[go: up one dir, main page]

WO2022021444A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2022021444A1
WO2022021444A1 PCT/CN2020/106449 CN2020106449W WO2022021444A1 WO 2022021444 A1 WO2022021444 A1 WO 2022021444A1 CN 2020106449 W CN2020106449 W CN 2020106449W WO 2022021444 A1 WO2022021444 A1 WO 2022021444A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
terminal device
reference signal
area
tracking reference
Prior art date
Application number
PCT/CN2020/106449
Other languages
English (en)
French (fr)
Inventor
高慧
高一辰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20947216.6A priority Critical patent/EP4181596B1/en
Priority to CA3190146A priority patent/CA3190146A1/en
Priority to CN202080104692.8A priority patent/CN116250316A/zh
Priority to PCT/CN2020/106449 priority patent/WO2022021444A1/zh
Publication of WO2022021444A1 publication Critical patent/WO2022021444A1/zh
Priority to US18/162,585 priority patent/US20230180093A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method, device, and system.
  • terminal equipment can compensate for air interface transmission delay by measuring tracking reference signals, such as tracking reference signal (TRS) or synchronization signal and physical broadcast channel block (SSB), etc.
  • TRS tracking reference signal
  • SSB physical broadcast channel block
  • the process for the terminal equipment to compensate for the time offset and frequency offset by measuring the tracking reference signal is as follows: after the terminal equipment performs cell handover, the target network equipment configures the terminal equipment with time-frequency resources that bear the tracking reference signal; the target network equipment broadcasts the tracking reference signal, and Send media access control layer-control element (media access control-control element, MAC-CE) signaling to the terminal device, and the terminal device receives the tracking reference signal and the MAC-CE signaling, the MAC-CE signaling is used to indicate The tracking reference signal is measured; the terminal equipment measures the tracking reference signal to obtain the measurement result; the target network equipment sends downlink control information (DCI) signaling and downlink signals to the terminal equipment, and the terminal equipment receives the DCI signaling and downlink signals.
  • the DCI signaling is used to instruct the downlink signal to be demodulated according to the measurement result; the terminal device demodulates the downlink signal according to the measurement result.
  • the terminal device When the terminal device is in rapid movement, the terminal device performs cell handover quickly and frequently, and needs to track the time offset and frequency offset in time to ensure communication quality.
  • the terminal device at least needs to wait for receiving the MAC-CE signaling from the target network device before starting to measure the tracking reference signal.
  • the terminal device will directly demodulate the downlink signal.
  • the terminal equipment has not measured the tracking reference signal, that is, the terminal equipment has not compensated for the time offset caused by the air interface transmission delay and the frequency offset caused by the Doppler effect, which will affect the terminal equipment's interpretation of the downlink signal. Adjust performance and reduce communication quality.
  • Embodiments of the present application provide a communication method, device, and system, which are used to compensate time offset and frequency offset in time and improve communication quality.
  • an embodiment of the present application provides a communication method, and the method may be executed by a first network device, or may also be executed by a component (such as a processor, a chip, or a chip system, etc.) of the first network device.
  • the first network device determines that the terminal device will enter the first area, the first area is the area where the terminal device switches from the first network device to the second network device, or the first area is the first network device and the second network device.
  • the first network device determines that the terminal device will perform cell handover or will perform joint transmission. Before the terminal device performs cell handover or joint transmission, the first network device sends first indication information to the terminal device to trigger the terminal device to start measuring the first tracking reference signal before cell handover or joint transmission. This means that the terminal device can directly demodulate the downlink signal from the second network device according to the measurement result of the first tracking reference signal in the initial stage after completing the cell handover or in the initial stage of joint transmission. The terminal device does not need to wait for the MAC-CE signaling of the second network device, which can reduce the time overhead for the terminal device to obtain the measurement result, and avoid the possibility that the terminal device has just completed the initial stage of cell handover or the initial stage of joint transmission.
  • the downlink signal from the second network device is received, but the MAC-CE signaling of the second network device has not been received (or the measurement of the first tracking reference signal has not been completed), and compensation cannot be made in time according to the result of the first tracking reference signal time offset and frequency offset, and the demodulation performance of the downlink signal is degraded, and the communication quality is improved.
  • determining that the terminal device is about to enter the first area by the first network device includes: the first network device receives information about the reception quality of the first reference signal from the terminal device; The first network device determines that the terminal device is about to enter the first area when the difference between the received quality of the reference signals of the device in one or more neighboring cells is less than or equal to the first threshold.
  • the first network device may compare the reference signal reception quality of the terminal device in the current cell with the reference signal reception quality of the terminal device in one or more neighboring cells to determine whether the terminal device is about to enter the first area . For example, if the difference between the reference signal reception quality of the current cell and the reference signal reception quality of the terminal device before one or more neighboring cells is less than or equal to the first threshold, the first network device may determine that the terminal device is about to enter the first area . Alternatively, if the received quality of reference signals of the current cell is all lower than or equal to the received quality of reference signals of the terminal device in one or more neighboring cells, the first network device may determine that the terminal device is about to enter the first area.
  • determining that the terminal device is about to enter the first area by the first network device includes: the first network device determines that the terminal device is about to enter the first area according to the moving direction of the terminal device and the network topology information where the first network device is located. first area.
  • the first network device may determine whether the terminal device will enter the first area according to the moving direction of the terminal device and the network topology information where the first network device is located. Because the network topology information where the first network device is located may include, but is not limited to, the identifier of at least one adjacent cell, the identifier of at least one network device adjacent to the first network device, and the at least one network device adjacent to the first network device The location information of the device (such as longitude information and/or latitude information, etc.), or the positional relationship between the at least one network device and the first network device (such as being located in the due north of the first network device, or located in the due south of the first network device etc.), or the relative position of the at least one network device (such as the position relative to the first network device), etc. Therefore, the first network device can accurately determine the next Information such as the distance between the accessed network device or the terminal device and the next accessed network device, so that the first network device can accurately determine whether the terminal device is about to enter the first area.
  • the next Information
  • the method further includes: the first network device receives first information from the terminal device, the first information indicates the first quantity and the second quantity, wherein the first quantity is the simultaneous activation supported by the terminal device
  • the first network device determines that the terminal device has the ability to compensate for time offset and frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal, and the second tracking reference signal
  • the reference signal is a tracking reference signal of the first network device.
  • the first network device can use the first information reported by the terminal device to determine whether the terminal device has the ability to compensate the time offset and frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal. ability. For example, when it is determined that the terminal device has the capability of compensating for time offset and frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal, the first network device may send a message to the terminal device before the terminal device enters the first area. The device sends the first indication information.
  • the terminal device Since the terminal device has the ability to compensate the time offset and frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal, the terminal device can measure the first tracking reference signal after receiving the first indication information to obtain The measurement result, and after the terminal equipment enters the first area, the time offset and frequency offset can be compensated according to the measurement result of the first tracking reference signal, so that the terminal equipment in the initial stage (or the initial stage of joint transmission) after completing the cell handover can be improved.
  • the quality of communication between the device and the second network device Since the terminal device has the ability to compensate the time offset and frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal.
  • the method further includes: the first network device receives third indication information from the terminal device, where the third indication information is used to indicate that the terminal device has the measurement result according to the first tracking reference signal and the second tracking
  • the measurement result of the reference signal is capable of compensating for time offset and frequency offset
  • the second tracking reference signal is the tracking reference signal of the first network device.
  • the terminal device may directly indicate to the first network device that it has the capability of compensating for time offset and frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal. In this way, before the terminal device enters the first area, the first network device can send the first indication information to the terminal device.
  • the terminal device Since the terminal device has the ability to compensate the time offset and frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal, the terminal device can measure the first tracking reference signal after receiving the first indication information to obtain The measurement result, and after the terminal equipment enters the first area, the time offset and frequency offset can be compensated according to the measurement result of the first tracking reference signal, so that the terminal equipment in the initial stage (or the initial stage of joint transmission) after completing the cell handover can be improved.
  • the quality of communication between the device and the second network device Since the terminal device has the ability to compensate the time offset and frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal.
  • compensating for the time offset and the frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal includes increasing the crystal oscillator pair time offset and frequency offset according to the first tracking reference signal filter coefficients.
  • the terminal device can increase the filter coefficients of the crystal oscillator for time offset and frequency offset, so that when the terminal device receives the DCI signaling from the second network device, it can immediately
  • the measurement result compensates the time offset and the frequency offset, so that the terminal device can compensate the time offset and the frequency offset in time, and avoids the problem of reducing the demodulation performance because the time offset and the frequency offset cannot be compensated in time.
  • the first indication information includes at least one of an identifier of the first tracking reference signal or information of time-frequency resources bearing the first tracking reference signal.
  • the first indication information sent by the first network device to the terminal device may include at least one of the identifier of the first tracking reference signal or the information of the time-frequency resource bearing the first tracking reference signal.
  • the terminal device The reception of the first tracking reference signal of the second network device can be completed according to the identifier of the first tracking reference signal (or the time-frequency resource that carries the first tracking reference signal), so that the terminal device can start the first tracking reference signal before entering the first area. A tracking reference signal is measured.
  • the method before the terminal device enters the first area, the method further includes: the first network device receives a first message from the second network device, where the first message includes first indication information.
  • the second network device before the terminal device enters the first area, the second network device can send the first message to the first network device, and correspondingly, the first network device receives the first message, so that the first network device can determine the second The identification of the first tracking reference signal of the network device, and/or the information of the time-frequency resource carrying the first tracking reference signal. Further, when determining that the terminal device is about to enter the first area, the first network device may send the identifier of the first tracking reference signal and/or the information of the time-frequency resource bearing the first tracking reference signal to the terminal device, so that the The terminal device completes the reception of the first tracking reference signal.
  • the method before receiving the first message from the second network device, the method further includes: the first network device sends a second message to the second network device, where the second message is used to request the first indication information .
  • the first network device may send the second message to the second network device.
  • the second network device receives the second message, so that the second network device receives the second message.
  • the identifier of the first tracking reference signal and/or the information of the time-frequency resource bearing the first tracking reference signal is sent to the first network device.
  • an embodiment of the present application provides a communication method, which may be executed by a terminal device, or may also be executed by a component of the terminal device (such as a processor, a chip, or a chip system, etc.).
  • the terminal device receives first indication information from the first network device, where the first indication information is used to instruct to measure the first tracking reference signal of the second network device, wherein , the first area is the area where the terminal device switches from the first network device to the second network device, or the first area is the area where the first network device and the second network device jointly transmit; the terminal device measures the first tracking reference signal , and obtain the first measurement result; after the terminal device enters the first area, the terminal device receives the first downlink signal from the second network device; the terminal device demodulates the first downlink signal according to the first measurement result.
  • the method further includes: the terminal device receives second indication information from the second network device, where the second indication information is used to indicate demodulation according to the first measurement result The first downlink signal.
  • the method further includes: the terminal device sends information on the received quality of the first reference signal to the first network device, where the information on the received quality of the first reference signal is used to determine that the terminal device is about to enter the first area.
  • the method further includes: the terminal device sends first information to the first network device, the first information indicates the first quantity and the second quantity, and the first information is used to determine that the terminal device has the capability according to the first measurement The capability of compensating time offset and frequency offset between the result and the measurement result of the second tracking reference signal, wherein the first number is the number of simultaneously active transmission configuration indication states supported by the terminal device, and the second number is the number of simultaneously measured states supported by the terminal device.
  • the number of tracking reference signals, the transmission configuration indication state is used to indicate the correspondence between the tracking reference signals and the service, and the second tracking reference signal is the tracking reference signal of the first network device.
  • the method further includes: the terminal device sends third indication information to the first network device, where the third indication information is used to indicate that the terminal device has a measurement result according to the first measurement result and the second tracking reference signal
  • the third indication information is used to indicate that the terminal device has a measurement result according to the first measurement result and the second tracking reference signal
  • the capability of compensating for time offset and frequency offset, and the second tracking reference signal is the tracking reference signal of the first network device.
  • compensating for the time offset and the frequency offset according to the first measurement result and the measurement result of the second tracking reference signal includes increasing a filter coefficient of the crystal oscillator for the time offset and the frequency offset according to the first measurement result.
  • an embodiment of the present application provides a communication method, and the method may be executed by a second network device, or may also be executed by a component (such as a processor, a chip, or a chip system, etc.) of the second network device.
  • a component such as a processor, a chip, or a chip system, etc.
  • the second network device before the terminal device enters the first area, the second network device sends a first message to the first network device, where the first message includes first indication information, and the first indication information includes the identifier of the first tracking reference signal or Bearing at least one of the time-frequency resource information of the first tracking reference signal, the first area is the area where the terminal device switches from the first network device to the second network device, or the first area is the first network device and the second network device
  • the first indication information is used by the terminal equipment to measure the first tracking reference signal to obtain the first measurement result
  • the second network equipment sends the first information to the terminal equipment.
  • the method before the second network device sends the first message to the first network device, the method further includes: the second network device receives a second message from the first network device, where the second message is used to request first indication information.
  • an embodiment of the present application provides a communication device, where the communication device may be a first network device or a device in the first network device.
  • the communication apparatus may include a processing module and a transceiver module, and these modules may perform corresponding functions performed by the first network device in any one of the above-mentioned design examples of the first aspect. in:
  • the processing module is used to determine that the terminal device is about to enter the first area, the first area is the area where the terminal device switches from the first network device to the second network device, or the first area is the joint transmission between the first network device and the second network device Area;
  • the transceiver module is configured to send first indication information to the terminal device before the terminal device enters the first area, where the first indication information is used to instruct to measure the first tracking reference signal of the second network device.
  • the transceiver module is specifically used for: receiving information about the reception quality of the first reference signal from the terminal device; the processing module is specifically used for: when the reception quality of the first reference signal is in one or more When the difference between the received quality of the reference signals in the neighboring cells is less than or equal to the first threshold, it is determined that the terminal device is about to enter the first region.
  • the processing module is specifically configured to: determine that the terminal device will enter the first area according to the moving direction of the terminal device and the network topology information where the first network device is located.
  • the transceiver module is further configured to: receive first information from the terminal device, where the first information indicates the first quantity and the second quantity, where the first quantity is the transmission supported by the terminal device that is activated at the same time
  • the number of configuration indication states, the second quantity is the number of simultaneous measurement tracking reference signals supported by the terminal device, and the transmission configuration indication state is used to indicate the correspondence between the tracking reference signal and the service
  • the processing module is further used for: when the first When the first number is greater than or equal to 2 and the second number is greater than or equal to 2, it is determined that the terminal device has the capability of compensating for time offset and frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal, and the second
  • the tracking reference signal is a tracking reference signal of the first network device.
  • the transceiver module is further configured to: receive third indication information from the terminal device, where the third indication information is used to indicate that the terminal device has the measurement result according to the first tracking reference signal and the second tracking reference signal
  • the capability of compensating the time offset and the frequency offset by the measurement result, and the second tracking reference signal is the tracking reference signal of the first network device.
  • compensating for the time offset and the frequency offset according to the measurement result of the first tracking reference signal and the measurement result of the second tracking reference signal includes increasing the crystal oscillator pair time offset and frequency offset according to the first tracking reference signal filter coefficients.
  • the first indication information includes at least one of an identifier of the first tracking reference signal or information of time-frequency resources bearing the first tracking reference signal.
  • the transceiver module before the terminal device enters the first area, is further configured to: receive a first message from the second network device, where the first message includes the first indication information.
  • the transceiver module before receiving the first message from the second network device, is further configured to: send a second message to the second network device, where the second message is used to request the first indication information.
  • an embodiment of the present application provides a communication device, where the communication device may be a terminal device or a device in a terminal device.
  • the communication apparatus may include a processing module and a transceiver module, and these modules may perform corresponding functions performed by the terminal device in any one of the design examples of the second aspect. in:
  • a transceiver module configured to receive first indication information from the first network device before the terminal device enters the first area, where the first indication information is used to instruct to measure the first tracking reference signal of the second network device, wherein the first An area is an area where the terminal device switches from the first network device to the second network device, or the first area is an area where the first network device and the second network device jointly transmit;
  • a processing module configured to measure the first tracking reference signal to obtain a first measurement result
  • the transceiver module is further configured to receive the first downlink signal from the second network device after the terminal device enters the first area;
  • the processing module is further configured to demodulate the first downlink signal according to the first measurement result.
  • the transceiver module is further configured to: receive second indication information from the second network device, where the second indication information is used to indicate demodulation according to the first measurement result The first downlink signal.
  • the transceiver module is further configured to: send information on the received quality of the first reference signal to the first network device, where the information on the received quality of the first reference signal is used to determine that the terminal device is about to enter the first area.
  • the transceiver module is further configured to: send first information to the first network device, where the first information indicates the first quantity and the second quantity, and the first information is used to determine that the terminal device has the capability according to the first measurement The capability of compensating time offset and frequency offset between the result and the measurement result of the second tracking reference signal, wherein the first number is the number of simultaneously active transmission configuration indication states supported by the terminal device, and the second number is the number of simultaneously measured states supported by the terminal device.
  • the number of tracking reference signals, the transmission configuration indication state is used to indicate the correspondence between the tracking reference signals and the service, and the second tracking reference signal is the tracking reference signal of the first network device.
  • the transceiver module is further configured to: send third indication information to the first network device, where the third indication information is used to indicate that the terminal device has a measurement result according to the first measurement result and the second tracking reference signal
  • the capability of compensating for time offset and frequency offset, and the second tracking reference signal is the tracking reference signal of the first network device.
  • compensating for the time offset and the frequency offset according to the first measurement result and the measurement result of the second tracking reference signal includes increasing a filter coefficient of the crystal oscillator for the time offset and the frequency offset according to the first measurement result.
  • an embodiment of the present application provides a communication device, where the communication device may be a second network device or a device in the second network device.
  • the communication apparatus may include a processing module and a transceiver module, and these modules may perform the corresponding functions performed by the second network device in any one of the design examples of the third aspect. in:
  • a transceiver module configured to send a first message to the first network device before the terminal device enters the first area, where the first message includes first indication information, and the first indication information includes the identifier of the first tracking reference signal or bears the first tracking At least one of the time-frequency resource information of the reference signal, the first area is the area where the terminal device switches from the first network device to the second network device, or the first area is the first network device and the second network device jointly transmit area, where the first indication information is used by the terminal device to measure the first tracking reference signal to obtain a first measurement result;
  • the second indication information is used to instruct to demodulate the first downlink signal according to the first measurement result.
  • the transceiver module before the second network device sends the first message to the first network device, the transceiver module is further configured to:
  • a second message from the first network device is received, where the second message is used to request the first indication information.
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus includes a processor configured to implement the method performed by the first network device in the first aspect above.
  • the communication apparatus may also include memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to implement any one of the methods performed by the first network device in the first aspect above.
  • the communication apparatus may also include a transceiver for the communication apparatus to communicate with other devices.
  • the other device is a terminal device or a second network device.
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus includes a processor for implementing the method performed by the terminal device in the third aspect.
  • the communication apparatus may also include memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to implement any one of the methods performed by the terminal device in the third aspect.
  • the communication apparatus may also include a transceiver for the communication apparatus to communicate with other devices.
  • the other device is the first network device or the second network device.
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus includes a processor configured to implement the method performed by the second network device in the third aspect.
  • the communication apparatus may also include memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to implement any one of the methods performed by the second network device in the third aspect.
  • the communication apparatus may also include a transceiver for the communication apparatus to communicate with other devices.
  • the other device is a terminal device or a first network device.
  • the embodiments of the present application further provide a computer-readable storage medium, where computer programs or instructions are stored in the storage medium, and when the computer programs or instructions are executed, any one of the design examples in the first aspect can be implemented.
  • the embodiments of the present application further provide a computer-readable storage medium, where computer programs or instructions are stored in the storage medium.
  • computer programs or instructions are executed, any design example of the second aspect can be implemented. The method performed by the terminal device in .
  • the embodiments of the present application further provide a computer program product, including instructions, when running on a computer, causing the computer to execute the method performed by the first network device in any of the design examples of the first aspect, Or the method performed by the second network device in any one of the above design examples of the third aspect.
  • the embodiments of the present application further provide a computer program product, including instructions, which when run on a computer, cause the computer to execute the method executed by the terminal device in any of the design examples of the second aspect.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor and may further include a memory, for implementing the method executed by the first network device in any of the design examples of the first aspect, or the above A method performed by the second network device in any design example of the third aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor and may further include a memory, for implementing the method executed by a terminal device in any one of the design examples of the second aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application further provides a communication system, where the communication system includes the communication device in any of the design examples of the fourth aspect, and/or, the communication device in any of the design examples of the fifth aspect above A communication device, and/or a communication device in any one of the design examples of the sixth aspect.
  • FIG. 1 is a schematic diagram of joint transmission performed by a first network device and a second network device in an embodiment of the application;
  • FIG. 2 is a schematic diagram of a cell handover area in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a communication system to which an embodiment of the application is applicable;
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of still another communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 12 is another schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 13 is still another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is still another schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • a network device may be an access network device, and an access network device may also be called a radio access network (radio access network, RAN) device, which is a device that provides a wireless communication function for a terminal device.
  • the access network equipment includes, but is not limited to, a next-generation base station (generation nodeB, gNB ) in the fifth generation (5th generation, 5G), an evolved node B (evolved node B, eNB), and a remote radio unit (remote radio unit).
  • the access network device may also be a wireless controller, a central unit (central unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or a network
  • the device may be a relay station, a vehicle-mounted device, and a network device in a future evolved network, and the like.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the apparatus for implementing the functions of the network equipment as the network equipment as an example.
  • a terminal device may be referred to as a terminal for short, such as a user equipment, which is a device with a wireless transceiver function.
  • Terminal equipment can be deployed on land (such as vehicles, vehicles, high-speed rail or motor vehicles, etc.); can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, drones, balloons and satellites, etc.) .
  • the terminal equipment can be a mobile phone, a tablet computer, a computer with wireless transceiver function, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in unmanned driving, and wireless terminal equipment in telemedicine.
  • a terminal device can communicate with multiple access network devices of different technologies. For example, a terminal device can communicate with an access network device that supports long term evolution (LTE), and can also communicate with an access network device that supports 5G. It can also communicate with LTE-enabled access network devices and 5G-enabled access network devices at the same time. This embodiment of the present application does not limit this.
  • LTE long term evolution
  • 5G 5th Generationан ⁇
  • the apparatus for implementing the function of the terminal may be a terminal device; it may also be an apparatus capable of supporting the terminal device to implement the function, such as a chip system, and the apparatus may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Combined cell also known as logical cell
  • multiple network devices such as RRU
  • RRU radio resource control
  • each network device in multiple network devices corresponds to a physical cell
  • multiple physical cells can form a Merge cells.
  • the primary network device among the multiple network devices can configure the time-frequency resources that carry the tracking reference signal of each network device to the radio resource control (RRC) signaling.
  • RRC radio resource control
  • the terminal device can save the time overhead of configuring the time-frequency resource bearing the tracking reference signal for the terminal device by the network device after the terminal device accesses the physical cell.
  • Joint transmission which may refer to at least two network devices jointly sending downlink signals and TRS to the terminal device.
  • the terminal device moves from the area covered by the first network device to the area covered by the second network device.
  • the first network device and the second network device may jointly send downlink signals and TRS to the terminal device.
  • the first network device and the second network device send the same downlink signal to the terminal device to increase the received power of the downlink signal and improve the communication quality; when the channel quality is good, the first network device The device and the second network device send different downlink signals to the terminal device to improve transmission efficiency.
  • the area for joint transmission may be a common coverage area of the at least two network devices, or a subset of the common coverage area of the at least two network devices (as shown in FIG. 1 ).
  • the first area may refer to the area where the first network device and the second network device jointly transmit, or the area where the terminal device switches from the first network device to the second network device.
  • the area where the first network device and the second network device jointly transmit may be the common coverage area of the first network device and the second network device, or may also be a sub-region of the common coverage area of the first network device and the second network device set (as shown in Figure 1).
  • the area in which the terminal device switches from the first network device to the second network device may also be referred to as an area where the terminal device performs handover.
  • the terminal device in the process of moving the terminal device from the area covered by the first network device to the area covered by the second network device, the terminal device needs to switch, that is, switch from the first network device to the second network device .
  • the handover of the terminal device from the first network device to the second network device may include one or more of a handover preparation stage, a handover execution stage, and a handover completion stage.
  • the handover preparation stage may refer to a stage between when the first network device sends a handover request to the second network device and when the first network device sends a handover command to the terminal device.
  • the handover execution stage may refer to the stage between when the terminal device receives the handover command and when the terminal device establishes a connection with the second network device.
  • the handover completion stage may refer to the stage in which the terminal device establishes a connection with the second network device to the stage where the terminal device starts data transmission with the second network device.
  • the area where the terminal device switches from the first network device to the second network device can be understood as the area where the terminal device is located during the process of switching from the first network device to the second network device.
  • the terminal device switches from the first network device to the second network device at the handover point, it means that the time required for the terminal device to perform cell handover is very short, and the cell handover area is very small, then the first area can be A region that includes all possible switching points.
