WO2022024796A1 - 偏光子ならびに該偏光子を含む偏光板および画像表示装置 - Google Patents
偏光子ならびに該偏光子を含む偏光板および画像表示装置 Download PDFInfo
- Publication number
- WO2022024796A1 WO2022024796A1 PCT/JP2021/026724 JP2021026724W WO2022024796A1 WO 2022024796 A1 WO2022024796 A1 WO 2022024796A1 JP 2021026724 W JP2021026724 W JP 2021026724W WO 2022024796 A1 WO2022024796 A1 WO 2022024796A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarizing element
- based resin
- pva
- stretching
- polyvinyl alcohol
- Prior art date
Links
- 229920005989 resin Polymers 0.000 claims abstract description 155
- 239000011347 resin Substances 0.000 claims abstract description 155
- 238000002834 transmittance Methods 0.000 claims abstract description 39
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 162
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 162
- 239000000126 substance Substances 0.000 claims description 26
- 230000010287 polarization Effects 0.000 claims description 25
- 230000001788 irregular Effects 0.000 claims description 5
- 239000000758 substrate Substances 0.000 abstract description 9
- 238000005336 cracking Methods 0.000 abstract description 2
- 238000011282 treatment Methods 0.000 description 64
- 239000010410 layer Substances 0.000 description 53
- 239000000463 material Substances 0.000 description 53
- 229920005992 thermoplastic resin Polymers 0.000 description 37
- 238000010438 heat treatment Methods 0.000 description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 238000000034 method Methods 0.000 description 28
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 27
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 26
- 239000004327 boric acid Substances 0.000 description 26
- 238000001035 drying Methods 0.000 description 23
- 230000003287 optical effect Effects 0.000 description 23
- 239000007788 liquid Substances 0.000 description 22
- 238000005259 measurement Methods 0.000 description 21
- 238000004043 dyeing Methods 0.000 description 19
- 150000004820 halides Chemical class 0.000 description 19
- 238000010521 absorption reaction Methods 0.000 description 17
- 238000000576 coating method Methods 0.000 description 16
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 14
- 229910052740 iodine Inorganic materials 0.000 description 14
- 239000011630 iodine Substances 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000005401 electroluminescence Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 238000000862 absorption spectrum Methods 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000007127 saponification reaction Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007602 hot air drying Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- -1 trimethylolpropane Chemical class 0.000 description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000001210 attenuated total reflectance infrared spectroscopy Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
Definitions
- the present invention relates to a polarizing element, a polarizing plate containing the polarizing element, and an image display device.
- image display devices represented by liquid crystal displays and electroluminescence (EL) display devices have rapidly become widespread. Due to the image forming method of the image display device, a polarizing element is arranged on at least one of the image display devices.
- a polarizing element is arranged on at least one of the image display devices.
- deformed processing for example, formation of a notch and / or a through hole
- the present invention has been made to solve the above-mentioned conventional problems, and a main object thereof is to provide a polarizing element which is extremely thin and in which crack generation in a deformed portion is suppressed.
- the polarizing element according to one embodiment of the present invention is made of a polyvinyl alcohol-based resin film containing a dichroic substance, has a variant other than a rectangular shape, has a single transmittance of x%, and is a composite of the polyvinyl alcohol-based resin.
- the birefringence is y
- the following equation (1) is satisfied: y ⁇ 0.011x + 0.525 (1).
- the polarizing element according to another embodiment of the present invention is made of a polyvinyl alcohol-based resin film containing a dichroic substance, has a variant other than a rectangular shape, has a single transmittance of x%, and is the polyvinyl alcohol-based resin film.
- the polarizing element according to still another embodiment of the present invention is made of a polyvinyl alcohol-based resin film containing a dichroic substance, has a variant other than a rectangular shape, has a single transmittance of x%, and is the polyvinyl alcohol-based resin.
- the orientation function is f
- the following equation (3) is satisfied: f ⁇ 0.018x + 1.11 (3).
- the polarizing element according to still another embodiment of the present invention is made of a polyvinyl alcohol-based resin film containing a dichroic substance, has a deformed shape other than a rectangular shape, and has a piercing strength of 30 gf / ⁇ m or more.
- the thickness of the polarizing element is 10 ⁇ m or less.
- the simple substance transmittance of the above-mentioned extruder is 40.0% or more, and the degree of polarization is 99.0% or more.
- the variant has a through hole, a V-shaped notch, a U-shaped notch, a recess with a shape similar to a ship shape when viewed in plan view, a rectangular recess when viewed in plan view, and a bathtub when viewed in plan view. It is selected from a group consisting of R-shaped recesses that approximate the shape and combinations thereof.
- the radius of curvature of the U-shaped notch is 5 mm or less.
- a polarizing plate is provided.
- the polarizing plate includes the above-mentioned polarizing element.
- an image display device is provided.
- the image display device includes the above-mentioned polarizing element or polarizing plate.
- the polarizing element according to the embodiment of the present invention is composed of a PVA-based resin film containing a dichroic substance.
- the polarizing element has a variant other than a rectangle.
- the term "having a variant other than a rectangle” means that the plan view shape of the polarizing element has a shape other than a rectangle.
- the irregular shape is typically a deformed portion that has been deformed.
- the entire variant polarizing element (that is, the outer edge defining the planar view shape of the polarizing element) is other than a rectangle.
- a deformed portion is formed in a portion inwardly separated from the outer edge of the rectangular polarizing element.
- cracks are likely to occur in such a deformed portion, and according to the embodiment of the present invention, such cracks can be remarkably suppressed. More details are as follows.
- Examples of the irregular shape (deformed portion) include a chamfered corner portion in an R shape, a through hole, and a cutting portion that becomes a concave portion when viewed in a plan view, as shown in FIGS. 1 and 2.
- Typical examples of the recess include a shape similar to a ship shape, a rectangle, an R shape similar to a bathtub shape, a V-shaped notch, and a U-shaped notch.
- the shape includes a portion where the outer edge is formed in an arc shape along the rotation direction of the meter needle and the outer edge forms a V-shape (including an R shape) convex inward in the plane direction.
- the shape of the deformed shape (deformed portion) is not limited to the illustrated example.
- any appropriate shape for example, ellipse, triangle, quadrangle, pentagon, hexagon, octagon
- the through hole is provided at an arbitrary appropriate position according to the purpose. As shown in FIG.
- the through hole may be provided at a substantially central portion of the longitudinal end portion of the rectangular polarizing element, or may be provided at a predetermined position at the longitudinal end portion, and may be provided at a predetermined position of the longitudinal end portion. It may be provided at the corners; although not shown, it may be provided at the lateral end of the rectangular polarizing element; at the center of the variant polarizing element, as shown in FIG. 3 or 4. It may be provided. As shown in FIG. 2, a plurality of through holes may be provided. Further, the shapes of the illustrated examples may be appropriately combined according to the purpose. For example, a through hole may be formed at any position on the variant polarizing element of FIG.
- a V-shaped notch and / or a U-shaped notch may be formed at any suitable position on the outer edge of the modified polarizing element of FIG. 3 or FIG. It may be formed.
- a deformed polarizing element can be suitably used for an image display device such as an automobile instrument panel, a smartphone, a tablet PC or a smart watch.
- the radius of curvature thereof is, for example, 0.2 mm or more, for example, 1 mm or more, and for example, 2 mm or more.
- the radius of curvature is, for example, 10 mm or less, and is, for example, 5 mm or less.
- the radius of curvature (the radius of curvature of the U-shaped portion) is, for example, 5 mm or less, for example, 1 mm to 4 mm, and for example, 2 mm to 3 mm.
- the variant (deformed portion) can be formed by any suitable method.
- Specific examples of the forming method include cutting with an end mill, punching with a punching blade such as a Thomson blade, and cutting with laser light irradiation. These methods may be combined.
- the polarizing element satisfies the following formula (1) when the simple substance transmittance is x% and the birefringence of the polyvinyl alcohol-based resin constituting the polarizing element is y.
