[go: up one dir, main page]

WO2022044962A1 - Curable composition for antimicrobial and antiviral material, antimicrobial and antiviral material, and antimicrobial and antiviral laminate - Google Patents

Curable composition for antimicrobial and antiviral material, antimicrobial and antiviral material, and antimicrobial and antiviral laminate Download PDF

Info

Publication number
WO2022044962A1
WO2022044962A1 PCT/JP2021/030397 JP2021030397W WO2022044962A1 WO 2022044962 A1 WO2022044962 A1 WO 2022044962A1 JP 2021030397 W JP2021030397 W JP 2021030397W WO 2022044962 A1 WO2022044962 A1 WO 2022044962A1
Authority
WO
WIPO (PCT)
Prior art keywords
bismuth
antiviral
bis
antibacterial
curable composition
Prior art date
Application number
PCT/JP2021/030397
Other languages
French (fr)
Japanese (ja)
Inventor
剛美 川▲崎▼
潤二 百田
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2022544521A priority Critical patent/JPWO2022044962A1/ja
Publication of WO2022044962A1 publication Critical patent/WO2022044962A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/12Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing acyclic or cycloaliphatic radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile

Definitions

  • the present invention relates to an antibacterial / antiviral material curable composition containing a bismuth compound, an antibacterial / antiviral material obtained by curing the composition, and an antibacterial / antiviral laminate containing the antibacterial / antiviral material.
  • infectious diseases are caused by a chain of spreads by airborne infection, droplet infection, contact transmission, and oral infection.
  • the surface of a substance that an unspecified number of people come into contact with originally has a function of inactivating bacteria and viruses adsorbed there. This provides a safe living environment without regular or appropriate disinfection and can break the chain of further infections.
  • Patent Document 1 slaked lime and fresh lime (for example, slaked lime and fresh lime ().
  • Patent Document 2 methods using quaternary ammonium salts (see Patent Document 2) have been proposed.
  • Japanese Patent No. 3802272 Japanese Unexamined Patent Publication No. 2020-7267 Japanese Patent Application Laid-Open No. 2003-275601 Japanese Unexamined Patent Publication No. 2019-44096
  • a coating agent is used to impart antibacterial and antiviral properties to the internal channels and chamber surface. It is necessary to modify the inner surface by circulating it inside, but it may be difficult to treat due to its viscosity and wettability. Further, if only the surface is modified, there is a problem in durability such that the active layer disappears due to abrasion.
  • an antibacterial / antiviral material that does not bleed out, can be used as a highly durable structural material having high mechanical properties, and can also have transparency. And.
  • bismuth which has been generally considered to exhibit antibacterial activity in the bright light because its oxide has photocatalytic activity
  • bismuth ion is called bismuth ion.
  • Werner-type metal complex composed of a specific organic ligand, it was found that it exhibits not only antibacterial properties but also antiviral properties in a solid state, and further, curability of the compound and a polymerizable monomer.
  • the cured product obtained by curing the composition has high mechanical properties and transparency while exhibiting high antibacterial and antiviral properties even in a dark place, and have completed the present invention.
  • the first aspect of the present invention is for an antibacterial / antiviral material containing a bismuth compound in which a phosphate ester having a (meth) acryloyl group is bonded to bismuth and a polymerizable monomer other than the bismuth compound. It is a curable composition.
  • the second aspect of the present invention is an antibacterial / antiviral material obtained by curing the curable composition.
  • the third aspect of the present invention is an antibacterial / antiviral laminated body obtained by laminating a base material and the antibacterial / antiviral material.
  • an antibacterial / antiviral material that does not bleed out, can be used as a highly durable structural material having high mechanical properties, and can further have transparency. ..
  • the notation "x to y" using the numerical values x and y means “x or more and y or less”.
  • the unit shall be applied to the numerical value x as well.
  • the term “(meth) acryloyl” means both “acryloyl” and “methacrylic acid”
  • the term “(meth) acrylic acid” means “acrylic acid” and “methacrylic acid”. It means both "acid”.
  • poly (thio) urethane means both “polyurethane” and “polythiourethane”
  • iso (thio) cyanate means “isocyanate” and It means both “isothiocyanate”.
  • the curable composition for an antibacterial / antiviral material according to the present embodiment is a bismuth compound in which a phosphate ester having a (meth) acryloyl group is bound to bismuth (hereinafter, bismuth). , Also referred to as "phosphate ester-bonded bismuth compound”) and a polymerizable monomer other than the phosphate ester-bonded bismuth compound.
  • the phosphate ester-bonded bismuth compound is a compound in which a phosphate ester having a (meth) acryloyl group (hereinafter, also simply referred to as “phosphate ester”) is bound to bismuth. Since the compound has high solubility, particularly solubility in a solution-like radically polymerizable monomer, a high concentration of bismuth can be contained in the cured product, and the physical properties of the cured product can be improved.
  • This phosphate ester-bonded bismuth compound has higher solubility in a radically polymerizable monomer than the bismuth subsalicylate described later.
  • the bond form between bismuth and the phosphate ester having a (meth) acryloyl group is not particularly limited, and may be either an ionic bond or a coordination bond.
  • Examples of the phosphoric acid ester-bonded bismuth compound include those in which the phosphoric acid ester is formed from a phosphoric acid monoester having one (meth) acryloyl group (for example, 2- (methacryloyloxy) ethyl phosphate dihydrogen). , (Meta) Phosphate diesters having two acryloyl groups (eg, hydrogen phosphate bis [2- (methacryloyloxy) ethyl]).
  • the phosphoric acid ester may be formed from only one of a phosphoric acid monoester having one (meth) acryloyl group and a phosphoric acid diester having two (meth) acryloyl groups, and is formed from both. It may be one.
  • the phosphoric acid ester When the phosphoric acid ester is formed from a phosphoric acid monoester having one (meth) acryloyl group and a phosphoric acid diester having two (meth) acryloyl groups, it has solubility in a radically polymerizable monomer. In order to improve and suppress the aggregation of the bismuth component, the following ratio is preferable. Specifically, 1 mol of a phosphate monoester derived from a phosphate monoester having one (meth) acryloyl group and 0.05 to 3 mol of a phosphate ester derived from a phosphate diester having two (meth) acryloyl groups. It is preferable that it consists of.
  • the phosphoric acid ester derived from the phosphoric acid diester is more preferably 0.1 to 2 mol, further preferably 0.15 to 1 mol.
  • the advantage of including both one having one (meth) acryloyl group and one having two (meth) acryloyl groups is that bismuth has one (meth) acryloyl group (divalent phosphate).
  • Those having a group) and those having two (meth) acryloyl groups (those having a monovalent phosphate group) have a suitable site to be bonded, and the suitable site to which the group is bonded is (meth) acryloyl.
  • the phosphoric acid ester derived from the one having two (meth) acryloyl groups is present in a ratio of 0.05 to 3 mol with respect to 1 mol of the phosphoric acid ester derived from the one having one group. Be done. Further, the presence of two (meth) acryloyl groups in the above ratio reduces the bismuth concentration but improves the solubility in the radically polymerizable monomer. As a result, there is an advantage that the bismuth component can be present in the cured product in a well-balanced and high concentration.
  • the phosphate ester-bound bismuth compound may be bound to other compounds as long as the phosphate ester is bound.
  • salicylic acid and / or (meth) acrylic acid may be further bonded.
  • the phosphate ester and salicylic acid and / or (meth) acrylic acid are bound to the same bismuth, the phosphate ester and salicylic acid and / or are used to improve the solubility in radically polymerizable monomers.
  • the ratio of (meth) acrylic acid to 1 mol of phosphoric acid ester is preferably 0.1 to 10 mol, and 0.1 to 5 mol of salicylic acid and / or (meth) acrylic acid. Is more preferable.
  • the above range is based on the total number of moles of the phosphoric acid esters.
  • the phosphate ester-bonded bismuth compound is a compound in which a phosphate ester having a (meth) acryloyl group is bonded to bismuth, and its production method, IR, NMR (nuclear magnetic resonance spectroscopy), MALDI-TOF-MS. (Matrix-assisted laser desorption / ionization-time-of-flight mass analysis), elemental analysis using an energy-dispersed X-ray spectrometer (EDS), etc., confirm that the phosphate ester having a (meth) acryloyl group is bound. ..
  • the number of bonds of phosphoric acid ester, salicylic acid, and (meth) acrylic acid can be known by these methods.
  • Suitable phosphoric acid ester-bonded bismuth compounds include those represented by the following formulas (1) to (3).
  • R independently represents a hydrogen atom or a methyl group.
  • a + x + y + z 3
  • x is the number of moles of 2-((meth) acryloyloxy) ethyl residue of hydrogen phosphate
  • y is phenyl-2- ((meth) acryloyloxy) phosphate.
  • the number of moles of ethyl residues, z is the number of moles of bis [2-((meth) acryloyloxy) ethyl] residues
  • a is the number of moles of (meth) acrylic acid residues.
  • the phosphate ester-bonded bismuth compounds represented by the above formulas (1) to (3) may not be a single compound but a mixture of a plurality of compounds. In that case, the number of moles of each residue described above shall indicate the number of moles of the mixture as a whole.
  • a compound in which bismuth subsalicylate and phenyl-2-((meth) acryloyloxy) ethyl hydrogen phosphate are bonded is contained.
  • the content of the phosphoric acid ester-bonded bismuth compound is, for example, preferably 5 to 95% by mass, more preferably 10 to 90% by mass, based on the total amount of the curable composition according to the present embodiment. , 15-85% by mass, more preferably.
  • the curable composition according to the present embodiment may contain a phosphoric acid compound or an unreacted raw material produced as a by-product during the production of the phosphoric acid ester-bonded bismuth compound, in addition to the phosphoric acid ester-bonded bismuth compound.
  • Examples of the phosphoric acid compound produced as a by-product during production include a dimer of a phosphoric acid monoester having one (meth) acryloyl group, a dimer of a phosphoric acid diester having two (meth) acryloyl groups, and bismuth salicylate. Alternatively, an ester of (meth) bismuth acrylate and phosphoric acid can be mentioned.
  • Examples of the unreacted raw material include a phosphoric acid monoester having one (meth) acryloyl group, a phosphoric acid diester having two (meth) acryloyl groups, bismuth salicylate, and bismuth (meth) acrylic acid.
  • the curable composition according to the present embodiment preferably contains these by-produced phosphoric acid compounds and unreacted raw materials because it contributes to the improvement of solubility in the monomer.
  • the curable composition according to the present embodiment is, for example, a compound in which bismuth oxide is bonded to a phosphoric acid ester having a (meth) acryloyl group, (meth) acrylic acid, and / or salicylic acid (hereinafter, “oxidation”). It may also contain "a compound derived from bismuth”). Although the structure of the compound derived from bismuth oxide is not clear, it is considered that the hydroxyl group formed on the surface of bismuth oxide is bonded to the carboxy group of phosphate ester, (meth) acrylic acid, or salicylic acid. It should be noted that this compound derived from bismuth oxide is very difficult to separate from the phosphate ester-bonded bismuth compound.
  • a compound derived from bismuth oxide when by-produced, it is preferable to use it in a state containing the compound derived from bismuth oxide.
  • a compound derived from bismuth oxide is produced as a by-product, it is desirable to adjust the production conditions and the like so that the amount thereof is within a range that does not reduce the solubility of the phosphate ester-bonded bismuth compound.
  • the inclusion of the compound derived from bismuth oxide can be comprehensively determined by the production conditions thereof or a method such as IR, NMR, X-ray photoelectron spectroscopy (XPS) or the like.
  • the phosphate ester-bonded bismuth compound is preferably produced by reacting, for example, bismuth (meth) acrylate or bismuth subsalicylate with a phosphate ester having a (meth) acryloyl group. More specifically, in an aliphatic hydrocarbon solvent or an aromatic solvent, a polymerization inhibitor is added as necessary to add bismuth (meth) acrylate or bismuth subsalicylate and a phosphate ester having a (meth) acryloyl group. It is preferable to produce a phosphate ester-bonded bismuth compound by reacting with and dehydrating.
  • Bismuth (meth) acrylate is a compound in which salicylic acid is bound to bismuth.
  • the bismuth subsalicylate is a compound in which salicylic acid is bound to bismuth and is represented by the following formula (4).
  • the (meth) bismuth acrylate and the bismuth subsalicylate are not particularly limited and can be produced by a known method, or commercially available ones can also be used.
  • the phosphoric acid ester having a (meth) acryloyl group a commercially available one can be used.
  • the phosphoric acid ester may be a phosphoric acid ester having one (meth) acryloyl group (hereinafter, also referred to as "monofunctional phosphoric acid ester”), or a phosphoric acid ester having two (meth) acryloyl groups. (Hereinafter, it may also be referred to as "bifunctional phosphoric acid ester").
  • Examples of the monofunctional phosphoric acid ester include 2- (methacryloyloxy) ethyl dihydrogen phosphate and diphenyl-2-methacryloyloxyethyl phosphate.
  • Examples of the bifunctional phosphate ester include hydrogen phosphate bis [2- (methacryloyloxy) ethyl] and hydrogen phenylphosphate [2- (methacryloyloxy) ethyl]. Of course, a mixture of monofunctional phosphate and bifunctional phosphate may be used in the reaction.
  • the amount of the phosphate ester used may be determined so that the desired phosphate ester-bonded bismuth compound can be obtained. Specifically, the amount of the phosphoric acid ester used is preferably in the range of 0.3 to 10 mol with respect to 1 mol of the total of bismuth (meth) acrylate and bismuth subsalicylate.
  • diphenyl-2-methacryloyloxyethyl phosphate and phenylbis [2- (methacryloyloxyethyl)] phosphate are used as phosphoric acid esters having a (meth) acryloyl group.
  • Tris [2- (methacryloyloxyethyl)] phosphate and the like may be further added.
  • the amount of the phosphoric acid triester used is 0.1 to 20 mol with respect to a total of 1 mol of the phosphoric acid ester having one (meth) acryloyl group and the phosphoric acid ester having two (meth) acryloyl groups. It is preferably 0.2 to 5 mol, and more preferably 0.2 to 5 mol.
  • [Aliphatic hydrocarbon solvent and aromatic solvent] it is preferable to stir and mix the (meth) bismuth acrylate or the bismuth subsalicylate and the phosphoric acid ester in an aliphatic hydrocarbon solvent or an aromatic solvent to react. At that time, water is generated in the reaction system, and it is preferable to dehydrate the generated water. In order to facilitate dehydration of the generated water, it is preferable to use an aliphatic hydrocarbon solvent or an aromatic solvent having a high boiling point, specifically, a boiling point of 100 ° C. or higher. It is also possible to mix an aliphatic hydrocarbon solvent and an aromatic solvent and use it as a mixed solution.
  • aliphatic hydrocarbon solvent or aromatic solvent examples include hexane, heptane, nonane, decane, undecane, dodecane, xylene, dimethoxybenzene, benzene, toluene, chlorobenzene, bromobenzene, anisole, petroleum ether, petroleum benzine, benzoin and the like. Can be mentioned.
  • the amount of the aliphatic hydrocarbon solvent or aromatic solvent used is not particularly limited as long as the amount of (meth) bismuth acrylate or bismuth subsalicylate and the phosphate ester can be sufficiently mixed.
  • the ratio of the total of the aliphatic hydrocarbon solvent and the aromatic solvent is 5 to 100 mL with respect to the total of 1 g of the (meth) bismuth acrylate and the bismuth subsalicylate. It is preferable to use in.
  • the method for reacting bismuth (meth) acrylic acid or bismuth subsalicylate with a phosphoric acid ester is not particularly limited.
  • bismuth hyposalicylate diluted with an aliphatic hydrocarbon solvent or an aromatic solvent as needed and a phosphoric acid ester diluted with an aliphatic hydrocarbon solvent or an aromatic solvent as needed are put together in the reaction system. It is possible to adopt a method of adding to and stirring and mixing to react.
  • an aliphatic hydrocarbon solvent or an aromatic solvent is introduced into the reaction system in advance, and the following bismuth salicylate diluted with an aliphatic hydrocarbon solvent or an aromatic solvent as necessary, and fat as necessary.
  • the bismuth subsalicylate is dissolved or dispersed in an aliphatic hydrocarbon solvent or an aromatic solvent.
  • the bismuth subsalicylate may not be dissolved, but in that case, it is preferable to pulverize the bismuth subsalicylate with an ultrasonic device or the like so that the bismuth subsalicylate does not exist. Then, the phosphate ester is added to the solution in which bismuth salicylate is dissolved or the cloudy solution in which the bismuth salicylate is dissolved, and the mixture is stirred and mixed to react.
  • the reaction temperature may be the reflux temperature of the aliphatic hydrocarbon solvent or the aromatic solvent, but is preferably 30 to 150 ° C., more preferably in order to further reduce the coloring of the obtained phosphoric acid ester-bonded bismuth compound. Is preferably carried out at 40 to 140 ° C, more preferably 45 to 120 ° C.
  • reaction temperature is 30 to 110 ° C.
  • pressure inside the reaction system it is preferable to reduce the pressure inside the reaction system in order to remove (dehydrate) the water generated in the reaction system.
  • bismuth subsalicylate and a phosphoric acid ester can be mixed and dehydrated, or both can be mixed and then dehydrated.
  • the reaction time is not particularly limited and may be usually 1 to 6 hours.
  • the atmosphere at the time of carrying out the reaction may be any of an air atmosphere, an inert gas atmosphere, and a dry air atmosphere in consideration of operability, and the reaction may be carried out in an air atmosphere in consideration of operability. preferable.
  • the obtained phosphate ester-bonded bismuth compound is concentrated by distilling off the solvent, and if there is an insoluble turbid component, it should be separated by filtration or centrifugation. Is desirable. Further, it is desirable to add a solvent that is soluble in the reaction solvent used and does not dissolve the phosphate ester-bonded bismuth compound to the concentrated reaction solution obtained by this treatment, and perform reprecipitation for purification. If the high boiling point solvent remains, the above decantation operation may be repeated to replace the solvent. Then, the remaining solvent is distilled off and vacuum dried to obtain a phosphate ester-bonded bismuth compound.
  • the polymerizable monomer other than the phosphate ester-bonded bismuth compound may be only a radically polymerizable monomer that can be copolymerized with the phosphate ester-bonded bismuth compound, or a radically polymerizable monomer and a non-radical. It may be a mixture with a polymerizable monomer.
  • the non-radical polymerizable monomer include an addition-polymerizable monomer and a ring-opening polymerizable monomer.
  • the total content of the polymerizable monomer other than the phosphoric acid ester-bonded bismuth compound is based on 100 parts by mass of the phosphoric acid ester-bonded bismuth compound from the viewpoints of antibacterial / antiviral property, mechanical properties, transparency, coloring and the like. It is preferably 1 to 10000 parts by mass, more preferably 5 to 5000 parts by mass, and even more preferably 10 to 1000 parts by mass. Within this range, it becomes easy to have both mechanical strength as a structural material and light transmission as a transparent material while exhibiting sufficient antibacterial and antiviral properties.
  • the radically polymerizable monomer is not particularly limited, but it is preferable to use a monofunctional radically polymerizable monomer having one radically polymerizable carbon-carbon double bond.
  • Examples of the monofunctional radically polymerizable monomer include acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-phenoxyethyl methacrylate, acrylonitrile, methacrylonitrile, and styrene.
  • Examples thereof include divinylbenzene and its structural isomer, methylstyrene and its structural isomer, methoxystyrene and its structural isomer, chlorostyrene, bromostyrene, vinylpyridine, vinylpyrrolidone and the like.
  • the blending amount of styrene is determined from the viewpoints of solubility in phosphate ester-bonded bismuth compound, viscosity after mixing, impact resistance of the cured product after curing, hardness, thermal properties, etc.
  • the amount is preferably 1 to 500 parts by mass, more preferably 2 to 400 parts by mass, and further preferably 3 to 300 parts by mass with respect to 100 parts by mass of acrylonitrile.
  • a polyfunctional radical having two or more radically polymerizable carbon-carbon double bonds in order to further improve the mechanical properties of the cured product after curing, for example, impact resistance. It is more preferable to use the polymerizable monomer together.
  • polyfunctional radically polymerizable monomers can be used without limitation.
  • those represented by the following formula (5) or (6) are preferably used in consideration of the solubility in the phosphate ester-bonded bismuth compound, the viscosity after mixing, the impact resistance of the cured product after curing, and the like. Will be done.
  • the blending amount of the polyfunctional radically polymerizable monomer is preferably 0 to 500 parts by mass, more preferably 0 to 400 parts by mass with respect to 100 parts by mass of the monofunctional radically polymerizable monomer. It is preferably 0 to 300 parts by mass, and more preferably 0 to 300 parts by mass.
  • the content of the radically polymerizable monomer in the curable composition according to the present embodiment is preferably 5 to 2000 parts by mass with respect to 100 parts by mass of the phosphoric acid ester-bonded bismuth compound, and is preferably 10 to 900 parts by mass. Is more preferable, and 15 to 600 parts by mass is further preferable.
  • an addition-polymerizable monomer that produces a cured product by addition polymerization may be used together with the radically polymerizable monomer.
  • addition polymerization refers to those in which there are no small molecules to be eliminated when two types of functional groups react to form a new bond.
  • a urethane bond is formed, and from the two molecules, one new molecule having a molecular weight obtained by adding the respective molecular weights is generated.
  • an intermolecular bond due to the reaction is formed between the plurality of molecules to become a macromolecule, and as a result, the molecule is cured.
  • This is polyurethane.
  • a thiol group is used instead of a hydroxyl group, it is polythiourethane, and when an amino group is used, it is polyurea.
  • the one particularly preferable is the addition polymerization which becomes poly (thio) urethane or polyurea.
  • the above-mentioned mixture of the phosphate ester-bonded bismuth compound and the radically polymerizable monomer becomes a cured product by radical polymerization, but when the polymerizable monomer that causes addition polymerization exists at the same time and causes different polymerization, both of them.
  • the polymer chains of the above are independent as chemical bonds, but as molecular chains, they are entangled with each other to form a mutually penetrating cured product.
  • This mutual intrusive hardened body may be in a state of being woven like a bamboo basket and may have strong resistance to external stress, which contributes to the improvement of the mechanical properties of the hardened body.
  • a catalyst such as a tin compound is usually required, but the bismuth contained in the phosphate ester-bonded bismuth compound functions as it is. Therefore, in the present embodiment, it is not necessary to add a catalyst separately, but if necessary, known catalysts may be used in combination without any limitation.
  • Poly (thio) urethane polymerizable monomer To obtain polyurethane, two types of poly (thio) urethane polymerizable monomers, that is, a polyfunctional iso (thio) cyanate monomer and a polyfunctional hydroxyl group-containing monomer or a polyfunctional thiol group-containing monomer are used. Is used. In order to obtain a higher molecular weight polyurethane, it is necessary to make the number of moles of the iso (thio) cyanate group contained and the total number of moles of the hydroxyl group or the thiol group as equal as possible.
  • a polyfunctional iso (thio) cyanate compound is a compound having at least two isocyanate groups and / or isothiocyanate groups in one molecule. Among them, a compound having 2 to 6 iso (thio) cyanate groups in the molecule is preferable, a compound having 2 to 4 is more preferable, and a compound having 2 to 3 is further preferable.
  • the polyfunctional iso (thio) cyanate compound has a bifunctional iso (thio) cyanate compound having two isocyanate groups and / or isothiocyanate groups in one molecule, and two active hydrogen-containing groups in one molecule. It may be a urethane prepolymer having an isothiocyanate group at both ends, which is produced by a reaction with a functionally active hydrogen-containing compound.
  • the urethane prepolymer one containing two or more unreacted isocyanate groups or isothiocyanate groups can be used without any limitation, and a urethane prepolymer containing two or more isocyanate groups is preferable.
  • the active hydrogen-containing group is a group selected from a hydroxyl group, a thiol group, and an amino group.
  • Polyfunctional iso (thio) cyanate compounds can be classified into aliphatic isocyanates, alicyclic isocyanates, aromatic isocyanates, isothiocyanates, other isocyanates, and urethane prepolymers.
  • the polyfunctional iso (thio) cyanate compound one kind of compound may be used, or a plurality of kinds of compounds may be used. When a plurality of types of compounds are used, the reference mass is the total amount of the plurality of types of compounds.
  • aliphatic isocyanate examples include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, 2,2'-dimethylpentane diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate.
  • alicyclic isocyanate examples include isophorone diisocyanate, (bicyclo [2.2.1] heptane-2,5-diyl) bismethylene diisocyanate, and (bicyclo [2.2.1] heptane-2,6-diyl).
  • aromatic isocyanate examples include xylylene diisocyanate (o-, m-, p-), tetrachloro-m-xylylene diisocyanate, methylenediphenyl-4,4'-diisocyanate, 4-chlor-m-xylylene diisocyanate.
  • isothiocyanate examples include bifunctional isothiocyanates such as p-phenylenedi isothiocyanate, xylylene-1,4-diisothiocyanate, and ethylidine diisothiocyanate.
  • Examples of other isocyanates include polyfunctional isocyanates having a bullet structure, a uretdione structure, and an isocyanurate structure using diisocyanates such as hexamethylene diisocyanate and trimethylolocyanate as main raw materials (for example, Japanese Patent Application Laid-Open No. 2004-534870).
  • a method for modifying the bullet structure, uretdione structure, and isocyanurate structure of an aliphatic polyisocyanate is disclosed); a polyfunctional adduct with a trifunctional or higher functional polyol such as trimethylolpropane; etc. (See “Keiji Iwata ed., Polyurethane Resin Handbook, Nikkan Kogyo Shimbun (1987)", etc.).
  • the polyfunctional hydroxyl group-containing monomer is a compound having at least two hydroxyl groups in one molecule.
  • Polyfunctional hydroxyl group-containing monomers can be classified into aliphatic alcohols, alicyclic alcohols, aromatic alcohols, polyester polyols, polyether polyols, polycaprolactone polyols, polycarbonate polyols, and polyacrylic polyols.
  • Examples of the aliphatic alcohol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,5-dihydroxypentane, 1,6-dihydroxyhexane, 1,7-dihydroxyheptane, and 1,8-dihydroxyoctane.
  • 1,9-Dihydroxynonane 1,10-dihydroxydecane, 1,11-dihydroxyundecane, 1,12-dihydroxydodecane, neopentyl glycol, glyceryl monooleate, monoeridine, polyethylene glycol, 3-methyl-1, Bifunctional polyols such as 5-dihydroxypentane, dihydroxyneopentyl, 2-ethyl-1,2-dihydroxyhexane, 2-methyl-1,3-dihydroxypropane; glycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, Trimethylolpropane Tripolyoxyethylene ether (for example, TMP-30, TMP-60, TMP-90, etc.
  • Examples of the alicyclic alcohol include hydrogenated bisphenol A, cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclohexanedimethanol, hydroxypropylcyclohexanol, and tricyclo [5,2,1,02].
  • aromatic alcohol examples include dihydroxynaphthalene, dihydroxybenzene, bisphenol A, bisphenol F, xylylene glycol, tetrabrom bisphenol A, bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) ethane.
  • 1,2-bis (4-hydroxyphenyl) ethane bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) -1-naphthylmethane, 1,1- Bis (4-hydroxyphenyl) -1-phenylethane, 2- (4-hydroxyphenyl) -2- (3-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-Hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 3,3-bis (4-hydroxyphenyl) pentane, 2,2-Bis (4-hydroxyphenyl) hexane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 2,2-bis (4) -Hyl
  • polyester polyol examples include compounds obtained by a condensation reaction between a polyol and a polybasic acid. Among them, those having a number average molecular weight of 400 to 2000 are preferable, those having a number average molecular weight of 500 to 1500 are more preferable, and those having a number average molecular weight of 600 to 1200 are further preferable. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the above-mentioned bifunctional active hydrogen-containing compound constituting the urethane prepolymer.
  • polyether polyol examples include a compound obtained by ring-opening polymerization of an alkylene oxide or a reaction between a compound having two or more active hydrogen-containing groups in the molecule and an alkylene oxide, and a modified product thereof.
  • those having a number average molecular weight of 400 to 2000 are preferable, those having a number average molecular weight of 500 to 1500 are more preferable, and those having a number average molecular weight of 600 to 1200 are further preferable.
  • Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the above-mentioned bifunctional active hydrogen-containing compound constituting the urethane prepolymer.
  • Examples of the polycaprolactone polyol include a compound obtained by ring-opening polymerization of ⁇ -caprolactone. Among them, those having a number average molecular weight of 400 to 2000 are preferable, those having a number average molecular weight of 500 to 1500 are more preferable, and those having a number average molecular weight of 600 to 1200 are further preferable. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the above-mentioned bifunctional active hydrogen-containing compound constituting the urethane prepolymer.
  • polycarbonate polyol examples include a compound obtained by phosgenating one or more kinds of low molecular weight polyols, or a compound obtained by transesterifying with ethylene carbonate, diethyl carbonate, diphenyl carbonate or the like. Among them, those having a number average molecular weight of 400 to 2000 are preferable, those having a number average molecular weight of 500 to 1500 are more preferable, and those having a number average molecular weight of 600 to 1200 are further preferable. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the above-mentioned bifunctional active hydrogen-containing compound constituting the urethane prepolymer.
  • polyacrylic polyol examples include a (meth) acrylic acid ester and a polyol compound obtained by polymerizing a vinyl monomer. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the above-mentioned bifunctional active hydrogen-containing compound constituting the urethane prepolymer.
  • the polyfunctional thiol group-containing monomer is a compound having at least two thiol groups in one molecule.
  • polyfunctional thiol group-containing monomer for example, those described in International Publication No. 2015/068798 can be used.
  • Preferred are tetraethylene glycol bis (3-mercaptopropionate), 1,4-butanediol bis (3-mercaptopropionate), 1,6-hexanediol bis (3-mercaptopropionate), and the like.
  • Bifunctional polyols such as 1,4-bis (mercaptopropylthiomethyl) benzene; trimethylolpropanthris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakiss (3) -Mercaptopropionate), 1,2-bis [(2-mercaptoethyl) thio] -3-mercaptopropane, 2,2-bis (mercaptomethyl) -1,4-butanedithiol, 2,5-bis ( Mercaptomethyl) -1,4-dithian, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 1,1,1,1-tetrakis (mercaptomethyl) methane, 1,1,3,3- Tetrakiss (mercaptomethylthio) propane, 1,1,2,2-tetrakis (mercaptomethylthio) ethane,
  • Polyurea polymerizable monomer In order to obtain polyurea, two kinds of polyurea polymerizable monomers, that is, the above-mentioned polyfunctional iso (thio) cyanate monomer and polyfunctional amino group monomer are used.
  • the polyfunctional amino group monomer is not particularly limited as long as it is a compound having two or more primary and / or secondary amino groups in one molecule.
  • Polyfunctional amino group-containing monomers can be classified into aliphatic amines, alicyclic amines, and aromatic amines.
  • aliphatic amine examples include bifunctional amines such as ethylenediamine, hexamethylenediamine, nonamethylenediamine, undecanemethylenediamine, dodecamethylenediamine, metaxylenediamine, 1,3-propanediamine, and putresin; and polyamines such as diethylenetriamine. Polyfunctional amines; and the like.
  • alicyclic amine examples include bifunctional amines such as isophorone diamine and cyclohexyl diamine.
  • aromatic amine examples include 4,4'-methylenebis (o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4'-methylenebis (2,3-dichloroaniline), and the like.
  • a ring-opening polymerizable monomer that produces a cured product by ring-opening polymerization may be used together with the radically polymerizable monomer.
  • cyclic compounds such as cyclic ether, cyclic siloxane, cyclic lactone, cyclic lactam, cyclic acetal, cyclic amine, cyclic carbonate, cyclic imino ether, and cyclic thiocarbonate can be used as the ring-opening polymerizable monomer. .. Further, if necessary, a catalyst for ring-opening polymerization may be added.
  • cyclic ether examples include ethylene oxide, 1,2-propylene oxide, epichlorohydrin, epibromohydrin, 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide, oxetane, and 3-methyloxetane.
  • examples thereof include 3,3-dimethyloxetane, tetrahydrofuran, 2-methyltetrahydrofuran and 3-methyltetrahydrofuran.
  • cyclic lactone examples include 4-membered ring lactones such as ⁇ -propiolactone, ⁇ -methylpropiolactone, and L-serine- ⁇ -lactone; ⁇ -butyrolactone, ⁇ -hexanolactone, and ⁇ -heptanolactone.
  • cyclic lactam examples include 4-membered ring lactams such as 4-benzoyloxy-2-azetidinone; ⁇ -butyrolactam, 2-azabicyclo (2,2,1) hepta-5-en-3-one, 5-methyl-.
  • 5-membered ring lactam such as 2-pyrrolidone
  • 6-membered ring lactam such as 2-piperidone-3-carboxylate ethyl
  • 7-membered ring lactam such as ⁇ -caprolactam and DL- ⁇ -amino- ⁇ -caprolactam
  • ⁇ -heptalactam Eight-membered ring lactam etc.
  • cyclic carbonate examples include ethylene carbonate, propylene carbonate, 1,2-butyleneglycerol carbonate-1,2-carbonate, 4- (methoxymethyl) -1,3-dioxolane-2-one, and (chloromethyl) ethylene carbonate.
  • the content of the non-radical polymerizable monomer such as the addition polymerizable monomer and the ring-opening polymerizable monomer in the curable composition according to the present embodiment is 100 parts by mass of the phosphate ester-bonded bismuth compound. , 0 to 5000 parts by mass, more preferably 0 to 1000 parts by mass, and even more preferably 0 to 500 parts by mass.
  • the curable composition according to the present embodiment may contain a known compounding agent other than the above, as long as the effect of the present invention is not impaired.
  • a compounding agent include a radical polymerization initiator, an antioxidant, a stabilizer, a mold release agent for improving mold releasability, a chain transfer agent for controlling the polymerizable property of radical polymerization, and a solvent.
  • examples include pigments.
  • each compounding agent is preferably 0 to 30 parts by mass, more preferably 0.01 to 20 parts by mass, and 0.02 to 15 parts by mass with respect to 100 parts by mass of the curable composition. It is more preferable to be a part.
  • the curable composition according to the present embodiment can be produced by mixing the above-mentioned components by a known method.
  • the antibacterial / antiviral material according to the present embodiment is obtained by curing the curable composition according to the present embodiment.
  • This antibacterial / antiviral material has high mechanical strength and transparency while exhibiting high antibacterial and antiviral properties.
  • the method for curing the curable composition according to the present embodiment is not particularly limited, and known polymerization methods such as photopolymerization and thermal polymerization can be adopted.
  • the curable composition according to the present embodiment contains a non-radical polymerizable monomer, a method of polymerizing the non-radical polymerizable monomer is adopted.
  • the antibacterial / antiviral laminate according to the present embodiment is formed by laminating a base material and an antibacterial / antiviral material according to the present embodiment.
  • the base material include resin, metal, wood and the like, and resin is preferable.
  • the method for producing the antibacterial / antiviral laminate according to the present embodiment is not particularly limited as long as the base material and the antibacterial / antiviral material can be laminated.
  • a method is preferable in which the curable composition according to the present embodiment is applied to the surface of an arbitrary substrate by spin coating, dipping or the like, and then the curable composition is cured by UV irradiation, heating or the like. This makes it possible to impart antibacterial and antiviral properties to the surface of any substrate.
  • another layer may be provided so that the antibacterial / antiviral material is the outermost layer.
  • another layer may be provided between the base material and the cured product obtained by curing the curable composition according to the present embodiment.
  • the antibacterial / antiviral material and the antibacterial / antiviral laminate according to the present embodiment show high antibacterial and antiviral properties, and can be used as structural materials, transparent materials, and the like.
  • the analysis method and measurement method in this example are as follows.
  • MALDI-TOF-MS Measurement
  • a rapiflex TOF / TOF type manufactured by Bruker was used.
  • CHCA ⁇ -cyano-4-hydroxycinnamic acid
  • DIT ditranol
  • DHB 2,5-dihydroxybenzoic acid
  • the measurement was performed in the Reflector / Positive mode, and the mass range was m / z 20 to 4000.
  • ⁇ Viscosity measurement of curable composition The viscosity of the curable composition was measured at 25 ° C. using an E-type viscometer (Rheometer RST, manufactured by Brookfield).
  • the sample plate (7 cm ⁇ , 2 mm) was wiped with absolute ethanol.
  • the surface was inoculated with 0.1 mL of Staphylococcus aureus (NBRC 12732) having a concentration of 2.8 ⁇ 10 6 cfu / mL, and the viable cell count was measured 8 hours later.
  • the antibacterial property is evaluated as a comparison before and after the antibacterial treatment when the sample surface is treated with antibacterial treatment, but in this test, the viable cell count after 8 hours is simply below the detection limit.
  • the antibacterial property was evaluated based on whether or not it became. Specifically, if no viable bacteria can be detected, it has antibacterial properties, and if even a small amount of viable bacteria can be detected, it has no antibacterial properties.
  • Antiviral performance evaluation test using virus An antiviral performance evaluation test using a virus was carried out using a separately prepared 2 mm-thick laminated body or cured body. The measurement was performed according to JIS R 1706: 2020 (ultraviolet light responsive photocatalyst, antiviral, film adhesion method). However, this test was conducted in a dark place.
  • the sample plate (7 cm ⁇ , 2 mm) was wiped with absolute ethanol.
  • 150 ⁇ L of Influenza A virus (H3N2) A / HongKong / 8/68 strain (influenza A virus, ATCC VR-1679) at a concentration of 1.6 ⁇ 10 7 cfu / mL was inoculated on this surface, and the active virus was introduced after 4 hours. The number was measured.
  • MDCK cells ATCC CCL-34) were used as host cells.
  • JIS R 1706: 2020 the antiviral property is evaluated as a comparison before and after the antiviral treatment when the sample surface is treated with the antiviral treatment, but in this test, the number of active viruses after 4 hours is simply calculated. The antiviral property was evaluated based on whether or not it was below the detection limit. Specifically, if no active virus can be detected, it has antiviral properties, and if even a small amount of active virus can be detected, it has no antiviral properties.
  • the impact resistance test was performed according to the US FDA standard ball drop test. From a height of 50 inches (1.27 m), 4.5 g, 6.9 g, 14 g, 16.3 g, 32 g, 50 g, 67 g, 80 g, 95 g, 112 g, 130 g, 151 g, 174 g, 198 g, 225 g, 261 g. The steel balls were dropped freely in sequence and applied to the sample plate, and the weight immediately before cracks and cracks were taken as the maximum impact resistance.
  • the obtained cloudy solution was transferred to a 1000 mL four-necked flask equipped with a Dean-Stark trap, and the reaction was carried out while heating and stirring at 130 ° C. using an oil bath, and the generated water was removed from the system.
  • the reaction end point was defined as the time when no water was produced.
  • a pale yellow scattering solution was obtained with a slight pale yellow precipitate.
  • This solution was concentrated to 250 mL by vacuum evaporator. After adding 8 g of radiolite # 100, which is a fired diatomaceous earth product, and allowing it to stand overnight, suction filtration was performed with 5B filter paper. To the obtained pale yellow scattering filtrate, 3 g of activated carbon (Darco G60 manufactured by Norit) was added, and the mixture was centrifuged at 23830 ⁇ g for 8 hours. The centrifugal supernatant was pressure-filtered with a membrane filter having a pore size of 0.2 ⁇ m to obtain a pale yellow transparent filtrate. The solvent was distilled off from this solution by a vacuum evaporator and redissolved in 250 mL of acetone.
  • radiolite # 100 which is a fired diatomaceous earth product
  • the generated white precipitate was collected by suction filtration using 5B filter paper, and the obtained solid was vacuum-dried to obtain 64.40 g of a phosphate ester-bonded bismuth compound as a white powder.
  • the synthesis was confirmed by the above 1 H-NMR measurement method.
  • Example 1 A cured product obtained by curing a curable composition containing a phosphate ester-bonded bismuth compound and a radically polymerizable monomer> Phosphorus ester-bonded bismuth compound: 70 parts by mass, styrene: 9 parts by mass, acrylonitrile: 9 parts by mass, nonaethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 12 parts by mass was added to uniformly dissolve and cure. A sex composition was obtained. To 100 parts by mass of this curable composition, 2,2'-azobis (isobutyric acid): 0.4 parts by mass was added and dissolved. The viscosity of the obtained curable composition was 380 mPa ⁇ s, which was a viscosity suitable for mass polymerization by casting.
  • this curable composition was placed under reduced pressure by a vacuum pump to remove dissolved oxygen. Then, the curable composition was poured between two disk glass molds having a diameter of 7 cm, which were adjusted so as to form a gap having a thickness of 2 mm and fixed with an adhesive tape, and polymerized at a maximum temperature of 90 ° C. for 4 hours. went. After release from the mold, annealing was performed at 100 ° C. for 2 hours to obtain a pale yellow transparent cured product. The thickness of the obtained cured product was 2.03 mm. The cured product was subjected to antibacterial / antiviral test, optical property test, and impact resistance test. The results are shown in Table 1.
  • Example 2 A cured product obtained by curing a curable composition containing a phosphate ester-bonded bismuth compound, a radically polymerizable monomer, and a polyurethane polymerizable monomer> Phosphoric acid ester-bonded bismuth compound: 70 parts by mass, styrene: 3.7 parts by mass, acrylonitrile: 13.7 parts by mass, hexamethylene diisocyanate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.): 4 parts by mass, polyethylene glycol (molecular weight 300) : Wako Pure Chemical Industries, Ltd.): 7 parts by mass was added and uniformly dissolved to obtain a curable composition.
  • Phosphoric acid ester-bonded bismuth compound 70 parts by mass
  • styrene 3.7 parts by mass
  • acrylonitrile 13.7 parts by mass
  • hexamethylene diisocyanate manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • this curable composition was placed under reduced pressure by a vacuum pump to remove dissolved oxygen. Then, this curable composition was poured between two disk glass molds having a diameter of 7 cm using a 2 mm gasket, and polymerization was carried out at a maximum temperature of 100 ° C. for 4 hours. After release from the mold, annealing was performed at 100 ° C. for 2 hours to obtain a dark yellow transparent cured product. The thickness of the obtained cured product was 2.44 mm. The cured product was subjected to antibacterial / antiviral test, optical property test, and impact resistance test. The results are shown in Table 1.
  • ⁇ Comparative Example 1 A cured product obtained by curing a curable composition that does not contain a phosphate ester-bonded bismuth compound> Styrene: 30 parts by mass, acrylonitrile: 30 parts by mass, nonaethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 40 parts by mass were added and uniformly dissolved to obtain a curable composition. To 100 parts by mass of this curable composition, 2,2'-azobis (isobutyric acid): 0.4 parts by mass was added and dissolved. The viscosity of the obtained curable composition was 90 mPa ⁇ s.
  • this curable composition was placed under reduced pressure by a vacuum pump to remove dissolved oxygen. Then, this curable composition was poured between two disk glass molds having a diameter of 7 cm, which were adjusted so as to form a gap having a thickness of 2 mm and fixed with an adhesive tape, and polymerized at a maximum temperature of 90 ° C. for 4 hours. went. After release from the mold, annealing was performed at 100 ° C. for 2 hours to obtain a pale yellow transparent cured product. The thickness of the obtained cured product was 2.01 mm. The cured product was subjected to antibacterial / antiviral test, optical property test, and impact resistance test. The results are shown in Table 1.
  • Example 3 A laminate having a cured product obtained by curing a curable composition containing a phosphate ester-bonded bismuth compound and a radically polymerizable monomer> Bismuth compound: 30 parts by mass, styrene: 24 parts by mass, acrylonitrile: 19 parts by mass, nonaethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 27 parts by mass is added and uniformly dissolved to form a curable composition.
  • Bismuth compound 30 parts by mass
  • styrene 24 parts by mass
  • acrylonitrile 19 parts by mass
  • nonaethylene glycol dimethacrylate manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • the cured products of Examples 1 and 2 obtained by curing a curable composition containing a phosphoric acid ester-bonded bismuth compound and a radically polymerizable monomer, and Example 3 having the cured product thereof.
  • the laminate had high mechanical strength and transparency while exhibiting high antibacterial and antiviral properties.
  • the cured product of Example 2 obtained by curing the curable composition containing an addition-polymerizable monomer in addition to the radically polymerizable monomer was remarkably excellent in mechanical strength.
  • the cured product of Comparative Example 1 in which the curable composition containing no phosphate ester-bonded bismuth compound was cured did not show antibacterial and antiviral properties.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a curable composition that is for an antimicrobial and antiviral material, and that contains a bismuth compound in which a phosphoric acid ester having a (meth)acryloyl group is bonded to bismuth, and a polymerizable monomer other than the bismuth compound; an antimicrobial and antiviral material obtained by curing the curable composition; and an antimicrobial and antiviral laminate obtained by layering a substrate and the antimicrobial and antiviral material together.