  • Transmission configuration indicator-state (TCI-State), which can be used to indicate the correspondence between the tracking reference signal and the service.
  • TCI-State can be used to indicate the accuracy between the tracking reference signal and the service.
  • the service may refer to physical downlink control channel (physical downlink control channel, PDCCH) data, and/or physical downlink shared channel (physical downlink shared channel, PDSCH) data.
  • the network device broadcasts the tracking reference signal, and the terminal device may receive multiple tracking reference signals. In this case, the terminal device may determine the PDCCH used for demodulating the PDCCH from the multiple tracking reference signals according to the TCI-State field of the DCI.
  • the terminal device receives multiple tracking reference signals and multiple PDSCH data, the multiple tracking reference signals may include tracking reference signal 1 and tracking reference signal 2, and the multiple PDSCH data may include PDSCH data 1 and PDSCH data 2. If the TCI-State indicates that tracking reference signal 1 and PDSCH data 1 are in a QCL relationship, and tracking reference signal 2 and PDSCH data 2 are in a QCL relationship, then based on the TCI-State, the terminal device can obtain PDSCH data 1 according to tracking reference signal 1, and PDSCH data 2 is acquired according to tracking reference signal 2 .
  • the TCI-State may be used to indicate the QCL relationship between the tracking reference signal and a demodulation reference signal (demodulation reference signal, DMRS).
  • DMRS demodulation reference signal
  • the network device broadcasts the tracking reference signal, and the terminal device may receive multiple tracking reference signals.
  • the terminal device may determine the tracking reference signal for DMRS from the multiple tracking reference signals according to the TCI-State field of the DCI. reference signal to obtain PDCCH data (and/or PDSCH data) corresponding to the DMRS.
  • the transmission configuration indication state (TCI-PresentinDCI) carried in the downlink control information is a field in the air interface signaling, which can be used to determine whether the DCI includes the TCI-State. For example, if the network device configures the TCI-Present in DCI as "enabled”, the TCI-PresentinDCI is used to indicate that the DCI includes a TCI-State field. If the network device configures the TCI-Present in DCI as "disabled", the TCI-PresentinDCI is used to indicate that the DCI does not include the TCI-State field.
  • the tracking reference signal is used to track the time offset and frequency offset during the communication between the network equipment and the terminal equipment to compensate for the time offset caused by the air interface transmission delay and the frequency offset caused by the Doppler effect.
  • the tracking reference signal may be TRS, or may be SSB, etc., which is not limited in this embodiment of the present application.
  • the following description takes the tracking reference signal as the TRS as an example, and it can be understood that the technical solutions applicable to the TRS in the embodiments of the present application are also applicable to the SSB.
  • “plurality” refers to two or more than two. In view of this, “plurality” may also be understood as “at least two” in the embodiments of the present application. "At least one" can be understood as one or more, such as one, two or more. For example, including at least one refers to including one, two or more, and does not limit which ones are included. For example, including at least one of A, B, and C, then including A, B, C, A and B, A and C, B and C, or A and B and C.
  • ordinal numbers such as “first”, “second”, and “third” are mentioned in the embodiments of the present application to distinguish multiple objects, and are not used to limit the order, sequence, and priority of multiple objects. level or importance.
  • an LTE system a 5G mobile communication system, such as a new radio (new radio, NR) system, and other communication systems that can also be applied in future evolution, etc., are not limited in this embodiment of the present application.
  • a 5G mobile communication system such as a new radio (new radio, NR) system
  • NR new radio
  • Embodiments of the present application will present various aspects, embodiments or features around a system that may include a plurality of devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc., and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • the word "exemplary” is used to mean serving as an example, illustration or illustration. Any embodiments or designs described in the embodiments of the present application as “exemplary” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the word example is intended to present a concept in a concrete way.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 3 shows a schematic diagram of a communication system suitable for this embodiment of the present application.
  • the communication system 100 may include a network device 101 , a network device 102 and a terminal device 103 .
  • the serving cell of the terminal device 103 is changed from the first cell to the second cell.
  • the first cell may be referred to as the source cell of the terminal device 103 and the second cell may be referred to as the target cell of the terminal device 103 .
  • the network device 101 to which the first cell belongs may be referred to as the source network device of the terminal device 103
  • the network device 102 to which the second cell belongs may be referred to as the target network device of the terminal device 103
  • the network device 101 may be configured with multiple antennas
  • the network device 102 may be configured with multiple antennas
  • the terminal device 106 may also be configured with multiple antennas.
  • the network device 101 may communicate with the terminal device 103 before the terminal device 103 is handed over from the first cell to the second cell. After the terminal device 103 is handed over from the first cell to the second cell, the network device 102 can communicate with the terminal device 103 .
  • the network device 101 or the network device 102 may also communicate with other terminal devices other than the terminal device 103, and details are not described here.
  • the coverage area of the first cell may partially overlap with the coverage area of the second cell (as shown in FIG. 3 ), that is, the network device 101 and the network device 102 have a common coverage area. It can be understood that the coverage area of the first cell may also not overlap with the coverage area of the second cell, which is not limited in this embodiment of the present application.
  • the network device 101 and the network device 102 may belong to the same merged cell, or may belong to different merged cells, which are not limited in this embodiment of the present application.
  • FIG. 3 is only a simplified schematic diagram for easy understanding, and the communication system may further include other network devices or other terminal devices, which are not limited in the embodiments of the present application.
  • the terminal equipment can compensate for the time offset caused by the air interface transmission delay and supplement the frequency offset caused by the Doppler effect by measuring the TRS, so as to synchronize the timing between itself and the network equipment, as well as its own frequency and the downlink signal.
  • the frequency is consistent, thereby improving the communication quality.
  • Scenario 1 is the initial stage after the terminal equipment completes the cell handover.
  • Scenario 2 is the initial stage of joint transmission between the network device 101 and the network device 102 .
  • scenario 1 is taken as the initial stage after the terminal device completes the cell handover, and the first cell and the second cell belong to different merged cells
  • scenario 2 is the initial stage of joint transmission between the network device 101 and the network device 102, and the first cell
  • the description is given by taking as an example that the cell and the second cell belong to the same merged cell.
  • step A1 after the terminal device 103 accesses the second cell, the network device 102 configures the time-frequency resource bearing the TRS for the terminal device 103 through RRC signaling. Correspondingly, the terminal device 103 receives the information of the time-frequency resources bearing the TRS.
  • Step A2 the network device 102 broadcasts the TRS, and sends the MAC-CE signaling to the terminal device 103.
  • the terminal device 103 may receive the MAC-CE signaling, and receive the TRS according to the time-frequency resource bearing the TRS.
  • the MAC-CE signaling may be used to instruct the TRS to be measured.
  • the terminal device 103 may measure the TRS according to the MAC-CE signaling to obtain a measurement result.
  • the measurement result may include at least one of a time offset estimate or a frequency offset estimate.
  • Step A4 the network device 102 sends the DCI signaling and the downlink signal to the terminal device 103.
  • the terminal device 103 receives DCI signaling and downlink signals.
  • the DCI signaling may be used to instruct to mediate the downlink signal according to the measurement result, and the downlink signal may be PDCCH, PDSCH, PDCCH and PDSCH, etc., which is not limited in this application.
  • Step A5 the terminal device 103 modulates the downlink signal according to the measurement result.
  • the terminal device 103 In the initial stage after the terminal device 103 completes the cell handover, the terminal device 103 needs to receive the information that the network device 102 configures the time-frequency resources to carry the TRS for it and the MAC-CE signaling of the network device 102 before it can start to transfer the TRS. Measurement. This means that the terminal device 103 needs to wait for a long time to start measuring the TRS. During this waiting time, if the terminal device 103 receives the downlink signal from the network device 102, the terminal device 103 will not wait to complete the TRS measurement and then demodulate the downlink signal, but will directly demodulate the downlink signal.
  • the terminal device 103 Since the terminal device 103 has not measured the TRS (or has not completed the measurement of the TRS), the terminal device 103 cannot compensate for the time offset caused by the air interface transmission delay and supplement the frequency offset caused by the Doppler effect, thereby reducing the The demodulation performance of the downlink signal reduces the communication quality.
  • the embodiment of the present application does not limit the execution order of the foregoing steps A1 to A5.
  • the terminal device 103 may receive the TRS from the network device 102 before accessing the second cell.
  • the network device 102 may send the TRS and MAC-CE signaling to the terminal device 103 at the same time, or may broadcast the TRS first, and then send the MAC-CE signaling to the terminal device 103 .
  • Step B1 the network device 102 broadcasts the TRS, and sends the MAC-CE signaling to the terminal device 103 .
  • the terminal device 103 receives TRS and MAC-CE signaling.
  • the MAC-CE signaling may be used to instruct the TRS to be measured.
  • the terminal device 103 may determine the time-frequency resource bearing the TRS according to the resource pool of the combined cell, and measure the TRS according to the determined time-frequency resource to obtain a measurement result.
  • Step B3 the network device 102 sends the DCI signaling and the downlink signal to the terminal device 103.
  • the terminal device 103 receives DCI signaling and downlink signals.
  • the DCI signaling may be used to instruct to mediate the downlink signal according to the measurement result, and the downlink signal may be PDCCH, PDSCH, PDCCH and PDSCH, etc., which is not limited in this application.
  • Step B4 the terminal device 103 demodulates the downlink signal according to the measurement result.
  • the primary network device in the combined cell (such as the network device 102, or the network device 102, or The other network devices in the merged cell) can configure the time-frequency resources bearing the TRS of each network device to the terminal device through RRC signaling, which means that the network device 102 does not need to configure the time-frequency resources bearing the TRS for the terminal device.
  • the terminal device 103 needs to receive the MAC-CE signaling from the network device 102 And the TRS measurement can be started only after the time-frequency resources bearing the TRS are determined from the resource pool of the combined cell. This means that the terminal device 103 still needs to wait a long time to start measuring the TRS. Similarly, during this waiting time, if the terminal device 103 receives the downlink signal from the network device 102, the terminal device 103 will not wait to complete the TRS measurement and then demodulate the downlink signal, but will directly demodulate the downlink signal. the downlink signal.
  • the terminal device 103 Since the terminal device 103 has not measured the TRS (or has not completed the measurement of the TRS), the terminal device 103 cannot compensate for the time offset caused by the air interface transmission delay and the frequency offset caused by the Doppler effect, thereby reducing the impact on the downlink.
  • the demodulation performance of the signal reduces the communication quality.
  • the embodiment of the present application does not limit the execution order of the foregoing steps B1 to B4.
  • the terminal device 103 may receive the TRS from the network device 102 before entering the area of joint transmission.
  • the network device 102 may send the TRS and MAC-CE signaling to the terminal device 103 at the same time, or may broadcast the TRS first, and then send the MAC-CE signaling to the terminal device 103 .
  • scenario 1 and scenario 2 it can be seen that in the initial stage after the terminal device completes the cell handover and the initial stage of joint transmission, the terminal device needs to wait for a long time before starting to measure the TRS, that is The terminal equipment cannot timely compensate the time offset caused by the air interface transmission delay and the frequency offset caused by the Doppler effect based on the results of the TRS measurement, resulting in a decrease in the demodulation performance of the downlink signal within this waiting time. , thereby reducing the communication quality.
  • an embodiment of the present application provides a communication method, which is used to reduce the time delay of TRS measurement by a terminal device in the initial stage after completing cell handover or in the initial stage of joint transmission, and improve communication quality.
  • the first network device may send the first indication information to the terminal device before the terminal device enters the first area, and the first area may be an area where the terminal device switches from the first network device to the second network device, or The area where the first network device and the second network device jointly transmit. Therefore, the terminal device can measure the first TRS before the terminal device performs cell handover (or before joint transmission). Then, after the terminal equipment performs cell handover (or after performing joint transmission), the downlink signal can be directly demodulated according to the measurement result.
  • the terminal equipment can track the time offset and frequency offset in time, so that the problem of demodulation performance degradation caused by the terminal equipment not compensating for the time offset and frequency offset in time can be avoided, and the communication quality can be improved.
  • Fig. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application, and the method can be applied to the communication system 100 shown in Fig. 3, wherein the dotted lines in Fig. 4 are optional steps.
  • the terminal device in this embodiment of the present application may be the terminal device 103 shown in FIG. 3
  • the first network device may be the network device 101 shown in FIG. 3
  • the second network device may be the network device 102 shown in FIG. 3 .
  • the steps performed by the network device may also be specifically performed by a module or component of the network device, for example, may be performed by a chip or a chip system in the network device; the steps performed by the terminal device It can also be specifically executed by a module or component of the terminal device, for example, it can be executed by a chip or a chip system in the terminal device.
  • the method may include:
  • S401 The second network device broadcasts the first TRS.
  • the terminal device receives the first TRS.
  • the second network device may broadcast the first TRS periodically or aperiodically.
  • the terminal device may receive the first TRS from the second network device.
  • the first area may be an area where the terminal device is switched from the first network device to the second network device.
  • the area where the handover from the first network device to the second network device is performed may also be referred to as an area where the terminal device performs cell handover.
  • the cell handover performed by the terminal equipment may include a handover preparation stage, a handover execution stage, and a handover completion stage, as shown in FIG. 2 .
  • the area where the terminal device performs cell handover may be the common coverage area of the first network device and the second network device, or a subset of the common coverage area of the first network device and the second network device, etc.
  • This application implements The example is not limited to this.
  • the first network device may be a source device for the terminal device to perform cell handover
  • the second network device may be a target device for the terminal device to perform cell handover.
  • the first area may also be an area where the first network device and the second network device jointly transmit.
  • the area where the first network device and the second network device jointly transmit may be a common coverage area of the first network device and the second network device.
  • the area jointly transmitted by the first network device and the second network device may also be a subset of the common coverage area of the first network device and the second network device, as shown in FIG. 1 .
  • the terminal device When the first area is an area where the first network device and the second network device jointly transmit, the terminal device will perform cell handover in the process of moving to the second terminal device in the first area.
  • the area where the terminal device performs cell handover may be a subset of the area where the first network device and the second network device jointly transmit, as shown in FIG. 1 .
  • the terminal device will switch from the first network device to the second network device in a certain area in the first area.
  • the first network device may be the primary network device in the joint transmission between the first network device and the second network device.
  • the second network device may be the primary network device in the joint transmission between the first network device and the second network device.
  • the main network equipment in the joint transmission can be used to adjust the way of joint transmission according to the channel quality (eg, send the same downlink signal to the terminal equipment or send different downlink signals to the terminal equipment).
  • the primary network device in the joint transmission as the first network device as an example
  • the first network device may instruct the second network device to send the same downlink signal as the first network device to the terminal device, In order to increase the received power of the downlink signal and improve the communication quality.
  • the first network device may instruct the second network device to send to the terminal device a downlink signal different from that of the first network device, so as to improve transmission efficiency.
  • the first network device determines that the terminal device is about to enter the first area.
  • the first network device may determine whether the terminal device is about to enter the first area according to reference signal received power (RSRP), or the moving direction of the terminal device and network topology information where the first network device is located.
  • the network topology information where the first network device is located may include, but is not limited to, an identifier of at least one adjacent cell, an identifier of at least one network device adjacent to the first network device, and at least one network device adjacent to the first network device.
  • the location information of the network device such as longitude information and/or latitude information, etc.
  • the location relationship between the at least one network device and the first network device such as being located in the due north of the first network device, or located in the due north of the first network device. South, etc.
  • the relative position of the at least one network device eg, relative to the position of the first network device, and the like.
  • the first network device may determine whether the terminal device is about to enter the first area according to the RSRP. For example, the terminal device may periodically report the first RSRP to the first network device, and the first network device receives the first RSRP.
  • the first RSRP may be an RSRP of a sounding reference signal (SRS), and the first network device receives the first RSRP. It is determined whether the terminal device is about to enter the first area according to the first RSRP.
  • SRS sounding reference signal
  • the first network device may compare the first RSRP to the terminal device's RSRP in one or more neighboring cells to determine whether the terminal device is about to enter the first region.
  • the first network device may determine that the terminal device is about to enter the first region if the difference between the first RSRP for consecutive periods and the RSRP of the terminal device in the one or more neighboring cells is less than or equal to the first threshold.
  • the first network device may determine that the terminal device is about to enter the first region if the first RSRPs for multiple consecutive periods are all less than or equal to the RSRPs of the terminal device in the one or more neighboring cells.
  • the first network device may compare the first RSRP to the RSRP of the terminal device in the strongest neighbor to determine whether the terminal device is about to enter the first area.
  • the first network device may determine that the terminal device is about to enter the first region if the difference between the first RSRP for consecutive periods and the RSRP of the terminal device in the strongest neighbor cell is less than or equal to the first threshold.
  • the strongest neighbor cell may be a cell with the best detected RSRP except the cell (ie, the first cell) covered by the first network device.
  • the first network device may determine whether the terminal device is about to enter the first area according to a moving method of the terminal device and network topology information where the first network device is located. For example, the first network device can obtain the identifier of the second cell (or the identifier of the second network device) to which the terminal device will switch according to the moving direction according to the network topology information where it is located and the moving direction. The identifier (or the identifier of the second network device) determines the distance between the second network device and the current terminal device, and when the distance between the second network device and the current terminal device is less than or equal to the second threshold, the first network device determines The terminal device is about to enter the first area.
  • the first network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information.
  • the first indication information may be MAC-CE signaling, and the first indication information may be used to instruct the terminal device to measure the first TRS.
  • the first indication information may include second information, and the second information may include at least the identifier of the first TRS, the information of the time-frequency resource bearing the first TRS, or the number of the TCI-State corresponding to the first TRS, and other information.
  • the first TRS may be the TRS sent by the second network device.
  • the first TRS may be a TRS jointly sent by the first network device and the second network device.
  • the terminal device measures the first TRS according to the first indication information to obtain a first measurement result.
  • the terminal device measures the first TRS to obtain a first measurement result, where the first measurement result may include an estimated time offset value and/or an estimated frequency offset value of the first downlink signal reaching the terminal device.
  • S405 The terminal device enters the first area.
  • the terminal equipment enters the first area and performs cell handover. If the first area is an area where the first network device and the second network device jointly transmit, the terminal device enters the first area and performs joint transmission with the first network device and the second network device.
  • the second network device may send the second indication information and the first downlink signal to the terminal device to instruct the terminal device to demodulate the first downlink signal according to the first measurement result, That is, the contents shown in steps S406 to S408 are executed.
  • the second network device may not send the second indication information to the terminal device, that is, by default, the terminal device can directly use the first measurement result to demodulate the first downlink signal, that is, step S407 is executed and the content shown in step S408.
  • the second network device sends second indication information to the terminal device.
  • the terminal device receives the second indication information.
  • the second indication information may be DCI signaling, and the second indication information may be used to instruct demodulation of the first downlink signal according to the first measurement result.
  • the second network device may send the second indication information to the terminal device, and the terminal device receives the second indication information.
  • the first area is an area where the terminal device performs cell handover
  • the second network device may determine that the terminal device has completed the cell handover after the terminal device completes the cell handover (for example, the second network device may determine that the terminal device has completed the cell handover according to the cell handover completion instruction of the terminal device, That is, after establishing an RRC connection with the terminal device), the second network device sends the second indication information to the terminal device.
  • the second network device may, after the terminal device enters the area where the first network device and the second network device jointly transmit (for example, the second network device) The device may determine that the terminal device enters the first area according to the joint transmission instruction of the first network device, and the terminal device has not performed cell handover at this time), and sends the second indication information to the terminal device.
  • the second network device sends the first downlink signal to the terminal device.
  • the terminal device receives the first downlink signal.
  • the first downlink signal may be a PDCCH, a PDSCH, or a PDCCH and a PDSCH, which is not limited in this embodiment of the present application.
  • the second network device may send the first downlink signal to the terminal device, and the terminal device receives the first downlink signal.
  • the first area is an area where the terminal device performs cell handover
  • the second network device may determine that the terminal device completes the cell handover after the terminal device completes the cell handover (eg, the second network device may determine that the terminal device completes the cell handover according to the cell handover completion instruction of the terminal device). , and send the first downlink signal to the terminal device.
  • the second network device may, after the terminal device enters the first area (for example, the second network device may transmit according to the joint transmission of the first network device)
  • the instruction determines that the terminal device enters the first area), and sends the first downlink signal to the terminal device.
  • S408 The terminal device adjusts the first downlink signal according to the first measurement result.
  • the terminal device can immediately adjust its own crystal oscillator according to the estimated time offset value and the estimated value of frequency offset in the first measurement result to compensate for the first downlink signal caused by the air interface transmission delay.
  • the time offset and the frequency offset caused by the influence of the Doppler effect are compensated, so that the terminal equipment and the second network equipment are positioned to be synchronized, and the receiving frequency of the terminal equipment is consistent with the frequency of the first downlink signal.
  • the terminal device may adjust the crystal oscillator in the following manner: when the next crystal oscillator adjustment time arrives, it does not perform historical value filtering on the frequency offset record of its own crystal oscillator, but directly writes it into the first measurement result.
  • the historical value may be the measurement result of the second TRS, and the second TRS is the TRS broadcast by the first network device.
  • the terminal device can directly perform filtering according to the first measurement result, which can reduce the time overhead of the terminal device for compensating for time offset and frequency offset, and improve reliability.
  • step S401 to step S408 in FIG. 4 is only an example, which is not limited in this embodiment of the present application.
  • the second network device may broadcast the first TRS before step S402, or may broadcast the first TRS after step S402, as long as it is ensured that the terminal device receives the first TRS before entering the first area.
  • the first network device may perform step S406 and step S407 respectively, may also perform step S406 and step S407 simultaneously, or may only perform step S407 without performing step S406.
  • FIG. 5 is a communication method provided by an embodiment of the present application. The method may be executed by a terminal device and a network device, or may also be executed by a chip in the terminal device and a chip in the network device.
  • the first network device in FIG. 5 can be the network device 101 in the above-mentioned FIG. 3
  • the second network device can be the network device 102 in the above-mentioned FIG. 3
  • the terminal device can be the above-mentioned terminal device 103 in FIG. 3 .
  • the first area is an area where the terminal device performs cell handover, and the terminal device can complete the measurement of the first TRS before the cell handover, so that the terminal device can demodulate the second TRS in time according to the measurement result of the first TRS
  • the first downlink signal of the network device, the method shown in FIG. 5 may include:
  • S501 The terminal device sends first information to the first network device.
  • the first network device receives the first information.
  • the first information may include a first number and a second number, the first number may be the number of simultaneously activated TCI-States supported by the terminal device, and the second number may be the number of simultaneously measured TRS supported by the terminal device.
  • the TCI-State may be used to indicate the correspondence between the TRS and the service, such as the quasi-co-location relationship between the TRS and the service.
  • the service may be PDCCH data and/or PDSCH data.
  • the terminal device may report to the first network device the number and number of simultaneously activated TCI-States it supports. The number of supported TRSs measured at the same time, so that the first network device can determine whether the terminal device has the first capability according to the content reported by the terminal device.
  • the first capability may be the capability of compensating for time offset and frequency offset according to the measurement result of the first TRS and the measurement result of the second TRS, or the first capability may be the capability of compensating for at least two TRSs (such as the first TRS and the second TRS at the same time) TRS) and the ability to compensate for time offset and frequency offset based on the measurement results of the first TRS and the measurement results of the second TRS.
  • the second TRS is the TRS of the first network device.
  • the ability of the terminal device to compensate the time offset and frequency offset according to the measurement result of the first TRS and the measurement result of the second TRS can be understood as: the terminal device supports the adjustment of the crystal oscillator according to the measurement result of the second TRS without interruption ( or fast) to switch to adjusting the crystal oscillator based on the measurement of the first TRS.
  • compensating the time offset and the frequency offset according to the measurement result of the first TRS and the measurement result of the second TRS may include increasing the filter coefficients of the crystal oscillator for the time offset and the frequency offset according to the measurement result of the first TRS, or changing the crystal
  • the oscillator filter coefficients for time offset and frequency offset are set to 1.
  • the terminal device can increase the filter coefficients of the crystal oscillator for time offset and frequency offset (or set the filter coefficients of the crystal oscillator for time offset and frequency offset to 1) according to the following steps:
  • Step C1 The terminal device receives the first downlink signal (or the second indication information and the first downlink signal) of the second network device, and the specific implementation process can refer to step S407 (or step S406 and step S407) in FIG. 3 .
  • Step C2 The terminal device immediately determines whether there is a first measurement result after receiving the first downlink signal (or the second indication information and the first downlink signal). If there is a first measurement result, the step shown in step C3 is performed; if there is no first measurement result or part of the first measurement result (for example, the terminal device has not completed the measurement of the first tracking reference signal), the process ends ( That is, the filter coefficients of the crystal oscillator for time offset and frequency offset will not be increased or the filter coefficients of the crystal oscillator for time offset and frequency offset will not be set to 1).
  • Step C3 The terminal device determines the stability of the first measurement result. If the stability of the first measurement result is greater than or equal to the fifth threshold, the steps shown in step C4 are performed; if the stability of the first measurement result is less than the fifth threshold, the process ends (that is, the crystal oscillator pair will not be increased).
  • the filter coefficients for time offset and frequency offset may not set the crystal oscillator filter coefficients for time offset and frequency offset to 1). For example, the terminal device may determine the stability of the first measurement result according to channel quality or channel correlation.
  • Step C4 The terminal device increases the filter coefficients of the crystal oscillator for time offset and frequency offset according to the first measurement result (or sets the filter coefficients of the crystal oscillator for time offset and frequency offset to 1).
  • the terminal device can increase the filter coefficients of the crystal oscillator for time offset and frequency offset (or set the filter coefficients of the crystal oscillator for time offset and frequency offset to 1). Since the filter coefficient of the crystal oscillator for time offset and frequency offset is increased (or the filter coefficient of the crystal oscillator for time offset and frequency offset is 1), the filtering time of the crystal oscillator for time offset and frequency offset is shortened, It means that the delay between the terminal equipment receiving the first downlink signal and the demodulation of the first downlink signal according to the first measurement result can be reduced, so that the terminal equipment can quickly adjust the crystal oscillator according to the first measurement result to quickly compensate time offset and frequency offset, so that the demodulation performance of the first downlink signal can be improved, and the communication quality can be improved.
  • the first network device determines whether the terminal device has the first capability according to the first information.
  • the first network device may determine that the terminal device has the first capability, that is, execute the content shown in steps S503 to S514.
  • the first network device may determine that the terminal device does not have the first capability, that is, the process ends.
  • the terminal device may report the first information to the first network device, and the first network device determines whether the terminal device has the first capability according to the first information, that is, the content shown in the above steps S501 and S502.
  • the terminal device may also directly determine that the terminal device has the first capability according to the third indication information.
  • the third indication information may be used to indicate that the terminal device has the first capability.
  • the terminal device may send third indication information to the first network device, and correspondingly, the first network device receives the third indication information; after receiving the third indication information, the first network device may directly determine the terminal according to the third indication information
  • the device has the first capability, and there is no need to determine whether the terminal device has the first capability according to the first quantity and the second quantity.
  • S503 The first network device sends sixth indication information to the terminal device.
  • the sixth indication information may be used to indicate that the DCI includes TCI-State.
  • the first network device may send air interface signaling to the terminal device, where the air interface signaling includes the first field (ie, sixth indication information).
  • the first network device may configure the first field as "enable" to indicate that the DCI includes the TCI-State, so that after receiving the DCI, the terminal device can determine the first TRS and the service according to the TCI-State included in the DCI. corresponding relationship.
  • the first field may be a TCI-present in DCI field.
  • S504 The second network device broadcasts the first TRS.
  • the terminal device receives the first TRS.
  • the second network device may broadcast the first TRS periodically or aperiodically.
  • step S504 reference may be made to the content shown in step 401 in FIG. 4, which will not be repeated here.
  • the first network device determines the moving direction of the terminal device.
  • the first network device may determine the moving direction of the terminal device according to a first frequency offset from the terminal device, and the first frequency offset may be obtained by the terminal device by measuring the second TRS, where the second TRS is the first network The TRS broadcast by the device.
  • the first network device determines that the terminal device will enter the first area according to the moving direction of the terminal device and the network topology information where the first network device is located.
  • the first area is an area where the terminal equipment performs cell handover, and the first network equipment determines that the terminal equipment will enter the first area, that is, determines that the terminal equipment will perform cell handover.
  • the first network device may determine whether the terminal device is about to perform cell handover according to the network topology information where it is located and the moving direction. Specifically, the first network device can obtain the identifier of the second cell to which the terminal device will switch according to the moving direction according to the network topology information where it is located and the moving direction, and determine the relationship between the second network device and the current cell according to the identifier of the second cell. The distance between the terminal devices, when the distance between the second network device and the current terminal device is less than or equal to the second threshold, the first network device determines that the terminal device will perform cell handover.
