[go: up one dir, main page]

WO2022024171A1 - Base station and communication method - Google Patents

Base station and communication method Download PDF

Info

Publication number
WO2022024171A1
WO2022024171A1 PCT/JP2020/028672 JP2020028672W WO2022024171A1 WO 2022024171 A1 WO2022024171 A1 WO 2022024171A1 JP 2020028672 W JP2020028672 W JP 2020028672W WO 2022024171 A1 WO2022024171 A1 WO 2022024171A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
radio signal
base station
transmission
data
Prior art date
Application number
PCT/JP2020/028672
Other languages
French (fr)
Japanese (ja)
Inventor
朗 岸田
健悟 永田
保彦 井上
裕介 淺井
泰司 鷹取
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/028672 priority Critical patent/WO2022024171A1/en
Priority to JP2022539792A priority patent/JP7476966B2/en
Publication of WO2022024171A1 publication Critical patent/WO2022024171A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the embodiment relates to a base station and a communication method.
  • the wireless LAN base station and terminal access the channel using CSMA / CA (Carrier Sense Multiple Access with Collision Avoidance) and transmit wireless signals.
  • CSMA / CA Carrier Sense Multiple Access with Collision Avoidance
  • the base station and the terminal wait for the time specified by the access parameter, and transmit the radio signal after confirming by carrier sense that the channel is not in use by another terminal or the like.
  • EDCA Enhanced Distribution Channel Access
  • traffic from the upper layer is classified into four access categories (AC), that is, AC_VO (Voice), AC_VI (Video), AC_BE (Best effort), and AC_BK (Background).
  • AC_VO Voice over IP
  • AC_VI Video
  • AC_BE Best effort
  • AC_BK Background
  • CSMA / CA is performed for each access category.
  • the access parameters are assigned so that the transmission of the radio signal is relatively prioritized in the order of AC_VO, AC_VI, AC_BE, AC_BK.
  • EDCA gives relative priority among traffic.
  • RTA Real-Time Application
  • control of a network game or an industrial robot may have an absolute delay requirement for each application.
  • Relative priorities among traffic may not always meet the requirements.
  • the embodiment provides a base station and a communication method that can use an application (RTA) having an absolute requirement for delay.
  • RTA application
  • the base station includes a radio signal processing unit, a management unit, and a control unit.
  • the radio signal processing unit receives information on the measurement result of the delay when transmitting the radio signal from the terminal.
  • the management unit analyzes the cause of the delay based on the information of the measurement result.
  • the control unit controls an access parameter or an access method related to transmission, or both the access parameter and the access method, based on the cause of the delay.
  • FIG. 1 is a diagram showing a configuration of an example of a communication system according to an embodiment.
  • FIG. 2 is a diagram showing a hardware configuration of an example of a base station.
  • FIG. 3 is a diagram showing a hardware configuration of an example of a terminal.
  • FIG. 4 is a diagram showing processing of the MAC (Media Access Control) layer at the time of communication between the base station and the terminal.
  • FIG. 5 is a functional block diagram of the base station.
  • FIG. 6 is a functional block diagram of the terminal.
  • FIG. 7 is a diagram showing the format of the field for storing the measurement report.
  • FIG. 8 is a diagram for explaining the delay measured by the measuring unit in the embodiment.
  • FIG. 9 is a diagram showing the frame format of the data frame including the measurement report.
  • FIG. 10 is a flowchart showing a transmission process of an example of a terminal.
  • FIG. 11 is a flowchart showing a reception process of the base station.
  • FIG. 12 is a conceptual diagram for explaining an example of adjusting access parameters only within one's own BSS.
  • FIG. 13 is a diagram showing an example of adjusting access parameters for reducing delay in consideration of interference from other BSS.
  • FIG. 14 is a diagram for explaining the delay measured by the measuring unit in the modified example 3.
  • FIG. 1 is a diagram showing a configuration of an example of a communication system according to an embodiment.
  • the communication system 1 has a base station 10 and a terminal 20.
  • the base station 10 communicates wirelessly with a terminal in a predetermined service area. Although not shown in FIG. 1, communication may be performed between the terminals 20.
  • FIG. 2 is a diagram showing a hardware configuration of an example of the base station 10.
  • the base station 10 is an access point (AP) for the terminal 20.
  • the base station 10 is not limited to a fixed one, but may be mounted on a mobile body.
  • the base station 10 has a processor 11, a ROM (ReadOnlyMemory) 12, a RAM (RandomAccessMemory) 13, a wireless module 14, and a routing module 15.
  • ROM ReadOnlyMemory
  • RAM RandomAccessMemory
  • the processor 11 is a processing device that controls the entire base station 10.
  • the processor 11 is, for example, a CPU (Central Processing Unit).
  • the processor 11 is not limited to the CPU. Further, an ASIC (Application Specific IC) or the like may be used instead of the CPU. Further, the number of processors 11 may be two or more instead of one.
  • ROM 12 is a read-only storage device.
  • the ROM 12 stores firmware and various programs necessary for the operation of the base station 10.
  • the RAM 13 is a storage device that can be arbitrarily written.
  • the RAM 13 is used as a work area for the processor 11 and temporarily stores the firmware and the like stored in the ROM 12.
  • the wireless module 14 is a module configured to perform necessary processing for wireless LAN communication.
  • the wireless module 14 constitutes a MAC frame from, for example, data transferred from the processor 11, converts the configured MAC frame into a wireless signal, and transmits the configured MAC frame to the terminal 20. Further, the wireless module 14 receives a wireless signal from the terminal 20, extracts data from the received wireless signal, and transfers the data to, for example, the processor 11.
  • the routing module 15 is provided for the base station 10 to communicate with, for example, a server (not shown) via a network.
  • the base station 10 does not necessarily have to have the routing module 15.
  • the base station 10 may be configured to access a router provided outside the base station 10 by wireless communication or wired communication and connect to a network via this router.
  • FIG. 3 is a diagram showing a hardware configuration of an example of the terminal 20.
  • the terminal 20 is a terminal device (station) such as a smartphone.
  • the terminal 20 may be a mobile terminal, a terminal mounted on a mobile body, or a fixed terminal.
  • the terminal 20 has a processor 21, a ROM 22, a RAM 23, a wireless module 24, a display 25, and a storage 26.
  • the processor 21 is a processing device that controls the entire terminal 20.
  • the processor 21 is, for example, a CPU.
  • the processor 21 is not limited to the CPU. Further, ASIC or the like may be used instead of the CPU. Further, the number of processors 21 may be two or more instead of one.
  • ROM 22 is a read-only storage device.
  • the ROM 22 stores the firmware and various programs required for the operation of the terminal 20.
  • the RAM 23 is a storage device that can be arbitrarily written.
  • the RAM 23 is used as a work area for the processor 21, and temporarily stores the firmware and the like stored in the ROM 22.
  • the wireless module 24 is a module configured to perform necessary processing for wireless LAN communication. For example, the wireless module 24 configures a MAC frame for wireless communication from the data transferred from the processor 21, converts the configured MAC frame into a wireless signal, and transmits the configured MAC frame to the base station 10. Further, the wireless module 24 receives a wireless signal from the base station 10, extracts data from the received wireless signal, and transfers the data to, for example, the processor 21.
  • the display 25 is a display device that displays various screens.
  • the display 25 may be a liquid crystal display, an organic EL display, or the like. Further, the display 25 may be provided with a touch panel.
  • the storage 26 is a storage device such as a hard disk.
  • the storage 26 stores, for example, various applications executed by the processor 21.
  • FIG. 4 is a diagram showing processing of the MAC (Media Access Control) layer during communication between the base station 10 and the terminal 20.
  • MAC Media Access Control
  • FIG. 4 both the processing on the transmitting side and the processing on the receiving side are shown.
  • the other wireless module performs processing on the receiving side.
  • the wireless modules on the transmitting side and the receiving side are described without distinction.
  • the radio module performs A-MSDU aggregation. Specifically, the wireless module combines a plurality of data input from an upper layer such as an application layer to generate an A-MSDU (Aggregate-MAC service data unit).
  • A-MSDU Aggregate-MAC service data unit
  • step S11 the wireless module assigns a sequence number (SN) to the A-MSDU.
  • the sequence number is a unique number for identifying the A-MSDU.
  • step S12 the wireless module fragmentes (divides) the A-MSDU into a plurality of MPDUs (MAC protocol data units).
  • step S13 the wireless module encrypts each MPDU and generates an encrypted MPDU.
  • step S14 the wireless module adds a MAC header and an error detection code (FCS) to each encrypted MPDU.
  • the error detection code is, for example, a CRC (Cyclic Redundancy Check) code.
  • step S15 the wireless module performs A-MPDU aggregation. Specifically, the wireless module combines a plurality of MPDUs to generate an A-MPDU (Aggregate-MAC protocol data unit) as a MAC frame.
  • A-MPDU Aggregate-MAC protocol data unit
  • the wireless module processes the physical layer of the MAC frame. That is, the wireless module performs modulation processing or the like on the MAC frame to generate a wireless signal, and transmits the wireless signal to the base station 10.
  • the radio module processes the physical layer to restore the MAC frame from the radio signal.
  • the wireless module processes the MAC layer shown in FIG.
  • step S20 the wireless module performs A-MPDU deaggregation. Specifically, the wireless module divides the A-MPDU into MPDU units.
  • the wireless module detects an error. For example, the radio module determines whether or not the reception of the radio signal is successful by CRC. When the reception of the radio signal fails, the radio module may make a retransmission request. At this time, the wireless module may request retransmission in units of MPDU. On the other hand, when the reception of the radio signal is successful, the radio module performs the following processing.
  • step S22 the wireless module performs address detection. At this time, the wireless module determines whether or not the sent MPDU is addressed to itself based on the address recorded in the MAC header of each MPDU. When it is not addressed to you, the wireless module does not perform the following processing. When addressed to itself, the wireless module does the following:
  • step S23 the wireless module decrypts the encrypted MPDU.
  • step S24 the wireless module defragments the MPDU. That is, the wireless module restores the A-MSDU from the plurality of MPDUs.
  • step S25 the wireless module performs A-MSDU deaggregation. Specifically, the wireless module restores the A-MSDU to data in MSDU units.
  • the wireless module After step S25, the wireless module outputs data to the upper layer of the MAC layer.
  • the upper layer is, for example, an application layer.
  • FIG. 5 is a functional block diagram of the base station 10.
  • the base station 10 has a data processing unit 101, a radio signal processing unit 102, a management unit 103, and a control unit 104.
  • the data processing unit 101, the radio signal processing unit 102, the management unit 103, and the control unit 104 are realized by, for example, a processor 11 and a radio module 14.
  • the data processing unit 101 constitutes a MAC frame from, for example, data transferred from a server on the network. Further, the data processing unit 101 restores data from the MAC frame transferred from the radio signal processing unit 102. This data includes a measurement report sent from the terminal 20.
  • the wireless signal processing unit 102 performs processing for transmitting or receiving a wireless signal. For example, the radio signal processing unit 102 converts the MAC frame configured by the data processing unit 101 into a radio signal, and transmits the radio signal to the terminal 20. Further, the radio signal processing unit 102 receives a radio signal from the terminal 20, extracts a MAC frame from the received radio signal, and transfers the MAC frame to the data processing unit 101.
  • the wireless signal processing unit 102 may be configured to transmit a wireless signal by, for example, EDCA.
  • the radio signal processing unit 102 has transmission queues AC_VO, AC_VI, AC_BE, and AC_BK for each access category (AC).
  • the transmission queue AC_VO is a queue for holding a MAC frame categorized in VO (Voice).
  • the transmission queue AC_VI is a queue for holding a MAC frame categorized in VI (Video).
  • the transmission queue AC_BE is a queue for holding a MAC frame categorized in BE (Best effort).
  • the transmission queue AC_BK is a queue for holding a MAC frame categorized in BK (Background).
  • the radio signal processing unit 102 may have a transmission queue AC_LL for holding a MAC frame categorized in the access category LL (Low latency).
  • Access category AC_LL is an access category for RTAs that have absolute delay requirements, such as network games, industrial robot control applications, and the like.
  • the transmit queue AC_LL may have a plurality of transmit queues, each of which corresponds to an acceptable limit delay time.
  • the radio signal processing unit 102 maps the MAC frame transferred from the data processing unit 101 to any of four or five access categories according to the category of the data recorded in the MAC frame. According to the result of this mapping, the radio signal processing unit 102 inputs the MAC frame to the corresponding transmission queue.
  • the wireless signal processing unit 102 waits for transmission for a time specified by the access parameter set for each access category while confirming that the wireless signal is not transmitted by another terminal or the like by the carrier sense for each access category.
  • the channel becomes busy while waiting for transmission, it waits for the specified time count.
  • a channel is busy, it means that the channel is being used for other transmissions.
  • the radio signal processing unit 102 takes out a MAC frame from the corresponding transmission queue, converts the MAC frame into a radio signal, and transmits the MAC frame.
  • a channel is idle it means that the channel is not being used for other transmissions.
  • the access parameters may be assigned so that the transmission of the radio signal is prioritized in the order of LL, VO, VI, BE, and BK.
  • Access parameters may include CW min , CW max , AIFS, TXOP Limit .
  • CW min and CW max are the maximum value and the minimum value of the contention window (CW), which is the transmission waiting time for avoiding conflict, respectively. The shorter the CW min and CW max , the easier it is for the transmit queue to get a transmit opportunity.
  • AIFS Arbitr Inter Frame Space
  • the TXOP Limit is an upper limit of the transmission opportunity (TXOP), which is the occupied time of the channel. The larger the value of TXOP Limit , the more radio signals can be transmitted at one transmission opportunity.
  • the management unit 103 manages the measurement report sent from the terminal 20. For example, the management unit 103 holds the measurement report and analyzes the measurement report at a required timing.
  • the measurement report is a report including information on the delay of transmission of the radio signal in the terminal 20. As will be described in detail later, the delay in transmitting a radio signal is caused by a plurality of delay factors.
  • the measurement report contains information on the measurement results of the delay for each factor of the delay.
  • the control unit 104 performs the control necessary for transmitting the radio signal according to the delay factor analyzed by the management unit 103. This control includes adjustment of access parameters in the radio signal processing unit 102. The details of the operation of the control unit 104 will be described later.
  • FIG. 6 is a functional block diagram of the terminal 20.
  • the terminal 20 has a data processing unit 201, a radio signal processing unit 202, and a measurement unit 203.
  • the data processing unit 201, the radio signal processing unit 202, and the measurement unit 203 are realized by, for example, a processor 21 and a radio module 24.
  • the data processing unit 201 constitutes a MAC frame from, for example, data input from a higher-level application. Further, the data processing unit 201 restores data from the MAC frame transferred from the radio signal processing unit 202. This data is used, for example, by higher level applications. Further, the data processing unit 201 generates a MAC frame including a measurement report that stores the measurement result by the measurement unit 203.
  • the wireless signal processing unit 202 performs processing for transmitting or receiving a wireless signal.
  • the radio signal processing unit 202 converts the MAC frame configured by the data processing unit 201 into a radio signal, and transmits the radio signal to, for example, the base station 10.
  • the radio signal processing unit 202 receives a radio signal from the base station 10, extracts a MAC frame from the received radio signal, and transfers the MAC frame to the data processing unit 201.
  • the radio signal processing unit 202 may be configured to transmit a radio signal by, for example, EDCA, like the base station 10.
  • the measuring unit 203 measures the delay of transmission of the radio signal in the terminal 20 for each factor. Then, the measurement unit 203 creates a measurement report including delay information based on the measurement result.
  • FIG. 7 is a diagram showing the format of the field for storing the measurement report.
  • the field in which the measurement report is stored includes a plurality of fields in which the measurement result data for each access category is stored. The field in which the measurement report is stored may include only one field, for example, the field in which the measurement result data of AC_LL is stored. Further, in the field in which the measurement report is stored, the delay measurement result may be stored not for each access category but for each traffic type (TID).
  • TID is given for each application (session) handled by the terminal 20. The mapping to the access category described above may be performed based on the TID. By storing the measurement result for each TID, the delay distinguished for each application can be measured.
  • FIG. 8 is a diagram for explaining the delay measured by the measuring unit 203 in the embodiment.
  • Delays measured in embodiments include 1) queuing time T Q , 2) contention wait time T W , 3) contention time T C , 4) retransmission time T R , and 5) transmission time T T T.
  • the queuing time T Q , the contention waiting time T W , the contention time TC , the retransmission time T R , and the transmission time T T T TX may be measured by a clock (not shown) provided in the terminal 20.
  • the queuing time T Q is the time from when the MAC frame is input to the end of the transmission queue to when it comes to the beginning of the transmission queue.
  • a long queuing time T Q means that, for example, there is a delay due to a large number of MAC frames stored in the transmission queue.
  • the contention waiting time TW is a waiting time determined by AIFS for collision avoidance control having a priority control function for wireless transmission between access categories.
  • AIFS for collision avoidance control having a priority control function for wireless transmission between access categories.
  • a long contention wait time TW means that there is a delay due to another preferentially transmitted access category (which may be that of another BSS).
  • the contention time T c is a waiting time for avoiding collision of transmission of a radio signal between a plurality of access categories or between terminals.
  • the contention time T c is a back-off time randomly determined within a range in which CW min is the minimum value and CW, which is a value equal to or less than CW max , is the maximum value.
  • the radio signal is transmitted. If the channel becomes busy before the count of the contention time T c is completed, the remaining contention time T c is counted after the channel becomes idle. That is, the count of the contention time T c is carried over.
  • the long contention time Tc measured means that there is a delay due to a conflict in the transmission of radio signals between a plurality of access categories, or a delay due to a conflict in the transmission of a radio signal between a plurality of terminals. Means that is occurring.
  • Retransmission time TR is an additional time when the radio signal needs to be retransmitted. That is, the retransmission time TR is the time from when the wireless transmission is transmitted and when it is determined that the retransmission is necessary until the actual retransmission is performed.
  • the retransmission time TR includes an additional contention waiting time TW at the time of retransmission and a contention time T c ′ determined by the new CW . Therefore, a long retransmission time TR means that there is a delay due to a collision or a transmission error.
  • the transmission time TTX is the time from the transmission of the radio signal to the reception of the acknowledgment (ACK) from the base station 10.
  • the transmission time TX is shown as the time from the end of the retransmission time TR to the reception of the ACK. If there is no retransmission, the transmission time TTX is the time from the end of the contention time Tc to the reception of the ACK.
  • the measurement report When transmitting the measurement report to the base station 10, the measurement report may be included in the data frame and transmitted.
  • FIG. 9 is a diagram showing the frame format of the data frame including the measurement report.
  • the measurement report is stored in a new field for storing the measurement report, which is added to the data frame which is the MAC frame containing the data to be transmitted.
  • the terminal 20 attaches a measurement report based on the delay measurement result to the data frame. As a result, the delay status can be notified to the base station 10 in relatively real time.
  • the terminal 20 transmits a radio signal and the base station 10 receives the radio signal.
  • FIG. 10 is a flowchart showing a transmission process of an example of the terminal 20.