Description

抗菌・抗ウイルス材料用硬化性組成物、抗菌・抗ウイルス材料、及び抗菌・抗ウイルス積層体Curing compositions for antibacterial / antiviral materials, antibacterial / antiviral materials, and antibacterial / antiviral laminates
 本発明は、ビスマス化合物を含有する抗菌・抗ウイルス材料硬化性組成物、該組成物を硬化してなる抗菌・抗ウイルス材料、及び該抗菌・抗ウイルス材料を含む抗菌・抗ウイルス積層体に関する。 The present invention relates to an antibacterial / antiviral material curable composition containing a bismuth compound, an antibacterial / antiviral material obtained by curing the composition, and an antibacterial / antiviral laminate containing the antibacterial / antiviral material.
 14世紀から15世紀にかけて流行したペストにより、中国の人口は半減し、ヨーロッパでは2割にまで減じた国もあったといわれている。近現代においても、1918年から1920年にかけて起こったインフルエンザウイルスによるパンデミックは、スペイン風邪と称され、当時20億人弱の世界人口のうち3分の1の人が感染し、2000万人から1億人が死亡したとされている。このような細菌又はウイルスによる感染症は、現在においても人類にとっての脅威となっている。 It is said that the plague that was prevalent from the 14th century to the 15th century halved the population of China, and in some countries it was reduced to 20%. Even in modern times, the influenza virus pandemic that occurred between 1918 and 1920 was called the Spanish flu, and one-third of the world's population of just under 2 billion at that time was infected, with 20 to 1 million people. It is estimated that 100 million people have died. Infectious diseases caused by such bacteria or viruses still pose a threat to humankind.
 近年では、2002年のSARS(重症急性呼吸器症候群)、2013年のMERS(中東呼吸器症候群)等は比較的限られた地域での感染にとどまったが、2014年のエボラ出血熱は多国間にわたるパンデミックとなった。さらに、2019年末に中国が発生源とされる新型コロナウイルス感染症であるCOVID-19は、ついに世界規模のパンデミックを引き起こした。 In recent years, SARS (Severe Acute Respiratory Syndrome) in 2002, MERS (Middle East Respiratory Syndrome) in 2013, etc. have been infected only in a relatively limited area, but Ebola hemorrhagic fever in 2014 is a multilateral pandemic. It became. In addition, COVID-19, a new coronavirus infection originating in China at the end of 2019, has finally caused a global pandemic.
 これらの感染症は、空気感染、飛沫感染、接触感染、経口感染の各経路によって連鎖的な感染拡大が引き起こされる。 These infectious diseases are caused by a chain of spreads by airborne infection, droplet infection, contact transmission, and oral infection.
 これらのうち接触感染を防ぐには、菌やウイルスが付着した、人が接触する様々な用具、器具、家具等の表面を十分に消毒する必要があるが、一旦パンデミックが発生すると、消毒用の薬剤、器材が市場から払底し、代替品を含めて入手困難になる。COVID-19においても、感染拡大が発生したクルーズ船内の疫学調査から、接触感染が感染爆発の大きな要因の1つとなったことが明らかにされているが、感染拡大期にはアルコール系消毒液をはじめ多くが入手困難となった。 Of these, in order to prevent contact infection, it is necessary to sufficiently disinfect the surface of various tools, utensils, furniture, etc. that humans come into contact with with bacteria and viruses, but once a pandemic occurs, it is for disinfection. Drugs and equipment will be exhausted from the market, and it will be difficult to obtain them, including alternatives. In COVID-19, an epidemiological survey on the cruise ship where the spread of the infection occurred revealed that contact infection was one of the major causes of the infection explosion. At first, many became difficult to obtain.
 このような状況を克服するためには、不特定多数の人が接触するものの表面が、そこに吸着した細菌やウイルスを不活性化する機能を本来的に持っていることが望ましい。これにより定期的或いは適宜消毒することなく、安全な生活環境が提供され、さらなる感染の連鎖を断ち切ることができる。 In order to overcome such a situation, it is desirable that the surface of a substance that an unspecified number of people come into contact with originally has a function of inactivating bacteria and viruses adsorbed there. This provides a safe living environment without regular or appropriate disinfection and can break the chain of further infections.
 このような目的のために、多くの構造材料として用いられている樹脂材料に、抗菌性又は抗ウイルス性を示す抗菌・抗ウイルス剤を配合させることが行われており、例えば、消石灰及び生石灰(特許文献1参照)や、四級アンモニウム塩(特許文献2参照)を用いる方法が提案されている。 For this purpose, resin materials used as many structural materials are blended with antibacterial or antiviral agents exhibiting antibacterial or antiviral properties, for example, slaked lime and fresh lime (for example, slaked lime and fresh lime (). Patent Document 1) and methods using quaternary ammonium salts (see Patent Document 2) have been proposed.
 また、酸化チタン(特許文献3参照)等の金属酸化物の光触媒活性や、銅(特許文献4参照)等の金属塩を利用し、それを含む塗料でコーティングすることにより、材料表面に抗菌・抗ウイルス性を付与する方法も知られている。 In addition, by using the photocatalytic activity of metal oxides such as titanium oxide (see Patent Document 3) and metal salts such as copper (see Patent Document 4) and coating with a paint containing it, the surface of the material is antibacterial. A method of imparting antiviral properties is also known.
特許第3802272号公報Japanese Patent No. 3802272 特開2020-7267号公報Japanese Unexamined Patent Publication No. 2020-7267 特開2003-275601号公報Japanese Patent Application Laid-Open No. 2003-275601 特開2019-44096号公報Japanese Unexamined Patent Publication No. 2019-44096
 しかし、非重合性の抗菌・抗ウイルス剤を多量に樹脂材料に配合する場合、樹脂材料の機械特性の低下をもたらすことがあった。また、抗菌・抗ウイルス剤が樹脂材料の表面にブリードアウトし、美観や機能の低下をもたらすこともあるなど、改善の余地があった。また、抗菌・抗ウイルス剤を配合した樹脂材料は多くの場合、不透明であり、透明性が必要なところには用いることができなかった。 However, when a large amount of non-polymerizable antibacterial / antiviral agent is added to the resin material, the mechanical properties of the resin material may be deteriorated. In addition, antibacterial and antiviral agents may bleed out on the surface of the resin material, resulting in deterioration of aesthetics and function, and there is room for improvement. In addition, resin materials containing antibacterial and antiviral agents are often opaque and cannot be used where transparency is required.
 また、表面にコーティングする方法を用いる場合、複雑な構造の内面を処理することが難しい。例えば、ラジカル重合性組成物を用いてマイクロ流路を有する測定器具、反応装置等を3Dプリンターにより作製する場合、内部のチャネルやチャンバー表面に抗菌・抗ウイルス性を付与するには、コーティング剤を内部に循環させるなどして内表面を修飾する必要があるが、粘性や濡れ性のために処理することが難しい場合がある。さらに、表面のみの修飾では、磨滅によって活性層がなくなるなど、耐久性に問題があった。 Also, when the method of coating the surface is used, it is difficult to process the inner surface of a complicated structure. For example, when a measuring instrument having a microchannel, a reaction device, or the like is manufactured by a 3D printer using a radically polymerizable composition, a coating agent is used to impart antibacterial and antiviral properties to the internal channels and chamber surface. It is necessary to modify the inner surface by circulating it inside, but it may be difficult to treat due to its viscosity and wettability. Further, if only the surface is modified, there is a problem in durability such that the active layer disappears due to abrasion.
 さらに、光触媒を用いる抗菌・抗ウイルス剤の場合、暗所又は光が届かない内部空間で用いることができないという問題があった。 Further, in the case of an antibacterial / antiviral agent using a photocatalyst, there is a problem that it cannot be used in a dark place or an internal space where light does not reach.
 したがって、本発明は、ブリードアウトせず、高い機械特性を有する耐久性の高い構造材料としても利用可能であり、さらに透明性を持たせることも可能な抗菌・抗ウイルス材料を提供することを課題とする。 Therefore, it is an object of the present invention to provide an antibacterial / antiviral material that does not bleed out, can be used as a highly durable structural material having high mechanical properties, and can also have transparency. And.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、一般にその酸化物が光触媒能を持つことから明所での抗菌性を示すと考えられてきたビスマスが、ビスマスイオンと特定の有機配位子とからなるいわゆるウェルナー型金属錯体とすることにより、固体状態で抗菌性だけでなく抗ウイルス性を示すことを見出し、さらに、該化合物と重合性単量体との硬化性組成物を硬化した硬化体が、暗所においても高い抗菌・抗ウイルス性を示しながら、高い機械特性及び透明性を持つことを見出して、本発明を完成させるに至った。 As a result of diligent studies to solve the above problems, the present inventors have found that bismuth, which has been generally considered to exhibit antibacterial activity in the bright light because its oxide has photocatalytic activity, is called bismuth ion. By forming a so-called Werner-type metal complex composed of a specific organic ligand, it was found that it exhibits not only antibacterial properties but also antiviral properties in a solid state, and further, curability of the compound and a polymerizable monomer. We have found that the cured product obtained by curing the composition has high mechanical properties and transparency while exhibiting high antibacterial and antiviral properties even in a dark place, and have completed the present invention.
 すなわち、本発明の第1の態様は、(メタ)アクリロイル基を有するリン酸エステルがビスマスに結合したビスマス化合物と、該ビスマス化合物以外の重合性単量体とを含有する抗菌・抗ウイルス材料用硬化性組成物である。 That is, the first aspect of the present invention is for an antibacterial / antiviral material containing a bismuth compound in which a phosphate ester having a (meth) acryloyl group is bonded to bismuth and a polymerizable monomer other than the bismuth compound. It is a curable composition.
 また、本発明の第2の態様は、上記硬化性組成物を硬化してなる抗菌・抗ウイルス材料である。 The second aspect of the present invention is an antibacterial / antiviral material obtained by curing the curable composition.
 また、本発明の第3の態様は、基材と、上記抗菌・抗ウイルス材料とを積層してなる抗菌・抗ウイルス積層体である。 Further, the third aspect of the present invention is an antibacterial / antiviral laminated body obtained by laminating a base material and the antibacterial / antiviral material.
 本発明によれば、ブリードアウトせず、高い機械特性を有する耐久性の高い構造材料としても利用可能であり、さらに透明性を持たせることも可能な抗菌・抗ウイルス材料を提供することができる。 According to the present invention, it is possible to provide an antibacterial / antiviral material that does not bleed out, can be used as a highly durable structural material having high mechanical properties, and can further have transparency. ..
 以下、本発明を適用した具体的な実施形態について詳細に説明する。
 本明細書においては特に断らない限り、数値x及びyを用いた「x~y」という表記は「x以上y以下」を意味するものとする。かかる表記において数値yのみに単位を付した場合には、当該単位が数値xにも適用されるものとする。
 また、本明細書において、「(メタ)アクリロイル」との用語は、「アクリロイル」及び「メタクリロイル」の両者を意味し、「(メタ)アクリル酸」との用語は、「アクリル酸」及び「メタクリル酸」の両者を意味する。
 また、本明細書において、「ポリ(チオ)ウレタン」との用語は、「ポリウレタン」及び「ポリチオウレタン」の両者を意味し、「イソ(チオ)シアネート」との用語は、「イソシアネート」及び「イソチオシアネート」の両者を意味する。
Hereinafter, specific embodiments to which the present invention is applied will be described in detail.
Unless otherwise specified in the present specification, the notation "x to y" using the numerical values x and y means "x or more and y or less". When a unit is attached only to the numerical value y in such a notation, the unit shall be applied to the numerical value x as well.
Further, in the present specification, the term "(meth) acryloyl" means both "acryloyl" and "methacrylic acid", and the term "(meth) acrylic acid" means "acrylic acid" and "methacrylic acid". It means both "acid".
Further, in the present specification, the term "poly (thio) urethane" means both "polyurethane" and "polythiourethane", and the term "iso (thio) cyanate" means "isocyanate" and It means both "isothiocyanate".
≪抗菌・抗ウイルス材料用硬化性組成物≫
 本実施形態に係る抗菌・抗ウイルス材料用硬化性組成物(以下、単に「硬化性組成物」ともいう。)は、(メタ)アクリロイル基を有するリン酸エステルがビスマスに結合したビスマス化合物(以下、「リン酸エステル結合ビスマス化合物」ともいう。)と、該リン酸エステル結合ビスマス化合物以外の重合性単量体とを含有する。
≪Curable composition for antibacterial and antiviral materials≫
The curable composition for an antibacterial / antiviral material according to the present embodiment (hereinafter, also simply referred to as “curable composition”) is a bismuth compound in which a phosphate ester having a (meth) acryloyl group is bound to bismuth (hereinafter, bismuth). , Also referred to as "phosphate ester-bonded bismuth compound") and a polymerizable monomer other than the phosphate ester-bonded bismuth compound.
<リン酸エステル結合ビスマス化合物>
 リン酸エステル結合ビスマス化合物は、ビスマスに(メタ)アクリロイル基を有するリン酸エステル(以下、単に「リン酸エステル」ともいう。)が結合した化合物である。該化合物は、溶解性、特に溶液状のラジカル重合性単量体に対する溶解性が高いため、硬化体に高濃度のビスマスを含有させることができ、硬化体の物性を向上させることができる。このリン酸エステル結合ビスマス化合物は、後述する次サリチル酸ビスマスよりも、ラジカル重合性単量体への溶解性が高い。
<Phosphate ester-bonded bismuth compound>
The phosphate ester-bonded bismuth compound is a compound in which a phosphate ester having a (meth) acryloyl group (hereinafter, also simply referred to as “phosphate ester”) is bound to bismuth. Since the compound has high solubility, particularly solubility in a solution-like radically polymerizable monomer, a high concentration of bismuth can be contained in the cured product, and the physical properties of the cured product can be improved. This phosphate ester-bonded bismuth compound has higher solubility in a radically polymerizable monomer than the bismuth subsalicylate described later.
 なお、ビスマスと、(メタ)アクリロイル基を有するリン酸エステルとの結合形態は特に限定されず、イオン結合、配位結合のいずれでもよい。 The bond form between bismuth and the phosphate ester having a (meth) acryloyl group is not particularly limited, and may be either an ionic bond or a coordination bond.
 リン酸エステル結合ビスマス化合物としては、例えば、リン酸エステルが、(メタ)アクリロイル基を1つ有するリン酸モノエステル(例えば、リン酸二水素2-(メタクリロイルオキシ)エチル)から形成されるものや、(メタ)アクリロイル基を2つ有するリン酸ジエステル(例えば、リン酸水素ビス[2-(メタクリロイルオキシ)エチル])から形成されるものが挙げられる。リン酸エステルは、(メタ)アクリロイル基を1つ有するリン酸モノエステル及び(メタ)アクリロイル基を2つ有するリン酸ジエステルのいずれかのみから形成されるものであってもよく、両者から形成されるものであってもよい。 Examples of the phosphoric acid ester-bonded bismuth compound include those in which the phosphoric acid ester is formed from a phosphoric acid monoester having one (meth) acryloyl group (for example, 2- (methacryloyloxy) ethyl phosphate dihydrogen). , (Meta) Phosphate diesters having two acryloyl groups (eg, hydrogen phosphate bis [2- (methacryloyloxy) ethyl]). The phosphoric acid ester may be formed from only one of a phosphoric acid monoester having one (meth) acryloyl group and a phosphoric acid diester having two (meth) acryloyl groups, and is formed from both. It may be one.
 リン酸エステルが、(メタ)アクリロイル基を1つ有するリン酸モノエステルと、(メタ)アクリロイル基を2つ有するリン酸ジエステルとから形成される場合、ラジカル重合性単量体への溶解性を向上し、且つ、ビスマス成分の凝集を抑制するためには、以下の割合とすることが好ましい。具体的には、(メタ)アクリロイル基を1つ有するリン酸モノエステル由来のリン酸エステル1モルと、(メタ)アクリロイル基を2つ有するリン酸ジエステル由来のリン酸エステル0.05~3モルとからなることが好ましい。リン酸ジエステル由来のリン酸エステルは、0.1~2モルであることがより好ましく、0.15~1モルであることがさらに好ましい。(メタ)アクリロイル基を1つ有するものと(メタ)アクリロイル基を2つ有するものとの両者を含むことの利点は、ビスマスが、(メタ)アクリロイル基を1つ有するもの(2価のリン酸基を有するもの)、及び(メタ)アクリロイル基を2つ有するもの(1価のリン酸基を有するもの)が結合する好適な部位を有し、その結合する好適な部位が、(メタ)アクリロイル基を1つ有するもの由来のリン酸エステル1モルに対して、(メタ)アクリロイル基を2つ有するもの由来のリン酸エステルが0.05~3モルとなる割合で存在することによるものと考えられる。また、(メタ)アクリロイル基を2つ有するものが上記割合で存在することにより、ビスマス濃度が減少する反面、ラジカル重合性単量体への溶解性が向上する。その結果、バランス良く高濃度でビスマス成分を硬化体中に存在させることができる利点も生ずる。 When the phosphoric acid ester is formed from a phosphoric acid monoester having one (meth) acryloyl group and a phosphoric acid diester having two (meth) acryloyl groups, it has solubility in a radically polymerizable monomer. In order to improve and suppress the aggregation of the bismuth component, the following ratio is preferable. Specifically, 1 mol of a phosphate monoester derived from a phosphate monoester having one (meth) acryloyl group and 0.05 to 3 mol of a phosphate ester derived from a phosphate diester having two (meth) acryloyl groups. It is preferable that it consists of. The phosphoric acid ester derived from the phosphoric acid diester is more preferably 0.1 to 2 mol, further preferably 0.15 to 1 mol. The advantage of including both one having one (meth) acryloyl group and one having two (meth) acryloyl groups is that bismuth has one (meth) acryloyl group (divalent phosphate). Those having a group) and those having two (meth) acryloyl groups (those having a monovalent phosphate group) have a suitable site to be bonded, and the suitable site to which the group is bonded is (meth) acryloyl. It is considered that this is because the phosphoric acid ester derived from the one having two (meth) acryloyl groups is present in a ratio of 0.05 to 3 mol with respect to 1 mol of the phosphoric acid ester derived from the one having one group. Be done. Further, the presence of two (meth) acryloyl groups in the above ratio reduces the bismuth concentration but improves the solubility in the radically polymerizable monomer. As a result, there is an advantage that the bismuth component can be present in the cured product in a well-balanced and high concentration.
 リン酸エステル結合ビスマス化合物は、リン酸エステルが結合していれば、その他の化合物が結合していてもよい。具体的には、サリチル酸及び/又は(メタ)アクリル酸がさらに結合していてもよい。リン酸エステルと、サリチル酸及び/又は(メタ)アクリル酸とが同じビスマスに結合している場合、ラジカル重合性単量体への溶解性を向上するためには、リン酸エステルとサリチル酸及び/又は(メタ)アクリル酸との割合は、リン酸エステル1モルに対して、サリチル酸及び/又は(メタ)アクリル酸が0.1~10モルとなることが好ましく、0.1~5モルとなることがより好ましい。なお、2種類以上のリン酸エステルが存在する場合には、上記の範囲は、リン酸エステルの合計モル数が基準となる。 The phosphate ester-bound bismuth compound may be bound to other compounds as long as the phosphate ester is bound. Specifically, salicylic acid and / or (meth) acrylic acid may be further bonded. When the phosphate ester and salicylic acid and / or (meth) acrylic acid are bound to the same bismuth, the phosphate ester and salicylic acid and / or are used to improve the solubility in radically polymerizable monomers. The ratio of (meth) acrylic acid to 1 mol of phosphoric acid ester is preferably 0.1 to 10 mol, and 0.1 to 5 mol of salicylic acid and / or (meth) acrylic acid. Is more preferable. When two or more kinds of phosphoric acid esters are present, the above range is based on the total number of moles of the phosphoric acid esters.
 リン酸エステル結合ビスマス化合物は、(メタ)アクリロイル基を有するリン酸エステルがビスマスに結合している化合物であり、その製造方法、又はIR、NMR(核磁気共鳴分光法)、MALDI-TOF-MS(マトリクス支援レーザー脱離イオン化-飛行時間型質量分析)、エネルギー分散型X線分光器(EDS)による元素分析等により、(メタ)アクリロイル基を有するリン酸エステルが結合していることを確認できる。また、これらの方法で、リン酸エステル、サリチル酸、及び(メタ)アクリル酸の結合数が分かる。 The phosphate ester-bonded bismuth compound is a compound in which a phosphate ester having a (meth) acryloyl group is bonded to bismuth, and its production method, IR, NMR (nuclear magnetic resonance spectroscopy), MALDI-TOF-MS. (Matrix-assisted laser desorption / ionization-time-of-flight mass analysis), elemental analysis using an energy-dispersed X-ray spectrometer (EDS), etc., confirm that the phosphate ester having a (meth) acryloyl group is bound. .. In addition, the number of bonds of phosphoric acid ester, salicylic acid, and (meth) acrylic acid can be known by these methods.
 好適なリン酸エステル結合ビスマス化合物としては、以下の式(1)~(3)で表されるものが挙げられる。 Examples of suitable phosphoric acid ester-bonded bismuth compounds include those represented by the following formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、Rは、それぞれ独立して、水素原子又はメチル基を示す。また、上記式(1)において、a+x+y+z=3であり、xはリン酸水素2-((メタ)アクリロイルオキシ)エチル残基のモル数、yはリン酸フェニル-2-((メタ)アクリロイルオキシ)エチル残基のモル数、zはリン酸ビス[2-((メタ)アクリロイルオキシ)エチル]残基のモル数、aは(メタ)アクリル酸残基のモル数を示す。上記式(2)において、2b+u+v+w=3であり、uはリン酸水素2-((メタ)アクリロイルオキシ)エチル残基のモル数、vはリン酸フェニル-2-((メタ)アクリロイルオキシ)エチル残基のモル数、wはリン酸ビス[2-((メタ)アクリロイルオキシ)エチル]残基のモル数、bはサリチル酸残基のモル数を示す。上記式(3)において、2c+q+r+2s+t=3であり、qはリン酸水素2-((メタ)アクリロイルオキシ)エチル残基のモル数、rはリン酸フェニル-2-((メタ)アクリロイルオキシ)エチル残基のモル数、sはリン酸2-((メタ)アクリロイルオキシ)エチル残基のモル数、tはリン酸ビス[2-((メタ)アクリロイルオキシ)エチル]残基のモル数、cはサリチル酸残基のモル数を示す。 In the formula, R independently represents a hydrogen atom or a methyl group. Further, in the above formula (1), a + x + y + z = 3, x is the number of moles of 2-((meth) acryloyloxy) ethyl residue of hydrogen phosphate, and y is phenyl-2- ((meth) acryloyloxy) phosphate. ) The number of moles of ethyl residues, z is the number of moles of bis [2-((meth) acryloyloxy) ethyl] residues, and a is the number of moles of (meth) acrylic acid residues. In the above formula (2), 2b + u + v + w = 3, u is the number of moles of 2-((meth) acryloyloxy) ethyl residue of hydrogen phosphate, and v is phenyl-2-((meth) acryloyloxy) ethyl phosphate. The number of moles of the residue, w is the number of moles of the bis [2-((meth) acryloyloxy) ethyl] residue, and b is the number of moles of the salicylate residue. In the above formula (3), 2c + q + r + 2s + t = 3, q is the number of moles of 2-((meth) acryloyloxy) ethyl residue of hydrogen phosphate, and r is phenyl-2-((meth) acryloyloxy) ethyl phosphate. The number of moles of the residue, s is the number of moles of 2-((meth) acryloyloxy) ethyl phosphate residue, t is the number of moles of bisphosphate phosphate [2-((meth) acryloyloxy) ethyl] residue, c. Indicates the number of moles of salicylic acid residue.
 なお、上記式(1)~(3)で表されるリン酸エステル結合ビスマス化合物は、それぞれ単一の化合物でなく、複数の化合物の混合物となっている場合がある。その場合、上述した各残基のモル数は、混合物全体としてのモル数を示すものとする。 The phosphate ester-bonded bismuth compounds represented by the above formulas (1) to (3) may not be a single compound but a mixture of a plurality of compounds. In that case, the number of moles of each residue described above shall indicate the number of moles of the mixture as a whole.
 上記式(1)において、低温で製造することができ、着色の少ないリン酸エステル結合ビスマス化合物とすることを勘案すると、a=0の場合、x:y:z=1:0.05~3:0.5~30であることが好ましく、x:y:z=1:0.1~2:1~20であることがより好ましく、x:y:z=1:0.15~1:1.5~10であることがさらに好ましい。また、着色をより少なくするという点から、a=0、y=0とすることもできる。 In the above formula (1), considering that it is a phosphate ester-bonded bismuth compound that can be produced at a low temperature and has little coloring, when a = 0, x: y: z = 1: 0.05 to 3 : 0.5 to 30, more preferably x: y: z = 1: 0.1 to 2: 1 to 20, and x: y: z = 1: 0.15 to 1: It is more preferably 1.5 to 10. Further, a = 0 and y = 0 can be set from the viewpoint of reducing the coloring.
 また、上記式(1)において、a=0以外の場合、a:(x+y+z)=0.1~10:1であることが好ましく、a:(x+y+z)=0.1~5:1であることがより好ましく、a:(x+y+z)=0.1~1:1であることがさらに好ましく、a:(x+y+z)=0.1~5:1であることが特に好ましい。そして、この場合であっても、x:y:z=1:0.05~3:0.5~30であることが好ましく、x:y:z=1:0.1~2:1~20であることがより好ましく、x:y:z=1:0.15~1:1.5~10であることがさらに好ましい。 Further, in the above formula (1), when a = other than 0, a: (x + y + z) = 0.1 to 10: 1 is preferable, and a: (x + y + z) = 0.1 to 5: 1. It is more preferable, a: (x + y + z) = 0.1 to 1: 1 is more preferable, and a: (x + y + z) = 0.1 to 5: 1 is particularly preferable. Even in this case, x: y: z = 1: 0.05 to 3: 0.5 to 30 is preferable, and x: y: z = 1: 0.1 to 2: 1 to 1. It is more preferably 20 and even more preferably x: y: z = 1: 0.15 to 1: 1.5 to 10.
 上記式(2)において、b=0の場合は、上記規定において、xをu、yをv、zをwに読み替えたものと同じである。 In the above equation (2), when b = 0, it is the same as in the above regulation, where x is replaced with u, y is replaced with v, and z is replaced with w.
 また、上記式(2)において、b=0以外の場合、b:(u+v+w)=1:0.1~30であることが好ましく、b:(u+v+w)=1:0.2~20であることがより好ましく、b:(u+v+w)=1:0.3~10であることがさらに好ましく、b:(u+v+w)=1:0.5~5であることが特に好ましい。そして、この場合、u:v:w=1:0.05~20:0.1~40であることが好ましく、u:v:w=1:0.1~10:0.2~20であることがより好ましく、u:v:w=1:0.2~5:0.4~10であることがさらに好ましい。 Further, in the above formula (2), when b = other than 0, b: (u + v + w) = 1: 0.1 to 30 is preferable, and b: (u + v + w) = 1: 0.2 to 20. It is more preferable, b: (u + v + w) = 1: 0.3 to 10, and b: (u + v + w) = 1: 0.5 to 5. In this case, u: v: w = 1: 0.05 to 20: 0.1 to 40 is preferable, and u: v: w = 1: 0.1 to 10: 0.2 to 20. It is more preferable that there is u: v: w = 1: 0.2 to 5: 0.4 to 10.
