[go: up one dir, main page]

WO2022009312A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022009312A1
WO2022009312A1 PCT/JP2020/026569 JP2020026569W WO2022009312A1 WO 2022009312 A1 WO2022009312 A1 WO 2022009312A1 JP 2020026569 W JP2020026569 W JP 2020026569W WO 2022009312 A1 WO2022009312 A1 WO 2022009312A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
port
state
switching valve
compressor
Prior art date
Application number
PCT/JP2020/026569
Other languages
French (fr)
Japanese (ja)
Inventor
孔明 仲島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2020457289A priority Critical patent/AU2020457289B2/en
Priority to EP20944786.1A priority patent/EP4180742A4/en
Priority to JP2022534537A priority patent/JP7357793B2/en
Priority to US17/922,545 priority patent/US20230175744A1/en
Priority to PCT/JP2020/026569 priority patent/WO2022009312A1/en
Priority to CN202080102589.XA priority patent/CN115803571A/en
Publication of WO2022009312A1 publication Critical patent/WO2022009312A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • Patent Document 1 discloses a refrigerating cycle apparatus including a compressor, a first heat exchanger, a decompression device, a second heat exchanger, and a refrigerant circuit having a flow path switching valve. Has been done.
  • this refrigeration cycle device the first operation in which the refrigerant is circulated in the order of the compressor, the first heat exchanger, the decompression device, and the second heat exchanger by switching the state of the flow path switching valve, and the compressor. It is possible to switch between the second heat exchanger, the decompressor, and the second operation in which the refrigerant is circulated in this order in the order of the first heat exchanger.
  • the pressure distribution of the refrigerant differs between the first operation and the second operation described above. Specifically, in the first operation, the high-pressure refrigerant is distributed in the first heat exchanger and the low-pressure refrigerant is distributed in the second heat exchanger, while in the second operation, the high-pressure refrigerant is distributed in the second heat exchanger. Then, the low-pressure refrigerant is distributed in the first heat exchanger. Therefore, when switching from one of the first operation and the second operation to the other, the pressure distribution of the refrigerant is disrupted, and as a result, the time required for the refrigeration cycle to stabilize after the operation switching becomes long. Is a concern.
  • the refrigeration cycle apparatus includes a first operation in which a compressor, a first heat exchanger, a decompression device, and a second heat exchanger are circulated in this order, a compressor, a second heat exchanger, a decompression device, and a decompression cycle apparatus. It is a refrigeration cycle device that can switch the operation between the second operation that circulates the refrigerant in the order of the first heat exchanger, the discharge port of the compressor, one port of the first heat exchanger, and the second heat exchange.
  • the first switching valve connected to one port of the vessel and one port of the decompressor, the suction port of the compressor, the other port of the first heat exchanger, the other port of the second heat exchanger, and It is connected to the other port of the decompression device and includes a second switching valve and a control device for controlling the first switching valve and the second switching valve.
  • the first switching valve is the first state in which one port of the second heat exchanger and one port of the decompression device are connected while connecting the discharge port of the compressor and one port of the first heat exchanger. , Switching to either the second state where one port of the first heat exchanger and one port of the decompression device are connected while connecting the discharge port of the compressor and one port of the second heat exchanger. It is configured to be possible.
  • the control device When switching to the second operation is requested during the first operation, the control device performs the first switching operation in which the first switching valve is set to the second state and the second switching valve is set to the fifth state, and the first switching operation is performed. After the operation is performed, the operation of the refrigeration cycle device is switched to the second operation.
  • the refrigeration cycle device capable of switching the operation between the second operation in which the refrigerant is circulated in the order of the heat exchanger the time required for the refrigeration cycle to stabilize after the operation switching can be shortened.
  • FIG. It is a figure which shows typically an example of the whole structure of the refrigerating cycle apparatus by Embodiment 1.
  • FIG. It is a perspective view which shows an example of the internal structure of the 2nd switching valve. It is a figure which shows the rotation position of the valve body when the 2nd switching valve is a 3rd state. It is a figure which shows the rotation position of the valve body when the 2nd switching valve is a 4th state. It is a figure which shows the rotation position of the valve body when the 2nd switching valve is in the 5th state. It is a figure (the 1) which shows the state in the 1st cooling operation of a refrigerant circuit. It is a figure (the 1) which shows the state in the 2nd cooling operation of a refrigerant circuit.
  • the refrigerant circuit RC connects the compressor 10, the first heat exchanger 20, the decompression device 30, and the second heat exchanger 40 by pipes 51 to 58, a first switching valve 60, and a second switching valve 70. , It constitutes a circulation flow path in which the refrigerant circulates.
  • a refrigerant with a phase change such as carbon dioxide and R410A circulates inside the refrigerant circuit RC.
  • the decompression device 30 decompresses the high-pressure refrigerant.
  • a device provided with a valve body whose opening degree can be adjusted in response to a command from the control device 100 for example, an electronically controlled expansion valve can be used.
  • the pipe 51 is connected to the pipe 56 and the pipe 52 is connected to the pipe 55.
  • the discharge port of the compressor 10 is connected to one port of the second heat exchanger 40, and one port of the first heat exchanger 20 is connected to one port of the decompression device 30.
  • the second switching valve 70 has a port connected to the suction port of the compressor 10 via the pipe 58, a port connected to the other port of the first heat exchanger 20 via the pipe 53, and the pipe 57. It is a four-way valve having a port connected to the other port of the second heat exchanger 40 via a pipe 54 and a port connected to the other port of the decompression device 30 via a pipe 54.
  • the pipe 57 is connected to the pipe 54 and the pipe 53 is connected to the pipe 58.
  • the other port of the second heat exchanger 40 is connected to the other port of the decompression device 30, and the other port of the first heat exchanger 20 is connected to the suction port of the compressor 10.
  • FIG. 6 is a diagram showing a state of the refrigerant circuit RC during the first cooling operation.
  • the control device 100 operates the compressor 10 and puts the first switching valve 60 in the first state and the second switching valve 70 in the third state.
  • the control device 100 determines that switching to the first cooling operation is requested, and switches to the first cooling operation.
  • the first heat exchanger 20 that has functioned as an evaporator now functions as a condenser, so that the frost adhering to the first heat exchanger 20 can be removed.
  • the control device 100 sets the first switching valve 60 before switching to the second cooling operation.
  • the "first switching operation" in which the second switching valve 70 is set to the fifth state in the second state is performed for a certain period of time.
  • FIG. 11 is a diagram showing a state of the refrigerant circuit RCA during the first cooling operation.
  • FIG. 12 is a diagram showing a state of the refrigerant circuit RCA during the first switching operation.
  • FIG. 13 is a diagram showing a state of the refrigerant circuit RCA during the second cooling operation.
  • FIG. 14 is a diagram showing a state of the refrigerant circuit RCA during the second switching operation.
  • the indoor air is blown in the order of the second heat exchanger 40 and the third heat exchanger 42 during the first cooling operation. Therefore, of the second heat exchanger 40 and the third heat exchanger 42 that function as an evaporator during the first cooling operation (that is, frost may adhere to them), they function as a condenser after switching to the second cooling operation. It is possible to positively attach frost to the second heat exchanger 40 and make it difficult for frost to adhere to the third heat exchanger 42, which functions as an evaporator even after switching to the second cooling operation. As a result, when the second cooling operation is subsequently switched to defrost, only the second heat exchanger 40 to which a large amount of frost is attached can be defrosted, so that efficient defrosting operation can be performed. can.