  • the data processing unit 201 determines whether or not data to be transmitted has been input from an upper layer such as an application layer. When it is determined in step S31 that no data has been input, the process of FIG. 10 ends. When it is determined in step S31 that the data has been input, the process proceeds to step S32.
  • step S32 the data processing unit 201 performs the processing of the MAC layer shown in FIG. 4 on the input data to generate a MAC frame. Further, when the measurement report is included in the data frame and transmitted, the data processing unit 201 includes the measurement report created by the measurement unit 203 when the MAC frame is generated. As will be described later, the measurement report may be transmitted to the base station 10 using the management frame, or may be transmitted to the base station 10 using the Action frame. After the MAC frame is generated, the data processing unit 201 outputs the MAC frame to the radio signal processing unit 202. The radio signal processing unit 202 outputs the time when the MAC frame is input to the end of the transmission queue to the measurement unit 203.
  • step S33 the radio signal processing unit 202 transmits a radio signal.
  • the radio signal processing unit 202 waits for transmission during the waiting time defined by the access parameter for each access category while performing carrier sense to determine the channel state. Then, if the channel is not used by another terminal or the like, the radio signal processing unit 202 converts the MAC frame into a radio signal and transmits the radio signal. Further, the radio signal processing unit 202 measures the time when the MAC frame comes to the head of the transmission queue, the end time of the waiting time determined by AIFS, the end time of the backoff time, and the time when the radio signal is transmitted. Output to unit 203.
  • step S34 the radio signal processing unit 202 determines whether or not to retransmit. For example, when a retransmission request is made from the base station 10, it is determined that the retransmission is performed. In addition, when ACK is not sent from the base station 10 for a certain period of time, it may be determined to retransmit. Further, when the block ACK is sent from the base station 10, it is determined that the block ACK is to be retransmitted when the information of the MPDU whose reception has failed is included in the block ACK. When it is determined in step S34 that the retransmission is performed, the process proceeds to step S35. When it is determined in step S34 that the retransmission is not performed, the process proceeds to step S36.
  • step S35 the radio signal processing unit 202 performs retransmission. Further, the radio signal processing unit 202 outputs the time when the radio signal is retransmitted to the measurement unit 203.
  • step S36 the radio signal processing unit 202 outputs the time when the transmission is completed (for example, the ACK in FIG. 8 is received) to the measurement unit 203.
  • step S37 the measurement unit 203 creates a measurement report.
  • the queuing time is calculated from the time difference between the time when the MAC frame comes to the beginning of the transmission queue and the time entered at the end of the transmission queue.
  • the contention waiting time is calculated from the time difference between the end time of the waiting time determined by AIFS and the time when the MAC frame comes to the head of the transmission queue.
  • the contention time is calculated from the time difference between the end time of the backoff time and the end time of the waiting time determined by AIFS.
  • the retransmission time is calculated from the time difference between the time when the retransmission is performed and the time when the first radio signal is transmitted.
  • the transmission time is calculated from the time difference between the time when the ACK is received and the time when the transmission of the first radio signal is performed or the time when the retransmission is performed. After calculating the time information regarding these delays, the measurement unit 203 creates a measurement report by associating the measurement results with the access category and the sequence number.
  • step S38 the data processing unit 201 stores the measurement report in, for example, the storage 24. After that, the process of FIG. 10 ends.
  • the stored measurement report is included in the MAC frame and transmitted at the next transmission of data of the same access category, for example.
  • FIG. 11 is a flowchart showing a reception process of the base station 10 including the communication method according to the embodiment.
  • the radio signal processing unit 102 determines whether or not the radio signal has been received. When it is determined in step S51 that the radio signal has not been received, the process of FIG. 11 ends. When it is determined in step S51 that the radio signal has been received, the process proceeds to step S52.
  • the radio signal processing unit 102 performs radio signal reception processing. That is, the wireless signal processing unit 102 performs demodulation processing or the like on the wireless signal to take out the MAC frame.
  • the wireless signal processing unit 102 outputs the MAC frame to the data processing unit 101.
  • the data processing unit 101 processes the MAC layer on the MAC frame and restores the data.
  • step S53 the data processing unit 101 determines whether or not the reception is successful. Whether or not the reception is successful can be determined by, for example, CRC. When it is determined in step S53 that the reception is successful, the process proceeds to step S54. When it is determined in step S53 that the reception is not successful, the process proceeds to step S55.
  • step S54 the radio signal processing unit 102 transmits an ACK.
  • the ACK may be sent using the block ACK.
  • the block ACK is an ACK containing information on the success or failure of reception for each MPDU. After that, the process proceeds to step S56.
  • step S55 the radio signal processing unit 102 requests retransmission. Retransmission may be requested using block ACK. After that, the process returns to step S51.
  • step S56 the data processing unit 101 outputs data to an upper layer such as an application layer.
  • step S57 the data processing unit 101 determines whether or not there is a measurement report. For example, when the measurement report is included in the MAC frame, it is determined that there is a measurement report. In addition, it may be determined that there is a measurement report when the measurement report is sent from the terminal 20 using the management frame. Further, the base station 10 may request a measurement report using the Action frame, and when the measurement report is hesitated in response to this request, it may be determined that there is a measurement report. When it is determined in step S57 that there is a measurement report, the process proceeds to step S58. When it is determined in step S57 that there is no measurement report, the process of FIG. 11 ends.
  • step S58 the management unit 103 determines whether or not there is a delay based on the measurement result of the delay included in the measurement report. For example, the management unit 103 determines whether or not the delay of the access category AC_LL is shorter than the threshold value.
  • This threshold value may be, for example, a fixed value. Further, this threshold value may be set according to the result of negotiation with the terminal 20. For example, when transmitting and receiving RTA traffic, the base station 10 inquires of the terminal 20 about the delay requirement in transmitting and receiving RTA traffic. Then, the base station 10 sets the threshold value according to this inquiry. When it is determined in step S58 that there is a delay, the process proceeds to step S59. When it is determined in step S58 that there is no delay, the process of FIG. 11 ends.
  • step S59 the management unit 103 analyzes the cause of the delay based on the delay information stored in the measurement report.
  • the cause of the delay is roughly classified into the one due to the competition and the one due to the retransmission.
  • the delay due to the conflict is the delay when the contention time is long, and means that the delay due to the conflict of transmission of the radio signal between a plurality of access categories or terminals occurs, for example.
  • the delay due to retransmission is a delay when the retransmission time is long, and means that a delay occurs because many retransmissions occur.
  • the management unit 103 compares the difference between the allowable delay time assigned to each of the contention time and the retransmission time and the actual time, and identifies the time having a larger difference as the cause of the delay. If both the actual time of the contention time and the actual time of the retransmission exceed the allowable time, both may be specified as the cause of the delay, and the time with a larger difference may be specified as the main cause of the delay. good.
  • step S60 the control unit 104 adjusts the access parameters.
  • the adjustment of access parameters will be described later.
  • the control unit 104 After adjusting the access parameters, the control unit 104 notifies the radio signal processing unit 102 of the adjusted access parameters. After that, the process proceeds to step S61.
  • the radio signal processing unit 102 notifies the terminal 20 of the adjusted access parameters.
  • the radio signal processing unit 102 includes the adjusted access parameter in the beacon and broadcasts the signal. Alternatively, it may be individually known by using an action frame or the like. After that, the process of FIG. 11 ends. Upon receiving this notification, the terminal 20 also carries out communication from the next time onward using the adjusted access parameters.
  • FIG. 12 is a conceptual diagram for explaining an example of adjusting access parameters.
  • FIG. 12 is an example in which the access parameter is adjusted with the terminal 20 in the own BSS without considering the interference by another BSS (Basic Service Set).
  • BSS Basic Service Set
  • the access parameters are adjusted based on the default.
  • the default is the initial value of the access parameter.
  • the default is predetermined for each access category, for example.
  • the horizontal axis of FIG. 12 shows an example of adjusting access parameters for dealing with delays due to conflicts.
  • the adjustment of the access parameter for dealing with the delay due to the conflict is performed sequentially toward the right, for example, each time it is determined that there is a delay.
  • the adjustment of each access parameter may be performed in combination or may be performed while being switched one by one. Further, the order of adjusting the access parameters may be changed.
  • LL CW min small in FIG. 12 means that the CW min of the access category AC_LL is made smaller than the default.
  • the amount of decrease in CW min may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual contention time.
  • “Other TXOP Limit small” in FIG. 12 means that the TXOP Limit of access categories AC_VO, AC_VI, AC_BE, and AC_BK other than the access category AC_LL, that is, no absolute delay requirement, is made smaller than the default. ..
  • the amount of decrease in TXOP Limit may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual contention time.
  • No other TXOP continuation in FIG. 12 means that the TXOP Limit of the other access category is set to 0.
  • the probability that the transmission queue of the access category AC_LL can obtain a transmission opportunity is relatively increased. As a result, it is expected that the delay due to competition will be reduced.
  • the vertical axis of FIG. 12 shows an example of adjusting access parameters for dealing with delays due to retransmission.
  • the adjustment of the access parameter for dealing with the delay due to retransmission is carried out sequentially upward, for example, each time it is determined that there is a delay.
  • the adjustment of each access parameter may be performed in combination or may be performed while being switched one by one. Further, the order of adjusting the access parameters may be changed.
  • LL CW min large in FIG. 12 means that the CW min of the access category AC_LL is made larger than the default.
  • the amount of increase in CW min may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time.
  • “Other CW min large” in FIG. 12 means that the CW min of other access categories is made larger than the default.
  • the amount of increase in CW min may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time.
  • LL CW max large in FIG. 12 means that the CW max of the access category AC_LL is made larger than the default.
  • the amount of increase in CW max may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time.
  • LL MCS small in FIG. 12 means to use a high transmission quality MCS (Modulation and Coding Scheme) that can be used in the access category AC_LL.
  • the MCS is an index value representing a set of a modulation method and an error correction coding rate when a radio signal is generated in the radio signal processing unit.
  • LL MCS designation in FIG. 12 means that the index value of the available MCS of the access category AC_LL is designated as a predetermined value, for example, the minimum value.
  • the success probability of retransmitting the radio signal for the access category AC_LL is increased. As a result, it is expected that the delay due to retransmission will be reduced.
  • LL AIFS small”, “Other, AIFS large”, “Other CW max large”, and “LL centralized control” in FIG. 12 are effective measures for both delay due to competition and delay due to retransmission. These measures are taken when both the delay due to conflict and the delay due to retransmission are determined to be the cause of the delay.
  • "LL AIFS small”, “Other, AIFS large”, “Other CW max large”, and "LL centralized control” are carried out in this order, for example. Each correspondence may be carried out in combination, or may be carried out while being switched one by one. In addition, the order of implementation of correspondence may be changed.
  • the access parameter for the delay due to the above-mentioned conflict or the access parameter for the delay due to the above-mentioned retransmission may be adjusted according to the main cause of the delay.
  • these measures are retransmitted even if the delay due to the conflict is not resolved even if the access parameter for the delay due to the above-mentioned conflict is adjusted, or even if the access parameter is adjusted for the delay due to the retransmission described above. It may be carried out when the delay due to is not eliminated.
  • LL AIFS small means that the AIFS of the access category AC_LL is made smaller than the default.
  • the amount of decrease in AIFS may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time.
  • “Other AIFS large” means that the AIFS of other access categories is larger than the default.
  • the amount of increase in AIFS may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time.
  • the probability that the send queue of access category AC_LL can get a transmission opportunity is relatively increased, so it is expected that the delay due to competition will be reduced for access category AC_LL. Will be done.
  • the radio signal of the access category AC_LL is often transmitted with priority over the radio signals of other access categories, collisions are reduced, and it is expected that the delay due to retransmission is reduced for the access category AC_LL.
  • "Other CW max large” means that the CW max of other access categories is made larger than the default.
  • the amount of increase in CW max may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time.
  • Increasing the CW max in the other access categories reduces collisions between the radio signals in the other access categories and the AC_LL radio signals. As a result, it is expected that the delay due to the retransmission of the radio signal of AC_LL will be reduced.
  • the probability that the transmission queue of the access category AC_LL can obtain the transmission opportunity is relatively increased. As a result, it is expected that the delay due to competition will be reduced for the access category AC_LL.
  • LL centralized control means to carry out centralized control for positively securing transmission opportunities for the access category AC_LL. Additional transmission opportunities for the access category AC_LL can be provided using various centralized controls such as HCCA (HCF Control Chanel Access), TWT (Target Wake Time), CFP (Contention Free Period).
  • HCCA HCF Control Chanel Access
  • TWT Target Wake Time
  • CFP Contention Free Period
  • the base station 10 collects the delay information in the transmission of the radio signal from the terminal 20, analyzes the delay factor from the delay information, and responds to the analyzed delay factor. Adjust access parameters. By repeating this until the required delay condition is satisfied, the base station 10 can handle RTA traffic with the absolute delay requirement condition.
  • the control unit 104 can adjust access parameters such as reducing the TXOP Limit of the access category other than LL, reducing the AIFS of the LL, and increasing the AIFS of the access category other than the LL.
  • the control unit 104 can adjust access parameters such as reducing the CW max of the LL and increasing the CW max of the access category other than the LL.
  • the control unit 104 can adjust the access parameters such as increasing the CW max of the LL and other access categories. Further, the control unit 104 can also make adjustments to reduce the index value of the available MCS.
  • control unit 104 can make adjustments to increase the available MCS.
  • the terminal 20 identifies different BSS base stations depending on the BSS Color, and measures the channel occupancy time for each BSS.
  • BSS Color represents the "color" of BSS and is set to be different for each adjacent BSS.
  • the channel occupancy time is, for example, the total time of the queuing time, the contention waiting time, the contention time, the retransmission time, and the transmission time described above.
  • the terminal 20 stores the information of the channel occupancy time for each BSS in the base station 10 together with the BSS Color in the measurement report.
  • the base station 10 acquires the occupancy time of another BSS channel from the BSS Color stored in the measurement report as information on interference from the other BSS. Then, when the occupied time of the channel of another BSS exceeds a predetermined threshold value, the base station 10 adjusts the access parameter for reducing the delay due to the interference from the other BSS.
  • FIG. 13 is a diagram showing an example of adjustment of access parameters for reducing delay in consideration of interference from other BSS.
  • FIG. 13 shows that "change of link or channel" is added in addition to FIG. Therefore, the description of the same processing as in FIG. 12 will be omitted.
  • Changing a link or channel makes a link used for multi-link communication between a base station 10 and a terminal 20 different from a link used for a multi-link communication between another base station and a terminal 20 or a base. This means that the channel used for communication between the station 10 and the terminal 20 is different from the channel used for communication between the other base station and the terminal 20.
  • Multi-link communication is to communicate between the base station 10 and the terminal 20 using a plurality of different links.
  • the plurality of links may be different in the unit of the frequency band or may be different in the unit of the channel.
  • the base station 10 may negotiate with the other station so that the link used for the communication of the other station is different from the link used for the communication of the own station while maintaining the link used for the communication of the own station.
  • the link used for the communication of the own station may be negotiated with the other station so as to be different from the other station.
  • the base station 10 negotiates with the other station so that the channel used for the communication of the other station is different from the own station while maintaining the channel used for the communication of the own station.
  • the channel used for communication of the other station may be maintained, and the channel used for communication of the own station may be negotiated with the other station so as to be different from the other station.
  • the access parameters are adjusted in consideration of the magnitude of interference caused by other BSS. This is expected to further optimize access parameters.
  • the measurement report is transmitted in addition to the original data to be transmitted.
  • the measurement report can also be transmitted to the base station 10 using the Action frame.
  • the base station 10 transmits an Action frame to the terminal 20 with a new field including a status notification request for requesting a measurement report.
  • the terminal 20 transmits a measurement report.
  • the terminal 20 can use an Action frame to which a new field for storing the measurement report is added.
  • the measurement report can also be transmitted to the base station 10 using the management frame.
  • the terminal 20 periodically transmits a management frame to which a new field for storing the measurement report is added to the base station 10.
  • the MAC frame for delay measurement is at the top of the transmission queue. You may enter in.
  • the MAC frame for delay measurement may be transmitted using an access parameter or the like based on the conditions specified by the base station. For example, if the base station wants to measure the delay for a specific TID, it may transmit a MAC frame for delay measurement using the parameters of the access category corresponding to the TID.
  • FIG. 14 is an example in which the Action frame is used, but the same applies when the management frame is used.
  • the delay is measured at the terminal 20, and the measurement result is transmitted from the terminal 20 to the base station 10.
  • the delay may be measured at the base station 10.
  • the base station 10 can adjust the access parameters based on the delay measured by itself.
  • each process according to the above-described embodiment can be stored as a program that can be executed by a processor that is a computer.
  • it can be stored and distributed in a storage medium of an external storage device such as a magnetic disk, an optical disk, or a semiconductor memory.
  • the processor reads the program stored in the storage medium of the external storage device, and the operation is controlled by the read program, so that the above-mentioned processing can be executed.
  • the present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained.
  • the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This base station (10) comprises: a wireless signal processing unit (102) which receives, from a terminal, information on a measurement result of measuring delay when transmitting a wireless signal; a management unit (103) which analyzes the cause of the delay on the basis of the information on the measurement result; and a control unit (104) which controls, on the basis of a delay factor, an access parameter or access method related to transmission or both the access parameter and the access method.

