー固定部の位置決め穴に対応する位置決め円筒部と、この位置決め円筒部の一端側に形成されてエンジンカバーのネジ部と螺合するボルト部と、位置決め円筒部の他端側に形成されたレンチ頭部とを有している。かつ、位置決め円筒部の径は、ボルト部の径より大きくしている。 The sixth of the present disclosure is a fixed structure of the sensor case and the engine cover. A positioning hole is formed in the engine cover fixing portion, and the sensor case is fixed to the engine cover by a positioning screw. The positioning screw includes a positioning cylinder portion corresponding to the positioning hole of the engine cover fixing portion, a bolt portion formed on one end side of the positioning cylinder portion and screwed with the screw portion of the engine cover, and the positioning cylinder portion. It has a wrench head formed on the end side. Moreover, the diameter of the positioning cylinder portion is larger than the diameter of the bolt portion.
 本開示の第6では、エンジンカバー固定部の位置決め穴と位置決めネジの円筒部とによって、センサケースとエンジンカバーとが正確な位置に固定される。加えて、位置決め円筒部の径が、ボルト部の径より大きくなっているので、円筒部やレンチ頭部を介してセンサケースの熱がエンジンカバーに逃げやすくなっている。 In the sixth aspect of the present disclosure, the sensor case and the engine cover are fixed at accurate positions by the positioning hole of the engine cover fixing portion and the cylindrical portion of the positioning screw. In addition, since the diameter of the positioning cylinder portion is larger than the diameter of the bolt portion, the heat of the sensor case easily escapes to the engine cover through the cylinder portion and the wrench head.
 本開示の第7は、ステータ固定部及びエンジンカバー固定部を、センサ本体部の略中央部に位置させて、固定時のセンサケースのバランスを良くしている。 The seventh of the present disclosure is to position the stator fixing part and the engine cover fixing part in the substantially central part of the sensor main body part to improve the balance of the sensor case at the time of fixing.
 本開示の第8は、センサケースの配置位置である。センサケースは、エンジンカバーのうち上下方向の中間位置を含めて中間位置より上方に配置されている。エンジンカバー内にはエンジンオイルの飛沫が飛散し、このエンジンオイルは下方部に比較的多い。そのため、センサケースを上方に配置すれば高温のエンジンオイルが直接にホールセンサに飛散する恐れを低減することができる。 The eighth of the present disclosure is the placement position of the sensor case. The sensor case is arranged above the intermediate position of the engine cover including the intermediate position in the vertical direction. Splashes of engine oil are scattered inside the engine cover, and this engine oil is relatively abundant in the lower part. Therefore, if the sensor case is arranged above, the possibility that the high temperature engine oil directly scatters on the hall sensor can be reduced.
 本開示の第9も、センサケースの配置位置である。センサケースは、エンジンカバーのうち上下方向の中間位置を含めて中間位置より下方に配置されている。長時間エンジンを高速回転した後で、エンジンを停止したような状況では、エンジン内部の高温空気はより上方に流れる。このような状態でセンサケースが上方部に位置していれば高温空気の熱を受けやすいが、下方に配置されれば、高温空気の影響を受けにくくなる。 The ninth of the present disclosure is also the placement position of the sensor case. The sensor case is arranged below the intermediate position of the engine cover including the intermediate position in the vertical direction. In a situation where the engine is stopped after rotating the engine at high speed for a long time, the hot air inside the engine flows upward. If the sensor case is located in the upper part in such a state, it is easily affected by the heat of the high temperature air, but if it is arranged in the lower part, it is less likely to be affected by the high temperature air.
 本開示の第10は、ホールセンサとコイルとの間に間隙をもたせている。これにより、ホールセンサはコイルと直接に接しない構造となり、コイルの熱が直接にホールセンサに伝達されるのが防止できる。 The tenth of the present disclosure has a gap between the hall sensor and the coil. As a result, the Hall sensor has a structure that does not come into direct contact with the coil, and the heat of the coil can be prevented from being directly transferred to the Hall sensor.
 本開示の第11は、エンジンカバーをリブ形成のものとしている。即ち、エンジンカバーは、クランクシャフトに対応する中心部に設けられた円筒形状部と、周辺部に設けられたボルト通し穴と、円筒形状部からボルト通し穴に向けて伸びるリブとを有するものとしている。そして、センサケースを、エンジンカバーのうち、リブ上若しくはリブの線上に固定している。これにより、センサケースの耐震性を高めることができる。 The eleventh of this disclosure is that the engine cover is ribbed. That is, the engine cover has a cylindrical portion provided in the central portion corresponding to the crankshaft, a bolt through hole provided in the peripheral portion, and a rib extending from the cylindrical portion toward the bolt through hole. There is. Then, the sensor case is fixed on the rib or on the line of the rib in the engine cover. This makes it possible to improve the seismic resistance of the sensor case.
 本開示の第12は、センサケースを、リブ上若しくはリブの線上のうち、ボルト通し穴までの距離が円筒形状部までの距離より短い位置で、エンジンカバーに固定している。センサケースの耐震性をより高めることができている。 In the twelfth aspect of the present disclosure, the sensor case is fixed to the engine cover on the rib or on the line of the rib at a position where the distance to the bolt through hole is shorter than the distance to the cylindrical portion. The earthquake resistance of the sensor case can be further improved.
 本開示の第13では、センサケースはホールセンサと基板とを保持する樹脂材料製のセンサ本体部と、このセンサ本体部のエンジンカバー側に配置される金属製の放熱板部を備えている。センサケースに金属製の放熱板部を形成して、この放熱板部をエンジンカバー側に配置しているので、ホールセンサからエンジンカバー側への熱の伝達効率を高めることができる。その結果、ホールセンサの耐熱性を一層向上できる。 In the thirteenth aspect of the present disclosure, the sensor case includes a sensor main body made of a resin material that holds the hall sensor and the substrate, and a metal heat dissipation plate portion that is arranged on the engine cover side of the sensor main body. Since a metal heat sink is formed on the sensor case and the heat sink is arranged on the engine cover side, the heat transfer efficiency from the hall sensor to the engine cover side can be improved. As a result, the heat resistance of the Hall sensor can be further improved.
 本開示の第14では、センサケースはホールセンサと基板とを保持する樹脂材料製のセンサ本体部と、このセンサ本体部のエンジンカバー側に配置される金属製の放熱板部と、この放熱板部よりホールセンサ側に延びる金属製の冷却板部とを備えている。本開示の第13に対して、放熱板部よりホールセンサ側に延びる金属製の冷却板部を追加することで、ホールセンサの熱は冷却板部を介して放熱板部へ伝達される。これにより、ホールセンサの耐熱性能を更に高めることができる。 In the fourteenth aspect of the present disclosure, the sensor case has a sensor main body made of a resin material that holds the hall sensor and the substrate, a metal heat sink arranged on the engine cover side of the sensor main body, and the heat sink. It is equipped with a metal cooling plate portion that extends from the portion to the hall sensor side. By adding a metal cooling plate portion extending from the heat sink portion to the hall sensor side with respect to the thirteenth of the present disclosure, the heat of the hall sensor is transferred to the heat sink portion via the cooling plate portion. This makes it possible to further improve the heat resistance performance of the Hall sensor.
 本開示の第15は、センサケースは、ホールセンサと基板とを保持するセンサ本体部と、センサケースをエンジンカバーに固定するエンジンカバー固定部とを備えている。また、センサケースは、位置決めネジによりエンジンカバーに固定されている。そして、位置決めネジは、センサケースのエンジンカバー固定部及び放熱板部を挟持してエンジンカバーのネジ部と螺合するボルト部を有している。センサケースは放熱板部がエンジンカバーにねじ止めされるので、金属製放熱板部が直接にエンジンカバーに接触する。その結果、センサケースからエンジンカバーへの熱の伝達がスムーズになされる。 Fifteenth of the present disclosure, the sensor case includes a sensor main body portion that holds the hall sensor and the substrate, and an engine cover fixing portion that fixes the sensor case to the engine cover. Further, the sensor case is fixed to the engine cover by a positioning screw. The positioning screw has a bolt portion that sandwiches the engine cover fixing portion and the heat sink portion of the sensor case and is screwed with the screw portion of the engine cover. Since the heat sink of the sensor case is screwed to the engine cover, the metal heat sink comes into direct contact with the engine cover. As a result, heat is smoothly transferred from the sensor case to the engine cover.
 本開示の第16も、センサケースは、位置決めネジによりエンジンカバーに固定されている。そして、位置決めネジは、センサケースの放熱板部のみを挟持してエンジンカバーのネジ部と螺合するボルト部を有している。センサケースのエンジンカバー固定部は樹脂材料製であるので、熱の影響を受けて反りが発生すると寸法精度が劣る恐れがある。それに対し、金属製の放熱板部は反りの影響は少なく、位置決めネジによりエンジンカバーに固定する際の位置調整も容易となる。 Also in the 16th of the present disclosure, the sensor case is fixed to the engine cover by the positioning screw. The positioning screw has a bolt portion that sandwiches only the heat sink portion of the sensor case and is screwed with the screw portion of the engine cover. Since the engine cover fixing part of the sensor case is made of a resin material, the dimensional accuracy may be inferior if warpage occurs due to the influence of heat. On the other hand, the metal heat sink is less affected by warpage, and the position can be easily adjusted when it is fixed to the engine cover with the positioning screw.
 さらに、樹脂材料製のエンジンカバー固定部は、位置決めネジでねじ止めされるとクリープ変形を起こす恐れがあるが、金属製の放熱板部はクリープ変形の恐れはない。加えて、金属製の放熱板部のみを介してエンジンカバーにねじ止めされるので、センサケースからエンジンカバーへの熱の伝達はよりスムーズになされる。 Furthermore, the engine cover fixing part made of resin material may cause creep deformation when screwed with the positioning screw, but the metal heat dissipation plate part may not cause creep deformation. In addition, since it is screwed to the engine cover only through the metal heat sink portion, heat transfer from the sensor case to the engine cover is made smoother.
 本開示の第17は、エンジンカバーのうち放熱板部と対向する部位は、放熱板部に対応する形状をしている。そして、放熱板部は、エンジンカバーのうち放熱板部と対向する部位と接する構造となっている。センサケースは複数のティース部に跨って配置されるので、周方向に所定の長さを有する。本開示の第17では、この周方向の所定長さに亘って放熱板部がエンジンカバーに接する構造としているので、センサケースからエンジンカバーへの熱の伝達は一層スムーズになされる。 In the 17th aspect of the present disclosure, the portion of the engine cover facing the heat sink portion has a shape corresponding to the heat sink portion. The heat radiating plate portion has a structure in contact with a portion of the engine cover facing the radiating plate portion. Since the sensor case is arranged so as to straddle a plurality of tooth portions, it has a predetermined length in the circumferential direction. In the 17th aspect of the present disclosure, since the heat radiating plate portion is in contact with the engine cover over a predetermined length in the circumferential direction, heat transfer from the sensor case to the engine cover is further smoothed.