  • the moisture in the room air is adsorbed by the adsorbent of the first heat exchanger 20 as it passes through the first heat exchanger 20. Therefore, the indoor air blown to the third heat exchanger 42 after passing through the first heat exchanger 20 is in a dry state. As a result, it is possible to prevent frost from adhering to the third heat exchanger 42.
  • Embodiment 3. 15 to 18 schematically show an example of the configuration of the refrigerant circuit RCb of the refrigeration cycle apparatus according to the third embodiment.
  • the refrigerant circuit RCb according to the third embodiment is an addition of the fourth heat exchanger 44 to the refrigerant circuit RCA according to the second embodiment described above.
  • Other configurations of the refrigerant circuit RCb are the same as those of the refrigerant circuit RCA.
  • other configurations and operations of the refrigerating cycle apparatus according to the third embodiment are the same as those of the refrigerating cycle apparatus 1 shown in FIG. 1 above.
  • the fourth heat exchanger 44 is arranged between the discharge port of the compressor 10 and the first switching valve 60.
  • the fourth heat exchanger 44 exchanges heat between the refrigerant discharged from the compressor 10 and the external air.
  • the states of the compressor 10, the first switching valve 60, the second switching valve 70, the first blower device 80, and the second blower device 90 during each operation are basically controlled in the same manner as in the second embodiment described above. Will be done.
  • the indoor air is brought into the second heat exchanger 40 and the third heat by operating the fans 81 and 91 and setting the air passage switches 83, 83a and 83b to the states shown in FIG.
  • the first heat exchanger 20 can be the destination for blowing the outdoor air while blowing the air in the order of the exchanger 42.
  • the air passage switches 83, 83a, 83b are brought into the state shown in FIG. 22 while operating the fans 81, 91, so that the indoor air is brought into the first heat exchangers 20, the third.
  • the second heat exchanger 40 can be the destination of the outdoor air while blowing air in the order of the heat exchanger 42.
  • FIG. 23 and 24 are diagrams showing configuration examples of the first blower 80A and the second blower 90B suitable for the refrigeration cycle device according to the third embodiment described above. Note that FIG. 23 shows a state during the first cooling operation according to the third embodiment (see FIG. 15), and FIG. 24 shows a state during the second cooling operation according to the third embodiment (see FIG. 17).
  • Refrigeration cycle device 10 compressor, 20 1st heat exchanger, 30, 32 decompression device, 40 2nd heat exchanger, 42 3rd heat exchanger, 44 4th heat exchanger, 51-58 piping, 60th 1 switching valve, 70 2nd switching valve, 71 container, 72 valve body, 73-75 flow path, 76 rotary shaft, 80, 80A 1st blower, 81, 91 fan, 82, 82a, 82b, 92, 92a, 92b, 92c, 92d air passage, 83, 83a, 83b air passage switch, 90, 90A second blower, 100 control device, RC, RCa, RCb refrigerant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This refrigeration cycle device is provided with a compressor (10), a first heat exchanger (20), a decompression device (30), a second heat exchanger (40), a first switching valve (60), a second switching valve (70), and a control device. The first switching valve is switched to either a first state for connecting a discharge port of the compressor to the first heat exchanger, or a second state for connecting the discharge port of the compressor to the second heat exchanger. The second switching valve is switched to any of a third state for connecting an intake port of the compressor to the second heat exchanger, a fourth state for connecting the intake port of the compressor to the first heat exchanger, and a fifth state for connecting the intake port of the compressor to the decompression device. If, during a first cooling operation for bringing the first switching valve and the second switching valve into the first state and the third state, respectively, a request has been made to switch to a second cooling operation for bringing the first switching valve and the second switching valve into the second state and the fourth state, respectively, then the control device performs a first switching operation for bringing the first switching valve into the second state and the second switching valve into the fifth state, and thereafter a switch is made to the second cooling operation.

Description

冷凍サイクル装置Refrigeration cycle device
 本開示は、冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
 特開2005-134099号公報(特許文献1)には、圧縮機、第1熱交換器、減圧装置、第2熱交換器、および流路切替弁を有する冷媒回路を備えた冷凍サイクル装置が開示されている。この冷凍サイクル装置においては、流路切替弁の状態を切替えることによって、圧縮機、第1熱交換器、減圧装置、および第2熱交換器の順に冷媒を循環させる第1運転と、圧縮機、第2熱交換器、減圧装置、および第1熱交換器の順に冷媒を循環させる第2運転とを切替えることができる。 Japanese Unexamined Patent Publication No. 2005-134099 (Patent Document 1) discloses a refrigerating cycle apparatus including a compressor, a first heat exchanger, a decompression device, a second heat exchanger, and a refrigerant circuit having a flow path switching valve. Has been done. In this refrigeration cycle device, the first operation in which the refrigerant is circulated in the order of the compressor, the first heat exchanger, the decompression device, and the second heat exchanger by switching the state of the flow path switching valve, and the compressor. It is possible to switch between the second heat exchanger, the decompressor, and the second operation in which the refrigerant is circulated in this order in the order of the first heat exchanger.
特開2005-134099号公報Japanese Unexamined Patent Publication No. 2005-134099
 上述の第1運転と第2運転とでは、冷媒の圧力分布が異なる。具体的には、第1運転では高圧冷媒が第1熱交換器に分布し低圧冷媒が第2熱交換器に分布する状態となる一方、第2運転では高圧冷媒が第2熱交換器に分布し低圧冷媒が第1熱交換器に分布する状態となる。そのため、第1運転および第2運転の一方から他方に切替える際には、冷媒の圧力分布が崩れることになり、その影響で運転切替後に冷凍サイクルが安定するまでに要する時間が長くなってしまうことが懸念される。 The pressure distribution of the refrigerant differs between the first operation and the second operation described above. Specifically, in the first operation, the high-pressure refrigerant is distributed in the first heat exchanger and the low-pressure refrigerant is distributed in the second heat exchanger, while in the second operation, the high-pressure refrigerant is distributed in the second heat exchanger. Then, the low-pressure refrigerant is distributed in the first heat exchanger. Therefore, when switching from one of the first operation and the second operation to the other, the pressure distribution of the refrigerant is disrupted, and as a result, the time required for the refrigeration cycle to stabilize after the operation switching becomes long. Is a concern.
 本開示は、上述の課題を解決するためになされたものであって、その目的は、圧縮機、第1熱交換器、減圧装置、および第2熱交換器の順に冷媒を循環させる第1運転と、圧縮機、第2熱交換器、減圧装置、および第1熱交換器の順に冷媒を循環させる第2運転との間で運転を切替可能な冷凍サイクル装置において、運転切替後に冷凍サイクルが安定するまでに要する時間を短縮することである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is a first operation in which a compressor, a first heat exchanger, a decompression device, and a second heat exchanger are circulated in this order. In the refrigeration cycle device that can switch the operation between the compressor, the second heat exchanger, the decompression device, and the second operation that circulates the refrigerant in the order of the first heat exchanger, the refrigeration cycle is stable after the operation switching. It is to reduce the time required to do so.
