[go: up one dir, main page]

WO2022033212A1 - 一种大范围巡航自主水下机器人结构 - Google Patents

一种大范围巡航自主水下机器人结构 Download PDF

Info

Publication number
WO2022033212A1
WO2022033212A1 PCT/CN2021/103036 CN2021103036W WO2022033212A1 WO 2022033212 A1 WO2022033212 A1 WO 2022033212A1 CN 2021103036 W CN2021103036 W CN 2021103036W WO 2022033212 A1 WO2022033212 A1 WO 2022033212A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot body
autonomous underwater
thruster
robot
underwater robot
Prior art date
Application number
PCT/CN2021/103036
Other languages
English (en)
French (fr)
Inventor
徐会希
尹远
刘青岳
赵红印
张洪彬
陈仲
Original Assignee
中国科学院沈阳自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院沈阳自动化研究所 filed Critical 中国科学院沈阳自动化研究所
Publication of WO2022033212A1 publication Critical patent/WO2022033212A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/38Arrangement of visual or electronic watch equipment, e.g. of periscopes, of radar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/39Arrangements of sonic watch equipment, e.g. low-frequency, sonar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating

Definitions

  • the invention relates to the technical field of underwater robots, in particular to a large-scale cruise autonomous underwater robot structure.
  • autonomous underwater robots Under the strategic background of building a maritime power, autonomous underwater robots have irreplaceable significance in the fields of oceanic scientific research and deep-sea resource exploration. In the leap from “deep sea entry” to “deep sea exploration and development”, autonomous underwater robots have always played an indispensable and important role. With the increasingly heavy detection and development tasks, it is urgent to improve the efficiency of large-scale detection operations. Therefore, an autonomous underwater robot with low resistance and high maneuverability, suitable for large-scale, long-distance detection and sampling, is urgently needed.
  • the purpose of the present invention is to provide a large-scale cruise autonomous underwater robot structure, which has low resistance, high speed, and high maneuverability, and is suitable for large-scale, long-distance detection and sampling.
  • a large-scale cruise autonomous underwater robot structure is characterized by comprising a robot body, a horizontal channel thruster, a vertical channel thruster, a main thruster system and a stabilizer system, wherein the robot body is a revolving body structure;
  • the channel thruster and the vertical channel thruster are arranged at the bow of the robot body and are perpendicular to each other; the main thruster system and the stabilizer system are arranged at the stern of the robot body.
  • the main thruster system includes four main thrusters, and the four main thrusters are arranged in a cross shape at equal intervals in the circumferential direction.
  • the axis of the main thruster forms an included angle of 20-30 degrees with the axis of the robot body.
  • the stabilizer system includes four stabilizers distributed in the circumferential direction and in an "X" shape, and the four stabilizers are alternately arranged with the four main thrusters at intervals.
  • Small flaps are provided on the two stabilizers located on the left or right side, and the two small flaps are located in the same quadrant.
  • the stern portion of the robot body is a conical structure.
  • the top of the robot body is provided with a strobe light, a combined antenna, an acoustic communication machine and an ultra-short baseline.
  • the bottom of the robot body is provided with a combined detection side scan sonar system, a pressure-maintaining water extraction device, a floating load-throwing device, an altimeter, a multi-beam, a shallow formation profiler, a shallow profile receiving array, DVL inertial navigation and deep-height combined equipment and Image acquisition system.
  • the front end of the robot body is provided with a submersible throwing device, a forward-looking sonar and an oblique downward collision avoidance sonar; the rear end of the robot body is provided with a magnetometer.
  • the front end of the robot body is provided with a traction ring, and the middle position of the top is provided with a hoisting ring.
  • the present invention adopts the vector layout main thruster system to assist the cooperation of the horizontal channel thruster and the vertical channel thruster to achieve high space maneuverability in the high-speed cruise mode, and the 20-30 degree vector layout of the thrusters provides a longer The torque parameter makes the robot's space maneuverability stronger.
  • the present invention adopts the X-shaped stabilizer system to realize the sailing stability in the high-speed cruise mode.