  • the first network device may determine that the terminal device will perform cell handover according to the moving direction of the terminal device and the network topology information where the first network device is located, that is, execute the content shown in step S505 and step S506. In a possible implementation manner, the first network device may further determine whether the terminal device will perform cell handover through the first RSRP reported by the terminal device.
  • the first network device may compare the first RSRP to the terminal device's RSRP in one or more neighbor cells to determine whether the terminal device is about to perform a cell handover. If the difference between the first RSRP of consecutive multiple periods and the RSRP of the terminal device in the one or more neighboring cells is less than or equal to the first threshold, the first network device may determine that the terminal device is about to perform cell handover. Alternatively, if the first RSRPs of multiple consecutive periods are all less than or equal to the RSRPs of the terminal device in the one or more neighboring cells, the first network device may determine that the terminal device will perform cell handover.
  • the first network device may compare the first RSRP to the RSRP of the terminal device in the strongest neighbor to determine whether the terminal device is about to perform a cell handover. If the difference between the first RSRP of consecutive multiple periods and the RSRP of the terminal device in the strongest neighbor cell is less than or equal to the first threshold, the first network device may determine that the terminal device is about to perform cell handover.
  • the strongest neighbor cell may be a cell with the best detected RSRP except the cell (ie, the first cell) covered by the first network device.
  • the first threshold may be greater than the third threshold.
  • the third threshold may be a threshold for the first network device to determine that the terminal device needs to perform cell handover. For example, when the difference between the first RSRP for multiple consecutive periods and the RSRP of the terminal device in one or more adjacent cells (or the strongest adjacent cells) before the RSRP is less than or equal to the third threshold, the first network device determines that the terminal device Cell handover is required.
  • the third threshold is -2 decibels (dB).
  • the first network device fails to send the first indication information to the terminal device before the terminal device performs the cell handover, so that the terminal device needs to receive the first indication in the initial stage after completing the cell handover information or measure the first TRS, thereby reducing the demodulation performance of the first downlink signal and reducing the communication quality. Therefore, the above method can ensure that the terminal equipment completes the measurement of the first TRS before the cell handover, so that the terminal equipment can demodulate the first downlink signal in time according to the measurement result of the first TSR in the initial stage after the cell handover is completed, Therefore, the demodulation performance of the first downlink signal can be improved, and the communication quality can be improved.
  • the first network device may determine the second information through the resource pool of the merged cell, that is, steps S507 and S508 are not performed. Alternatively, if the first network device and the second network device belong to different merged cells, the first network device may perform steps S507 and S508 to obtain the second information. Alternatively, if the first network device and the second network device belong to different merged cells, the second network device may report the second information to the first network device, that is, only step S508 is performed.
  • S507 The first network device sends a second message to the second network device.
  • the second network device receives the second message.
  • the second message may be used to request to acquire the second information
  • the second information may include at least one of the identifier of the first TRS, the information of the time-frequency resource bearing the first TRS, or the number of the TCI-State corresponding to the first TRS, etc. .
  • S508 The second network device sends the first message to the first network device.
  • the first network device receives the first message.
  • the first message may include second information.
  • the first network device sends the first indication information to the terminal device.
  • the terminal device receives the first indication information.
  • the first indication information may be used to instruct the terminal device to measure the first TRS.
  • the first indication information may be MAC-CE signaling.
  • the first indication information includes second information (or the first indication information includes at least one of the identifier of the first TRS, the information of time-frequency resources bearing the first TRS, or the number of the TCI-State corresponding to the first TRS, etc.) .
  • the first network device may send MAC-CE signaling to the terminal device, where the MAC-CE signaling includes the second field.
  • the first network device may configure the second field as the identifier of the first TRS or the number of the TCI-State corresponding to the first TRS, etc., to indicate the measurement of the first TRS.
  • the second field may be a TCI-State field.
  • the terminal device measures the received first TRS according to the first indication information, and obtains a first measurement result.
  • the second network device broadcasts the TRS to the outside, and the terminal device receives multiple TRSs.
  • the terminal device can determine the time-frequency resource that bears the first TRS according to the second information.
  • the first TRS is determined in the method, and the first TRS is measured to obtain a first measurement result.
  • the first measurement result may include an estimated time offset value and/or an estimated frequency offset value when the downlink signal corresponding to the first TRS reaches the terminal device.
  • the specific implementation manner in which the terminal device measures the TRS in this embodiment of the present application is not limited.
  • S511 The terminal device performs cell handover, switching from the first network device to the second network device.
  • the second network device may send the second indication information and the first downlink signal to the terminal device to instruct the terminal device to demodulate the first downlink signal according to the first measurement result. , that is, the contents shown in steps S512 to S514 are executed.
  • the second network device may not send the second indication information to the terminal device, that is, by default, the terminal device can directly use the first measurement result to demodulate the first downlink signal, that is, execute the steps The contents shown in S513 and S514.
  • S512 The second network device sends second indication information to the terminal device.
  • the terminal device receives the second indication information.
  • the second indication information may be DCI signaling, and the second indication information may be used to instruct demodulation of the first downlink signal according to the first measurement result.
  • the second indication information may be DCI signaling.
  • the second network device may send DCI signaling to the terminal device, where the DCI signaling includes the second field.
  • the second network device may configure the second field as the identifier of the first TRS or the number of the TCI-State corresponding to the first TRS, etc., to indicate the demodulation of the first downlink signal according to the first measurement result.
  • the second field may include TCI-State and the like.
  • the second network device sends the first downlink signal to the terminal device.
  • the terminal device receives the first downlink signal.
  • the first downlink signal may be a PDCCH, a PDSCH, or a PDCCH and a PDSCH, which is not limited in this embodiment of the present application.
  • S514 The terminal device demodulates the first downlink signal according to the first measurement result.
  • steps S512 to S514 can be obtained by referring to steps S406 to S408 in FIG. 4 respectively, and details are not repeated here.
  • the first network device broadcasts the second TRS, and the terminal device receives the second TRS; the first network device may send the fourth TRS to the terminal device indication information, the terminal device receives fourth indication information, which can be used to instruct to measure the second TRS; the terminal device measures the second TRS according to the fourth indication information, and obtains a second measurement result; the first network The device can send the fifth indication information and the second downlink signal to the terminal device, the terminal device receives the fifth indication information and the second downlink signal, and the fifth indication information can be used to instruct to demodulate the second downlink signal according to the second measurement result; the terminal device The second downlink signal is demodulated according to the second measurement result.
  • the terminal equipment can simultaneously complete the measurement of the first TRS and the measurement of the second TRS, reducing the time for the terminal equipment to complete the TRS measurement in the initial stage after the cell handover is completed.
  • overhead improve the demodulation performance of the first downlink signal, and improve the communication quality between the second network device and the terminal device, while also ensuring the demodulation performance of the second downlink signal and the first network device and the terminal.
  • the communication quality between the devices improves the communication reliability between the terminal device and the network device before and after the cell handover.
  • the fourth indication information may be MAC-CE signaling, and the fourth indication information may include third information, where the third information may include an identifier of the second TRS, information on time-frequency resources bearing the second TRS, or At least one of the number of the TCI-State corresponding to the second TRS, and the like.
  • the first network device may send MAC-CE signaling to the terminal device, where the MAC-CE signaling includes the second field.
  • the first network device may configure the second field as the identifier of the second TRS or the number of the TCI-State corresponding to the second TRS, etc., to indicate the measurement of the second TRS.
  • the fifth indication information may be DCI signaling, and the fifth indication information may include third information.
  • the first network device may send DCI signaling to the terminal device, where the DCI signaling includes the second field.
  • the first network device may configure the second field as the identifier of the second TRS or the number of the TCI-State corresponding to the second TRS, etc., to indicate the demodulation of the second downlink signal according to the second measurement result.
  • the second field may be a TCI-State field.
  • the second downlink signal may be a PDCCH, a PDSCH, or a PDCCH and a PDSCH, which is not limited in this embodiment of the present application.
  • step S501 to step S514 in FIG. 5 is only an example, which is not limited in this embodiment of the present application.
  • the second network device may broadcast the first TRS before step S504, or may broadcast the first TRS after step S505, as long as it is ensured that the terminal device receives the first TRS before performing cell handover.
  • the first network device may send the first indication information to the terminal device after step S508, or may send the first indication information to the terminal device before step S507.
  • the first network device before it is determined that the terminal device will perform cell handover, the first network device sends first indication information to the terminal device to instruct the terminal device to measure the first TRS from the second network device.
  • the second network device sends the first downlink signal (or the second indication information and the first downlink signal) to the terminal device, so that the terminal device can measure the result according to the first TRS. demodulate the first downlink signal.
  • the terminal equipment Since the terminal equipment has completed the measurement of the first TRS before the cell handover, the terminal equipment does not need to measure the first TRS in the initial stage after the cell handover, and can directly demodulate the downlink signal according to the measurement result, thereby It can save the time overhead for the terminal equipment to obtain the measurement results in the initial stage after the cell handover is completed, and can avoid the problem of demodulation performance degradation caused by the terminal equipment not compensating for the time offset and frequency offset in time, thereby improving the second network equipment and the terminal equipment. Communication quality between devices.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application, wherein the dotted lines in FIG. 6 are optional steps.
  • the first area is an area where the first network device and the second network device jointly transmit, and the terminal device may complete the measurement of the first TRS before entering the first area, so that the terminal device can timely measure the first TRS according to the The measurement result of demodulating the first downlink signal of the second network device, wherein steps S601-S604, S608, S609, S611-S613 are the same as steps S501-S504, S509, S510, S512-S514 described in FIG. 5 respectively ,The difference is:
  • the terminal device sends the first RSRP to the first network device.
  • the first network device receives the first RSRP.
  • the terminal device may periodically report the first RSRP to the first network device, and the first network device receives the first RSRP, where the first RSRP may be the RSRP of the SRS, and the first network device may determine that the terminal device has entered the terminal according to the first RSRP.
  • the first network device and the second network device have a common coverage area and will enter the area for joint transmission for joint transmission.
  • the first network device determines, according to the first RSRP, that the terminal device enters the common coverage area of the first network device and the second network device, and will enter the joint transmission area.
  • the first network device may compare the first RSRP to the terminal device's RSRP in one or more neighbors to determine whether the terminal device enters the common coverage area of the first network device and the second network device and is about to enter a joint transfer area. If the difference between the first RSRP of consecutive multiple periods and the RSRP of the terminal device in the one or more neighboring cells is less than or equal to the first threshold, the first network device may determine that the terminal device enters the first network device and The common coverage area of the second network device and will enter the area of joint transmission.
  • the first network device may determine that the terminal device enters the common network of the first network device and the second network device. The coverage area and the area that will enter the joint transmission.
  • the first network device may compare the first RSRP with the RSRP of the terminal device in the strongest neighbor to determine whether the terminal device enters the common coverage area of the first network device and the second network device and is about to enter a joint transmission. Area. If the difference between the first RSRP for a plurality of consecutive periods and the RSRP of the terminal device in the strongest neighbor cell is less than or equal to the first threshold, the first network device may determine that the terminal device enters the first network device and the second network device. The common coverage area of network equipment, and will enter the area of joint transmission.
  • the strongest neighbor cell may be a cell with the best detected RSRP except the cell (ie, the first cell) covered by the first network device.
  • the first threshold may be greater than the third threshold and greater than the fourth threshold.
  • the third threshold may be a threshold for the first network device to determine that the terminal device needs to perform cell handover. For example, when the difference between the first RSRP for multiple consecutive periods and the RSRP of the terminal device in one or more adjacent cells (or the strongest adjacent cells) before the RSRP is less than or equal to the third threshold, the first network device determines that the terminal device Cell handover is required.
  • the fourth threshold may determine a threshold for joint transmission for the first network device.
  • the first network device determines to perform the joint operation. transmission.
  • the fourth threshold may be 6dB. Since the joint transmission is performed after the terminal device enters the common coverage area of the first network device and the second network device and before the terminal device performs cell handover, if the value of the first threshold is too small, the first network device will fail to connect to the terminal device.
  • the above method can ensure that the terminal device completes the measurement of the first TRS before performing joint transmission, so that the terminal device can demodulate the first downlink signal according to the measurement result of the first TSR in time in the initial stage of joint transmission, so that it can be The demodulation performance of the first downlink signal is improved, and the communication quality is improved.
  • the first network device acquires the second information.
  • the second information may include at least one of the identifier of the first TRS, information on time-frequency resources bearing the first TRS, or the serial number of the TCI-State corresponding to the first TRS. Since the first area is an area where the first network device and the second network device jointly transmit , the time-frequency resource information of the TRS of each network device, or information such as the number of the TCI-State corresponding to the TSR of each network device), so the first network device can directly obtain the first network device from the resource pool of the joint transmission.
  • the second information can reduce the overhead of air interface resources and improve the utilization rate of air interface resources.
  • S610 The terminal device enters the first area.
  • the first area in this example 2 is an area where the first network device and the second network device jointly transmit, as shown in FIG. 1 .
  • the terminal device enters the first area, that is, the terminal device enters the area where the first network device and the second network device jointly transmit, and perform joint transmission.
  • the first network device may broadcast the second TRS, and the terminal device may receive the second TRS; the first network device may send the terminal device to the terminal device.
  • Sending fourth indication information, the terminal device receives the fourth indication information, and the fourth indication letter can be used to instruct to measure the second TRS; the terminal device measures the second TRS according to the fourth indication information, and obtains a second measurement result;
  • a network device can send the fifth indication information and the second downlink signal to the terminal device, the terminal device receives the fifth indication information and the second downlink signal, and the fifth indication information can be used to instruct demodulation of the second downlink signal according to the second measurement result;
  • the terminal device demodulates the second downlink signal according to the second measurement result.
  • the terminal equipment can simultaneously complete the measurement of the first TRS and the measurement of the second TRS, reducing the time overhead for the terminal equipment to complete the TRS measurement in the initial stage of joint transmission.
  • it while improving the demodulation performance of the first downlink signal and the communication quality of joint transmission, it also ensures the demodulation performance of the second downlink signal and the communication quality between the first network device and the terminal device, thereby improving the communication reliability.
  • step S601 to step S612 in FIG. 6 is only an example, which is not limited in this embodiment of the present application.
  • the second network device may broadcast the first TRS before step S604, or may broadcast the first TRS after step S604 and before step S609.
  • the second network device may also broadcast the first TRS when the terminal device performs step S604.
  • the first network device sends first indication information to the terminal device to instruct the terminal device to measure the first TRS from the second network device.
  • the second network device sends the first downlink signal (or the second indication information and the first downlink signal) to the terminal device, so that the terminal device demodulates according to the measurement result of the first TRS The first downlink signal. Since the terminal equipment has already completed the measurement of the first TRS before the joint transmission, the terminal equipment does not need to measure the first TRS in the initial stage of joint transmission, and can directly demodulate the first TRS according to the first measurement result.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of the first network device, the terminal device, the second network device, and the interaction between the three.
  • the first network device, the terminal device, and the second network device may include hardware structures and/or software modules, and a hardware structure, a software module, or a hardware structure plus a software module form to achieve the above functions. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 7 shows a schematic structural diagram of a communication apparatus 700 .
  • the communication apparatus 700 may be the first network device (or the second network device) in any of the embodiments shown in FIG. 4 to FIG. 6 , and can implement the first network device (or the second network device) in the method provided by the embodiment of the present application. or the function of the second network device); the communication apparatus 700 may also be capable of supporting the first network device (or the second network device) to implement the function of the first network device (or the second network device) in the methods provided in the embodiments of this application installation.
  • the communication apparatus 700 may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication apparatus 700 may be implemented by a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 700 may include a processing module 701 and a transceiver module 702 .
  • the processing module 701 may be configured to perform step S402 in the embodiment shown in FIG. 4 . , or perform step S502, step 505 or step S506, etc. in the embodiment shown in FIG. 5, or perform step S602, step S606 or step S607, etc. in the embodiment shown in FIG. 6, or instruct the transceiver module 702 Performs transceiving functions, and/or other processes for supporting the techniques described herein.
  • the transceiver module 702 may be configured to perform step S403 in the embodiment shown in FIG. 4 , or perform steps S501 , S503 , steps S507 to S509 in the embodiment shown in FIG. 5 , etc., or perform the steps shown in FIG. 6 .
  • the processing module 701 may be configured to perform the steps in the embodiment shown in FIG. 4 . S405, or performing step S511 in the embodiment shown in FIG. 5, or performing step S610 in the embodiment shown in FIG. 6, or instructing the transceiver module 702 to complete the transceiver function, and/or for supporting the description herein other processes of the technology.
  • the transceiver module 702 may be configured to perform steps S401, S405 to S407, etc. in the embodiment shown in FIG. 4, or perform steps S504, S507, S508, and S512 in the embodiment shown in FIG. 5 . to step S513, etc., or perform step S604, step S611, or step S612, etc. in the embodiment shown in FIG. 6, and/or other processes for supporting the techniques described herein.
  • the transceiver module 702 is used for the communication device 700 to communicate with other modules, and it can be a circuit, a device, an interface, a bus, a software module, a transceiver or any other device that can implement communication.
  • the processing module can also be called a processing unit, a processor, a processing device, or a processing board, etc.
  • the transceiver module can also be called a communication module, a transceiver, a transceiver, a transceiver unit, or a transceiver circuit.
  • the application examples are not limited to this.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • FIG. 8 shows a schematic structural diagram of a communication apparatus 800 .
  • the communication apparatus 800 may be the terminal device in any of the embodiments shown in FIG. 4 to FIG. 6 , and can implement the functions of the terminal device in the method provided by the embodiment of the present application; the communication apparatus 800 may also be capable of supporting the terminal device An apparatus for implementing the function of the terminal device in the method provided by the embodiment of the present application.
  • the communication apparatus 800 may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication apparatus 800 may be implemented by a chip system. In this embodiment of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 800 may include a processing module 801 and a transceiver module 802 .
  • the processing module 801 may be configured to perform step S404 or step S408 in the embodiment shown in FIG. 4, or perform step S510 or step S514 in the embodiment shown in FIG. Step S609 or step S613, etc. in the embodiment shown in FIG. 6, or instruct the transceiver module 802 to complete the transceiver function, and/or other processes used to support the techniques described herein.
  • the transceiver module 802 may be configured to perform steps S401, S403, S406, or S407 in the embodiment shown in FIG. 4, or perform steps S501, S503, and S509 in the embodiment shown in FIG. 5 . , step S512 or step S513, etc., or perform step S601, step S603, step S605, step S608, step S611 or step S612, etc. in the embodiment shown in FIG. 6, or instruct the transceiver module 802 to complete the transceiver function, and/ or other processes used to support the techniques described herein.
  • the transceiver module 802 is used for the communication device 800 to communicate with other modules, and it can be a circuit, a device, an interface, a bus, a software module, a transceiver or any other device that can implement communication.
  • the processing module can also be called a processing unit, a processor, a processing device, or a processing board, etc.
  • the transceiver module can also be called a communication module, a transceiver, a transceiver, a transceiver unit, or a transceiver circuit.
  • the application examples are not limited to this.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • FIG. 9 shows a communication apparatus 900 provided in an embodiment of the present application, where the communication apparatus 900 may be the first network device (or the second network device) in any of the embodiments shown in FIG. 4 to FIG. 6 , can implement the functions of the first network device (or the second network device) in the method provided by the embodiments of the present application; the communication apparatus 900 may also be capable of supporting the first network device (or the second network device) to implement the functions of the first network device (or the second network device) provided by the embodiments of the present application Means of functionality of the first network device (or the second network device) in the method.
  • the communication apparatus 900 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned transceiver module 702 may be a transceiver, and the transceiver is integrated in the communication device 900 to form a communication interface 910 .
  • the communication apparatus 900 includes at least one processor 920, configured to implement or support the communication apparatus 900 to implement the function of the second terminal device in the method provided in the embodiment of the present application.
  • the processor 920 may determine whether the terminal device is about to enter the first area. For details, refer to the detailed description in the method example, which will not be repeated here.
  • Communication apparatus 900 may also include at least one memory 930 for storing program instructions and/or data.
  • Memory 930 is coupled to processor 920 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 920 may cooperate with memory 930 .
  • Processor 920 may execute program instructions stored in memory 930 . At least one of the at least one memory may be included in the processor.
  • the communication apparatus 900 may further include a communication interface 910 for communicating with other devices through a transmission medium, so that the devices used in the communication apparatus 900 may communicate with other devices.
  • the communication apparatus 900 is a first network device, and the other device may be a second network device or a terminal device; or, the communication apparatus 900 is a second network device, and the other device may be a first network device or a terminal device.
  • the processor 920 may utilize the communication interface 910 to send and receive data.
  • the communication interface 910 may specifically be a transceiver.
  • the specific connection medium between the communication interface 910 , the processor 920 , and the memory 930 is not limited in the embodiments of the present application.
  • the memory 930, the processor 920, and the communication interface 910 are connected through a bus 940 in FIG. 9.
  • the bus is represented by a thick line in FIG. 9.
  • the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the processor 920 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 930 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • FIG. 10 shows a communication apparatus 1000 provided by an embodiment of the present application, where the communication apparatus 1000 may be a terminal device in any of the embodiments shown in FIG. 4 to FIG. 6 , and can implement the method provided by the embodiment of the present application
  • the function of the terminal device in the above; the communication apparatus 1000 may also be an apparatus capable of supporting the terminal device to implement the function of the terminal device in the method provided by the embodiment of the present application.
  • the communication apparatus 1000 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned transceiver module 802 may be a transceiver, and the transceiver is integrated into the communication device 1000 to form a communication interface 1010 .
  • the communication apparatus 1000 includes at least one processor 1020, which is configured to implement or support the communication apparatus 1000 to implement the functions of the network device in the methods provided in the embodiments of this application.
  • the processor 1020 may measure the first TRS, obtain a first measurement result, and demodulate the first downlink signal according to the first measurement result.
  • the processor 1020 may measure the first TRS, obtain a first measurement result, and demodulate the first downlink signal according to the first measurement result.
  • Communication apparatus 1000 may also include at least one memory 1030 for storing program instructions and/or data.
  • Memory 1030 is coupled to processor 1020 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may cooperate with the memory 1030 .
  • Processor 1020 may execute program instructions stored in memory 1030 . At least one of the at least one memory may be included in the processor.
  • the communication apparatus 1000 may also include a communication interface 1010 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1000 may communicate with other devices.
  • the other device may be the second terminal device.
  • the processor 1020 may utilize the communication interface 1010 to send and receive data.
  • the communication interface 1010 may specifically be a transceiver.
  • the specific connection medium between the communication interface 1010 , the processor 1020 , and the memory 1030 is not limited in this embodiment of the present application.
  • the memory 1030, the processor 1020, and the communication interface 1010 are connected through a bus 1040 in FIG. 10.
  • the bus is represented by a thick line in FIG. 10, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor 1020 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can realize Alternatively, each method, step, and logic block diagram disclosed in the embodiments of the present application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1030 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • This embodiment of the present application further provides a communication apparatus 1100, where the communication apparatus 1100 may be a terminal device or a circuit.
  • the communication apparatus 1100 may be configured to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 11 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device takes a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 11 only one memory and processor are shown in FIG. 11 . In an actual end device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as a transceiver unit of the terminal device, and the processor with a processing function may be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1110 and a processing unit 1120 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the processing unit may also be referred to as a processor, a processing single board, a processing module, or a processing device.
  • the device for implementing the receiving function in the transceiver unit 1110 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1110 may be regarded as a transmitting unit, that is, the transceiver unit 1110 includes a receiving unit and a transmitting unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • transceiving unit 1110 is configured to perform the sending and receiving operations on the terminal device side in the above method embodiments
  • processing unit 1120 is configured to perform other operations on the terminal device except the transceiving operations in the above method embodiments.
  • the transceiver unit 1110 is configured to perform step S401, step S403, step S406 or step S407, etc. in the embodiment shown in FIG. 4, and/or the transceiver unit 1110 is also configured to perform the implementation of the present application Other transceiving steps on the terminal device side in the example.
  • the processing unit 1120 is configured to execute steps S404 and S408 in the embodiment shown in FIG. 4 , and/or the processing unit 1120 is further configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the communication device in this embodiment is a terminal device
  • the device may perform functions similar to the processor 1020 in FIG. 10 .
  • the device includes a processor 1210, a transmit data processor 1220, and a receive data processor 1230.
  • the processing module 801 in the above-mentioned embodiment may be the processor 1210 in FIG. 12 , and performs corresponding functions.
  • the transceiver module 802 in the above embodiment may be the sending data processor 1220 and/or the receiving data processor 1230 in FIG. 12 .
  • the channel encoder and the channel decoder are shown in FIG. 12 , it should be understood that these modules do not constitute a limitative description of this embodiment, but are only illustrative.
  • FIG. 13 shows another form of this embodiment.
  • the processing device 1300 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication apparatus in this embodiment may serve as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1303 and an interface 1304 .
  • the processor 1303 completes the functions of the above-mentioned processing module 801
  • the interface 1304 implements the functions of the above-mentioned transceiver module 802 .
  • the modulation subsystem includes a memory 1306, a processor 1303, and a program stored in the memory 1306 and executable on the processor. When the processor 1303 executes the program, the terminal device side in the above method embodiment is implemented. Methods.
  • the memory 1306 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1300, as long as the memory 1306 can be connected to the The processor 1303 is sufficient.
  • a computer-readable storage medium is provided, on which an instruction is stored, and when the instruction is executed, the method on the terminal device side in the foregoing method embodiment is executed.
  • a computer program product including an instruction is provided, and when the instruction is executed, the method on the terminal device side in the above method embodiment is executed.
  • the network device may be as shown in FIG. 14
  • the apparatus 1400 includes one or more radio frequency units, such as a remote radio unit (remote radio unit, RRU) 1410 and one or more basebands A baseband unit (BBU) (also referred to as a digital unit, DU) 1420 .
  • the RRU 1410 may be called a transceiver module, which corresponds to the transceiver module 702 in FIG. 7 , and optionally, the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1411 and RF unit 1412.
  • the RRU 1410 part is mainly used for receiving and transmitting radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending indication information to terminal equipment.
  • the part of the BBU 1410 is mainly used to perform baseband processing, control the base station, and the like.
  • the RRU 1410 and the BBU 1420 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1420 is the control center of the base station, and can also be referred to as a processing module, which can correspond to the processing module 601 in FIG. 6 , and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing module
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the foregoing method embodiments, for example, to generate the foregoing indication information and the like.
  • the BBU 1420 may be composed of one or more single boards, and the multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards.
  • Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 1420 also includes a memory 1421 and a processor 1422.
  • the memory 1421 is used to store necessary instructions and data.
  • the processor 1422 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiments.
  • the memory 1421 and the processor 1422 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the method executed by the first network device or the second network device in the foregoing embodiments.
  • Embodiments of the present application also provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the method executed by the terminal device in the foregoing embodiments.
  • Embodiments of the present application also provide a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method executed by the first network device or the second network device in the foregoing embodiments.
  • Embodiments of the present application also provide a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method executed by the terminal device in the foregoing embodiments.
  • An embodiment of the present application provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the functions of the terminal device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the function of the first network device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the function of the second network device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • An embodiment of the present application provides a communication system, where the communication system includes the foregoing first network device, and/or a terminal device, and/or a second network device.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by means of wired (such as coaxial cable, optical fiber, digital subscriber line, DSL for short) or wireless (such as infrared, wireless, microwave, etc.)
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains an integration of one or more available media.
  • the available media can be magnetic media (eg, floppy disks, hard disks, magnetic tape), optical media (eg, digital video disc (DVD) for short), or semiconductor media (eg, SSD), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、装置及系统,该方法可以由第一网络设备执行,或者也可以由第一网络设备的部件(如处理器、芯片、或芯片系统等)执行。在该方法中:第一网络设备确定终端设备将要进入第一区域,第一区域为终端设备从第一网络设备切换至第二网络设备的区域,或者第一区域为第一网络设备和第二网络设备联合传输的区域;在终端设备进入第一区域之前,第一网络设备向终端设备发送第一指示信息以指示对第二网络设备的第一跟踪参考信号进行测量。由于终端设备在进入第一区域之前完成了对第二网络设备的第一跟踪参考信号的测量,因此当终端设备完成小区切换后或进行联合传输时,可及时根据第一跟踪参考信号的测量结果补偿时偏和频偏,从而提高通信质量。