 本開示による冷凍サイクル装置は、圧縮機、第1熱交換器、減圧装置、および第2熱交換器の順に冷媒を循環させる第1運転と、圧縮機、第2熱交換器、減圧装置、および第1熱交換器の順に冷媒を循環させる第2運転との間で運転を切替可能な冷凍サイクル装置であって、圧縮機の吐出ポート、第1熱交換器の一方のポート、第2熱交換器の一方のポート、および減圧装置の一方のポートに接続される第1切替弁と、圧縮機の吸入ポート、第1熱交換器の他方のポート、第2熱交換器の他方のポート、および減圧装置の他方のポートに接続され第2切替弁と、第1切替弁および第2切替弁を制御する制御装置とを備える。 The refrigeration cycle apparatus according to the present disclosure includes a first operation in which a compressor, a first heat exchanger, a decompression device, and a second heat exchanger are circulated in this order, a compressor, a second heat exchanger, a decompression device, and a decompression cycle apparatus. It is a refrigeration cycle device that can switch the operation between the second operation that circulates the refrigerant in the order of the first heat exchanger, the discharge port of the compressor, one port of the first heat exchanger, and the second heat exchange. The first switching valve connected to one port of the vessel and one port of the decompressor, the suction port of the compressor, the other port of the first heat exchanger, the other port of the second heat exchanger, and It is connected to the other port of the decompression device and includes a second switching valve and a control device for controlling the first switching valve and the second switching valve.
 第1切替弁は、圧縮機の吐出ポートと第1熱交換器の一方のポートとを接続しつつ第2熱交換器の一方のポートと減圧装置の一方のポートとを接続する第1状態と、圧縮機の吐出ポートと第2熱交換器の一方のポートとを接続しつつ第1熱交換器の一方のポートと減圧装置の一方のポートとを接続する第2状態とのどちらかに切替可能に構成される。 The first switching valve is the first state in which one port of the second heat exchanger and one port of the decompression device are connected while connecting the discharge port of the compressor and one port of the first heat exchanger. , Switching to either the second state where one port of the first heat exchanger and one port of the decompression device are connected while connecting the discharge port of the compressor and one port of the second heat exchanger. It is configured to be possible.
 第2切替弁は、第1熱交換器の他方のポートと減圧装置の他方のポートとを接続しつつ第2熱交換器の他方のポートと圧縮機の吸入ポートとを接続する第3状態と、第2熱交換器の他方のポートと減圧装置の他方のポートとを接続しつつ第1熱交換器の他方のポートと圧縮機の吸入ポートとを接続する第4状態と、減圧装置の他方のポートと圧縮機の吸入ポートとを接続しつつ第1熱交換器の他方のポートと第2熱交換器の他方のポートとを遮断する第5状態とのいずれかに切替可能に構成される。 The second switching valve has a third state of connecting the other port of the first heat exchanger and the other port of the decompressor while connecting the other port of the second heat exchanger and the suction port of the compressor. , The fourth state of connecting the other port of the first heat exchanger and the suction port of the compressor while connecting the other port of the second heat exchanger and the other port of the decompressor, and the other of the decompressor. It is possible to switch between the fifth state and the fifth state in which the other port of the first heat exchanger and the other port of the second heat exchanger are cut off while connecting the port of the compressor and the suction port of the compressor. ..
 制御装置は、第1運転中において第1切替弁を第1状態にし第2切替弁を第3状態にし、第2運転中において第1切替弁を第2状態にし第2切替弁を第4状態にする。 In the control device, the first switching valve is in the first state and the second switching valve is in the third state during the first operation, the first switching valve is in the second state and the second switching valve is in the fourth state during the second operation. To.
 制御装置は、第1運転中に第2運転への切替が要求された場合、第1切替弁を第2状態にし第2切替弁を第5状態にする第1切替運転を行ない、第1切替運転を行なった後に冷凍サイクル装置の運転を第2運転に切替える。 When switching to the second operation is requested during the first operation, the control device performs the first switching operation in which the first switching valve is set to the second state and the second switching valve is set to the fifth state, and the first switching operation is performed. After the operation is performed, the operation of the refrigeration cycle device is switched to the second operation.
 本開示によれば、圧縮機、第1熱交換器、減圧装置、および第2熱交換器の順に冷媒を循環させる第1運転と、圧縮機、第2熱交換器、減圧装置、および第1熱交換器の順に冷媒を循環させる第2運転との間で運転を切替可能な冷凍サイクル装置において、運転切替後に冷凍サイクルが安定するまでに要する時間を短縮することができる。 According to the present disclosure, the first operation of circulating the refrigerant in the order of the compressor, the first heat exchanger, the decompression device, and the second heat exchanger, and the compressor, the second heat exchanger, the decompression device, and the first. In the refrigeration cycle device capable of switching the operation between the second operation in which the refrigerant is circulated in the order of the heat exchanger, the time required for the refrigeration cycle to stabilize after the operation switching can be shortened.
本実施の形態1による冷凍サイクル装置の全体構成の一例を模式的に示す図である。It is a figure which shows typically an example of the whole structure of the refrigerating cycle apparatus by Embodiment 1. FIG. 第2切替弁の内部構造の一例を示す斜視図である。It is a perspective view which shows an example of the internal structure of the 2nd switching valve. 第2切替弁が第3状態である場合の弁体の回転位置を示す図である。It is a figure which shows the rotation position of the valve body when the 2nd switching valve is a 3rd state. 第2切替弁が第4状態である場合の弁体の回転位置を示す図である。It is a figure which shows the rotation position of the valve body when the 2nd switching valve is a 4th state. 第2切替弁が第5状態である場合の弁体の回転位置を示す図である。It is a figure which shows the rotation position of the valve body when the 2nd switching valve is in the 5th state. 冷媒回路の第1冷房運転中における状態を示す図(その1)である。It is a figure (the 1) which shows the state in the 1st cooling operation of a refrigerant circuit. 冷媒回路の第2冷房運転中における状態を示す図(その1)である。It is a figure (the 1) which shows the state in the 2nd cooling operation of a refrigerant circuit. 冷媒回路の第1切替運転中における状態を示す図(その1)である。It is a figure (the 1) which shows the state in the 1st switching operation of a refrigerant circuit. 冷媒回路の第2切替運転中における状態を示す図(その1)である。It is a figure (the 1) which shows the state in the 2nd switching operation of a refrigerant circuit. 冷凍サイクル装置の運転状態の遷移の一例を示す図である。It is a figure which shows an example of the transition of the operating state of a refrigerating cycle apparatus. 冷媒回路の第1冷房運転中における状態を示す図(その2)である。It is a figure (the 2) which shows the state in the 1st cooling operation of a refrigerant circuit. 冷媒回路の第1切替運転中における状態を示す図(その2)である。It is a figure (the 2) which shows the state in the 1st switching operation of a refrigerant circuit. 冷媒回路の第2冷房運転中における状態を示す図(その2)である。It is a figure (the 2) which shows the state in the 2nd cooling operation of a refrigerant circuit. 冷媒回路の第2切替運転中における状態を示す図(その2)である。It is a figure (the 2) which shows the state in the 2nd switching operation of a refrigerant circuit. 冷媒回路の第1冷房運転中における状態を示す図(その3)である。It is a figure (the 3) which shows the state in the 1st cooling operation of a refrigerant circuit. 冷媒回路の第1切替運転中における状態を示す図(その3)である。It is a figure (the 3) which shows the state in the 1st switching operation of a refrigerant circuit. 冷媒回路の第2冷房運転中における状態を示す図(その3)である。It is a figure (the 3) which shows the state in the 2nd cooling operation of a refrigerant circuit. 冷媒回路の第2切替運転中における状態を示す図(その3)である。It is a figure (the 3) which shows the state in the 2nd switching operation of a refrigerant circuit. 第1送風装置および第2送風装置の構成例を示す図(その1)である。It is a figure (the 1) which shows the structural example of the 1st blower and the 2nd blower. 第1送風装置および第2送風装置の構成例を示す図(その2)である。It is a figure (the 2) which shows the structural example of the 1st blower and the 2nd blower. 第1送風装置および第2送風装置の構成例を示す図(その3)である。It is a figure (the 3) which shows the structural example of the 1st blower and the 2nd blower. 第1送風装置および第2送風装置の構成例を示す図(その4)である。It is a figure (the 4) which shows the structural example of the 1st blower and the 2nd blower. 第1送風装置および第2送風装置の構成例を示す図(その5)である。It is a figure (the 5) which shows the structural example of the 1st blower and the 2nd blower. 第1送風装置および第2送風装置の構成例を示す図(その6)である。It is a figure (the 6) which shows the structural example of the 1st blower and the 2nd blower.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the respective embodiments. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 実施の形態1.