 その中でも、次サリチル酸ビスマスとリン酸水素フェニル-2-((メタ)アクリロイルオキシ)エチルとが結合した化合物が含まれることが好ましい。 Among them, it is preferable that a compound in which bismuth subsalicylate and phenyl-2-((meth) acryloyloxy) ethyl hydrogen phosphate are bonded is contained.
 上記式(3)において、c=0の場合、q:r:s:t=1:0.1~50:0.05~20:0.1~40であることが好ましく、q:r:s:t=1:0.3~30:0.1~10:0.2~20であることがより好ましく、q:r:s:t=1:0.5~20:0.2~5:0.4~10であることがさらに好ましい。 In the above formula (3), when c = 0, q: r: s: t = 1: 0.1 to 50: 0.05 to 20: 0.1 to 40 is preferable, and q: r: It is more preferable that s: t = 1: 0.3 to 30: 0.1 to 10: 0.2 to 20 and q: r: s: t = 1: 0.5 to 20: 0.2 to 20. It is more preferably 5: 0.4 to 10.
 また、上記式(3)において、c=0以外の場合、c:(q+s+s+t)=1:0.1~30であることが好ましく、c:(q+s+s+t)=1:0.2~20であることがより好ましく、c:(q+s+s+t)=1:0.3~10であることがさらに好ましく、c:(q+s+s+t)=1:0.5~5であることが特に好ましい。そして、この場合であっても、q:s:s:t=1:0.1~50:0.05~20:0.1~40であることが好ましく、q:s:s:t=1:0.3~30:0.1~10:0.2~20であることがより好ましく、q:s:s:t=1:0.5~20:0.2~5:0.4~10であることがさらに好ましい。 Further, in the above formula (3), when c: other than c = 0, c: (q + s + s + t) = 1: 0.1 to 30 is preferable, and c: (q + s + s + t) = 1: 0.2 to 20. It is more preferable, c: (q + s + s + t) = 1: 0.3 to 10, and c: (q + s + s + t) = 1: 0.5 to 5. Even in this case, q: s: s: t = 1: 0.1 to 50: 0.05 to 20: 0.1 to 40 is preferable, and q: s: s: t = It is more preferably 1: 0.3 to 30: 0.1 to 10: 0.2 to 20, and q: s: s: t = 1: 0.5 to 20: 0.2 to 5: 0. It is more preferably 4 to 10.
 リン酸エステル結合ビスマス化合物の含有率は、例えば、本実施形態に係る硬化性組成物の総量に対して、5~95質量%であることが好ましく、10~90質量%であることがより好ましく、15~85質量%であることがさらに好ましい。 The content of the phosphoric acid ester-bonded bismuth compound is, for example, preferably 5 to 95% by mass, more preferably 10 to 90% by mass, based on the total amount of the curable composition according to the present embodiment. , 15-85% by mass, more preferably.
 本実施形態に係る硬化性組成物は、リン酸エステル結合ビスマス化合物以外に、リン酸エステル結合ビスマス化合物の製造時に副生するリン酸化合物や未反応原料を含有していてもよい。 The curable composition according to the present embodiment may contain a phosphoric acid compound or an unreacted raw material produced as a by-product during the production of the phosphoric acid ester-bonded bismuth compound, in addition to the phosphoric acid ester-bonded bismuth compound.
 製造時に副生するリン酸化合物としては、例えば、(メタ)アクリロイル基を1つ有するリン酸モノエステルの2量体、(メタ)アクリロイル基を2つ有するリン酸ジエステルの2量体、サリチル酸ビスマス又は(メタ)アクリル酸ビスマスとリン酸とのエステル等が挙げられる。 Examples of the phosphoric acid compound produced as a by-product during production include a dimer of a phosphoric acid monoester having one (meth) acryloyl group, a dimer of a phosphoric acid diester having two (meth) acryloyl groups, and bismuth salicylate. Alternatively, an ester of (meth) bismuth acrylate and phosphoric acid can be mentioned.
 未反応原料としては、例えば、(メタ)アクリロイル基を1つ有するリン酸モノエステル、(メタ)アクリロイル基を2つ有するリン酸ジエステル、サリチル酸ビスマス、(メタ)アクリル酸ビスマス等が挙げられる。 Examples of the unreacted raw material include a phosphoric acid monoester having one (meth) acryloyl group, a phosphoric acid diester having two (meth) acryloyl groups, bismuth salicylate, and bismuth (meth) acrylic acid.
 リン酸エステル結合ビスマス化合物の製造時に副生するリン酸化合物や未反応原料を除去することが工業的に多大な労力を要すること、及びこれら副生するリン酸化合物や未反応原料がラジカル重合性単量体への溶解性向上に寄与することから、本実施形態に係る硬化性組成物は、これら副生するリン酸化合物や未反応原料を含有することが好ましい。 It takes a lot of industrial labor to remove the phosphate compound and unreacted raw materials produced as by-products during the production of the phosphoric acid ester-bonded bismuth compound, and these by-produced phosphoric acid compounds and unreacted raw materials are radically polymerizable. The curable composition according to the present embodiment preferably contains these by-produced phosphoric acid compounds and unreacted raw materials because it contributes to the improvement of solubility in the monomer.
 また、本実施形態に係る硬化性組成物は、例えば、酸化ビスマスと、(メタ)アクリロイル基を有するリン酸エステル、(メタ)アクリル酸、及び/又はサリチル酸とが結合した化合物(以下、「酸化ビスマス由来の化合物」ともいう。)を含有していてもよい。この酸化ビスマス由来の化合物の構造は明らかではないが、酸化ビスマスの表面に形成される水酸基と、リン酸エステル、(メタ)アクリル酸、又はサリチル酸のカルボキシ基とが結合していると考えられる。なお、この酸化ビスマス由来の化合物は、リン酸エステル結合ビスマス化合物との分離が非常に難しい。そのため、酸化ビスマス由来の化合物が副生した場合には、酸化ビスマス由来の化合物を含む状態で使用することが好ましい。酸化ビスマス由来の化合物が副生する場合には、製造条件等を調整して、その量をリン酸エステル結合ビスマス化合物の溶解性を落とさない範囲にすることが望ましい。なお、酸化ビスマス由来の化合物を含むことは、その製造条件、又はIR、NMR、X線光電子分光分析法(XPS)等の方法により総合的に判断できる。 Further, the curable composition according to the present embodiment is, for example, a compound in which bismuth oxide is bonded to a phosphoric acid ester having a (meth) acryloyl group, (meth) acrylic acid, and / or salicylic acid (hereinafter, “oxidation”). It may also contain "a compound derived from bismuth"). Although the structure of the compound derived from bismuth oxide is not clear, it is considered that the hydroxyl group formed on the surface of bismuth oxide is bonded to the carboxy group of phosphate ester, (meth) acrylic acid, or salicylic acid. It should be noted that this compound derived from bismuth oxide is very difficult to separate from the phosphate ester-bonded bismuth compound. Therefore, when a compound derived from bismuth oxide is by-produced, it is preferable to use it in a state containing the compound derived from bismuth oxide. When a compound derived from bismuth oxide is produced as a by-product, it is desirable to adjust the production conditions and the like so that the amount thereof is within a range that does not reduce the solubility of the phosphate ester-bonded bismuth compound. The inclusion of the compound derived from bismuth oxide can be comprehensively determined by the production conditions thereof or a method such as IR, NMR, X-ray photoelectron spectroscopy (XPS) or the like.
〔リン酸エステル結合ビスマス化合物の製造方法〕
 リン酸エステル結合ビスマス化合物は、例えば、(メタ)アクリル酸ビスマス又は次サリチル酸ビスマスと、(メタ)アクリロイル基を有するリン酸エステルとを反応させて製造することが好ましい。より具体的には、脂肪族炭化水素溶媒又は芳香族溶媒中、必要に応じて重合禁止剤を加えて、(メタ)アクリル酸ビスマス又は次サリチル酸ビスマスと、(メタ)アクリロイル基を有するリン酸エステルとを反応させて脱水することにより、リン酸エステル結合ビスマス化合物を製造することが好ましい。
[Method for producing phosphate ester-bonded bismuth compound]
The phosphate ester-bonded bismuth compound is preferably produced by reacting, for example, bismuth (meth) acrylate or bismuth subsalicylate with a phosphate ester having a (meth) acryloyl group. More specifically, in an aliphatic hydrocarbon solvent or an aromatic solvent, a polymerization inhibitor is added as necessary to add bismuth (meth) acrylate or bismuth subsalicylate and a phosphate ester having a (meth) acryloyl group. It is preferable to produce a phosphate ester-bonded bismuth compound by reacting with and dehydrating.
[(メタ)アクリル酸ビスマス及び次サリチル酸ビスマス]
 (メタ)アクリル酸ビスマスは、ビスマスにサリチル酸が結合した化合物である。また、次サリチル酸ビスマスは、ビスマスにサリチル酸が結合した化合物であり、下記式(4)で表される。
[(Meta) bismuth acrylate and bismuth subsalicylate]
Bismuth (meth) acrylate is a compound in which salicylic acid is bound to bismuth. The bismuth subsalicylate is a compound in which salicylic acid is bound to bismuth and is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (メタ)アクリル酸ビスマス及び次サリチル酸ビスマスとしては、特に制限されず、公知の方法で製造できるほか、市販のものを使用することもできる。 The (meth) bismuth acrylate and the bismuth subsalicylate are not particularly limited and can be produced by a known method, or commercially available ones can also be used.
[(メタ)アクリロイル基を有するリン酸エステル]
 (メタ)アクリロイル基を有するリン酸エステルとしては、市販のものを使用することができる。該リン酸エステルは、(メタ)アクリロイル基を1つ有するリン酸エステル(以下、「単官能リン酸エステル」ともいう。)であってもよく、(メタ)アクリロイル基を2つ有するリン酸エステル(以下、「2官能リン酸エステル」ともいう。)であってもよい。単官能リン酸エステルとしては、例えば、リン酸二水素2-(メタクリロイルオキシ)エチル、ジフェニル-2-メタクリロイルオキシエチルホスフェート等が挙げられる。また、2官能リン酸リン酸エステルとしては、例えば、リン酸水素ビス[2-(メタクリロイルオキシ)エチル]、フェニルリン酸水素[2-(メタクリロイルオキシ)エチル]等が挙げられる。当然のことながら、単官能リン酸エステルと2官能リン酸エステルとの混合物を反応に用いてもよい。
[Phosphate ester having (meth) acryloyl group]
As the phosphoric acid ester having a (meth) acryloyl group, a commercially available one can be used. The phosphoric acid ester may be a phosphoric acid ester having one (meth) acryloyl group (hereinafter, also referred to as "monofunctional phosphoric acid ester"), or a phosphoric acid ester having two (meth) acryloyl groups. (Hereinafter, it may also be referred to as "bifunctional phosphoric acid ester"). Examples of the monofunctional phosphoric acid ester include 2- (methacryloyloxy) ethyl dihydrogen phosphate and diphenyl-2-methacryloyloxyethyl phosphate. Examples of the bifunctional phosphate ester include hydrogen phosphate bis [2- (methacryloyloxy) ethyl] and hydrogen phenylphosphate [2- (methacryloyloxy) ethyl]. Of course, a mixture of monofunctional phosphate and bifunctional phosphate may be used in the reaction.
 リン酸エステルの使用量は、所望のリン酸エステル結合ビスマス化合物が得られるように、その量を決定すればよい。具体的には、(メタ)アクリル酸ビスマス及び次サリチル酸ビスマスの合計1モルに対して、リン酸エステルの使用量を0.3~10モルの範囲とすることが好ましい。 The amount of the phosphate ester used may be determined so that the desired phosphate ester-bonded bismuth compound can be obtained. Specifically, the amount of the phosphoric acid ester used is preferably in the range of 0.3 to 10 mol with respect to 1 mol of the total of bismuth (meth) acrylate and bismuth subsalicylate.
 また、本実施形態においては、相溶性を向上させるために、(メタ)アクリロイル基を有するリン酸エステルとして、ジフェニル-2-メタクリロイルオキシエチルホスフェート、フェニルビス〔2-(メタクリロイロキシエチル)〕ホスフェート、トリス〔2-(メタクリロイロキシエチル)〕ホスフェート等のリン酸トリエステルをさらに加えてもよい。 Further, in the present embodiment, in order to improve compatibility, diphenyl-2-methacryloyloxyethyl phosphate and phenylbis [2- (methacryloyloxyethyl)] phosphate are used as phosphoric acid esters having a (meth) acryloyl group. , Tris [2- (methacryloyloxyethyl)] phosphate and the like may be further added.
 その中でも、ジフェニル-2-メタクリロイルオキシエチルホスフェート、フェニルビス〔2-(メタクリロイロキシエチル)〕ホスフェート等のフェニル基を有するリン酸トリエステルを用いると、上記式(1)~(3)における、(メタ)アクリロイル基を1つ有する1価のフェニルリン酸ジエステルを良好に導入することが可能となる。 Among them, when a phosphoric acid triester having a phenyl group such as diphenyl-2-methacryloyloxyethyl phosphate or phenylbis [2- (methacryloyloxyethyl)] phosphate is used, the above formulas (1) to (3) can be used. It is possible to satisfactorily introduce a monovalent phenylphosphate diester having one (meth) acryloyl group.
 リン酸トリエステルの使用量は、(メタ)アクリロイル基を1つ有するリン酸エステル及び(メタ)アクリロイル基を2つ有するリン酸エステルの合計1モルに対して、0.1~20モルであることが好ましく、0.2~5モルであることがより好ましい。 The amount of the phosphoric acid triester used is 0.1 to 20 mol with respect to a total of 1 mol of the phosphoric acid ester having one (meth) acryloyl group and the phosphoric acid ester having two (meth) acryloyl groups. It is preferably 0.2 to 5 mol, and more preferably 0.2 to 5 mol.
[脂肪族炭化水素溶媒及び芳香族溶媒]
 本実施形態においては、(メタ)アクリル酸ビスマス又は次サリチル酸ビスマスとリン酸エステルとを、脂肪族炭化水素溶媒又は芳香族溶媒中で撹拌混合して反応させることが好ましい。その際、反応系内に水が生じるため、生じた水を脱水することが好ましい。生じた水を脱水し易くするために、高沸点、具体的には100℃以上の沸点を有する脂肪族炭化水素溶媒又は芳香族溶媒を使用することが好ましい。脂肪族炭化水素溶媒と芳香族溶媒とを混合して混合溶液として使用することもできる。
[Aliphatic hydrocarbon solvent and aromatic solvent]
In the present embodiment, it is preferable to stir and mix the (meth) bismuth acrylate or the bismuth subsalicylate and the phosphoric acid ester in an aliphatic hydrocarbon solvent or an aromatic solvent to react. At that time, water is generated in the reaction system, and it is preferable to dehydrate the generated water. In order to facilitate dehydration of the generated water, it is preferable to use an aliphatic hydrocarbon solvent or an aromatic solvent having a high boiling point, specifically, a boiling point of 100 ° C. or higher. It is also possible to mix an aliphatic hydrocarbon solvent and an aromatic solvent and use it as a mixed solution.
 脂肪族炭化水素溶媒又は芳香族溶媒としては、例えば、ヘキサン、ヘプタン、ノナン、デカン、ウンデカン、ドデカン、キシレン、ジメトキシベンゼン、ベンゼン、トルエン、クロロベンゼン、ブロモベンゼン、アニソール、石油エーテル、石油ベンジン、ベンゾイン等が挙げられる。 Examples of the aliphatic hydrocarbon solvent or aromatic solvent include hexane, heptane, nonane, decane, undecane, dodecane, xylene, dimethoxybenzene, benzene, toluene, chlorobenzene, bromobenzene, anisole, petroleum ether, petroleum benzine, benzoin and the like. Can be mentioned.
 脂肪族炭化水素溶媒又は芳香族溶媒の使用量は、(メタ)アクリル酸ビスマス又は次サリチル酸ビスマスとリン酸エステルとを十分に混合できる量であれば、特に制限されるものではない。中でも、リン酸エステル結合ビスマス化合物の生産性を考慮すると、(メタ)アクリル酸ビスマス及び次サリチル酸ビスマスの合計1gに対して、脂肪族炭化水素溶媒及び芳香族溶媒の合計が5~100mLとなる割合で使用することが好ましい。 The amount of the aliphatic hydrocarbon solvent or aromatic solvent used is not particularly limited as long as the amount of (meth) bismuth acrylate or bismuth subsalicylate and the phosphate ester can be sufficiently mixed. In particular, considering the productivity of the phosphate ester-bonded bismuth compound, the ratio of the total of the aliphatic hydrocarbon solvent and the aromatic solvent to 5 to 100 mL with respect to the total of 1 g of the (meth) bismuth acrylate and the bismuth subsalicylate. It is preferable to use in.
[反応条件]
 本実施形態において、(メタ)アクリル酸ビスマス又は次サリチル酸ビスマスとリン酸エステルとを反応させる方法は特に制限されるものではない。例えば、必要に応じて脂肪族炭化水素溶媒又は芳香族溶媒で希釈した次サリチル酸ビスマスと、必要に応じて脂肪族炭化水素溶媒又は芳香族溶媒で希釈したリン酸エステルとを、反応系内に一緒に添加し、撹拌混合して反応させる方法を採用することができる。また、予め反応系内に脂肪族炭化水素溶媒又は芳香族溶媒を導入しておき、それに、必要に応じて脂肪族炭化水素溶媒又は芳香族溶媒で希釈した次サリチル酸ビスマスと、必要に応じて脂肪族炭化水素溶媒又は芳香族溶媒で希釈したリン酸エステルとを一緒に添加し、撹拌混合して反応させる方法を採用することもできる。また、予め一方の成分を反応系内に導入しておき、他方の成分を反応系内に添加し、撹拌混合して反応させる方法を採用することもできる。中でも、得られるリン酸エステル結合ビスマス化合物の着色を低減し、生産性を向上するためには、以下の方法を採用することが好ましい。まず、脂肪族炭化水素溶媒又は芳香族溶媒中に次サリチル酸ビスマスを溶解又は分散させる。このとき、次サリチル酸ビスマスが溶解しないこともあるが、その場合には、次サリチル酸ビスマスの塊状物等が存在しないように、超音波装置等により該塊状物を粉砕することが好ましい。その後、次サリチル酸ビスマスが溶解した溶液又は分散した白濁溶液にリン酸エステルを添加し、撹拌混合して反応させる。
[Reaction conditions]
In the present embodiment, the method for reacting bismuth (meth) acrylic acid or bismuth subsalicylate with a phosphoric acid ester is not particularly limited. For example, bismuth hyposalicylate diluted with an aliphatic hydrocarbon solvent or an aromatic solvent as needed and a phosphoric acid ester diluted with an aliphatic hydrocarbon solvent or an aromatic solvent as needed are put together in the reaction system. It is possible to adopt a method of adding to and stirring and mixing to react. In addition, an aliphatic hydrocarbon solvent or an aromatic solvent is introduced into the reaction system in advance, and the following bismuth salicylate diluted with an aliphatic hydrocarbon solvent or an aromatic solvent as necessary, and fat as necessary. It is also possible to adopt a method in which a phosphate ester diluted with a group hydrocarbon solvent or an aromatic solvent is added together, and the mixture is stirred and mixed for reaction. It is also possible to adopt a method in which one component is introduced into the reaction system in advance, the other component is added to the reaction system, and the mixture is stirred and mixed to cause a reaction. Above all, in order to reduce the coloring of the obtained phosphoric acid ester-bonded bismuth compound and improve the productivity, it is preferable to adopt the following method. First, the bismuth subsalicylate is dissolved or dispersed in an aliphatic hydrocarbon solvent or an aromatic solvent. At this time, the bismuth subsalicylate may not be dissolved, but in that case, it is preferable to pulverize the bismuth subsalicylate with an ultrasonic device or the like so that the bismuth subsalicylate does not exist. Then, the phosphate ester is added to the solution in which bismuth salicylate is dissolved or the cloudy solution in which the bismuth salicylate is dissolved, and the mixture is stirred and mixed to react.
 反応温度は、脂肪族炭化水素溶媒又は芳香族溶媒の還流温度であってもよいが、得られるリン酸エステル結合ビスマス化合物の着色をより少なくするためには、好ましくは30~150℃、より好ましくは40~140℃、さらに好ましくは45~120℃で実施するのが望ましい。 The reaction temperature may be the reflux temperature of the aliphatic hydrocarbon solvent or the aromatic solvent, but is preferably 30 to 150 ° C., more preferably in order to further reduce the coloring of the obtained phosphoric acid ester-bonded bismuth compound. Is preferably carried out at 40 to 140 ° C, more preferably 45 to 120 ° C.
 また、反応温度が30~110℃である場合、反応系内に生じた水を除去(脱水)するために、反応系内を減圧下とすることが好ましい。その際、次サリチル酸ビスマスとリン酸エステルとを混合しながら脱水することもできるし、両者を混合した後、脱水することもできる。ただし、反応の効率化を考えると、両者を混合した後、反応させながら脱水することが好ましい。 Further, when the reaction temperature is 30 to 110 ° C., it is preferable to reduce the pressure inside the reaction system in order to remove (dehydrate) the water generated in the reaction system. At that time, bismuth subsalicylate and a phosphoric acid ester can be mixed and dehydrated, or both can be mixed and then dehydrated. However, considering the efficiency of the reaction, it is preferable to mix the two and then dehydrate while reacting.
 反応時間は、特に制限されるものではなく、通常、1~6時間でよい。 The reaction time is not particularly limited and may be usually 1 to 6 hours.
 反応を行う際の雰囲気は、操作性を考慮すると、空気雰囲気下、不活性ガス雰囲気下、乾燥空気雰囲気下のいずれであってもよく、操作性を考慮すると、空気雰囲気下で実施することが好ましい。 The atmosphere at the time of carrying out the reaction may be any of an air atmosphere, an inert gas atmosphere, and a dry air atmosphere in consideration of operability, and the reaction may be carried out in an air atmosphere in consideration of operability. preferable.
 以上のような条件で反応した後、得られたリン酸エステル結合ビスマス化合物は、溶媒を留去して濃縮した後、不溶の濁り成分がある場合は、これを濾過又は遠心分離により分離することが望ましい。さらに、この処理により得られた濃縮反応溶液に、用いた反応溶媒に可溶で、リン酸エステル結合ビスマス化合物を溶解しない溶媒を加えて再沈殿を行い精製することが望ましい。高沸点溶媒が残存する場合は、上記のデカンテーション操作を繰り返し、溶媒を置換すれはよい。その後、残存する溶媒を留去し、真空乾燥することで、リン酸エステル結合ビスマス化合物を得ることができる。 After reacting under the above conditions, the obtained phosphate ester-bonded bismuth compound is concentrated by distilling off the solvent, and if there is an insoluble turbid component, it should be separated by filtration or centrifugation. Is desirable. Further, it is desirable to add a solvent that is soluble in the reaction solvent used and does not dissolve the phosphate ester-bonded bismuth compound to the concentrated reaction solution obtained by this treatment, and perform reprecipitation for purification. If the high boiling point solvent remains, the above decantation operation may be repeated to replace the solvent. Then, the remaining solvent is distilled off and vacuum dried to obtain a phosphate ester-bonded bismuth compound.
<リン酸エステル結合ビスマス化合物以外の重合性単量体>
 リン酸エステル結合ビスマス化合物以外の重合性単量体としては、リン酸エステル結合ビスマス化合物と共重合し得るラジカル重合性単量体のみであってもよいし、ラジカル重合性単量体と非ラジカル重合性単量体との混合物であってもよい。非ラジカル重合性単量体としては、例えば、付加重合性単量体、開環重合性単量体等が挙げられる。ラジカル重合とラジカル重合以外の重合とが同時に起こる場合、得られる硬化体が交互貫入型のポリマー複合体となり、硬化体としての特性がより向上する。
<Polymerizable monomer other than phosphate-bonded bismuth compound>
The polymerizable monomer other than the phosphate ester-bonded bismuth compound may be only a radically polymerizable monomer that can be copolymerized with the phosphate ester-bonded bismuth compound, or a radically polymerizable monomer and a non-radical. It may be a mixture with a polymerizable monomer. Examples of the non-radical polymerizable monomer include an addition-polymerizable monomer and a ring-opening polymerizable monomer. When radical polymerization and polymerization other than radical polymerization occur at the same time, the obtained cured product becomes an alternating penetration type polymer composite, and the characteristics as a cured product are further improved.
 リン酸エステル結合ビスマス化合物以外の重合性単量体の総含有量は、抗菌・抗ウイルス性、機械特性、透明性、着色等の観点から、リン酸エステル結合ビスマス化合物100質量部に対して、1~10000質量部であることが好ましく、5~5000質量部であることがより好ましく、10~1000質量部であることがさらに好ましい。この範囲とすることにより、十分な抗菌性及び抗ウイルス性を示しつつ、構造材料としての機械的強度と、透明材料としての光透過性とを併せ持つことが容易となる。 The total content of the polymerizable monomer other than the phosphoric acid ester-bonded bismuth compound is based on 100 parts by mass of the phosphoric acid ester-bonded bismuth compound from the viewpoints of antibacterial / antiviral property, mechanical properties, transparency, coloring and the like. It is preferably 1 to 10000 parts by mass, more preferably 5 to 5000 parts by mass, and even more preferably 10 to 1000 parts by mass. Within this range, it becomes easy to have both mechanical strength as a structural material and light transmission as a transparent material while exhibiting sufficient antibacterial and antiviral properties.
〔ラジカル重合性単量体〕
 ラジカル重合性単量体としては、特に制限されないが、ラジカル重合性の炭素-炭素二重結合を1つ有する単官能ラジカル重合性単量体を使用することが好ましい。
[Radical polymerizable monomer]
The radically polymerizable monomer is not particularly limited, but it is preferable to use a monofunctional radically polymerizable monomer having one radically polymerizable carbon-carbon double bond.
 単官能ラジカル重合性単量体としては、例えば、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-フェノキシエチル、アクリロニトリル、メタクリロニトリル、スチレン、ジビニルベンゼン及びその構造異性体、メチルスチレン及びその構造異性体、メトキシスチレン及びその構造異性体、クロロスチレン、ブロモスチレン、ビニルピリジン、ビニルピロリドン等が挙げられる。これらの中でも、リン酸エステル結合ビスマス化合物に対する溶解性、透明性等の観点から、アクリロニトリル及び/又はスチレンを使用することが好ましく、アクリロニトリル及びスチレンの両方を使用することがより好ましい。アクリロニトリル及びスチレンの両方を使用する場合、リン酸エステル結合ビスマス化合物に対する溶解性、混合後の粘度、硬化した後の硬化体の耐衝撃性、硬度、熱特性等の観点から、スチレンの配合量は、アクリロニトリル100質量部に対して、1~500質量部であることが好ましく、2~400質量部であることがより好ましく、3~300質量部であることがさらに好ましい。 Examples of the monofunctional radically polymerizable monomer include acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-phenoxyethyl methacrylate, acrylonitrile, methacrylonitrile, and styrene. Examples thereof include divinylbenzene and its structural isomer, methylstyrene and its structural isomer, methoxystyrene and its structural isomer, chlorostyrene, bromostyrene, vinylpyridine, vinylpyrrolidone and the like. Among these, it is preferable to use acrylonitrile and / or styrene, and it is more preferable to use both acrylonitrile and styrene, from the viewpoint of solubility, transparency, etc. in the phosphate ester-bonded bismuth compound. When both acrylonitrile and styrene are used, the blending amount of styrene is determined from the viewpoints of solubility in phosphate ester-bonded bismuth compound, viscosity after mixing, impact resistance of the cured product after curing, hardness, thermal properties, etc. The amount is preferably 1 to 500 parts by mass, more preferably 2 to 400 parts by mass, and further preferably 3 to 300 parts by mass with respect to 100 parts by mass of acrylonitrile.
 また、ラジカル重合性単量体としては、硬化した後の硬化体の機械的特性、例えば耐衝撃性をさらに向上させるため、ラジカル重合性の炭素-炭素二重結合を2つ以上有する多官能ラジカル重合性単量体を併せて使用することがより好ましい。 Further, as the radically polymerizable monomer, a polyfunctional radical having two or more radically polymerizable carbon-carbon double bonds in order to further improve the mechanical properties of the cured product after curing, for example, impact resistance. It is more preferable to use the polymerizable monomer together.