 本開示の第18では、放熱板部とエンジンカバーのうち放熱板部と対向する部位との間に接着剤層が介在している。放熱板部とエンジンカバーとの間に隙間が生じても、その隙間を接着剤層で埋めることができる。そのため、センサケースからエンジンカバーへの熱の伝達がスムーズになされる。 In the eighteenth aspect of the present disclosure, an adhesive layer is interposed between the heat sink portion and the portion of the engine cover facing the heat sink portion. Even if there is a gap between the heat sink and the engine cover, the gap can be filled with the adhesive layer. Therefore, heat is smoothly transferred from the sensor case to the engine cover.
図1は、回転電機がクランクシャフト及びエンジンカバーに組み合わされた状態の斜視図である。FIG. 1 is a perspective view showing a state in which a rotary electric machine is combined with a crankshaft and an engine cover. 図2は、ロータ、ステータ及びセンサケースを示す斜視図である。FIG. 2 is a perspective view showing a rotor, a stator, and a sensor case. 図3は、ステータとセンサケースを示す正面図である。FIG. 3 is a front view showing the stator and the sensor case. 図4は、ステータとセンサケースを示す斜視図である。FIG. 4 is a perspective view showing the stator and the sensor case. 図5は、エンジンカバーとセンサケースを示す斜視図である。FIG. 5 is a perspective view showing the engine cover and the sensor case. 図6は、エンジンカバー、ステータ及びセンサケースを示す断面斜視図である。FIG. 6 is a cross-sectional perspective view showing the engine cover, the stator, and the sensor case. 図7は、エンジンカバーとステータ及びセンサケースを示す断面斜視図である。FIG. 7 is a cross-sectional perspective view showing the engine cover, the stator, and the sensor case. 図8は、エンジンカバーとセンサケースを示す断面斜視図である。FIG. 8 is a cross-sectional perspective view showing the engine cover and the sensor case. 図9は、放熱板部を示す斜視図である。FIG. 9 is a perspective view showing the heat sink portion. 図10は、放熱板部を組付けたセンサケースを示す斜視図である。FIG. 10 is a perspective view showing a sensor case to which a heat sink portion is assembled. 図11は、図10図示センサケースとエンジンカバーとの組付け状態を示す斜視断面図である。FIG. 11 is a perspective sectional view showing an assembled state of the sensor case shown in FIG. 10 and the engine cover. 図12は、放熱板部及び冷却板部を備えるセンサケースの一部を示す断面図である。FIG. 12 is a cross-sectional view showing a part of a sensor case including a heat radiating plate portion and a cooling plate portion. 図13は、放熱板部及び冷却板部を示す斜視図である。FIG. 13 is a perspective view showing a heat sink portion and a cooling plate portion. 図14は、放熱板部及び冷却板部の他の例を示す斜視図である。FIG. 14 is a perspective view showing another example of the heat sink portion and the cooling plate portion. 図15は、放熱板部を組付けたセンサケースの他の例を示す斜視図である。FIG. 15 is a perspective view showing another example of the sensor case to which the heat sink portion is assembled. 図16は、図15図示センサケースとエンジンカバーとの組付け状態を示す斜視断面図である。FIG. 16 is a perspective sectional view showing an assembled state of the sensor case shown in FIG. 15 and the engine cover. 図17は、エンジンカバーの他の例を示す斜視図である。FIG. 17 is a perspective view showing another example of the engine cover. 図18は、センサケースとエンジンカバーとの組付け状態の他の例を示す斜視断面図である。FIG. 18 is a perspective sectional view showing another example of the assembled state of the sensor case and the engine cover.
 以下、本開示の一例を図に基づいて説明する。図1は、回転電機1がクランクシャフト100及びエンジンカバー200に組み合わされた状態の斜視図である。101は、ウェブであり、図示しないピストンが図示しないシリンダ内を往復動する動きを、図示しないコンロッドを介して受けて、クランクシャフト100を回転させる。クランクシャフト100は、直径20ミリメートル程度の鉄材からなり、図示しないシリンダブロックに回転支持されている。 Hereinafter, an example of the present disclosure will be described with reference to the figure. FIG. 1 is a perspective view showing a state in which the rotary electric machine 1 is combined with the crankshaft 100 and the engine cover 200. Reference numeral 101 denotes a web, which rotates a crankshaft 100 by receiving a movement of a piston (not shown) reciprocating in a cylinder (not shown) via a connecting rod (not shown). The crankshaft 100 is made of an iron material having a diameter of about 20 mm, and is rotationally supported by a cylinder block (not shown).
 エンジンカバー200は、シリンダブロックの開口部を覆い、ボルト通し穴201により、シリンダブロックにボルト固定される。エンジンカバー200は、アルミニウム若しくはアルミニウム合金のダイキャスト製であり、肉厚は4ミリメートル程度である。エンジンカバー200は、シリンダブロックの開口部に連続するので、内部環境はシリンダブロックと同様である。 The engine cover 200 covers the opening of the cylinder block and is bolted to the cylinder block by the bolt through hole 201. The engine cover 200 is made of die-cast aluminum or an aluminum alloy, and has a wall thickness of about 4 mm. Since the engine cover 200 is continuous with the opening of the cylinder block, the internal environment is the same as that of the cylinder block.
 クランクシャフト100には、回転電機1のロータ300が、基部301(図2図示)で固定されている。従って、ロータ300はクランクシャフト100と一体に回転する。ロータ300は、鉄材料製で、基部301より径方向外方に延びる円盤部302と、この円盤部302の径方向外方部に形成される円筒部303を備えている。図2に示すように、円筒部303の内方には、永久磁石304が12個、周方向に並んで配置されている。永久磁石の厚みは、4~5ミリメートル程度である。なお、永久磁石304の数は、12個に限らず、20個や24個等要求性能に応じて適宜設定できる。 The rotor 300 of the rotary electric machine 1 is fixed to the crankshaft 100 at the base 301 (shown in FIG. 2). Therefore, the rotor 300 rotates integrally with the crankshaft 100. The rotor 300 is made of an iron material and includes a disk portion 302 extending radially outward from the base portion 301, and a cylindrical portion 303 formed in the radial outer portion of the disk portion 302. As shown in FIG. 2, 12 permanent magnets 304 are arranged side by side in the circumferential direction inside the cylindrical portion 303. The thickness of the permanent magnet is about 4 to 5 mm. The number of permanent magnets 304 is not limited to 12, but can be appropriately set to 20 or 24 depending on the required performance.
 ロータ300の内部には、図2に示すように、ステータ400が配置されている。ステータ400は、複数の磁性鋼板を積層して構成されている。ステータ400は、エンジンカバー200に取り付けられる基盤部401、この基盤部401より径方向外方に延びる複数のティース部402(図6図示)を一体に形成している。ステータ400の外径は、110~130ミリメートル程度となっている。従って、ロータ300の内径は、ステータ400の外径と永久磁石304との間に微小間隙が形成される大きさとなっている。 As shown in FIG. 2, a stator 400 is arranged inside the rotor 300. The stator 400 is configured by laminating a plurality of magnetic steel plates. The stator 400 integrally forms a base portion 401 attached to the engine cover 200, and a plurality of tooth portions 402 (shown in FIG. 6) extending radially outward from the base portion 401. The outer diameter of the stator 400 is about 110 to 130 mm. Therefore, the inner diameter of the rotor 300 is such that a minute gap is formed between the outer diameter of the stator 400 and the permanent magnet 304.
 基盤部401には、エンジンカバー200にステータ400を固定するためのステータボルト通し穴403が3か所形成されている。また、基盤部401には、後述するセンサケース500をステータ400に固定するためのセンサケースボルト通し穴410(図6図示)も1カ所形成されている。 The base portion 401 is formed with three stator bolt through holes 403 for fixing the stator 400 to the engine cover 200. Further, the base portion 401 is also formed with one sensor case bolt through hole 410 (shown in FIG. 6) for fixing the sensor case 500, which will be described later, to the stator 400.
 ティース部402はポリアミド等の絶縁樹脂からなるインシュレーターで電気絶縁され、インシュレーターの上に銅線若しくはアルミニウム線からなるコイル404が巻装されている。図3は、図2からロータ300を外して、ステータ400とセンサケース500を示す正面図である。図4は、図3とは逆の方向から、ステータ400とセンサケース500を示す斜視図である。 The tooth portion 402 is electrically insulated by an insulator made of an insulating resin such as polyamide, and a coil 404 made of a copper wire or an aluminum wire is wound on the insulator. FIG. 3 is a front view showing the stator 400 and the sensor case 500 with the rotor 300 removed from FIG. FIG. 4 is a perspective view showing the stator 400 and the sensor case 500 from the direction opposite to that of FIG.
 図3に示すように、隣接するコイル404の間には隙間405が形成され、その隙間405は径方向外側に向けて広くなっている。また、図4に示すように、センサケース500はセンサ本体部501と、センサ本体部501から隣接するコイル404の間に延びる第1ないし第4ホールセンサ502~505を備える。センサ本体部501は、第1ないし第4ホールセンサ502~505と基板521(図6図示)とを保持している。第1ないし第4ホールセンサ502~505は、隣接するコイル404間の隙間405にコイル404とは接触しないように配置される。各ホールセンサ502~504は、2ミリメートル程度×3ミリメートル程度の大きさである。センサケース500(センサ本体部501)でホールセンサ502~505は覆われている。センサ本体部501は、ポリアミド等の樹脂材料で形成されており、内部に基板521をポッティング材520で封入している。 As shown in FIG. 3, a gap 405 is formed between adjacent coils 404, and the gap 405 widens toward the outside in the radial direction. Further, as shown in FIG. 4, the sensor case 500 includes a sensor main body 501 and first to fourth hole sensors 502 to 505 extending between the sensor main body 501 and the adjacent coil 404. The sensor main body 501 holds the first to fourth hole sensors 502 to 505 and the substrate 521 (shown in FIG. 6). The first to fourth hole sensors 502 to 505 are arranged so as not to come into contact with the coil 404 in the gap 405 between the adjacent coils 404. Each Hall sensor 502 to 504 has a size of about 2 mm × about 3 mm. The hall sensors 502 to 505 are covered with the sensor case 500 (sensor main body 501). The sensor main body 501 is made of a resin material such as polyamide, and the substrate 521 is enclosed therein with a potting material 520.
 第2ないし第4ホールセンサ503、504、505はN極とS極とが交互に着磁された永久磁石304と対向して、N極とS極とが交互に変動する位置を検出する。第2ないし第4ホールセンサ503、504、505のそれぞれの検出位置は、V相、W相、U相の通電時期に対応している。これら検出位置に応じ、回転電機1が始動機としてモータ使用されるときには、U相、V相、W相に対応するコイル404への電圧の供給が制御される。回転電機1が発電機として使用される際にもU相、V相、W相に対応するコイル404からの電流を制御するためのタイミング信号として用いられる。 The second to fourth Hall sensors 503, 504, and 505 detect the position where the N pole and the S pole alternate with each other facing the permanent magnet 304 in which the N pole and the S pole are alternately magnetized. The detection positions of the second to fourth hole sensors 503, 504, and 505 correspond to the energization timings of the V phase, the W phase, and the U phase. According to these detection positions, when the rotary electric machine 1 is used as a motor as a starter, the supply of voltage to the coil 404 corresponding to the U phase, the V phase, and the W phase is controlled. Even when the rotary electric machine 1 is used as a generator, it is used as a timing signal for controlling the current from the coil 404 corresponding to the U phase, the V phase, and the W phase.