Description

一种通信方法、装置及系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
在终端设备与网络设备的下行通信过程中,一方面,从网络设备发送下行信号到终端设备接收该下行信号,这之间存在空口传输时延,终端设备估计到的空口传输时延与实际的空口传输时延之间存在时偏,意味着,终端设备与网络设备定时不同步,这样会降低对下行信号的解调性能,从而降低通信质量;另一方面,当终端设备处于快速移动中时,如高铁通信场景或高速公路通信场景等,由于网络设备与终端设备之间的传播路程差发生变化,因此网络设备发送的下行信号在传输过程中会受到多普勒效应的影响,导致下行信号到达终端设备时存在多普勒频偏(可简称为频偏),这样也会降低对下行信号的解调性能,从而降低通信质量。目前,终端设备可以通过测量跟踪参考信号,例如跟踪参考信号(tracking reference signal,TRS)或同步信号与物理广播信道块(synchronization signal and physical broadcast channel block,SSB)等,来补偿因空口传输时延导致的时偏、以及补偿受多普勒效应影响而产生的频偏。
终端设备通过测量跟踪参考信号补偿时偏和频偏的过程如下:当终端设备进行小区切换后,目标网络设备为终端设备配置承载跟踪参考信号的时频资源;目标网络设备广播跟踪参考信号,以及向终端设备发送媒体接入控制层-控制元素(media access control-control element,MAC-CE)信令,终端设备接收跟踪参考信号和MAC-CE信令,该MAC-CE信令用于指示对跟踪参考信号进行测量;终端设备对跟踪参考信号进行测量,得到测量结果;目标网络设备向终端设备发送下行控制信息(downlink control information,DCI)信令和下行信号,终端设备接收DCI信令和下行信号,该DCI信令用于指示根据测量结果解调下行信号;终端设备根据测量结果解调下行信号。
当终端设备处于快速移动中,终端设备快速且频繁的进行小区切换,需要及时跟踪时偏和频偏以确保通信质量。但在终端设备完成小区切换后的初始阶段中,终端设备至少需要等待接收来自目标网络设备的MAC-CE信令,才能开始对跟踪参考信号进行测量。在这段等待时间内,若终端设备接收到来自目标网络设备的下行信号,终端设备会直接解调该下行信号。而此时终端设备尚未对跟踪参考信号进行测量,即,终端设备尚未补偿因空口传输时延导致的时偏以及受多普勒效应影响产生的频偏,因此会影响终端设备对下行信号的解调性能,降低通信质量。
发明内容
本申请实施例提供了一种通信方法、装置及系统,用以及时补偿时偏和频偏,提高通信质量。
第一方面,本申请实施例提供一种通信方法,该方法可以由第一网络设备执行,或者也可以由第一网络设备的部件(如处理器、芯片、或芯片系统等)执行。在该方法中:第 一网络设备确定终端设备将要进入第一区域,第一区域为终端设备从第一网络设备切换至第二网络设备的区域,或者第一区域为第一网络设备和第二网络设备联合传输的区域;在终端设备进入第一区域之前,第一网络设备向终端设备发送第一指示信息,第一指示信息用于指示对第二网络设备的第一跟踪参考信号进行测量。
在上述技术方案中,第一网络设备确定终端设备将要进行小区切换或将要进行联合传输。在终端设备进行小区切换或进行联合传输之前,第一网络设备向终端设备发送第一指示信息以触发终端设备在进行小区切换或联合传输之前开始对第一跟踪参考信号进行测量。这就意味着,终端设备在完成小区切换后的初始阶段或进行联合传输的初始阶段中,可以直接根据第一跟踪参考信号的测量结果解调来自第二网络设备的下行信号。终端设备无需等待第二网络设备的MAC-CE信令,从而能够减少终端设备获取测量结果的时间开销,避免了在刚完成小区切换的初始阶段或刚进行联合传输的初始阶段中,因终端设备接收到来自第二网络设备的下行信号,但尚未接收到第二网络设备的MAC-CE信令(或尚未完成对第一跟踪参考信号的测量),不能及时根据第一跟踪参考信号的结果补偿时偏和频偏,而导致该下行信号的解调性能下降的问题,提高了通信质量。
在一种可能的设计中,第一网络设备确定终端设备将要进入第一区域,包括:第一网络设备接收来自终端设备的第一参考信号接收质量的信息;当第一参考信号接收质量与终端设备在一个或者多个邻区中的参考信号接收质量之间的差值小于或等于第一阈值时,第一网络设备确定终端设备将要进入第一区域。
在上述设计中,第一网络设备可以将终端设备在当前小区的参考信号接收质量与终端设备在一个或多个邻区中的参考信号接收质量进行比较,以确定终端设备是否将要进入第一区域。例如,如果当前小区的参考信号接收质量与终端设备在一个或多个邻区的参考信号接收质量之前的差值小于或等于第一阈值,则第一网络设备可以确定终端设备将要进入第一区域。或者,如果当前小区的参考信号接收质量皆小于或等于终端设备在一个或多个邻区的参考信号接收质量,则第一网络设备可以确定终端设备将要进入第一区域。
在一种可能的设计中,第一网络设备确定终端设备将要进入第一区域,包括:第一网络设备根据终端设备的移动方向和第一网络设备所处的网络拓扑信息,确定终端设备将要进入第一区域。
在上述设计中,第一网络设备可根据终端设备的移动方向和第一网络设备所处的网络拓扑信息确定终端设备是否将要进入第一区域。由于第一网络设备所处的网络拓扑信息可以包括但不限定至少一个相邻小区的标识、与第一网络设备相邻的至少一个网络设备的标识、与第一网络设备相邻的至少一个网络设备的位置信息(如经度信息和/或纬度信息等)、或该至少一个网络设备与第一网络设备的位置关系(如位于第一网络设备的正北方,或位于第一网络设备的正南方等),或该至少一个网络设备的相对位置(如相对于第一网络设备的位置)等,因此第一网络设备结合终端设备的移动方向和网络拓扑信息,能够准确的确定出终端设备下一个接入的网络设备、或终端设备与下一个接入的网络设备之间的距离等信息,从而使得第一网络设备能够准确的确定出终端设备是否将要进入第一区域。
在一种可能的设计中,该方法还包括:第一网络设备接收来自终端设备的第一信息,第一信息指示第一数量和第二数量,其中,第一数量为终端设备支持的同时激活的传输配置指示状态的数量,第二数量为终端设备支持的同时测量的跟踪参考信号的数量,传输配置指示状态用于指示跟踪参考信号与业务之间的对应关系;当第一数量大于或等于2、且 第二数量大于或等于2时,第一网络设备确定终端设备具备根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,第二跟踪参考信号为第一网络设备的跟踪参考信号。
在上述设计中,第一网络设备可以通过终端设备上报的第一信息,确定该终端设备是否具备根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力。例如,当确定终端设备具备根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏能力时,第一网络设备可以在终端设备进入第一区域之前,向终端设备发送第一指示信息。由于终端设备具备根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,因此终端设备接收第一指示信息后能够对第一跟踪参考信号进行测量得到测量结果,并在终端设备进入第一区域之后,能够根据第一跟踪参考信号的测量结果补偿时偏和频偏,从而可以提高完成小区切换后的初始阶段(或联合传输的初始阶段)中终端设备与第二网络设备之间的通信质量。
在一种可能的设计中,该方法还包括:第一网络设备接收来自终端设备的第三指示信息,第三指示信息用于指示终端设备具备根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,第二跟踪参考信号为第一网络设备的跟踪参考信号。
在上述设计中,终端设备可以直接向第一网络设备指示其具备根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力。这样,在终端设备进入第一区域之前,第一网络设备可以向终端设备发送第一指示信息。由于终端设备具备根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,因此终端设备接收第一指示信息后能够对第一跟踪参考信号进行测量得到测量结果,并在终端设备进入第一区域之后,能够根据第一跟踪参考信号的测量结果补偿时偏和频偏,从而可以提高完成小区切换后的初始阶段(或联合传输的初始阶段)中终端设备与第二网络设备之间的通信质量。
在一种可能的设计中,根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏包括根据第一跟踪参考信号增大晶体振荡器对时偏和频偏的滤波系数。
在上述设计中,终端设备可以增大晶体振荡器对时偏和频偏的滤波系数,这样,当终端设备接收到来自第二网络设备的DCI信令后,能够立即根据第一跟踪参考信号的测量结果补偿时偏和频偏,使得终端设备能够及时补偿时偏和频偏,避免了因不能及时补偿时偏和频偏而降低解调性能的问题。
在一种可能的设计中,第一指示信息包括第一跟踪参考信号的标识或承载第一跟踪参考信号的时频资源的信息中的至少一个。
在上述设计中,第一网络设备向终端设备发送的第一指示信息中可包括第一跟踪参考信号的标识或承载第一跟踪参考信号的时频资源的信息中的至少一个,这样,终端设备可以根据第一跟踪参考信号的标识(或承载第一跟踪参考信号的时频资源)完成对第二网络设备的第一跟踪参考信号的接收,从而终端设备可以在进入第一区域之前开始对第一跟踪参考信号进行测量。
在一种可能的设计中,在终端设备进入第一区域之前,该方法还包括:第一网络设备接收来自第二网络设备的第一消息,第一消息包括第一指示信息。
在上述设计中,在终端设备进入第一区域之前,第二网络设备可以向第一网络设备发送第一消息,相应的,第一网络设备接收第一消息,从而第一网络设备能够确定第二网络设备的第一跟踪参考信号的标识、和/或承载第一跟踪参考信号的时频资源的信息。进一步的,第一网络设备在确定终端设备将要进入第一区域时,可将第一跟踪参考信号的标识、和/或承载第一跟踪参考信号的时频资源的信息发送给终端设备,以使终端设备完成对第一跟踪参考信号的接收。
在一种可能的设计中,在接收来自第二网络设备的第一消息之前,该方法还包括:第一网络设备向第二网络设备发送第二消息,第二消息用于请求第一指示信息。
在上述设计中,在终端设备进入第一区域之前,第一网络设备可以向第二网络设备发送第二消息,相应的,第二网络设备接收第二消息,以使得第二网络设备在接收到该第二消息后,将第一跟踪参考信号的标识、和/或承载第一跟踪参考信号的时频资源的信息发送给第一网络设备。
第二方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,或者也可以由终端设备的部件(如处理器、芯片、或芯片系统等)执行。在该方法中:在终端设备进入第一区域之前,终端设备接收来自第一网络设备的第一指示信息,第一指示信息用于指示对第二网络设备的第一跟踪参考信号进行测量,其中,第一区域为终端设备从第一网络设备切换至第二网络设备的区域,或者第一区域为第一网络设备与第二网络设备联合传输的区域;终端设备对第一跟踪参考信号进行测量,得到第一测量结果;在终端设备进入第一区域之后,终端设备接收来自第二网络设备的第一下行信号;终端设备根据第一测量结果解调第一下行信号。
在一种可能的设计中,在终端设备进入第一区域之后,该方法还包括:终端设备接收来自第二网络设备的第二指示信息,第二指示信息用于指示根据第一测量结果解调第一下行信号。
在一种可能的设计中,该方法还包括:终端设备向第一网络设备发送第一参考信号接收质量的信息,第一参考信号接收质量的信息用于确定终端设备将要进入第一区域。
在一种可能的设计中,该方法还包括:终端设备向第一网络设备发送第一信息,第一信息指示第一数量和第二数量,第一信息用于确定终端设备具备根据第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,其中,第一数量为终端设备支持的同时激活的传输配置指示状态的数量,第二数量为终端设备支持的同时测量的跟踪参考信号的数量,传输配置指示状态用于指示跟踪参考信号与业务之间的对应关系,第二跟踪参考信号为第一网络设备的跟踪参考信号。
在一种可能的设计中,该方法还包括:终端设备向第一网络设备发送第三指示信息,第三指示信息用于指示终端设备具备根据第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,第二跟踪参考信号为第一网络设备的跟踪参考信号。
在一种可能的设计中,根据第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏包括根据第一测量结果增大晶体振荡器对时偏和频偏的滤波系数。
第三方面,本申请实施例提供一种通信方法,该方法可以由第二网络设备执行,或者也可以由第二网络设备的部件(如处理器、芯片、或芯片系统等)执行。在该方法中:在终端设备进入第一区域之前,第二网络设备向第一网络设备发送第一消息,第一消息包括 第一指示信息,第一指示信息包括第一跟踪参考信号的标识或承载第一跟踪参考信号的时频资源的信息中的至少一个,第一区域为终端设备从第一网络设备切换至第二网络设备的区域,或者第一区域为第一网络设备和第二网络设备联合传输的区域,所述第一指示信息用于终端设备对所述第一跟踪参考信号进行测量得到第一测量结果;在终端设备进入第一区域之后,第二网络设备向终端设备发送第二指示信息和第一下行信号,第二指示信息用于指示根据第一测量结果解调第一下行信号。
在一种可能的设计中,在第二网络设备向第一网络设备发送第一消息之前,该方法还包括:第二网络设备接收来自第一网络设备的第二消息,第二消息用于请求第一指示信息。
第四方面,本申请实施例提供一种通信装置,该通信装置可以是第一网络设备,也可以是第一网络设备中的装置。该通信装置可以包括处理模块和收发模块,这些模块可以执行上述第一方面任一种设计示例中第一网络设备所执行的相应功能。其中:
处理模块,用于确定终端设备将要进入第一区域,第一区域为终端设备从第一网络设备切换至第二网络设备的区域,或者第一区域为第一网络设备和第二网络设备联合传输的区域;
收发模块,用于在终端设备进入第一区域之前,向终端设备发送第一指示信息,第一指示信息用于指示对第二网络设备的第一跟踪参考信号进行测量。
在一种可能的设计中,收发模块,具体用于:接收来自终端设备的第一参考信号接收质量的信息;处理模块,具体用于:当第一参考信号接收质量与终端设备在一个或者多个邻区中的参考信号接收质量之间的差值小于或等于第一阈值时,确定终端设备将要进入第一区域。
在一种可能的设计中,处理模块,具体用于:根据终端设备的移动方向和第一网络设备所处的网络拓扑信息,确定终端设备将要进入第一区域。
在一种可能的设计中,收发模块,进一步用于:接收来自终端设备的第一信息,第一信息指示第一数量和第二数量,其中,第一数量为终端设备支持的同时激活的传输配置指示状态的数量,第二数量为终端设备支持的同时测量的跟踪参考信号的数量,传输配置指示状态用于指示跟踪参考信号与业务之间的对应关系;处理模块,进一步用于:当第一数量大于或等于2、且第二数量大于或等于2时,确定终端设备具备根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,第二跟踪参考信号为第一网络设备的跟踪参考信号。
在一种可能的设计中,收发模块,进一步用于:接收来自终端设备的第三指示信息,第三指示信息用于指示终端设备具备根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,第二跟踪参考信号为第一网络设备的跟踪参考信号。
在一种可能的设计中,根据第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏包括根据第一跟踪参考信号增大晶体振荡器对时偏和频偏的滤波系数。
在一种可能的设计中,第一指示信息包括第一跟踪参考信号的标识或承载第一跟踪参考信号的时频资源的信息中的至少一个。
在一种可能的设计中,在终端设备进入第一区域之前,收发模块,进一步用于:接收来自第二网络设备的第一消息,第一消息包括第一指示信息。
在一种可能的设计中,在接收来自第二网络设备的第一消息之前,收发模块,进一步用于:向第二网络设备发送第二消息,第二消息用于请求第一指示信息。
第五方面,本申请实施例提供一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置。该通信装置可以包括处理模块和收发模块,这些模块可以执行上述第二方面任一种设计示例中终端设备所执行的相应功能。其中:
收发模块,用于在终端设备进入第一区域之前,接收来自第一网络设备的第一指示信息,第一指示信息用于指示对第二网络设备的第一跟踪参考信号进行测量,其中,第一区域为终端设备从第一网络设备切换至第二网络设备的区域,或者第一区域为第一网络设备与第二网络设备联合传输的区域;
处理模块,用于对第一跟踪参考信号进行测量,得到第一测量结果;
收发模块,还用于在终端设备进入第一区域之后,接收来自第二网络设备的第一下行信号;
处理模块,还用于根据第一测量结果解调第一下行信号。
在一种可能的设计中,在终端设备进入第一区域之后,收发模块,进一步用于:接收来自第二网络设备的第二指示信息,第二指示信息用于指示根据第一测量结果解调第一下行信号。
在一种可能的设计中,收发模块,进一步用于:向第一网络设备发送第一参考信号接收质量的信息,第一参考信号接收质量的信息用于确定终端设备将要进入第一区域。
在一种可能的设计中,收发模块,进一步用于:向第一网络设备发送第一信息,第一信息指示第一数量和第二数量,第一信息用于确定终端设备具备根据第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,其中,第一数量为终端设备支持的同时激活的传输配置指示状态的数量,第二数量为终端设备支持的同时测量的跟踪参考信号的数量,传输配置指示状态用于指示跟踪参考信号与业务之间的对应关系,第二跟踪参考信号为第一网络设备的跟踪参考信号。
在一种可能的设计中,收发模块,进一步用于:向第一网络设备发送第三指示信息,第三指示信息用于指示终端设备具备根据第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,第二跟踪参考信号为第一网络设备的跟踪参考信号。
在一种可能的设计中,根据第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏包括根据第一测量结果增大晶体振荡器对时偏和频偏的滤波系数。
第六方面,本申请实施例提供一种通信装置,该通信装置可以是第二网络设备,也可以是第二网络设备中的装置。该通信装置可以包括处理模块和收发模块,这些模块可以执行上述第三方面任一种设计示例中第二网络设备所执行的相应功能。其中:
收发模块,用于在终端设备进入第一区域之前,向第一网络设备发送第一消息,第一消息包括第一指示信息,第一指示信息包括第一跟踪参考信号的标识或承载第一跟踪参考信号的时频资源的信息中的至少一个,第一区域为终端设备从第一网络设备切换至第二网络设备的区域,或者第一区域为第一网络设备和第二网络设备联合传输的区域,所述第一指示信息用于终端设备对所述第一跟踪参考信号进行测量得到第一测量结果;
以及,用于向终端设备发送第二指示信息和第一下行信号,第二指示信息用于指示根据第一测量结果解调第一下行信号。
在一种可能的设计中,在第二网络设备向第一网络设备发送第一消息之前,收发模块,进一步用于:
接收来自第一网络设备的第二消息,第二消息用于请求第一指示信息。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于实现上述第一方面中第一网络设备所执行的方法。该通信装置还可以包括存储器,用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面中第一网络设备所执行的任意一种方法。该通信装置还可以包括收发器,该收发器用于该通信装置与其它设备进行通信。示例性地,该其它设备为终端设备或第二网络设备。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于实现上述第三方面中终端设备所执行的方法。该通信装置还可以包括存储器,用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第三方面中终端设备所执行的任意一种方法。该通信装置还可以包括收发器,该收发器用于该通信装置与其它设备进行通信。示例性地,该其它设备为第一网络设备或为第二网络设备。
第九方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于实现上述第三方面中第二网络设备所执行的方法。该通信装置还可以包括存储器,用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第三方面中第二网络设备所执行的任意一种方法。该通信装置还可以包括收发器,该收发器用于该通信装置与其它设备进行通信。示例性地,该其它设备为终端设备或第一网络设备。
第十方面,本申请实施例中还提供一种计算机可读存储介质,存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,可实现上述第一方面任一种设计示例中第一网络设备执行的方法、或上述第三方面任一种设计示例中第二网络设备执行的方法。
第十一方面,本申请实施例中还提供一种计算机可读存储介质,存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,可实现上述第二方面任一种设计示例中终端设备执行的方法。
第十二方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面任一种设计示例中第一网络设备执行的方法、或上述第三方面任一种设计示例中第二网络设备执行的方法。
第十三方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上述第二方面任一种设计示例中终端设备执行的方法。
第十四方面,本申请实施例提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面任一种设计示例中第一网络设备执行的方法、或上述第三方面任一种设计示例中第二网络设备执行的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十五方面,本申请实施例提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第二方面任一种设计示例中终端设备执行的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十六方面,本申请实施例中还提供一种通信系统,该通信系统包括上述第四方面任一种设计示例中的通信装置,和/或,上述第五方面任一种设计示例中的通信装置,和/或,上述第六方面任一种设计示例中的通信装置。
上述第二方面至第十六方面及其实现方式的有益效果可以参考对第一方面及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例中第一网络设备与第二网络设备进行联合传输的一种示意图;
图2为本申请实施例中小区切换的区域的一种示意图;
图3为本申请实施例适用的通信系统的一种结构示意图;
图4为本申请实施例提供的一种通信方法的流程示意图;
图5为本申请实施例提供的另一种通信方法的流程示意图;
图6为本申请实施例提供的再一种通信方法的流程示意图;
图7为本申请实施例提供的一种通信装置的结构示意图;
图8为本申请实施例提供的另一种通信装置的结构示意图;
图9为本申请实施例提供的另一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图;
图11为本申请实施例提供的通信装置的示意性框图;
图12为本申请实施例提供的通信装置的另一示意性框图;
图13为本申请实施例提供的通信装置的再一示意性框图;
图14为本申请实施例提供的通信装置的再一示意性框图。
具体实施方式
为了便于理解,下面先对本申请实施例涉及到的专用概念和名词进行解释。
(1)网络设备可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:第五代(5 th generation,5G)中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、远端射频单元(remote radio unit,RRU)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、未来移动通信系统中的基站或WiFi系统中的接入点等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(central unit,CU),和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、车载设备以及未来演进的网络中的网络设备等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
(2)终端设备可以简称为终端,例如用户设备,是一种具有无线收发功能的设备。终端设备可以部署在陆地上(如车载、车辆、高铁或动车等);也可以部署在水面上(如 轮船等);还可以部署在空中(例如飞机、无人机、气球和卫星上等)。所述终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端设备、无人驾驶中的无线终端设备、远程医疗中的无线终端设备、智能电网中的无线终端设备、运输安全中的无线终端设备、智慧城市中的无线终端设备、智慧家庭中的无线终端设备。本申请实施例对此并不限定。
终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持长期演进(long term evolution,LTE)的接入网设备通信,也可以与支持5G的接入网设备通信,还可以同时与支持LTE的接入网设备以及支持5G的接入网设备进行通信。本申请实施例对此并不限定。
本申请实施例中,用于实现终端的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
(3)合并小区,又可称为逻辑小区,一个合并小区中可部署多个网络设备(如RRU),多个网络设备中的每一个网络设备对应一个物理小区,多个物理小区可构成一个合并小区。例如,当终端设备接入合并小区时,多个网络设备中的主网络设备可通过无线资源控制(radio resource control,RRC)信令将承载每个网络设备的跟踪参考信号的时频资源配置给终端设备,可以节省终端设备接入物理小区后网络设备为终端设备配置承载跟踪参考信号的时频资源的时间开销。
(4)联合传输,可以指至少两个网络设备向终端设备联合发送下行信号和TRS。例如,如图1所示,终端设备从第一网络设备覆盖的区域向第二网络设备覆盖的区域进行移动,第一网络设备与第二网络设备之间存在共同覆盖区域,当终端设备位于该共同覆盖区域内时,第一网络设备与第二网络设备可联合向终端设备发送下行信号和TRS。具体的,当信道质量较差时,第一网络设备和第二网络设备向终端设备发送相同的下行信号,以增加下行信号的接收功率,提高通信质量;当信道质量较好时,第一网络设备和第二网络设备向终端设备发送不同的下行信号,以提高传输效率。其中,联合传输的区域可以为该至少两个网络设备的共同覆盖区域,或者为该至少两个网络设备的共同覆盖区域的子集(如图1所示)。
(5)第一区域,可以指第一网络设备与第二网络设备联合传输的区域,或者指终端设备从第一网络设备切换至第二网络设备的区域。
其中,第一网络设备与第二网络设备联合传输的区域可以为第一网络设备与第二网络设备的共同覆盖区域,或者也可以是第一网络设备和第二网络设备的共同覆盖区域的子集(如图1所示)。
终端设备从第一网络设备切换至第二网络设备的区域又可以称为终端设备进行切换的区域。例如,如图2所示,在终端设备从第一网络设备覆盖的区域向第二网络设备覆盖的区域移动的过程中,终端设备需要进行切换,即从第一网络设备切换至第二网络设备。终端设备从第一网络设备切换至第二网络设备可以包括切换准备阶段、切换执行阶段和切换完成中的一个或者多个阶段。例如,切换准备阶段可以指第一网络设备向第二网络设备发送切换请求,至第一网络设备向终端设备发送切换命令之间的阶段。切换执行阶段可以指终端设备接收到切换命令,至该终端设备与第二网络设备建立连接之间的阶段。切换完 成阶段可以指终端设备与第二网络设备建立连接到终端设备开始与第二网络设备进行数据传输的阶段。
终端设备从第一网络设备切换至第二网络设备的区域可以理解为,在从第一网络设备切换至第二网络设备的过程中,该终端设备所处的区域。
需要说明的是,如果终端设备在切换点从第一网络设备切换至第二网络设备,意味着终端设备进行小区切换所需的时间很短,小区切换的区域很小,则第一区域可以为包括所有可能的切换点的区域。