Description

基地局及び通信方法Base station and communication method
 実施形態は、基地局及び通信方法に関する。 The embodiment relates to a base station and a communication method.
 無線LANの基地局と端末とは、CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)を用いてチャネルにアクセスし、無線信号を送信する。CSMA/CAでは、基地局及び端末は、アクセスパラメータによって規定された時間を待ちつつ、キャリアセンスにより、他の端末等によってチャネルが使用中でないことを確認した上で無線信号を送信する。 The wireless LAN base station and terminal access the channel using CSMA / CA (Carrier Sense Multiple Access with Collision Avoidance) and transmit wireless signals. In CSMA / CA, the base station and the terminal wait for the time specified by the access parameter, and transmit the radio signal after confirming by carrier sense that the channel is not in use by another terminal or the like.
 無線LANにおける優先制御方式の1つとして、EDCA(Enhanced Distribution Channel Access)が規定されている。EDCAでは、上位層からのトラヒックが4つのアクセスカテゴリ(AC)、すなわちAC_VO(Voice)、AC_VI(Video)、AC_BE(Best effort)、AC_BK(Background)の何れかに分類される。そして、EDCAでは、アクセスカテゴリ毎にCSMA/CAが行われる。EDCAでは、アクセスパラメータは、AC_VO、AC_VI、AC_BE、AC_BKの順で無線信号の送信が相対的に優先されるように割り当てられている。 EDCA (Enhanced Distribution Channel Access) is defined as one of the priority control methods in wireless LAN. In EDCA, traffic from the upper layer is classified into four access categories (AC), that is, AC_VO (Voice), AC_VI (Video), AC_BE (Best effort), and AC_BK (Background). Then, in EDCA, CSMA / CA is performed for each access category. In EDCA, the access parameters are assigned so that the transmission of the radio signal is relatively prioritized in the order of AC_VO, AC_VI, AC_BE, AC_BK.
 EDCAにより、トラヒック間での相対的な優先付けがされる。ここで、例えばネットワークゲームや工業用ロボットの制御のようなRTA(Real-Time Application)は、アプリケーション毎の絶対的な遅延の要求条件を有していることがある。トラヒック間での相対的な優先付けだけでは必ずしも要求条件を満足できない場合がある。 EDCA gives relative priority among traffic. Here, RTA (Real-Time Application) such as control of a network game or an industrial robot may have an absolute delay requirement for each application. Relative priorities among traffic may not always meet the requirements.
 実施形態は、遅延に関する絶対的な要求条件を持つアプリケーション(RTA)を利用できる基地局及び通信方法を提供する。 The embodiment provides a base station and a communication method that can use an application (RTA) having an absolute requirement for delay.
 一態様の基地局は、無線信号処理部と、管理部と、制御部とを備える。無線信号処理部は、無線信号を送信するときの遅延の測定結果の情報を端末から受信する。管理部は、測定結果の情報に基づいて遅延の要因を分析する。制御部は、遅延の要因に基づいて送信に係るアクセスパラメータ或いはアクセス方法、又は前記アクセスパラメータと前記アクセス方法の両方を制御する。 One aspect of the base station includes a radio signal processing unit, a management unit, and a control unit. The radio signal processing unit receives information on the measurement result of the delay when transmitting the radio signal from the terminal. The management unit analyzes the cause of the delay based on the information of the measurement result. The control unit controls an access parameter or an access method related to transmission, or both the access parameter and the access method, based on the cause of the delay.
 実施形態によれば、遅延に関する絶対的な要求条件を持つアプリケーション(RTA)を利用できる基地局及び通信方法を提供することができる。 According to the embodiment, it is possible to provide a base station and a communication method that can use an application (RTA) having an absolute requirement for delay.
図1は、実施形態に係る通信システムの一例の構成を示す図である。FIG. 1 is a diagram showing a configuration of an example of a communication system according to an embodiment. 図2は、基地局の一例のハードウェア構成を示す図である。FIG. 2 is a diagram showing a hardware configuration of an example of a base station. 図3は、端末の一例のハードウェア構成を示す図である。FIG. 3 is a diagram showing a hardware configuration of an example of a terminal. 図4は、基地局と端末との通信の際のMAC(Media Access Control)層の処理を示す図である。FIG. 4 is a diagram showing processing of the MAC (Media Access Control) layer at the time of communication between the base station and the terminal. 図5は、基地局の機能ブロック図である。FIG. 5 is a functional block diagram of the base station. 図6は、端末の機能ブロック図である。FIG. 6 is a functional block diagram of the terminal. 図7は、測定レポートを格納するフィールドのフォーマットを示す図である。FIG. 7 is a diagram showing the format of the field for storing the measurement report. 図8は、実施形態における測定部で測定される遅延を説明するための図である。FIG. 8 is a diagram for explaining the delay measured by the measuring unit in the embodiment. 図9は、測定レポートが含められたデータフレームのフレームフォーマットを示す図である。FIG. 9 is a diagram showing the frame format of the data frame including the measurement report. 図10は、端末の一例の送信処理を示すフローチャートである。FIG. 10 is a flowchart showing a transmission process of an example of a terminal. 図11は、基地局の受信処理を示すフローチャートである。FIG. 11 is a flowchart showing a reception process of the base station. 図12は、自分のBSS内だけでのアクセスパラメータの調整の一例を説明するための概念図である。FIG. 12 is a conceptual diagram for explaining an example of adjusting access parameters only within one's own BSS. 図13は、他のBSSからの干渉を考慮して遅延を低減するためのアクセスパラメータの調整の一例を示した図である。FIG. 13 is a diagram showing an example of adjusting access parameters for reducing delay in consideration of interference from other BSS. 図14は、変形例3における測定部で測定される遅延を説明するための図である。FIG. 14 is a diagram for explaining the delay measured by the measuring unit in the modified example 3.
 以下、実施形態を図面に基づいて説明する。図1は、実施形態に係る通信システムの一例の構成を示す図である。通信システム1は、基地局10と、端末20とを有している。基地局10は、予め定められたサービスエリア内の端末と無線LAN通信する。図1では示されていないが、端末20の間での通信が行われてもよい。 Hereinafter, embodiments will be described based on the drawings. FIG. 1 is a diagram showing a configuration of an example of a communication system according to an embodiment. The communication system 1 has a base station 10 and a terminal 20. The base station 10 communicates wirelessly with a terminal in a predetermined service area. Although not shown in FIG. 1, communication may be performed between the terminals 20.
 図2は、基地局10の一例のハードウェア構成を示す図である。基地局10は、端末20に対するアクセスポイント(AP)である。基地局10は、固定されているものに限らず、移動体に搭載されているものであってもよい。 FIG. 2 is a diagram showing a hardware configuration of an example of the base station 10. The base station 10 is an access point (AP) for the terminal 20. The base station 10 is not limited to a fixed one, but may be mounted on a mobile body.
 基地局10は、プロセッサ11と、ROM(Read Only Memory)12と、RAM(Random Access Memory)13と、無線モジュール14と、ルーティングモジュール15とを有している。 The base station 10 has a processor 11, a ROM (ReadOnlyMemory) 12, a RAM (RandomAccessMemory) 13, a wireless module 14, and a routing module 15.
 プロセッサ11は、基地局10の全体の制御をする処理装置である。プロセッサ11は、例えばCPU(Central Processing Unit)である。プロセッサ11は、CPUに限るものではない。また、CPUに代えてASIC(Application Specific IC)等が用いられてもよい。また、プロセッサ11は、1つでなく、2つ以上であってもよい。 The processor 11 is a processing device that controls the entire base station 10. The processor 11 is, for example, a CPU (Central Processing Unit). The processor 11 is not limited to the CPU. Further, an ASIC (Application Specific IC) or the like may be used instead of the CPU. Further, the number of processors 11 may be two or more instead of one.
 ROM12は、読み出し専用の記憶装置である。ROM12は、基地局10の動作に必要なファームウェア、各種のプログラムを記憶する。 ROM 12 is a read-only storage device. The ROM 12 stores firmware and various programs necessary for the operation of the base station 10.
 RAM13は、任意に書き込みできる記憶装置である。RAM13は、プロセッサ11のための作業エリアとして使用され、ROM12に格納されているファームウェア等を一時的に記憶する。 The RAM 13 is a storage device that can be arbitrarily written. The RAM 13 is used as a work area for the processor 11 and temporarily stores the firmware and the like stored in the ROM 12.
 無線モジュール14は、無線LAN通信のために必要な処理を行うように構成されたモジュールである。無線モジュール14は、例えばプロセッサ11から転送されたデータからMACフレームを構成し、構成したMACフレームを無線信号に変換して端末20に送信する。また、無線モジュール14は、端末20から無線信号を受信し、受信した無線信号からデータを取り出して例えばプロセッサ11に転送する。 The wireless module 14 is a module configured to perform necessary processing for wireless LAN communication. The wireless module 14 constitutes a MAC frame from, for example, data transferred from the processor 11, converts the configured MAC frame into a wireless signal, and transmits the configured MAC frame to the terminal 20. Further, the wireless module 14 receives a wireless signal from the terminal 20, extracts data from the received wireless signal, and transfers the data to, for example, the processor 11.
 ルーティングモジュール15は、基地局10が例えば図示しないサーバとネットワークを介して通信するために設けられている。なお、基地局10は、必ずしもルーティングモジュール15を有していなくてもよい。基地局10は、無線通信又は有線通信によって基地局10の外部に設けられたルータにアクセスし、このルータ経由でネットワークに接続するように構成されていてもよい。 The routing module 15 is provided for the base station 10 to communicate with, for example, a server (not shown) via a network. The base station 10 does not necessarily have to have the routing module 15. The base station 10 may be configured to access a router provided outside the base station 10 by wireless communication or wired communication and connect to a network via this router.
 図3は、端末20の一例のハードウェア構成を示す図である。端末20は、スマートフォン等の端末装置(ステーション)である。端末20は、携帯端末であってもよいし、移動体に搭載される端末であってもよいし、固定された端末であってもよい。 FIG. 3 is a diagram showing a hardware configuration of an example of the terminal 20. The terminal 20 is a terminal device (station) such as a smartphone. The terminal 20 may be a mobile terminal, a terminal mounted on a mobile body, or a fixed terminal.
 端末20は、プロセッサ21と、ROM22と、RAM23と、無線モジュール24と、ディスプレイ25と、ストレージ26とを有している。 The terminal 20 has a processor 21, a ROM 22, a RAM 23, a wireless module 24, a display 25, and a storage 26.
 プロセッサ21は、端末20の全体の制御をする処理装置である。プロセッサ21は、例えばCPUである。プロセッサ21は、CPUに限るものではない。また、CPUに代えてASIC等が用いられてもよい。また、プロセッサ21は、1つでなく、2つ以上であってもよい。 The processor 21 is a processing device that controls the entire terminal 20. The processor 21 is, for example, a CPU. The processor 21 is not limited to the CPU. Further, ASIC or the like may be used instead of the CPU. Further, the number of processors 21 may be two or more instead of one.
 ROM22は、読み出し専用の記憶装置である。ROM22は、端末20の動作に必要なファームウェア、各種のプログラムを記憶する。 ROM 22 is a read-only storage device. The ROM 22 stores the firmware and various programs required for the operation of the terminal 20.
 RAM23は、任意に書き込みできる記憶装置である。RAM23は、プロセッサ21のための作業エリアとして使用され、ROM22に格納されているファームウェア等を一時的に記憶する。 The RAM 23 is a storage device that can be arbitrarily written. The RAM 23 is used as a work area for the processor 21, and temporarily stores the firmware and the like stored in the ROM 22.
 無線モジュール24は、無線LAN通信のために必要な処理を行うように構成されたモジュールである。無線モジュール24は、例えばプロセッサ21から転送されたデータから無線通信のためのMACフレームを構成し、構成したMACフレームを無線信号に変換して基地局10に送信する。また、無線モジュール24は、基地局10から無線信号を受信し、受信した無線信号からデータを取り出して例えばプロセッサ21に転送する。 The wireless module 24 is a module configured to perform necessary processing for wireless LAN communication. For example, the wireless module 24 configures a MAC frame for wireless communication from the data transferred from the processor 21, converts the configured MAC frame into a wireless signal, and transmits the configured MAC frame to the base station 10. Further, the wireless module 24 receives a wireless signal from the base station 10, extracts data from the received wireless signal, and transfers the data to, for example, the processor 21.
 ディスプレイ25は、各種の画面を表示する表示装置である。ディスプレイ25は、液晶ディスプレイ、有機ELディスプレイ等であってよい。また、ディスプレイ25は、タッチパネルを備えていてもよい。 The display 25 is a display device that displays various screens. The display 25 may be a liquid crystal display, an organic EL display, or the like. Further, the display 25 may be provided with a touch panel.
 ストレージ26は、ハードディスク等の記憶装置である。ストレージ26は、例えばプロセッサ21によって実行される各種のアプリケーションを記憶する。 The storage 26 is a storage device such as a hard disk. The storage 26 stores, for example, various applications executed by the processor 21.
 図4は、基地局10と端末20との通信の際のMAC(Media Access Control)層の処理を示す図である。図4では、送信側の処理と受信側の処理との両方が示されている。基地局10と端末20のうちの一方の無線モジュールが送信側の処理をするとき、他方の無線モジュールが受信側の処理をする。以下の例では、送信側と受信側の無線モジュールを区別せずに記載する。 FIG. 4 is a diagram showing processing of the MAC (Media Access Control) layer during communication between the base station 10 and the terminal 20. In FIG. 4, both the processing on the transmitting side and the processing on the receiving side are shown. When one of the radio modules of the base station 10 and the terminal 20 performs processing on the transmitting side, the other wireless module performs processing on the receiving side. In the following example, the wireless modules on the transmitting side and the receiving side are described without distinction.
 まず、送信側の処理について説明する。ステップS10において、無線モジュールは、A-MSDUアグリゲーションを行う。具体的には、無線モジュールは、アプリケーション層等の上位層から入力される複数のデータを結合してA-MSDU(Aggregate-MAC service data unit)を生成する。 First, the processing on the sending side will be explained. In step S10, the radio module performs A-MSDU aggregation. Specifically, the wireless module combines a plurality of data input from an upper layer such as an application layer to generate an A-MSDU (Aggregate-MAC service data unit).
 ステップS11において、無線モジュールは、A-MSDUにシーケンスナンバー(SN)を割り当てる。シーケンスナンバーは、A-MSDUを特定するための一意の番号である。 In step S11, the wireless module assigns a sequence number (SN) to the A-MSDU. The sequence number is a unique number for identifying the A-MSDU.
 ステップS12において、無線モジュールは、A-MSDUを複数のMPDU(MAC protocol data unit)にフラグメント(分割)する。 In step S12, the wireless module fragmentes (divides) the A-MSDU into a plurality of MPDUs (MAC protocol data units).
 ステップS13において、無線モジュールは、それぞれのMPDUを暗号化し、暗号化MPDUを生成する。 In step S13, the wireless module encrypts each MPDU and generates an encrypted MPDU.
 ステップS14において、無線モジュールは、それぞれの暗号化MPDUにMACヘッダと誤り検出符号(FCS)とを付加する。誤り検出符号は、例えばCRC(Cyclic Redundancy Check)符号である。 In step S14, the wireless module adds a MAC header and an error detection code (FCS) to each encrypted MPDU. The error detection code is, for example, a CRC (Cyclic Redundancy Check) code.
 ステップS15において、無線モジュールは、A-MPDUアグリゲーションを行う。具体的には、無線モジュールは、複数のMPDUを結合し、MACフレームとしてのA-MPDU(Aggregate-MAC protocol data unit)を生成する。 In step S15, the wireless module performs A-MPDU aggregation. Specifically, the wireless module combines a plurality of MPDUs to generate an A-MPDU (Aggregate-MAC protocol data unit) as a MAC frame.
 ステップS15の後、無線モジュールは、MACフレームに対して物理層の処理を行う。つまり、無線モジュールは、MACフレームに対して変調処理等を行って無線信号を生成し、無線信号を基地局10に送信する。 After step S15, the wireless module processes the physical layer of the MAC frame. That is, the wireless module performs modulation processing or the like on the MAC frame to generate a wireless signal, and transmits the wireless signal to the base station 10.
 次に、受信側の処理について説明する。無線信号が受信されると、無線モジュールは、物理層の処理を行って無線信号からMACフレームを復元する。その後、無線モジュールは、図4に示すMAC層の処理を行う。 Next, the processing on the receiving side will be described. When the radio signal is received, the radio module processes the physical layer to restore the MAC frame from the radio signal. After that, the wireless module processes the MAC layer shown in FIG.
 ステップS20において、無線モジュールは、A-MPDUデアグリゲーションを行う。具体的には、無線モジュールは、A-MPDUをMPDUの単位に分割する。 In step S20, the wireless module performs A-MPDU deaggregation. Specifically, the wireless module divides the A-MPDU into MPDU units.
 ステップS21において、無線モジュールは、誤り検出をする。例えば、無線モジュールは、CRCにより、無線信号の受信が成功したか否かを判定する。無線信号の受信が失敗したときには、無線モジュールは、再送要求をしてよい。このとき、無線モジュールは、MPDUの単位で再送を要求してよい。一方、無線信号の受信が成功したときには、無線モジュールは、次の処理を行う。 In step S21, the wireless module detects an error. For example, the radio module determines whether or not the reception of the radio signal is successful by CRC. When the reception of the radio signal fails, the radio module may make a retransmission request. At this time, the wireless module may request retransmission in units of MPDU. On the other hand, when the reception of the radio signal is successful, the radio module performs the following processing.
 ステップS22において、無線モジュールは、アドレス検出を行う。このとき、無線モジュールは、それぞれのMPDUのMACヘッダに記録されているアドレスにより、送られてきたMPDUが自分宛であるか否かを判定する。自分宛でないときには、無線モジュールは、次の処理を行わない。自分宛であるときには、無線モジュールは、次の処理を行う。 In step S22, the wireless module performs address detection. At this time, the wireless module determines whether or not the sent MPDU is addressed to itself based on the address recorded in the MAC header of each MPDU. When it is not addressed to you, the wireless module does not perform the following processing. When addressed to itself, the wireless module does the following:
 ステップS23において、無線モジュールは、暗号化されているMPDUを復号する。 In step S23, the wireless module decrypts the encrypted MPDU.
 ステップS24において、無線モジュールは、MPDUに対してデフラグメントを行う。つまり、無線モジュールは、複数のMPDUからA-MSDUを復元する。 In step S24, the wireless module defragments the MPDU. That is, the wireless module restores the A-MSDU from the plurality of MPDUs.
 ステップS25において、無線モジュールは、A-MSDUデアグリゲーションを行う。具体的には、無線モジュールは、A-MSDUをMSDU単位のデータに復元する。 In step S25, the wireless module performs A-MSDU deaggregation. Specifically, the wireless module restores the A-MSDU to data in MSDU units.
 ステップS25の後、無線モジュールは、データをMAC層の上位層に出力する。上位層は、例えばアプリケーション層である。 After step S25, the wireless module outputs data to the upper layer of the MAC layer. The upper layer is, for example, an application layer.
 図5は、基地局10の機能ブロック図である。基地局10は、データ処理部101と、無線信号処理部102と、管理部103と、制御部104とを有している。データ処理部101と、無線信号処理部102と、管理部103と、制御部104とは、例えばプロセッサ11及び無線モジュール14によって実現される。 FIG. 5 is a functional block diagram of the base station 10. The base station 10 has a data processing unit 101, a radio signal processing unit 102, a management unit 103, and a control unit 104. The data processing unit 101, the radio signal processing unit 102, the management unit 103, and the control unit 104 are realized by, for example, a processor 11 and a radio module 14.
 データ処理部101は、例えばネットワーク上のサーバから転送されたデータからMACフレームを構成する。また、データ処理部101は、無線信号処理部102から転送されてきたMACフレームからデータを復元する。このデータは、端末20から送られてくる測定レポートを含む。 The data processing unit 101 constitutes a MAC frame from, for example, data transferred from a server on the network. Further, the data processing unit 101 restores data from the MAC frame transferred from the radio signal processing unit 102. This data includes a measurement report sent from the terminal 20.
 無線信号処理部102は、無線信号の送信又は受信のための処理を行う。例えば、無線信号処理部102は、データ処理部101で構成されたMACフレームを無線信号に変換し、無線信号を端末20に送信する。また、無線信号処理部102は、端末20から無線信号を受信し、受信した無線信号からMACフレームを抽出してデータ処理部101に転送する。 The wireless signal processing unit 102 performs processing for transmitting or receiving a wireless signal. For example, the radio signal processing unit 102 converts the MAC frame configured by the data processing unit 101 into a radio signal, and transmits the radio signal to the terminal 20. Further, the radio signal processing unit 102 receives a radio signal from the terminal 20, extracts a MAC frame from the received radio signal, and transfers the MAC frame to the data processing unit 101.