 第1ホールセンサ502は、点火制御のための基準位置を検出する。第1ホールセンサ502は、他のホールセンサ503、504、505とは、クランクシャフト100の軸方向に関して異なる位置に配置されている。この第1ホールセンサ502の配置位置では、基準位置でN極からS極への反転がなく、N極が3つの永久磁石304で連続する。この3つのN極の連続を検知することで、基準位置が検出できる。ロータ300はクランクシャフト100と一体回転するので、基準位置はクランクシャフト100の回転方向の位置を示すことになる。クランクシャフト100が基準位置にあることと他のホールセンサの磁極の切り替わりを利用して、エンジンのシリンダに配置された図示しないスパークプラグの点火タイミングが制御される。 The first hole sensor 502 detects a reference position for ignition control. The first hole sensor 502 is arranged at a position different from that of the other hall sensors 503, 504, and 505 in the axial direction of the crankshaft 100. At the arrangement position of the first hole sensor 502, there is no inversion from the N pole to the S pole at the reference position, and the N poles are continuous with the three permanent magnets 304. By detecting the continuity of these three N poles, the reference position can be detected. Since the rotor 300 rotates integrally with the crankshaft 100, the reference position indicates the position of the crankshaft 100 in the rotation direction. The ignition timing of a spark plug (not shown) arranged in the cylinder of the engine is controlled by utilizing the fact that the crankshaft 100 is in the reference position and the switching of the magnetic poles of other Hall sensors.
 第1ホールセンサ502は、軸方向の中間位置まで伸びるものの、第1ないし第4ホールセンサ502~505は、軸方向の長さが短く設定されている。結果、第1ないし第4の全てのホールセンサ502~505は、比較的センサ本体部501に近い位置に配置されることとなっている。言い換えると、少なくとも一つのホールセンサは、ティース部402の軸方向長さLxの中間位置よりエンジンカバー200側に配置されている。この実施形態では、すべてのホールセンサ502-505は、ティース部402の軸方向長さの中間位置よりエンジンカバー200側に配置されている。これにより、第1ないし第4ホールセンサ502~505の熱はセンサ本体部501に逃げやすくなる。 Although the first hole sensor 502 extends to an intermediate position in the axial direction, the first to fourth hole sensors 502 to 505 are set to have a short axial length. As a result, all the first to fourth Hall sensors 502 to 505 are arranged at positions relatively close to the sensor main body portion 501. In other words, at least one Hall sensor is arranged on the engine cover 200 side from the intermediate position of the axial length Lx of the teeth portion 402. In this embodiment, all the Hall sensors 502-505 are arranged on the engine cover 200 side from the intermediate position of the axial length of the teeth portion 402. As a result, the heat of the first to fourth hole sensors 502 to 505 can easily escape to the sensor main body 501.
 センサ本体部501内には、ホールセンサ502~505からの電源線、信号線、及びアース線が結線される基板521(図6~8図示)が配置されている。この基板521は、電源線、信号線、及びアース線とともにポッティング材520によってセンサ本体部501内に埋込固定されている。なお、ポッティング材520としては、エポキシ樹脂等が用いられる。 A substrate 521 (shown in FIGS. 6 to 8) to which a power line, a signal line, and a ground line from the hall sensors 502 to 505 are connected is arranged in the sensor main body 501. The substrate 521 is embedded and fixed in the sensor main body 501 by a potting material 520 together with a power supply line, a signal line, and a ground wire. As the potting material 520, an epoxy resin or the like is used.
 図3に示すように、センサケース500は、センサ本体部501の径方向内方にステータ固定部506が形成されている。そして、このステータ固定部506には、ステータ400の基盤部401に設けられたセンサケースボルト通し穴410と対応する位置に、固定部ボルト穴507が形成されている。また、センサ本体部501の径方向外方には、エンジンカバー固定部508が形成されている。このエンジンカバー固定部508には、固定部ボルト穴507より径の大きい位置決め穴509が形成されている。 As shown in FIG. 3, in the sensor case 500, a stator fixing portion 506 is formed inward in the radial direction of the sensor main body portion 501. The stator fixing portion 506 is formed with a fixing portion bolt hole 507 at a position corresponding to the sensor case bolt through hole 410 provided in the base portion 401 of the stator 400. Further, an engine cover fixing portion 508 is formed on the outer side in the radial direction of the sensor main body portion 501. The engine cover fixing portion 508 is formed with a positioning hole 509 having a diameter larger than that of the fixing portion bolt hole 507.
 本例では、ステータ固定部506及びエンジンカバー固定部508は、共にセンサケースの略中心線上に形成されている。即ち、ステータ400の周方向に延びるセンサ本体部501の周方向中央に位置している。そのため、ボルト512及び位置決めネジ515を締め付け固定した状態でのセンサケース500は、バランス良く保持される。 In this example, both the stator fixing portion 506 and the engine cover fixing portion 508 are formed on the substantially center line of the sensor case. That is, it is located at the center of the sensor main body 501 extending in the circumferential direction of the stator 400. Therefore, the sensor case 500 in a state where the bolt 512 and the positioning screw 515 are tightened and fixed is held in a well-balanced manner.
 図5は、エンジンカバー200とセンサケース500との結合状態を示す斜視図である。図5は、図1の状態から、クランクシャフト100、ロータ300、及びステータ400を取り除いて示している。但し、図5には、ステータ400のうちセンサケース500が固定される基盤部401(基盤部401の一部)が示されている。図5に示すように、センサケース500はエンジンカバー固定部508の位置決め穴509に位置決めネジ515を挿入して、エンジンカバー200に取り付けられる。なお、図5では、位置決めネジ515のレンチ頭部510が示されており、レンチ頭部510の中心には六角溝511が生成されている。図5には、ステータ400のうち基盤部401の一部しか記載されていない。センサケース500は、ステータ固定部506の固定部ボルト穴507にボルト512が螺合する。これによって、ステータ400とステータ固定部506との結合がなされる。 FIG. 5 is a perspective view showing a connected state between the engine cover 200 and the sensor case 500. FIG. 5 shows the state of FIG. 1 with the crankshaft 100, the rotor 300, and the stator 400 removed. However, FIG. 5 shows a base portion 401 (a part of the base portion 401) to which the sensor case 500 is fixed in the stator 400. As shown in FIG. 5, the sensor case 500 is attached to the engine cover 200 by inserting the positioning screw 515 into the positioning hole 509 of the engine cover fixing portion 508. Note that FIG. 5 shows the wrench head 510 of the positioning screw 515, and a hexagonal groove 511 is generated at the center of the wrench head 510. In FIG. 5, only a part of the base portion 401 of the stator 400 is shown. In the sensor case 500, the bolt 512 is screwed into the fixing portion bolt hole 507 of the stator fixing portion 506. As a result, the stator 400 and the stator fixing portion 506 are coupled.
 なお、符号220はエンジンカバー200に形成されたリブで、このリブ220によりエンジンカバー200の強度を向上させている。エンジンカバー200のボルト通し穴201は、本例では周方向に離れて7カ所形成されている。エンジンカバー200はクランクシャフト100と対向する位置を中心に形成されている。よって、リブ220は、中心の円筒形状部205から7カ所のボルト通し穴201に向けて放射線状に延びる放射線状部220aを備える。さらに、リブ220は、円筒形状部205と同心円状に形成されて放射線状部220aと直交する円状部220bを備える。 Reference numeral 220 is a rib formed on the engine cover 200, and the rib 220 improves the strength of the engine cover 200. In this example, the bolt through holes 201 of the engine cover 200 are formed at seven locations apart from each other in the circumferential direction. The engine cover 200 is formed around a position facing the crankshaft 100. Therefore, the rib 220 includes a radial portion 220a that extends radially from the central cylindrical portion 205 toward the bolt through holes 201 at seven locations. Further, the rib 220 includes a circular portion 220b formed concentrically with the cylindrical portion 205 and orthogonal to the radial portion 220a.
 センサケース500は、ボルト通し穴201のうち図5の右方向に位置するボルト通し穴201aに向かって伸びるリブ220の放射線状部220aの上に配置されている。ネジ部210も、この放射線状部220aの線上に位置している(図6図示)。従って、センサケース500はエンジンカバー200の中でも耐震強度に優れた部位に位置し、センサケース500の振動を抑制できている。特に、ネジ部210はエンジンカバー200のうち、円筒形状部205ではなく、ボルト通し穴201aに近い位置に形成されている。センサケース500は、リブ220上若しくはリブ220の線上に固定されている。センサケース500は、ボルト通し穴201までの距離L1が、円筒形状部205までの距離L2より短い位置において、ネジ部210及びボルト部514によってエンジンカバー200に固定されている。よって、この実施形態の振動抑制効果はより高くなっている。 The sensor case 500 is arranged on the radial portion 220a of the rib 220 extending toward the bolt through hole 201a located on the right side of FIG. 5 in the bolt through hole 201. The screw portion 210 is also located on the line of the radial portion 220a (FIG. 6 is shown). Therefore, the sensor case 500 is located in a portion of the engine cover 200 having excellent seismic strength, and the vibration of the sensor case 500 can be suppressed. In particular, the screw portion 210 is formed in the engine cover 200 at a position close to the bolt through hole 201a, not the cylindrical portion 205. The sensor case 500 is fixed on the rib 220 or on the line of the rib 220. The sensor case 500 is fixed to the engine cover 200 by the screw portion 210 and the bolt portion 514 at a position where the distance L1 to the bolt through hole 201 is shorter than the distance L2 to the cylindrical portion 205. Therefore, the vibration suppressing effect of this embodiment is higher.
 図6は、エンジンカバー200と、センサケース500及びステータ400との組付け状態を説明する断面斜視図である。上述の通り、ステータ400の基盤部401及びティース部402は多数の磁性鋼板を積層して構成している。基盤部401には、ステータ400をエンジンカバー200に取り付けるためのステータボルト通し穴403が形成されている。さらに、基盤部401には、ステータ400にセンサケース500を固定するためのセンサケースボルト通し穴410が形成されている。上述のインシュレーターは、符号420で示す。 FIG. 6 is a cross-sectional perspective view illustrating an assembled state of the engine cover 200, the sensor case 500, and the stator 400. As described above, the base portion 401 and the teeth portion 402 of the stator 400 are configured by laminating a large number of magnetic steel plates. The base portion 401 is formed with a stator bolt through hole 403 for attaching the stator 400 to the engine cover 200. Further, the base portion 401 is formed with a sensor case bolt through hole 410 for fixing the sensor case 500 to the stator 400. The above-mentioned insulator is indicated by reference numeral 420.