  • the present invention adopts the deep-sea pressure-maintaining water sampler to carry out pressure-maintaining sampling on the deep-sea samples, and realizes the autonomous intervention of the autonomous underwater robot in the deep-sea environment.
  • the present invention adopts forward-looking sonar and altimeter to realize the perception and collision avoidance of complex marine environment.
  • the present invention adopts the linear design of the revolving body of the bow and stern cone, and under the premise of ensuring a higher volume ratio of the robot, a smaller sailing resistance is obtained.
  • Fig. 1 is the front view of the structure of the large-scale cruise autonomous underwater robot of the present invention
  • Fig. 2 is the top view of Fig. 1;
  • Fig. 3 is the left side view of Fig. 1;
  • Fig. 4 is the right side view of Fig. 1;
  • Fig. 5 is the bottom view of Fig. 1;
  • FIG. 6 is an axonometric view of the structure of the large-scale cruise autonomous underwater robot of the present invention.
  • 1 is the robot body
  • 2 is the forward looking sonar
  • 3 is the traction ring
  • 4 is the strobe light
  • 5 is the combined antenna
  • 6 is the horizontal channel thruster
  • 7 is the lifting ring
  • 8 is the acoustic communication machine
  • 9 is the ultra-short baseline
  • 10 is the upper right wing
  • 11 is the small flap
  • 12 is the magnetometer
  • 13 is the right thruster
  • 15 is the lower right wing
  • 16 is the detection side scan sonar combination system
  • 17 is the pressure-maintaining water extraction device
  • 18 is the vertical channel thruster
  • 19 is the upper left wing
  • 20 is the floating load-throwing device
  • 21 is the altimeter
  • 22 is the lighting
  • 23 is the camera
  • 24 is the video camera
  • 25 is the multi-beam
  • 26 is the shallow formation profiler
  • 27 28 is the DVL inertial navigation and deep altitude combined equipment
  • 29 is the flashing light
  • 30 is the upper thruster
  • a large-scale cruise autonomous underwater robot structure includes a robot body 1, a horizontal channel thruster 6, a vertical channel thruster 18, a main thruster system and a stabilizer system.
  • the robot body 1 is a revolving body structure; the horizontal channel thruster 6 and the vertical channel thruster 18 are arranged on the bow of the robot body 1 and are perpendicular to each other; the main thruster system and the stabilizer system are arranged on the robot body 1. stern.
  • the main propeller system includes four main propellers, and the four main propellers are arranged at equal intervals in the circumferential direction.
  • the axis of each main thruster forms an included angle of 20-30 degrees with the axis of the robot body 1 .
  • the four main thrusters are the right thruster 13 , the upper thruster 30 , the lower thruster 32 and the left thruster 35 respectively.
  • the vector layout main thruster system composed of the upper thruster 30, the lower thruster 32, the left thruster 35 and the right thruster 13 is adopted, and the horizontal channel thruster 6 and the vertical channel thruster 18 cooperate to achieve high speed.
  • High space maneuverability in cruise mode the 20-30 degree vector layout of the thrusters provides a longer torque parameter, making the robot more space maneuverable.
  • the stabilizer system includes four stabilizers distributed in the circumferential direction, and the four stabilizers are in an X-shaped structure, and the four stabilizers and the four main thrusters are alternately spaced setting, the stabilizer system maintains sailing stability in high-speed cruise mode.
  • the four stabilizers are the upper right wing 10 , the lower right wing 15 , the upper left wing 19 and the lower left wing 31 , and the two stabilizers located on the left side are provided with small flaps 11 .
  • the small flaps 11 are located in the same quadrant.
  • two small flaps 11 are disposed on the opposite surfaces of the upper right wing 10 and the lower right wing 15 , and the two small flaps 11 respectively form an included angle of 30-60° with the upper right wing 10 and the lower right wing 15 .
  • the X-shaped stabilizer system composed of the upper right wing 10, the lower right wing 15, the upper left wing 19 and the lower left wing 31 is adopted to achieve the navigation stability in high-speed cruise mode.
  • the combination of wings 11 realizes the rapid spiral dive and rapid spiral rise of the robot.
  • the stern part of the robot body 1 is a conical structure, and the robot body 1 adopts the revolving body linear design of the bow and stern cone, on the premise of ensuring that the robot has a high volume ratio , resulting in less sailing resistance.