(6)传输配置指示状态(transmission configuration indicator-state,TCI-State),可用于指示跟踪参考信号与业务之间的对应关系,例如,TCI-State可用于指示跟踪参考信号与业务之间的准共址(quasico-location,QCL)关系。其中,该业务可以指物理下行控制信道(physical downlink control channel,PDCCH)数据,和/或物理下行共享信道(physical downlink shared channel,PDSCH)数据。例如,网络设备广播跟踪参考信号,终端设备可能接收到多个跟踪参考信号,在此情况下,终端设备可根据DCI的TCI-State字段,从该多个跟踪参考信号中确定用于解调PDCCH(和/或PDSCH)的跟踪参考信号,以获取PDCCH数据(和/或PDSCH数据)。例如,终端设备接收到多个跟踪参考信号和多个PDSCH数据,该多个跟踪参考信号可包括跟踪参考信号1和跟踪参考信号2,该多个PDSCH数据可包括PDSCH数据1和PDSCH数据2。如果TCI-State指示跟踪参考信号1与PDSCH数据1为QCL关系,跟踪参考信号2与PDSCH数据2为QCL关系,则基于该TCI-State,终端设备可根据跟踪参考信号1获取PDSCH数据1,以及根据跟踪参考信号2获取PDSCH数据2。
或者,该TCI-State可以用于指示跟踪参考信号与解调参考信号(demodulation reference signal,DMRS)之间的QCL关系。例如,网络设备广播跟踪参考信号,终端设备可能接收到多个跟踪参考信号,在此情况下,终端设备可根据DCI的TCI-State字段,从该多个跟踪参考信号中确定用于DMRS的跟踪参考信号,以获取与该DMRS对应的PDCCH数据(和/或PDSCH数据)。
(7)下行控制信息中携带传输配置指示状态(TCI-PresentinDCI)是空口信令中的一个字段,可用于确定DCI中是否包括TCI-State。示例的,如果网络设备将TCI-Present in DCI配置为“使能(enabled)”,则TCI-PresentinDCI用于指示DCI中包括TCI-State字段。如果网络设备将TCI-Present in DCI配置为“不使能(inabled)”,则TCI-PresentinDCI用于指示DCI中不包括TCI-State字段。
(8)跟踪参考信号,用于跟踪网络设备与终端设备通信过程中的时偏和频偏,以补偿因空口传输时延导致的时偏以及受多普勒效应影响而产生的频偏。例如,该跟踪参考信号可以为TRS,也可以为SSB等,本申请实施例对此并不限定。下文中以跟踪参考信号为TRS为例进行描述,可以理解的是,本申请实施例中适用于TRS的技术方案同样适用于SSB。
(9)本申请实施例中“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情 况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”、“第三”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本申请实施例中的技术方案,可应用于各种通信系统。比如,LTE系统,5G移动通信系统,例如新无线(new radio,NR)系统,以及还可以应用于未来演进的其它通信系统等,本申请实施例对此并不限定。
本申请实施例将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请实施例中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中部分场景以NR网络的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
为便于理解本申请实施例,下面介绍本申请实施例适用的通信系统。
图3示出了一种适用于本申请实施例的通信系统的示意图。如图3所示,该通信系统100可以包括网络设备101、网络设备102和终端设备103。终端设备103在沿图3示出的粗线方向进行移动的过程中,终端设备103的服务小区发生变更,由第一小区变更为第二小区。第一小区可以称为终端设备103的源小区,第二小区可以称为终端设备103的目标小区。对应的,第一小区所属的网络设备101可以称为终端设备103的源网络设备,第二小区所属的网络设备102可以称为终端设备103的目标网络设备。其中,网络设备101可配置有多个天线,网络设备102可配置有多个天线,终端设备106也可配置有多个天线。在终端设备103从第一小区切换到第二小区之前,网络设备101可以与终端设备103通信。在终端设备103从第一小区切换到第二小区之后,网络设备102可以与终端设备103通信。另外,网络设备101或网络设备102还可以与除终端设备103之外的其他终端设备通信,在此不多赘述。
示例的,第一小区的覆盖区域可以与第二小区的覆盖区域部分重叠(如图3所示),即网络设备101和网络设备102存在共同覆盖区域。可以理解的是,第一小区的覆盖区域也可以与第二小区的覆盖区域不重叠,本申请实施例对此并不限定。网络设备101与网络设备102可以属于同一个合并小区,也可以属于不同的合并小区,本申请实施例对此并不限定。
需要说明的是,图3仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,本申请实施例对此并不限定。
下面对本申请实施例涉及的一些技术特征进行介绍。
如前面所述,终端设备可以通过测量TRS来补偿因空口传输时延导致的时偏以及补充受多普勒效应影响而产生的频偏,以使得自身与网络设备定时同步以及自身频率与下行信号的频率一致,从而提高通信质量。下面以图3所示的通信系统为例,分别通过场景1和场景2对终端设备通过测量TRS补偿时偏和频偏的过程进行描述,其中,场景1为终端设备完成小区切换后的初始阶段,场景2为网络设备101和网络设备102进行联合传输的初始阶段。下面以场景1为终端设备完成小区切换后的初始阶段、且第一小区和第二小区属于不同的合并小区,场景2为网络设备101和网络设备102进行联合传输的初始阶段、且第一小区和第二小区属于同一个合并小区为例进行说明。
场景1,终端设备103从第一小区切换至第二小区的初始阶段中,终端设备103通过测量TRS补偿时偏和频偏的过程如下:
步骤A1,终端设备103接入第二小区后,网络设备102通过RRC信令为终端设备103配置承载TRS的时频资源。相应的,终端设备103接收承载TRS的时频资源的信息。
步骤A2,网络设备102广播TRS,以及向终端设备103发送MAC-CE信令。相应的,终端设备103可接收MAC-CE信令,以及根据承载TRS的时频资源接收TRS。其中,MAC-CE信令可用于指示对TRS进行测量。
步骤A3,终端设备103可根据MAC-CE信令对该TRS进行测量,得到测量结果。其中,测量结果可包括时偏估计值或频偏估计值中的至少一个。
步骤A4,网络设备102向终端设备103发送DCI信令和下行信号。相应的,终端设备103接收DCI信令和下行信号。其中,DCI信令可用于指示根据测量结果调解该下行信号,该下行信号可以是PDCCH,也可以是PDSCH,还可以是PDCCH和PDSCH等,本申请对此并不限定。
步骤A5,终端设备103根据测量结果调解该下行信号。
在终端设备103完成小区切换后的初始阶段,终端设备103需要在接收到网络设备102为其配置承载TRS的时频资源的信息以及网络设备102的MAC-CE信令后,才能开始对TRS的测量。这意味着,终端设备103需要等待较长的时间才能开始对TRS的测量。在这段等待时间内,若终端设备103接收到网络设备102的下行信号,则终端设备103并不会等待完成对TRS的测量后再解调下行信号,而是会直接解调该下行信号。由于终端设备103尚未对TRS进行测量(或者尚未完成对TRS的测量),因此终端设备103不能补偿因空口传输时延导致的时偏以及补充受多普勒效应影响而产生的频偏,从而降低对下行信号的解调性能,降低通信质量。
需要说明的是,本申请实施例对上述步骤A1~步骤A5的执行顺序不做限定。例如,终端设备103可在接入第二小区之前接收来自网络设备102的TRS。再例如,网络设备102可以同时向终端设备103发送TRS和MAC-CE信令,也可以先广播TRS,再向终端设备103发送MAC-CE信令。
场景2,终端设备103进行联合传输的初始阶段中,终端设备103通过测量TRS补偿时偏和频偏的过程如下:
步骤B1,网络设备102广播TRS,以及向终端设备103发送MAC-CE信令。相应的,终端设备103接收TRS和MAC-CE信令。其中,MAC-CE信令可用于指示对TRS进行测量。
步骤B2,终端设备103可根据合并小区的资源池确定承载该TRS的时频资源,并根 据确定的时频资源对该TRS进行测量,得到测量结果。
步骤B3,网络设备102向终端设备103发送DCI信令和下行信号。相应的,终端设备103接收DCI信令和下行信号。其中,DCI信令可用于指示根据测量结果调解该下行信号,该下行信号可以是PDCCH,也可以是PDSCH,还可以是PDCCH和PDSCH等,本申请对此并不限定。
步骤B4,终端设备103根据测量结果解调下行信号。
在场景2中,由于网络设备101和网络设备102属于同一个合并小区,因此在终端设备接入该合并小区时,该合并小区中的主网络设备(如网络设备102、或网络设备102、或该合并小区内的其它网络设备)可通过RRC信令将承载每个网络设备的TRS的时频资源配置给终端设备,意味着网络设备102无需为终端设备配置承载TRS的时频资源。尽管场景2中节省了网络设备102为终端设备103配置TRS的时频资源的时间开销,但当终端设备103进入联合传输的区域后,终端设备103需要接收来自网络设备102的MAC-CE信令以及从合并小区的资源池中确定承载TRS的时频资源后,才能开始对TRS的测量。这意味着,终端设备103仍然需要等待较长的时间才能开始对TRS的测量。同理的,在这段等待时间内,若终端设备103接收到网络设备102的下行信号,则终端设备103并不会等待完成对TRS的测量后再解调下行信号,而是会直接解调该下行信号。由于终端设备103尚未对TRS进行测量(或者尚未完成对TRS的测量),因此终端设备103不能补偿因空口传输时延导致的时偏以及受多普勒效应影响产生的频偏,从而降低对下行信号的解调性能,降低通信质量。
需要说明的是,本申请实施例对上述步骤B1~步骤B4的执行顺序不做限定。例如,终端设备103可在进入联合传输的区域之前接收来自网络设备102的TRS。再例如,网络设备102可以同时向终端设备103发送TRS和MAC-CE信令,也可以先广播TRS,再向终端设备103发送MAC-CE信令。
根据上述对场景1和场景2的描述可以看出,在终端设备完成小区切换后的初始阶段以及进行联合传输的初始阶段,终端设备需要等待较长的时间才能开始对TRS进行测量,也即是终端设备不能及时基于对TRS测量的结果补偿因空口传输时延导致的时偏以及补偿受多普勒效应影响而产生的频偏,导致降低对在该段等待时间内的下行信号的解调性能,从而降低通信质量。
鉴于此,本申请实施例提供一种通信方法,用于减少终端设备在完成小区切换后的初始阶段或进行联合传输的初始阶段中对TRS测量的时延,提高通信质量。该方法中,第一网络设备可以在终端设备进入第一区域之前,向终端设备发送第一指示信息,第一区域可以是终端设备从第一网络设备切换至第二网络设备的区域,或者是第一网络设备和第二网络设备联合传输的区域。因此,终端设备能够在终端设备进行小区切换之前(或进行联合传输之前)对第一TRS进行测量。则,在终端设备进行小区切换之后(或进行联合传输之后)可直接根据测量结果解调下行信号。通过这种方式,能够节省完成小区切换后的初始阶段(或联合传输的初始阶段)中终端设备对TRS进行测量的时间开销,也就是在完成小区切换后的初始阶段(或联合传输的初始阶段)中终端设备能够及时跟踪时偏和频偏,从而可以避免因终端设备未及时补偿时偏和频偏而导致的解调性能下降的问题,提高了通信质量。
图4为本申请实施例提供的一种通信方法的流程示意图,该方法可以应用于图3所示 的通信系统100中,其中图4中的虚线为可选步骤。本申请实施例中的终端设备可以为图3所示的终端设备103,第一网络设备可以为图3所示的网络设备101,第二网络设备可以为图3所示的网络设备102。可以理解的是,本申请实施例中,由网络设备执行的步骤也可以具体由网络设备的一个模块或部件执行,如可以由该网络设备中的芯片或芯片系统执行;由终端设备执行的步骤也可以具体由终端设备的一个模块或部件执行,如可以由该终端设备中的芯片或芯片系统执行。如图4所示,该方法可以包括:
S401:第二网络设备广播第一TRS。相应的,终端设备接收第一TRS。
例如,第二网络设备可周期性的或非周期性的广播第一TRS。相应的,在该终端设备进入第一区域之前,终端设备可以接收到来自第二网络设备的第一TRS。
作为一个示例,第一区域可以是终端设备从第一网络设备切换至第二网络设备的区域。该从第一网络设备切换至第二网络设备的区域又可以称为终端设备进行小区切换的区域。例如,该终端设备进行的小区切换可以包括切换准备阶段、切换执行阶段和切换完成阶段,如图2所示。再例如,该终端设备进行小区切换的区域可以是第一网络设备和第二网络设备的共同覆盖区域,或者是第一网络设备和第二网络设备的共同覆盖区域的子集等,本申请实施例对此并不限定。在此情况下,第一网络设备可为终端设备进行小区切换的源设备,第二网络设备可为终端设备进行小区切换的目标设备。
作为另一个示例,第一区域还可以是第一网络设备与第二网络设备联合传输的区域。例如,第一网络设备与第二网络设备联合传输的区域可以为第一网络设备和第二网络设备的共同覆盖区域。再例如,第一网络设备与第二网络设备联合传输的区域还可以为第一网络设备和第二网络设备的共同覆盖区域的子集,如图1所示。
当第一区域为第一网络设备与第二网络设备联合传输的区域时,终端设备在第一区域内向第二终端设备移动的过程中会进行小区切换。终端设备进行小区切换的区域可以为第一网络设备与第二网络设备联合传输的区域的子集,如图1所示。
也即是,终端设备在第一区域中的某个区域内会从第一网络设备切换至第二网络设备。在此情况下,当终端设备进入第一区域到开始进行小区切换的这段时间内,第一网络设备可以为第一网络设备和第二网络设备联合传输中的主网络设备。当终端设备完成小区切换到离开第一区域的这段时间内,第二网络设备可以为第一网络设备和第二网络设备联合传输中的主网络设备。
联合传输中的主网络设备可用于根据信道质量调整联合传输的方式(如向终端设备发送相同的下行信号或向终端设备发送不同的下行信号)。以联合传输中的主网络设备为第一网络设备为例,当检测到信道质量较差时,第一网络设备可指示第二网络设备向终端设备发送、与第一网络设备相同的下行信号,以增加下行信号的接收功率,提高通信质量。再例如,当检测到信道质量较好时,该第一网络设备可指示第二网络设备向终端设备发送、与第一网络设备不同的下行信号,以提高传输效率。
可以理解的是,本申请实施例中适用于小区切换的技术方案,同样适用于联合传输区的域中的小区切换。
S402:第一网络设备确定终端设备将要进入第一区域。
例如,第一网络设可根据参考信号接收质量(reference signal received power,RSRP)、或终端设备的移动方向和第一网络设备所处的网络拓扑信息,确定终端设备是否将要进入第一区域。其中,第一网络设备所处的网络拓扑信息可以包括但不限定至少一个相邻小区 的标识、与第一网络设备相邻的至少一个网络设备的标识、与第一网络设备相邻的至少一个网络设备的位置信息(如经度信息和/或纬度信息等)、或该至少一个网络设备与第一网络设备的位置关系(如位于第一网络设备的正北方,或位于第一网络设备的正南方等)、或该至少一个网络设备的相对位置(如相对于第一网络设备的位置)等。
作为一个示例,第一网络设备可以根据RSRP确定终端设备是否将要进入第一区域。例如,终端设备可以周期性的向第一网络设备上报第一RSRP,第一网络设备接收第一RSRP,该第一RSRP可以为探测参考信号(sounding reference signal,SRS)的RSRP,第一网络设备根据第一RSRP确定终端设备是否将要进入第一区域。
例如,第一网络设备可将第一RSRP与终端设备在一个或者多个邻区中的RSRP进行比较以确定终端设备是否将要进入第一区域。如果连续多个周期的第一RSRP与终端设备在该一个或者多个邻区的RSRP之间的差值小于或等于第一阈值,则第一网络设备可确定该终端设备将要进入第一区域。或者,如果连续多个周期的第一RSRP皆小于或等于终端设备在该一个或者多个邻区的RSRP,则第一网络设备可确定该终端设备将要进入第一区域。
再例如,第一网络设备可将第一RSRP与终端设备在最强邻区中的RSRP进行比较以确定终端设备是否将要进入第一区域。如果连续多个周期的第一RSRP与终端设备在最强邻区中的RSRP之间的差值小于或等于第一阈值,则第一网络设备可确定该终端设备将要进入第一区域。其中,最强邻区可以为除了第一网络设备覆盖的小区(即第一小区)之外检测到的RSRP最好的小区。
作为另一个示例,第一网络设备可根据终端设备的移动方法和第一网络设备所处的网络拓扑信息确定终端设备是否将要进入第一区域。例如,第一网络设备可根据其所处的网络拓扑信息以及移动方向,获取终端设备按照该移动方向将要切换的第二小区的标识(或第二网络设备的标识),根据该第二小区的标识(或第二网络设备的标识)确定第二网络设备与当前终端设备之间的距离,当第二网络设备与当前终端设备之间的距离小于或等于第二阈值时,第一网络设备确定终端设备将要进入第一区域。
S403:第一网络设备向终端设备发送第一指示信息。相应的,终端设备接收第一指示信息。
例如,第一指示信息可以是MAC-CE信令,第一指示信息可以用于指示终端设备对第一TRS进行测量。再例如,第一指示信息中可包括第二信息,第二信息可包括第一TRS的标识、承载第一TRS的时频资源的信息或第一TRS对应的TCI-State的编号等信息的至少一个。其中,如果第一区域是终端设备进行小区切换的区域,则该第一TRS可以是第二网络设备发送的TRS。或者,如果第一区域是第一网络设备和第二网络设备联合传输的区域,则该第一TRS可以是第一网络设备和第二网络设备联合发送的TRS。
S404:终端设备根据第一指示信息对第一TRS进行测量,得到第一测量结果。
例如,终端设备对第一TRS进行测量,得到第一测量结果,该第一测量结果可包括第一下行信号到达终端设备的时偏估计值和/或频偏估计值。
S405:终端设备进入第一区域。
例如,如果第一区域为终端设备进行小区切换的区域,则终端设备进入第一区域并进行小区切换。如果第一区域为第一网络设备和第二网络设备联合传输的区域,则终端设备进入第一区域并与第一网络设备和第二网络设备进行联合传输。
可选的,在终端设备进入第一区域之后,第二网络设备可以向终端设备发送第二指示信息和第一下行信号,以指示终端设备根据第一测量结果解调第一下行信号,即执行步骤S406至步骤S408所示的内容。或者,在终端设备进入第一区域之后,第二网络设备也可以不向终端设备发送第二指示信息,即默认终端设备可直接使用第一测量结果解调第一下行信号,即执行步骤S407和步骤S408所示的内容。
S406:第二网络设备向终端设备发送第二指示信息。相应的,终端设备接收第二指示信息。
其中,第二指示信息可以是DCI信令,该第二指示信息可用于指示根据第一测量结果解调第一下行信号。例如,在确定终端设备进入第一区域后,第二网络设备可向终端设备发送第二指示信息,终端设备接收第二指示信息。例如,如果第一区域为终端设备进行小区切换的区域,则第二网络设备可在终端设备完成小区切换后(如第二网络设备可根据终端设备的小区切换完成指令确定终端设备完成小区切换,即第二网络设备与终端设备建立RRC连接后),向终端设备发送第二指示信息。或者,如果第一区域为第一网络设备和第二网络设备联合传输的区域,则第二网络设备可在终端设备进入第一网络设备与第二网络设备联合传输的区域后(如第二网络设备可根据第一网络设备的联合传输指令确定终端设备进入第一区域,此时终端设备还未进行小区切换),向终端设备发送第二指示信息。
S407:第二网络设备向终端设备发送第一下行信号。相应的,终端设备接收第一下行信号。
其中,第一下行信号可以是PDCCH,可以是PDSCH,还可以是PDCCH和PDSCH,本申请实施例对此并不限定。例如,在确定终端设备进入第一区域后,第二网络设备可向终端设备发送第一下行信号,终端设备接收第一下行信号。例如,如果第一区域为终端设备进行小区切换的区域,则第二网络设备可在终端设备完成小区切换后(如第二网络设备可根据终端设备的小区切换完成指令确定终端设备完成小区切换),向终端设备发送第一下行信号。或者,如果第一区域为第一网络设备和第二网络设备联合传输的区域,则第二网络设备可在终端设备进入第一区域后(如第二网络设备可根据第一网络设备的联合传输指令确定终端设备进入第一区域),向终端设备发送第一下行信号。
S408:终端设备根据第一测量结果调解第一下行信号。
例如,终端设备接收到第一下行信号后可立即根据第一测量结果中的时偏估计值和频偏估计值调整自身的晶体振荡器,补偿第一下行信号因空口传输时延导致的时偏和补偿受多普勒效应影响而产生的频偏,以使得终端设备与第二网络设备定位同步以及自身接收频率与第一下行信号的频率一致。
示例的,终端设备可采用以下方式调整晶体振荡器:在下一个晶体振荡器调整时刻到来时,不对自身晶体振荡器的频偏记录进行历史值滤波,而是直接写入第一测量结果中的时偏估计值和频偏估计值,该历史值可以是对第二TRS的测量结果,第二TRS为第一网络设备广播的TRS。采用这种方式,由于晶体振荡器的调整并不是一步到位的,当终端设备完成接入第二小区后的初始阶段,自身晶体振荡器可能还未完成根据第二TRS的测量结果的滤波,因此,当终端设备接收到第二指示信息后,终端设备可以直接根据第一测量结果进行滤波,可以减少终端设备补偿时偏和频偏的时间开销,提高可靠性。
需要说明的是,图4中的步骤S401至步骤S408的执行顺序仅为一种示例,本申请实施例对此并不限定。例如,第二网络设备可以在步骤S402之前广播第一TRS,也可以在 步骤S402之后广播第一TRS,只要保证终端设备在进入第一区域之前接收到第一TRS即可。再例如,第一网络设备可以分别向执行步骤S406和步骤S407,也可以同时执行步骤S406和步骤S407,还可以只执行步骤S407不执行步骤S406。
下面结合示例1和示例2对图4所示的通信方法进行详细的描述。
示例1
图5为本申请实施例提供的一种通信方法。该方法可以由终端设备和网络设备执行,或者也可以由终端设备中的芯片和网络设备中的芯片执行。图5中的第一网络设备可为上述图3中的网络设备101,第二网络设备可为上述图3中的网络设备102,终端设备可为上述图3中的终端设备103。在示例1中,第一区域为终端设备进行小区切换的区域,终端设备可在进行小区切换之前完成对第一TRS的测量,以使得终端设备能够及时根据第一TRS的测量结果解调第二网络设备的第一下行信号,如图5所示的方法可包括:
S501:终端设备向第一网络设备发送第一信息。相应的,第一网络设备接收第一信息。
例如,第一信息可包括第一数量和第二数量,第一数量可以为终端设备支持的同时激活的TCI-State的数量,第二数量可以为终端设备支持的同时测量的TRS的数量。其中,TCI-State可用于指示TRS与业务之间的对应关系,如TRS与业务之间准共址关系。该业务可以是PDCCH数据和/或PDSCH数据。
示例的,终端设备可以在与第一网络设备建立连接(如初始接入、小区切换接入或RRC连接恢复等)时,向第一网络设备上报其支持的同时激活的TCI-State的数量和支持的同时测量的TRS的数量,以使得第一网络设备可以根据终端设备所上报的内容确定该终端设备是否具备第一能力。其中,第一能力可以为根据第一TRS的测量结果和第二TRS的测量结果补偿时偏和频偏的能力,或者第一能力可以为同时对至少两个TRS(如第一TRS和第二TRS)进行测量、以及根据第一TRS的测量结果和第二TRS的测量结果补偿时偏和频偏的能力。第二TRS为第一网络设备的TRS。
其中,终端设备具备根据第一TRS的测量结果和第二TRS的测量结果补偿时偏和频偏的能力可以理解为:终端设备支持从根据第二TRS的测量结果调整晶体振荡器无中断的(或快速的)切换至根据第一TRS的测量结果调整晶体振荡器。
示例的,根据第一TRS的测量结果和第二TRS的测量结果补偿时偏和频偏可以包括根据第一TRS的测量结果增大晶体振荡器对时偏和频偏的滤波系数,或者将晶体振荡器对时偏和频偏的滤波系数置为1。例如,终端设备可以按照如下步骤增大晶体振荡器对时偏和频偏的滤波系数(或者将晶体振荡器对时偏和频偏的滤波系数置为1):
步骤C1:终端设备接收第二网络设备的第一下行信号(或第二指示信息和第一下行信号),具体实现过程可参考图3中的步骤S407(或步骤S406和步骤S407)。
步骤C2:终端设备接收到第一下行信号(或第二指示信息和第一下行信号)后立即确定是否存在第一测量结果。若存在第一测量结果,则执行步骤C3所示的步骤;若不存在第一测量结果或存在部分第一测量结果(例如终端设备尚未完成对第一跟踪参考信号的测量),则流程结束(即不会增大晶体振荡器对时偏和频偏的滤波系数或不会将晶体振荡器对时偏和频偏的滤波系数置为1)。
步骤C3:终端设备确定第一测量结果的稳定性。若第一测量结果的稳定性大于或等于第五阈值,则执行步骤C4所示的步骤;若第一测量结果的稳定性小于第五阈值,则流程结束(即不会增大晶体振荡器对时偏和频偏的滤波系数或不会将晶体振荡器对时偏和频偏 的滤波系数置为1)。例如,终端设备可根据信道质量或信道相关性等确定第一测量结果的稳定性。
步骤C4:终端设备根据第一测量结果增大晶体振荡器对时偏和频偏的滤波系数(或将晶体振荡器对时偏和频偏的滤波系数置为1)。
通过步骤C1~步骤C4所示的内容,终端设备可增大晶体振荡器对时偏和频偏的滤波系数(或将晶体振荡器对时偏和频偏的滤波系数置为1)。由于晶体振荡器对时偏和频偏的滤波系数增大了(或晶体振荡器对时偏和频偏的滤波系数为1),因此缩短了晶体振荡器对时偏和频偏的滤波时长,意味着,可以减少终端设备接收到第一下行信号到根据第一测量结果解调第一下行信号之间的时延,使得终端设备可以快速根据第一测量结果调整晶体振荡器以快速补偿时偏和频偏,从而可以提高对第一下行信号的解调性能,提高通信质量。
S502:第一网络设备根据第一信息,确定终端设备是否具备第一能力。
示例的,如果第一数量大于或等于2、且第二数量大于或等于2,则第一网络设备可以确定终端设备具备第一能力,即执行步骤S503至步骤S514所示的内容。或者,如果第一数量小于2或第二数量小于2,则第一网络设备可确定终端设备不具备第一能力,即流程结束。
终端设备可以向第一网络设备上报第一信息,第一网络设备根据第一信息确定终端设备是否具备第一能力,即上述步骤S501和步骤S502所示的内容。在一种可能的实现方式中,终端设备还可以根据第三指示信息直接确定终端设备具备第一能力。其中,第三指示信息可用于指示终端设备具备第一能力。例如,终端设备可以向第一网络设备发送第三指示信息,相应的,第一网络设备接收第三指示信息;第一网络设备接收到第三指示信息后,可根据第三指示信息直接确定终端设备具备第一能力,不需要根据第一数量和第二数量来判断终端设备是否具备第一能力。
S503:第一网络设备向终端设备发送第六指示信息。
例如,该第六指示信息可用于指示DCI中包括TCI-State。例如,在确定终端设备具备第一能力后,第一网络设备可向终端设备发送空口信令,该空口信令中包括第一字段(即第六指示信息)。第一网络设备可将第一字段配置为“使能”,用以指示DCI中包括TCI-State,这样终端设备接收到DCI后,就可以根据DCI中包括的TCI-State确定第一TRS与业务的对应关系。其中,第一字段可以为TCI-present in DCI字段。
S504:第二网络设备广播第一TRS。相应的,终端设备接收第一TRS。
例如,第二网络设备可周期性或非周期性的广播该第一TRS。步骤S504的具体实现过程可以参考图4中步骤401所示的内容,在此不再赘述。
S505:第一网络设备确定终端设备的移动方向。
例如,第一网络设备可以根据来自终端设备的第一频偏确定该终端设备的移动方向,第一频偏可以为终端设备对第二TRS进行测量得到的,其中,第二TRS为第一网络设备广播的TRS。
S506:第一网络设备根据终端设备的移动方向和第一网络设备所处的网络拓扑信息,确定终端设备将要进入第一区域。
其中,在本示例中第一区域为终端设备进行小区切换的区域,第一网络设备确定终端设备将要进入第一区域,即是确定终端设备将要进行小区切换。
示例的,第一网络设备可根据其所处的网络拓扑信息以及移动方向,确定终端设备是 否将要进行小区切换。具体的,第一网络设备可根据其所处的网络拓扑信息以及移动方向,获取终端设备按照该移动方向将要切换的第二小区的标识,根据该第二小区的标识确定第二网络设备与当前终端设备之间的距离,当第二网络设备与当前终端设备之间的距离小于或等于第二阈值时,第一网络设备确定终端设备将要进行小区切换。
第一网络设备可以根据终端设备的移动方向和第一网络设备所处的网络拓扑信息,确定终端设备将要进行小区切换,即执行步骤S505和步骤S506所示的内容。在一种可能的实现方式中,第一网络设备还可以通过终端设备上报的第一RSRP确定终端设备是否将要进行小区切换。
例如,第一网络设备可将第一RSRP与终端设备在一个或者多个邻区中的RSRP进行比较以确定终端设备是否将要进行小区切换。如果连续多个周期的第一RSRP与终端设备在该一个或者多个邻区的RSRP之间的差值小于或等于第一阈值,则第一网络设备可确定该终端设备将要进行小区切换。或者,如果连续多个周期的第一RSRP皆小于或等于终端设备在该一个或者多个邻区的RSRP,则第一网络设备可确定该终端设备将要进行小区切换。
再例如,第一网络设备可将第一RSRP与终端设备在最强邻区中的RSRP进行比较以确定终端设备是否将要进行小区切换。如果连续多个周期的第一RSRP与终端设备在最强邻区中的RSRP之间的差值小于或等于第一阈值,则第一网络设备可确定该终端设备将要进行小区切换。其中,最强邻区可以为除了第一网络设备覆盖的小区(即第一小区)之外检测到的RSRP最好的小区。