 センサケース500のステータ固定部506に形成された固定部ボルト穴507には雌ネジが形成されている。センサケースボルト通し穴410に挿入されたボルト512は、この固定部ボルト穴507の雌ネジと螺合する。ボルト512は、径が6ミリメートル程度のものを用いている。 A female screw is formed in the fixing portion bolt hole 507 formed in the stator fixing portion 506 of the sensor case 500. The bolt 512 inserted in the sensor case bolt through hole 410 is screwed with the female screw of the fixing portion bolt hole 507. The bolt 512 has a diameter of about 6 mm.
 センサケース500をエンジンカバー200に固定する位置決めネジ515には、位置決め穴509に対応する位置決め円筒部513が形成されている。位置決め円筒部513は円筒部513とも呼ばれる。そして、この円筒部513の一端側にボルト部514が設けられ、このボルト部514がエンジンカバー200のネジ部210と螺合する。このボルト部514も、径が6ミリメートル程度としている。また、位置決め穴509の内径及び円筒部513の外形は共に10ミリメートル程度としてある。位置決め穴509と円筒部513との嵌め合いにより、センサケース500とエンジンカバー200との位置合わせが行われる。 The positioning screw 515 that fixes the sensor case 500 to the engine cover 200 is formed with a positioning cylindrical portion 513 corresponding to the positioning hole 509. The positioning cylindrical portion 513 is also referred to as a cylindrical portion 513. A bolt portion 514 is provided on one end side of the cylindrical portion 513, and the bolt portion 514 is screwed with the screw portion 210 of the engine cover 200. The bolt portion 514 also has a diameter of about 6 mm. Further, the inner diameter of the positioning hole 509 and the outer diameter of the cylindrical portion 513 are both set to about 10 mm. The sensor case 500 and the engine cover 200 are aligned by fitting the positioning hole 509 and the cylindrical portion 513.
 特に、位置決めネジ515の締め付け後には、位置決めネジ515の軸力が位置決め穴509に加わるので、位置決め穴509は変形しにくい構造となっている。また、図5図示のように、位置決め穴509はホールセンサ503、504の近傍に位置している。よって、エンジンカバー200を介してセンサ本体部501とエンジン側とが直接位置決めでき、その意味でも位置検出精度が向上している。これに対し、センサケース500に位置決め穴509を設けず、センサケース500をステータ400に固定する比較例が考えられる。この比較例では、センサケース500の成型歪等が影響して位置検出精度が所定の要求水準を満たせない場合がある。 In particular, after tightening the positioning screw 515, the axial force of the positioning screw 515 is applied to the positioning hole 509, so that the positioning hole 509 has a structure that is not easily deformed. Further, as shown in FIG. 5, the positioning hole 509 is located in the vicinity of the hall sensors 503 and 504. Therefore, the sensor main body 501 and the engine side can be directly positioned via the engine cover 200, and in that sense, the position detection accuracy is improved. On the other hand, a comparative example in which the sensor case 500 is not provided with the positioning hole 509 and the sensor case 500 is fixed to the stator 400 can be considered. In this comparative example, the position detection accuracy may not meet the predetermined required level due to the influence of the molding distortion of the sensor case 500 and the like.
 また、上述のレンチ頭部510は、円筒部513の他端側に形成されている。センサケース500のセンサ本体部501には、上述のポッティング材520が封入されて基板521を保護している。 Further, the above-mentioned wrench head 510 is formed on the other end side of the cylindrical portion 513. The above-mentioned potting material 520 is sealed in the sensor main body 501 of the sensor case 500 to protect the substrate 521.
 図6に示すように、エンジンカバー200のうち、ステータ400の基盤部401に対向する部位は基盤部401と同形の円筒形状部205となっている。クランクシャフト100の先端は、ステータ400の基盤部401とこの円筒形状部205の内方に配置される。 As shown in FIG. 6, the portion of the engine cover 200 facing the base portion 401 of the stator 400 is a cylindrical portion 205 having the same shape as the base portion 401. The tip of the crankshaft 100 is arranged inside the base portion 401 of the stator 400 and the cylindrical portion 205.
 図7は、図6と同様にエンジンカバー200とステータ400とセンサケース500との組付け状態を示す断面斜視図である。但し、図6とは異なる断面を示している。エンジンカバー200の円筒形状部205には、カバーボルト穴206が形成されている。このカバーボルト穴206がステータ400のステータボルト通し穴403と一致し、ステータボルト430により、ステータ400はエンジンカバー200に固定される。 FIG. 7 is a cross-sectional perspective view showing an assembled state of the engine cover 200, the stator 400, and the sensor case 500 as in FIG. However, it shows a cross section different from that of FIG. A cover bolt hole 206 is formed in the cylindrical portion 205 of the engine cover 200. The cover bolt hole 206 coincides with the stator bolt through hole 403 of the stator 400, and the stator 400 is fixed to the engine cover 200 by the stator bolt 430.
 図8は、図6よりステータ400を外して、エンジンカバー200とセンサケース500との組付け状態を示す断面斜視図である。隣接するコイル404の間に配置される第3ホールセンサ504と第4ホールセンサ505が現れている。 FIG. 8 is a cross-sectional perspective view showing an assembled state of the engine cover 200 and the sensor case 500 with the stator 400 removed from FIG. The third hole sensor 504 and the fourth hole sensor 505 arranged between the adjacent coils 404 appear.
 次に、ステータ400とセンサケース500とをエンジンカバー200に組付ける手順を説明する。まず、図4に示すように、第1ないし第4ホールセンサ502~505が所定のコイル404間の所定の軸方向の位置に位置づけられる。この状態で、センサケース500をステータ400に組付ける。この組付け時に、第1ないし第4ホールセンサ502~505はコイル404に直接触れるのではなく、コイル404との間に間隙が生じるようにしている。その状態では、図3に示すように、ステータ400のセンサケースボルト通し穴410とセンサケース500の固定部ボルト穴507とが一定の公差内で一致する。一致させた状態で、図6及び図7に示すように、ボルト512がセンサケースボルト通し穴410を通って、センサケース500の固定部ボルト穴と螺合する。これにより、ステータ400とセンサケース500とを固定する。 Next, the procedure for assembling the stator 400 and the sensor case 500 to the engine cover 200 will be described. First, as shown in FIG. 4, the first to fourth Hall sensors 502 to 505 are positioned at predetermined axial positions between the predetermined coils 404. In this state, the sensor case 500 is assembled to the stator 400. At the time of this assembly, the first to fourth hole sensors 502 to 505 do not directly touch the coil 404, but form a gap between the first and fourth hole sensors 502 to 504. In that state, as shown in FIG. 3, the sensor case bolt through hole 410 of the stator 400 and the fixing portion bolt hole 507 of the sensor case 500 coincide with each other within a certain tolerance. In the matched state, as shown in FIGS. 6 and 7, the bolt 512 passes through the sensor case bolt through hole 410 and is screwed into the fixed portion bolt hole of the sensor case 500. As a result, the stator 400 and the sensor case 500 are fixed.
 ステータ400とセンサケース500とが組付けられた状態で、センサケース500の位置決め穴509とエンジンカバー200のネジ部210を一致させる。この状態で、位置決めネジ515の締め付けを行う。この際に、位置決めネジ515の円筒部513が、センサケース500の位置決め穴509に嵌り合う。これにより、センサケース500とエンジンカバー200との相対位置関係が定まる。その結果、センサケース500に固定されているステータ400とエンジンカバー200との相対位置関係も定まることとなる。 With the stator 400 and the sensor case 500 assembled, the positioning hole 509 of the sensor case 500 and the screw portion 210 of the engine cover 200 are aligned. In this state, the positioning screw 515 is tightened. At this time, the cylindrical portion 513 of the positioning screw 515 fits into the positioning hole 509 of the sensor case 500. As a result, the relative positional relationship between the sensor case 500 and the engine cover 200 is determined. As a result, the relative positional relationship between the stator 400 fixed to the sensor case 500 and the engine cover 200 is also determined.
 その後、ステータボルト430をエンジンカバー200のカバーボルト穴206に螺合する。ここで、ステータ400のステータボルト通し穴403は大きな公差を有している。この結果、センサケース500によってステータ400とエンジンカバー200との相対位置関係が定まった状態でも、ステータボルト430の締め付け固定は問題なく行える。より具体的には、ステータボルト通し穴403の公差は、センサケース500の位置決めネジ515の公差の2倍となっている。 After that, the stator bolt 430 is screwed into the cover bolt hole 206 of the engine cover 200. Here, the stator bolt through hole 403 of the stator 400 has a large tolerance. As a result, even when the relative positional relationship between the stator 400 and the engine cover 200 is determined by the sensor case 500, the stator bolt 430 can be tightened and fixed without any problem. More specifically, the tolerance of the stator bolt through hole 403 is twice the tolerance of the positioning screw 515 of the sensor case 500.
 次に、使用環境における第1ないし第4ホールセンサ502~505の熱状態に関して説明する。図1に示すように、エンジンカバー200はエンジンのシリンダブロックの開口部を覆うものであるので、シリンダブロックと同様の熱環境にある。高温時には150度(摂氏、以下同じ)程度に温度上昇する。更に、コイル404による発熱により、コイル404部分では150度を超え、180~200度まで温度上昇することもありうる。ホールセンサは電子部品であるため、最悪の場合には、耐熱温度を超えてしまう恐れもある。 Next, the thermal states of the first to fourth hole sensors 502 to 505 in the usage environment will be described. As shown in FIG. 1, since the engine cover 200 covers the opening of the cylinder block of the engine, it is in the same thermal environment as the cylinder block. At high temperatures, the temperature rises to about 150 degrees Celsius (same below). Further, due to the heat generated by the coil 404, the temperature of the coil 404 portion may exceed 150 degrees and rise to 180 to 200 degrees. Since the Hall sensor is an electronic component, in the worst case, it may exceed the heat resistant temperature.
 それに対し、本開示の第1ないし第4ホールセンサ502~505は、コイル404との間に間隙があるので、コイル404の熱が直接伝達されることは無い。かつ、センサケース500はエンジンカバー200に固定されているので、第1ないし第4ホールセンサ502~505もエンジンカバー200側に配置される。エンジンカバー200は外気に触れるので、シリンダブロックの温度よりは低く、高温時でも100度ほどである。そのため、高温となるシリンダブロック内では、最も温度上昇が少ない。このエンジンカバー200に近い位置に第1ないし第4ホールセンサ502~505を配置することで、耐熱温度を超える恐れを軽減できる。 On the other hand, since the first to fourth hole sensors 502 to 505 of the present disclosure have a gap between them and the coil 404, the heat of the coil 404 is not directly transferred. Moreover, since the sensor case 500 is fixed to the engine cover 200, the first to fourth hole sensors 502 to 505 are also arranged on the engine cover 200 side. Since the engine cover 200 is exposed to the outside air, it is lower than the temperature of the cylinder block, and is about 100 degrees even at a high temperature. Therefore, the temperature rise is the smallest in the cylinder block that becomes hot. By arranging the first to fourth hole sensors 502 to 505 at a position close to the engine cover 200, the possibility of exceeding the heat resistant temperature can be reduced.