 ここで、無線信号処理部102は、例えばEDCAで無線信号を送信するように構成されていてよい。この場合、無線信号処理部102は、アクセスカテゴリ(AC)毎の送信キューAC_VO、AC_VI、AC_BE、AC_BKを有している。送信キューAC_VOは、VO(Voice)にカテゴライズされたMACフレームを保持するためのキューである。送信キューAC_VIは、VI(Video)にカテゴライズされたMACフレームを保持するためのキューである。送信キューAC_BEは、BE(Best effort)にカテゴライズされたMACフレームを保持するためのキューである。送信キューAC_BKは、BK(Background)にカテゴライズされたMACフレームを保持するためのキューである。さらに、無線信号処理部102は、アクセスカテゴリLL(Low latency)にカテゴライズされるMACフレームを保持するための送信キューAC_LLを有していてもよい。アクセスカテゴリAC_LLは、例えば、ネットワークゲーム、工業用ロボットの制御アプリケーションといった絶対的な遅延の要求条件を有するRTAのためのアクセスカテゴリである。送信キューAC_LLは、それぞれが許容され得る限界の遅延時間に対応した複数の送信キューを有していてもよい。 Here, the wireless signal processing unit 102 may be configured to transmit a wireless signal by, for example, EDCA. In this case, the radio signal processing unit 102 has transmission queues AC_VO, AC_VI, AC_BE, and AC_BK for each access category (AC). The transmission queue AC_VO is a queue for holding a MAC frame categorized in VO (Voice). The transmission queue AC_VI is a queue for holding a MAC frame categorized in VI (Video). The transmission queue AC_BE is a queue for holding a MAC frame categorized in BE (Best effort). The transmission queue AC_BK is a queue for holding a MAC frame categorized in BK (Background). Further, the radio signal processing unit 102 may have a transmission queue AC_LL for holding a MAC frame categorized in the access category LL (Low latency). Access category AC_LL is an access category for RTAs that have absolute delay requirements, such as network games, industrial robot control applications, and the like. The transmit queue AC_LL may have a plurality of transmit queues, each of which corresponds to an acceptable limit delay time.
 無線信号処理部102は、データ処理部101から転送されてきたMACフレームを、MACフレームに記録されているデータのカテゴリに応じて、4つ又は5つのアクセスカテゴリのうちの何れかにマッピングする。このマッピングの結果に従って、無線信号処理部102は、MACフレームを対応する送信キューに入力する。 The radio signal processing unit 102 maps the MAC frame transferred from the data processing unit 101 to any of four or five access categories according to the category of the data recorded in the MAC frame. According to the result of this mapping, the radio signal processing unit 102 inputs the MAC frame to the corresponding transmission queue.
 無線信号処理部102は、他の端末等による無線信号の送信がないことをアクセスカテゴリ毎のキャリアセンスによって確認しつつ、アクセスカテゴリ毎に設定されたアクセスパラメータによって規定された時間だけ送信を待つ。送信を待っている間にチャネルがビジー状態となったときには規定された時間のカウントを待機する。チャネルがビジー状態であるとは、チャネルが他の送信に使用されている状態である。送信を待っている間、チャネルがアイドル状態であるときには、無線信号処理部102は、対応する送信キューからMACフレームを取り出し、このMACフレームを無線信号に変換して送信する。チャネルがアイドル状態であるとは、チャネルが他の送信に使用されていない状態である。 The wireless signal processing unit 102 waits for transmission for a time specified by the access parameter set for each access category while confirming that the wireless signal is not transmitted by another terminal or the like by the carrier sense for each access category. When the channel becomes busy while waiting for transmission, it waits for the specified time count. When a channel is busy, it means that the channel is being used for other transmissions. When the channel is idle while waiting for transmission, the radio signal processing unit 102 takes out a MAC frame from the corresponding transmission queue, converts the MAC frame into a radio signal, and transmits the MAC frame. When a channel is idle, it means that the channel is not being used for other transmissions.
 ここで、アクセスパラメータは、LL、VO、VI、BE、BKの順で無線信号の送信が優先されるように割り当てられていてよい。アクセスパラメータは、CWmin、CWmax、AIFS、TXOPLimitを含んでいてよい。CWminとCWmaxは、それぞれ、競合回避のための送信待ちの時間であるコンテンションウインドウ(CW)の最大値、最小値である。CWminとCWmaxが短いほど、送信キューは、送信機会を得やすくなる。AIFS(Arbitration Inter Frame Space)は、無線信号のアクセスカテゴリ毎に設定された固定の送信待ちの時間である。AIFSが小さいほど、送信キューの優先度が高くなる。TXOPLimitは、チャネルの占有時間である送信機会(Transmission Opportunity:TXOP)の上限値である。TXOPLimitの値が大きいほど、一度の送信機会で多くの無線信号を送信することができる。 Here, the access parameters may be assigned so that the transmission of the radio signal is prioritized in the order of LL, VO, VI, BE, and BK. Access parameters may include CW min , CW max , AIFS, TXOP Limit . CW min and CW max are the maximum value and the minimum value of the contention window (CW), which is the transmission waiting time for avoiding conflict, respectively. The shorter the CW min and CW max , the easier it is for the transmit queue to get a transmit opportunity. AIFS (Arbitration Inter Frame Space) is a fixed transmission waiting time set for each access category of the radio signal. The smaller the AIFS, the higher the priority of the send queue. The TXOP Limit is an upper limit of the transmission opportunity (TXOP), which is the occupied time of the channel. The larger the value of TXOP Limit , the more radio signals can be transmitted at one transmission opportunity.
 管理部103は、端末20から送られてくる測定レポートを管理する。例えば、管理部103は、測定レポートを保持しておき、必要なタイミングで測定レポートの分析をする。測定レポートは、端末20における無線信号の送信の遅延に関する情報を含むレポートである。後で詳しく説明するように、無線信号の送信の遅延は、複数の遅延の要因に従って生じる。測定レポートは、遅延の要因毎の遅延の測定結果の情報を含んでいる。 The management unit 103 manages the measurement report sent from the terminal 20. For example, the management unit 103 holds the measurement report and analyzes the measurement report at a required timing. The measurement report is a report including information on the delay of transmission of the radio signal in the terminal 20. As will be described in detail later, the delay in transmitting a radio signal is caused by a plurality of delay factors. The measurement report contains information on the measurement results of the delay for each factor of the delay.
 制御部104は、管理部103によって分析された遅延の要因に従って無線信号の送信に必要な制御をする。この制御は、無線信号処理部102におけるアクセスパラメータの調整を含む。制御部104の動作の詳細については後で説明する。 The control unit 104 performs the control necessary for transmitting the radio signal according to the delay factor analyzed by the management unit 103. This control includes adjustment of access parameters in the radio signal processing unit 102. The details of the operation of the control unit 104 will be described later.
 図6は、端末20の機能ブロック図である。端末20は、データ処理部201と、無線信号処理部202と、測定部203とを有している。データ処理部201と、無線信号処理部202と、測定部203は、例えばプロセッサ21及び無線モジュール24によって実現される。 FIG. 6 is a functional block diagram of the terminal 20. The terminal 20 has a data processing unit 201, a radio signal processing unit 202, and a measurement unit 203. The data processing unit 201, the radio signal processing unit 202, and the measurement unit 203 are realized by, for example, a processor 21 and a radio module 24.
 データ処理部201は、例えば上位のアプリケーションから入力されたデータからMACフレームを構成する。また、データ処理部201は、無線信号処理部202から転送されてきたMACフレームからデータを復元する。このデータは、例えば上位のアプリケーションによって使用される。さらに、データ処理部201は、測定部203による測定の結果を格納する測定レポートを含むMACフレームを生成する。 The data processing unit 201 constitutes a MAC frame from, for example, data input from a higher-level application. Further, the data processing unit 201 restores data from the MAC frame transferred from the radio signal processing unit 202. This data is used, for example, by higher level applications. Further, the data processing unit 201 generates a MAC frame including a measurement report that stores the measurement result by the measurement unit 203.
 無線信号処理部202は、無線信号の送信又は受信のための処理を行う。例えば、無線信号処理部202は、データ処理部201で構成されたMACフレームを無線信号に変換し、無線信号を例えば基地局10に送信する。また、無線信号処理部202は、基地局10から無線信号を受信し、受信した無線信号からMACフレームを抽出してデータ処理部201に転送する。ここで、無線信号処理部202は、基地局10と同様に例えばEDCAで無線信号を送信するように構成されていてよい。 The wireless signal processing unit 202 performs processing for transmitting or receiving a wireless signal. For example, the radio signal processing unit 202 converts the MAC frame configured by the data processing unit 201 into a radio signal, and transmits the radio signal to, for example, the base station 10. Further, the radio signal processing unit 202 receives a radio signal from the base station 10, extracts a MAC frame from the received radio signal, and transfers the MAC frame to the data processing unit 201. Here, the radio signal processing unit 202 may be configured to transmit a radio signal by, for example, EDCA, like the base station 10.
 測定部203は、端末20における無線信号の送信の遅延をその要因毎に測定する。そして、測定部203は、測定結果に基づいて遅延の情報を含む測定レポートを作成する。図7は、測定レポートを格納するフィールドのフォーマットを示す図である。測定レポートが格納されるフィールドは、アクセスカテゴリ毎の測定結果のデータが格納される複数のフィールドを含む。測定レポートが格納されるフィールドは、1つの、例えばAC_LLの測定結果のデータが格納されるフィールドを含むだけでもよい。また、測定レポートが格納されるフィールドには、アクセスカテゴリ毎ではなく、トラヒック種別(TID)毎に遅延の測定結果が格納されてもよい。TIDは、端末20が扱うアプリケーション(セッション)単位で付与される。前述したアクセスカテゴリへのマッピングは、TIDに基づいて行われてもよい。TID毎に測定結果が記憶されることにより、アプリケーション毎に区別された遅延が測定され得る。 The measuring unit 203 measures the delay of transmission of the radio signal in the terminal 20 for each factor. Then, the measurement unit 203 creates a measurement report including delay information based on the measurement result. FIG. 7 is a diagram showing the format of the field for storing the measurement report. The field in which the measurement report is stored includes a plurality of fields in which the measurement result data for each access category is stored. The field in which the measurement report is stored may include only one field, for example, the field in which the measurement result data of AC_LL is stored. Further, in the field in which the measurement report is stored, the delay measurement result may be stored not for each access category but for each traffic type (TID). The TID is given for each application (session) handled by the terminal 20. The mapping to the access category described above may be performed based on the TID. By storing the measurement result for each TID, the delay distinguished for each application can be measured.
 図8は、実施形態における測定部203で測定される遅延を説明するための図である。実施形態で測定される遅延は、1)キューイング時間T、2)コンテンション待ち時間T、3)コンテンション時間T、4)再送時間T、5)送信時間TTXを含む。これらのキューイング時間T、コンテンション待ち時間T、コンテンション時間T、再送時間T、送信時間TTXは、端末20に設けられる図示しない時計によって測定されてよい。 FIG. 8 is a diagram for explaining the delay measured by the measuring unit 203 in the embodiment. Delays measured in embodiments include 1) queuing time T Q , 2) contention wait time T W , 3) contention time T C , 4) retransmission time T R , and 5) transmission time T T T. The queuing time T Q , the contention waiting time T W , the contention time TC , the retransmission time T R , and the transmission time T T T TX may be measured by a clock (not shown) provided in the terminal 20.
 キューイング時間Tは、MACフレームが送信キューの末尾に入力されてから送信キューの先頭にくるまでの時間である。キューイング時間Tが長いことは、例えば、送信キューに多くのMACフレームが格納されていることによる遅延が生じていることを意味する。 The queuing time T Q is the time from when the MAC frame is input to the end of the transmission queue to when it comes to the beginning of the transmission queue. A long queuing time T Q means that, for example, there is a delay due to a large number of MAC frames stored in the transmission queue.
 コンテンション待ち時間Tは、アクセスカテゴリ間での無線送信の優先制御機能を備える衝突回避制御のためのAIFSによって決められる待ち時間である。コンテンション待ち時間Tの間にチャネルがビジー状態になったときには、チャネルがアイドル状態になった後で再びAIFSを待つ。コンテンション待ち時間Tが長いことは、他に優先的に送信されるアクセスカテゴリがある(他のBSSのものである場合もある)ことによる遅延が発生していることを意味する。 The contention waiting time TW is a waiting time determined by AIFS for collision avoidance control having a priority control function for wireless transmission between access categories. When the channel becomes busy during the contention wait time TW , it waits for AIFS again after the channel becomes idle. A long contention wait time TW means that there is a delay due to another preferentially transmitted access category (which may be that of another BSS).
 コンテンション時間Tは、複数のアクセスカテゴリ間又は端末間の無線信号の送信の衝突回避のための待ち時間である。コンテンション時間Tは、CWminを最小値としCWmax以下の値であるCWを最大値とする範囲内でランダムに決められるバックオフ時間である。コンテンション時間Tのカウントの完了後に、無線信号の送信が行われる。コンテンション時間Tのカウントが完了する前にチャネルがビジー状態になったときには、その後にチャネルがアイドル状態になった後に残りのコンテンション時間Tのカウントが行われる。つまり、コンテンション時間Tのカウントが持ち越される。したがって、測定されるコンテンション時間Tが長いことは、複数のアクセスカテゴリ間での無線信号の送信の競合による遅延が発生していること又は複数の端末間の無線信号の送信の競合による遅延が生じていることを意味している。 The contention time T c is a waiting time for avoiding collision of transmission of a radio signal between a plurality of access categories or between terminals. The contention time T c is a back-off time randomly determined within a range in which CW min is the minimum value and CW, which is a value equal to or less than CW max , is the maximum value. After the count of the contention time T c is completed, the radio signal is transmitted. If the channel becomes busy before the count of the contention time T c is completed, the remaining contention time T c is counted after the channel becomes idle. That is, the count of the contention time T c is carried over. Therefore, the long contention time Tc measured means that there is a delay due to a conflict in the transmission of radio signals between a plurality of access categories, or a delay due to a conflict in the transmission of a radio signal between a plurality of terminals. Means that is occurring.
 再送時間Tは、無線信号の再送が必要となった場合の追加の時間である。つまり、再送時間Tは、無線送信の送信が実施され、再送が必要と判断されてから実際に再送が実施されるまでの時間である。ここで、再送時間Tは再送時の追加のコンテンション待ち時間T及び新規のCWにより決定されるコンテンション時間T´を含む。したがって、再送時間Tが長いことは、衝突又は伝送誤りことによる遅延が生じていることを意味している。 Retransmission time TR is an additional time when the radio signal needs to be retransmitted. That is, the retransmission time TR is the time from when the wireless transmission is transmitted and when it is determined that the retransmission is necessary until the actual retransmission is performed. Here, the retransmission time TR includes an additional contention waiting time TW at the time of retransmission and a contention time T c ′ determined by the new CW . Therefore, a long retransmission time TR means that there is a delay due to a collision or a transmission error.
 送信時間TTXは、無線信号の送信が実施されてから基地局10からのアクノリッジメント(ACK)が受信されるまでの時間である。図8では、送信時間TTXは、再送時間Tの終了からACKが受信されるまでの時間として示されている。再送がなかった場合には、送信時間TTXは、コンテンション時間Tcの終了からACKが受信されるまでの時間になる。 The transmission time TTX is the time from the transmission of the radio signal to the reception of the acknowledgment (ACK) from the base station 10. In FIG. 8, the transmission time TX is shown as the time from the end of the retransmission time TR to the reception of the ACK. If there is no retransmission, the transmission time TTX is the time from the end of the contention time Tc to the reception of the ACK.
 測定レポートを基地局10に送信する際、測定レポートはデータフレームに含められて送信されてよい。図9は、測定レポートが含められたデータフレームのフレームフォーマットを示す図である。例えば測定レポートは、送信すべきデータを含むMACフレームであるデータフレームに追加される、測定レポートを格納するための新たなフィールドに格納される。端末20は、遅延の要求条件のあるデータを送信する場合に、遅延の測定結果に基づく測定レポートをデータフレームにつける。これにより、遅延状況が、比較的リアルタイムで基地局10に通知され得る。 When transmitting the measurement report to the base station 10, the measurement report may be included in the data frame and transmitted. FIG. 9 is a diagram showing the frame format of the data frame including the measurement report. For example, the measurement report is stored in a new field for storing the measurement report, which is added to the data frame which is the MAC frame containing the data to be transmitted. When transmitting data with a delay requirement, the terminal 20 attaches a measurement report based on the delay measurement result to the data frame. As a result, the delay status can be notified to the base station 10 in relatively real time.
 次に、通信システム1の動作を説明する。以下の説明では、端末20は無線信号を送信し、基地局10は無線信号を受信するものとする。 Next, the operation of the communication system 1 will be described. In the following description, it is assumed that the terminal 20 transmits a radio signal and the base station 10 receives the radio signal.
 図10は、端末20の一例の送信処理を示すフローチャートである。ステップS31において、データ処理部201は、アプリケーション層等の上位層から送信すべきデータが入力されたか否かを判定する。ステップS31において、データが入力されていないと判定されたときには、図10の処理は終了する。ステップS31において、データが入力されたと判定されたときには、処理はステップS32に移行する。 FIG. 10 is a flowchart showing a transmission process of an example of the terminal 20. In step S31, the data processing unit 201 determines whether or not data to be transmitted has been input from an upper layer such as an application layer. When it is determined in step S31 that no data has been input, the process of FIG. 10 ends. When it is determined in step S31 that the data has been input, the process proceeds to step S32.
 ステップS32において、データ処理部201は、入力されたデータに対して図4で示したMAC層の処理を行ってMACフレームを生成する。また、測定レポートがデータフレームに含められて送信されるときには、データ処理部201は、MACフレームを生成するときに測定部203で作成された測定レポートを含める。後で説明するように、測定レポートは、マネジメントフレームを用いて基地局10に送信されてもよいし、Actionフレームを用いて基地局10に送信されてもよい。MACフレームの生成後、データ処理部201は、MACフレームを無線信号処理部202に出力する。無線信号処理部202は、MACフレームが送信キューの末尾に入力された時刻を測定部203に出力する。 In step S32, the data processing unit 201 performs the processing of the MAC layer shown in FIG. 4 on the input data to generate a MAC frame. Further, when the measurement report is included in the data frame and transmitted, the data processing unit 201 includes the measurement report created by the measurement unit 203 when the MAC frame is generated. As will be described later, the measurement report may be transmitted to the base station 10 using the management frame, or may be transmitted to the base station 10 using the Action frame. After the MAC frame is generated, the data processing unit 201 outputs the MAC frame to the radio signal processing unit 202. The radio signal processing unit 202 outputs the time when the MAC frame is input to the end of the transmission queue to the measurement unit 203.
 ステップS33において、無線信号処理部202は、無線信号を送信する。このとき、無線信号処理部202は、キャリアセンスを行ってチャネルの状態を判断しつつ、アクセスカテゴリ毎のアクセスパラメータによって規定される待ち時間の間、送信を待機する。そして、他の端末等によってチャネルが使用されていなければ、無線信号処理部202は、MACフレームを無線信号に変換し、無線信号の送信を実施する。また、無線信号処理部202は、MACフレームが送信キューの先頭に来た時刻、AIFSによって決められた待ち時間の終了時刻、バックオフ時間の終了時刻、無線信号の送信を実施した時刻をそれぞれ測定部203に出力する。 In step S33, the radio signal processing unit 202 transmits a radio signal. At this time, the radio signal processing unit 202 waits for transmission during the waiting time defined by the access parameter for each access category while performing carrier sense to determine the channel state. Then, if the channel is not used by another terminal or the like, the radio signal processing unit 202 converts the MAC frame into a radio signal and transmits the radio signal. Further, the radio signal processing unit 202 measures the time when the MAC frame comes to the head of the transmission queue, the end time of the waiting time determined by AIFS, the end time of the backoff time, and the time when the radio signal is transmitted. Output to unit 203.
 ステップS34において、無線信号処理部202は、再送をするか否かを判定する。例えば、基地局10から再送要求がされたときには、再送をすると判定される。この他、一定期間の間、基地局10からACKが送られてこないときに、再送をすると判定されてもよい。また、基地局10からブロックACKが送られてきたときには、ブロックACKにおいて受信失敗したMPDUの情報が含まれているときに、再送をすると判定される。ステップS34において、再送をすると判定されたときには、処理はステップS35に移行する。ステップS34において、再送をしないと判定されたときには、処理はステップS36に移行する。 In step S34, the radio signal processing unit 202 determines whether or not to retransmit. For example, when a retransmission request is made from the base station 10, it is determined that the retransmission is performed. In addition, when ACK is not sent from the base station 10 for a certain period of time, it may be determined to retransmit. Further, when the block ACK is sent from the base station 10, it is determined that the block ACK is to be retransmitted when the information of the MPDU whose reception has failed is included in the block ACK. When it is determined in step S34 that the retransmission is performed, the process proceeds to step S35. When it is determined in step S34 that the retransmission is not performed, the process proceeds to step S36.
 ステップS35において、無線信号処理部202は、再送を実施する。また、無線信号処理部202は、無線信号の再送を実施した時刻を測定部203に出力する。 In step S35, the radio signal processing unit 202 performs retransmission. Further, the radio signal processing unit 202 outputs the time when the radio signal is retransmitted to the measurement unit 203.