  • the top of the robot body 1 is provided with a strobe light 4, a combined antenna 5, an acoustic communication machine 8 and an ultra-short baseline 9, and the acoustic communication machine 8 is used to carry out Acoustic signal communication and remote control; use ultra-short baseline 9 to locate and monitor the acoustic signal of the robot.
  • the bottom of the robot body 1 is provided with a combined detection side scan sonar system 16 , a pressure-maintaining water collection device 17 , a floating load-throwing device 20 , an altimeter 21 , a multi-beam 25 , a shallow The stratigraphic profiler 26, the shallow profile receiving array 27, the DVL inertial navigation and deep-height combined equipment 28 and the image acquisition system perform acoustic detection missions with the help of the sounding side-scan sonar combination system 16 to complete the fine detection of seabed micro-topography and topography.
  • the pressure-holding water sampling device 17 is used for pressure-holding sampling of deep seawater samples;
  • the image acquisition system includes a light 22 , a camera 23 , a video camera 24 and a flash 29 , and performs near-sea optical detection operations with the aid of the deep-sea camera 23 , the flash 29 , the light 22 , and the camera 24 .
  • the front end of the robot body 1 is provided with a dive loading device 33, a forward-looking sonar 2 and an oblique downward collision avoidance sonar 34; as shown in FIG. 1 , the rear end of the robot body 1 is provided with a magnetic force.
  • the instrument 12 is used to detect the magnetic anomaly data of the deep sea bottom by means of the magnetometer 12 .
  • the magnetometer 12 can be installed or disassembled according to actual detection requirements, and the disassembled robot has a shorter overall length and lower resistance.
  • the robot adopts the forward-looking sonar 2 and the altimeter 21 to realize the perception and collision avoidance of the complex marine environment.
  • the front end of the robot body 1 is provided with a traction ring 3
  • the middle position of the top is provided with a hoisting ring 7 .
  • the working principle of the present invention is:
  • the self-capacitance iridium satellite needs to be calibrated on the deck.
  • the robot is hoisted, deployed and retrieved from the deck through the hoisting hook 7.
  • the traction ring 3 of the bow is tensioned with the help of the back rope for anti-sway and anti-sway control.
  • the low-resistance characteristics combined with the symmetrical arrangement of the two small flaps at the stern, combined with the diving load-throwing device adsorbed by the diving electromagnet, can realize the rapid spiral diving of the robot, which greatly saves the waiting time for deep diving.
  • the X-shaped stabilizer system can maintain the sailing stability in high-speed cruise mode.
  • the four main thrusters in the stern vector layout combined with the horizontal and vertical channel thrusters redundantly arranged in the bow achieve the fast and high maneuvering response capability of symmetry in the horizontal and vertical planes.
  • the ultra-low drag characteristics are realized, and the large endurance and long range indicators in the large-scale high-speed cruise mode are achieved.
  • the robot judges whether the diving depth has reached the pre-programmed depth according to the DVL inertial navigation and deep-altitude combination equipment and altimeter, and then decides to continue diving or start the diving load-throwing device to start the detection operation. For example, after reaching the set depth and starting the dive load-throwing device, the robot completes the switch from negative buoyancy to positive buoyancy. At this time, it executes the pre-programmed detection mission, and uses forward-looking sonar and oblique downward collision avoidance sonar to detect the deep seabed environment. Perform depth perception and start the autonomous learning mode of the robot to start acousto-optical detection.
  • the invention has various combined equipment for positioning, communication and monitoring underwater and on the water surface, and provides support for the remote monitoring of the robot, online real-time short message calling, position indication and search on the water surface.
  • the robot has the capability of independent detection of acoustic and optical systems, and can be independently changed according to detection requirements. In different detection modes, the load can be expanded according to the detection requirements to achieve stronger detection operation capabilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hydrology & Water Resources (AREA)
  • Biochemistry (AREA)
  • Business, Economics & Management (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种大范围巡航自主水下机器人结构,包括机器人本体(1)、水平槽道推进器(6)、垂直槽道推进器(18)、主推进器系统及稳定翼系统,其中机器人本体(1)为回转体结构;水平槽道推进器(6)和垂直槽道推进器(18)设置于机器人本体(1)的艏部,并且相互垂直;主推进器系统和稳定翼系统设置于机器人本体(1)的艉部。该水下机器人结构适用于大范围、长距离探测取样。