 そして、本開示のセンサケース500は位置決めネジ515により直接にエンジンカバー200に固定されている。よって、第1ないし第4ホールセンサ502~505の熱を、エンジンカバー200に逃がすことができる。即ち、各ホールセンサの熱は、電源線、信号線、アース線を介して基板521に伝わる。次に、熱は、ポッティング材520からエンジンカバー固定部508に伝わる。次に、熱は、エンジンカバー固定部508を介して、位置決めネジ515経由でエンジンカバー200に伝達される。この開示では、熱がエンジンカバー200に直接伝導する経路が設けられる。これにより、コイル404の温度が180~200度の高温時でも、センサケース500の温度は120~130度に抑えられる。特に、本開示では第1ないし第4ホールセンサ502~505からセンサ本体部501までの距離が比較的短くなっているので、熱が逃げやすい構造である。これによって、第1ないし第4ホールセンサ502~505の耐熱性を高めることが可能である。 Then, the sensor case 500 of the present disclosure is directly fixed to the engine cover 200 by the positioning screw 515. Therefore, the heat of the first to fourth hole sensors 502 to 505 can be released to the engine cover 200. That is, the heat of each Hall sensor is transferred to the substrate 521 via the power supply line, signal line, and ground line. Next, heat is transferred from the potting material 520 to the engine cover fixing portion 508. Next, the heat is transferred to the engine cover 200 via the positioning screw 515 via the engine cover fixing portion 508. In this disclosure, a path is provided for heat to conduct directly to the engine cover 200. As a result, the temperature of the sensor case 500 can be suppressed to 120 to 130 degrees even when the temperature of the coil 404 is as high as 180 to 200 degrees. In particular, in the present disclosure, since the distance from the first to fourth hole sensors 502 to 505 to the sensor main body 501 is relatively short, the structure is such that heat can easily escape. This makes it possible to increase the heat resistance of the first to fourth hole sensors 502 to 505.
 次に、温度の影響を考慮したセンサケース500の配置位置を説明する。シリンダブロックの内部に充満しているのは、空気とエンジンオイルとのミストである。よって、空気とエンジンオイルのどちらの熱影響をより重視すべきかの使用環境に応じた設計的な選択により、センサケース500の配置位置の設定も異なる。 Next, the placement position of the sensor case 500 in consideration of the influence of temperature will be described. The inside of the cylinder block is filled with mist of air and engine oil. Therefore, the setting of the arrangement position of the sensor case 500 also differs depending on the design selection according to the usage environment, which of the air and the engine oil should be given more importance to the heat effect.
 エンジンオイルの熱影響が重視される使用環境では、センサケース500は、エンジンカバー200のうち上下方向の中間位置を含めて中間位置より上方に配置するのが望ましい。何故なら、エンジンカバー200内にはエンジンオイルの飛沫が飛散しており、このエンジンオイルは下方部に比較的多いからである。そのため、センサケース500を上方に配置すれば高温のエンジンオイルが直接にホールセンサ502~505に飛散する恐れを低減することができる。特に、本開示では、センサケース500はエンジンカバー200側に配置されているので、センサケース500とシリンダブロックとの間には、ロータ300やステータ400が介在している。そのため、本来的にエンジンオイルが飛散しにくい環境であるので、センサケース500を上方に配置すれば、エンジンオイルの熱影響を最も少なくすることができる。 In a usage environment where the thermal effect of engine oil is important, it is desirable to arrange the sensor case 500 above the intermediate position of the engine cover 200 including the intermediate position in the vertical direction. This is because the splashes of engine oil are scattered in the engine cover 200, and this engine oil is relatively abundant in the lower part. Therefore, if the sensor case 500 is arranged above, the possibility that the high temperature engine oil directly scatters on the hall sensors 502 to 505 can be reduced. In particular, in the present disclosure, since the sensor case 500 is arranged on the engine cover 200 side, the rotor 300 and the stator 400 are interposed between the sensor case 500 and the cylinder block. Therefore, since the engine oil is inherently difficult to scatter, if the sensor case 500 is arranged above, the thermal influence of the engine oil can be minimized.
 逆に、空気の温度が重視される使用環境では、センサケース500は、エンジンカバー200のうち上下方向の中間位置を含めて中間位置より下方に配置する。長時間エンジンを高速回転した後で、エンジンを停止したような状況では、エンジン内部の温度が急激に上昇する。そして、高温空気はより上方に流れるので、このような状態でセンサケース500が上方部に位置していれば高温空気の熱を受けやすい。一方、センサケース500が、下方に配置されていれば、高温空気の影響を受けにくくなる。特に、上記の通り、本開示のセンサケース500はもともとエンジンオイルの影響を受けにくい位置に配置されている。よって、高温空気の影響が顕著となり、下方の配置はバランスがよい。 On the contrary, in the usage environment where the air temperature is important, the sensor case 500 is arranged below the intermediate position of the engine cover 200 including the intermediate position in the vertical direction. In a situation where the engine is stopped after the engine has been rotated at high speed for a long time, the temperature inside the engine rises sharply. Since the high-temperature air flows upward, if the sensor case 500 is located in the upper portion in such a state, it is likely to receive the heat of the high-temperature air. On the other hand, if the sensor case 500 is arranged below, it is less likely to be affected by high temperature air. In particular, as described above, the sensor case 500 of the present disclosure is originally arranged at a position that is not easily affected by engine oil. Therefore, the influence of high temperature air becomes remarkable, and the lower arrangement is well-balanced.
 上述の通り、本開示では、センサケース500をエンジンカバー200側に配置しているので、センサケース500の熱はエンジンカバー200側に放熱される構造である。この放熱を更に促進するために、センサケース500に放熱板部550(図9図示)を配置してもよい。図10に示すように、放熱板部550はセンサ本体部501に対応する放熱板本体部551と、エンジンカバー固定部508に対応する放熱板エンジンカバー固定部552とを有している。放熱板エンジンカバー固定部552には、エンジンカバー固定部508と同一形状の位置決め穴509が形成されている。 As described above, in the present disclosure, since the sensor case 500 is arranged on the engine cover 200 side, the heat of the sensor case 500 is radiated to the engine cover 200 side. In order to further promote this heat dissipation, a heat sink portion 550 (shown in FIG. 9) may be arranged in the sensor case 500. As shown in FIG. 10, the heat sink portion 550 has a heat sink main body portion 551 corresponding to the sensor main body portion 501 and a heat sink engine cover fixing portion 552 corresponding to the engine cover fixing portion 508. The heat sink engine cover fixing portion 552 is formed with a positioning hole 509 having the same shape as the engine cover fixing portion 508.
 放熱板部550は、鉄、アルミニウム、銅等の金属材料製で、ホールセンサ502~505からの熱をエンジンカバー200に放熱する構造である。図11は、放熱板部550を備えるセンサケース500が、エンジンカバー200に固定される状態を示す。位置決めネジ515の円筒部513が、センサケース500のエンジンカバー固定部508及び放熱板エンジンカバー固定部552に設けられた位置決め穴509内に位置している。そして、放熱板部550の放熱板エンジンカバー固定部552は、エンジンカバー200のネジ部210に位置決めネジ515のボルト部514でねじ止めされている。また、放熱板部550の放熱板本体部551は、エンジンカバー200のリブ202に接している。熱伝導性の良い放熱板部550をエンジンカバー200側に配置して、エンジンカバー200と直接に接する構造としている。よって、ホールセンサ502~505からエンジンカバー200への熱の伝達は一層スムーズになされる。 The heat sink portion 550 is made of a metal material such as iron, aluminum, and copper, and has a structure that dissipates heat from the hall sensors 502 to 505 to the engine cover 200. FIG. 11 shows a state in which the sensor case 500 including the heat sink portion 550 is fixed to the engine cover 200. The cylindrical portion 513 of the positioning screw 515 is located in the positioning hole 509 provided in the engine cover fixing portion 508 and the heat sink engine cover fixing portion 552 of the sensor case 500. The heat sink engine cover fixing portion 552 of the heat sink portion 550 is screwed to the screw portion 210 of the engine cover 200 with the bolt portion 514 of the positioning screw 515. Further, the heat sink main body portion 551 of the heat sink portion 550 is in contact with the rib 202 of the engine cover 200. The heat sink portion 550 having good thermal conductivity is arranged on the engine cover 200 side so as to be in direct contact with the engine cover 200. Therefore, the heat transfer from the Hall sensors 502 to 505 to the engine cover 200 is made smoother.
 図12は、放熱板部550よりホールセンサ502~505に向けて伸びる冷却板部553を追加した例である。冷却板部553は放熱板部550と同様の金属材料製である。金属製の冷却板部553は、放熱板部550よりホールセンサ502~505側に延びている。金属製の冷却板部553は、放熱板部550と、ホールセンサ502~505との間に熱伝達経路を提供している。冷却板部553と放熱板部550とは、図13に示すように、溶接接合やろう付け、はんだ付けにより固定しても良い。また、図14に示すように、一体成形しても良い。図14の例では、冷却板部553は放熱板本体部551から折り曲げ成形されている。 FIG. 12 is an example in which a cooling plate portion 553 extending from the heat sink portion 550 toward the hall sensors 502 to 505 is added. The cooling plate portion 553 is made of the same metal material as the heat sink portion 550. The metal cooling plate portion 555 extends from the heat sink portion 550 to the Hall sensors 502 to 505. The metal cooling plate portion 555 provides a heat transfer path between the heat sink portion 550 and the Hall sensors 502 to 505. As shown in FIG. 13, the cooling plate portion 553 and the heat sink portion 550 may be fixed by welding, brazing, or soldering. Further, as shown in FIG. 14, it may be integrally molded. In the example of FIG. 14, the cooling plate portion 553 is bent and molded from the heat sink main body portion 551.
 図12に示すように、センサケース500は、基板521とホールセンサ502~505のセンサ素子522とリード線523とを共にポッティング材520にて封入固定している。上述の通り、リード線523は各センサ素子522に対して、電源線、アース線、信号線の3本ずつ配置されている。また、リード線523は基板521にはんだ付けされている。 As shown in FIG. 12, in the sensor case 500, the substrate 521, the sensor elements 522 of the Hall sensors 502 to 505, and the lead wire 523 are both enclosed and fixed by a potting material 520. As described above, three lead wires 523 are arranged for each sensor element 522, that is, a power supply line, a ground wire, and a signal line. Further, the lead wire 523 is soldered to the substrate 521.
 ポッティング材520は冷却板部553も封入固定している。かつ、ポッティング材520は放熱板部550の放熱板本体部551とも接している。従って、放熱板部550はポッティング材520によりセンサケース500に接着固定されている。 The potting material 520 also encloses and fixes the cooling plate portion 553. Moreover, the potting material 520 is also in contact with the heat radiating plate main body 551 of the heat radiating plate 550. Therefore, the heat sink portion 550 is adhesively fixed to the sensor case 500 by the potting material 520.