 多官能ラジカル重合性単量体は市販のものを制限なく用いることができる。中でも、リン酸エステル結合ビスマス化合物に対する溶解性、混合後の粘度、硬化した後の硬化体の耐衝撃性等を考慮すると、下記式(5)又は(6)で表されるものが好適に使用される。 Commercially available polyfunctional radically polymerizable monomers can be used without limitation. Among them, those represented by the following formula (5) or (6) are preferably used in consideration of the solubility in the phosphate ester-bonded bismuth compound, the viscosity after mixing, the impact resistance of the cured product after curing, and the like. Will be done.
Figure JPOXMLDOC01-appb-C000005
(式中、lは7~14の整数を示す。)
Figure JPOXMLDOC01-appb-C000005
(In the formula, l indicates an integer of 7 to 14.)
Figure JPOXMLDOC01-appb-C000006
(式中、n及びmはそれぞれ独立に1~15の整数を示し、n+m=2~30である。)
Figure JPOXMLDOC01-appb-C000006
(In the equation, n and m independently represent integers of 1 to 15, and n + m = 2 to 30.)
 また、硬化体の表面硬度等の特性を上げることを考慮すると、上記式(5)又は(6)で表される化合物に加えて、下記式(7)で表される化合物を使用するのが好適である。 Further, in consideration of improving the properties such as the surface hardness of the cured product, it is recommended to use the compound represented by the following formula (7) in addition to the compound represented by the above formula (5) or (6). Suitable.
Figure JPOXMLDOC01-appb-C000007
(式中、pは1~5の整数を示す。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, p indicates an integer from 1 to 5.)
 多官能性ラジカル重合性単量体の配合量は、単官能ラジカル重合性単量体100質量部に対して、0~500質量部であることが好ましく、0~400質量部であることがより好ましく、0~300質量部であることがさらに好ましい。 The blending amount of the polyfunctional radically polymerizable monomer is preferably 0 to 500 parts by mass, more preferably 0 to 400 parts by mass with respect to 100 parts by mass of the monofunctional radically polymerizable monomer. It is preferably 0 to 300 parts by mass, and more preferably 0 to 300 parts by mass.
 本実施形態に係る硬化性組成物におけるラジカル重合性単量体の含有量は、リン酸エステル結合ビスマス化合物100質量部に対して、5~2000質量部であることが好ましく、10~900質量部であることがより好ましく、15~600質量部であることがさらに好ましい。 The content of the radically polymerizable monomer in the curable composition according to the present embodiment is preferably 5 to 2000 parts by mass with respect to 100 parts by mass of the phosphoric acid ester-bonded bismuth compound, and is preferably 10 to 900 parts by mass. Is more preferable, and 15 to 600 parts by mass is further preferable.
〔付加重合性単量体〕
 本実施形態においては、ラジカル重合性単量体とともに、付加重合により硬化体を生成する付加重合性単量体を使用してもよい。
[Additionally polymerizable monomer]
In the present embodiment, an addition-polymerizable monomer that produces a cured product by addition polymerization may be used together with the radically polymerizable monomer.
 一般に付加重合は、2種類の官能基が反応して新たな結合を形成する際、脱離する小分子がないものをいう。例えば、1分子のアルコールと1分子のイソ(チオ)シアネートとが反応するとウレタン結合が生じ、2つの分子から、それぞれの分子量を足し合わせた分子量の新しい分子が1つ生じる。このとき、反応するそれぞれの分子の中に水酸基又はイソ(チオ)シナネート基が複数あると、反応による分子間結合が複数の分子間で生成して巨大分子となり、結果として硬化することになる。これがポリウレタンである。水酸基の代わりにチオール基を用いる場合はポリチオウレタン、アミノ基を用いる場合はポリウレアとなる。 In general, addition polymerization refers to those in which there are no small molecules to be eliminated when two types of functional groups react to form a new bond. For example, when one molecule of alcohol reacts with one molecule of isothiocyanate, a urethane bond is formed, and from the two molecules, one new molecule having a molecular weight obtained by adding the respective molecular weights is generated. At this time, if there are a plurality of hydroxyl groups or iso (thio) cyanate groups in each of the reacting molecules, an intermolecular bond due to the reaction is formed between the plurality of molecules to become a macromolecule, and as a result, the molecule is cured. This is polyurethane. When a thiol group is used instead of a hydroxyl group, it is polythiourethane, and when an amino group is used, it is polyurea.
 上記の付加重合のうち特に好ましいものは、ポリ(チオ)ウレタン又はポリウレアとなる付加重合である。 Of the above-mentioned addition polymerizations, the one particularly preferable is the addition polymerization which becomes poly (thio) urethane or polyurea.
 上述したリン酸エステル結合ビスマス化合物とラジカル重合性単量体との混合物は、ラジカル重合により硬化体となるが、付加重合を起こす重合性単量体が同時に存在して異なる重合を起こすと、両者の高分子鎖が化学結合としては独立しているが分子鎖としては互いに絡み合った相互貫入型硬化体となる。この相互貫入型硬化体は、竹かごのように編み込まれたような状態となって、外部ストレスに対して強い耐性を持つことがあり、硬化体の機械特性の向上に寄与する。 The above-mentioned mixture of the phosphate ester-bonded bismuth compound and the radically polymerizable monomer becomes a cured product by radical polymerization, but when the polymerizable monomer that causes addition polymerization exists at the same time and causes different polymerization, both of them. The polymer chains of the above are independent as chemical bonds, but as molecular chains, they are entangled with each other to form a mutually penetrating cured product. This mutual intrusive hardened body may be in a state of being woven like a bamboo basket and may have strong resistance to external stress, which contributes to the improvement of the mechanical properties of the hardened body.
 なお、ポリ(チオ)ウレタン又はポリウレアを得るためには、通常、スズ化合物等の触媒が必要であるが、リン酸エステル結合ビスマス化合物に含まれるビスマスは、そのまま触媒として機能する。したがって、本実施形態においては、触媒を別途添加しなくてもよいが、必要に応じて、公知の触媒を何ら制限なく組み合わせて用いてもよい。 In order to obtain poly (thio) urethane or polyurea, a catalyst such as a tin compound is usually required, but the bismuth contained in the phosphate ester-bonded bismuth compound functions as it is. Therefore, in the present embodiment, it is not necessary to add a catalyst separately, but if necessary, known catalysts may be used in combination without any limitation.
 また、ラジカル発生条件下では、チオールとアルケンとが付加反応(エン・チオール反応)を起こすことが知られている。ラジカル重合性単量体と後述する多官能チオール基含有単量体とを用いることにより、エン・チオール反応による疑似重合が起こって、硬化体の機械特性の向上に寄与する。 It is also known that thiols and alkenes cause an addition reaction (en-thiol reaction) under radical generation conditions. By using the radically polymerizable monomer and the polyfunctional thiol group-containing monomer described later, pseudopolymerization by an en-thiol reaction occurs, which contributes to the improvement of the mechanical properties of the cured product.
 以下、ポリ(チオ)ウレタンに用いられるポリ(チオ)ウレタン重合性単量体、及びポリウレアに用いられるポリウレア重合性単量体について説明する。 Hereinafter, the poly (thio) urethane polymerizable monomer used for poly (thio) urethane and the polyurea polymerizable monomer used for polyurea will be described.
[ポリ(チオ)ウレタン重合性単量体]
 ポリウレタンを得るには、2種類のポリ(チオ)ウレタン重合性単量体、すなわち多官能イソ(チオ)シアネート単量体と、多官能水酸基含有単量体又は多官能チオール基含有単量体とを用いる。より高分子量のポリウレタンを得るためには、含まれるイソ(チオ)シアネート基のモル数と、水酸基又はチオール基の合計のモル数とを、できるだけ等しくする必要がある。
[Poly (thio) urethane polymerizable monomer]
To obtain polyurethane, two types of poly (thio) urethane polymerizable monomers, that is, a polyfunctional iso (thio) cyanate monomer and a polyfunctional hydroxyl group-containing monomer or a polyfunctional thiol group-containing monomer are used. Is used. In order to obtain a higher molecular weight polyurethane, it is necessary to make the number of moles of the iso (thio) cyanate group contained and the total number of moles of the hydroxyl group or the thiol group as equal as possible.
(多官能イソ(チオ)シアネート化合物)
 多官能イソ(チオ)シアネート化合物は、イソシアネート基及び/又はイソチオシアネート基を1分子中に少なくとも2個有する化合物である。中でも、イソ(チオ)シアネート基を分子内に2~6個有する化合物が好ましく、2~4個有する化合物がより好ましく、2~3個有する化合物がさらに好ましい。
(Polyfunctional iso (thio) cyanate compound)
A polyfunctional iso (thio) cyanate compound is a compound having at least two isocyanate groups and / or isothiocyanate groups in one molecule. Among them, a compound having 2 to 6 iso (thio) cyanate groups in the molecule is preferable, a compound having 2 to 4 is more preferable, and a compound having 2 to 3 is further preferable.
 多官能イソ(チオ)シアネート化合物は、イソシアネート基及び/又はイソチオシアネート基を1分子中に2個有する2官能イソ(チオ)シアネート化合物と、1分子中に2個の活性水素含有基を有する2官能活性水素含有化合物との反応により製造される、両末端にイソ(チオ)シアネート基を有するウレタンプレポリマーであってもよい。該ウレタンプレポリマーとしては、未反応のイソシアネート基又はイソチオシアネート基を2個以上含むものを何ら制限なく使用でき、イソシアネート基を2個以上含むウレタンプレポリマーであることが好ましい。なお、活性水素含有基とは、水酸基、チオール基、及びアミノ基から選ばれる基である。 The polyfunctional iso (thio) cyanate compound has a bifunctional iso (thio) cyanate compound having two isocyanate groups and / or isothiocyanate groups in one molecule, and two active hydrogen-containing groups in one molecule. It may be a urethane prepolymer having an isothiocyanate group at both ends, which is produced by a reaction with a functionally active hydrogen-containing compound. As the urethane prepolymer, one containing two or more unreacted isocyanate groups or isothiocyanate groups can be used without any limitation, and a urethane prepolymer containing two or more isocyanate groups is preferable. The active hydrogen-containing group is a group selected from a hydroxyl group, a thiol group, and an amino group.
 多官能イソ(チオ)シアネート化合物は、脂肪族イソシアネート、脂環族イソシアネート、芳香族イソシアネート、イソチオシアネート、その他のイソシアネート、ウレタンプレポリマーに分類することができる。多官能イソ(チオ)シアネート化合物は、1種類の化合物を使用してもよく、複数種類の化合物を使用してもよい。複数種類の化合物を使用する場合、基準となる質量は、複数種類の化合物の合計量である。 Polyfunctional iso (thio) cyanate compounds can be classified into aliphatic isocyanates, alicyclic isocyanates, aromatic isocyanates, isothiocyanates, other isocyanates, and urethane prepolymers. As the polyfunctional iso (thio) cyanate compound, one kind of compound may be used, or a plurality of kinds of compounds may be used. When a plurality of types of compounds are used, the reference mass is the total amount of the plurality of types of compounds.
 脂肪族イソシアネートとしては、例えば、エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-トリメチルウンデカメチレンジイソシアネート、1,3,6-トリメチルヘキサメチレンジイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアネートメチルオクタン、ビス(イソシアネートエチル)カーボネート、ビス(イソシアネートエチル)エーテル、1,4-ブチレングリコールジプロピルエーテル-ω,ω’-ジイソシアネート、リジンジイソシアネートメチルエステル、2,4,4,-トリメチルヘキサメチレンジイソシアネート等の2官能イソシアネートが挙げられる。 Examples of the aliphatic isocyanate include ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, 2,2'-dimethylpentane diisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate. , Decamethylene diisocyanate, Buten diisocyanate, 1,3-butadiene-1,4-diisisethylene, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-trimethylundecamethylene diisocyanate, 1,3,6-trimethyl Hexamethylene diisocyanate, 1,8-diisocyanis-4-isocyanismethyloctane, 2,5,7-trimethyl-1,8-diisocyanis-5-isocyanismethyloctane, bis (isocyanisethyl) carbonate, bis (isocyanisethyl) ether, Bifunctional isocyanates such as 1,4-butylene glycol dipropyl ether-ω, ω'-diisocyanis, lysine diisocyanate methyl ester, and 2,4,4, -trimethylhexamethylene diisocyanate can be mentioned.
 脂環族イソシアネートとしては、例えば、イソホロンジイソシアネート、(ビシクロ〔2.2.1〕ヘプタン-2,5-ジイル)ビスメチレンジイソシアネート、(ビシクロ〔2.2.1〕ヘプタン-2,6-ジイル)ビスメチレンジイソシアネート、2β,5α-ビス(イソシアネート)ノルボルナン、2β,5β-ビス(イソシアネート)ノルボルナン、2β,6α-ビス(イソシアネート)ノルボルナン、2β,6β-ビス(イソシアネート)ノルボルナン、2,6-ジ(イソシアネートメチル)フラン、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、4,4-イソプロピリデンビス(シクロヘキシルイソシアネート)、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ビス(4-イソシアネート-n-ブチリデン)ペンタエリスリトール、ダイマー酸ジイソシアネート、2,5-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、2,6-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、3,8-ビス(イソシアネートメチル)トリシクロデカン、3,9-ビス(イソシアネートメチル)トリシクロデカン、4,8-ビス(イソシアネートメチル)トリシクロデカン、4,9-ビス(イソシアネートメチル)トリシクロデカン、1,5-ジイソシアネートデカリン、2,7-ジイソシアネートデカリン、1,4-ジイソシアネートデカリン、2,6-ジイソシアネートデカリン、ビシクロ〔4.3.0〕ノナン-3,7-ジイソシアネート、ビシクロ〔4.3.0〕ノナン-4,8-ジイソシアネート、ビシクロ〔2.2.1〕ヘプタン-2,5-ジイソシアネートとビシクロ〔2.2.1〕ヘプタン-2,6-ジイソシアネート、ビシクロ〔2,2,2〕オクタン-2,5-ジイソシアネート、ビシクロ〔2,2,2〕オクタン-2,6-ジイソシアネート、トリシクロ〔5.2.1.02.6〕デカン-3,8-ジイソシアネート、トリシクロ〔5.2.1.02.6〕デカン-4,9-ジイソシアネート等の2官能イソシアネート;2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,1,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、1,3,5-トリス(イソシアネートメチル)シクロヘキサン等の多官能イソシアネート;などが挙げられる。 Examples of the alicyclic isocyanate include isophorone diisocyanate, (bicyclo [2.2.1] heptane-2,5-diyl) bismethylene diisocyanate, and (bicyclo [2.2.1] heptane-2,6-diyl). Bismethylene diisocyanate, 2β, 5α-bis (isocyanate) norbornan, 2β, 5β-bis (isocyanate) norbornan, 2β, 6α-bis (isocyanate) norbornan, 2β, 6β-bis (isocyanate) norbornan, 2,6-di (isocyanate) Isocyanatemethyl) furan, bis (isocyanatemethyl) cyclohexane, dicyclohexylmethane-4,4'-diisocyanate, 4,4-isopropylidenebis (cyclohexylisocyanate), cyclohexanediisocyanate, methylcyclohexanediisocyanate, dicyclohexyldimethylmethanediisocyanate, 2,2' -Dimethyldicyclohexylmethane diisocyanate, bis (4-isocyanate-n-butylidene) pentaerythritol, diisocyanate dimerate, 2,5-bis (isocyanatemethyl) -bicyclo [2,2,1] -heptane, 2,6-bis ( Isocyanatemethyl) -bicyclo [2,2,1] -heptane, 3,8-bis (isocyanatemethyl) tricyclodecane, 3,9-bis (isocyanatemethyl) tricyclodecane, 4,8-bis (isocyanatemethyl) Tricyclodecane, 4,9-bis (isocyanatemethyl) tricyclodecane, 1,5-diisocyanate decalin, 2,7-diisocyanate decalin, 1,4-diisocyanate decalin, 2,6-diisocyanate decalin, bicyclo [4.3] .0] Nonan-3,7-diisocyanate, bicyclo [4.3.0] nonan-4,8-diisocyanate, bicyclo [2.2.1] heptane-2,5-diisocyanate and bicyclo [2.2.1] ] Heptane-2,6-diisocyanate, bicyclo [2,2,2] octane-2,5-diisocyanate, bicyclo [2,2,2] octane-2,6-diisocyanate, tricyclo [5.2.1.02] .6] Bifunctional isocyanates such as decane-3,8-diisocyanate, tricyclo [5.2.1.02.6] decane-4,9-diisocyanate; 2-isocyanatemethyl-3- (3-isocyanatepropyl)- 5-Isocyanate Methyl-bicyclo [2,2,1]- Heptane, 2-isocyanatemethyl-3- (3-isocyanatepropyl) -6-isocyanatemethyl-bicyclo [2,2,1] -heptane, 2-isocyanatemethyl-2- (3-isocyanatepropyl) -5-isocyanatemethyl -Vicyclo [2,2,1] -heptane, 2-isocyanatemethyl-2- (3-isocyanatepropyl) -6-isocyanatemethyl-bicyclo [2,2,1] -heptane, 2-isocyanatemethyl-3-( 3-Isocyanatepropyl) -5- (2-Isocyanateethyl) -bicyclo [2,2,1] -heptane, 2-isocyanatemethyl-3- (3-isocyanatepropyl) -6- (2-isocyanateethyl) -bicyclo [2,1,1] -heptane, 2-isocyanatemethyl-2- (3-isocyanatepropyl) -5- (2-isocyanateethyl) -bicyclo [2,2,1] -heptane, 2-isocyanatemethyl-2 -(3-Isocyanatepropyl) -6- (2-isocyanateethyl) -bicyclo [2,2,1] -heptane, 1,3,5-polyfunctional isocyanate such as tris (isocyanatemethyl) cyclohexane; and the like. ..
 芳香族イソシアネートとしては、例えば、キシリレンジイソシアネート(o-、m-,p-)、テトラクロロ-m-キシリレンジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネート、4-クロル-m-キシリレンジイソシアネート、4,5-ジクロル-m-キシリレンジイソシアネート、2,3,5,6-テトラブロム-p-キシリレンジイソシアネート、4-メチル-m-キシリレンジイソシアネート、4-エチル-m-キシリレンジイソシアネート、ビス(イソシアネートエチル)ベンゼン、ビス(イソシアネートプロピル)ベンゼン、1,3-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、1,4-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、ビス(イソシアネートブチル)ベンゼン、ビス(イソシアネートメチル)ナフタリン、ビス(イソシアネートメチル)ジフェニルエーテル、ビス(イソシアネートエチル)フタレート、2,6-ジ(イソシアネートメチル)フラン、フェニレンジイソシアネート(o-,m-,p-)、トリレンジイソシアネート、エチルフェニレンジイソシアネート、イソプロピルフェニレンジイソシアネート、ジメチルフェニレンジイソシアネート、ジエチルフェニレンジイソシアネート、ジイソプロピルフェニレンジイソシアネート、トリメチルベンゼントリイソシアネート、ベンゼントリイソシアネート、1,3,5-トリイソシアネートメチルベンゼン、1,5-ナフタレンジイソシアネート、メチルナフタレンジイソシアネート、ビフェニルジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、ビベンジル-4,4’-ジイソシアネート、ビス(イソシアネートフェニル)エチレン、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、フェニルイソシアネートメチルイソシアネート、フェニルイソシアネートエチルイソシアネート、テトラヒドロナフチレンジイソシアネート、ヘキサヒドロベンゼンジイソシアネート、ヘキサヒドロジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテルジイソシアネート、エチレングリコ-ルジフェニルエーテルジイソシアネート、1,3-プロピレングリコールジフェニルエーテルジイソシアネート、ベンゾフェノンジイソシアネート、ジエチレングリコ-ルジフェニルエーテルジイソシアネート、ジベンゾフランジイソシアネート、カルバゾールジイソシアネート、エチルカルバゾールジイソシアネート、ジクロロカルバゾールジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等の2官能イソシアネート;メシチリレントリイソシアネート、トリフェニルメタントリイソシアネート、ポリメリックMDI、ナフタリントリイソシアネート、ジフェニルメタン-2,4,4’-トリイソシアネート、3-メチルジフェニルメタン-4,4’,6-トリイソシアネート、4-メチル-ジフェニルメタン-2,3,4’,5,6-ペンタイソシアネート等の多官能イソシアネート化合物;などが挙げられる。 Examples of the aromatic isocyanate include xylylene diisocyanate (o-, m-, p-), tetrachloro-m-xylylene diisocyanate, methylenediphenyl-4,4'-diisocyanate, 4-chlor-m-xylylene diisocyanate. , 4,5-Dichlor-m-xylylene diisocyanate, 2,3,5,6-tetrabrom-p-xylylene diisocyanate, 4-methyl-m-xylylene diisocyanate, 4-ethyl-m-xylylene diisocyanate, bis (Isocyanate ethyl) benzene, bis (isocyanate propyl) benzene, 1,3-bis (α, α-dimethylisocyanatemethyl) benzene, 1,4-bis (α, α-dimethylisocyanatemethyl) benzene, α, α, α ', α'-Tetramethylxylylene diisocyanate, bis (isocyanate butyl) benzene, bis (isocyanate methyl) naphthalin, bis (isocyanate methyl) diphenyl ether, bis (isocyanate ethyl) phthalate, 2,6-di (isocyanate methyl) furan, Phenylene diisocyanate (o-, m-, p-), tolylene diisocyanate, ethyl phenylenedi isocyanate, isopropyl phenylenedi isocyanate, dimethyl phenylenedi isocyanate, diethyl phenylenedi isocyanate, diisopropyl phenylenedi isocyanate, trimethylbenzene triisocyanate, benzene triisocyanate, 1,3 5-Triisocyanate Methyl benzene, 1,5-naphthalenediocyanate, Methylnaphthalenedi isocyanate, Biphenyldiisocyanate, 2,4-Torrenji isocyanate, 2,6-Tolylene diisocyanate, 4,4'-Diphenylmethane diisocyanate, 2,2'- Diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, bibenzyl-4,4'-diisocyanate, bis (isocyanatephenyl) ethylene, 3,3'-dimethoxybiphenyl- 4,4'-diisocyanate, phenylisocyanate methyl isocyanate, phenylisocyanate ethyl isocyanate, tetrahydronaphthylene diisocyanate, hexahydrobenzene diisocyanate, hexahydrodiphenylmethane-4,4'-diisocyanate, diph Enyl ether diisocyanate, ethylene glycol diphenyl ether diisocyanate, 1,3-propylene glycol diphenyl ether diisocyanate, benzophenone diisocyanate, diethylene glycol diphenyl ether diisocyanate, dibenzofrangisocyanate, carbazole diisocyanate, ethylcarbazole diisocyanate, dichlorocarbazole diisocyanate, 2,4-tolylene diisocyanate , 2,6-Tolylene diisocyanate and other bifunctional isocyanates; mesityrylene triisocyanate, triphenylmethane triisocyanate, polypeptide MDI, naphthalin triisocyanate, diphenylmethane-2,4,4'-triisocyanate, 3-methyldiphenylmethane- Polyfunctional isocyanate compounds such as 4,4', 6-triisocyanate, 4-methyl-diphenylmethane-2,3,4', 5,6-pentaisocyanate; and the like.
 イソチオシアネートとしては、例えば、p-フェニレンジイソチオシアネート、キシリレン-1,4-ジイソチオシアネート、エチリジンジイソチオシアネート等の2官能イソチオシアネートが挙げられる。 Examples of the isothiocyanate include bifunctional isothiocyanates such as p-phenylenedi isothiocyanate, xylylene-1,4-diisothiocyanate, and ethylidine diisothiocyanate.
 その他のイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、トリレンジイソシアネート等のジイソシアネート類を主原料としたビュレット構造、ウレトジオン構造、イソシアヌレート構造を有する多官能イソシアネート(例えば、特開2004-534870号公報には、脂肪族ポリイソシアネートのビュレット構造、ウレトジオン構造、イソシアヌレート構造の変性の方法が開示されている);トリメチロールプロパン等の3官能以上のポリオールとのアダクト体として多官能としたもの;などが挙げられる(「岩田敬治編、ポリウレタン樹脂ハンドブック、日刊工業新聞社(1987)」等を参照)。 Examples of other isocyanates include polyfunctional isocyanates having a bullet structure, a uretdione structure, and an isocyanurate structure using diisocyanates such as hexamethylene diisocyanate and trimethylolocyanate as main raw materials (for example, Japanese Patent Application Laid-Open No. 2004-534870). , A method for modifying the bullet structure, uretdione structure, and isocyanurate structure of an aliphatic polyisocyanate is disclosed); a polyfunctional adduct with a trifunctional or higher functional polyol such as trimethylolpropane; etc. (See "Keiji Iwata ed., Polyurethane Resin Handbook, Nikkan Kogyo Shimbun (1987)", etc.).
(多官能水酸基含有単量体)
 多官能水酸基含有単量体は、水酸基を1分子中に少なくとも2個有する化合物である。多官能水酸基含有単量体は、脂肪族アルコール、脂環族アルコール、芳香族アルコール、ポリエステルポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオール、ポリアクリルポリオールに分類することができる。
(Polymer containing polyfunctional hydroxyl group)
The polyfunctional hydroxyl group-containing monomer is a compound having at least two hydroxyl groups in one molecule. Polyfunctional hydroxyl group-containing monomers can be classified into aliphatic alcohols, alicyclic alcohols, aromatic alcohols, polyester polyols, polyether polyols, polycaprolactone polyols, polycarbonate polyols, and polyacrylic polyols.
 脂肪族アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、1,5-ジヒドロキシペンタン、1,6-ジヒドロキシヘキサン、1,7-ジヒドロキシヘプタン、1,8-ジヒドロキシオクタン、1,9-ジヒドロキシノナン、1,10-ジヒドロキシデカン、1,11-ジヒドロキシウンデカン、1,12-ジヒドロキシドデカン、ネオペンチルグリコール、モノオレイン酸グリセリル、モノエライジン、ポリエチレングリコール、3-メチル-1,5-ジヒドロキシペンタン、ジヒドロキシネオペンチル、2-エチル-1,2-ジヒドロキシヘキサン、2-メチル-1,3-ジヒドロキシプロパン等の2官能ポリオール;グリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、トリメチロールプロパントリポリオキシエチレンエーテル(例えば、日本乳化剤株式会社のTMP-30、TMP-60、TMP-90等)、ブタントリオール、1,2-メチルグルコサイド、ペンタエリトリトール、ジペンタエリトリトール、トリペンタエリトリトール、ソルビトール、エリスリトール、スレイトール、リビトール、アラビニトール、キシリトール、アリトール、マンニトール、ドルシトール、イディトール、グリコール、イノシトール、ヘキサントリオール、トリグリセロール、ジグリセロール、トリエチレングリコール等の多官能ポリオール;などが挙げられる。 Examples of the aliphatic alcohol include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,5-dihydroxypentane, 1,6-dihydroxyhexane, 1,7-dihydroxyheptane, and 1,8-dihydroxyoctane. , 1,9-Dihydroxynonane, 1,10-dihydroxydecane, 1,11-dihydroxyundecane, 1,12-dihydroxydodecane, neopentyl glycol, glyceryl monooleate, monoeridine, polyethylene glycol, 3-methyl-1, Bifunctional polyols such as 5-dihydroxypentane, dihydroxyneopentyl, 2-ethyl-1,2-dihydroxyhexane, 2-methyl-1,3-dihydroxypropane; glycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, Trimethylolpropane Tripolyoxyethylene ether (for example, TMP-30, TMP-60, TMP-90, etc. of Nippon Embroidery Co., Ltd.), butanetriol, 1,2-methylglucoside, pentaerythritol, dipentaerytritor, tripentaerythritol , Sorbitol, erythritol, threitol, rivitol, arabinitol, xylitol, aritol, mannitol, dolsitol, imidazole, glycol, inositol, hexanetriol, triglycerol, diglycerol, triethylene glycol and the like.
 脂環族アルコールとしては、例えば、水添ビスフェノールA、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ〔5,2,1,02,6〕デカン-ジメタノール、ビシクロ〔4,3,0〕-ノナンジオール、ジシクロヘキサンジオール、トリシクロ〔5,3,1,13,9〕ドデカンジオール、ビシクロ〔4,3,0〕ノナンジメタノール、トリシクロ〔5,3,1,13,9〕ドデカン-ジエタノール、ヒドロキシプロピルトリシクロ〔5,3,1,13,9〕ドデカノール、スピロ〔3,4〕オクタンジオール、ブチルシクロヘキサンジオール、1,1’-ビシクロヘキシリデンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、o-ジヒドロキシキシリレン等の2官能ポリオール;トリス(2-ヒドロキシエチル)イソシアヌレート、シクロヘキサントリオール、スクロース、マルチトール、ラクチトール等の多官能ポリオール;などが挙げられる。 Examples of the alicyclic alcohol include hydrogenated bisphenol A, cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclohexanedimethanol, hydroxypropylcyclohexanol, and tricyclo [5,2,1,02]. , 6] Decane-dimethanol, bicyclo [4,3,0] -nonanediol, dicyclohexanediol, tricyclo [5,3,1,13,9] dodecanediol, bicyclo [4,3,0] nonanedimethanol , Tricyclo [5,3,1,13,9] dodecane-diethanol, hydroxypropyltricyclo [5,3,1,13,9] dodecanol, spiro [3,4] octanediol, butylcyclohexanediol, 1,1 Bifunctional polyols such as'-bicyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, o-dihydroxyxylylene; tris (2-hydroxyethyl) Polyfunctional polyols such as isocyanurate, cyclohexanetriol, sucrose, martitol, and lactitol; and the like.