Description

一种大范围巡航自主水下机器人结构 技术领域
本发明涉及水下机器人技术领域,特别涉及一种大范围巡航自主水下机器人结构。
背景技术
在建设海洋强国的战略背景下,自主水下机器人在面向大洋科考和深海资源勘查领域有着不可替代的重要的意义。从“深海进入”到“深海探测开发”的跨越过程中,自主水下机器人一直扮演者不可或缺的重要角色。随着探测开发任务的愈加繁重,亟需提升大规模探测作业的效率,所以急需一种低阻、高机动,适用于大规模、长距离探测取样的自主水下机器人。
发明内容
针对上述问题,本发明的目的在于提供一种大范围巡航自主水下机器人结构,该结构低阻、高速、高机动,适用于大规模、长距离探测取样。
为了实现上述目的,本发明采用以下技术方案:
一种大范围巡航自主水下机器人结构,其特征在于,包括机器人本体、水平槽道推进器、垂直槽道推进器、主推进器系统及稳定翼系统,其中,机器人本体为回转体结构;水平槽道推进器和垂直槽道推进器设置于机器人本体的艏部,并且相互垂直;主推进器系统和稳定翼系统设置于机器人本体的艉部。
所述主推进器系统包括四个主推进器,四个主推进器沿周向等间距呈十字形布设。
所述主推进器的轴线与所述机器人本体的轴线成20-30度夹角。
所述稳定翼系统包括沿周向且呈“X”型分布的四个稳定翼,该四个稳定翼与四个所述主推进器间隔交替设置。
位于左侧或右侧的两个所述稳定翼上均设有小襟翼,两个所述小襟翼位于同一象限内。
所述机器人本体的艉部为锥形结构。
所述机器人本体的顶部设有频闪灯、组合天线、声通讯机及超短基线。
所述机器人本体的底部设有探测侧扫声呐组合系统、保压采水装置、上浮抛载装置、高度计、多波束、浅地层剖面仪、浅剖接收阵、DVL惯导及深高度组合设备及图像采集系统。
所述机器人本体的前端设有下潜抛载装置、前视声呐及斜下避碰声呐;所述机器人本体 的后端设有磁力仪。
所述机器人本体的前端设有牵引环,顶部中间位置设有起吊环。
本发明的优点与积极效果为:
1.本发明采用矢量布局主推进器系统辅助以水平槽道推进器和垂直槽道推进器配合实现高速巡航模式下的空间高机动性,推进器的20-30度矢量布局提供了更长的力矩参数,使机器人的空间机动能力更强。
2.本发明采用X型稳定翼系统实现高速巡航模式下的航行稳定性。
3.本发明采用深海保压采水器对深海水样进行保压采样,实现了自主水下机器人对深海水环境的自主干预。
4.本发明采用前视声呐与高度计实现对复杂海洋环境感知与避碰处理。
5.本发明采用艏顿艉锥的回转体线型设计,在保证机器人有较高容积率的前提下,获得了更小的航行阻力。
附图说明
图1为本发明大范围巡航自主水下机器人结构的主视图;
图2为图1的俯视图;
图3为图1的左视图;
图4为图1的右视图;
图5为图1的仰视图;
图6为本发明大范围巡航自主水下机器人结构的轴测图。
图中:1为机器人本体,2为前视声呐,3为牵引环,4为频闪灯,5为组合天线,6为水平槽道推进器,7为起吊环,8为声通讯机,9为超短基线,10为右上翼,11为小襟翼,12为磁力仪,13为右推进器,15为右下翼,16为探测侧扫声呐组合系统,17为保压采水装置,18为垂直槽道推进器,19为左上翼,20为上浮抛载装置,21为高度计,22为照明灯,23为照相机,24为摄像机,25为多波束,26为浅地层剖面仪,27为浅剖接收阵,28为DVL惯导及深高度组合设备,29为闪光灯,30为上推进器,31为左下翼,32为下推进器,33为下潜抛载装置,34为斜下避碰声呐,35为左推进器。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
如图1-6所示,本发明提供的一种大范围巡航自主水下机器人结构,包括机器人本体1、水平槽道推进器6、垂直槽道推进器18、主推进器系统及稳定翼系统,其中机器人本体1为回转体结构;水平槽道推进器6和垂直槽道推进器18设置于机器人本体1的艏部,并且相互垂直;主推进器系统和稳定翼系统设置于机器人本体1的艉部。
本发明的实施例中,主推进器系统包括四个主推进器,四个主推进器沿周向等间距布设。优选地,各主推进器的轴线与机器人本体1的轴线成20-30度夹角。具体地,如图4所示,四个主推进器分别为右推进器13、上推进器30、下推进器32及左推进器35。采用由上推进器30、下推进器32、左推进器35和右推进器13组合而成的矢量布局主推进器系统,辅助以水平槽道推进器6和垂直槽道推进器18配合实现高速巡航模式下的空间高机动性,推进器的20-30度矢量布局提供了更长的力矩参数,使机器人的空间机动能力更强。