- the substituent satisfies the following formula (2) when the simple substance transmittance is x% and the in-plane retardation of the polyvinyl alcohol-based resin film constituting the polarizing element is znm.
- the polarizing element satisfies the following formula (3) when the simple substance transmittance is x% and the orientation function of the polyvinyl alcohol-based resin constituting the polarizing element is f.
- the puncture strength of the polarizing element is 30 gf / ⁇ m or more.
- Double refraction of PVA-based resin in the above deflector hereinafter referred to as PVA double refraction or PVA ⁇ n
- PVA in-plane phase difference in-plane phase difference of PVA-based resin film
- the orientation function of the PVA-based resin hereinafter referred to as "orientation function of PVA”
- the piercing strength of the modulator are both values related to the degree of orientation of the molecular chains of the PVA-based resin constituting the modulator. ..
- the birefringence, in-plane phase difference and orientation function of PVA can be large as the degree of orientation increases, and the puncture strength can decrease as the degree of orientation increases.
- the orientation of the molecular chain of the PVA-based resin in the absorption axis direction is larger than that of the conventional polarizing element. Due to the gradualness, heat shrinkage in the absorption axis direction is suppressed. As a result, it is possible to suppress the occurrence of cracks in the deformed portion while being extremely thin. Further, since such a polarizing element is also excellent in flexibility and bending durability, it is preferably applied to a curved image display device, more preferably a foldable image display device, and further preferably a foldable image display device. Can be done.
- the polarizing element preferably satisfies the following formulas (1a) and / or the following formula (2a), and more preferably the following formulas (1b) and / or the formula (2b).
- the in-plane retardation value of PVA is the in-plane retardation value of the PVA-based resin film at 23 ° C. and a wavelength of 1000 nm.
- the birefringence of PVA is a value obtained by dividing the in-plane phase difference of PVA by the thickness of the polarizing element.
- the method for evaluating the in-plane phase difference of the PVA is also described in Japanese Patent No. 5923760, and can be referred to as necessary.
- the birefringence ( ⁇ n) of PVA can be calculated by dividing this phase difference by the thickness.
- Examples of commercially available devices for measuring the in-plane phase difference of PVA at a wavelength of 1000 nm include KOBRA-WR / IR series and KOBRA-31X / IR series manufactured by Oji Measurement Co., Ltd.
- the orientation function (f) of the polarizing element preferably satisfies the following formula (3a), and more preferably the following formula (3b). If the orientation function is too small, acceptable single transmittance and / or degree of polarization may not be obtained. -0.01x + 0.50 ⁇ f ⁇ -0.018x + 1.11 (3a) -0.01x + 0.57 ⁇ f ⁇ -0.018x + 1.1 (3b)
- the orientation function (f) is obtained by total internal reflection spectroscopy (ATR) measurement using, for example, a Fourier transform infrared spectrophotometer (FT-IR) and polarized light as measurement light.
- ATR total internal reflection spectroscopy
- germanium is used as the crystallite to which the polarizing element is brought into close contact
- the incident angle of the measurement light is 45 °
- the polarized infrared light (measurement light) to be incident is the surface to which the sample of the germanium crystal is brought into close contact.
- the polarization (s - polarized light) that vibrates in parallel with the light is used, and the measurement is performed with the extension directions of the substituents arranged parallel and perpendicular to the polarization direction of the measurement light. Is calculated according to the following formula.
- the intensity I is a value of 2941 cm -1/3330 cm -1 with 3330 cm -1 as a reference peak.
- the peak of 2941 cm -1 is considered to be absorption caused by the vibration of the main chain (-CH 2- ) of PVA in the polarizing element.
- ⁇ 90 °.
- ⁇ Angle of molecular chain with respect to stretching direction
- ⁇ Angle of transition dipole moment with respect to molecular chain axis
- I ⁇ Absorption intensity when the polarization direction of the measurement light and the extension direction of the modulator are perpendicular
- I // Absorption intensity when the polarization direction of the measurement light and the extension direction of the modulator are parallel
- the thickness of the polarizing element is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less.
- the lower limit of the thickness of the transducer can be, for example, 1 ⁇ m.
- the thickness of the polarizing element may be 2 ⁇ m to 10 ⁇ m in one embodiment and 2 ⁇ m to 8 ⁇ m in another embodiment.
- the polarizing element preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
- the simple substance transmittance of the polarizing element is preferably 40.0% or more, more preferably 41.0% or more.
- the upper limit of the single transmittance can be, for example, 49.0%.
- the simple substance transmittance of the polarizing element is 40.0% to 45.0% in one embodiment.
- the degree of polarization of the polarizing element is preferably 99.0% or more, more preferably 99.4% or more.
- the upper limit of the degree of polarization can be, for example, 99.999%.
- the degree of polarization of the polarizing element is 99.0% to 99.9% in one embodiment.
- the polarizing element according to the embodiment of the present invention has a lower degree of orientation of the PVA-based resin constituting the polarizing element than the conventional one and has the above-mentioned in-plane phase difference, birefringence and / or orientation function.
- One of the features is that such a practically acceptable single-unit transmittance and degree of polarization can be realized. It is presumed that this is due to the manufacturing method described later.
- the single transmittance is typically a Y value measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
- the degree of polarization is typically determined by the following equation based on the parallel transmittance Tp and the orthogonal transmittance Tc measured with an ultraviolet-visible spectrophotometer and corrected for luminosity factor.
- Polarization degree (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
- the puncture strength of the polarizing element is, for example, 30 gf / ⁇ m or more, preferably 35 gf / ⁇ m or more, more preferably 40 gf / ⁇ m or more, still more preferably 45 gf / ⁇ m or more, and particularly preferably 50 gf / ⁇ m or more. That is all.
- the upper limit of the piercing strength can be, for example, 80 gf / ⁇ m.
- the piercing strength indicates the cracking resistance of the polarizing element when the polarizing element is pierced with a predetermined strength.
- the piercing strength can be expressed as, for example, the strength (breaking strength) at which the polarizing element is cracked when a predetermined needle is attached to a compression tester and the needle is pierced into the polarizing element at a predetermined speed.
- the piercing strength means the piercing strength per unit thickness (1 ⁇ m) of the polarizing element.
- the polarizing element is composed of a PVA-based resin film containing a dichroic substance.
- the PVA-based resin constituting the PVA-based resin film (substantially, a polarizing element) contains an acetoacetyl-modified PVA-based resin.
- a polarizing element having a desired piercing strength can be obtained.
- the blending amount of the acetoacetyl-modified PVA-based resin is preferably 5% by weight to 20% by weight, more preferably 8% by weight to 12% by weight, when the total amount of the PVA-based resin is 100% by weight. .. When the blending amount is in such a range, the piercing strength can be in a more suitable range.
- the decoder can typically be made using a laminate of two or more layers.
- Specific examples of the polarizing element obtained by using the laminated body include a polarizing element obtained by using a laminated body of a resin base material and a PVA-based resin layer coated and formed on the resin base material.
- the polarizing element obtained by using the laminate of the resin base material and the PVA-based resin layer coated and formed on the resin base material is, for example, a resin base material obtained by applying a PVA-based resin solution to the resin base material and drying it.
- a PVA-based resin layer is formed on the PVA-based resin layer to obtain a laminate of a resin base material and a PVA-based resin layer; and stretching and dyeing the laminate to make the PVA-based resin layer a stator. obtain.
- a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is preferably formed on one side of the resin base material. Stretching typically involves immersing the laminate in an aqueous boric acid solution for stretching. Further, stretching preferably further comprises stretching the laminate in the air at a high temperature (eg, 95 ° C. or higher) prior to stretching in an aqueous boric acid solution.
- the total magnification of stretching is preferably 3.0 to 4.5 times, which is significantly smaller than usual. Even at the total magnification of such stretching, a stator having acceptable optical properties can be obtained by combining the addition of a halide and the drying shrinkage treatment.