其中,第一阈值可以大于第三阈值。第三阈值可以为第一网络设备确定终端设备需要进行小区切换的阈值。例如,当连续多个周期的第一RSRP与终端设备在一个或多个邻区(或最强邻区)中的RSRP之前的差值小于或等于第三阈值时,第一网络设备确定终端设备需要进行小区切换。例如第三阈值为-2分贝(dB)。由于第一阈值取值过小会导致第一网络设备未能在终端设备进行小区切换之前向终端设备发送第一指示信息,使得终端设备在完成小区切换后的初始阶段还需接收该第一指示信息或对第一TRS进行测量,从而降低对第一下行信号的解调性能,降低通信质量。因此,采用上述方式能够确保终端设备在进行小区切换之前完成对第一TRS的测量,使得终端设备能够在完成小区切换后的初始阶段及时根据第一TSR的测量结果解调第一下行信号,从而可以提高对第一下行信号的解调性能,提高通信质量。
可选的,如果第一网络设备和第二网络设备属于同一个合并小区,则第一网络设备可以通过该合并小区的资源池确定第二信息,即不执行步骤S507和步骤S508。或者,如果第一网络设备和第二网络设备属于不同的合并小区,则第一网络设备可以执行步骤S507和步骤S508,以获取第二信息。或者,如果第一网络设备和第二网络设备属于不同的合并小区,则第二网络设备可以向第一网络设备上报第二信息,即仅执行步骤S508。
S507:第一网络设备向第二网络设备发送第二消息。相应的,第二网络设备接收第二消息。
例如,第二消息可用于请求获取第二信息,第二信息可包括第一TRS的标识、承载第一TRS的时频资源的信息或第一TRS对应的TCI-State的编号等中的至少一个。
S508:第二网络设备向第一网络设备发送第一消息。相应的,第一网络设备接收第一消息。
其中,第一消息中可包括第二信息。
S509:第一网络设备向终端设备发送第一指示信息。相应的,终端设备接收第一指示信息。
例如,第一指示信息可以用于指示终端设备对第一TRS进行测量。例如,第一指示信息可以是MAC-CE信令。该第一指示信息中包括第二信息(或者第一指示信息包括第一TRS的标识、承载第一TRS的时频资源的信息或第一TRS对应的TCI-State的编号等中的至少一个)。例如,第一网络设备可向终端设备发送MAC-CE信令,该MAC-CE信令中包括第二字段。第一网络设备可将该第二字段配置为第一TRS的标识或第一TRS对应的TCI-State的编号等,用以指示对第一TRS进行测量。其中,第二字段可以为TCI-State字段。
S510:终端设备根据第一指示信息,对接收到的第一TRS进行测量,得到第一测量结果。
示例的,第二网络设备向外广播TRS,终端设备接收到多个TRS,终端设备可根据第二信息确定承载第一TRS的时频资源,根据承载第一TRS的时频资源从多个TRS中确定第一TRS,并对该第一TRS进行测量,得到第一测量结果。例如,第一测量结果中可包括与第一TRS对应的下行信号到达终端设备时的时偏估计值和/或频偏估计值。其中,本申请实施例对终端设备对TRS进行测量的具体实现方式并不限定。
S511:终端设备进行小区切换,从第一网络设备切换至第二网络设备。
其中,本申请实施例对终端设备进行小区切换的具体实现方式并不限定。
可选的,在终端设备完成小区切换的初始阶段,第二网络设备可以向终端设备发送第二指示信息和第一下行信号,以指示终端设备根据第一测量结果解调第一下行信号,即执行步骤S512至步骤S514所示的内容。或者,在终端设备完成小区切换的初始阶段,第二网络设备也可以不向终端设备发送第二指示信息,即默认终端设备可直接使用第一测量结果解调第一下行信号,即执行步骤S513和步骤S514所示的内容。
S512:第二网络设备向终端设备发送第二指示信息。相应的,终端设备接收第二指示信息。
其中,第二指示信息可以是DCI信令,该第二指示信息可用于指示根据第一测量结果解调第一下行信号。例如,第二指示信息可以是DCI信令。第二网络设备可向终端设备发送DCI信令,该DCI信令中包括第二字段。第二网络设备可将第二字段配置为第一TRS的标识或第一TRS对应的TCI-State的编号等,用于指示根据第一测量结果解调第一下行信号。其中,第二字段可以包括TCI-State等。
S513:第二网络设备向终端设备发送第一下行信号。相应的,终端设备接收第一下行信号。
其中,第一下行信号可以是PDCCH,可以是PDSCH,还可以是PDCCH和PDSCH,本申请实施例对此并不限定。
S514:终端设备根据第一测量结果解调第一下行信号。
上述步骤S512至步骤S514的具体实现过程可分别参考图4中步骤S406至步骤S408所示得到内容,在此不再赘述。
在一种可能的实施方式中,在步骤S511之前,即在终端设备进行小区切换之前,第一网络设备广播第二TRS,终端设备接收第二TRS;第一网络设备可向终端设备发送第四 指示信息,终端设备接收第四指示信息,该第四指示信息可用于指示对第二TRS进行测量;终端设备根据第四指示信息,对第二TRS进行测量,得到第二测量结果;第一网络设备可向终端设备发送第五指示信息和第二下行信号,终端设备接收第五指示信息和第二下行信号,第五指示信息可用于指示根据第二测量结果解调第二下行信号;终端设备根据第二测量结果解调第二下行信号。采用这种方式,在终端设备进行小区切换之前,终端设备可同时完成对第一TRS的测量以及对第二TRS的测量,在减少完成小区切换后的初始阶段中终端设备完成对TRS测量的时间开销,提高对第一下行信号的解调性能,以及提高第二网络设备与终端设备之间的通信质量的同时,还保证了对第二下行信号的解调性能以及第一网络设备与终端设备之间的通信质量,提高了小区切换前后终端设备与网络设备之间的通信可靠性。
其中,第四指示信息可以是MAC-CE信令,第四指示信息中可包括第三信息,其中,第三信息中可包括第二TRS的标识、承载第二TRS的时频资源的信息或第二TRS对应的TCI-State的编号等中的至少一个。例如,第一网络设备可向终端设备发送MAC-CE信令,该MAC-CE信令中包括第二字段。第一网络设备可将该第二字段配置为第二TRS的标识或第二TRS对应的TCI-State的编号等,用以指示对第二TRS进行测量。第五指示信息可以是DCI信令,第五指示信息中可包括第三信息。例如,第一网络设备可向终端设备发送DCI信令,该DCI信令中包括第二字段。第一网络设备可将第二字段配置为第二TRS的标识或第二TRS对应的TCI-State的编号等,用以指示根据第二测量结果解调第二下行信号。其中,第二字段可以为TCI-State字段。第二下行信号可以是PDCCH,可以是PDSCH,还可以是PDCCH和PDSCH,本申请实施例对此并不限定。
需要说明的是,图5中的步骤S501至步骤S514的执行顺序仅为一种示例,本申请实施例对此并不限定。例如,第二网络设备可以在步骤S504之前广播第一TRS,也可以在步骤S505之后广播第一TRS,只要保证终端设备在进行小区切换之前接收到第一TRS即可。再例如,第一网络设备可以在步骤S508之后向终端设备发送第一指示信息,也可以在步骤S507之前向终端设备发送第一指示信息。
本申请的上述实施例中,当确定该终端设备将要进行小区切换之前,第一网络设备向终端设备发送第一指示信息,以指示终端设备对来自第二网络设备的第一TRS进行测量。在终端设备完成小区切换后的初始阶段中,第二网络设备向终端设备发送第一下行信号(或第二指示信息和第一下行信号),以使得终端设备根据第一TRS的测量结果解调第一下行信号。由于终端设备在进行小区切换之前已经完成了对第一TRS的测量,因此,当终端设备完成小区切换后的初始阶段无需再对第一TRS进行测量,可直接根据测量结果解调下行信号,从而能够节省完成小区切换后的初始阶段中终端设备获取测量结果的时间开销,可以避免因终端设备未及时补偿时偏和频偏而导致的解调性能下降的问题,从而提高第二网络设备与终端设备之间的通信质量。
示例2
图6为本申请实施例提供的另一种通信方法的流程示意图,其中,图6中的虚线为可选步骤。在示例2中,第一区域为第一网络设备与第二网络设备联合传输的区域,终端设备可在进入第一区域前完成对第一TRS的测量,以使得终端设备能够及时根据第一TRS的测量结果解调第二网络设备的第一下行信号,其中,步骤S601~S604、S608、S609、S611至S613分别与图5所述的步骤S501~S504、S509、S510、S512至S514相同,不同之处在 于:
S605:终端设备向第一网络设备发送第一RSRP。相应的,第一网络设备接收第一RSRP。
例如,终端设备可以周期性的向第一网络设备上报第一RSRP,第一网络设备接收第一RSRP,该第一RSRP可以为SRS的RSRP,第一网络设备可根据第一RSRP确定终端设备进入第一网络设备和第二网络设备的共同覆盖区域、且将要进入联合传输的区域进行联合传输。
S606:第一网络设备根据第一RSRP,确定终端设备进入第一网络设备和第二网络设备的共同覆盖区域、且将要进入联合传输的区域。
例如,第一网络设备可将第一RSRP与终端设备在一个或者多个邻区中的RSRP进行比较以确定终端设备是否进入第一网络设备和第二网络设备的共同覆盖区域、且将要进入联合传输的区域。如果连续多个周期的第一RSRP与终端设备在该一个或者多个邻区的RSRP之间的差值小于或等于第一阈值,则第一网络设备可确定该终端设备进入第一网络设备和第二网络设备的共同覆盖区域、且将要进入联合传输的区域。或者,如果连续多个周期的第一RSRP皆小于或等于终端设备在该一个或者多个邻区的RSRP,则第一网络设备可确定该终端设备进入第一网络设备和第二网络设备的共同覆盖区域、且将要进入联合传输的区域。
再例如,第一网络设备可将第一RSRP与终端设备在最强邻区中的RSRP进行比较以确定终端设备是否进入第一网络设备和第二网络设备的共同覆盖区域、且将要进入联合传输的区域。如果连续多个周期的第一RSRP与终端设备在最强邻区中的RSRP之间的差值小于或等于第一阈值,则第一网络设备可确定该终端设备进入第一网络设备和第二网络设备的共同覆盖区域、且将要进入联合传输的区域。其中,最强邻区可以为除了第一网络设备覆盖的小区(即第一小区)之外检测到的RSRP最好的小区。
其中,第一阈值可以大于第三阈值、且大于第四阈值。第三阈值可以为第一网络设备确定终端设备需要进行小区切换的阈值。例如,当连续多个周期的第一RSRP与终端设备在一个或多个邻区(或最强邻区)中的RSRP之前的差值小于或等于第三阈值时,第一网络设备确定终端设备需要进行小区切换。第四阈值可以为第一网络设备确定进行联合传输的阈值。例如,当连续多个周期的第一RSRP与终端设备在一个或多个邻区(或最强邻区)中的RSRP之前的差值小于或等于第四阈值时,第一网络设备确定进行联合传输。例如第四阈值可以为6dB。由于联合传输是在终端设备进入第一网络设备和第二网络设备的共同覆盖区域之后、终端设备进行小区切换之前进行的,第一阈值取值过小会导致第一网络设备未能在终端设备进入联合传输的区域之前向终端设备发送第一指示信息,使得终端设备在联合传输的初始阶段还需接收该第一指示信息或对第一TRS进行测量,从而降低对第一下行信号的解调性能,降低通信质量。因此,采用上述方式能够确保终端设备在进行联合传输之前完成对第一TRS的测量,使得终端设备能够在联合传输的初始阶段及时根据第一TSR的测量结果解调第一下行信号,从而可以提高对第一下行信号的解调性能,提高通信质量。
S607:第一网络设备获取第二信息。
例如,第二信息可包括第一TRS的标识、承载第一TRS的时频资源的信息或第一TRS对应的TCI-State的编号等信息的至少一个。由于第一区域为第一网络设备和第二网络设备联合传输的区域,联合传输的资源池中存储有该联合传输中各网络设备的相关信息(如各 网络设备的标识,各网络设备的TRS的标识,承载各网络设备的TRS的时频资源信息,或与各网络设备的TSR对应的TCI-State的编号等信息),因此第一网络设备可直接从联合传输的资源池中获取该第二信息,可以减少空口资源的开销,提高空口资源的利用率。
S610:终端设备进入第一区域。
例如,本示例2中第一区域为第一网络设备和第二网络设备联合传输的区域,如图1所示。终端设备进入第一区域,也即是终端设备进入第一网络设备和第二网络设备联合传输的区域,并进行联合传输。
在一种可能的实施方式中,在步骤S609之前,即在终端设备进入联合传输的区域之前,第一网络设备可以广播第二TRS,终端设备接收第二TRS;第一网络设备可向终端设备发送第四指示信息,终端设备接收第四指示信息,第四指示信可用于指示对第二TRS进行测量;终端设备根据第四指示信息,对第二TRS进行测量,得到第二测量结果;第一网络设备可向终端设备发送第五指示信息和第二下行信号,终端设备接收第五指示信息和第二下行信号,第五指示信息可用于指示根据第二测量结果解调第二下行信号;终端设备根据第二测量结果解调第二下行信号。采用这种方式,在终端设备进行联合传输的区域之前,终端设备可同时完成对第一TRS的测量以及对第二TRS的测量,在减少联合传输始阶段中终端设备完成对TRS测量的时间开销,提高对第一下行信号的解调性能,提高联合传输的通信质量的同时,还保证了对第二下行信号的解调性能以及第一网络设备与终端设备之间的通信质量,从而提高了通信可靠性。
需要说明的是,图6中的步骤S601至步骤S612的执行顺序仅为一种示例,本申请实施例对此并不限定。例如,第二网络设备可以在步骤S604之前广播第一TRS,也可以在步骤S604之后且步骤S609之前广播第一TRS。再例如,第二网络设备也可以在终端设备执行步骤S604的同时广播第一TRS。
本申请的上述实施例中,当确定该终端设备将要进行联合传输之前,第一网络设备向终端设备发送第一指示信息,以指示终端设备对来自第二网络设备的第一TRS进行测量。在终端设备进行联合传输的初始阶段,第二网络设备向终端设备发送第一下行信号(或第二指示信息和第一下行信号),以使得终端设备根据第一TRS的测量结果解调第一下行信号。由于终端设备在进行联合传输之前已经完成了对第一TRS的测量,因此,当终端设备进行联合传输的初始阶段无需再对第一TRS进行测量,可直接根据第一测量结果解调第一下行信号,从而能够节省联合传输的初始阶段中终端设备获取第一测量结果的时间开销,可以避免因终端设备未及时补偿时偏和频偏而导致对第一下行信号的解调性能下降的问题,从而提高通信质量。
上述本申请提供的实施例中,分别从第一网络设备、终端设备、第二网络设备、以及三者之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一网络设备、终端设备、第二网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图7示出了一种通信装置700的结构示意图。其中,通信装置700可以是上述图4~图6中任一个所示的实施例中的第一网络设备(或第二网络设备),能够实现本申请实施例提供的方法中第一网络设备(或第二网络设备)的功能;通信装置700也可以是能够支 持第一网络设备(或第二网络设备)实现本申请实施例提供的方法中第一网络设备(或第二网络设备)的功能的装置。通信装置700可以是硬件结构、软件模块、或硬件结构加软件模块。通信装置700可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置700可以包括处理模块701和收发模块702。
作为一个示例,当通信装置700为上述图4~图6中任一个所示的实施例中的第一网络设备时,处理模块701可以用于执行如图4所示的实施例中的步骤S402,或者执行如图5所示的实施例中的步骤S502、步骤505或步骤S506等,或者执行如图6所示的实施例中的步骤S602、步骤S606或者步骤S607等,或者指示收发模块702完成收发功能,和/或用于支持本文所描述的技术的其它过程。
收发模块702可以用于执行如图4所示的实施例中的步骤S403,或执行如图5所示的实施例中的步骤S501、步骤S503、步骤S507至步骤S509等,或执行如图6所示的实施例中的步骤S601、步骤S603、步骤S605、或步骤S608等,和/或用于支持本文所描述的技术的其它过程。
作为另一个示例,当通信装置700为上述图4~图6中任一个所示的实施例中的第二网络设备时,处理模块701可以用于执行如图4所示的实施例中的步骤S405,或者执行如图5所示的实施例中的步骤S511,或者执行如图6所示的实施例中的步骤S610,或者指示收发模块702完成收发功能,和/或用于支持本文所描述的技术的其它过程。
收发模块702可以用于执行如图4所示的实施例中的步骤S401、步骤S405至步骤S407等,或执行如图5所示的实施例中的步骤S504、步骤S507、步骤S508、步骤S512至步骤S513等,或执行如图6所示的实施例中的步骤S604、步骤S611或步骤S612等,和/或用于支持本文所描述的技术的其它过程。
收发模块702用于通信装置700和其它模块进行通信,其可以是电路、器件、接口、总线、软件模块、收发器或者其它任意可以实现通信的装置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,处理模块又可以称为处理单元、处理器、处理装置、或处理单板等,收发模块又可以称为通信模块、收发器、收发机、收发单元、或收发电路等,本申请实施例对此并不限定。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图8示出了一种通信装置800的结构示意图。其中,通信装置800可以上述图4~图6中任一个所示的实施例中的终端设备,能够实现本申请实施例提供的方法中终端设备的功能;通信装置800也可以是能够支持终端设备实现本申请实施例提供的方法中终端设备的功能的装置。通信装置800可以是硬件结构、软件模块、或硬件结构加软件模块。通信装置800可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置800可以包括处理模块801和收发模块802。
作为一个示例,处理模块801可以用于执行如图4所示的实施例中的步骤S404或步骤S408等,或执行如图5所示的实施例中的步骤S510或步骤S514等,或执行如图6所示的实施例中的步骤S609或步骤S613等,或指示收发模块802完成收发功能,和/或用于支持本文所描述的技术的其它过程。
收发模块802可以用于执行如图4所示的实施例中的步骤S401、步骤S403、步骤S406或步骤S407等,或执行如图5所示的实施例中的步骤S501、步骤S503、步骤S509、步骤S512或步骤S513等,或执行如图6所示的实施例中的步骤S601、步骤S603、步骤S605、步骤S608、步骤S611或步骤S612等,或指示收发模块802完成收发功能,和/或用于支持本文所描述的技术的其它过程。
收发模块802用于通信装置800和其它模块进行通信,其可以是电路、器件、接口、总线、软件模块、收发器或者其它任意可以实现通信的装置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,处理模块又可以称为处理单元、处理器、处理装置、或处理单板等,收发模块又可以称为通信模块、收发器、收发机、收发单元、或收发电路等,本申请实施例对此并不限定。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图9所示为本申请实施例提供的通信装置900,其中,通信装置900可以是图4~图6中任一个所示的实施例中的第一网络设备(或第二网络设备),能够实现本申请实施例提供的方法中第一网络设备(或第二网络设备)的功能;通信装置900也可以是能够支持第一网络设备(或第二网络设备)实现本申请实施例提供的方法中第一网络设备(或第二网络设备)的功能的装置。其中,该通信装置900可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发模块702可以为收发器,收发器集成在通信装置900中构成通信接口910。
通信装置900包括至少一个处理器920,用于实现或用于支持通信装置900实现本申请实施例提供的方法中第二终端设备的功能。示例性地,处理器920可以确定终端设备是否将要进入第一区域,具体参见方法示例中的详细描述,此处不做赘述。
通信装置900还可以包括至少一个存储器930,用于存储程序指令和/或数据。存储器930和处理器920耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器920可能和存储器930协同操作。处理器920可能执行存储器930中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置900还可以包括通信接口910,用于通过传输介质和其它设备进行通信,从而用于通信装置900中的装置可以和其它设备进行通信。示例性地,通信装置900为第一网络设备,该其它设备可以是第二网络设备或终端设备;或者,通信装置900为第二网络设备,该其它设备可以是第一网络设备或终端设备。处理器920可以利用通信接口910收 发数据。通信接口910具体可以是收发器。
本申请实施例中不限定上述通信接口910、处理器920以及存储器930之间的具体连接介质。本申请实施例在图9中以存储器930、处理器920以及通信接口910之间通过总线940连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器920可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器930可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
如图10所示为本申请实施例提供的通信装置1000,其中,通信装置1000可以是图4~图6中任一个所示的实施例中的终端设备,能够实现本申请实施例提供的方法中终端设备的功能;通信装置1000也可以是能够支持终端设备实现本申请实施例提供的方法中终端设备的功能的装置。其中,该通信装置1000可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发模块802可以为收发器,收发器集成在通信装置1000中构成通信接口1010。
通信装置1000包括至少一个处理器1020,用于实现或用于支持通信装置1000实现本申请实施例提供的方法中网络设备的功能。示例性地,处理器1020可以对第一TRS进行测量,得到第一测量结果,并根据第一测量结果解调第一下行信号,具体参见方法示例中的详细描述,此处不做赘述。
通信装置1000还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1000还可以包括通信接口1010,用于通过传输介质和其它设备进行通信,从而用于装置1000中的装置可以和其它设备进行通信。示例性地,该其它设备可以是第二终端设备。处理器1020可以利用通信接口1010收发数据。通信接口1010具体可以是收发器。
本申请实施例中不限定上述通信接口1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及通信接口1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示 意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1020可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1030可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例还提供一种通信装置1100,该通信装置1100可以是终端设备也可以是电路。该通信装置1100可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图11示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图11中,终端设备以手机作为例子。如图11所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图11所示,终端设备包括收发单元1110和处理单元1120。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器、处理单板,处理模块、或处理装置等。可选的,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元1110包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。
应理解,收发单元1110用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1120用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1110用于执行图4所示的实施例中的步骤S401、步骤S403、步骤S406或步骤S407等,和/或收发单元1110还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1120,用于执行图4所示的实施例中的步骤S404、步骤S408,和/或处理单元1120还用于执行本申请实施例中终端设备侧的其他处理步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图12所示的设备。作为一个例子,该设备可以完成类似于图10中处理器1020的功能。在图12中,该设备包括处理器1210,发送数据处理器1220,接收数据处理器1230。上述实施例中的处理模块801可以是图12中的该处理器1210,并完成相应的功能。上述实施例中的收发模块802可以是图12中的发送数据处理器1220,和/或接收数据处理器1230。虽然图12中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图13示出本实施例的另一种形式。处理装置1300中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1303,接口1304。其中处理器1303完成上述处理模块801的功能,接口1304完成上述收发模块802的功能。作为另一种变形,该调制子系统包括存储器1306、处理器1303及存储在存储器1306上并可在处理器上运行的程序,该处理器1303执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1306可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1300中,只要该存储器1306可以连接到所述处理器1303即可。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备侧的方法。
本实施例中的装置为网络设备时,该网络设备可以如图14所示,装置1400包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1410和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1420。所述RRU 1410可以称为收发模块,与图7中的收发模块702对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1411和射频单元1412。所述RRU 1410部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 1410部分主要用于进行基带处理,对基站进行控制等。所述RRU 1410与BBU 1420可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1420为基站的控制中心,也可以称为处理模块,可以与图6中的处理模块601对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1420可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1420还包括存储器1421和处理器1422。所述存储器1421用以存储必要的指令和数据。所述处理器1422用于控制基站进行必要的动作,例 如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1421和处理器1422可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行前述实施例中第一网络设备或第二网络设备执行的方法。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行前述实施例中终端设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行前述实施例中第一网络设备或第二网络设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行前述实施例中终端设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第一网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第二网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供了一种通信系统,所述通信系统包括前述第一网络设备,和/或,终端设备,和/或,第二网络设备。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (38)