本发明的实施例中,如图4所示,稳定翼系统包括沿周向分布的四个稳定翼,且四个稳定翼呈X型结构,该四个稳定翼与四个主推进器间隔交替设置,稳定翼系统可保持高速巡航模式下的航行稳定性。具体地,如图4所示,四个稳定翼分别为右上翼10、右下翼15、左上翼19及左下翼31,位于左侧的两个稳定翼上均设有小襟翼11,两个小襟翼11位于同一象限内。具体地,两个小襟翼11设置于右上翼10和右下翼15的相对面上,两个小襟翼11分别与右上翼10和右下翼15呈30-60°夹角。采用由右上翼10、右下翼15、左上翼19及左下翼31组合而成的X型稳定翼系统,实现高速巡航模式下的航行稳定性,借助X型式布局的稳定翼系统,配备小襟翼11组合实现机器人的快速螺旋下潜与快速螺旋上升。
本发明的实施例中,如图6所示,机器人本体1的艉部为锥形结构,机器人本体1采用艏顿艉锥的回转体线型设计,在保证机器人有较高容积率的前提下,获得了更小的航行阻力。
在上述实施例的基础上,如图1-2所示,机器人本体1的顶部设有频闪灯4、组合天线5、声通讯机8及超短基线9,采用声通讯机8对机器人进行声学信号通讯与遥控;采用超短基线9对机器人进行声学信号定位与监控。
在上述实施例的基础上,如图5所示,机器人本体1的底部设有探测侧扫声呐组合系统16、保压采水装置17、上浮抛载装置20、高度计21、多波束25、浅地层剖面仪26、浅剖接收阵27、DVL惯导及深高度组合设备28及图像采集系统,借助测深侧扫声呐组合系统16执行声学探测使命,完成海底微地形、地貌精细探测。采用保压采水装置17对深海水样进 行保压采样;采用浅地层剖面仪26和浅剖接收阵27进行浅底层剖面测量及底质判断。
具体地,如图5所示,图像采集系统包括照明灯22、照相机23、摄像机24及闪光灯29,借助深海照相机23、闪光灯29、照明灯22、摄像机24等设备进行近海底光学探测作业。
进一步地,如图3所示,机器人本体1的前端设有下潜抛载装置33、前视声呐2及斜下避碰声呐34;如图1所示,机器人本体1的后端设有磁力仪12,借助磁力仪12进行深海海底磁力异常数据探测。磁力仪12可根据实际探测需求进行安装或拆卸操作,拆卸后的机器人整体长度更短且阻力更小。所述机器人采用前视声呐2和高度计21实现对复杂海洋环境的感知与避碰处理。
进一步地,机器人本体1的前端设有牵引环3,顶部中间位置设有起吊环7。当机器人执行探测任务期间发现异常数据点,机器人会自动从巡航模式切换为高机动精细探测模式,对该作业点执行精细勘察,同时启动保压采水装置17对异常点进行保压采水取样。
本发明的工作原理为:
机器人水面备潜阶段,在甲板上需要对自容铱星等进行水面校准。机器人从甲板通过起吊钩7起吊布放和挂钩回收,海况较差时借助回头绳索将艏部的牵引环3张紧的方式进行止荡和防摇摆控制。低阻特性结合艉部两个小襟翼板的对称布置,配合下潜电磁铁吸附的下潜抛载装置可实现机器人的快速螺旋式下潜,大大节约了大深度下潜的等待时间,同时在潜水器结束工作使命返航时通过螺旋上浮及低阻特性也可以大幅的缩短水面回收的等待时间,大大提升了大洋科考的工作效率。入水后X型稳定翼系统可保持高速巡航模式下的航行稳定性。借助艉部矢量布局的四个主推进器结合艏部冗余布置的水平和垂直槽道推进器实现水平面和垂直面内对称的快速高机动响应能力。借助艏顿艉锥的回转体流体线型实现超低阻力特性,实现大规模高速巡航模式下的大续航力远航程指标。机器人根据DVL惯导及深高度组合设备和高度计判断下潜深度是否达到预编程设定的深度,然后自主决策继续下潜或启动下潜抛载装置开始探测作业。如达到设定深度并启动下潜抛载装置后,机器人完成从负浮力到正浮力状态切换,此时执行预编程设定的探测使命,借助前视声呐和斜下避碰声呐对深海海底环境进行深度感知,并启动机器人的自主学习模式开始进行声光学探测作业。
本发明具备水下及水面多种定位、通讯、监测组合设备,为机器人的远程监控、在线实时短讯喊话、水面示位与搜寻提供支撑。所述机器人具有声学和光学系统独立探测作业的能力,同时可以根据探测需求进行独立换装。不同探测模式下可根据探测需求进行载荷扩充,实现更强的探测作业能力。
以上所述仅为本发明的实施方式,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进、扩展等,均包含在本发明的保护范围内。