- the stretching ratio of the aerial auxiliary stretching is preferably larger than the stretching ratio of the boric acid water stretching. With such a configuration, it is possible to obtain a polarizing element having acceptable optical characteristics even if the total magnification of stretching is small.
- the laminate is preferably subjected to a drying shrinkage treatment of shrinking by 2% or more in the width direction by heating while transporting in the longitudinal direction.
- the method for producing a polarizing element includes subjecting a laminate to an aerial auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order.
- auxiliary stretching even when the PVA-based resin is coated on the thermoplastic resin, the crystallinity of the PVA-based resin can be enhanced, and high optical characteristics can be achieved.
- by increasing the orientation of the PVA-based resin in advance it is possible to prevent problems such as deterioration of the orientation of the PVA-based resin and dissolution when immersed in water in the subsequent dyeing step or stretching step. , It becomes possible to achieve high optical characteristics.
- the disorder of the orientation of the polyvinyl alcohol molecule and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
- This makes it possible to improve the optical characteristics of the polarizing element obtained through a treatment step of immersing the laminate in a liquid, such as a dyeing treatment and a stretching treatment in water. Further, the optical characteristics can be improved by shrinking the laminated body in the width direction by the drying shrinkage treatment.
- the obtained resin base material / polarizing element laminate may be used as it is (that is, the resin base material may be used as a protective layer for the polarizing element), and the resin base material is peeled off from the resin base material / polarizing element laminate. Then, an arbitrary appropriate protective layer according to the purpose may be laminated on the peeled surface and used. The details of the method for manufacturing the stator will be described in Section B.
- a polyvinyl alcohol-based resin layer preferably, a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin (PVA-based resin) on one side of a long thermoplastic resin base material (preferably A PVA-based resin layer) is formed to form a laminated body, and the laminated body is heated in the width direction by performing an aerial auxiliary stretching treatment, a dyeing treatment, and an underwater stretching treatment while transporting the laminated body in the longitudinal direction. It includes performing a dry shrinkage treatment for shrinking by% or more in this order.
- the content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
- the drying shrinkage treatment is preferably performed using a heating roll, and the temperature of the heating roll is preferably 60 ° C. to 120 ° C.
- the shrinkage rate in the width direction of the laminated body by the dry shrinkage treatment is preferably 2% or more.
- the stretch ratio of the aerial auxiliary stretch is preferably larger than the stretch ratio of the underwater stretch. According to such a manufacturing method, the polarizing element described in the above section A can be obtained.
- a laminate containing a PVA-based resin layer containing a halide is prepared, the stretching of the laminate is a multi-step stretching including aerial auxiliary stretching and underwater stretching, and the stretched laminate is heated with a heating roll to have a width.
- a stator having excellent optical properties typically, single transmittance and degree of polarization
- thermoplastic resin base material a thermoplastic resin base material
- a PVA-based resin layer a coating liquid containing a halide and a PVA-based resin is applied to the surface of the thermoplastic resin base material and dried to form a PVA-based resin layer on the thermoplastic resin base material.
- the content of the halide in the PVA-based resin layer is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
- any appropriate method can be adopted as the application method of the coating liquid.
- a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) and the like can be mentioned.
- the coating / drying temperature of the coating liquid is preferably 50 ° C. or higher.
- the thickness of the PVA-based resin layer is preferably 2 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 20 ⁇ m.
- the thermoplastic resin base material Before forming the PVA-based resin layer, the thermoplastic resin base material may be surface-treated (for example, corona treatment or the like), or the easy-adhesion layer may be formed on the thermoplastic resin base material. By performing such a treatment, the adhesion between the thermoplastic resin base material and the PVA-based resin layer can be improved.
- thermoplastic resin base material any suitable thermoplastic resin film can be adopted. Details of the thermoplastic resin base material are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. The entire description of the publication is incorporated herein by reference.
- the coating liquid contains a halide and a PVA-based resin as described above.
- the coating liquid is typically a solution in which the halide and the PVA-based resin are dissolved in a solvent.
- the solvent include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, water is preferable.
- the PVA-based resin concentration of the solution is preferably 3 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solvent.
- the content of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
- Additives may be added to the coating liquid.
- the additive include a plasticizer, a surfactant and the like.
- the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
- the surfactant include nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability, and stretchability of the obtained PVA-based resin layer.
- any suitable resin can be adopted as the PVA-based resin.
- polyvinyl alcohol and ethylene-vinyl alcohol copolymers can be mentioned.
- Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
- the ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
- the saponification degree of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, and more preferably 99.0 mol% to 99.93 mol%. ..
- the degree of saponification can be determined according to JIS K 6726-1994.
- the PVA-based resin By using a PVA-based resin having such a degree of saponification, a polarizing element having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
- the PVA-based resin preferably contains an acetoacetyl-modified PVA-based resin.
- the average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose.
- the average degree of polymerization is usually 1000 to 10000, preferably 1200 to 4500, and more preferably 1500 to 4300.
- the average degree of polymerization can be determined according to JIS K 6726-1994.
- any suitable halide can be adopted.
- iodide and sodium chloride can be mentioned.
- Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Among these, potassium iodide is preferable.
- the amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA-based resin. It is a department. If the amount of the halide exceeds 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, the halide may bleed out and the finally obtained polarizing element may become cloudy.
- the stretching of the PVA-based resin layer increases the orientation of the polyvinyl alcohol molecules in the PVA-based resin layer.
- the stretched PVA-based resin layer is immersed in a liquid containing water, the polyvinyl alcohol molecules become higher. The orientation of the plastic may be disturbed and the orientation may decrease.
- the laminate of the thermoplastic resin base material and the PVA-based resin layer is stretched in boric acid water, the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin base material. In the case of stretching, the tendency of the degree of orientation to decrease is remarkable.
- stretching a PVA film alone in boric acid water is generally performed at 60 ° C.
- stretching of a laminate of A-PET (thermoplastic resin base material) and a PVA-based resin layer is performed. It is carried out at a high temperature of about 70 ° C., and in this case, the orientation of PVA at the initial stage of stretching may decrease before it is increased by stretching in water.
- A-PET thermoplastic resin base material
- auxiliary stretching before stretching it in boric acid water.
- Crystallization of the PVA-based resin in the PVA-based resin layer of the laminated body after the auxiliary stretching can be promoted.
- the disorder of the orientation of the polyvinyl alcohol molecule and the decrease in the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
- auxiliary stretching treatment in order to obtain high optical properties, a two-stage stretching method that combines dry stretching (auxiliary stretching) and boric acid water stretching is selected.
- auxiliary stretching By introducing auxiliary stretching as in the case of two-step stretching, it is possible to stretch while suppressing the crystallization of the thermoplastic resin base material.
- the PVA-based resin when the PVA-based resin is applied on the thermoplastic resin base material, it is compared with the case where the PVA-based resin is applied on a normal metal drum in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material. Therefore, it is necessary to lower the coating temperature, and as a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical characteristics cannot be obtained.
- the stretching method of the aerial auxiliary stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Although good, free-end stretching can be positively adopted in order to obtain high optical properties.
- the aerial stretching treatment includes a heating roll stretching step of stretching the laminate by the difference in peripheral speed between the heating rolls while transporting the laminated body in the longitudinal direction thereof.
- the aerial stretching treatment typically includes a zone stretching step and a heating roll stretching step.
- the order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first, or the heating roll stretching step may be performed first.
- the zone stretching step may be omitted.
- the zone stretching step and the heating roll stretching step are performed in this order.
- the film in the tenter stretching machine, is stretched by grasping the end portion of the film and widening the distance between the tenters in the flow direction (the widening of the distance between the tenters is the stretching ratio).
- the distance of the tenter in the width direction (perpendicular to the flow direction) is set to approach arbitrarily.
- it can be set to be closer to the free end stretch with respect to the stretch ratio in the flow direction.
- the aerial auxiliary stretching may be performed in one step or in multiple steps. When performed in multiple stages, the draw ratio is the product of the draw ratios in each stage.