 ステップS36において、無線信号処理部202は、送信完了した(例えば、図8におけるACKを受信した)時刻を測定部203に出力する。 In step S36, the radio signal processing unit 202 outputs the time when the transmission is completed (for example, the ACK in FIG. 8 is received) to the measurement unit 203.
 ステップS37において、測定部203は、測定レポートを作成する。キューイング時間は、MACフレームが送信キューの先頭に来た時刻と送信キューの末尾に入力された時刻との時間差から算出される。コンテンション待ち時間は、AIFSによって決められた待ち時間の終了時刻とMACフレームが送信キューの先頭に来た時刻との時間差から算出される。コンテンション時間は、バックオフ時間の終了時刻とAIFSによって決められた待ち時間の終了時刻との時間差から算出される。再送時間は、再送が実施された時刻と最初の無線信号の送信が実施された時刻との時間差から算出される。送信時間は、ACKが受信された時刻と最初の無線信号の送信が実施された時刻又は再送が実施された時刻との時間差から算出される。これらの遅延に関する時間情報の算出後、測定部203は、測定の結果をアクセスカテゴリ及びシーケンスナンバーと関連付けて測定レポートを作成する。 In step S37, the measurement unit 203 creates a measurement report. The queuing time is calculated from the time difference between the time when the MAC frame comes to the beginning of the transmission queue and the time entered at the end of the transmission queue. The contention waiting time is calculated from the time difference between the end time of the waiting time determined by AIFS and the time when the MAC frame comes to the head of the transmission queue. The contention time is calculated from the time difference between the end time of the backoff time and the end time of the waiting time determined by AIFS. The retransmission time is calculated from the time difference between the time when the retransmission is performed and the time when the first radio signal is transmitted. The transmission time is calculated from the time difference between the time when the ACK is received and the time when the transmission of the first radio signal is performed or the time when the retransmission is performed. After calculating the time information regarding these delays, the measurement unit 203 creates a measurement report by associating the measurement results with the access category and the sequence number.
 ステップS38において、データ処理部201は、例えばストレージ24に測定レポートを記憶する。その後、図10の処理は終了する。ここで、記憶された測定レポートは、例えば、次回の同一のアクセスカテゴリのデータの送信時にMACフレームに含めて送信される。 In step S38, the data processing unit 201 stores the measurement report in, for example, the storage 24. After that, the process of FIG. 10 ends. Here, the stored measurement report is included in the MAC frame and transmitted at the next transmission of data of the same access category, for example.
 図11は、実施形態に係る通信方法を含む基地局10の受信処理を示すフローチャートである。ステップS51において、無線信号処理部102は、無線信号が受信されたか否かを判定する。ステップS51において、無線信号が受信されていないと判定されたときには、図11の処理は終了する。ステップS51において、無線信号が受信されたと判定されたときには、処理はステップS52に移行する。 FIG. 11 is a flowchart showing a reception process of the base station 10 including the communication method according to the embodiment. In step S51, the radio signal processing unit 102 determines whether or not the radio signal has been received. When it is determined in step S51 that the radio signal has not been received, the process of FIG. 11 ends. When it is determined in step S51 that the radio signal has been received, the process proceeds to step S52.
 ステップS52において、無線信号処理部102は、無線信号の受信処理をする。つまり、無線信号処理部102は、無線信号に対して復調処理等を行ってMACフレームを取り出す。無線信号処理部102は、MACフレームをデータ処理部101に出力する。データ処理部101は、MACフレームに対してMAC層の処理を行ってデータを復元する。 In step S52, the radio signal processing unit 102 performs radio signal reception processing. That is, the wireless signal processing unit 102 performs demodulation processing or the like on the wireless signal to take out the MAC frame. The wireless signal processing unit 102 outputs the MAC frame to the data processing unit 101. The data processing unit 101 processes the MAC layer on the MAC frame and restores the data.
 ステップS53において、データ処理部101は、受信が成功したか否かを判定する。受信が成功したか否かは例えばCRCによって判定され得る。ステップS53において、受信が成功したと判定されたときには、処理はステップS54に移行する。ステップS53において、受信が成功していないと判定されたときには、処理はステップS55に移行する。 In step S53, the data processing unit 101 determines whether or not the reception is successful. Whether or not the reception is successful can be determined by, for example, CRC. When it is determined in step S53 that the reception is successful, the process proceeds to step S54. When it is determined in step S53 that the reception is not successful, the process proceeds to step S55.
 ステップS54において、無線信号処理部102は、ACKを送信する。ACKは、ブロックACKを用いて送られてもよい。ブロックACKは、MPDU毎の受信の成否の情報を含むACKである。その後、処理はステップS56に移行する。 In step S54, the radio signal processing unit 102 transmits an ACK. The ACK may be sent using the block ACK. The block ACK is an ACK containing information on the success or failure of reception for each MPDU. After that, the process proceeds to step S56.
 ステップS55において、無線信号処理部102は、再送を要求する。再送は、ブロックACKを用いて要求されてもよい。その後、処理はステップS51に戻る。 In step S55, the radio signal processing unit 102 requests retransmission. Retransmission may be requested using block ACK. After that, the process returns to step S51.
 ステップS56において、データ処理部101は、データをアプリケーション層等の上位層に出力する。 In step S56, the data processing unit 101 outputs data to an upper layer such as an application layer.
 ステップS57において、データ処理部101は、測定レポートがあるか否かを判定する。例えば、MACフレームに測定レポートが含められていたときには、測定レポートがあると判定される。この他、端末20からマネジメントフレームを利用して測定レポートが送られたときに測定レポートがあると判定されてもよい。さらには、基地局10がActionフレームを用いて測定レポートを要求し、この要求に応じて測定レポートが臆されてきたときに測定レポートがあると判定されてもよい。ステップS57において、測定レポートがあると判定されたときには、処理はステップS58に移行する。ステップS57において、測定レポートがないと判定されたときには、図11の処理は終了する。 In step S57, the data processing unit 101 determines whether or not there is a measurement report. For example, when the measurement report is included in the MAC frame, it is determined that there is a measurement report. In addition, it may be determined that there is a measurement report when the measurement report is sent from the terminal 20 using the management frame. Further, the base station 10 may request a measurement report using the Action frame, and when the measurement report is hesitated in response to this request, it may be determined that there is a measurement report. When it is determined in step S57 that there is a measurement report, the process proceeds to step S58. When it is determined in step S57 that there is no measurement report, the process of FIG. 11 ends.
 ステップS58において、管理部103は、測定レポートに含まれている遅延の測定結果に基づき、遅延があるか否かを判定する。例えば、管理部103は、アクセスカテゴリAC_LLの遅延が閾値よりも短いか否かを判定する。この閾値は、例えば固定値であってよい。また、この閾値は、端末20とのネゴシエーションの結果に従って設定されてもよい。例えば、基地局10は、RTAのトラヒックを送受信するのに際して端末20に対してRTAのトラヒックの送受信における遅延の要求条件を問い合わせる。そして、基地局10は、この問い合わせに従って閾値を設定する。ステップS58において、遅延があると判定されたときには、処理はステップS59に移行する。ステップS58において、遅延がないと判定されたときには、図11の処理は終了する。 In step S58, the management unit 103 determines whether or not there is a delay based on the measurement result of the delay included in the measurement report. For example, the management unit 103 determines whether or not the delay of the access category AC_LL is shorter than the threshold value. This threshold value may be, for example, a fixed value. Further, this threshold value may be set according to the result of negotiation with the terminal 20. For example, when transmitting and receiving RTA traffic, the base station 10 inquires of the terminal 20 about the delay requirement in transmitting and receiving RTA traffic. Then, the base station 10 sets the threshold value according to this inquiry. When it is determined in step S58 that there is a delay, the process proceeds to step S59. When it is determined in step S58 that there is no delay, the process of FIG. 11 ends.
 ステップS59において、管理部103は、測定レポートに格納されている遅延の情報に基づき、遅延の要因を分析する。実施形態では、遅延の要因は、競合によるものと再送によるものとに大別される。競合による遅延は、コンテンション時間が長いときの遅延であって、例えば複数のアクセスカテゴリ間又は端末間での無線信号の送信の競合による遅延が発生していることを意味する。また、再送による遅延は、再送時間が長いときの遅延であって、再送が多く発生しているために遅延が発生していることを意味する。管理部103は、コンテンション時間及び再送時間のそれぞれに割り当てられている遅延の許容時間と実際の時間との差を比較し、より差の大きい時間を遅延の要因として特定する。なお、コンテンション時間及び再送時間の実際の時間の両方が許容時間を超えている場合は、両方を遅延の要因として特定した上で、より差の大きい時間を主たる遅延の要因として特定してもよい。 In step S59, the management unit 103 analyzes the cause of the delay based on the delay information stored in the measurement report. In the embodiment, the cause of the delay is roughly classified into the one due to the competition and the one due to the retransmission. The delay due to the conflict is the delay when the contention time is long, and means that the delay due to the conflict of transmission of the radio signal between a plurality of access categories or terminals occurs, for example. Further, the delay due to retransmission is a delay when the retransmission time is long, and means that a delay occurs because many retransmissions occur. The management unit 103 compares the difference between the allowable delay time assigned to each of the contention time and the retransmission time and the actual time, and identifies the time having a larger difference as the cause of the delay. If both the actual time of the contention time and the actual time of the retransmission exceed the allowable time, both may be specified as the cause of the delay, and the time with a larger difference may be specified as the main cause of the delay. good.
 ステップS60において、制御部104は、アクセスパラメータの調整をする。アクセスパラメータの調整については後で説明する。アクセスパラメータの調整の後、制御部104は、調整したアクセスパラメータを無線信号処理部102に通知する。その後、処理はステップS61に移行する。 In step S60, the control unit 104 adjusts the access parameters. The adjustment of access parameters will be described later. After adjusting the access parameters, the control unit 104 notifies the radio signal processing unit 102 of the adjusted access parameters. After that, the process proceeds to step S61.
 ステップS61において、無線信号処理部102は、調整されたアクセスパラメータを端末20に対して通知する。例えば、無線信号処理部102は、調整されたアクセスパラメータをビーコンに含めてブロードキャスト送信する。もしくは、アクションフレーム等を用いて個別に周知してもよい。その後、図11の処理は終了する。この通知を受けて、端末20も調整後のアクセスパラメータを用いて次回以降の通信を実施する。 In step S61, the radio signal processing unit 102 notifies the terminal 20 of the adjusted access parameters. For example, the radio signal processing unit 102 includes the adjusted access parameter in the beacon and broadcasts the signal. Alternatively, it may be individually known by using an action frame or the like. After that, the process of FIG. 11 ends. Upon receiving this notification, the terminal 20 also carries out communication from the next time onward using the adjusted access parameters.
 次に、アクセスパラメータの調整について説明する。図12は、アクセスパラメータの調整の一例を説明するための概念図である。図12は、他のBSS(Basic Service Set)による干渉が考慮されずに、自分のBSS内の端末20との間でアクセスパラメータが調整される例である。 Next, the adjustment of access parameters will be explained. FIG. 12 is a conceptual diagram for explaining an example of adjusting access parameters. FIG. 12 is an example in which the access parameter is adjusted with the terminal 20 in the own BSS without considering the interference by another BSS (Basic Service Set).
 図12の例では、アクセスパラメータは、デフォルトを基準として調整される。デフォルトは、アクセスパラメータの初期値である。デフォルトは、例えばアクセスカテゴリ毎に予め決められている。 In the example of FIG. 12, the access parameters are adjusted based on the default. The default is the initial value of the access parameter. The default is predetermined for each access category, for example.
 図12の横軸は、競合による遅延の対応のためのアクセスパラメータの調整の例が示されている。競合による遅延の対応のためのアクセスパラメータの調整は、例えば遅延があると判定される毎に右方向に向かって順次に実施される。それぞれのアクセスパラメータの調整は、組み合わせて実施されてもよいし、1つずつ切り替えられながら実施されてもよい。また、アクセスパラメータの調整の実施順序は変更されてもよい。 The horizontal axis of FIG. 12 shows an example of adjusting access parameters for dealing with delays due to conflicts. The adjustment of the access parameter for dealing with the delay due to the conflict is performed sequentially toward the right, for example, each time it is determined that there is a delay. The adjustment of each access parameter may be performed in combination or may be performed while being switched one by one. Further, the order of adjusting the access parameters may be changed.
 図12の「LL CWmin 小」は、アクセスカテゴリAC_LLのCWminをデフォルトよりも小さくすることを意味している。CWminの減少量は、固定値であってもよいし、遅延の大きさ、すなわち許容時間と実際のコンテンション時間との時間差に応じて決められてもよい。アクセスカテゴリAC_LLのCWminが小さくされることにより、アクセスカテゴリAC_LLの送信キューが送信機会を得ることができる確率が相対的に高められる。結果として、競合による遅延が減少することが期待される。 “LL CW min small” in FIG. 12 means that the CW min of the access category AC_LL is made smaller than the default. The amount of decrease in CW min may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual contention time. By reducing the CW min of the access category AC_LL, the probability that the transmission queue of the access category AC_LL can obtain a transmission opportunity is relatively increased. As a result, it is expected that the delay due to competition will be reduced.
 図12の「その他 TXOPLimit 小」は、アクセスカテゴリAC_LL以外、すなわち絶対的な遅延の要求条件のないアクセスカテゴリAC_VO、AC_VI、AC_BE、AC_BKのTXOPLimitをデフォルトよりも小さくすることを意味している。TXOPLimitの減少量は、固定値であってもよいし、遅延の大きさ、すなわち許容時間と実際のコンテンション時間との時間差に応じて決められてもよい。その他のアクセスカテゴリのTXOPLimitが小さくされることにより、その他のアクセスカテゴリについては1回の送信機会でチャネルを占有する時間が短くなる。この結果、アクセスカテゴリAC_LLの送信キューが送信機会を得るための待機時間が短くなる。結果として、競合による遅延が減少することが期待される。 “Other TXOP Limit small” in FIG. 12 means that the TXOP Limit of access categories AC_VO, AC_VI, AC_BE, and AC_BK other than the access category AC_LL, that is, no absolute delay requirement, is made smaller than the default. .. The amount of decrease in TXOP Limit may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual contention time. By reducing the TXOP Limit of the other access categories, the time for occupying the channel with one transmission opportunity for the other access categories is shortened. As a result, the waiting time for the transmission queue of the access category AC_LL to obtain the transmission opportunity is shortened. As a result, it is expected that the delay due to competition will be reduced.
 図12の「その他 TXOP 連続なし」は、その他のアクセスカテゴリのTXOPLimitを0にすることを意味している。その他のアクセスカテゴリのTXOPLimitが0にされることにより、アクセスカテゴリAC_LLの送信キューが送信機会を得ることができる確率が相対的に高められる。結果として、競合による遅延が減少することが期待される。 “No other TXOP continuation” in FIG. 12 means that the TXOP Limit of the other access category is set to 0. By setting the TXOP Limit of the other access categories to 0, the probability that the transmission queue of the access category AC_LL can obtain a transmission opportunity is relatively increased. As a result, it is expected that the delay due to competition will be reduced.
 図12の縦軸は、再送による遅延の対応のためのアクセスパラメータの調整の例が示されている。再送による遅延の対応のためのアクセスパラメータの調整は、例えば遅延があると判定される毎に上方向に向かって順次に実施される。それぞれのアクセスパラメータの調整は、組み合わせて実施されてもよいし、1つずつ切り替えられながら実施されてもよい。また、アクセスパラメータの調整の実施順序は変更されてもよい。 The vertical axis of FIG. 12 shows an example of adjusting access parameters for dealing with delays due to retransmission. The adjustment of the access parameter for dealing with the delay due to retransmission is carried out sequentially upward, for example, each time it is determined that there is a delay. The adjustment of each access parameter may be performed in combination or may be performed while being switched one by one. Further, the order of adjusting the access parameters may be changed.
 図12の「LL CWmin 大」は、アクセスカテゴリAC_LLのCWminをデフォルトよりも大きくすることを意味している。CWminの増加量は、固定値であってもよいし、遅延の大きさ、すなわち許容時間と実際の再送時間との時間差に応じて決められてもよい。アクセスカテゴリAC_LLのCWminが大きくされることにより、アクセスカテゴリAC_LLについての無線信号衝突する確率が低くなる。結果として、再送による遅延が減少することが期待される。 “LL CW min large” in FIG. 12 means that the CW min of the access category AC_LL is made larger than the default. The amount of increase in CW min may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time. By increasing the CW min of the access category AC_LL, the probability of radio signal collision for the access category AC_LL becomes low. As a result, it is expected that the delay due to retransmission will be reduced.
 図12の「その他 CWmin 大」は、その他のアクセスカテゴリのCWminをデフォルトよりも大きくすることを意味している。CWminの増加量は、固定値であってもよいし、遅延の大きさ、すなわち許容時間と実際の再送時間との時間差に応じて決められてもよい。その他のアクセスカテゴリのCWminが大きくされることにより、アクセスカテゴリAC_LLとその他のアクセスカテゴリとの間の衝突確率が低くなる。結果として、再送による遅延が減少することが期待される。 “Other CW min large” in FIG. 12 means that the CW min of other access categories is made larger than the default. The amount of increase in CW min may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time. By increasing the CW min of the other access categories, the probability of collision between the access category AC_LL and the other access categories becomes low. As a result, it is expected that the delay due to retransmission will be reduced.
 図12の「LL CWmax 大」は、アクセスカテゴリAC_LLのCWmaxをデフォルトよりも大きくすることを意味している。CWmaxの増加量は、固定値であってもよいし、遅延の大きさ、すなわち許容時間と実際の再送時間との時間差に応じて決められてもよい。アクセスカテゴリAC_LLのCWmaxが大きくされることにより、アクセスカテゴリAC_LLについての無線信号の衝突する確率が低くなる。結果として、再送による遅延が減少することが期待される。 “LL CW max large” in FIG. 12 means that the CW max of the access category AC_LL is made larger than the default. The amount of increase in CW max may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time. By increasing the CW max of the access category AC_LL, the probability of collision of radio signals for the access category AC_LL is reduced. As a result, it is expected that the delay due to retransmission will be reduced.
 図12の「LL MCS 小」は、アクセスカテゴリAC_LLの利用可能なMCS(Modulation and Coding Scheme)として伝送品質の高いものを使用することを意味している。MCSは、無線信号処理部において無線信号を生成する際の変調方式と誤り訂正符号化率とのセットを表すインデックス値である。アクセスカテゴリAC_LLのMCSとして誤り訂正符号化率が小さく小さいものが選択されると無線信号の送信成功確率が高められる。結果として、再送による遅延が減少することが期待される。 "LL MCS small" in FIG. 12 means to use a high transmission quality MCS (Modulation and Coding Scheme) that can be used in the access category AC_LL. The MCS is an index value representing a set of a modulation method and an error correction coding rate when a radio signal is generated in the radio signal processing unit. When an MCS of the access category AC_LL with a small error correction coding rate and a small one is selected, the transmission success probability of the radio signal is increased. As a result, it is expected that the delay due to retransmission will be reduced.
 図12の「LL MCS 指定」は、アクセスカテゴリAC_LLの利用可能なMCSのインデックス値を所定値、例えば最小値に指定することを意味している。アクセスカテゴリAC_LLのMCSのインデックス値が例えば最小値に指定されることにより、アクセスカテゴリAC_LLについての無線信号の再送の成功確率が高められる。結果として、再送による遅延が減少することが期待される。 “LL MCS designation” in FIG. 12 means that the index value of the available MCS of the access category AC_LL is designated as a predetermined value, for example, the minimum value. By designating the index value of the MCS of the access category AC_LL to, for example, the minimum value, the success probability of retransmitting the radio signal for the access category AC_LL is increased. As a result, it is expected that the delay due to retransmission will be reduced.