 図10及び図11の例では、センサケース500は、エンジンカバー固定部508と放熱板エンジンカバー固定部552の2部材でエンジンカバー200にねじ止めされている。すなわち、図10及び図11の例では、位置決めネジ515は、センサケース500のエンジンカバー固定部508及び放熱板部550を挟持してエンジンカバー200のネジ部210と螺合するボルト部514を有する。図16の例では、位置決めネジ515は、センサケース500の放熱板部550のみを挟持してエンジンカバー200のネジ部210と螺合するボルト部514を有する。これを、図15及び図16に示すように、エンジンカバー固定部508を廃止しても良い。樹脂材料製のエンジンカバー固定部508は熱により反りが生じる恐れがあり、その場合には寸法精度が劣る可能性もある。それに対し、金属材料製の放熱板エンジンカバー固定部552のみでエンジンカバー200に固定すれは反りの恐れは無くなる。また、放熱板部550はポッティング材520によってセンサ本体部501に接着固定されるので、その接着固定の際に寸法調整も可能となる。 In the examples of FIGS. 10 and 11, the sensor case 500 is screwed to the engine cover 200 with two members, an engine cover fixing portion 508 and a heat sink engine cover fixing portion 552. That is, in the examples of FIGS. 10 and 11, the positioning screw 515 has a bolt portion 514 that sandwiches the engine cover fixing portion 508 and the heat sink portion 550 of the sensor case 500 and is screwed with the screw portion 210 of the engine cover 200. .. In the example of FIG. 16, the positioning screw 515 has a bolt portion 514 that sandwiches only the heat sink portion 550 of the sensor case 500 and is screwed with the screw portion 210 of the engine cover 200. As shown in FIGS. 15 and 16, the engine cover fixing portion 508 may be abolished. The engine cover fixing portion 508 made of a resin material may be warped due to heat, and in that case, the dimensional accuracy may be inferior. On the other hand, if the heat sink made of a metal material is fixed to the engine cover 200 only by the engine cover fixing portion 552, there is no risk of warping. Further, since the heat radiating plate portion 550 is adhesively fixed to the sensor main body portion 501 by the potting material 520, the dimensions can be adjusted at the time of the adhesive fixing.
 併せて、樹脂材料製のエンジンカバー固定部508では、長期間にわたって位置決めネジ515の軸力を受けていると、クリープ変形の恐れが無視できない。一方、金属材料製の放熱板エンジンカバー固定部552には、クリープ変形の恐れはない。加えて、金属材料製の放熱板エンジンカバー固定部552は、熱の伝導がスムーズになされる。よって、ホールセンサ502~505からの熱をより良好にエンジンカバー200側に逃がすことができる。 At the same time, if the engine cover fixing portion 508 made of resin material receives the axial force of the positioning screw 515 for a long period of time, the risk of creep deformation cannot be ignored. On the other hand, there is no risk of creep deformation in the heat sink engine cover fixing portion 552 made of metal material. In addition, the heat sink engine cover fixing portion 552 made of a metal material smoothly conducts heat. Therefore, the heat from the Hall sensors 502 to 505 can be better released to the engine cover 200 side.
 図16の例では、放熱板部550はエンジンカバー200に全面的に当接している。これは、図17に示すように、エンジンカバー200のうちセンサケース500と対応する部位に放熱板部550と対応する形状の放熱部220Cが形成されているからである。エンジンカバー200のうち放熱板部550と対向する部位(放熱部220c)は、放熱板部550に対応する形状を有している。放熱板部550は、エンジンカバー200のうち放熱板部550と対向する部位(放熱部220c)と接している。放熱板部550がエンジンカバー200の放熱部220Cに全面的に接する。この構造により、ホールセンサ502~505からの熱は、一層良好にエンジンカバー200側に逃がされる。 In the example of FIG. 16, the heat sink portion 550 is in full contact with the engine cover 200. This is because, as shown in FIG. 17, a heat radiating portion 220C having a shape corresponding to the heat radiating plate portion 550 is formed in a portion of the engine cover 200 corresponding to the sensor case 500. The portion of the engine cover 200 facing the heat sink portion 550 (heat sink portion 220c) has a shape corresponding to the heat sink portion 550. The heat radiating plate portion 550 is in contact with a portion (heat radiating portion 220c) of the engine cover 200 facing the heat radiating plate portion 550. The heat radiating plate portion 550 is in full contact with the radiating portion 220C of the engine cover 200. With this structure, the heat from the Hall sensors 502 to 505 is better released to the engine cover 200 side.
 尤も、図16や図17の例で、放熱板部550がエンジンカバー200の放熱部220Cに全面的に接するとしていても、実際には公差やエンジンカバー200及び放熱板部550の表面粗さ等の影響で、部分的に非接触部が発生する。そのため、放熱板部550とエンジンカバー200の放熱部220Cとの間に、エポキシ等の樹脂による接着剤層を介在させても良い。接着剤層により隙間が埋まることで、ホールセンサ502~505からの熱を更にスムーズにエンジンカバー200側に逃がすことができる。 However, in the examples of FIGS. 16 and 17, even if the heat sink portion 550 is in full contact with the heat sink portion 220C of the engine cover 200, the tolerance, the surface roughness of the engine cover 200 and the heat sink portion 550, etc. are actually observed. Due to the influence of, a non-contact part is partially generated. Therefore, an adhesive layer made of a resin such as epoxy may be interposed between the heat radiating plate portion 550 and the radiating portion 220C of the engine cover 200. By filling the gap with the adhesive layer, the heat from the Hall sensors 502 to 505 can be released to the engine cover 200 side more smoothly.
 接着剤層は、エンジンカバー200に放熱部220Cを形成した例に限らない。かつ、センサケース500に放熱板部550を形成した例にも限らない。図18は、図6と同様、センサケース500に放熱板部550を備えない例であるが、センサケース500とエンジンカバー200との間に接着剤層560を介在させている。より具体的には、センサケース500のポッティング材520とエンジンカバー200との間に接着剤層560を介在させている。ホールセンサ502~505からの熱は、ポッティング材520と接着剤層560を介してエンジンカバー200側に逃がされる。 The adhesive layer is not limited to the example in which the heat radiating portion 220C is formed on the engine cover 200. Moreover, the present invention is not limited to the example in which the heat sink portion 550 is formed on the sensor case 500. FIG. 18 is an example in which the sensor case 500 is not provided with the heat sink portion 550 as in FIG. 6, but the adhesive layer 560 is interposed between the sensor case 500 and the engine cover 200. More specifically, the adhesive layer 560 is interposed between the potting material 520 of the sensor case 500 and the engine cover 200. The heat from the Hall sensors 502 to 505 is released to the engine cover 200 side via the potting material 520 and the adhesive layer 560.
 なお、図18の例ではセンサケース500はリブ220の上にも載っていない。センサケース500をリブ上に配置することは、強度や伝熱性を高める上で望ましいが、必ずしも必須の要件ではない。特に、図18の例のように接着剤層560を介在させれば、仮に、センサケース500とエンジンカバー200との間の間隔が開いたとしても、エンジンカバー200への伝熱性を維持することが可能である。 In the example of FIG. 18, the sensor case 500 is not placed on the rib 220 either. Placing the sensor case 500 on the rib is desirable for increasing strength and heat transfer, but it is not always an essential requirement. In particular, if the adhesive layer 560 is interposed as in the example of FIG. 18, even if the distance between the sensor case 500 and the engine cover 200 is widened, the heat transfer property to the engine cover 200 can be maintained. Is possible.
 上述の例は本開示の望ましい例ではあるが、本開示は上記の例に限定されない。各部の材質や大きさは、適宜変更可能である。図示の例では、センサケース500のエンジンカバー固定部508がセンサ本体部501のほぼ中央に位置している。ステータ固定部506及びエンジンカバー固定部508は、センサ本体部501のうちステータの周方向の略中央部に位置している。エンジンカバー200との関係に応じ、エンジンカバー固定部508は、センサ本体部501の径方向外方であればよい。よって、エンジンカバー固定部508の周方向の位置は適宜変更可能である。同様に、ステータ固定部506の位置も、周方向に変更可能である。 The above example is a desirable example of the present disclosure, but the present disclosure is not limited to the above example. The material and size of each part can be changed as appropriate. In the illustrated example, the engine cover fixing portion 508 of the sensor case 500 is located substantially in the center of the sensor main body portion 501. The stator fixing portion 506 and the engine cover fixing portion 508 are located at substantially the center of the sensor main body portion 501 in the circumferential direction. Depending on the relationship with the engine cover 200, the engine cover fixing portion 508 may be outside the radial direction of the sensor main body portion 501. Therefore, the position of the engine cover fixing portion 508 in the circumferential direction can be appropriately changed. Similarly, the position of the stator fixing portion 506 can also be changed in the circumferential direction.
 また、上述の例ではホールセンサ4個を用いる方式を記述したが、ホールセンサの個数は異なる場合がある。例として第2、第3、第4ホールセンサ503、504、505は、U、V、W相、各コイルへの通電のタイミングの基準となる信号を得る。これらセンサは、1つのロータの磁束を測定しているため、それぞれの角度方向の位置ズレを時間軸に反映した信号が出力される。この為、いずれか1つのホールセンサの信号から、ほかの信号を推定することが可能である。 Also, in the above example, a method using four hall sensors is described, but the number of hall sensors may differ. As an example, the second, third, and fourth Hall sensors 503, 504, and 505 obtain signals that serve as a reference for the timing of energization of the U, V, W phases, and each coil. Since these sensors measure the magnetic flux of one rotor, a signal reflecting the positional deviation in each angular direction on the time axis is output. Therefore, it is possible to estimate another signal from the signal of any one of the hall sensors.
 また、第1ホールセンサ502は点火の基準信号を出力するが、ホールセンサ以外から点火の基準信号を得る場合も考えられる。例えば、クランク角センサからのクランク角信号を用いることも可能である。クランク角センサとは、クランク軸の回転と共に回転する検出用円板を用いて、所定のクランク角を検出可能なパルス状のクランク角信号を出力するものである。クランク角センサは、クランクシャフト100の1回転中に、通過パルスが連続する部分と通過パルスの存在しない部分とを有する出力信号を生じるようにしている。 Further, although the first hall sensor 502 outputs an ignition reference signal, it is also conceivable that the ignition reference signal may be obtained from a source other than the hall sensor. For example, it is also possible to use a crank angle signal from a crank angle sensor. The crank angle sensor outputs a pulsed crank angle signal capable of detecting a predetermined crank angle by using a detection disk that rotates with the rotation of the crank shaft. The crank angle sensor is configured to generate an output signal having a continuous pass pulse portion and a non-passing pulse portion during one rotation of the crankshaft 100.
 このためホールセンサの数は最小1個になる可能性もある。このように、ホールセンサの数は、ホールセンサの出力が入力される制御回路側の方式により、適宜変更される。ホースセンサが1つの場合、その一つのホールセンサは、エンジンカバー200に近い側に配置した方が、熱を逃がす上で望ましい。
 