- the stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
- the draw ratio in the aerial auxiliary stretching is preferably 1.0 to 4.0 times, more preferably 1.5 to 3.5 times, and further preferably 2.0 to 3.0 times. be. If the stretch ratio of the aerial auxiliary stretch is in such a range, the total stretch ratio can be set to a desired range when combined with the underwater stretch, and the desired birefringence, in-plane retardation and / or orientation can be set. Functions can be realized. As a result, it is possible to obtain a polarizing element in which crack generation in the deformed portion is suppressed. Further, as described above, it is preferable that the stretching ratio of the aerial auxiliary stretching is larger than the stretching ratio of the underwater stretching.
- the ratio of the stretching ratio of the aerial auxiliary stretching to the stretching ratio of the underwater stretching is preferably 0.4 to 0.9, more preferably 0.5 to 0. It is 8.8.
- the stretching temperature of the aerial auxiliary stretching can be set to an arbitrary appropriate value depending on the forming material of the thermoplastic resin base material, the stretching method, and the like.
- the stretching temperature is preferably the glass transition temperature (Tg) or higher of the thermoplastic resin base material, more preferably the glass transition temperature (Tg) of the thermoplastic resin base material (Tg) + 10 ° C. or higher, and particularly preferably Tg + 15 ° C. or higher.
- the upper limit of the stretching temperature is preferably 170 ° C.
- an insolubilization treatment is performed after the aerial auxiliary stretching treatment and before the underwater stretching treatment or the dyeing treatment.
- the insolubilization treatment is typically performed by immersing a PVA-based resin layer in a boric acid aqueous solution.
- the dyeing treatment is typically performed by dyeing the PVA-based resin layer with a dichroic substance (typically iodine).
- a cross-linking treatment is performed after the dyeing treatment and before the underwater stretching treatment.
- the cross-linking treatment is typically performed by immersing a PVA-based resin layer in an aqueous boric acid solution. Details of the insolubilization treatment, the dyeing treatment and the crosslinking treatment are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580.
- the underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, the thermoplastic resin base material or the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically, about 80 ° C.), and the PVA-based resin layer is crystallized. Can be stretched while suppressing. As a result, it is possible to manufacture a polarizing element having excellent optical characteristics.
- any appropriate method can be adopted as the stretching method of the laminated body. Specifically, it may be fixed-end stretching or free-end stretching (for example, a method of uniaxial stretching through a laminate between rolls having different peripheral speeds). Preferably, free-end stretching is selected.
- the stretching of the laminate may be carried out in one step or in multiple steps. When performed in multiple stages, the total stretching ratio is the product of the stretching ratios in each stage.
- the underwater stretching is preferably carried out by immersing the laminate in a boric acid aqueous solution (boric acid water stretching).
- boric acid aqueous solution as the stretching bath, it is possible to impart rigidity to withstand the tension applied during stretching and water resistance that does not dissolve in water to the PVA-based resin layer.
- boric acid can generate a tetrahydroxyboric acid anion in an aqueous solution and crosslink with a PVA-based resin by hydrogen bonding.
- the PVA-based resin layer can be imparted with rigidity and water resistance, can be stretched satisfactorily, and a polarizing element having excellent optical characteristics can be produced.
- the boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent.
- the boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, and particularly preferably 3 parts by weight to 5 parts by weight with respect to 100 parts by weight of water. Is.
- the boric acid concentration is preferably 1 part by weight or more, the dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing element having higher characteristics can be produced.
- an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
- iodide is added to the above stretching bath (boric acid aqueous solution).
- the elution of iodine adsorbed on the PVA-based resin layer can be suppressed.
- Specific examples of iodide are as described above.
- the concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, and more preferably 0.5 parts by weight to 8 parts by weight with respect to 100 parts by weight of water.
- the stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C to 85 ° C, more preferably 60 ° C to 75 ° C. At such a temperature, the PVA-based resin layer can be stretched at a high magnification while suppressing dissolution.
- the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60 ° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., it may not be stretched well even in consideration of the plasticization of the thermoplastic resin base material by water.
- the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
- the stretching ratio by stretching in water is preferably 1.0 to 2.2 times, more preferably 1.1 times to 2.0 times, and further preferably 1.1 times to 1.8 times. , Even more preferably 1.2 to 1.6 times.
- the total stretching ratio can be set in a desired range, and the desired birefringence, in-plane retardation and / or orientation function can be realized. As a result, it is possible to obtain a polarizing element in which crack generation in the deformed portion is suppressed.
- the total stretching ratio (the total stretching ratio when the aerial auxiliary stretching and the underwater stretching are combined) is preferably 3.0 to 4.5 times with respect to the original length of the laminated body.
- the drying shrinkage treatment may be performed by heating the entire zone by zone heating, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably both are used.
- heating roll heating roll drying method
- the crystallization of the thermoplastic resin base material can be efficiently promoted and the crystallinity can be increased, which is relatively low. Even at the drying temperature, the crystallinity of the thermoplastic resin substrate can be satisfactorily increased.
- the rigidity of the thermoplastic resin base material is increased, and the PVA-based resin layer is in a state of being able to withstand shrinkage due to drying, and curling is suppressed.
- the laminated body can be dried while being maintained in a flat state, so that not only curling but also wrinkles can be suppressed.
- the laminated body can be improved in optical characteristics by shrinking in the width direction by a drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively enhanced.
- the shrinkage ratio in the width direction of the laminate by the dry shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, and particularly preferably 2% to 6%.
- FIG. 5 is a schematic view showing an example of the drying shrinkage treatment.
- the laminate 200 is dried while being transported by the transport rolls R1 to R6 heated to a predetermined temperature and the guide rolls G1 to G4.
- the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA resin layer and the surface of the thermoplastic resin base material.
- one surface of the laminate 200 (for example, thermoplasticity) is arranged.
- the transport rolls R1 to R6 may be arranged so as to continuously heat only the resin substrate surface).
- Drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, and the like.
- the temperature of the heating roll is preferably 60 ° C. to 120 ° C., more preferably 65 ° C. to 100 ° C., and particularly preferably 70 ° C. to 80 ° C.
- the crystallinity of the thermoplastic resin can be satisfactorily increased, curling can be satisfactorily suppressed, and an optical laminate having extremely excellent durability can be produced.
- the temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as there are a plurality of transport rolls.
- the number of transport rolls is usually 2 to 40, preferably 4 to 30.
- the contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and further preferably 1 to 10 seconds.
- the heating roll may be provided in a heating furnace (for example, an oven) or in a normal production line (in a room temperature environment). Preferably, it is provided in a heating furnace provided with an air blowing means.
- a heating furnace provided with an air blowing means.
- the temperature of hot air drying is preferably 30 ° C to 100 ° C.
- the hot air drying time is preferably 1 second to 300 seconds.
- the wind speed of the hot air is preferably about 10 m / s to 30 m / s. The wind speed is the wind speed in the heating furnace and can be measured by a mini-vane type digital anemometer.
- a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment.
- the cleaning treatment is typically performed by immersing a PVA-based resin layer in an aqueous potassium iodide solution.
- Polarizing plate The above-mentioned polarizing element may be practically provided as a polarizing plate. Therefore, embodiments of the present invention also include polarizing plates.
- the polarizing plate has the polarizing element according to the above items A and B, and a protective layer arranged on at least one of the polarizing elements. Since the protective layer has a structure well known in the industry, detailed description thereof will be omitted.
- an embodiment of the present invention includes an image display device using such a polarizing element or a polarizing plate.
- the image display device include a liquid crystal display device and an electroluminescence (EL) display device (for example, an organic EL display device and an inorganic EL display device).
- the image display device preferably has a variant shape other than a rectangle. In such an image display device, the effect of the embodiment of the present invention is remarkable.
- Specific examples of the image display device having a deformed shape include a meter panel of an automobile, a smartphone, a tablet PC, and a smart watch.