  1. 一种通信方法,其特征在于,包括:
    第一网络设备确定终端设备将要进入第一区域,所述第一区域为所述终端设备从所述第一网络设备切换至第二网络设备的区域,或者所述第一区域为所述第一网络设备和第二网络设备联合传输的区域;
    在所述终端设备进入所述第一区域之前,所述第一网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示对所述第二网络设备的第一跟踪参考信号进行测量。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网络设备确定终端设备将要进入第一区域,包括:
    所述第一网络设备接收来自所述终端设备的第一参考信号接收质量的信息;
    当所述第一参考信号接收质量与所述终端设备在一个或者多个邻区中的参考信号接收质量之间的差值小于或等于第一阈值时,所述第一网络设备确定所述终端设备将要进入所述第一区域。
  3. 根据权利要求1所述的方法,其特征在于,所述第一网络设备确定终端设备将要进入第一区域,包括:
    所述第一网络设备根据所述终端设备的移动方向和所述第一网络设备所处的网络拓扑信息,确定所述终端设备将要进入第一区域。
  4. 根据权利要求1~3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收来自所述终端设备的第一信息,所述第一信息指示第一数量和第二数量,其中,所述第一数量为所述终端设备支持的同时激活的传输配置指示状态的数量,所述第二数量为所述终端设备支持的同时测量的跟踪参考信号的数量,所述传输配置指示状态用于指示跟踪参考信号与业务之间的对应关系;
    当所述第一数量大于或等于2、且所述第二数量大于或等于2时,所述第一网络设备确定所述终端设备具备根据所述第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,所述第二跟踪参考信号为所述第一网络设备的跟踪参考信号。
  5. 根据权利要求1~3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收来自所述终端设备的第三指示信息,所述第三指示信息用于指示所述终端设备具备根据所述第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,所述第二跟踪参考信号为所述第一网络设备的跟踪参考信号。
  6. 根据权利要求4或5所述的方法,其特征在于,
    根据所述第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏包括根据第一跟踪参考信号的测量结果增大晶体振荡器对时偏和频偏的滤波系数。
  7. 根据权利要求1~6中任一项所述的方法,其特征在于,所述第一指示信息包括所述第一跟踪参考信号的标识或承载所述第一跟踪参考信号的时频资源的信息中的至少一个。
  8. 根据权利要求7所述的方法,其特征在于,在所述终端设备进入所述第一区域之前,所述方法还包括:
    所述第一网络设备接收来自所述第二网络设备的第一消息,所述第一消息包括所述第 一指示信息。
  9. 根据权利要求8所述的方法,其特征在于,在接收来自所述第二网络设备的第一消息之前,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送第二消息,所述第二消息用于请求所述第一指示信息。
  10. 一种通信方法,其特征在于,包括:
    在终端设备进入第一区域之前,所述终端设备接收来自第一网络设备的第一指示信息,所述第一指示信息用于指示对第二网络设备的第一跟踪参考信号进行测量,其中,所述第一区域为所述终端设备从所述第一网络设备切换至所述第二网络设备的区域,或者所述第一区域为所述第一网络设备与所述第二网络设备联合传输的区域;
    所述终端设备对所述第一跟踪参考信号进行测量,得到第一测量结果;
    在所述终端设备进入第一区域之后,所述终端设备接收来自所述第二网络设备的第一下行信号;
    所述终端设备根据所述第一测量结果解调所述第一下行信号。
  11. 根据权利要求10所述的方法,其特征在于,在所述终端设备进入第一区域之后,所述方法还包括:
    所述终端设备接收来自所述第二网络设备的第二指示信息,所述第二指示信息用于指示根据所述第一测量结果解调所述第一下行信号。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述第一网络设备发送第一参考信号接收质量的信息,所述第一参考信号接收质量的信息用于确定所述终端设备将要进入所述第一区域。
  13. 根据权利要求10~12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述第一网络设备发送第一信息,所述第一信息指示第一数量和第二数量,所述第一信息用于确定所述终端设备具备根据所述第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,其中,所述第一数量为所述终端设备支持的同时激活的传输配置指示状态的数量,所述第二数量为所述终端设备支持的同时测量的跟踪参考信号的数量,所述传输配置指示状态用于指示跟踪参考信号与业务之间的对应关系,所述第二跟踪参考信号为所述第一网络设备的跟踪参考信号。
  14. 根据权利要求10~12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述第一网络设备发送第三指示信息,所述第三指示信息用于指示所述终端设备具备根据所述第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,所述第二跟踪参考信号为所述第一网络设备的跟踪参考信号。
  15. 根据权利要求13或14所述的方法,其特征在于,
    根据所述第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏包括根据所述第一测量结果增大晶体振荡器对时偏和频偏的滤波系数。
  16. 一种通信方法,其特征在于,包括:
    在终端设备进入第一区域之前,第二网络设备向第一网络设备发送第一消息,所述第一消息包括第一指示信息,所述第一指示信息包括所述第一跟踪参考信号的标识或承载所述第一跟踪参考信号的时频资源的信息中的至少一个,所述第一区域为所述终端设备从所述第一网络设备切换至第二网络设备的区域,或者所述第一区域为所述第一网络设备和第 二网络设备联合传输的区域,所述第一指示信息用于终端设备对所述第一跟踪参考信号进行测量得到第一测量结果;
    在所述终端设备进入所述第一区域之后,所述第二网络设备向所述终端设备发送第二指示信息和第一下行信号,所述第二指示信息用于指示根据所述第一测量结果解调所述第一下行信号。
  17. 根据权利要求16所述的方法,其特征在于,在第二网络设备向第一网络设备发送第一消息之前,所述方法还包括:
    所述第二网络设备接收来自所述第一网络设备的第二消息,所述第二消息用于请求所述第一指示信息。
  18. 一种通信装置,其特征在于,包括:
    处理模块,用于确定终端设备将要进入第一区域,所述第一区域为所述终端设备从所述第一网络设备切换至第二网络设备的区域,或者所述第一区域为所述第一网络设备和第二网络设备联合传输的区域;
    收发模块,用于在所述终端设备进入所述第一区域之前,向所述终端设备发送第一指示信息,所述第一指示信息用于指示对所述第二网络设备的第一跟踪参考信号进行测量。
  19. 根据权利要求18所述的通信装置,其特征在于,所述收发模块,具体用于:
    接收来自所述终端设备的第一参考信号接收质量的信息;
    所述处理模块,具体用于:
    当所述第一参考信号接收质量与所述终端设备在一个或者多个邻区中的参考信号接收质量之间的差值小于或等于第一阈值时,确定所述终端设备将要进入所述第一区域。
  20. 根据权利要求18所述的通信装置,其特征在于,所述处理模块,具体用于:
    根据所述终端设备的移动方向和所述第一网络设备所处的网络拓扑信息,确定所述终端设备将要进入第一区域。
  21. 根据权利要求18~20中任一项所述的通信装置,其特征在于,所述收发模块,进一步用于:
    接收来自所述终端设备的第一信息,所述第一信息指示第一数量和第二数量,其中,所述第一数量为所述终端设备支持的同时激活的传输配置指示状态的数量,所述第二数量为所述终端设备支持的同时测量的跟踪参考信号的数量,所述传输配置指示状态用于指示跟踪参考信号与业务之间的对应关系;
    所述处理模块,进一步用于:
    当所述第一数量大于或等于2、且所述第二数量大于或等于2时,确定所述终端设备具备根据所述第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,所述第二跟踪参考信号为所述第一网络设备的跟踪参考信号。
  22. 根据权利要求18~20中任一项所述的通信装置,其特征在于,所述收发模块,进一步用于:
    接收来自所述终端设备的第三指示信息,所述第三指示信息用于指示所述终端设备具备根据所述第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,所述第二跟踪参考信号为所述第一网络设备的跟踪参考信号。
  23. 根据权利要求21或22所述的通信装置,其特征在于,
    根据所述第一跟踪参考信号的测量结果和第二跟踪参考信号的测量结果补偿时偏和 频偏包括根据所述第一跟踪参考信号的测量结果增大晶体振荡器对时偏和频偏的滤波系数。
  24. 根据权利要求18~23中任一项所述的通信装置,其特征在于,所述第一指示信息包括所述第一跟踪参考信号的标识或承载所述第一跟踪参考信号的时频资源的信息中的至少一个。
  25. 根据权利要求24所述的通信装置,其特征在于,在所述终端设备进入所述第一区域之前,所述收发模块,进一步用于:
    接收来自所述第二网络设备的第一消息,所述第一消息包括所述第一指示信息。
  26. 根据权利要求25所述的通信装置,其特征在于,在接收来自所述第二网络设备的第一消息之前,所述收发模块,进一步用于:
    向所述第二网络设备发送第二消息,所述第二消息用于请求所述第一指示信息。
  27. 一种通信装置,其特征在于,包括:
    收发模块,用于在终端设备进入第一区域之前,接收来自第一网络设备的第一指示信息,所述第一指示信息用于指示对第二网络设备的第一跟踪参考信号进行测量,其中,所述第一区域为所述终端设备从所述第一网络设备切换至所述第二网络设备的区域,或者所述第一区域为所述第一网络设备与所述第二网络设备联合传输的区域;
    处理模块,用于对所述第一跟踪参考信号进行测量,得到第一测量结果;
    所述收发模块,还用于在所述终端设备进入第一区域之后,接收来自所述第二网络设备的第一下行信号;
    所述处理模块,还用于根据所述第一测量结果解调所述第一下行信号。
  28. 根据权利要求27所述的通信装置,其特征在于,在所述终端设备进入第一区域之后,所述收发模块,进一步用于:
    接收来自所述第二网络设备的第二指示信息,所述第二指示信息用于指示根据所述第一测量结果解调所述第一下行信号。
  29. 根据权利要求27或28所述的通信装置,其特征在于,所述收发模块,进一步用于:
    向所述第一网络设备发送第一参考信号接收质量的信息,所述第一参考信号接收质量的信息用于确定所述终端设备将要进入所述第一区域。
  30. 根据权利要求27~29中任一项所述的通信装置,其特征在于,所述收发模块,进一步用于:
    向所述第一网络设备发送第一信息,所述第一信息指示第一数量和第二数量,所述第一信息用于确定所述终端设备具备根据所述第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,其中,所述第一数量为所述终端设备支持的同时激活的传输配置指示状态的数量,所述第二数量为所述终端设备支持的同时测量的跟踪参考信号的数量,所述传输配置指示状态用于指示跟踪参考信号与业务之间的对应关系,所述第二跟踪参考信号为所述第一网络设备的跟踪参考信号。
  31. 根据权利要求27~29中任一项所述的通信装置,其特征在于,所述收发模块,进一步用于:
    向所述第一网络设备发送第三指示信息,所述第三指示信息用于指示所述终端设备具备根据所述第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏的能力,所述第 二跟踪参考信号为所述第一网络设备的跟踪参考信号。
  32. 根据权利要求30或31所述的通信装置,其特征在于,
    根据所述第一测量结果和第二跟踪参考信号的测量结果补偿时偏和频偏包括根据所述第一测量结果增大晶体振荡器对时偏和频偏的滤波系数。
  33. 一种通信装置,其特征在于,包括:
    收发模块,用于在终端设备进入第一区域之前,向第一网络设备发送第一消息,所述第一消息包括第一指示信息,所述第一指示信息包括所述第一跟踪参考信号的标识或承载所述第一跟踪参考信号的时频资源的信息中的至少一个,所述第一区域为所述终端设备从所述第一网络设备切换至第二网络设备的区域,或者所述第一区域为所述第一网络设备和第二网络设备联合传输的区域,所述第一指示信息用于终端设备对所述第一跟踪参考信号进行测量得到第一测量结果;
    所述收发模块还用于,在所述终端设备进入所述第一区域之后,向所述终端设备发送第二指示信息和第一下行信号,所述第二指示信息用于指示根据所述第一测量结果解调所述第一下行信号。
  34. 根据权利要求33所述的通信装置,其特征在于,在第二网络设备向第一网络设备发送第一消息之前,所述收发模块,进一步用于:
    接收来自所述第一网络设备的第二消息,所述第二消息用于请求所述第一指示信息。
  35. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至9中任一项所述的方法,或如权利要求16或17所述的方法。
  36. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求10至15中任一项所述的方法。
  37. 一种通信系统,其特征在于,包括如权利要求18至26中任一项所述的通信装置,和/或,如权利要求27至32中任一项所述的通信装置,和/或,如权利要求33或34所述的通信装置。
  38. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至17中任一项所述的方法。
PCT/CN2020/106449 2020-07-31 2020-07-31 一种通信方法、装置及系统 WO2022021444A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20947216.6A EP4181596B1 (en) 2020-07-31 2020-07-31 Communication method, apparatus, and system
CA3190146A CA3190146A1 (en) 2020-07-31 2020-07-31 Communication method, apparatus, and system
CN202080104692.8A CN116250316A (zh) 2020-07-31 2020-07-31 一种通信方法、装置及系统
PCT/CN2020/106449 WO2022021444A1 (zh) 2020-07-31 2020-07-31 一种通信方法、装置及系统
US18/162,585 US20230180093A1 (en) 2020-07-31 2023-01-31 Communication method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106449 WO2022021444A1 (zh) 2020-07-31 2020-07-31 一种通信方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/162,585 Continuation US20230180093A1 (en) 2020-07-31 2023-01-31 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022021444A1 true WO2022021444A1 (zh) 2022-02-03