 図12の「LL AIFS 小」、「その他、AIFS 大」、「その他 CWmax 大」、「LL 集中制御」は、競合による遅延と再送による遅延の何れにおいても効果のある対応である。これらの対応は、競合による遅延と再送による遅延の両方が遅延の要因と判断された場合に実施される。「LL AIFS 小」、「その他、AIFS 大」、「その他 CWmax 大」、「LL 集中制御」は、例えばこの順序で実施される。それぞれの対応は、組み合わせて実施されてもよいし、1つずつ切り替えられながら実施されてもよい。また、対応の実施順序は変更されてもよい。さらには、これらの対応を行った後に、主たる遅延の要因に応じて前述した競合による遅延のためのアクセスパラメータの調整又は前述した再送による遅延のためのアクセスパラメータの調整が行われてもよい。また、これらの対応は、前述した競合による遅延のためのアクセスパラメータの調整が実施されても競合による遅延が解消されない場合又は前述した再送による遅延のためのアクセスパラメータの調整が実施されても再送による遅延が解消されない場合に実施されてもよい。 “LL AIFS small”, “Other, AIFS large”, “Other CW max large”, and “LL centralized control” in FIG. 12 are effective measures for both delay due to competition and delay due to retransmission. These measures are taken when both the delay due to conflict and the delay due to retransmission are determined to be the cause of the delay. "LL AIFS small", "Other, AIFS large", "Other CW max large", and "LL centralized control" are carried out in this order, for example. Each correspondence may be carried out in combination, or may be carried out while being switched one by one. In addition, the order of implementation of correspondence may be changed. Further, after taking these measures, the access parameter for the delay due to the above-mentioned conflict or the access parameter for the delay due to the above-mentioned retransmission may be adjusted according to the main cause of the delay. In addition, these measures are retransmitted even if the delay due to the conflict is not resolved even if the access parameter for the delay due to the above-mentioned conflict is adjusted, or even if the access parameter is adjusted for the delay due to the retransmission described above. It may be carried out when the delay due to is not eliminated.
 「LL AIFS 小」は、アクセスカテゴリAC_LLのAIFSをデフォルトよりも小さくすることを意味している。AIFSの減少量は、固定値であってもよいし、遅延の大きさ、すなわち許容時間と実際の再送時間との時間差に応じて決められてもよい。アクセスカテゴリAC_LLのAIFSが小さくされることにより、アクセスカテゴリAC_LLについての無線信号が優先的に送信される確率が高くなる。結果として、アクセスカテゴリAC_LLについては競合による遅延が減少することが期待される。また、アクセスカテゴリAC_LLの無線信号が他のアクセスカテゴリの無線信号よりも優先されて送信されることが多くなるので衝突も減り、アクセスカテゴリAC_LLについては再送による遅延が減少することが期待される。 "LL AIFS small" means that the AIFS of the access category AC_LL is made smaller than the default. The amount of decrease in AIFS may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time. By reducing the AIFS of the access category AC_LL, the probability that the radio signal for the access category AC_LL is preferentially transmitted increases. As a result, it is expected that the delay due to competition will be reduced for the access category AC_LL. Further, since the radio signal of the access category AC_LL is often transmitted with priority over the radio signals of other access categories, collisions are reduced, and it is expected that the delay due to retransmission is reduced for the access category AC_LL.
 「その他 AIFS 大」は、その他のアクセスカテゴリのAIFSをデフォルトよりも大きくすることを意味している。AIFSの増加量は、固定値であってもよいし、遅延の大きさ、すなわち許容時間と実際の再送時間との時間差に応じて決められてもよい。その他のアクセスカテゴリのAIFSが大きくされることにより、アクセスカテゴリAC_LLの送信キューが送信機会を得ることができる確率が相対的に高められるので、アクセスカテゴリAC_LLについては競合による遅延が減少することが期待される。また、アクセスカテゴリAC_LLの無線信号が他のアクセスカテゴリの無線信号よりも優先されて送信されることが多くなるので衝突も減り、アクセスカテゴリAC_LLについては再送による遅延が減少することが期待される。 "Other AIFS large" means that the AIFS of other access categories is larger than the default. The amount of increase in AIFS may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time. By increasing the AIFS of other access categories, the probability that the send queue of access category AC_LL can get a transmission opportunity is relatively increased, so it is expected that the delay due to competition will be reduced for access category AC_LL. Will be done. Further, since the radio signal of the access category AC_LL is often transmitted with priority over the radio signals of other access categories, collisions are reduced, and it is expected that the delay due to retransmission is reduced for the access category AC_LL.
 「その他 CWmax 大」は、その他のアクセスカテゴリのCWmaxをデフォルトよりも大きくすることを意味している。CWmaxの増加量は、固定値であってもよいし、遅延の大きさ、すなわち許容時間と実際の再送時間との時間差に応じて決められてもよい。その他のアクセスカテゴリのCWmaxが大きくされることにより、その他のアクセスカテゴリの無線信号とAC_LLの無線信号との間の衝突が減る。結果として、AC_LLの無線信号の再送による遅延が減少することが期待される。また、その他のアクセスカテゴリのCWmaxが大きくされることにより、アクセスカテゴリAC_LLの送信キューが送信機会を得ることができる確率が相対的に高められる。結果として、アクセスカテゴリAC_LLについては競合による遅延が減少することが期待される。 "Other CW max large" means that the CW max of other access categories is made larger than the default. The amount of increase in CW max may be a fixed value, or may be determined according to the magnitude of the delay, that is, the time difference between the allowable time and the actual retransmission time. Increasing the CW max in the other access categories reduces collisions between the radio signals in the other access categories and the AC_LL radio signals. As a result, it is expected that the delay due to the retransmission of the radio signal of AC_LL will be reduced. Further, by increasing the CW max of the other access categories, the probability that the transmission queue of the access category AC_LL can obtain the transmission opportunity is relatively increased. As a result, it is expected that the delay due to competition will be reduced for the access category AC_LL.
 「LL 集中制御」は、アクセスカテゴリAC_LLの送信機会を積極的に確保するための集中制御を実施することを意味している。アクセスカテゴリAC_LLのための追加の送信機会は、HCCA(HCF Control Chanel Access)、TWT(Target Wake Time)、CFP(Contention Free Period)等の各種の集中制御を用いて与えられ得る。 "LL centralized control" means to carry out centralized control for positively securing transmission opportunities for the access category AC_LL. Additional transmission opportunities for the access category AC_LL can be provided using various centralized controls such as HCCA (HCF Control Chanel Access), TWT (Target Wake Time), CFP (Contention Free Period).
 以上説明したように実施形態によれば、基地局10は、無線信号の送信における遅延の情報を端末20から収集し、遅延の情報から遅延の要因を分析し、分析した遅延の要因に応じてアクセスパラメータを調整する。これを要求される遅延条件を満たすまで繰り返すことにより、基地局10は、絶対的な遅延の要求条件のRTAトラフィックを取り扱うことができる。 As described above, according to the embodiment, the base station 10 collects the delay information in the transmission of the radio signal from the terminal 20, analyzes the delay factor from the delay information, and responds to the analyzed delay factor. Adjust access parameters. By repeating this until the required delay condition is satisfied, the base station 10 can handle RTA traffic with the absolute delay requirement condition.
 [変形例1]
 以下、実施形態の変形例を説明する。前述した実施形態では、遅延の要因は、コンテンションによるものと、再送によるものとに大別されている。これに対し、より細かく遅延の要因が分析されてもよい。
[Modification 1]
Hereinafter, a modified example of the embodiment will be described. In the above-described embodiment, the cause of the delay is roughly classified into the one due to the contention and the one due to the retransmission. On the other hand, the cause of the delay may be analyzed in more detail.
 例えば、遅延の要因がキューイング時間又はコンテンション待ち時間であるときには、LLの送信機会が他のアクセスカテゴリに比べて多くなることで遅延が解消される可能性がある。したがって、制御部104は、LL以外のアクセスカテゴリのTXOPLimitを小さくする、LLのAIFSを小さくする、LL以外のアクセスカテゴリのAIFSを大きくする、といったアクセスパラメータの調整をすることができる。 For example, when the cause of the delay is the queuing time or the contention waiting time, the delay may be eliminated by increasing the transmission opportunity of the LL as compared with other access categories. Therefore, the control unit 104 can adjust access parameters such as reducing the TXOP Limit of the access category other than LL, reducing the AIFS of the LL, and increasing the AIFS of the access category other than the LL.
 また、例えば遅延の要因がコンテンション時間であるときにはLLのバックオフ時間が他のアクセスカテゴリに比べて短く設定されることで遅延が解消される可能性がある。したがって、制御部104は、LLのCWmaxを小さくする、LL以外のアクセスカテゴリのCWmaxを大きくする、といったアクセスパラメータの調整をすることができる。 Further, for example, when the cause of the delay is the contention time, the delay may be eliminated by setting the backoff time of the LL shorter than that of other access categories. Therefore, the control unit 104 can adjust access parameters such as reducing the CW max of the LL and increasing the CW max of the access category other than the LL.
 また、例えば遅延の要因が再送時間であれば、再送の成功の可能性を高めることで遅延が解消される可能性がある。したがって、制御部104は、LL及びその他のアクセスカテゴリのCWmaxを大きくするといったアクセスパラメータの調整をすることができる。また、制御部104は、利用可能なMCSのインデックス値を小さくする調整をすることもできる。 Further, for example, if the cause of the delay is the retransmission time, the delay may be eliminated by increasing the possibility of successful retransmission. Therefore, the control unit 104 can adjust the access parameters such as increasing the CW max of the LL and other access categories. Further, the control unit 104 can also make adjustments to reduce the index value of the available MCS.
 また、例えば遅延の要因が送信時間であれば、制御部104は、利用可能なMCSを大きくする調整をすることができる。 Further, for example, if the cause of the delay is the transmission time, the control unit 104 can make adjustments to increase the available MCS.
 [変形例2]
 また、実施形態では、基地局10のBSS内の端末20との間でアクセスパラメータが調整される例が示されている。ここで、端末20の場所によっては他のBSS等の干渉源の影響を受けることによって遅延が大きくなる場合がある。このような干渉に関わる情報が測定レポートに含まれて基地局10に送られることにより、基地局10は干渉を考慮したアクセスパラメータの調整をすることができる。
[Modification 2]
Further, in the embodiment, an example in which the access parameter is adjusted with the terminal 20 in the BSS of the base station 10 is shown. Here, depending on the location of the terminal 20, the delay may increase due to the influence of other interference sources such as BSS. By including the information related to such interference in the measurement report and sending it to the base station 10, the base station 10 can adjust the access parameters in consideration of the interference.
 例えば、端末20は、BSS Colorによって異なるBSSの基地局を識別し、BSS毎のチャネルの占有時間を測定する。ここで、BSS Colorは、BSSの「色」を表し、隣接するBSS毎に異なるように設定される。チャネルの占有時間は、例えば前述したキューイング時間、コンテンション待ち時間、コンテンション時間、再送時間、送信時間の合計時間である。そして、端末20は、基地局10にBSS毎のチャネルの占有時間の情報をそのBSS Colorとともに測定レポートに格納する。基地局10は、測定レポートに格納されているBSS Colorから他のBSSのチャネルの占有時間を他のBSSからの干渉の情報として取得する。そして、基地局10は、他のBSSのチャネルの占有時間が予め定められた閾値を超えたときには、他のBSSからの干渉による遅延を低減するためのアクセスパラメータの調整をする。 For example, the terminal 20 identifies different BSS base stations depending on the BSS Color, and measures the channel occupancy time for each BSS. Here, BSS Color represents the "color" of BSS and is set to be different for each adjacent BSS. The channel occupancy time is, for example, the total time of the queuing time, the contention waiting time, the contention time, the retransmission time, and the transmission time described above. Then, the terminal 20 stores the information of the channel occupancy time for each BSS in the base station 10 together with the BSS Color in the measurement report. The base station 10 acquires the occupancy time of another BSS channel from the BSS Color stored in the measurement report as information on interference from the other BSS. Then, when the occupied time of the channel of another BSS exceeds a predetermined threshold value, the base station 10 adjusts the access parameter for reducing the delay due to the interference from the other BSS.
 図13は、他のBSSからの干渉を考慮して遅延を低減するためのアクセスパラメータの調整の一例を示した図である。ここで、図13は、図12に加えて「リンク又はチャネルの変更」が追加されたものである。したがって、図12と同一の処理については説明を省略する。 FIG. 13 is a diagram showing an example of adjustment of access parameters for reducing delay in consideration of interference from other BSS. Here, FIG. 13 shows that "change of link or channel" is added in addition to FIG. Therefore, the description of the same processing as in FIG. 12 will be omitted.
 「リンク又はチャネルの変更」は、基地局10と端末20とのマルチリンク通信に用いられているリンクを他の基地局と端末20とのマルチリンク通信に用いられているリンクと異ならせる又は基地局10と端末20との通信に用いられているチャネルを他の基地局と端末20との通信に用いられているチャネルと異ならせることを意味している。 "Changing a link or channel" makes a link used for multi-link communication between a base station 10 and a terminal 20 different from a link used for a multi-link communication between another base station and a terminal 20 or a base. This means that the channel used for communication between the station 10 and the terminal 20 is different from the channel used for communication between the other base station and the terminal 20.
 マルチリンク通信は、異なる複数のリンクを用いて基地局10と端末20との通信を行うことである。複数のリンクは、周波数帯の単位で異なっていてもよいし、チャネルの単位で異なっていてもよい。リンクを異ならせる場合、基地局10は、自局の通信に用いるリンクを維持しつつ、他局の通信に用いられるリンクを自局と異ならせるように他局に対してネゴシエーションしてもよいし、他局の通信に用いられるリンクを維持しつつ、自局の通信に用いるリンクを他局と異ならせるように他局に対してネゴシエーションしてもよい。 Multi-link communication is to communicate between the base station 10 and the terminal 20 using a plurality of different links. The plurality of links may be different in the unit of the frequency band or may be different in the unit of the channel. When the link is different, the base station 10 may negotiate with the other station so that the link used for the communication of the other station is different from the link used for the communication of the own station while maintaining the link used for the communication of the own station. , While maintaining the link used for the communication of the other station, the link used for the communication of the own station may be negotiated with the other station so as to be different from the other station.
 チャネルを異ならせる場合も同様であり、基地局10は、自局の通信に用いるチャネルを維持しつつ、他局の通信に用いられるチャネルを自局と異ならせるように他局に対してネゴシエーションしてもよいし、他局の通信に用いられるチャネルを維持しつつ、自局の通信に用いられるチャネルを他局と異ならせるように他局に対してネゴシエーションしてもよい。 The same applies to the case where the channels are different, and the base station 10 negotiates with the other station so that the channel used for the communication of the other station is different from the own station while maintaining the channel used for the communication of the own station. Alternatively, the channel used for communication of the other station may be maintained, and the channel used for communication of the own station may be negotiated with the other station so as to be different from the other station.
 ここで、図13において破線枠で示した「その他 TXOPLimit 小」、「その他 TXOP 連続なし」、「その他 CWmin 大」、「その他 AIFS 大」、「その他 CWmax 大」、「LL 集中制御」は、干渉による遅延が大きいときには遅延を減らす効果が相対的に低い。したがって、「その他 TXOPLimit 小」、「その他 TXOP 連続なし」、「その他 CWmin 大」、「その他 AIFS 大」、「その他 CWmax 大」、「LL 集中制御」の処理は省略されてもよい。 Here, "Other TXOP Limited small", "Other TXOP continuous", "Other CW min large", "Other AIFS large", "Other CW max large", and "LL centralized control" shown by the broken line frame in FIG. Has a relatively low effect of reducing the delay when the delay due to interference is large. Therefore, the processes of "other TXOP limit small", "other TXOP continuous", "other CW min large", "other AIFS large", "other CW max large", and "LL centralized control" may be omitted.
 以上説明した変形例2では、他のBSSによる干渉の大きさも考慮されてアクセスパラメータの調整が行われる。これにより、さらなるアクセスパラメータの最適化が期待される。 In the modification 2 described above, the access parameters are adjusted in consideration of the magnitude of interference caused by other BSS. This is expected to further optimize access parameters.
 [変形例3]
 実施形態では、測定レポートは、本来の送信すべきデータに追加されて送信される。これに対し、測定レポートは、Actionフレームを用いて基地局10に送信することもできる。例えば、基地局10は、測定レポートを要求するための状況通知要求を含む新たなフィールドを追加したActionフレームを端末20に送信する。これを受けて、端末20は、測定レポートを送信する。測定レポートを返信する際には、端末20は、測定レポートを格納する新たなフィールドを追加したActionフレームを用いることができる。
[Modification 3]
In the embodiment, the measurement report is transmitted in addition to the original data to be transmitted. On the other hand, the measurement report can also be transmitted to the base station 10 using the Action frame. For example, the base station 10 transmits an Action frame to the terminal 20 with a new field including a status notification request for requesting a measurement report. In response to this, the terminal 20 transmits a measurement report. When returning the measurement report, the terminal 20 can use an Action frame to which a new field for storing the measurement report is added.
 また、測定レポートは、マネジメントフレームを用いて基地局10に送信することもできる。この場合、端末20は、測定レポートを格納する新たなフィールドを追加したマネジメントフレームを定期的に基地局10に送信する。 The measurement report can also be transmitted to the base station 10 using the management frame. In this case, the terminal 20 periodically transmits a management frame to which a new field for storing the measurement report is added to the base station 10.
 これらのActionフレームが用いられる例の場合又はマネジメントフレームが用いられる例の場合、端末20において送信すべきMACフレームが送信キューに格納されていない場合は、遅延測定用のMACフレームが送信キューの先頭に入力してもよい。この遅延測定用のMACフレームは、基地局が指定した条件に基づいたアクセスパラメータ等を用いて送信してもよい。たとえば、基地局が特定のTIDについての遅延を測定したい場合は、当該TIDに対応するアクセスカテゴリのパラメータを用いて遅延測定用のMACフレームを送信してもよい。ここで、図14は、Actionフレームが用いられる例であるが、マネジメントフレームが用いられる場合も同様である。 In the case where these Action frames are used or the management frame is used, if the MAC frame to be transmitted at the terminal 20 is not stored in the transmission queue, the MAC frame for delay measurement is at the top of the transmission queue. You may enter in. The MAC frame for delay measurement may be transmitted using an access parameter or the like based on the conditions specified by the base station. For example, if the base station wants to measure the delay for a specific TID, it may transmit a MAC frame for delay measurement using the parameters of the access category corresponding to the TID. Here, FIG. 14 is an example in which the Action frame is used, but the same applies when the management frame is used.
 [その他の変形例]
 また、前述した実施形態及びその変形例では、端末20において遅延が測定され、測定結果が端末20から基地局10に対して送信される。これに対し、基地局10において遅延が測定されてもよい。この場合、基地局10は、自身で測定した遅延に基づいてアクセスパラメータの調整をすることができる。
[Other variants]
Further, in the above-described embodiment and its modification, the delay is measured at the terminal 20, and the measurement result is transmitted from the terminal 20 to the base station 10. On the other hand, the delay may be measured at the base station 10. In this case, the base station 10 can adjust the access parameters based on the delay measured by itself.
 また、上述した実施形態による各処理は、コンピュータであるプロセッサに実行させることができるプログラムとして記憶させておくこともできる。この他、磁気ディスク、光ディスク、半導体メモリ等の外部記憶装置の記憶媒体に格納して配布することができる。そして、プロセッサは、この外部記憶装置の記憶媒体に記憶されたプログラムを読み込み、この読み込んだプログラムによって動作が制御されることにより、上述した処理を実行することができる。 Further, each process according to the above-described embodiment can be stored as a program that can be executed by a processor that is a computer. In addition, it can be stored and distributed in a storage medium of an external storage device such as a magnetic disk, an optical disk, or a semiconductor memory. Then, the processor reads the program stored in the storage medium of the external storage device, and the operation is controlled by the read program, so that the above-mentioned processing can be executed.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 The present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof. In addition, each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained. Further, the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.
 1…通信システム
 10…基地局
 11…プロセッサ
 12…ROM
 13…RAM
 14…無線モジュール
 15…ルーティングモジュール
 20…端末
 21…プロセッサ
 22…ROM
 23…RAM
 24…無線モジュール
 25…ディスプレイ
 26…ストレージ
 101…データ処理部
 102…無線信号処理部
 103…管理部
 104…制御部
 201…データ処理部
 202…無線信号処理部
 203…測定部
1 ... Communication system 10 ... Base station 11 ... Processor 12 ... ROM
13 ... RAM
14 ... Wireless module 15 ... Routing module 20 ... Terminal 21 ... Processor 22 ... ROM
23 ... RAM
24 ... Wireless module 25 ... Display 26 ... Storage 101 ... Data processing unit 102 ... Wireless signal processing unit 103 ... Management unit 104 ... Control unit 201 ... Data processing unit 202 ... Wireless signal processing unit 203 ... Measurement unit