- Thickness Measured using an interference film thickness meter manufactured by Otsuka Electronics Co., Ltd., product name "MCPD-3000"
- the calculated wavelength range used for the thickness calculation was 400 nm to 500 nm, and the refractive index was 1.53.
- In-plane phase difference (Re) of PVA A phase difference measuring device (product name manufactured by Oji Measuring Instruments Co., Ltd.) is used for the polarizing element (polarizer unit) obtained by removing the resin base material from the laminate of the polarizing element / thermoplastic resin base material obtained in Examples and Comparative Examples.
- KOBRA-31X100 / IR was used to evaluate the in-plane phase difference (Rpva) of PVA at a wavelength of 1000 nm (according to the explained principle, from the total in-plane phase difference at a wavelength of 1000 nm, the in-plane phase difference of iodine. (Ri) is subtracted).
- the absorption edge wavelength was set to 600 nm.
- Birefringence of PVA ( ⁇ n) The birefringence ( ⁇ n) of PVA was calculated by dividing the in-plane phase difference of PVA measured in (2) above by the thickness of the substituent.
- a single transmittance Ts, a parallel transmittance Tp, and a orthogonal transmittance Tc were measured using a meter (“V-7100” manufactured by Nippon Spectroscopy Co., Ltd.).
- These Ts, Tp and Tc are Y values measured by the JIS Z8701 two-degree visual field (C light source) and corrected for luminosity factor. From the obtained Tp and Tc, the degree of polarization P was determined by the following formula.
- Polarization degree P (%) ⁇ (Tp-Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100 It should be noted that the spectrophotometer can be used for the same measurement with "LPF-200" manufactured by Otsuka Electronics Co., Ltd., and the same measurement result can be obtained regardless of which spectrophotometer is used. Has been confirmed.
- Puncture strength breaking strength per unit thickness
- a compression tester manufactured by Kato Tech Co., Ltd., product name "NDG5" needle penetration force measurement specification
- the breaking strength As the evaluation value, the breaking strength of 10 sample pieces was measured, and the average value thereof was used.
- the needle used had a tip diameter of 1 mm ⁇ and 0.5R.
- the polarizing element to be measured was fixed by sandwiching a jig having a circular opening having a diameter of about 11 mm from both sides of the polarizing element, and a needle was pierced into the center of the opening to perform a test.
- the orientation function was calculated according to the following procedure.
- the incident polarized infrared light is polarized light (s-polarized light) that vibrates parallel to the surface to which the germanium crystal sample is in close contact, and the extension direction of the substituent is perpendicular to the polarization direction of the measurement light (measurement light).
- ⁇ polarized light
- ⁇ parallel
- I was calculated from the obtained absorbance spectrum, (2941 cm -1 intensity) I was calculated with reference to (3330 cm -1 intensity).
- I ⁇ is (2941 cm -1 intensity) / (3330 cm -1 intensity) obtained from the absorbance spectrum obtained when the stretching direction of the modulator is arranged perpendicularly ( ⁇ ) with respect to the polarization direction of the measurement light.
- I // is obtained from the absorbance spectrum obtained when the stretching direction of the splitter is arranged parallel (//) with respect to the polarization direction of the measurement light (2941 cm -1 intensity) / (3330 cm -1 intensity).
- (2941 cm -1 intensity) is the absorbance of 2941 cm -1 when 2770 cm -1 and 2990 cm -1 , which are the bottoms of the absorbance spectrum, are used as baselines
- (3330 cm -1 intensity) is 2990 cm ⁇ .
- the resin base material was peeled off, an acrylic pressure-sensitive adhesive layer (thickness 20 ⁇ m) was provided on the peeled surface, and a separator was temporarily attached to the pressure-sensitive adhesive layer.
- This laminate was cut out to a size of about 130 mm ⁇ about 70 mm.
- the absorber was cut out so that the absorption axis was in the lateral direction.
- a U-shaped notch having a width of 5 mm, a depth (length of the recess) of 6.85 mm, and a radius of curvature of 2.5 mm was formed in the central portion of the short side of the cut-out laminate.
- the U-shaped notch was formed by end milling.
- the outer diameter of the end mill was 4 mm, the feed rate was 500 mm / min, the rotation speed was 35,000 rpm, the amount of cutting and the number of times of cutting were 0.2 mm / time for rough cutting and 0.1 mm / time for finish cutting, for a total of 2 times.
- the separator was peeled off from the laminate having the U-shaped notch formed, and attached to a glass plate (thickness 1.1 mm) via an acrylic pressure-sensitive adhesive layer. Finally, the surface protective film was peeled off to obtain a test sample having a structure of a polarizing element / an adhesive layer / a glass plate. After placing this test sample in an oven at 85 ° C. for 120 hours, the presence or absence of L-shaped cracks was visually confirmed. This evaluation was performed using three polarizing elements, and the number of polarizing elements in which cracks (substantially L-shaped cracks) were generated was evaluated.
- thermoplastic resin base material an amorphous isophthal copolymer polyethylene terephthalate film (thickness: 100 ⁇ m) having a long shape, a water absorption rate of 0.75%, and a Tg of about 75 ° C. was used.
- One side of the resin base material was subjected to corona treatment (treatment conditions: 55 W ⁇ min / m 2 ).
- PVA-based resin 100 weight of PVA-based resin in which polyvinyl alcohol (polymerization degree 4200, saponification degree 99.2 mol%) and acetacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "Gosefimer Z410" are mixed at a ratio of 9: 1. 13 parts by weight of potassium iodide was added to the part to prepare a PVA aqueous solution (coating liquid). The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, and a laminate was prepared.
- the obtained laminate was stretched 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 130 ° C. (aerial auxiliary stretching treatment).
- the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
- a dyeing bath having a liquid temperature of 30 ° C. an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water
- underwater stretching treatment the stretching ratio in the underwater stretching treatment was 1.25 times.
- the laminate was immersed in a washing bath having a liquid temperature of 20 ° C. (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) (cleaning treatment).
- cleaning treatment while drying in an oven kept at 90 ° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at 75 ° C. for about 2 seconds (dry shrinkage treatment).
- the shrinkage rate in the width direction of the laminated body by the dry shrinkage treatment was 2%. In this way, a polarizing element having a thickness of 7.4 ⁇ m was formed on the resin substrate.
- a polarizing element (thickness: 6.7 ⁇ m) was formed on the resin substrate in the same manner as in Example 1 except that: 7) was used.
- a polarizing element (thickness: 6.2 ⁇ m) was formed on the resin substrate in the same manner as in Example 1 except that: 7) was used.
- a polarizing element (thickness: 6.0 ⁇ m) was formed on the resin substrate in the same manner as in Example 1 except that: 7) was used.
- FIGS. 6 to 8 show the relationship between the simple substance transmittance of the substituents obtained in Examples and Comparative Examples, ⁇ n of PVA, the in-plane phase difference, or the orientation function, respectively.
- ⁇ n of PVA the in-plane phase difference
- the orientation function the same (as a result, the degree of orientation is the same)
- the single transmittance is high, the deformed shape is processed. It can be seen that cracks are likely to occur in the portion. For example, looking at the vicinity of ⁇ n of 35 ( ⁇ 10 -3 ) in FIG.