 芳香族アルコールとしては、例えば、ジヒドロキシナフタレン、ジヒドロキシベンゼン、ビスフェノールA、ビスフェノールF、キシリレングリコール、テトラブロムビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)-1-ナフチルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2-(4-ヒドロキシフェニル)-2-(3-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)トリデカン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-エチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-n-プロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-イソプロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-sec-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アリル-4’-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(2,3,5,6-テトラメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)シアノメタン、1-シアノ-3,3-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘプタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル、エチレングリコールビス(4-ヒドロキシフェニル)エーテル、4,4’-ジヒドロキシジフェニルスルフィド、3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルフィド、3,3’-ジシクロヘキシル-4,4’-ジヒドロキシジフェニルスルフィド、3,3’-ジフェニル-4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルスルホキシド、3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシ-3-メチルフェニル)ケトン、7,7’-ジヒドロキシ-3,3’,4,4’-テトラヒドロ-4,4,4’,4’-テトラメチル-2,2’-スピロビ(2H-1-ベンゾピラン)、トランス-2,3-ビス(4-ヒドロキシフェニル)-2-ブテン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、3,3-ビス(4-ヒドロキシフェニル)-2-ブタノン、1,6-ビス(4-ヒドロキシフェニル)-1,6-ヘキサンジオン、4,4’-ジヒドロキシビフェニル、m-ジヒドロキシキシリレン、p-ジヒドロキシキシリレン、1,4-ビス(2-ヒドロキシエチル)ベンゼン、1,4-ビス(3-ヒドロキシプロピル)ベンゼン、1,4-ビス(4-ヒドロキシブチル)ベンゼン、1,4-ビス(5-ヒドロキシペンチル)ベンゼン、1,4-ビス(6-ヒドロキシヘキシル)ベンゼン、2,2-ビス〔4-(2’-ヒドロキシエチルオキシ)フェニル〕プロパン、ハイドロキノン、レゾールシン等の2官能ポリオール;トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ベンゼントリオール、ビフェニルテトラオール、ピロガロール、(ヒドロキシナフチル)ピロガロール、トリヒドロキシフェナントレン等の多官能ポリオール;などが挙げられる。 Examples of the aromatic alcohol include dihydroxynaphthalene, dihydroxybenzene, bisphenol A, bisphenol F, xylylene glycol, tetrabrom bisphenol A, bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) ethane. , 1,2-bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) -1-naphthylmethane, 1,1- Bis (4-hydroxyphenyl) -1-phenylethane, 2- (4-hydroxyphenyl) -2- (3-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-Hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 3,3-bis (4-hydroxyphenyl) pentane, 2,2-Bis (4-hydroxyphenyl) hexane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 2,2-bis (4) -Hydroxyphenyl) heptane, 4,4-bis (4-hydroxyphenyl) heptane, 2,2-bis (4-hydroxyphenyl) tridecane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-Methyl-4-hydroxyphenyl) propane, 2,2-bis (3-ethyl-4-hydroxyphenyl) propane, 2,2-bis (3-n-propyl-4-hydroxyphenyl) propane, 2, 2-Bis (3-isopropyl-4-hydroxyphenyl) propane, 2,2-bis (3-sec-butyl-4-hydroxyphenyl) propane, 2,2-bis (3-tert-butyl-4-hydroxyphenyl) ) Propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 2,2-bis (3-allyl-4'-hydroxyphenyl) propane, 2,2-bis (3-methoxy-4-hydroxyphenyl) Hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (2,3,5,6-tetramethyl-4-hydroxyphenyl) propane, bis ( 4-Hydroxyphenyl) cyanomethane, 1-cyano-3,3-bis (4-hydroxyphenyl) butane , 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4) -Hydroxyphenyl) cycloheptane, 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane, 1,1-bis (3) , 5-Dichloro-4-hydroxyphenyl) cyclohexane, 1,1-bis (3-methyl-4-hydroxyphenyl) -4-methylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5 -Trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) norbornane, 2,2-bis (4-hydroxyphenyl) adamantan, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'- Dimethyldiphenyl ether, ethylene glycol bis (4-hydroxyphenyl) ether, 4,4'-dihydroxydiphenylsulfide, 3,3'-dimethyl-4,4'-dihydroxydiphenylsulfide, 3,3'-dicyclohexyl-4,4' -Dihydroxydiphenylsulfide, 3,3'-diphenyl-4,4'-dihydroxydiphenylsulfide, 4,4'-dihydroxydiphenylsulfoxide, 3,3'-dimethyl-4,4'-dihydroxydiphenylsulfoxide, 4,4' -Dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone, bis (4-hydroxyphenyl) ketone, bis (4-hydroxy-3-methylphenyl) ketone, 7,7'-dihydroxy- 3,3', 4,4'-tetrahydro-4,4,4', 4'-tetramethyl-2,2'-spirobi (2H-1-benzopyran), trans-2,3-bis (4-hydroxy) Phenyl) -2-butene, 9,9-bis (4-hydroxyphenyl) fluorene, 3,3-bis (4-hydroxyphenyl) -2-butanone, 1,6-bis (4-hydroxyphenyl) -1, 6-Hexanedione, 4,4'-dihydroxybiphenyl, m-dihydroxyxylylene, p-dihydroxyxylylene, 1,4-bis (2-hydroxyethyl) benzene, 1,4-bis (3-hydroxypropyl) benzene , 1,4-Bis (4-hydroxybutyl) Benzene Zen, 1,4-bis (5-hydroxypentyl) benzene, 1,4-bis (6-hydroxyhexyl) benzene, 2,2-bis [4- (2'-hydroxyethyloxy) phenyl] propane, hydroquinone, Bifunctional polyols such as resorcin; polyfunctional polyols such as trihydroxynaphthalene, tetrahydroxynaphthalene, benzenetriol, biphenyltetraol, pyrogallol, (hydroxynaphthyl) pyrogallol, and trihydroxyphenanthrene; and the like.
 ポリエステルポリオールとしては、例えば、ポリオールと多塩基酸との縮合反応により得られる化合物が挙げられる。中でも、数平均分子量が400~2000であるものが好ましく、500~1500であるものがより好ましく、600~1200であるものがさらに好ましい。なお、分子の両末端にのみ(分子内に2個の)水酸基を有するものは、上述したウレタンプレポリマーを構成する2官能活性水素含有化合物に該当する。 Examples of the polyester polyol include compounds obtained by a condensation reaction between a polyol and a polybasic acid. Among them, those having a number average molecular weight of 400 to 2000 are preferable, those having a number average molecular weight of 500 to 1500 are more preferable, and those having a number average molecular weight of 600 to 1200 are further preferable. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the above-mentioned bifunctional active hydrogen-containing compound constituting the urethane prepolymer.
 ポリエーテルポリオールとしては、例えば、アルキレンオキシドの開環重合、又は分子中に活性水素含有基を2個以上有する化合物とアルキレンオキサイドとの反応により得られる化合物、及びその変性体が挙げられる。中でも、数平均分子量が400~2000であるものが好ましく、500~1500であるものがより好ましく、600~1200であるものがさらに好ましい。なお、分子の両末端にのみ(分子内に2個の)水酸基を有するものは、上述したウレタンプレポリマーを構成する2官能活性水素含有化合物に該当する。 Examples of the polyether polyol include a compound obtained by ring-opening polymerization of an alkylene oxide or a reaction between a compound having two or more active hydrogen-containing groups in the molecule and an alkylene oxide, and a modified product thereof. Among them, those having a number average molecular weight of 400 to 2000 are preferable, those having a number average molecular weight of 500 to 1500 are more preferable, and those having a number average molecular weight of 600 to 1200 are further preferable. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the above-mentioned bifunctional active hydrogen-containing compound constituting the urethane prepolymer.
 ポリカプロラクトンポリオールとしては、例えば、ε-カプロラクトンの開環重合により得られる化合物が挙げられる。中でも、数平均分子量が400~2000であるものが好ましく、500~1500であるものがより好ましく、600~1200であるものがさらに好ましい。なお、分子の両末端にのみ(分子内に2個の)水酸基を有するものは、上述したウレタンプレポリマーを構成する2官能活性水素含有化合物に該当する。 Examples of the polycaprolactone polyol include a compound obtained by ring-opening polymerization of ε-caprolactone. Among them, those having a number average molecular weight of 400 to 2000 are preferable, those having a number average molecular weight of 500 to 1500 are more preferable, and those having a number average molecular weight of 600 to 1200 are further preferable. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the above-mentioned bifunctional active hydrogen-containing compound constituting the urethane prepolymer.
 ポリカーボネートポリオールとしては、例えば、低分子ポリオールの1種類以上をホスゲン化して得られる化合物、或いはエチレンカーボネート、ジエチルカーボネート、ジフェニルカーボネート等を用いてエステル交換して得られる化合物が挙げられる。中でも、数平均分子量が400~2000であるものが好ましく、500~1500であるものがより好ましく、600~1200であるものがさらに好ましい。なお、分子の両末端にのみ(分子内に2個の)水酸基を有するものは、上述したウレタンプレポリマーを構成する2官能活性水素含有化合物に該当する。 Examples of the polycarbonate polyol include a compound obtained by phosgenating one or more kinds of low molecular weight polyols, or a compound obtained by transesterifying with ethylene carbonate, diethyl carbonate, diphenyl carbonate or the like. Among them, those having a number average molecular weight of 400 to 2000 are preferable, those having a number average molecular weight of 500 to 1500 are more preferable, and those having a number average molecular weight of 600 to 1200 are further preferable. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the above-mentioned bifunctional active hydrogen-containing compound constituting the urethane prepolymer.
 ポリアクリルポリオールとしては、(メタ)アクリル酸エステルやビニルモノマーを重合させて得られるポリオール化合物が挙げられる。なお、分子の両末端にのみ(分子内に2個の)水酸基を有するものは、上述したウレタンプレポリマーを構成する2官能活性水素含有化合物に該当する。 Examples of the polyacrylic polyol include a (meth) acrylic acid ester and a polyol compound obtained by polymerizing a vinyl monomer. Those having hydroxyl groups (two in the molecule) only at both ends of the molecule correspond to the above-mentioned bifunctional active hydrogen-containing compound constituting the urethane prepolymer.
(多官能チオール基含有単量体)
 多官能チオール基含有単量体は、チオール基を1分子中に少なくとも2個有する化合物である。
(Polymer containing polyfunctional thiol group)
The polyfunctional thiol group-containing monomer is a compound having at least two thiol groups in one molecule.
 多官能チオール基含有単量体としては、例えば、国際公開第2015/068798号に記載されているものを用いることができる。好ましいものとしては、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,6-ヘキサンジオールビス(3-メルカプトプロピオネート)、1,4-ビス(メルカプトプロピルチオメチル)ベンゼン等の2官能ポリオール;トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、2,2-ビス(メルカプトメチル)-1,4-ブタンジチオール、2,5-ビス(メルカプトメチル)-1,4-ジチアン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、1,1,1,1-テトラキス(メルカプトメチル)メタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス-{(3-メルカプトプロピオニルオキシ)エチル}-イソシアヌレ-ト等の多官能チオール;などが挙げられる。 As the polyfunctional thiol group-containing monomer, for example, those described in International Publication No. 2015/068798 can be used. Preferred are tetraethylene glycol bis (3-mercaptopropionate), 1,4-butanediol bis (3-mercaptopropionate), 1,6-hexanediol bis (3-mercaptopropionate), and the like. Bifunctional polyols such as 1,4-bis (mercaptopropylthiomethyl) benzene; trimethylolpropanthris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakiss (3) -Mercaptopropionate), 1,2-bis [(2-mercaptoethyl) thio] -3-mercaptopropane, 2,2-bis (mercaptomethyl) -1,4-butanedithiol, 2,5-bis ( Mercaptomethyl) -1,4-dithian, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 1,1,1,1-tetrakis (mercaptomethyl) methane, 1,1,3,3- Tetrakiss (mercaptomethylthio) propane, 1,1,2,2-tetrakis (mercaptomethylthio) ethane, 4,6-bis (mercaptomethylthio) -1,3-dithian, tris-{(3-mercaptopropionyloxy) ethyl} -Polyfunctional thiols such as isocyanurate; and the like.
[ポリウレア重合性単量体]
 ポリウレアを得るには、2種類のポリウレア重合性単量体、すなわち上述した多官能イソ(チオ)シアネート単量体と、多官能アミノ基単量体とを用いる。
[Polyurea polymerizable monomer]
In order to obtain polyurea, two kinds of polyurea polymerizable monomers, that is, the above-mentioned polyfunctional iso (thio) cyanate monomer and polyfunctional amino group monomer are used.
(多官能アミノ基単量体)
 多官能アミノ基単量体としては、1級及び/又は2級のアミノ基を1分子中に2個以上有している化合物であれば特に制限されない。多官能アミノ基含有単量体は、脂肪族アミン、脂環式アミン、芳香族アミンに分類することができる。
(Polyfunctional amino group monomer)
The polyfunctional amino group monomer is not particularly limited as long as it is a compound having two or more primary and / or secondary amino groups in one molecule. Polyfunctional amino group-containing monomers can be classified into aliphatic amines, alicyclic amines, and aromatic amines.
 脂肪族アミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカンメチレンジアミン、ドデカメチレンジアミン、メタキシレンジアミン、1,3-プロパンジアミン、プトレシン等の2官能アミン;ジエチレントリアミン等のポリアミン等の多官能アミン;などが挙げられる。 Examples of the aliphatic amine include bifunctional amines such as ethylenediamine, hexamethylenediamine, nonamethylenediamine, undecanemethylenediamine, dodecamethylenediamine, metaxylenediamine, 1,3-propanediamine, and putresin; and polyamines such as diethylenetriamine. Polyfunctional amines; and the like.
 脂環族アミンとしては、例えば、イソホロンジアミン、シクロヘキシルジアミン等の2官能アミンが挙げられる。 Examples of the alicyclic amine include bifunctional amines such as isophorone diamine and cyclohexyl diamine.
 芳香族アミンとしては、例えば、4,4’-メチレンビス(o-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、ポリテトラメチレングリコール-ジ-p-アミノベンゾエート、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、N,N’-ジ-sec-ブチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、m-キシリレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、p-フェニレンジアミン、3,3’-メチレンビス(メチル-6-アミノベンゾエート)、2,4-ジアミノ-4-クロロ安息香酸-2-メチルプロピル、2,4-ジアミノ-4-クロロ安息香酸-イソプロピル、2,4-ジアミノ-4-クロロフェニル酢酸-イソプロピル、テレフタル酸-ジ-(2-アミノフェニル)チオエチル、ジフェニルメタンジアミン、トリレンジアミン、ピペラジン等の2官能アミン;1,3,5-ベンゼントリアミン、メラミン等の多官能アミン;などが挙げられる。 Examples of the aromatic amine include 4,4'-methylenebis (o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4'-methylenebis (2,3-dichloroaniline), and the like. 4,4'-Methylenebis (2-ethyl-6-methylaniline), 3,5-bis (methylthio) -2,4-toluenediamine, 3,5-bis (methylthio) -2,6-toluenediamine, 3 , 5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6-diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene glycol-di-p-aminobenzoate, 4, 4'-Diamino-3,3', 5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropyl-5,5'-dimethyldiphenylmethane, 4,4'-diamino-3,3 ', 5,5'-Tetraisopropyldiphenylmethane, 1,2-bis (2-aminophenylthio) ethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, N, N '-Di-sec-butyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, m-xylylene diamine, N, N'-di-sec-butyl-p- Phenylene diamine, m-phenylenediamine, p-xylylene diamine, p-phenylenediamine, 3,3'-methylenebis (methyl-6-aminobenzoate), 2,4-diamino-4-chlorobenzoic acid-2-methylpropyl , 2,4-Diamino-4-chlorobenzoic acid-isopropyl, 2,4-diamino-4-chlorophenylacetic acid-isopropyl, terephthalic acid-di- (2-aminophenyl) thioethyl, diphenylmethanediamine, tolylene amine, piperazine, etc. Bifunctional amines; 1,3,5-benzenetriamines, polyfunctional amines such as melamine; and the like.
〔開環重合性単量体〕
 本実施形態においては、ラジカル重合性単量体とともに、開環重合により硬化体を生成する開環重合性単量体を使用してもよい。開環重合では、環状エーテル、環状シロキサン、環状ラクトン、環状ラクタム、環状アセタール、環状アミン、環状カーボネート、環状イミノエーテル、環状チオカーボネート等の環状化合物を開環重合性単量体として用いることができる。また必要に応じて、開環重合用の触媒を添加してもよい。
[Ring-opening polymerizable monomer]
In the present embodiment, a ring-opening polymerizable monomer that produces a cured product by ring-opening polymerization may be used together with the radically polymerizable monomer. In ring-opening polymerization, cyclic compounds such as cyclic ether, cyclic siloxane, cyclic lactone, cyclic lactam, cyclic acetal, cyclic amine, cyclic carbonate, cyclic imino ether, and cyclic thiocarbonate can be used as the ring-opening polymerizable monomer. .. Further, if necessary, a catalyst for ring-opening polymerization may be added.
 環状エーテルとしては、例えば、エチレンオキシド、1,2-プロピレンオキシド、エピクロロヒドリン、エピブロモヒドリン、1,2-ブチレンオキシド、2,3-ブチレンオキシド、イソブチレンオキシド、オキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン等が挙げられる。 Examples of the cyclic ether include ethylene oxide, 1,2-propylene oxide, epichlorohydrin, epibromohydrin, 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide, oxetane, and 3-methyloxetane. Examples thereof include 3,3-dimethyloxetane, tetrahydrofuran, 2-methyltetrahydrofuran and 3-methyltetrahydrofuran.
 環状ラクトンとしては、例えば、β-プロピオラクトン、β-メチルプロピオラクトン、L-セリン-β-ラクトン等の4員環ラクトン;γ-ブチロラクトン、γ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-デカノラクトン、γ-ドデカノラクトン、α-ヘキシル-γ-ブチロラクトン、α-ヘプチル-γ-ブチロラクトン、α-ヒドロキシ-γ-ブチロラクトン、γ-メチル-γ-デカノラクトン、α-メチレン-γ-ブチロラクトン、α,α-ジメチル-γ-ブチロラクトン、D-エリスロノラクトン、α-メチル-γ-ブチロラクトン、γ-ノナノラクトン、DL-パントラクトン、γ-フェニル-γ-ブチロラクトン、γ-ウンデカノラクトン、γ-バレロラクトン、2,2-ペンタメチレン-1,3-ジオキソラン-4-オン、α-ブロモ-γ-ブチロラクトン、γ-クロトノラクトン、α-メチレン-γ-ブチロラクトン、α-メタクリロイルオキシ-γ-ブチロラクトン、β-メタクリロイルオキシ-γ-ブチロラクトン等の5員環ラクトン;δ-バレロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、δ-トリデカノラクトン、δ-テトラデカノラクトン、DL-メバロノラクトン、4-ヒドロキシ-1-シクロヘキサンカルボン酸δ-ラクトン、モノメチル-δ-バレロラクトン、モノエチル-δ-バレロラクトン、モノヘキシル-δ-バレロラクトン、1,4-ジオキサン-2-オン、1,5-ジオキセパン-2-オン等の6員環ラクトン;ε-カプロラクトン、モノメチル-ε-カプロラクトン、モノエチル-ε-カプロラクトン、モノヘキシル-ε-カプロラクトン、ジメチル-ε-カプロラクトン、ジ-n-プロピル-ε-カプロラクトン、ジ-n-ヘキシル-ε-カプロラクトン、トリメチル-ε-カプロラクトン、トリエチル-ε-カプロラクトン、トリ-n-ε-カプロラクトン、ε-カプロラクトン、5-ノニル-オキセパン-2-オン、4,4,6-トリメチル-オキセパン-2-オン、4,6,6-トリメチル-オキセパン-2-オン、5-ヒドロキシメチル-オキセパン-2-オン等の7員環ラクトン;ζ-エナントラクトン等の8員環ラクトン;ラクトン、ラクチド、ジラクチド、テトラメチルグリコシド、1,5-ジオキセパン-2-オン、t-ブチルカプロラクトン等のその他のラクトン;などが挙げられる。 Examples of the cyclic lactone include 4-membered ring lactones such as β-propiolactone, β-methylpropiolactone, and L-serine-β-lactone; γ-butyrolactone, γ-hexanolactone, and γ-heptanolactone. γ-Octanolactone, γ-decanolactone, γ-dodecanolactone, α-hexyl-γ-butyrolactone, α-heptyl-γ-butyrolactone, α-hydroxy-γ-butyrolactone, γ-methyl-γ-decanolactone, α- Methylene-γ-butyrolactone, α, α-dimethyl-γ-butyrolactone, D-erythronolactone, α-methyl-γ-butyrolactone, γ-nonanolactone, DL-pantolactone, γ-phenyl-γ-butyrolactone, γ-unde Canolactone, γ-valerolactone, 2,2-pentamethylene-1,3-dioxolan-4-one, α-bromo-γ-butyrolactone, γ-crotonolactone, α-methylene-γ-butyrolactone, α-methacryloyl Five-membered ring lactones such as oxy-γ-butyrolactone, β-methacryloyloxy-γ-butyrolactone; δ-valerolactone, δ-hexanolactone, δ-octanolactone, δ-nonanolactone, δ-decanolactone, δ-undecano Lactone, δ-dodecanolactone, δ-tridecanolactone, δ-tetradecanolactone, DL-mevalonolactone, 4-hydroxy-1-cyclohexanecarboxylic acid δ-lactone, monomethyl-δ-valerolactone, monoethyl-δ-valero 6-membered ring lactones such as lactones, monohexyl-δ-valerolactone, 1,4-dioxane-2-one, 1,5-dioxepan-2-one; ε-caprolactone, monomethyl-ε-caprolactone, monoethyl-ε-caprolactone , Monohexyl-ε-caprolactone, dimethyl-ε-caprolactone, di-n-propyl-ε-caprolactone, di-n-hexyl-ε-caprolactone, trimethyl-ε-caprolactone, triethyl-ε-caprolactone, tri-n-ε -Caprolactone, ε-caprolactone, 5-nonyl-oxepan-2-one, 4,4,6-trimethyl-oxepan-2-one, 4,6,6-trimethyl-oxepan-2-one, 5-hydroxymethyl- 7-membered ring lactones such as oxepan-2-one; 8-membered ring lactones such as ζ-enant lactone; lactones, lactides, dilactides, tetramethylglycosides, 1,5-dioxepan-2- Other lactones such as on, t-butylcaprolactone; and the like.
 環状ラクタムとしては、例えば、4-ベンゾイルオキシ-2-アゼチジノン等の4員環ラクタム;γ-ブチロラクタム、2-アザビシクロ(2,2,1)ヘプタ-5-エン-3-オン、5-メチル-2-ピロリドン等の5員環ラクタム;2-ピペリドン-3-カルボン酸エチル等の6員環ラクタム;ε-カプロラクタム、DL-α-アミノ-ε-カプロラクタム等の7員環ラクタム;ω-ヘプタラクタム等の8員環ラクタム;などが挙げられる。 Examples of the cyclic lactam include 4-membered ring lactams such as 4-benzoyloxy-2-azetidinone; γ-butyrolactam, 2-azabicyclo (2,2,1) hepta-5-en-3-one, 5-methyl-. 5-membered ring lactam such as 2-pyrrolidone; 6-membered ring lactam such as 2-piperidone-3-carboxylate ethyl; 7-membered ring lactam such as ε-caprolactam and DL-α-amino-ε-caprolactam; ω-heptalactam Eight-membered ring lactam; etc.;
 環状カーボネートとしては、例えば、エチレンカーボネート、炭酸プロピレン、炭酸1,2-ブチレングリセロール-1,2-カルボナート、4-(メトキシメチル)-1,3-ジオキソラン-2-オン、(クロロメチル)エチレンカーボネート、炭酸ビニレン、4,5-ジメチル-1,3-ジオキソール-2-オン、4-クロロメチル-5-メチル-1,3-ジオキソール-2-オン、4-ビニル-1,3-ジオキソラン-2-オン、4,5-ジフェニル-1,3-ジオキソラン-2-オン、4,4-ジメチル-5-メチレン-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、5-メチル-5-プロピル-1,3-ジオキソラン-2-オン、5,5-ジエチル-1,3-ジオキソラン-2-オン等が挙げられる。 Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, 1,2-butyleneglycerol carbonate-1,2-carbonate, 4- (methoxymethyl) -1,3-dioxolane-2-one, and (chloromethyl) ethylene carbonate. , Vinylene carbonate, 4,5-dimethyl-1,3-dioxolane-2-one, 4-chloromethyl-5-methyl-1,3-dioxolane-2-one, 4-vinyl-1,3-dioxolane-2 -On, 4,5-diphenyl-1,3-dioxolane-2-one, 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one, 1,3-dioxane-2-one, 5 -Methyl-5-propyl-1,3-dioxolane-2-one, 5,5-diethyl-1,3-dioxolane-2-one and the like can be mentioned.
 本実施形態に係る硬化性組成物における付加重合性単量体、開環重合性単量体等の非ラジカル重合性単量体の含有量は、リン酸エステル結合ビスマス化合物100質量部に対して、0~5000質量部であることが好ましく、0~1000質量部であることがより好ましく、0~500質量部であることがさらに好ましい。 The content of the non-radical polymerizable monomer such as the addition polymerizable monomer and the ring-opening polymerizable monomer in the curable composition according to the present embodiment is 100 parts by mass of the phosphate ester-bonded bismuth compound. , 0 to 5000 parts by mass, more preferably 0 to 1000 parts by mass, and even more preferably 0 to 500 parts by mass.
<その他の配合剤>
 本実施形態に係る硬化性組成物は、本発明の効果を阻害しない範囲で、上記以外の公知の配合剤を含有していてもよい。このような配合剤としては、ラジカル重合開始剤、酸化防止剤、安定剤、モールドからの離型性を上げるための離型剤、ラジカル重合の重合性を制御するための連鎖移動剤、溶剤、顔料等が挙げられる。
<Other compounding agents>
The curable composition according to the present embodiment may contain a known compounding agent other than the above, as long as the effect of the present invention is not impaired. Examples of such a compounding agent include a radical polymerization initiator, an antioxidant, a stabilizer, a mold release agent for improving mold releasability, a chain transfer agent for controlling the polymerizable property of radical polymerization, and a solvent. Examples include pigments.
 各配合剤の含有量は、硬化性組成物100質量部に対して、0~30質量部であることが好ましく、0.01~20質量部であることがより好ましく、0.02~15質量部であることがさらに好ましい。 The content of each compounding agent is preferably 0 to 30 parts by mass, more preferably 0.01 to 20 parts by mass, and 0.02 to 15 parts by mass with respect to 100 parts by mass of the curable composition. It is more preferable to be a part.
 本実施形態に係る硬化性組成物は、上述した各成分を公知の方法で混合することにより製造することができる。 The curable composition according to the present embodiment can be produced by mixing the above-mentioned components by a known method.
≪抗菌・抗ウイルス材料及び抗菌・抗ウイルス積層体≫
 本実施形態に係る抗菌・抗ウイルス材料は、本実施形態に係る硬化性組成物を硬化してなるものである。この抗菌・抗ウイルス材料は、高い抗菌性及び抗ウイルス性を示しつつ、高い機械的強度と透明性とを併せ持つ。
≪Antibacterial / antiviral material and antibacterial / antiviral laminate≫
The antibacterial / antiviral material according to the present embodiment is obtained by curing the curable composition according to the present embodiment. This antibacterial / antiviral material has high mechanical strength and transparency while exhibiting high antibacterial and antiviral properties.
 本実施形態に係る硬化性組成物を硬化する方法は特に限定されず、光重合、熱重合等の公知の重合方法を採用することができる。本実施形態に係る硬化性組成物が非ラジカル重合性単量体を含有する場合には、非ラジカル重合性単量体が重合する方法を採用する。 The method for curing the curable composition according to the present embodiment is not particularly limited, and known polymerization methods such as photopolymerization and thermal polymerization can be adopted. When the curable composition according to the present embodiment contains a non-radical polymerizable monomer, a method of polymerizing the non-radical polymerizable monomer is adopted.
 また、本実施形態に係る抗菌・抗ウイルス積層体は、基材と、本実施形態に係る抗菌・抗ウイルス材料とを積層してなるものである。基材としては、樹脂、金属、木材等が挙げられ、樹脂が好ましい。 Further, the antibacterial / antiviral laminate according to the present embodiment is formed by laminating a base material and an antibacterial / antiviral material according to the present embodiment. Examples of the base material include resin, metal, wood and the like, and resin is preferable.