 [構成の説明]
 図1は、本実施の形態1による冷凍サイクル装置1の全体構成の一例を模式的に示す図である。冷凍サイクル装置1は、冷媒回路RCと、第1送風装置80と、第2送風装置90と、制御装置100とを備える。冷媒回路RCは、圧縮機10と、第1熱交換器20と、減圧装置30と、第2熱交換器40と、配管51~58と、第1切替弁60と、第2切替弁70とを含む。
Embodiment 1.
[Description of configuration]
FIG. 1 is a diagram schematically showing an example of the overall configuration of the refrigeration cycle apparatus 1 according to the first embodiment. The refrigeration cycle device 1 includes a refrigerant circuit RC, a first blower device 80, a second blower device 90, and a control device 100. The refrigerant circuit RC includes a compressor 10, a first heat exchanger 20, a decompression device 30, a second heat exchanger 40, pipes 51 to 58, a first switching valve 60, and a second switching valve 70. including.
 冷媒回路RCは、圧縮機10と第1熱交換器20と減圧装置30と第2熱交換器40とを、配管51~58、第1切替弁60および第2切替弁70によって接続することにより、冷媒が循環する循環流路を構成している。冷媒回路RCの内部には、二酸化炭素やR410A等の相変化を伴う冷媒が循環する。 The refrigerant circuit RC connects the compressor 10, the first heat exchanger 20, the decompression device 30, and the second heat exchanger 40 by pipes 51 to 58, a first switching valve 60, and a second switching valve 70. , It constitutes a circulation flow path in which the refrigerant circulates. A refrigerant with a phase change such as carbon dioxide and R410A circulates inside the refrigerant circuit RC.
 圧縮機10の吸入ポートは配管58に接続され、圧縮機10の吐出ポートは配管51に接続される。圧縮機10は、配管58から低圧冷媒を吸入して圧縮し、高圧冷媒として配管51に吐出する。圧縮機10の回転速度は、制御装置100からの指令に応じて調整される。圧縮機10は、回転速度に応じた流量の冷媒を吐出する。冷凍サイクル装置1内を循環する冷媒流量は、圧縮機10の回転速度(吐出流量)を調整することにより制御される。 The suction port of the compressor 10 is connected to the pipe 58, and the discharge port of the compressor 10 is connected to the pipe 51. The compressor 10 sucks the low-pressure refrigerant from the pipe 58, compresses it, and discharges it to the pipe 51 as the high-pressure refrigerant. The rotation speed of the compressor 10 is adjusted according to a command from the control device 100. The compressor 10 discharges a refrigerant having a flow rate corresponding to the rotation speed. The flow rate of the refrigerant circulating in the refrigeration cycle device 1 is controlled by adjusting the rotation speed (discharge flow rate) of the compressor 10.
 第1熱交換器20および第2熱交換器40は、どちらも、冷媒が流れる流路を有する熱交換器である。第1熱交換器20および第2熱交換器40の各々においては、流路を流れる冷媒と、流路の外部の空気との間で熱交換が行われる。 Both the first heat exchanger 20 and the second heat exchanger 40 are heat exchangers having a flow path through which the refrigerant flows. In each of the first heat exchanger 20 and the second heat exchanger 40, heat exchange is performed between the refrigerant flowing in the flow path and the air outside the flow path.
 減圧装置30は、高圧冷媒を減圧する。減圧装置30としては、制御装置100からの指令に応じて開度を調整可能な弁体を備えた装置、例えば電子制御式膨張弁を用いることができる。 The decompression device 30 decompresses the high-pressure refrigerant. As the pressure reducing device 30, a device provided with a valve body whose opening degree can be adjusted in response to a command from the control device 100, for example, an electronically controlled expansion valve can be used.
 第1切替弁60は、配管51を介して圧縮機10の吐出ポートに接続されるポートと、配管52を介して第1熱交換器20の一方のポートに接続されるポートと、配管56を介して第2熱交換器40の一方のポートに接続されるポートと、配管55を介して減圧装置30の一方のポートに接続されるポートとを有する、四方弁である。 The first switching valve 60 includes a port connected to the discharge port of the compressor 10 via the pipe 51, a port connected to one port of the first heat exchanger 20 via the pipe 52, and the pipe 56. It is a four-way valve having a port connected to one port of the second heat exchanger 40 via a pipe 55 and a port connected to one port of the decompression device 30 via a pipe 55.
 第1切替弁60は、制御装置100からの指令に応じて、第1状態と第2状態とのどちらかに切替えられる。 The first switching valve 60 is switched between the first state and the second state in response to a command from the control device 100.
 第1切替弁60が第1状態である場合、配管51が配管52に接続されるとともに、配管56が配管55に接続される。これにより、圧縮機10の吐出ポートが第1熱交換器20の一方のポートに接続されるとともに、第2熱交換器40の一方のポートが減圧装置30の一方のポートに接続される。なお、図1には、第1切替弁60が第1状態とされている場合が例示されている。 When the first switching valve 60 is in the first state, the pipe 51 is connected to the pipe 52 and the pipe 56 is connected to the pipe 55. As a result, the discharge port of the compressor 10 is connected to one port of the first heat exchanger 20, and one port of the second heat exchanger 40 is connected to one port of the decompression device 30. Note that FIG. 1 illustrates a case where the first switching valve 60 is in the first state.
 第1切替弁60が第2状態である場合、配管51が配管56に接続されるとともに、配管52が配管55に接続される。これにより、圧縮機10の吐出ポートが第2熱交換器40の一方のポートに接続されるとともに、第1熱交換器20の一方のポートが減圧装置30の一方のポートに接続される。 When the first switching valve 60 is in the second state, the pipe 51 is connected to the pipe 56 and the pipe 52 is connected to the pipe 55. As a result, the discharge port of the compressor 10 is connected to one port of the second heat exchanger 40, and one port of the first heat exchanger 20 is connected to one port of the decompression device 30.
 第2切替弁70は、配管58を介して圧縮機10の吸入ポートに接続されるポートと、配管53を介して第1熱交換器20の他方のポートに接続されるポートと、配管57を介して第2熱交換器40の他方のポートに接続されるポートと、配管54を介して減圧装置30の他方のポートに接続されるポートとを有する、四方弁である。 The second switching valve 70 has a port connected to the suction port of the compressor 10 via the pipe 58, a port connected to the other port of the first heat exchanger 20 via the pipe 53, and the pipe 57. It is a four-way valve having a port connected to the other port of the second heat exchanger 40 via a pipe 54 and a port connected to the other port of the decompression device 30 via a pipe 54.
 第2切替弁70は、制御装置100からの指令に応じて、第3状態、第4状態、第5状態のいずれかに切替えられる。 The second switching valve 70 is switched to one of the third state, the fourth state, and the fifth state in response to a command from the control device 100.