Claims (10)

  1.  無線信号を送信するときの遅延の測定結果の情報を端末から受信する無線信号処理部と、
     前記測定結果の情報に基づいて前記遅延の要因を分析する管理部と、
     前記遅延の要因に基づいて前記送信に係るアクセスパラメータ或いはアクセス方法、又は前記アクセスパラメータと前記アクセス方法の両方を制御する制御部と、
     を具備する基地局。
    A wireless signal processing unit that receives information on the measurement result of the delay when transmitting a wireless signal from the terminal, and
    A management unit that analyzes the cause of the delay based on the information of the measurement result, and
    An access parameter or an access method related to the transmission based on the cause of the delay, or a control unit that controls both the access parameter and the access method.
    A base station equipped with.
  2.  前記制御部は、前記遅延の要因が、無線信号の送信の競合によるものであるとき、遅延の要求条件があるデータを含む無線信号が前記遅延の要求条件がないデータを含む無線信号よりもより優先して送信されるように前記アクセスパラメータを制御する請求項1に記載の基地局。 In the control unit, when the cause of the delay is due to the competition of transmission of the radio signal, the radio signal including the data having the delay requirement is more than the radio signal including the data without the delay requirement. The base station according to claim 1, wherein the access parameter is controlled so as to be transmitted with priority.
  3.  前記制御部は、前記遅延の要求条件があるデータを含む無線信号の送信に係るコンテンションウインドウの最小値を小さくする、前記遅延の要求条件がないデータを含む無線信号の送信に係る送信機会におけるチャネル占有時間の上限値を小さくする、又は前記遅延の要求条件がないデータを含む無線信号の送信に係る送信機会における送信回数を1回にする、の少なくとも何れか1つを行う請求項2に記載の基地局。 The control unit reduces the minimum value of the contention window related to the transmission of the radio signal including the data having the delay requirement, in the transmission opportunity relating to the transmission of the radio signal including the data without the delay requirement. The second aspect of claim 2, wherein the upper limit of the channel occupancy time is reduced, or the number of transmissions at the transmission opportunity related to the transmission of the radio signal including the data without the delay requirement is set to one. The listed base station.
  4.  前記制御部は、前記遅延の要因が、無線信号の再送によるものであるとき、遅延の要求条件のあるデータを含む無線信号の送信の成功確率を高めるように前記アクセスパラメータを制御する請求項1に記載の基地局。 The control unit controls the access parameter so as to increase the success probability of transmission of a radio signal including data with a requirement for delay when the cause of the delay is due to retransmission of the radio signal. The base station described in.
  5.  前記制御部は、前記遅延の要求条件があるデータを含む無線信号の送信に係るコンテンションウインドウの最小値を大きくする、前記遅延の要求条件がないデータを含む無線信号の送信に係るコンテンションウインドウの最小値を大きくする、前記遅延の要求条件があるデータを含む無線信号の送信に係るコンテンションウインドウの最大値を大きくする、前記遅延の要求条件があるデータを含む無線信号の送信に係る変調方式・符号化率のインデックス値をより伝送品質が高いインデックス値に変更する、又は前記遅延の要求条件があるデータを含む無線信号の送信に係る変調方式・符号化率のインデックス値を所定値に指定する、の少なくとも何れか1つを行う請求項4に記載の基地局。 The control unit increases the minimum value of the contention window relating to the transmission of the radio signal including the data having the delay requirement, and the contention window relating to the transmission of the radio signal including the data without the delay requirement. Increasing the minimum value of, increasing the maximum value of the contention window related to the transmission of the radio signal containing the data with the delay requirement, and the modulation related to the transmission of the radio signal containing the data with the delay requirement. Change the index value of the method / coding rate to an index value with higher transmission quality, or set the index value of the modulation method / coding rate related to the transmission of radio signals containing data with the delay requirement to a predetermined value. The base station according to claim 4, wherein at least one of the designations is performed.
  6.  前記制御部は、さらに、前記遅延の要求条件があるデータを含む無線信号の送信に係るAIFSの値を小さくする、前記遅延の要求条件がないデータを含む無線信号の送信に係るAIFSの値を大きくする、前記遅延の要求条件がないデータを含む無線信号の送信に係るコンテンションウインドウの最大値を大きくする、の少なくとも何れか1つを行う請求項2乃至5の何れか1項に記載の基地局。 The control unit further reduces the AIFS value related to the transmission of the radio signal including the data having the delay requirement, and sets the AIFS value related to the transmission of the radio signal including the data without the delay requirement. The invention according to any one of claims 2 to 5, wherein at least one of increasing the maximum value of the contention window relating to the transmission of the radio signal including the data without the delay requirement is increased. base station.
  7.  前記制御部は、さらに、前記遅延の要求条件があるデータを含む無線信号に対する集中制御を行う請求項2乃至6の何れか1項に記載の基地局。 The base station according to any one of claims 2 to 6, wherein the control unit further performs centralized control on a radio signal including data having a delay requirement condition.
  8.  前記無線信号処理部は、他の基地局と前記端末との通信による自局への干渉の情報を前記端末から受信し、
     前記管理部は、前記干渉の情報にさらに基づいて前記遅延の要因を分析する請求項2乃至6の何れか1項に記載の基地局。
    The radio signal processing unit receives information on interference with its own station due to communication between another base station and the terminal from the terminal, and receives information from the terminal.
    The base station according to any one of claims 2 to 6, wherein the management unit further analyzes the cause of the delay based on the information of the interference.
  9.  前記制御部は、前記端末との通信に用いるリンクを前記他の基地局と前記端末との通信に用いられているリンクと異ならせる又は前記端末との通信に用いるチャネルを前記他の基地局と前記端末との通信に用いられているチャネルと異ならせる請求項8に記載の基地局。 The control unit makes the link used for communication with the terminal different from the link used for communication between the other base station and the terminal, or sets the channel used for communication with the terminal with the other base station. The base station according to claim 8, which is different from the channel used for communication with the terminal.
  10.  基地局が、無線信号を送信するときの遅延の測定結果の情報を端末から受信することと、
     前記基地局が、前記測定結果の情報に基づいて前記遅延の要因を分析することと、
     前記基地局が、前記遅延の要因に基づいて前記送信に係るアクセスパラメータ或いはアクセス方法、又は前記アクセスパラメータと前記アクセス方法の両方を制御することと、
     を具備する通信方法。
    When the base station receives information on the measurement result of the delay when transmitting a radio signal from the terminal,
    The base station analyzes the cause of the delay based on the information of the measurement result, and
    The base station controls the access parameter or access method related to the transmission, or both the access parameter and the access method, based on the cause of the delay.
    A communication method that comprises.
PCT/JP2020/028672 2020-07-27 2020-07-27 Base station and communication method WO2022024171A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/028672 WO2022024171A1 (en) 2020-07-27 2020-07-27 Base station and communication method
JP2022539792A JP7476966B2 (en) 2020-07-27 2020-07-27 Base station and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028672 WO2022024171A1 (en) 2020-07-27 2020-07-27 Base station and communication method