 本実施形態に係る抗菌・抗ウイルス積層体の製造方法は、基材と抗菌・抗ウイルス材料とを積層可能な方法あれば特に制限されない。例えば、本実施形態に係る硬化性組成物を、スピンコート、ディッピング等により任意の基材表面に塗布し、次いで、UV照射や加熱等により硬化性組成物を硬化させる方法が好適である。これにより、任意の基材表面に抗菌・抗ウイルス性を付与することができる。この場合、抗菌・抗ウイルス材料が最外層となるように別の層を設けてもよい。例えば、基材と本実施形態に係る硬化性組成物を硬化してなる硬化体との間に別の層を設けてもよい。 The method for producing the antibacterial / antiviral laminate according to the present embodiment is not particularly limited as long as the base material and the antibacterial / antiviral material can be laminated. For example, a method is preferable in which the curable composition according to the present embodiment is applied to the surface of an arbitrary substrate by spin coating, dipping or the like, and then the curable composition is cured by UV irradiation, heating or the like. This makes it possible to impart antibacterial and antiviral properties to the surface of any substrate. In this case, another layer may be provided so that the antibacterial / antiviral material is the outermost layer. For example, another layer may be provided between the base material and the cured product obtained by curing the curable composition according to the present embodiment.
 本実施形態に係る抗菌・抗ウイルス材料及び抗菌・抗ウイルス積層体は、高い抗菌性及び抗ウイルス性を示し、構造材料、透明材料等として使用することができる。 The antibacterial / antiviral material and the antibacterial / antiviral laminate according to the present embodiment show high antibacterial and antiviral properties, and can be used as structural materials, transparent materials, and the like.
 以下、実施例及び比較例を用いて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
 本実施例における分析方法及び測定方法は以下のとおりである。 The analysis method and measurement method in this example are as follows.
<リン酸エステル結合ビスマス化合物の分析方法>
H-,31P-NMR測定]
 核磁気共鳴装置(株式会社JEOL RESONANCE製、JNM-ECA400II)を用いた。溶媒には重アセトンを用い、試料濃度1質量%で測定した。
<Analysis method of phosphate ester-bonded bismuth compound>
[ 1 H-, 31 P-NMR measurement]
A nuclear magnetic resonance apparatus (JEM-ECA400II manufactured by JEOL RESONANCE Co., Ltd.) was used. Deuterated acetone was used as a solvent, and the measurement was performed at a sample concentration of 1% by mass.
[XPS測定]
 X線光電子分光装置(アルバック・ファイ株式会社製、ESCA5701ci/MC)を用いた。X線源としては単色化Al-Kα(14kV-330W)を用いた。アパーチャー径はφ800μm、光電子取出し角度は45°とした。試料をメノウ乳鉢で粉砕し、得られた粉をカーボンテープで基板に固定して測定チャンバーに導入し測定した。
[XPS measurement]
An X-ray photoelectron spectroscope (ESCA5701ci / MC manufactured by ULVAC FI Co., Ltd.) was used. Monochromatic Al-Kα (14kV-330W) was used as the X-ray source. The aperture diameter was φ800 μm and the photoelectron extraction angle was 45 °. The sample was pulverized in an agate mortar, and the obtained powder was fixed to a substrate with carbon tape and introduced into a measurement chamber for measurement.
[MALDI-TOF-MS(マトリクス支援レーザー脱離イオン化-飛行時間型質量分析)測定]
 Bruker社製のrapiflex TOF/TOF型を用いた。マトリクスとしてCHCA(α-シアノ-4-ヒドロキシケイ皮酸)、DIT(ジトラノール)、DHB(2,5-ジヒドロキシ安息香酸)を用い、カチオン化剤として、トリフルオロ酢酸ナトリウムを用いた。Reflector/Positiveモードで測定し、質量範囲はm/z20~4000とした。
[MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry) Measurement]
A rapiflex TOF / TOF type manufactured by Bruker was used. CHCA (α-cyano-4-hydroxycinnamic acid), DIT (ditranol), and DHB (2,5-dihydroxybenzoic acid) were used as the matrix, and sodium trifluoroacetate was used as the cationizing agent. The measurement was performed in the Reflector / Positive mode, and the mass range was m / z 20 to 4000.
<硬化性組成物の粘度測定>
 硬化性組成物の粘度は、E型粘度計(Brookfield社製、Rheometer RST)を用いて25℃で測定した。
<Viscosity measurement of curable composition>
The viscosity of the curable composition was measured at 25 ° C. using an E-type viscometer (Rheometer RST, manufactured by Brookfield).
<硬化体・積層体の特性評価>
[細菌を用いた抗菌性能評価試験]
 別途作製した2mm厚の積層体又は硬化体を用い、細菌を用いた抗菌性能評価試験を行った。測定は、JIS R 1702:2020(紫外光応答型光触媒、抗菌、フィルム密着法)に準じて行った。但し、本試験は暗所で行った。
<Characteristic evaluation of cured / laminated body>
[Antibacterial performance evaluation test using bacteria]
An antibacterial performance evaluation test using bacteria was carried out using a separately prepared 2 mm thick laminated body or cured body. The measurement was performed according to JIS R 1702: 2020 (ultraviolet light responsive photocatalyst, antibacterial, film adhesion method). However, this test was conducted in a dark place.
 サンプルプレート(7cmφ、2mm)を無水エタノールで清拭した。この表面に2.8×10cfu/mLの濃度の黄色ブドウ球菌(NBRC 12732)を0.1mL接種し、8時間後に生菌数を測定した。なお、JIS R 1702:2020では、サンプル表面に抗菌処理をした場合の抗菌処理前後での比較として抗菌性を評価するが、本試験では簡易的に、8時間後の生菌数が検出限界以下になっているか否かで抗菌性を評価した。具体的には、生菌が検出できなければ抗菌性有り、生菌が僅かでも検出できれば抗菌性無しとした。 The sample plate (7 cmφ, 2 mm) was wiped with absolute ethanol. The surface was inoculated with 0.1 mL of Staphylococcus aureus (NBRC 12732) having a concentration of 2.8 × 10 6 cfu / mL, and the viable cell count was measured 8 hours later. In JIS R 1702: 2020, the antibacterial property is evaluated as a comparison before and after the antibacterial treatment when the sample surface is treated with antibacterial treatment, but in this test, the viable cell count after 8 hours is simply below the detection limit. The antibacterial property was evaluated based on whether or not it became. Specifically, if no viable bacteria can be detected, it has antibacterial properties, and if even a small amount of viable bacteria can be detected, it has no antibacterial properties.
[ウイルスを用いた抗ウイルス性能評価試験]
 別途作製した2mm厚の積層体又は硬化体を用い、ウイルスを用いた抗ウイルス性能評価試験を行った。測定は、JIS R 1706:2020(紫外光応答型光触媒、抗ウイルス、フィルム密着法)に準じて行った。但し、本試験は、暗所で行った。
[Antiviral performance evaluation test using virus]
An antiviral performance evaluation test using a virus was carried out using a separately prepared 2 mm-thick laminated body or cured body. The measurement was performed according to JIS R 1706: 2020 (ultraviolet light responsive photocatalyst, antiviral, film adhesion method). However, this test was conducted in a dark place.
 サンプルプレート(7cmφ、2mm)を無水エタノールで清拭した。この表面に1.6×10cfu/mLの濃度のInfluenza A virus(H3N2)A/HongKong/8/68株(A型インフルエンザウイルス、ATCC VR-1679)を150μL播種し、4時間後に活性ウイルス数を測定した。宿主細胞としては、MDCK細胞(ATCC CCL-34)を用いた。なお、JIS R 1706:2020では、サンプル表面に抗ウイルス処理をした場合の抗ウイルス処理前後での比較として抗ウイルス性を評価するが、本試験では簡易的に、4時間後の活性ウイルス数が検出限界以下になっているか否かで抗ウイルス性を評価した。具体的には、活性ウイルスが検出できなければ抗ウイルス性有り、活性ウイルスが僅かでも検出できれば抗ウイルス性無しとした。 The sample plate (7 cmφ, 2 mm) was wiped with absolute ethanol. 150 μL of Influenza A virus (H3N2) A / HongKong / 8/68 strain (influenza A virus, ATCC VR-1679) at a concentration of 1.6 × 10 7 cfu / mL was inoculated on this surface, and the active virus was introduced after 4 hours. The number was measured. MDCK cells (ATCC CCL-34) were used as host cells. In JIS R 1706: 2020, the antiviral property is evaluated as a comparison before and after the antiviral treatment when the sample surface is treated with the antiviral treatment, but in this test, the number of active viruses after 4 hours is simply calculated. The antiviral property was evaluated based on whether or not it was below the detection limit. Specifically, if no active virus can be detected, it has antiviral properties, and if even a small amount of active virus can be detected, it has no antiviral properties.
[黄色度測定]
 黄色度(Y.I.)は、スガ試験機株式会社製のSMカラーコンピューターSM-Tを用いて測定した。
[Yellowness measurement]
The yellowness (YI) was measured using an SM color computer SM-T manufactured by Suga Test Instruments Co., Ltd.
[ヘイズ、全光透過率測定]
 ヘイズ及び全光透過率は、日本電色株式会社製のHAZE METER NDH5000を用いて測定した。
[Haze, total light transmittance measurement]
The haze and total light transmittance were measured using HAZE METER NDH5000 manufactured by Nippon Denshoku Industries Co., Ltd.
[耐衝撃性試験]
 耐衝撃性試験は、米国FDA規格の落球試験に準じて行った。50インチ(1.27m)の高さから、4.5g、6.9g、14g、16.3g、32g、50g、67g、80g、95g、112g、130g、151g、174g、198g、225g、261gの鋼球を順次自由落下させてサンプルプレートに当て、ヒビや割れが生じる直前の重さを最大耐衝撃量とした。
[Impact resistance test]
The impact resistance test was performed according to the US FDA standard ball drop test. From a height of 50 inches (1.27 m), 4.5 g, 6.9 g, 14 g, 16.3 g, 32 g, 50 g, 67 g, 80 g, 95 g, 112 g, 130 g, 151 g, 174 g, 198 g, 225 g, 261 g. The steel balls were dropped freely in sequence and applied to the sample plate, and the weight immediately before cracks and cracks were taken as the maximum impact resistance.
<合成例1:リン酸エステル結合ビスマス化合物の合成>
 次サリチル酸ビスマス(III):94.27g(Sigma-Aldrich社製、ビスマス換算260.35mmol)、リン酸ジエステル-ビス[(2-メタクリロイルオキシエチル)]ホスフェートとリン酸モノエステル-(2-メタクリロイルオキシエチル)ホスフェートとの混合物:33.06g(大八化学工業製MR-200、リン酸価として162.04mmol)、リン酸トリエステル-ジフェニル-2-メタクリロイルオキシエチルフォスフェート:33.09g(大八化学化学工業製MR-260、91.33mmol)、重合禁止剤としてのジブチルヒドロキシトルエン(BHT、富士フイルム和光純薬株式会社製、特級試薬):6.17gを1000mLナス型フラスコに入れてトルエン750mLを加えた。これをバス型ソニケーターにより超音波分散させて白濁溶液とした。
<Synthesis Example 1: Synthesis of Phosphate-bonded Bismuth Compound>
Next bismuth salicylate (III): 94.27 g (manufactured by Sigma-Aldrich, 260.35 mmol in terms of bismuth), phosphate diester-bis [(2-methacryloyloxyethyl)] phosphate and phosphate monoester- (2-methacryloyloxy). Mixture with ethyl) phosphate: 33.06 g (MR-200 manufactured by Daihachi Chemical Industry Co., Ltd., phosphate value 162.04 mmol), phosphate triester-diphenyl-2-methacryloyloxyethyl phosphate: 33.09 g (Daihachi) MR-260, 91.33 mmol manufactured by Kagaku Kagaku Kogyo Co., Ltd.), Dibutyl hydroxytoluene as a polymerization inhibitor (BHT, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade reagent): 6.17 g in a 1000 mL eggplant-shaped flask and 750 mL of toluene Was added. This was ultrasonically dispersed with a bath-type sonicator to obtain a cloudy solution.
 得られた白濁溶液をDean-Starkトラップを装着した1000mL四ツ口フラスコに移し、油浴を用いて130℃で加熱撹拌しながら反応を行い、生成した水を系外に除いた。水の生成がなくなった時点を反応終点とした。淡黄色沈殿が僅かに生じた、淡黄散乱溶液を得た。 The obtained cloudy solution was transferred to a 1000 mL four-necked flask equipped with a Dean-Stark trap, and the reaction was carried out while heating and stirring at 130 ° C. using an oil bath, and the generated water was removed from the system. The reaction end point was defined as the time when no water was produced. A pale yellow scattering solution was obtained with a slight pale yellow precipitate.
 この溶液を真空エバポレーターにより250mLに濃縮した。珪藻土焼成品であるラヂオライト#100を8g加えて一晩静置した後、5B濾紙で吸引濾過を行った。得られた淡黄散乱濾液に活性炭(Norit社製、DarcoG60)3gを加えて、23830×gで8時間遠心分離機にかけた。遠心上清を孔径0.2μmのメンブレンフィルターにより加圧濾過し、淡黄色透明濾液を得た。この溶液から真空エバポレーターにより溶媒を留去し、アセトン250mLに再溶解した。得られた淡黄溶液に活性炭(Norit社製、Norit SX-Plus)3gを加えて、23830×gで12時間遠心分離機にかけた。遠心上清を孔径0.2μmのメンブレンフィルターにより加圧濾過し、淡黄色透明濾液を得た。得られた濾液を真空エバポレーターにより100mLにまで濃縮した。このアセトン溶液を撹拌下、1000mLのコニカルビーカーに入れた800mLのヘキサンに投入した。生じた白色沈殿を5B濾紙を用いた吸引濾過によって濾取し、得られた固体を真空乾燥することにより、リン酸エステル結合ビスマス化合物を白色粉末として64.40g取得した。合成の確認は、上記H-NMR測定法によって行った。得られたリン酸エステル結合ビスマス化合物の構造は、上記式(2)において、b=u=v=w=0.6という構造であった。 This solution was concentrated to 250 mL by vacuum evaporator. After adding 8 g of radiolite # 100, which is a fired diatomaceous earth product, and allowing it to stand overnight, suction filtration was performed with 5B filter paper. To the obtained pale yellow scattering filtrate, 3 g of activated carbon (Darco G60 manufactured by Norit) was added, and the mixture was centrifuged at 23830 × g for 8 hours. The centrifugal supernatant was pressure-filtered with a membrane filter having a pore size of 0.2 μm to obtain a pale yellow transparent filtrate. The solvent was distilled off from this solution by a vacuum evaporator and redissolved in 250 mL of acetone. 3 g of activated carbon (Norit SX-Plus, manufactured by Norit) was added to the obtained pale yellow solution, and the mixture was centrifuged at 23830 × g for 12 hours. The centrifugal supernatant was pressure-filtered with a membrane filter having a pore size of 0.2 μm to obtain a pale yellow transparent filtrate. The obtained filtrate was concentrated to 100 mL by a vacuum evaporator. This acetone solution was poured into 800 mL of hexane in a 1000 mL conical beaker with stirring. The generated white precipitate was collected by suction filtration using 5B filter paper, and the obtained solid was vacuum-dried to obtain 64.40 g of a phosphate ester-bonded bismuth compound as a white powder. The synthesis was confirmed by the above 1 H-NMR measurement method. The structure of the obtained phosphate ester-bonded bismuth compound was b = u = v = w = 0.6 in the above formula (2).
<実施例1:リン酸エステル結合ビスマス化合物とラジカル重合性単量体とを含有する硬化性組成物を硬化してなる硬化体>
 リン酸エステル結合ビスマス化合物:70質量部、スチレン:9質量部、アクリロニトリル:9質量部、ノナエチレングリコールジメタクリレート(新中村化学工業株式会社製):12質量部を加えて均一に溶解し、硬化性組成物を得た。この硬化性組成物:100質量部に対し、2,2’-アゾビス(イソ酪酸):0.4質量部を加えて溶解させた。得られた硬化性組成物の粘度は380mPa・sであり、注型による塊重合を好適に行える粘度であった。
<Example 1: A cured product obtained by curing a curable composition containing a phosphate ester-bonded bismuth compound and a radically polymerizable monomer>
Phosphorus ester-bonded bismuth compound: 70 parts by mass, styrene: 9 parts by mass, acrylonitrile: 9 parts by mass, nonaethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 12 parts by mass was added to uniformly dissolve and cure. A sex composition was obtained. To 100 parts by mass of this curable composition, 2,2'-azobis (isobutyric acid): 0.4 parts by mass was added and dissolved. The viscosity of the obtained curable composition was 380 mPa · s, which was a viscosity suitable for mass polymerization by casting.
 次いで、この硬化性組成物を真空ポンプにより減圧下に置き、溶存酸素を除いた。その後、こ硬化性組成物を、2mm厚の空隙となるように調整して粘着テープで固定した直径7cmの2枚の円盤ガラスモールドの間に注入し、最高温度90℃、4時間で重合を行った。モールドから離型後、100℃で2時間アニーリングを行い、淡黄色透明の硬化体を得た。得られた硬化体の厚みは2.03mmであった。この硬化体について、抗菌・抗ウイルス性試験、光学特性試験、耐衝撃性試験を行った。結果を表1に示す。 Next, this curable composition was placed under reduced pressure by a vacuum pump to remove dissolved oxygen. Then, the curable composition was poured between two disk glass molds having a diameter of 7 cm, which were adjusted so as to form a gap having a thickness of 2 mm and fixed with an adhesive tape, and polymerized at a maximum temperature of 90 ° C. for 4 hours. went. After release from the mold, annealing was performed at 100 ° C. for 2 hours to obtain a pale yellow transparent cured product. The thickness of the obtained cured product was 2.03 mm. The cured product was subjected to antibacterial / antiviral test, optical property test, and impact resistance test. The results are shown in Table 1.
<実施例2:リン酸エステル結合ビスマス化合物、ラジカル重合性単量体、及びポリウレタン重合性単量体を含有する硬化性組成物を硬化してなる硬化体>
 リン酸エステル結合ビスマス化合物:70質量部、スチレン:3.7質量部、アクリロニトリル:13.7質量部、ヘキサメチレンジイソシアネート(富士フイルム和光純薬株式会社製):4質量部、ポリエチレングリコール(分子量300:富士フイルム和光純薬株式会社製):7質量部を加えて均一に溶解し、硬化性組成物を得た。この硬化性組成物:100質量部に対し、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル):0.5質量部を加えて溶解させた。得られた硬化性組成物の粘度は3000mPa・sであり、注型による塊重合を行える粘度であった。
<Example 2: A cured product obtained by curing a curable composition containing a phosphate ester-bonded bismuth compound, a radically polymerizable monomer, and a polyurethane polymerizable monomer>
Phosphoric acid ester-bonded bismuth compound: 70 parts by mass, styrene: 3.7 parts by mass, acrylonitrile: 13.7 parts by mass, hexamethylene diisocyanate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.): 4 parts by mass, polyethylene glycol (molecular weight 300) : Wako Pure Chemical Industries, Ltd.): 7 parts by mass was added and uniformly dissolved to obtain a curable composition. To 100 parts by mass of this curable composition, 1,1'-azobis (cyclohexane-1-carbonitrile): 0.5 parts by mass was added and dissolved. The viscosity of the obtained curable composition was 3000 mPa · s, which was a viscosity capable of mass polymerization by casting.
 次いで、この硬化性組成物を真空ポンプにより減圧下に置き、溶存酸素を除いた。その後、この硬化性組成物を、2mmのガスケットを用いて直径7cmの2枚の円盤ガラスモールドの間に注入し、最高温度100℃、4時間で重合を行った。モールドから離型後、100℃で2時間アニーリングを行い、濃黄色透明の硬化体を得た。得られた硬化体の厚みは2.44mmであった。この硬化体について、抗菌・抗ウイルス性試験、光学特性試験、耐衝撃性試験を行った。結果を表1に示す。 Next, this curable composition was placed under reduced pressure by a vacuum pump to remove dissolved oxygen. Then, this curable composition was poured between two disk glass molds having a diameter of 7 cm using a 2 mm gasket, and polymerization was carried out at a maximum temperature of 100 ° C. for 4 hours. After release from the mold, annealing was performed at 100 ° C. for 2 hours to obtain a dark yellow transparent cured product. The thickness of the obtained cured product was 2.44 mm. The cured product was subjected to antibacterial / antiviral test, optical property test, and impact resistance test. The results are shown in Table 1.
<比較例1:リン酸エステル結合ビスマス化合物を含有しない硬化性組成物を硬化してなる硬化体>
 スチレン:30質量部、アクリロニトリル:30質量部、ノナエチレングリコールジメタクリレート(新中村化学工業株式会社製):40質量部を加えて均一に溶解し、硬化性組成物を得た。この硬化性組成物:100質量部に対し、2,2’-アゾビス(イソ酪酸):0.4質量部を加えて溶解させた。得られた硬化性組成物の粘度は90mPa・sであった。
<Comparative Example 1: A cured product obtained by curing a curable composition that does not contain a phosphate ester-bonded bismuth compound>
Styrene: 30 parts by mass, acrylonitrile: 30 parts by mass, nonaethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 40 parts by mass were added and uniformly dissolved to obtain a curable composition. To 100 parts by mass of this curable composition, 2,2'-azobis (isobutyric acid): 0.4 parts by mass was added and dissolved. The viscosity of the obtained curable composition was 90 mPa · s.
 次いで、この硬化性組成物を真空ポンプにより減圧下に置き、溶存酸素を除いた。その後、この硬化性組成物を、2mm厚の空隙となるように調整して粘着テープで固定した直径7cmの2枚の円盤ガラスモールドの間に注入し、最高温度90℃、4時間で重合を行った。モールドから離型後、100℃で2時間アニーリングを行い、淡黄色透明の硬化体を得た。得られた硬化体の厚みは2.01mmであった。この硬化体について、抗菌・抗ウイルス性試験、光学特性試験、耐衝撃性試験を行った。結果を表1に示す。 Next, this curable composition was placed under reduced pressure by a vacuum pump to remove dissolved oxygen. Then, this curable composition was poured between two disk glass molds having a diameter of 7 cm, which were adjusted so as to form a gap having a thickness of 2 mm and fixed with an adhesive tape, and polymerized at a maximum temperature of 90 ° C. for 4 hours. went. After release from the mold, annealing was performed at 100 ° C. for 2 hours to obtain a pale yellow transparent cured product. The thickness of the obtained cured product was 2.01 mm. The cured product was subjected to antibacterial / antiviral test, optical property test, and impact resistance test. The results are shown in Table 1.
<実施例3:リン酸エステル結合ビスマス化合物とラジカル重合性単量体とを含有する硬化性組成物を硬化してなる硬化体を有する積層体>
 ビスマス系化合物:30質量部、スチレン:24質量部、アクリロニトリル:19質量部、ノナエチレングリコールジメタクリレート(新中村化学工業株式会社製):27質量部を加えて均一に溶解し、硬化性組成物を得た。この硬化性組成物:100質量部に対し、重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン:0.375質量部、ビス(2,6-トリメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド:0.125質量部、その他の配合剤として、光安定剤であるビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート:5質量部、N-メチルジエタノールアミン:3質量部を加え、十分に混合して、硬化性組成物を得た。この硬化性組成物の粘度をE型粘度計を用いて25℃で測定したところ、粘度は150mPa・sであり、スピンコートが好適にできる粘度であった。
<Example 3: A laminate having a cured product obtained by curing a curable composition containing a phosphate ester-bonded bismuth compound and a radically polymerizable monomer>
Bismuth compound: 30 parts by mass, styrene: 24 parts by mass, acrylonitrile: 19 parts by mass, nonaethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 27 parts by mass is added and uniformly dissolved to form a curable composition. Got 1-Hydroxycyclohexylphenylketone: 0.375 parts by mass, bis (2,6-trimethoxybenzoyl) -2,4,4-trimethylpentylphos as a polymerization initiator with respect to 100 parts by mass of this curable composition. Finoxide: 0.125 parts by mass, and other compounding agents, bis (1,2,2,6,6-pentamethyl-4-piperidyl), which is a light stabilizer, sebacate: 5 parts by mass, N-methyldiethanolamine: 3 Parts by weight were added and mixed well to obtain a curable composition. When the viscosity of this curable composition was measured at 25 ° C. using an E-type viscometer, the viscosity was 150 mPa · s, which was a viscosity suitable for spin coating.
 次いで、この硬化性組成物:2gを、MIKASA製スピンコーター1H-DX2を用いて、比較例1で得られた硬化体(基材)の表面にスピンコートした。スピンコートの条件は、硬化性組成物を硬化してなる硬化体の厚みが40±1μmとなるように調整した。次いで、硬化性組成物を表面にスピンコートした基材を、窒素ガス雰囲気中で、基材表面の波長405nmにおける出力が200mW/cmになるように調整したフュージョンUVシステムズ社製のDバルブを搭載したF3000SQを用いて、90秒間、光照射し、硬化させた。その後、100℃の恒温器にて1時間の加熱処理を行い、積層体を得た。この積層体について、抗菌・抗ウイルス性試験、光学特性試験、耐衝撃性試験を行った。結果を表1に示す。 Next, 2 g of this curable composition was spin-coated on the surface of the cured product (base material) obtained in Comparative Example 1 using a spin coater 1H-DX2 manufactured by MIKASA. The spin coating conditions were adjusted so that the thickness of the cured product obtained by curing the curable composition was 40 ± 1 μm. Next, a D-bulb manufactured by Fusion UV Systems Co., Ltd. was prepared by spin-coating a substrate having a curable composition on the surface so that the output of the substrate surface at a wavelength of 405 nm was 200 mW / cm 2 in a nitrogen gas atmosphere. Using the mounted F3000SQ, it was irradiated with light for 90 seconds and cured. Then, the heat treatment was carried out for 1 hour in the incubator of 100 degreeC, and the laminated body was obtained. This laminate was subjected to antibacterial / antiviral test, optical property test, and impact resistance test. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に示すとおり、リン酸エステル結合ビスマス化合物とラジカル重合性単量体とを含有する硬化性組成物を硬化させた実施例1、2の硬化体、及びその硬化体を有する実施例3の積層体は、高い抗菌性及び抗ウイルス性を示しつつ、高い機械的強度と透明性とを併せ持っていた。特に、ラジカル重合性単量体の他に付加重合性単量体を含有する硬化性組成物を硬化させた実施例2の硬化体は、機械的強度が顕著に優れていた。これに対して、リン酸エステル結合ビスマス化合物を含有しない硬化性組成物を硬化させた比較例1の硬化体は、抗菌性及び抗ウイルス性を示さなかった。 As shown in Table 1, the cured products of Examples 1 and 2 obtained by curing a curable composition containing a phosphoric acid ester-bonded bismuth compound and a radically polymerizable monomer, and Example 3 having the cured product thereof. The laminate had high mechanical strength and transparency while exhibiting high antibacterial and antiviral properties. In particular, the cured product of Example 2 obtained by curing the curable composition containing an addition-polymerizable monomer in addition to the radically polymerizable monomer was remarkably excellent in mechanical strength. On the other hand, the cured product of Comparative Example 1 in which the curable composition containing no phosphate ester-bonded bismuth compound was cured did not show antibacterial and antiviral properties.