 
Therefore, the number of Hall sensors may be at least one. As described above, the number of hall sensors is appropriately changed depending on the method on the control circuit side in which the output of the hall sensors is input. When there is one hose sensor, it is preferable to arrange the one hall sensor on the side closer to the engine cover 200 in order to dissipate heat.


Claims (18)

  1.  クランクシャフトに取り付けられる基部、この基部より径方向外方に延びる円盤部、及びこの円盤部の径方向外方部に形成される円筒部を備え、前記クランクシャフトと一体に回転するロータと、
     このロータの前記円筒部に、周方向に複数配置される磁石と、
     エンジンカバーに取り付けられる基盤部、この基盤部より径方向外方に延びる複数のティース部、及びこのティース部に配置される複数のコイルを備え、前記ティース部の径方向外方端部が前記磁石と対向するステータと、
     前記複数のコイルの隣接するコイル間に前記磁石と対向して配置されて前記磁石の磁束を検知するホールセンサとこのホールセンサの基板とを保持するセンサケースとを備え、
     前記センサケースは、前記ステータの前記エンジンカバー側に配置され、かつ、
     前記センサケースは、前記ステータの前記基盤部に固定されると共に、前記エンジンカバーにも固定されている
     ことを特徴とする内燃機関用回転電機。
    A rotor having a base attached to the crankshaft, a disk portion extending radially outward from this base, and a cylindrical portion formed in the radial outer portion of the disk portion, and rotating integrally with the crankshaft.
    A plurality of magnets arranged in the circumferential direction in the cylindrical portion of the rotor,
    It is provided with a base portion attached to an engine cover, a plurality of teeth portions extending radially outward from the base portion, and a plurality of coils arranged in the teeth portion, and the radial outer end portion of the teeth portion is the magnet. With the stator facing the
    A hole sensor that is arranged between adjacent coils of the plurality of coils so as to face the magnet and detects the magnetic flux of the magnet and a sensor case that holds the substrate of the hall sensor are provided.
    The sensor case is arranged on the engine cover side of the stator, and the sensor case is arranged.
    A rotary electric machine for an internal combustion engine, wherein the sensor case is fixed to the base portion of the stator and also to the engine cover.
  2.  前記内燃機関用回転電機は、三相の始動発電機であり、
     前記ホールセンサは、U相、V相、W相の回転位置を検出する3つのホールセンサと、前記クランクシャフトの基準位置を検出する1つのホールセンサの併せて4つのホールセンサであり、
     各ホールセンサは、隣接する前記コイル間に配置される
     ことを特徴とする請求項1記載の内燃機関用回転電機。
    The rotary electric machine for an internal combustion engine is a three-phase starting generator.
    The Hall sensor is a total of four Hall sensors, including three Hall sensors that detect the rotational positions of the U phase, V phase, and W phase, and one Hall sensor that detects the reference position of the crankshaft.
    The rotary electric machine for an internal combustion engine according to claim 1, wherein each Hall sensor is arranged between the adjacent coils.
  3.  前記ティース部は、前記クランクシャフトの軸方向に所定の長さを有しており、
     前記ホールセンサは複数存在しその少なくとも一つは、前記ティース部の軸方向長さの中間位置より前記エンジンカバー側に配置されている
     ことを特徴とする請求項1もしくは2記載の内燃機関用回転電機。
    The teeth portion has a predetermined length in the axial direction of the crankshaft, and has a predetermined length.
    The rotation for an internal combustion engine according to claim 1 or 2, wherein a plurality of Hall sensors exist, and at least one of them is arranged on the engine cover side from an intermediate position of the axial length of the teeth portion. Electric.
  4.  前記センサケースは、前記ホールセンサと前記基板を保持するセンサ本体部と、このセンサ本体部の径方向内方に位置するステータ固定部と、前記センサ本体部の径方向外方に位置するエンジンカバー固定部とを備える
     ことを特徴とする請求項1ないし3いずれか記載の内燃機関用回転電機。
    The sensor case includes a sensor main body that holds the hall sensor and the substrate, a stator fixing portion that is located inward in the radial direction of the sensor main body, and an engine cover that is located in the radial direction of the sensor main body. The rotary electric machine for an internal combustion engine according to any one of claims 1 to 3, further comprising a fixed portion.
  5.  前記ステータ固定部には固定部ボルト穴が形成されており、前記ステータの前記基盤部にはセンサケースボルト通し穴が形成されており、ステータボルトを、前記基盤部の前記センサケースボルト通し穴を通して、前記ステータ固定部の前記固定部ボルト穴に螺合することにより前記ステータと前記センサケースとが固定される
     ことを特徴とする請求項4記載の内燃機関用回転電機。
    A fixing bolt hole is formed in the stator fixing portion, a sensor case bolt through hole is formed in the base portion of the stator, and a stator bolt is passed through the sensor case bolt through hole of the base portion. The rotary electric machine for an internal combustion engine according to claim 4, wherein the stator and the sensor case are fixed by screwing into the bolt hole of the fixing portion of the stator fixing portion.
  6.  前記エンジンカバー固定部には位置決め穴が形成されており、
     前記センサケースは、位置決めネジにより前記エンジンカバーに固定され、
     前記位置決めネジは、前記エンジンカバー固定部の前記位置決め穴に対応する位置決め円筒部と、この位置決め円筒部の一端側に形成されて前記エンジンカバーのネジ部と螺合するボルト部と、前記位置決め円筒部の他端側に形成されたレンチ頭部とを有し、
     前記位置決め円筒部の径は、前記ボルト部の径より大きい
     ことを特徴とする請求項4もしくは5記載の内燃機関用回転電機。
    A positioning hole is formed in the engine cover fixing portion.
    The sensor case is fixed to the engine cover by a positioning screw.
    The positioning screw includes a positioning cylinder portion corresponding to the positioning hole of the engine cover fixing portion, a bolt portion formed on one end side of the positioning cylinder portion and screwed with the screw portion of the engine cover, and the positioning cylinder. Has a wrench head formed on the other end side of the portion
    The rotary electric machine for an internal combustion engine according to claim 4 or 5, wherein the diameter of the positioning cylinder portion is larger than the diameter of the bolt portion.
  7.  前記ステータ固定部及び前記エンジンカバー固定部は、前記センサ本体部のうち前記ステータの周方向の略中央部に位置している
     ことを特徴とする請求項4ないし6いずれか記載の内燃機関用回転電機。
    The rotation for an internal combustion engine according to any one of claims 4 to 6, wherein the stator fixing portion and the engine cover fixing portion are located at a substantially central portion of the sensor main body portion in the circumferential direction of the stator. Electric.
  8.  前記センサケースは、前記エンジンカバーのうち上下方向の中間位置を含めて中間位置より上方に配置される
     ことを特徴とする請求項1ないし6いずれか記載の内燃機関用回転電機。
    The rotary electric machine for an internal combustion engine according to any one of claims 1 to 6, wherein the sensor case is arranged above the intermediate position of the engine cover including the intermediate position in the vertical direction.
  9.  前記センサケースは、前記エンジンカバーのうち上下方向の中間位置を含めて中間位置より下方に配置される
     ことを特徴とする請求項1ないし6いずれか記載の内燃機関用回転電機。
    The rotary electric machine for an internal combustion engine according to any one of claims 1 to 6, wherein the sensor case is arranged below the intermediate position including the intermediate position in the vertical direction of the engine cover.
  10.  前記ホールセンサと前記コイルとの間には間隙が生じ、前記ホールセンサは前記コイルと直接に接しない
     ことを特徴とする請求項1ないし8いずれか記載の内燃機関用回転電機。
    The rotary electric machine for an internal combustion engine according to any one of claims 1 to 8, wherein a gap is formed between the hall sensor and the coil, and the hall sensor does not come into direct contact with the coil.
  11.  前記エンジンカバーは、前記クランクシャフトに対応する中心部に設けられた円筒形状部と、周辺部に設けられたボルト通し穴と、前記円筒形状部から前記ボルト通し穴に向けて伸びるリブとを有し、
     前記センサケースは、前記エンジンカバーのうち、前記リブ上若しくは前記リブの線上に固定される
     ことを特徴とする請求項1ないし10いずれか記載の内燃機関用回転電機。
    The engine cover has a cylindrical portion provided in a central portion corresponding to the crankshaft, a bolt through hole provided in a peripheral portion, and a rib extending from the cylindrical portion toward the bolt through hole. death,
    The rotary electric machine for an internal combustion engine according to any one of claims 1 to 10, wherein the sensor case is fixed on the rib or the wire of the rib in the engine cover.
  12.  前記センサケースは、前記リブ上若しくは前記リブの線上のうち、前記ボルト通し穴までの距離が前記円筒形状部までの距離より短い位置で、前記エンジンカバーに固定される
     ことを特徴とする請求項11記載の内燃機関用回転電機。
    The sensor case is characterized in that it is fixed to the engine cover at a position on the rib or on the line of the rib where the distance to the bolt through hole is shorter than the distance to the cylindrical portion. 11. The rotary electric machine for an internal combustion engine according to 11.
  13.  前記センサケースは、前記ホールセンサと前記基板とを保持する樹脂材料製のセンサ本体部と、このセンサ本体部の前記エンジンカバー側に配置される金属製の放熱板部を備える
     ことを特徴とする請求項1ないし12いずれか記載の内燃機関用回転電機。
    The sensor case is characterized by including a sensor main body made of a resin material that holds the Hall sensor and the substrate, and a metal heat dissipation plate portion that is arranged on the engine cover side of the sensor main body. The rotary electric machine for an internal combustion engine according to any one of claims 1 to 12.
  14.  前記センサケースは、前記ホールセンサと前記基板とを保持する樹脂材料製のセンサ本体部と、このセンサ本体部の前記エンジンカバー側に配置される金属製の放熱板部と、この放熱板部より前記ホールセンサ側に延びる金属製の冷却板部とを備える
     ことを特徴とする請求項1ないし12いずれか記載の内燃機関用回転電機。
    The sensor case is composed of a sensor main body made of a resin material that holds the Hall sensor and the substrate, a metal heat sink portion arranged on the engine cover side of the sensor main body, and the heat sink portion. The rotary electric machine for an internal combustion engine according to any one of claims 1 to 12, further comprising a metal cooling plate portion extending toward the Hall sensor side.
  15.  前記センサケースは、前記ホールセンサと前記基板とを保持するセンサ本体部と、前記センサケースを前記エンジンカバーに固定するエンジンカバー固定部とを備え、
     前記センサケースは、位置決めネジにより前記エンジンカバーに固定され、
     前記位置決めネジは、前記センサケースの前記エンジンカバー固定部及び前記放熱板部を挟持して前記エンジンカバーのネジ部と螺合するボルト部を有する
     ことを特徴とする請求項13もしくは14記載の内燃機関用回転電機。
    The sensor case includes a sensor main body portion that holds the hall sensor and the substrate, and an engine cover fixing portion that fixes the sensor case to the engine cover.
    The sensor case is fixed to the engine cover by a positioning screw.
    The internal combustion engine according to claim 13 or 14, wherein the positioning screw has a bolt portion that sandwiches the engine cover fixing portion and the heat radiation plate portion of the sensor case and is screwed with the screw portion of the engine cover. Rotating electric machine for engine.
  16.  前記センサケースは、位置決めネジにより前記エンジンカバーに固定され、
     前記位置決めネジは、前記センサケースの前記放熱板部のみを挟持して前記エンジンカバーのネジ部と螺合するボルト部を有する
     ことを特徴とする請求項13もしくは14記載の内燃機関用回転電機。
    The sensor case is fixed to the engine cover by a positioning screw.
    The rotary electric machine for an internal combustion engine according to claim 13 or 14, wherein the positioning screw has a bolt portion that sandwiches only the heat sink portion of the sensor case and is screwed with the screw portion of the engine cover.
  17.  前記エンジンカバーのうち前記放熱板部と対向する部位は、前記放熱板部に対応する形状をしており、
     前記放熱板部は、前記エンジンカバーのうち前記放熱板部と対向する部位と接する
     ことを特徴とする請求項13ないし16いずれか記載の内燃機関用回転電機。
    The portion of the engine cover facing the heat sink portion has a shape corresponding to the heat sink portion.
    The rotary electric machine for an internal combustion engine according to any one of claims 13 to 16, wherein the heat sink portion is in contact with a portion of the engine cover facing the heat sink portion.
  18.  前記放熱板部と、前記エンジンカバーのうち前記放熱板部と対向する部位との間には接着剤層が介在する
     ことを特徴とする請求項13ないし17いずれか記載の内燃機関用回転電機。
     