Claims (10)

  1. 一种大范围巡航自主水下机器人结构,其特征在于,包括机器人本体(1)、水平槽道推进器(6)、垂直槽道推进器(18)、主推进器系统及稳定翼系统,其中,
    机器人本体(1)为回转体结构;
    水平槽道推进器(6)和垂直槽道推进器(18)设置于机器人本体(1)的艏部,并且相互垂直;
    主推进器系统和稳定翼系统设置于机器人本体(1)的艉部。
  2. 根据权利要求1所述的大范围巡航自主水下机器人结构,其特征在于,所述主推进器系统包括四个主推进器,四个主推进器沿周向等间距呈十字形布设。
  3. 根据权利要求2所述的大范围巡航自主水下机器人结构,其特征在于,所述主推进器的轴线与所述机器人本体(1)的轴线成20-30度夹角。
  4. 根据权利要求2所述的大范围巡航无人自主水下机器人结构,其特征在于,所述稳定翼系统包括沿周向且呈“X”型分布的四个稳定翼,该四个稳定翼与四个所述主推进器间隔交替设置。
  5. 根据权利要求4所述的大范围巡航自主水下机器人结构,其特征在于,位于左侧或右侧的两个所述稳定翼上均设有小襟翼(11),两个所述小襟翼(11)位于同一象限内。
  6. 根据权利要求1所述的大范围巡航自主水下机器人结构,其特征在于,所述机器人本体(1)的艉部为锥形结构。
  7. 根据权利要求1所述的大范围巡航自主水下机器人结构,其特征在于,所述机器人本体(1)的顶部设有频闪灯(4)、组合天线(5)、声通讯机(8)及超短基线(9)。
  8. 根据权利要求1所述的大范围巡航自主水下机器人结构,其特征在于,所述机器人本体(1)的底部设有探测侧扫声呐组合系统(16)、保压采水装置(17)、上浮抛载装置(20)、高度计(21)、多波束(25)、浅地层剖面仪(26)、浅剖接收阵(27)、DVL惯导及深高度组合设备(28)及图像采集系统。
  9. 根据权利要求1所述的大范围巡航自主水下机器人结构,其特征在于,所述机器人本体(1)的前端设有下潜抛载装置(33)、前视声呐(2)及斜下避碰声呐(34);所述机器人本体(1)的后端设有磁力仪(12)。
  10. 根据权利要求1所述的大范围巡航自主水下机器人结构,其特征在于,所述机器人 本体(1)的前端设有牵引环(3),顶部中间位置设有起吊环(7)。
PCT/CN2021/103036 2020-08-11 2021-06-29 一种大范围巡航自主水下机器人结构 WO2022033212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010800188.3 2020-08-11
CN202010800188.3A CN111846170B (zh) 2020-08-11 2020-08-11 一种大范围巡航自主水下机器人结构