 第2切替弁70が第3状態である場合、配管53が配管54に接続されるとともに、配管57が配管58に接続される。これにより、第1熱交換器20の他方のポートが減圧装置30の他方のポートに接続されるとともに、第2熱交換器40の他方のポートが圧縮機10の吸入ポートに接続される。なお、図1には、第2切替弁70が第3状態とされている場合が例示されている。 When the second switching valve 70 is in the third state, the pipe 53 is connected to the pipe 54 and the pipe 57 is connected to the pipe 58. As a result, the other port of the first heat exchanger 20 is connected to the other port of the decompression device 30, and the other port of the second heat exchanger 40 is connected to the suction port of the compressor 10. Note that FIG. 1 illustrates a case where the second switching valve 70 is in the third state.
 第2切替弁70が第4状態である場合、配管57が配管54に接続されるとともに、配管53が配管58に接続される。これにより、第2熱交換器40の他方のポートが減圧装置30の他方のポートに接続されるとともに、第1熱交換器20の他方のポートが圧縮機10の吸入ポートに接続される。 When the second switching valve 70 is in the fourth state, the pipe 57 is connected to the pipe 54 and the pipe 53 is connected to the pipe 58. As a result, the other port of the second heat exchanger 40 is connected to the other port of the decompression device 30, and the other port of the first heat exchanger 20 is connected to the suction port of the compressor 10.
 第2切替弁70が第5状態である場合、配管54が配管58に接続されるとともに、配管53と配管57とは遮断される。これにより、圧縮機10の吸入ポートが減圧装置30の他方のポートに接続されるとともに、第1熱交換器20の他方のポートと第2熱交換器40の他方のポートとは遮断される。 When the second switching valve 70 is in the fifth state, the pipe 54 is connected to the pipe 58 and the pipe 53 and the pipe 57 are cut off. As a result, the suction port of the compressor 10 is connected to the other port of the decompression device 30, and the other port of the first heat exchanger 20 and the other port of the second heat exchanger 40 are cut off.
 図2は、第2切替弁70の内部構造の一例を示す斜視図である。第2切替弁70は、配管53,54,57,58にそれぞれ接続される4つのポートが形成される中空円柱状の容器71と、容器71の内部に収容される円柱状の弁体72とを有する。弁体72は、制御装置100からの指令に応じて、回転軸76を中心として回動可能に構成される。 FIG. 2 is a perspective view showing an example of the internal structure of the second switching valve 70. The second switching valve 70 includes a hollow cylindrical container 71 in which four ports connected to pipes 53, 54, 57, and 58 are formed, and a cylindrical valve body 72 housed inside the container 71. Have. The valve body 72 is configured to be rotatable about the rotation shaft 76 in response to a command from the control device 100.
 図3は、第2切替弁70が第3状態である場合の弁体72の回転位置を示す図である。図4は、第2切替弁70が第4状態である場合の弁体72の回転位置を示す図である。図5は、第2切替弁70が第5状態である場合の弁体72の回転位置を示す図である。 FIG. 3 is a diagram showing the rotation position of the valve body 72 when the second switching valve 70 is in the third state. FIG. 4 is a diagram showing a rotation position of the valve body 72 when the second switching valve 70 is in the fourth state. FIG. 5 is a diagram showing a rotation position of the valve body 72 when the second switching valve 70 is in the fifth state.
 図3~図5に示されるように、弁体72の内部には、互いに独立した3つの流路73,74,75が形成されている。第2切替弁70が第3状態である場合、図3に示されるように、配管54と配管53とが弁体72の流路73を介して接続されるとともに、配管57と配管58とが弁体72の流路74を介して接続される。これにより、第1熱交換器20の他方のポートが減圧装置30の他方のポートに接続されるとともに、第2熱交換器40の他方のポートが圧縮機10の吸入ポートに接続される。 As shown in FIGS. 3 to 5, three independent flow paths 73, 74, 75 are formed inside the valve body 72. When the second switching valve 70 is in the third state, as shown in FIG. 3, the pipe 54 and the pipe 53 are connected to each other via the flow path 73 of the valve body 72, and the pipe 57 and the pipe 58 are connected to each other. It is connected via the flow path 74 of the valve body 72. As a result, the other port of the first heat exchanger 20 is connected to the other port of the decompression device 30, and the other port of the second heat exchanger 40 is connected to the suction port of the compressor 10.
 第2切替弁70が第4状態である場合、図4に示されるように、配管54と配管57とが弁体72の流路74を介して接続されるとともに、配管53と配管58とが弁体72の流路73を介して接続される。これにより、第2熱交換器40の他方のポートが減圧装置30の他方のポートに接続されるとともに、第1熱交換器20の他方のポートが圧縮機10の吸入ポートに接続される。 When the second switching valve 70 is in the fourth state, as shown in FIG. 4, the pipe 54 and the pipe 57 are connected to each other via the flow path 74 of the valve body 72, and the pipe 53 and the pipe 58 are connected to each other. It is connected via the flow path 73 of the valve body 72. As a result, the other port of the second heat exchanger 40 is connected to the other port of the decompression device 30, and the other port of the first heat exchanger 20 is connected to the suction port of the compressor 10.
 第2切替弁70が第5状態である場合、図5に示されるように、配管54と配管58とが弁体72の流路75を介して接続されるが、配管53と配管57とは弁体72によって遮断される。これにより、圧縮機10の吸入ポートが減圧装置30の他方のポートに接続されるとともに、第1熱交換器20の他方のポートと第2熱交換器40の他方のポートとが遮断される。 When the second switching valve 70 is in the fifth state, as shown in FIG. 5, the pipe 54 and the pipe 58 are connected via the flow path 75 of the valve body 72, but the pipe 53 and the pipe 57 are connected to each other. It is blocked by the valve body 72. As a result, the suction port of the compressor 10 is connected to the other port of the decompression device 30, and the other port of the first heat exchanger 20 and the other port of the second heat exchanger 40 are cut off.
 図1に戻って、第1送風装置80は、制御装置100からの指令に応じて、冷却対象である室内側の空気(以下、単に「室内空気」ともいう)を送風可能に構成される。また、第1送風装置80は、室内空気の送風先を第1熱交換器20と第2熱交換器40との間で切替可能に構成される。 Returning to FIG. 1, the first blower device 80 is configured to be able to blow air on the indoor side to be cooled (hereinafter, also simply referred to as “indoor air”) in response to a command from the control device 100. Further, the first blower device 80 is configured so that the destination of the indoor air can be switched between the first heat exchanger 20 and the second heat exchanger 40.
 第2送風装置90は、制御装置100からの指令に応じて、冷却対象でない室外側の空気(以下、単に「室外空気」ともいう)を送風可能に構成される。また、第2送風装置90は、室外空気の送風先を第1熱交換器20と第2熱交換器40との間で切替可能に構成される。 The second blower device 90 is configured to be capable of blowing outdoor air that is not a cooling target (hereinafter, also simply referred to as “outdoor air”) in response to a command from the control device 100. Further, the second blower device 90 is configured so that the destination of the outdoor air can be switched between the first heat exchanger 20 and the second heat exchanger 40.
 制御装置100は、CPU(Central Processing Unit)と、メモリと、各種信号を入出力するための入出力ポートとを含んで構成される。制御装置100は、各センサおよび機器からの信号、並びにメモリに格納されたプログラムなどに基づいて、冷凍サイクル装置1の各機器(圧縮機10、減圧装置30、第1切替弁60、第2切替弁70、第1送風装置80、第2送風装置90など)の制御を行なう。なお、制御装置100が行なう制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)により処理することも可能である。 The control device 100 includes a CPU (Central Processing Unit), a memory, and input / output ports for inputting / outputting various signals. The control device 100 is based on signals from each sensor and device, a program stored in a memory, and the like, and each device of the refrigeration cycle device 1 (compressor 10, decompression device 30, first switching valve 60, second switching). The valve 70, the first blower device 80, the second blower device 90, etc.) are controlled. The control performed by the control device 100 is not limited to processing by software, but can also be processed by dedicated hardware (electronic circuit).