Publications (1)

Publication Number Publication Date
WO2022024171A1 true WO2022024171A1 (en) 2022-02-03

Family

ID=80037775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028672 WO2022024171A1 (en) 2020-07-27 2020-07-27 Base station and communication method

Country Status (2)

Country Link
JP (1) JP7476966B2 (en)
WO (1) WO2022024171A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532350A (en) * 2005-02-02 2008-08-14 インターデイジタル テクノロジー コーポレーション Method and apparatus for controlling wireless medium congestion by adjusting contention window size and separating selected mobile stations
JP2009100475A (en) * 2007-10-15 2009-05-07 Ntt Docomo Inc Method of adjusting minimum contention window, and apparatus thereof
JP2010273143A (en) * 2009-05-21 2010-12-02 Canon Inc Communication equipment, method for controlling the same and program
JP2011182435A (en) * 2005-10-17 2011-09-15 Qualcomm Inc Method and apparatus for managing data flow through mesh network

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252565A (en) 2007-03-30 2008-10-16 Nec Corp Wireless terminal and communication control method of wireless terminal
EP2058989A1 (en) 2007-11-09 2009-05-13 Thomson Licensing, Inc. Wireless rate control method
WO2013171365A1 (en) 2012-05-16 2013-11-21 Nokia Corporation Method and apparatus for network traffic offloading
JP6223942B2 (en) 2014-09-30 2017-11-01 Kddi株式会社 Wireless communication apparatus, wireless communication program, and method capable of changing aggregation amount according to wireless communication environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532350A (en) * 2005-02-02 2008-08-14 インターデイジタル テクノロジー コーポレーション Method and apparatus for controlling wireless medium congestion by adjusting contention window size and separating selected mobile stations
JP2011182435A (en) * 2005-10-17 2011-09-15 Qualcomm Inc Method and apparatus for managing data flow through mesh network
JP2009100475A (en) * 2007-10-15 2009-05-07 Ntt Docomo Inc Method of adjusting minimum contention window, and apparatus thereof
JP2010273143A (en) * 2009-05-21 2010-12-02 Canon Inc Communication equipment, method for controlling the same and program

Also Published As

Publication number Publication date
JP7476966B2 (en) 2024-05-01
JPWO2022024171A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US7865549B2 (en) Method and apparatus for transmitting data frame efficiently in communication network
US8718089B2 (en) Aggregation and fragmentation of multiplexed downlink packets
US7751424B2 (en) Method and apparatus for packet transmission in carrier-sense-multiple-access network
CN113875272B (en) Real-time application
EP3823347B1 (en) Method and apparatus for eht multi-band a-msdu operation
JP4734970B2 (en) Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
TW201922044A (en) Multi-TID A-MPDU transmission
US7773627B2 (en) Method and apparatus for allocating transmission opportunity in communication system
JP7559828B2 (en) Transmitting and Receiving Stations
US11882479B2 (en) Wireless LAN communication device and wireless LAN communication method
WO2015088018A1 (en) Multi-hop wireless device and multi-hop wireless system
JP7476966B2 (en) Base station and communication method
KR20060099473A (en) OS management in wireless mesh networks
JP7347653B2 (en) Terminal, communication method and communication program
JP7405154B2 (en) Base station, communication method and communication program
WO2022014368A1 (en) Communication device and communication method
US20230308227A1 (en) Wireless communication apparatus and wireless communication method
US20240098819A1 (en) Transmitting station and receiving station
JP7396372B2 (en) Terminal, communication method and communication program
TWI783827B (en) Wifi device
US20240340829A1 (en) Transmitting station and receiving station
US20250056316A1 (en) Wireless communication device and method
US20230328816A1 (en) Base station and communication method
KR200418575Y1 (en) Packet Transport Mesh Networks and Devices
WO2025077533A1 (en) Low-latency traffic transmission method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539792

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946758

Country of ref document: EP

Kind code of ref document: A1