Publications (1)

Publication Number Publication Date
WO2022033212A1 true WO2022033212A1 (zh) 2022-02-17

Family

ID=72971317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103036 WO2022033212A1 (zh) 2020-08-11 2021-06-29 一种大范围巡航自主水下机器人结构

Country Status (2)

Country Link
CN (1) CN111846170B (zh)
WO (1) WO2022033212A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114750909A (zh) * 2022-05-24 2022-07-15 鲁东大学 一种下潜式海洋污染物观测设备及其工作方法
CN115272217A (zh) * 2022-07-22 2022-11-01 湖北工业大学 一种基于声呐图像的水下机器人定位方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111846170B (zh) * 2020-08-11 2024-07-19 中国科学院沈阳自动化研究所 一种大范围巡航自主水下机器人结构
CN113075567A (zh) * 2021-02-24 2021-07-06 周涵彬 一种深海探测灯续航检测装置
CN112977776B (zh) * 2021-03-02 2022-05-03 南京航空航天大学 多段组合式及翼展折叠式水下机器人的运动方式
CN113022827A (zh) * 2021-04-07 2021-06-25 中国科学院沈阳自动化研究所 一种100米级arv水下机器人结构
CN113433535A (zh) * 2021-06-23 2021-09-24 中国舰船研究设计中心 一种适用于无人艇的声呐换能器舱
CN113844627A (zh) * 2021-10-22 2021-12-28 杭州电子科技大学 一种水下无人无缆作业型机器人
CN113911303B (zh) * 2021-12-14 2022-05-17 山东绅联药业有限公司 一种通航水域应急扫测用潜航器及使用方法
CN114815859A (zh) * 2022-05-06 2022-07-29 哈尔滨工程大学 一种便携式自主水下机器人系统及其控制系统
CN115107966B (zh) * 2022-07-04 2024-07-02 中国科学院沈阳自动化研究所 一种6000米级可地质探测的多模式arv结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105711777A (zh) * 2016-01-26 2016-06-29 河北工业大学 一种微小型模块化auv
CN108312151A (zh) * 2018-01-22 2018-07-24 哈尔滨工程大学 漂流探测水下机器人装置及控制方法
RU2681415C1 (ru) * 2018-05-22 2019-03-06 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Малогабаритный многофункциональный автономный необитаемый подводный аппарат - носитель сменной полезной нагрузки
CN209008840U (zh) * 2018-10-11 2019-06-21 交通运输部天津水运工程科学研究所 一种水下航行器尾舵
CN111301646A (zh) * 2020-03-25 2020-06-19 哈尔滨工程大学 一种用于冰下探测的自主式水下机器人
CN111846170A (zh) * 2020-08-11 2020-10-30 中国科学院沈阳自动化研究所 一种大范围巡航自主水下机器人结构
CN212500964U (zh) * 2020-08-11 2021-02-09 中国科学院沈阳自动化研究所 大范围巡航自主水下机器人结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323358A (zh) * 2008-07-08 2008-12-17 中国船舶重工集团公司第七○二研究所 潜水器艉部结构
CN104648643A (zh) * 2013-11-15 2015-05-27 中国科学院沈阳自动化研究所 一种水下机器人推进装置的布置结构
CN105586253A (zh) * 2016-03-01 2016-05-18 哈尔滨工程大学 基于可控单向阀串联结构的深海海水保压取样器
CN109774900A (zh) * 2017-11-15 2019-05-21 中国科学院沈阳自动化研究所 一种6000米级深海高机动自主水下机器人
CN107902059A (zh) * 2017-12-17 2018-04-13 天津瀚海蓝帆海洋科技有限公司 一种中型模块化auv
CN110386238A (zh) * 2018-04-19 2019-10-29 中国科学院沈阳自动化研究所 一种全海深arv水下机器人结构
CN109374350B (zh) * 2018-11-15 2021-05-11 江苏科技大学 一种小型多点自平衡式深海海水采集系统及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105711777A (zh) * 2016-01-26 2016-06-29 河北工业大学 一种微小型模块化auv
CN108312151A (zh) * 2018-01-22 2018-07-24 哈尔滨工程大学 漂流探测水下机器人装置及控制方法
RU2681415C1 (ru) * 2018-05-22 2019-03-06 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Малогабаритный многофункциональный автономный необитаемый подводный аппарат - носитель сменной полезной нагрузки
CN209008840U (zh) * 2018-10-11 2019-06-21 交通运输部天津水运工程科学研究所 一种水下航行器尾舵
CN111301646A (zh) * 2020-03-25 2020-06-19 哈尔滨工程大学 一种用于冰下探测的自主式水下机器人
CN111846170A (zh) * 2020-08-11 2020-10-30 中国科学院沈阳自动化研究所 一种大范围巡航自主水下机器人结构
CN212500964U (zh) * 2020-08-11 2021-02-09 中国科学院沈阳自动化研究所 大范围巡航自主水下机器人结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114750909A (zh) * 2022-05-24 2022-07-15 鲁东大学 一种下潜式海洋污染物观测设备及其工作方法
CN115272217A (zh) * 2022-07-22 2022-11-01 湖北工业大学 一种基于声呐图像的水下机器人定位方法