- the decoder of the present invention is used in an image display device, and is particularly preferably used in an image display device having a variant shape such as an automobile meter panel, a smartphone, a tablet PC, or a smart watch.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
y<-0.011x+0.525 (1)。
本発明の別の実施形態による偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、矩形以外の異形を有し、単体透過率をx%とし、該ポリビニルアルコール系樹脂フィルムの面内位相差をznmとした場合に、下記式(2)を満たす:
z<-60x+2875 (2)。
本発明のさらに別の実施形態による偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、矩形以外の異形を有し、単体透過率をx%とし、該ポリビニルアルコール系樹脂の配向関数をfとした場合に、下記式(3)を満たす:
f<-0.018x+1.11 (3)。
本発明のさらに別の実施形態による偏光子は、二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、矩形以外の異形を有し、偏光子の突き刺し強度が30gf/μm以上である。
1つの実施形態において、上記偏光子の厚みは10μm以下である。
1つの実施形態において、上記偏光子の単体透過率は40.0%以上であり、かつ、偏光度が99.0%以上である。
1つの実施形態においては、上記異形は、貫通穴、V字ノッチ、U字ノッチ、平面視した場合に船形に近似した形状の凹部、平面視した場合に矩形の凹部、平面視した場合にバスタブ形状に近似したR形状の凹部、およびこれらの組み合わせからなる群から選択される。
1つの実施形態においては、上記U字ノッチの曲率半径は5mm以下である。
本発明の別の局面によれば、偏光板が提供される。当該偏光板は、上記の偏光子を含む。
本発明のさらに別の局面によれば、画像表示装置が提供される。当該画像表示装置は、上記の偏光子または偏光板を含む。
本発明の実施形態による偏光子は、二色性物質を含むPVA系樹脂フィルムで構成されている。さらに、偏光子は、矩形以外の異形を有する。本明細書において「矩形以外の異形を有する」とは、偏光子の平面視形状が矩形以外の形状を有することをいう。異形は、代表的には、異形加工された異形加工部である。したがって、「矩形以外の異形を有する偏光子」(以下、「異形偏光子」と称する場合がある)は、異形偏光子全体(すなわち、偏光子の平面視形状を規定する外縁)が矩形以外である場合のみならず、矩形の偏光子の外縁から内方に離間した部分に異形加工部が形成されている場合も包含する。偏光子において、このような異形加工部にはクラックが発生しやすいところ、本発明の実施形態によれば、そのようなクラックを顕著に抑制することができる。より詳細には、以下のとおりである。通常の(すなわち、異形ではない)偏光子においては、クラックは多くの場合吸収軸(延伸方向)に沿って発生する。一方、異形加工部においては、L字クラック(吸収軸に対して斜め方向のクラック)が発生し得る。本発明の実施形態によれば、後述するように、PVA系樹脂の分子鎖の吸収軸方向への配向を従来の偏光子よりも緩やかにすることにより、通常のクラックのみならずこのようなL字クラックも顕著に抑制することができる。
y<-0.011x+0.525 (1)
z<-60x+2875 (2)
f<-0.018x+1.11 (3)
-0.004x+0.18<y<-0.011x+0.525 (1a)
-0.003x+0.145<y<-0.011x+0.520 (1b)
-40x+1800<z<-60x+2875 (2a)
-30x+1450<z<-60x+2850 (2b)
R(λ)=A+B/(λ2-6002)
このとき、この位相差値R(λ)は、波長依存性のないPVAの面内位相差(Rpva)と、波長依存性の強いヨウ素の面内位相差値(Ri)とに下記のように分離することができる。
Rpva= A
Ri = B/(λ2-6002)
この分離式に基づいて、波長λ=1000nmにおけるPVAの面内位相差(すなわちRpva)を算出することができる。なお、当該PVAの面内位相差の評価方法については、特許第5932760号公報にも記載されており、必要に応じて、参照することができる。
また、この位相差を厚みで割ることでPVAの複屈折(Δn)を算出することができる。
-0.01x+0.50<f<-0.018x+1.11 (3a)
-0.01x+0.57<f<-0.018x+1.1 (3b)
f=(3<cos2θ>-1)/2
=(1-D)/[c(2D+1)]
=-2×(1-D)/(2D+1)
ただし、
c=(3cos2β-1)/2で、2941cm-1の振動の場合は、β=90°である。
θ:延伸方向に対する分子鎖の角度
β:分子鎖軸に対する遷移双極子モーメントの角度
D=(I⊥)/(I//) (この場合、PVA分子が配向するほどDが大きくなる)
I⊥ :測定光の偏光方向と偏光子の延伸方向が垂直の場合の吸収強度
I// :測定光の偏光方向と偏光子の延伸方向が平行の場合の吸収強度
偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
上記偏光子の製造方法は、好ましくは、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂(PVA系樹脂)とを含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは60℃~120℃である。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは2%以上である。さらに、空中補助延伸の延伸倍率は、好ましくは水中延伸の延伸倍率よりも大きい。このような製造方法によれば、上記A項で説明した偏光子を得ることができる。特に、ハロゲン化物を含むPVA系樹脂層を含む積層体を作製し、上記積層体の延伸を空中補助延伸及び水中延伸を含む多段階延伸とし、延伸後の積層体を加熱ロールで加熱して幅方向に2%以上収縮させることにより、優れた光学特性(代表的には、単体透過率および偏光度)を有する偏光子を得ることができる。
熱可塑性樹脂基材とPVA系樹脂層との積層体を作製する方法としては、任意の適切な方法が採用され得る。好ましくは、熱可塑性樹脂基材の表面に、ハロゲン化物とPVA系樹脂とを含む塗布液を塗布し、乾燥することにより、熱可塑性樹脂基材上にPVA系樹脂層を形成する。上記のとおり、PVA系樹脂層におけるハロゲン化物の含有量は、好ましくはPVA系樹脂100重量部に対して5重量部~20重量部である。
熱可塑性樹脂基材としては、任意の適切な熱可塑性樹脂フィルムが採用され得る。熱可塑性樹脂基材の詳細については、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。
塗布液は、上記のとおり、ハロゲン化物とPVA系樹脂とを含む。上記塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。塗布液におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。
特に、高い光学特性を得るためには、乾式延伸(補助延伸)とホウ酸水中延伸を組み合わせる、2段延伸の方法が選択される。2段延伸のように、補助延伸を導入することにより、熱可塑性樹脂基材の結晶化を抑制しながら延伸することができる。さらには、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合、熱可塑性樹脂基材のガラス転移温度の影響を抑制するために、通常の金属ドラム上にPVA系樹脂を塗布する場合と比べて塗布温度を低くする必要があり、その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解等の問題を防止することができ、高い光学特性を達成することが可能になる。
必要に応じて、空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を施す。上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。上記染色処理は、代表的には、PVA系樹脂層を二色性物質(代表的には、ヨウ素)で染色することにより行う。必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。不溶化処理、染色処理および架橋処理の詳細については、例えば特開2012-73580号公報に記載されている。
水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら延伸することができる。その結果、優れた光学特性を有する偏光子を製造することができる。
上記乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行っても良いし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光子を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%であり、より好ましくは2%~8%であり、特に好ましくは2%~6%である。
好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。
上記偏光子は、実用的には、偏光板として提供されてもよい。したがって、本発明の実施形態は偏光板も包含する。偏光板は、上記A項およびB項に記載の偏光子と、偏光子の少なくとも一方に配置された保護層と、を有する。保護層については業界で周知の構成が採用されるので、詳細な説明は省略する。
上記偏光子および偏光板は、画像表示装置に適用され得る。したがって、本発明の実施形態は、そのような偏光子または偏光板を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。画像表示装置は、好ましくは、矩形以外の異形を有する。このような画像表示装置において、本発明の実施形態による効果が顕著である。異形を有する画像表示装置の具体例としては、自動車のメーターパネル、スマートフォン、タブレット型PC、スマートウォッチが挙げられる。