 [第1冷房運転および第2冷房運転]
 冷凍サイクル装置1においては、第1切替弁60および第2切替弁70の状態を切替えることによって、第1冷房運転と第2冷房運転との切替えが可能である。
[1st cooling operation and 2nd cooling operation]
In the refrigeration cycle device 1, it is possible to switch between the first cooling operation and the second cooling operation by switching the states of the first switching valve 60 and the second switching valve 70.
 図6は、冷媒回路RCの第1冷房運転中における状態を示す図である。第1冷房運転中において、制御装置100は、圧縮機10を作動させるとともに、第1切替弁60を第1状態にしつつ、第2切替弁70を第3状態にする。 FIG. 6 is a diagram showing a state of the refrigerant circuit RC during the first cooling operation. During the first cooling operation, the control device 100 operates the compressor 10 and puts the first switching valve 60 in the first state and the second switching valve 70 in the third state.
 第1冷房運転中においては、圧縮機10、第1熱交換器20、減圧装置30、および第2熱交換器40の順に冷媒が循環するため、第1熱交換器20が凝縮器として機能し、第2熱交換器40が蒸発器として機能する。より具体的には、圧縮機10から吐出された高温高圧の冷媒は、第1切替弁60を介して第1熱交換器20に流入する。高温高圧の冷媒は、第1熱交換器20において外気と熱交換し、温度低下して第1熱交換器20から流出する。第1熱交換器20から流出した冷媒は、減圧装置30で減圧され、低温低圧の冷媒となって第2熱交換器40に流入する。低温低圧の冷媒は、第2熱交換器40において外気と熱交換し、温度上昇して第2熱交換器40から流出する。第2熱交換器40を流出した冷媒は、第2切替弁70を介して圧縮機10に吸入される。 During the first cooling operation, the refrigerant circulates in the order of the compressor 10, the first heat exchanger 20, the decompression device 30, and the second heat exchanger 40, so that the first heat exchanger 20 functions as a condenser. , The second heat exchanger 40 functions as an evaporator. More specifically, the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the first heat exchanger 20 via the first switching valve 60. The high-temperature and high-pressure refrigerant exchanges heat with the outside air in the first heat exchanger 20, the temperature drops, and the refrigerant flows out of the first heat exchanger 20. The refrigerant flowing out of the first heat exchanger 20 is decompressed by the decompression device 30, becomes a low-temperature low-pressure refrigerant, and flows into the second heat exchanger 40. The low-temperature low-pressure refrigerant exchanges heat with the outside air in the second heat exchanger 40, rises in temperature, and flows out of the second heat exchanger 40. The refrigerant flowing out of the second heat exchanger 40 is sucked into the compressor 10 via the second switching valve 70.
 したがって、第1冷房運転中においては、配管51,52、第1熱交換器20、配管53,54に高圧の冷媒が分布し、配管55,56、第2熱交換器40、配管57,58に低圧の冷媒が分布する状態となる。 Therefore, during the first cooling operation, the high-pressure refrigerant is distributed in the pipes 51, 52, the first heat exchanger 20, and the pipes 53, 54, and the pipes 55, 56, the second heat exchanger 40, and the pipes 57, 58. The low pressure refrigerant is distributed in the air.
 また、第1冷房運転中において、制御装置100は、室内空気の送風先を第2熱交換器40とし室外空気の送風先を第1熱交換器20とするように第1送風装置80および第2送風装置90を制御する。これにより、凝縮器として機能する第1熱交換器20と冷却対象でない室外空気との間の熱交換が促進されるとともに、蒸発器として機能する第2熱交換器40と冷却対象である室内空気との間の熱交換が促進される。これにより、冷却対象である室内空気を効率的に冷却することができる。なお、上述の図1には、第1冷房運転中の状態が例示されている。 Further, during the first cooling operation, the control device 100 sets the indoor air to the second heat exchanger 40 and the outdoor air to the first heat exchanger 20 so that the first air blower 80 and the first heat exchanger 20 are used. 2 Controls the blower 90. As a result, heat exchange between the first heat exchanger 20 functioning as a condenser and the outdoor air not to be cooled is promoted, and the second heat exchanger 40 functioning as an evaporator and the indoor air to be cooled are promoted. Heat exchange with and is promoted. As a result, the indoor air to be cooled can be efficiently cooled. Note that FIG. 1 above illustrates a state during the first cooling operation.
 図7は、冷媒回路RCの第2冷房運転中における状態を示す図である。第2冷房運転中において、制御装置100は、圧縮機10を作動させるとともに、第1切替弁60を第2状態にしつつ、第2切替弁70を第4状態にする。 FIG. 7 is a diagram showing a state of the refrigerant circuit RC during the second cooling operation. During the second cooling operation, the control device 100 operates the compressor 10 and puts the second switching valve 70 in the fourth state while putting the first switching valve 60 in the second state.
 第2冷房運転中においては、圧縮機10、第2熱交換器40、減圧装置30、および第1熱交換器20の順に冷媒が循環するため、第2熱交換器40が凝縮器として機能し、第1熱交換器20が蒸発器として機能する。より具体的には、圧縮機10から吐出された高温高圧の冷媒は、第1切替弁60を介して第2熱交換器40に流入する。高温高圧の冷媒は、第2熱交換器40において外気と熱交換し、温度低下して第2熱交換器40から流出する。第2熱交換器40から流出した冷媒は、減圧装置30で減圧され、低温低圧の冷媒となって第1熱交換器20に流入する。低温低圧の冷媒は、第1熱交換器20において外気と熱交換し、温度上昇して第1熱交換器20から流出する。第1熱交換器20を流出した冷媒は、第2切替弁70を介して圧縮機10に吸入される。 During the second cooling operation, the refrigerant circulates in the order of the compressor 10, the second heat exchanger 40, the decompression device 30, and the first heat exchanger 20, so that the second heat exchanger 40 functions as a condenser. , The first heat exchanger 20 functions as an evaporator. More specifically, the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the second heat exchanger 40 via the first switching valve 60. The high-temperature and high-pressure refrigerant exchanges heat with the outside air in the second heat exchanger 40, lowers the temperature, and flows out from the second heat exchanger 40. The refrigerant flowing out of the second heat exchanger 40 is decompressed by the decompression device 30, becomes a low-temperature low-pressure refrigerant, and flows into the first heat exchanger 20. The low-temperature low-pressure refrigerant exchanges heat with the outside air in the first heat exchanger 20, the temperature rises, and the refrigerant flows out of the first heat exchanger 20. The refrigerant flowing out of the first heat exchanger 20 is sucked into the compressor 10 via the second switching valve 70.
 したがって、第2冷房運転中においては、配管51,56、第2熱交換器40、配管57,54に高圧の冷媒が分布し、配管55,52、第1熱交換器20、配管53,58に低圧の冷媒が分布する状態となる。 Therefore, during the second cooling operation, the high-pressure refrigerant is distributed in the pipes 51, 56, the second heat exchanger 40, and the pipes 57, 54, and the pipes 55, 52, the first heat exchanger 20, and the pipes 53, 58. The low pressure refrigerant is distributed in the air.