     
    The rotary electric machine for an internal combustion engine according to any one of claims 13 to 17, wherein an adhesive layer is interposed between the heat radiating plate portion and a portion of the engine cover facing the heat radiating plate portion.


PCT/JP2021/028531 2020-09-03 2021-08-02 Rotating electric machine for internal combustion engine WO2022049956A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180054056.3A CN116171520A (en) 2020-09-03 2021-08-02 Rotary electric machine for internal combustion engine
JP2022512838A JP7074945B1 (en) 2020-09-03 2021-08-02 Rotating electric machine for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148482 2020-09-03
JP2020-148482 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022049956A1 true WO2022049956A1 (en) 2022-03-10

Family

ID=80491975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028531 WO2022049956A1 (en) 2020-09-03 2021-08-02 Rotating electric machine for internal combustion engine

Country Status (3)

Country Link
JP (1) JP7074945B1 (en)
CN (1) CN116171520A (en)
WO (1) WO2022049956A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7522334B1 (en) * 2023-05-30 2024-07-24 マブチモーター株式会社 Brushless motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122580U (en) * 1989-03-15 1990-10-08
JP2001086724A (en) * 1999-09-14 2001-03-30 Matsushita Electric Ind Co Ltd Stepping motor with magnetic sensor
JP2009240071A (en) * 2008-03-27 2009-10-15 Mitsuba Corp Dynamo-electric machine
JP2010200421A (en) * 2009-02-23 2010-09-09 Mitsuba Corp Outer rotor type rotating electric machine
JP2011091966A (en) * 2009-10-23 2011-05-06 Mitsuba Corp Sensor case and rotating electric machine using the same
JP2011091965A (en) * 2009-10-23 2011-05-06 Mitsuba Corp Insulator for stator and rotating electric machine using the same
JP2014068420A (en) * 2012-09-24 2014-04-17 Denso Trim Kk Mounting structure of sensor case for starter generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122580U (en) * 1989-03-15 1990-10-08
JP2001086724A (en) * 1999-09-14 2001-03-30 Matsushita Electric Ind Co Ltd Stepping motor with magnetic sensor
JP2009240071A (en) * 2008-03-27 2009-10-15 Mitsuba Corp Dynamo-electric machine
JP2010200421A (en) * 2009-02-23 2010-09-09 Mitsuba Corp Outer rotor type rotating electric machine
JP2011091966A (en) * 2009-10-23 2011-05-06 Mitsuba Corp Sensor case and rotating electric machine using the same
JP2011091965A (en) * 2009-10-23 2011-05-06 Mitsuba Corp Insulator for stator and rotating electric machine using the same
JP2014068420A (en) * 2012-09-24 2014-04-17 Denso Trim Kk Mounting structure of sensor case for starter generator

Also Published As

Publication number Publication date
JPWO2022049956A1 (en) 2022-03-10
CN116171520A (en) 2023-05-26
JP7074945B1 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
JP6601328B2 (en) Motor equipment
EP2571147A1 (en) Electric driving device and electric power steering device equipped with same
JP2009278751A (en) Starter generator
US9948160B2 (en) Motor device
EP2959156B1 (en) Four-stroke engine unit for use in vehicle and vehicle
JP5591778B2 (en) vehicle
JP2021145492A (en) Motor device
WO2016181659A1 (en) Rotational position detection device for internal combustion engine and rotary electric machine for internal combustion engine
JP7074945B1 (en) Rotating electric machine for internal combustion engine
JP6601329B2 (en) Motor equipment
WO2015098055A1 (en) Dynamo-electric machine for internal combustion engine
TWI527345B (en) Rotating electric machine and saddle-ride type vehicle
US9935522B2 (en) Motor device
JP6988454B2 (en) Electronic devices and motor devices equipped with electronic devices
JP2020182345A (en) Inverter assembly and control device integrated rotary electric machine
US20170346429A1 (en) Controller-integrated rotating electrical machine
JP4495483B2 (en) Rotating electric machine
JP6032340B2 (en) Rotating electric machine for internal combustion engine
CN107112862B (en) Internal combustion engine device for detecting rotational position
JP7582150B2 (en) Motor device
JPWO2022049956A5 (en)
JP5967133B2 (en) Rotating electric machine for internal combustion engine and method for manufacturing sensor unit thereof
JP6912269B2 (en) Rotating electric machine unit
JP2024120319A (en) Vehicle Drive Unit
JP2024104868A (en) Vehicle Drive Unit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022512838

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202347013059

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864014

Country of ref document: EP

Kind code of ref document: A1