Claims (7)

  1.  (メタ)アクリロイル基を有するリン酸エステルがビスマスに結合したビスマス化合物と、前記ビスマス化合物以外の重合性単量体とを含有する抗菌・抗ウイルス材料用硬化性組成物。 A curable composition for an antibacterial / antiviral material containing a bismuth compound in which a phosphate ester having a (meth) acryloyl group is bonded to bismuth and a polymerizable monomer other than the bismuth compound.
  2.  前記ビスマス化合物が、サリチル酸又は(メタ)アクリル酸と、(メタ)アクリロイル基を有するリン酸エステルとがビスマスに結合したビスマス化合物を含む、請求項1に記載の抗菌・抗ウイルス材料用硬化性組成物。 The curable composition for an antibacterial / antiviral material according to claim 1, wherein the bismuth compound contains a bismuth compound in which salicylic acid or (meth) acrylic acid and a phosphate ester having a (meth) acryloyl group are bonded to bismuth. thing.
  3.  前記ビスマス化合物以外の重合性単量体がラジカル重合性単量体を含む、請求項1又は2に記載の抗菌・抗ウイルス材料用硬化性組成物。 The curable composition for an antibacterial / antiviral material according to claim 1 or 2, wherein the polymerizable monomer other than the bismuth compound contains a radically polymerizable monomer.
  4.  前記ラジカル重合性単量体が、アクリロニトリル及びスチレンから選択される少なくとも1種を含む、請求項3に記載の抗菌・抗ウイルス材料用硬化性組成物。 The curable composition for an antibacterial / antiviral material according to claim 3, wherein the radically polymerizable monomer contains at least one selected from acrylonitrile and styrene.
  5.  前記ビスマス化合物以外の重合性単量体が、付加重合性単量体及び開環重合性単量体から選択される少なくとも1種をさらに含む、請求項3又は4に記載の抗菌・抗ウイルス材料用硬化性組成物。 The antibacterial / antiviral material according to claim 3 or 4, wherein the polymerizable monomer other than the bismuth compound further contains at least one selected from the addition polymerizable monomer and the ring-opening polymerizable monomer. Curable composition.
  6.  請求項1~5のいずれか1項に記載の抗菌・抗ウイルス材料用硬化性組成物を硬化してなる抗菌・抗ウイルス材料。 An antibacterial / antiviral material obtained by curing the curable composition for an antibacterial / antiviral material according to any one of claims 1 to 5.
  7.  基材と、請求項6に記載の抗菌・抗ウイルス材料とを積層してなる抗菌・抗ウイルス積層体。 An antibacterial / antiviral laminate obtained by laminating a base material and the antibacterial / antiviral material according to claim 6.
PCT/JP2021/030397 2020-08-27 2021-08-19 Curable composition for antimicrobial and antiviral material, antimicrobial and antiviral material, and antimicrobial and antiviral laminate WO2022044962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022544521A JPWO2022044962A1 (en) 2020-08-27 2021-08-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-143643 2020-08-27
JP2020143643 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022044962A1 true WO2022044962A1 (en) 2022-03-03