Family

ID=80037418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106449 WO2022021444A1 (zh) 2020-07-31 2020-07-31 一种通信方法、装置及系统

Country Status (5)

Country Link
US (1) US20230180093A1 (zh)
EP (1) EP4181596B1 (zh)
CN (1) CN116250316A (zh)
CA (1) CA3190146A1 (zh)
WO (1) WO2022021444A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024073992A1 (en) * 2023-02-01 2024-04-11 Lenovo (Beijing) Ltd. User equipment handover in a wireless network using a medium access control control element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119729659A (zh) * 2023-09-28 2025-03-28 华为技术有限公司 一种通信方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150063140A1 (en) * 2012-03-28 2015-03-05 Lg Electronics Inc. Method for measuring channel using tracking reference signal in wireless communication system and device using same
CN108633037A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 无线通信的方法、网络设备和终端设备
CN109561489A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 一种带宽部分配置方法、装置及设备
CN110447212A (zh) * 2017-03-22 2019-11-12 Idac控股公司 用于下一代无线通信系统的信道状态信息参考信号的方法、装置、系统、架构及接口
CN110636567A (zh) * 2018-06-22 2019-12-31 中兴通讯股份有限公司 一种切换评估、报告方法、装置及基站
CN110662266A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 Iab节点的切换方法、iab节点和宿主基站
US20200146107A1 (en) * 2017-03-24 2020-05-07 Intel IP Corporation Tracking reference signals for new radio

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10609610B2 (en) * 2017-05-04 2020-03-31 Ofinno, Llc Beam-based mobility setting change

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150063140A1 (en) * 2012-03-28 2015-03-05 Lg Electronics Inc. Method for measuring channel using tracking reference signal in wireless communication system and device using same
CN110447212A (zh) * 2017-03-22 2019-11-12 Idac控股公司 用于下一代无线通信系统的信道状态信息参考信号的方法、装置、系统、架构及接口
CN108633037A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 无线通信的方法、网络设备和终端设备
US20200146107A1 (en) * 2017-03-24 2020-05-07 Intel IP Corporation Tracking reference signals for new radio
CN109561489A (zh) * 2017-09-26 2019-04-02 华为技术有限公司 一种带宽部分配置方法、装置及设备
CN110636567A (zh) * 2018-06-22 2019-12-31 中兴通讯股份有限公司 一种切换评估、报告方法、装置及基站
CN110662266A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 Iab节点的切换方法、iab节点和宿主基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4181596A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024073992A1 (en) * 2023-02-01 2024-04-11 Lenovo (Beijing) Ltd. User equipment handover in a wireless network using a medium access control control element

Also Published As

Publication number Publication date
US20230180093A1 (en) 2023-06-08
EP4181596B1 (en) 2024-10-30
EP4181596A1 (en) 2023-05-17
CN116250316A (zh) 2023-06-09
CA3190146A1 (en) 2022-02-03
EP4181596A4 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
JP7147790B2 (ja) 電子機器、無線通信装置、及び無線通信方法
US20220407639A1 (en) Information communication method and device
US20240306123A1 (en) Positioning method and device
US20230254801A1 (en) Tracking area code transmission in non-terrestrial networks
US20230180093A1 (en) Communication method, apparatus, and system
US20230022283A1 (en) Apparatus, method and computer program for ue cell selection control in non-terrestrial networks
JP7470217B2 (ja) 情報伝送方法及び装置、関連機器並びに記憶機器
WO2022047805A1 (en) Methods, apparatuses and computer readable media for integrated access and backhaul communication
WO2019214333A1 (zh) 通信方法及装置
US20250119259A1 (en) Method and apparatus for wireless communication
WO2018063083A1 (en) Methods to inform ue of idle mode ss identity
RU2741328C1 (ru) Способ произвольного доступа, оконечное устройство и сетевое устройство
JP7527895B2 (ja) 分散局、集約局、端末、および通信方法
CN117223248A (zh) 测量间隙增强
CN116057978A (zh) 收发器设备、网络实体和基站
US12225572B2 (en) Configuration for in-X subnetworks
US20240334223A1 (en) Communication method and apparatus
US20240155521A1 (en) Method for time synchronization and user equipment
US20240314882A1 (en) Communication method, terminal device, and network device
US9462418B2 (en) Augmentation of call data information to determine a location of a wireless communication device
WO2025035398A1 (zh) 无线通信的方法、终端设备及网络设备
WO2024243854A1 (zh) 无线通信的方法和通信装置
WO2024207225A1 (zh) 无线通信的方法和装置
CN119547551A (zh) 无线通信的方法、终端设备和网络设备
WO2024026646A1 (zh) 小区配置方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3190146

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020947216

Country of ref document: EP

Effective date: 20230213

NENP Non-entry into the national phase

Ref country code: DE