干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。厚み算出に用いた計算波長範囲は400nm~500nmで、屈折率は1.53とした。
(2)PVAの面内位相差(Re)
実施例および比較例で得られた偏光子/熱可塑性樹脂基材の積層体から樹脂基材を剥離除去した偏光子(偏光子単体)について、位相差測定装置(王子計測機器社製 製品名「KOBRA-31X100/IR」)を用いて、波長1000nmにおけるPVAの面内位相差(Rpva)を評価した(説明した原理にしたがい、波長1000nmにおけるトータルの面内位相差から、ヨウ素の面内位相差(Ri)を引いた数値である)。吸収端波長は600nmとした。
(3)PVAの複屈折(Δn)
上記(2)で測定したPVAの面内位相差を、偏光子の厚みで割ることによりPVAの複屈折(Δn)を算出した。
(4)単体透過率および偏光度
実施例および比較例で得られた偏光子/熱可塑性樹脂基材の積層体から樹脂基材を剥離除去した偏光子(偏光子単体)について、紫外可視分光光度計(日本分光社製「V-7100」)を用いて単体透過率Ts、平行透過率Tp、直交透過率Tcを測定した。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。得られたTpおよびTcから、下記式により偏光度Pを求めた。
偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
なお、分光光度計は、大塚電子社製「LPF-200」等でも同等の測定をすることが可能であり、いずれの分光光度計を用いた場合であっても同等の測定結果が得られることが確認されている。
(5)突き刺し強度(単位厚み当たりの破断強度)
実施例および比較例で得られた偏光子/熱可塑性樹脂基材の積層体から偏光子を剥離し、ニードルを装着した圧縮試験機(カトーテック社製、製品名「NDG5」ニードル貫通力測定仕様)に載置し、室温(23℃±3℃)環境下、突き刺し速度0.33cm/秒で突き刺し、偏光子が割れたときの強度を破断強度とした。評価値は試料片10個の破断強度を測定し、その平均値を用いた。なお、ニードルは、先端径1mmφ、0.5Rのものを用いた。測定する偏光子については、直径約11mmの円形の開口部を有する治具を偏光子の両面から挟んで固定し、開口部の中央にニードルを突き刺して試験を行った。
(6)PVAの配向関数
実施例および比較例で得られた偏光子/熱可塑性樹脂基材の積層体から樹脂基材を剥離除去した偏光子(偏光子単体)について、樹脂基材を剥離した面と反対側の面に対して、フーリエ変換赤外分光光度計(FT-IR)(Perkin Elmer社製、商品名:「Frontier」)を用い、偏光された赤外光を測定光として、偏光子表面の全反射減衰分光(ATR:attenuated total reflection)測定を行った。偏光子を密着させる結晶子はゲルマニウムを用い、測定光の入射角は45°入射とした。配向関数の算出は以下の手順で行った。入射させる偏光された赤外光(測定光)は、ゲルマニウム結晶のサンプルを密着させる面に平行に振動する偏光(s偏光)とし、測定光の偏光方向に対し、偏光子の延伸方向を垂直(⊥)および平行(//)に配置した状態で各々の吸光度スペクトルを測定した。得られた吸光度スペクトルから、(3330cm-1強度)を参照とした(2941cm-1強度)Iを算出した。I⊥は、測定光の偏光方向に対し偏光子の延伸方向を垂直(⊥)に配置した場合に得られる吸光度スペクトルから得られる(2941cm-1強度)/(3330cm-1強度)である。また、I//は、測定光の偏光方向に対し偏光子の延伸方向を平行(//)に配置した場合に得られる吸光度スペクトルから得られる(2941cm-1強度)/(3330cm-1強度)である。ここで、(2941cm-1強度)は、吸光度スペクトルのボトムである、2770cm-1と2990cm-1をベースラインとしたときの2941cm-1の吸光度であり、(3330cm-1強度)は、2990cm-1と3650cm-1をベースラインとしたときの3330cm-1の吸光度である。得られたI⊥およびI//を用い、式1に従って配向関数fを算出した。なお、f=1のとき完全配向、f=0のときランダムとなる。また、2941cm-1のピークは、偏光子中のPVAの主鎖(-CH2-)の振動起因の吸収といわれている。また、3330cm-1のピークは、PVAの水酸基の振動起因の吸収といわれている。
(式1)f=(3<cos2θ>-1)/2
=(1-D)/[c(2D+1)]
但し
c=(3cos2β-1)/2
で、上記のように2941cm-1を用いた場合、β=90°⇒y=-2×(1-D)/(2D+1)である。
θ:延伸方向に対する分子鎖の角度
β:分子鎖軸に対する遷移双極子モーメントの角度
D=(I⊥)/(I//)
I⊥:測定光の偏光方向と偏光子の延伸方向が垂直の場合の吸収強度
I//:測定光の偏光方向と偏光子の延伸方向が平行の場合の吸収強度
(7)クラック発生率
実施例および比較例で得られた樹脂基材/偏光子の積層体の偏光子表面に表面保護フィルムを仮着した。次いで、樹脂基材を剥離し、剥離面にアクリル系粘着剤層(厚み20μm)を設け、当該粘着剤層にセパレーターを仮着した。この積層体を約130mm×約70mmに切り出した。このとき、偏光子の吸収軸が短手方向となるように切り出した。切り出した積層体の短辺の中央部に幅5mm、深さ(凹部の長さ)6.85mm、曲率半径2.5mmのU字ノッチを形成した。U字ノッチは、エンドミル加工により形成した。エンドミルの外径は4mm、送り速度は500mm/分、回転数は35000rpm、削り量および削り回数は粗削り0.2mm/回、仕上げ削り0.1mm/回の合計2回であった。U字ノッチを形成した積層体からセパレーターを剥離し、アクリル系粘着剤層を介してガラス板(厚み1.1mm)に貼り付けた。最後に、表面保護フィルムを剥離し、偏光子/粘着剤層/ガラス板の構成を有する試験サンプルを得た。この試験サンプルを85℃のオーブン内に120時間置いた後、L字クラック発生の有無を目視で確認した。この評価を3枚の偏光子を用いて行い、クラック(実質的には、L字クラック)の発生した偏光子の数を評価した。
熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理(処理条件:55W・min/m2)を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加し、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が40.5%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温62℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に延伸の総倍率が3.0倍となるように一軸延伸を行った(水中延伸処理:水中延伸処理における延伸倍率は1.25倍)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は2%であった。
このようにして、樹脂基材上に厚み7.4μmの偏光子を形成した。
ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に偏光子(厚み:7.4μm)を形成した。
水中延伸の延伸倍率を1.46倍としたこと(結果として、延伸の総倍率を3.5倍としたこと)、および、ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に偏光子(厚み:6.7μm)を形成した。
水中延伸の延伸倍率を1.67倍としたこと(結果として、延伸の総倍率を4.0倍としたこと)、および、ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に偏光子(厚み:6.2μm)を形成した。
水中延伸の延伸倍率を1.88倍としたこと(結果として、延伸の総倍率を4.5倍としたこと)、および、ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に偏光子(厚み:6.0μm)を形成した。
水中延伸の延伸倍率を2.29倍としたこと(結果として、延伸の総倍率を5.5倍としたこと)、および、ヨウ素濃度が異なる染色浴(ヨウ素とヨウ化カリウムの重量比=1:7)を用いたこと以外は実施例1と同様にして、樹脂基材上に偏光子(厚み:5.5μm)を形成した。
Claims (10)
- 二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、
矩形以外の異形を有し、
単体透過率をx%とし、該ポリビニルアルコール系樹脂の複屈折をyとした場合に、下記式(1)を満たす、偏光子:
y<-0.011x+0.525 (1)。 - 二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、
矩形以外の異形を有し、
単体透過率をx%とし、該ポリビニルアルコール系樹脂フィルムの面内位相差をznmとした場合に、下記式(2)を満たす、偏光子:
z<-60x+2875 (2)。 - 二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、
矩形以外の異形を有し、
単体透過率をx%とし、該ポリビニルアルコール系樹脂の配向関数をfとした場合に、下記式(3)を満たす、偏光子:
f<-0.018x+1.11 (3)。 - 二色性物質を含むポリビニルアルコール系樹脂フィルムで構成され、
矩形以外の異形を有し、
突き刺し強度が30gf/μm以上である、偏光子。 - 厚みが10μm以下である、請求項1から4のいずれかに記載の偏光子。
- 単体透過率が40.0%以上であり、かつ、偏光度が99.0%以上である、請求項1から5のいずれかに記載の偏光子。
- 前記異形が、貫通穴、V字ノッチ、U字ノッチ、平面視した場合に船形に近似した形状の凹部、平面視した場合に矩形の凹部、平面視した場合にバスタブ形状に近似したR形状の凹部、およびこれらの組み合わせからなる群から選択される、請求項1から6のいずれかに記載の偏光子。
- 前記U字ノッチの曲率半径が5mm以下である、請求項7に記載の偏光子。
- 請求項1から8のいずれかに記載の偏光子を含む、偏光板。
- 請求項1から8のいずれかに記載の偏光子または請求項9に記載の偏光板を含む、画像表示装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022540175A JP7646672B2 (ja) | 2020-07-29 | 2021-07-16 | 偏光子ならびに該偏光子を含む偏光板および画像表示装置 |