Family

ID=80355114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030397 WO2022044962A1 (en) 2020-08-27 2021-08-19 Curable composition for antimicrobial and antiviral material, antimicrobial and antiviral material, and antimicrobial and antiviral laminate

Country Status (3)

Country Link
JP (1) JPWO2022044962A1 (en)
TW (1) TW202208000A (en)
WO (1) WO2022044962A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122606A1 (en) * 2022-12-09 2024-06-13 株式会社トクヤマ Composition, curable composition, cured body, optical article, lens, glasses, and antibacterial/antiviral agent
WO2024162192A1 (en) * 2023-01-31 2024-08-08 株式会社トクヤマ Resin composition, curable composition, cured body, optical article, rubber sheet, eye protection article, and anti-bacterial/anti-virus agent
WO2025134806A1 (en) * 2023-12-20 2025-06-26 株式会社トクヤマ Curable composition, cured body, optical article, lens, rubber sheet, eye protector, antibacterial/antiviral agent, and resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372768A (en) * 1986-09-16 1988-04-02 Nippon Paint Co Ltd Antifouling paint
JPH11335487A (en) * 1998-05-22 1999-12-07 Kuraray Co Ltd Organic polymer with antibacterial and antifungal properties
WO2007105355A1 (en) * 2006-02-23 2007-09-20 Mitsui Chemicals, Inc. Internal mold release agent for production of polythiourethane optical material
JP2010235553A (en) * 2009-03-31 2010-10-21 Kuraray Medical Inc Phosphate ester compound and polymerizable composition containing the same
JP2012087070A (en) * 2010-10-15 2012-05-10 Tokuyama Dental Corp Polymerizable monomer
WO2019177084A1 (en) * 2018-03-16 2019-09-19 株式会社トクヤマ Bismuth compound, curable composition, and cured body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372768A (en) * 1986-09-16 1988-04-02 Nippon Paint Co Ltd Antifouling paint
JPH11335487A (en) * 1998-05-22 1999-12-07 Kuraray Co Ltd Organic polymer with antibacterial and antifungal properties
WO2007105355A1 (en) * 2006-02-23 2007-09-20 Mitsui Chemicals, Inc. Internal mold release agent for production of polythiourethane optical material
JP2010235553A (en) * 2009-03-31 2010-10-21 Kuraray Medical Inc Phosphate ester compound and polymerizable composition containing the same
JP2012087070A (en) * 2010-10-15 2012-05-10 Tokuyama Dental Corp Polymerizable monomer
WO2019177084A1 (en) * 2018-03-16 2019-09-19 株式会社トクヤマ Bismuth compound, curable composition, and cured body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122606A1 (en) * 2022-12-09 2024-06-13 株式会社トクヤマ Composition, curable composition, cured body, optical article, lens, glasses, and antibacterial/antiviral agent
WO2024162192A1 (en) * 2023-01-31 2024-08-08 株式会社トクヤマ Resin composition, curable composition, cured body, optical article, rubber sheet, eye protection article, and anti-bacterial/anti-virus agent
WO2025134806A1 (en) * 2023-12-20 2025-06-26 株式会社トクヤマ Curable composition, cured body, optical article, lens, rubber sheet, eye protector, antibacterial/antiviral agent, and resin composition

Also Published As

Publication number Publication date
JPWO2022044962A1 (en) 2022-03-03
TW202208000A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2022044962A1 (en) Curable composition for antimicrobial and antiviral material, antimicrobial and antiviral material, and antimicrobial and antiviral laminate
US11059969B2 (en) Polymer compositions and methods
KR101970115B1 (en) A xylylene diisocyanate composition, a xylylene diisocyanate modifier composition, a two-component resin raw material and a resin
EP3527597B1 (en) Polymerizable composition for optical material, and use thereof
KR20190077322A (en) Urethane resin and polishing pad using polyrotaxane
JP7352540B2 (en) Low water content polyrotaxane monomer and curable composition containing the monomer
TWI695041B (en) Active energy ray-curable polymer composition, cured film using the same, and laminate having the aforementioned cured film
JPWO2017039019A1 (en) Primer composition and photochromic laminate
WO2020032056A1 (en) Curable composition containing polypseudorotaxane monomer
WO2019198675A1 (en) Urethane resin using polyrotaxane, and pad for polishing
WO2018164194A1 (en) Polymerizable composition and molded body
WO2022030531A1 (en) Curable composition and cured article thereof
KR20120109052A (en) Method of manufacturing polymer coating film of cardanol derivative and coating film manufactured by using the same
JP2022043679A (en) Photochromic composition
JP7219022B2 (en) Water-dispersed polyisocyanate
JP2015143291A (en) Polyisocyanate composition
EP4380990A1 (en) Dual-cure resin composition comprising uretdione-containing compound and its use in 3d printing
Eom Photopolymerizations of multicomponent epoxide and acrylate/epoxide hybrid systems for controlled kinetics and enhanced material properties
WO2022163781A1 (en) Novel fine hollow particles comprising melamine-based resin
Leitsch Polyurethane and polyurethane-like materials synthesized with a reduced reliance on isocyanate compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861390

Country of ref document: EP

Kind code of ref document: A1