 また、第2冷房運転中において、制御装置100は、室内空気の送風先を第1熱交換器20とし室外空気の送風先を第2熱交換器40とするように第1送風装置80および第2送風装置90を制御する。これにより、凝縮器として機能する第2熱交換器40と冷却対象でない室外空気との間の熱交換が促進されるとともに、蒸発器として機能する第1熱交換器20と冷却対象である室内空気との間の熱交換が促進される。これにより、第2冷房運転中においても、冷却対象である室内空気を効率的に冷却することができる。 Further, during the second cooling operation, the control device 100 uses the first blower device 80 and the first blower so that the indoor air blow destination is the first heat exchanger 20 and the outdoor air blow destination is the second heat exchanger 40. 2 Controls the blower 90. As a result, heat exchange between the second heat exchanger 40 functioning as a condenser and the outdoor air not to be cooled is promoted, and the first heat exchanger 20 functioning as an evaporator and the indoor air to be cooled are promoted. Heat exchange with and is promoted. As a result, the indoor air to be cooled can be efficiently cooled even during the second cooling operation.
 第1冷房運転中において、たとえば、蒸発器として機能する第2熱交換器40内の冷媒温度が0℃以下になった場合、第2熱交換器40に霜が付着して風が通り難くなり、第2熱交換器40における熱交換効率が悪化し得る。そのため、第1冷房運転中において第2熱交換器40に霜が付着するような状況となった場合(たとえば図示しないセンサによって検出される第2熱交換器40の冷媒温度が0℃近傍の基準値を下回った場合)、制御装置100は、第2冷房運転への切替が要求されたと判定して、第2冷房運転に切替える。これにより、蒸発器として機能していた第2熱交換器40が凝縮器として機能するようになるため、第2熱交換器40に付着していた霜を取り除くことができる。 During the first cooling operation, for example, when the temperature of the refrigerant in the second heat exchanger 40 functioning as an evaporator becomes 0 ° C. or lower, frost adheres to the second heat exchanger 40 and it becomes difficult for the wind to pass through. , The heat exchange efficiency in the second heat exchanger 40 may deteriorate. Therefore, when frost adheres to the second heat exchanger 40 during the first cooling operation (for example, the refrigerant temperature of the second heat exchanger 40 detected by a sensor (not shown) is a reference around 0 ° C. (When the value is lower than the value), the control device 100 determines that switching to the second cooling operation is requested, and switches to the second cooling operation. As a result, the second heat exchanger 40, which has functioned as an evaporator, now functions as a condenser, so that the frost adhering to the second heat exchanger 40 can be removed.
 また、本実施の形態においては、第2冷房運転中において室内空気の送風先が蒸発器として機能する第1熱交換器20とされるため、第2冷房運転中においても室内側に冷気を送付することができる。 Further, in the present embodiment, since the destination of the indoor air is the first heat exchanger 20 that functions as an evaporator during the second cooling operation, the cold air is sent to the indoor side even during the second cooling operation. can do.
 第2冷房運転中において、凝縮器として機能する第1熱交換器20に霜が付着するような状況となった場合(たとえば図示しないセンサによって検出される第1熱交換器20の冷媒温度が0℃近傍の基準値を下回った場合)、制御装置100は、第1冷房運転への切替が要求されたと判定して、第1冷房運転に切替える。これにより、蒸発器として機能していた第1熱交換器20が凝縮器として機能するようになるため、第1熱交換器20に付着していた霜を取り除くことができる。 During the second cooling operation, when frost adheres to the first heat exchanger 20 that functions as a condenser (for example, the refrigerant temperature of the first heat exchanger 20 detected by a sensor (not shown) is 0. (When the temperature falls below the reference value in the vicinity of ° C.), the control device 100 determines that switching to the first cooling operation is requested, and switches to the first cooling operation. As a result, the first heat exchanger 20 that has functioned as an evaporator now functions as a condenser, so that the frost adhering to the first heat exchanger 20 can be removed.
 [第1切替運転および第2切替運転]
 上述のように、第1冷房運転中においては高圧冷媒が第1熱交換器20に分布し低圧冷媒が第2熱交換器40に分布する状態となる一方、第2冷房運転では高圧冷媒が第2熱交換器40に分布し低圧冷媒が第1熱交換器20に分布する状態となる。そのため、第1冷房運転および第2冷房運転の一方から他方に切替える際には、冷媒の圧力分布が崩れることになり、その影響で運転切替後に冷凍サイクルが安定するまでに要する時間が長くなってしまうことが懸念される。
[1st switching operation and 2nd switching operation]
As described above, during the first cooling operation, the high-pressure refrigerant is distributed in the first heat exchanger 20 and the low-pressure refrigerant is distributed in the second heat exchanger 40, while in the second cooling operation, the high-pressure refrigerant is distributed in the second heat exchanger 40. 2 The low-pressure refrigerant is distributed in the heat exchanger 40 and is distributed in the first heat exchanger 20. Therefore, when switching from one of the first cooling operation and the second cooling operation to the other, the pressure distribution of the refrigerant is disrupted, and as a result, the time required for the refrigeration cycle to stabilize after the operation switching becomes longer. There is a concern that it will end up.
 このような問題に鑑み、本実施の形態による制御装置100は、第1冷媒運転中に第2冷媒運転への切替が要求された場合、第1切替弁60を第2状態にし第2切替弁70を第5状態にする「第1切替運転」を行ない、第1切替運転を一定時間行なった後に冷凍サイクル装置1の運転を第2冷媒運転に切替える。 In view of such a problem, the control device 100 according to the present embodiment sets the first switching valve 60 to the second state and the second switching valve when switching to the second refrigerant operation is requested during the first refrigerant operation. The "first switching operation" for setting the 70 to the fifth state is performed, and after the first switching operation is performed for a certain period of time, the operation of the refrigerating cycle device 1 is switched to the second refrigerant operation.
 図8は、冷媒回路RCの第1切替運転中における状態を示す図である。図8に示すように、第1切替運転中においては、制御装置100は、圧縮機10を作動させるとともに、第1切替弁60を第2状態にしつつ、第2切替弁70を第5状態にする。 FIG. 8 is a diagram showing a state of the refrigerant circuit RC during the first switching operation. As shown in FIG. 8, during the first switching operation, the control device 100 operates the compressor 10 and puts the first switching valve 60 in the second state while putting the second switching valve 70 in the fifth state. do.
 第1冷媒運転から第2冷媒運転に切替える前に第1切替運転を行うことによって、第1冷媒運転中に高圧となっている第1熱交換器20内の冷媒を圧縮機10に回収して第1熱交換器20内を低圧状態にするとともに、第1冷媒運転中に低圧となっている第2熱交換器40内に圧縮機10からの高圧冷媒を供給して第2熱交換器40内を高圧状態にすることができる。すなわち、第2冷媒運転に切替える前に、予め、第1熱交換器20内を低圧状態にしておくとともに、第2熱交換器40内を高圧状態にしておくことができる。 By performing the first switching operation before switching from the first refrigerant operation to the second refrigerant operation, the refrigerant in the first heat exchanger 20, which has a high pressure during the first refrigerant operation, is recovered in the compressor 10. The inside of the first heat exchanger 20 is brought into a low pressure state, and the high pressure refrigerant from the compressor 10 is supplied into the second heat exchanger 40, which has a low pressure during the operation of the first refrigerant, to supply the second heat exchanger 40. The inside can be in a high pressure state. That is, before switching to the second refrigerant operation, the inside of the first heat exchanger 20 can be put into a low pressure state and the inside of the second heat exchanger 40 can be put into a high pressure state.