CN202180059340.XA CN116158205A (zh) | 2020-07-29 | 2021-07-16 | 偏光件以及包含该偏光件的偏光板及图像显示装置 |
KR1020237003212A KR20230042466A (ko) | 2020-07-29 | 2021-07-16 | 편광자 및 해당 편광자를 포함하는 편광판 및 화상 표시 장치 |
JP2024100976A JP2024114769A (ja) | 2020-07-29 | 2024-06-24 | 偏光子ならびに該偏光子を含む偏光板および画像表示装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-127938 | 2020-07-29 | ||
JP2020127938 | 2020-07-29 | ||
JP2020-133461 | 2020-08-06 | ||
JP2020133461 | 2020-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022024796A1 true WO2022024796A1 (ja) | 2022-02-03 |
Family
ID=80036425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/026724 WO2022024796A1 (ja) | 2020-07-29 | 2021-07-16 | 偏光子ならびに該偏光子を含む偏光板および画像表示装置 |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP7646672B2 (ja) |
KR (1) | KR20230042466A (ja) |
CN (1) | CN116158205A (ja) |
TW (1) | TW202212870A (ja) |
WO (1) | WO2022024796A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006291173A (ja) * | 2005-03-16 | 2006-10-26 | Nippon Synthetic Chem Ind Co Ltd:The | ポリビニルアルコール系フィルムおよびその製造方法 |
JP2016071350A (ja) * | 2014-09-30 | 2016-05-09 | 住友化学株式会社 | 偏光フィルムの強度測定方法及び偏光板 |
WO2016093277A1 (ja) * | 2014-12-12 | 2016-06-16 | 住友化学株式会社 | 偏光フィルムの製造方法及び偏光フィルム |
JP2017003954A (ja) * | 2015-06-12 | 2017-01-05 | 住友化学株式会社 | 偏光フィルム及びそれを含む偏光板 |
WO2017010218A1 (ja) * | 2015-07-16 | 2017-01-19 | 東海精密工業株式会社 | 偏光性成形体 |
JP2017062517A (ja) * | 2017-01-12 | 2017-03-30 | 日東電工株式会社 | 位相差層付偏光板および画像表示装置 |
JP2017182017A (ja) * | 2016-03-31 | 2017-10-05 | 住友化学株式会社 | 偏光板、偏光フィルムの製造方法、偏光板の製造方法 |
JP2017187731A (ja) * | 2016-03-30 | 2017-10-12 | 住友化学株式会社 | 延伸フィルムの製造方法及び偏光フィルムの製造方法 |
WO2018235630A1 (ja) * | 2017-06-22 | 2018-12-27 | 日東電工株式会社 | 積層体および積層体の製造方法 |
WO2019244923A1 (ja) * | 2018-06-20 | 2019-12-26 | 日東電工株式会社 | 偏光フィルム、粘着剤層付き偏光フィルム、及び画像表示装置 |
JP2020101574A (ja) * | 2018-12-11 | 2020-07-02 | 住友化学株式会社 | 偏光板 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001343521A (ja) | 2000-05-31 | 2001-12-14 | Sumitomo Chem Co Ltd | 偏光板及びその製造方法 |
-
2021
- 2021-07-16 JP JP2022540175A patent/JP7646672B2/ja active Active
- 2021-07-16 CN CN202180059340.XA patent/CN116158205A/zh active Pending
- 2021-07-16 WO PCT/JP2021/026724 patent/WO2022024796A1/ja active Application Filing
- 2021-07-16 KR KR1020237003212A patent/KR20230042466A/ko active Pending
- 2021-07-27 TW TW110127549A patent/TW202212870A/zh unknown
-
2024
- 2024-06-24 JP JP2024100976A patent/JP2024114769A/ja active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006291173A (ja) * | 2005-03-16 | 2006-10-26 | Nippon Synthetic Chem Ind Co Ltd:The | ポリビニルアルコール系フィルムおよびその製造方法 |
JP2016071350A (ja) * | 2014-09-30 | 2016-05-09 | 住友化学株式会社 | 偏光フィルムの強度測定方法及び偏光板 |
WO2016093277A1 (ja) * | 2014-12-12 | 2016-06-16 | 住友化学株式会社 | 偏光フィルムの製造方法及び偏光フィルム |
JP2017003954A (ja) * | 2015-06-12 | 2017-01-05 | 住友化学株式会社 | 偏光フィルム及びそれを含む偏光板 |
WO2017010218A1 (ja) * | 2015-07-16 | 2017-01-19 | 東海精密工業株式会社 | 偏光性成形体 |
JP2017187731A (ja) * | 2016-03-30 | 2017-10-12 | 住友化学株式会社 | 延伸フィルムの製造方法及び偏光フィルムの製造方法 |
JP2017182017A (ja) * | 2016-03-31 | 2017-10-05 | 住友化学株式会社 | 偏光板、偏光フィルムの製造方法、偏光板の製造方法 |
JP2017062517A (ja) * | 2017-01-12 | 2017-03-30 | 日東電工株式会社 | 位相差層付偏光板および画像表示装置 |
WO2018235630A1 (ja) * | 2017-06-22 | 2018-12-27 | 日東電工株式会社 | 積層体および積層体の製造方法 |
WO2019244923A1 (ja) * | 2018-06-20 | 2019-12-26 | 日東電工株式会社 | 偏光フィルム、粘着剤層付き偏光フィルム、及び画像表示装置 |
JP2020101574A (ja) * | 2018-12-11 | 2020-07-02 | 住友化学株式会社 | 偏光板 |
Also Published As
Publication number | Publication date |
---|---|
JP7646672B2 (ja) | 2025-03-17 |
KR20230042466A (ko) | 2023-03-28 |
JP2024114769A (ja) | 2024-08-23 |
JPWO2022024796A1 (ja) | 2022-02-03 |
CN116158205A (zh) | 2023-05-23 |
TW202212870A (zh) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7041017B2 (ja) | 偏光膜および偏光膜の製造方法 | |
JP7592665B2 (ja) | 偏光膜、偏光板、および該偏光膜の製造方法 | |
WO2021095527A1 (ja) | 偏光膜、偏光板および画像表示装置 | |
JP2023130424A (ja) | 偏光膜 | |
WO2022024796A1 (ja) | 偏光子ならびに該偏光子を含む偏光板および画像表示装置 | |
WO2022024797A1 (ja) | 偏光板および該偏光板を含む画像表示装置 | |
WO2021095526A1 (ja) | 偏光膜、偏光板および画像表示装置 | |
JP7165805B2 (ja) | 偏光膜、偏光板、および該偏光膜の製造方法 | |
WO2021256329A1 (ja) | 偏光膜、偏光板、および該偏光膜の製造方法 | |
WO2022024576A1 (ja) | 偏光板および該偏光板の製造方法 | |
JP7165813B2 (ja) | 偏光膜、偏光板および該偏光膜の製造方法 | |
WO2020261776A1 (ja) | 偏光膜、偏光板、および該偏光膜の製造方法 | |
WO2021261277A1 (ja) | 位相差層付偏光板、および、それを用いた画像表示装置 | |
JP2023083366A (ja) | 偏光膜および偏光板 | |
JP2022027338A (ja) | 偏光板および該偏光板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21851278 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022540175 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237003212 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21851278 Country of ref document: EP Kind code of ref document: A1 |