Also Published As

Publication number Publication date
CN111846170A (zh) 2020-10-30
CN111846170B (zh) 2024-07-19

Similar Documents

Publication Publication Date Title
WO2022033212A1 (zh) 一种大范围巡航自主水下机器人结构
CN100413755C (zh) 半自主式潜水器
US20210284298A1 (en) Recovery device and recovery method of unmanned underwater vehicles
US11697478B2 (en) System for deploying and recovering an autonomous underwater device, method of use
CN110775226B (zh) 混合能源水下航行器装置
CN110386238A (zh) 一种全海深arv水下机器人结构
CN212500964U (zh) 大范围巡航自主水下机器人结构
WO2022199158A1 (zh) 一种可自主拼接的模块化全向无人船
CN108820173A (zh) 基于浮力驱动与无轴矢量推进的变形潜水器及其工作方法
CN104527952B (zh) 一种微型自主式水下航行器
CN111874195A (zh) 一种全海深近海底自主水下机器人结构
CN108248801B (zh) 一种水下吊放机器人
WO2022033210A1 (zh) 一种高机动大潜深自主水下机器人形体结构
CN111572720B (zh) 一种高速高海况可下潜的多体无人航行器及其控制方法
TW201620785A (zh) 用於執行表面操作之航海機具
CN112937779A (zh) 大型远洋海道测量船
Yoshida et al. An autonomous underwater vehicle with a canard rudder for underwater minerals exploration
KR20170096460A (ko) 수중 운행 변환 구조의 드론
KR20180027464A (ko) 수중 운행 변환 구조의 드론
CN210592376U (zh) 一种拖曳自航两用多自由度操纵水下航行器
CN215205276U (zh) 大型远洋海道测量船
Conry et al. BIOSwimmer: Enabling technology for port security
CN115107966A (zh) 一种6000米级可地质探测的多模式arv结构
CN111319740B (zh) 一种深海可延展艇体潜航器
CN110901840B (zh) 一种海上探测平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855265

Country of ref document: EP

Kind code of ref document: A1