 特に、第1切替運転中においては、第2切替弁70が第5状態となることによって、第1熱交換器20の他方のポートと第2熱交換器40の他方のポートとが第2切替弁70によって遮断される。これにより、高圧冷媒と低圧冷媒とが混合し均圧化されることを防止することができる。そのため、単純に第1冷媒運転から第2冷媒運転に切替える場合に比べて、第1熱交換器20内を早期に低圧状態にするとともに、第2熱交換器40内を早期に高圧状態にすることができる。 In particular, during the first switching operation, the second switching valve 70 is in the fifth state, so that the other port of the first heat exchanger 20 and the other port of the second heat exchanger 40 are switched to the second. It is shut off by the valve 70. This makes it possible to prevent the high-pressure refrigerant and the low-pressure refrigerant from being mixed and equalized. Therefore, as compared with the case of simply switching from the first refrigerant operation to the second refrigerant operation, the inside of the first heat exchanger 20 is brought into a low pressure state at an early stage, and the inside of the second heat exchanger 40 is put into a high pressure state at an early stage. be able to.
 さらに、第1切替運転中においては、制御装置100は、第1送風装置80および第2送風装置90による送風を停止する。これにより、第1切替運転中においては、第1熱交換器20および第2熱交換器40への送風が停止されるため、第1熱交換器20内をより早期に低圧状態にするとともに、第2熱交換器40内をより早期に高圧状態にすることができる。 Further, during the first switching operation, the control device 100 stops the blowing by the first blowing device 80 and the second blowing device 90. As a result, during the first switching operation, the air blown to the first heat exchanger 20 and the second heat exchanger 40 is stopped, so that the inside of the first heat exchanger 20 is brought into a low pressure state earlier and at the same time. The inside of the second heat exchanger 40 can be brought into a high pressure state earlier.
 制御装置100は、第1切替運転を一定時間行なった後、冷凍サイクル装置1の運転を第2冷媒運転に切替える。そのため、第2冷房運転への切替後に冷凍サイクルが安定するまでに要する時間を短縮することができる。 The control device 100 switches the operation of the refrigerating cycle device 1 to the second refrigerant operation after performing the first switching operation for a certain period of time. Therefore, it is possible to shorten the time required for the refrigeration cycle to stabilize after switching to the second cooling operation.
 また、本実施の形態による制御装置100は、第2冷房運転中に第1冷房運転への切替が要求された場合、第1切替弁60を第1状態にし第2切替弁70を第5状態にする「第2切替運転」を行ない、第2切替運転を一定時間行なった後に第1冷房運転に切替える。 Further, in the control device 100 according to the present embodiment, when switching to the first cooling operation is requested during the second cooling operation, the first switching valve 60 is set to the first state and the second switching valve 70 is set to the fifth state. The "second switching operation" is performed, and after the second switching operation is performed for a certain period of time, the operation is switched to the first cooling operation.
 図9は、冷媒回路RCの第2切替運転中における状態を示す図である。図9に示すように、第2切替運転中においては、制御装置100は、圧縮機10を作動させるとともに、第1切替弁60を第1状態にしつつ、第2切替弁70を第5状態にする。 FIG. 9 is a diagram showing a state of the refrigerant circuit RC during the second switching operation. As shown in FIG. 9, during the second switching operation, the control device 100 operates the compressor 10 and sets the first switching valve 60 to the first state while the second switching valve 70 is set to the fifth state. do.
 第2冷媒運転から第1冷媒運転に切替える前に第2切替運転を行うことによって、第2冷媒運転中に高圧となっている第2熱交換器40内の冷媒を圧縮機10に回収して第2熱交換器40内を低圧状態にするとともに、第2冷媒運転中に低圧となっている第1熱交換器20内に圧縮機10からの高圧冷媒を供給して第1熱交換器20内を高圧状態にすることができる。すなわち、第1冷媒運転に切替える前に、予め、第2熱交換器40内を低圧状態にしておくとともに、第1熱交換器20内を高圧状態にしておくことができる。 By performing the second switching operation before switching from the second refrigerant operation to the first refrigerant operation, the refrigerant in the second heat exchanger 40, which has a high pressure during the second refrigerant operation, is recovered in the compressor 10. The inside of the second heat exchanger 40 is brought into a low pressure state, and the high pressure refrigerant from the compressor 10 is supplied into the first heat exchanger 20 which has a low pressure during the operation of the second refrigerant to supply the first heat exchanger 20. The inside can be in a high pressure state. That is, before switching to the first refrigerant operation, the inside of the second heat exchanger 40 can be put into a low pressure state and the inside of the first heat exchanger 20 can be put into a high pressure state.
 特に、第2切替運転中においては、第2切替弁70が第5状態となることによって、第1熱交換器20の他方のポートと第2熱交換器40の他方のポートとが第2切替弁70によって遮断される。これにより、高圧冷媒と低圧冷媒とが混合し均圧化されることを防止することができる。そのため、第2熱交換器40内を早期に低圧状態にするとともに、第1熱交換器20内を早期に高圧状態にすることができる。 In particular, during the second switching operation, the second switching valve 70 is in the fifth state, so that the other port of the first heat exchanger 20 and the other port of the second heat exchanger 40 are second-switched. It is shut off by the valve 70. This makes it possible to prevent the high-pressure refrigerant and the low-pressure refrigerant from being mixed and equalized. Therefore, the inside of the second heat exchanger 40 can be brought into a low pressure state at an early stage, and the inside of the first heat exchanger 20 can be put into a high pressure state at an early stage.
 さらに、第2切替運転中においては、制御装置100は、第1送風装置80および第2送風装置90による送風を停止する。これにより、第2切替運転中においては、第1熱交換器20および第2熱交換器40への送風が停止されるため、第2熱交換器40内をより早期に低圧状態にするとともに、第1熱交換器20内をより早期に高圧状態にすることができる。 Further, during the second switching operation, the control device 100 stops the blowing by the first blowing device 80 and the second blowing device 90. As a result, during the second switching operation, the air blown to the first heat exchanger 20 and the second heat exchanger 40 is stopped, so that the inside of the second heat exchanger 40 is brought into a low pressure state earlier and at the same time. The inside of the first heat exchanger 20 can be brought into a high pressure state earlier.
 制御装置100は、第2切替運転を一定時間行なった後、冷凍サイクル装置1の運転を第1冷媒運転に切替える。そのため、第1冷房運転への切替後に冷凍サイクルが安定するまでに要する時間を短縮することができる。 The control device 100 switches the operation of the refrigerating cycle device 1 to the first refrigerant operation after performing the second switching operation for a certain period of time. Therefore, it is possible to shorten the time required for the refrigeration cycle to stabilize after switching to the first cooling operation.
 図10は、制御装置100によって制御される、冷凍サイクル装置1の運転状態の遷移の一例を示す図である。図10において、横軸は時間を示し、縦軸は上から順に、圧縮機10の状態、第1切替弁60の状態、第2切替弁70の状態、室内空気の送風先、室外空気の送風先を示す。 FIG. 10 is a diagram showing an example of transition of the operating state of the refrigerating cycle device 1 controlled by the control device 100. In FIG. 10, the horizontal axis indicates time, and the vertical axis indicates the state of the compressor 10, the state of the first switching valve 60, the state of the second switching valve 70, the destination of indoor air, and the state of outdoor air in order from the top. Show the destination.
 時刻t1よりも前においては、第1冷房運転が行なわれている。第1冷房運転中においては、制御装置100は、第1切替弁60を第1状態とし、第2切替弁70を第3状態とする。また、制御装置100は、室内空気の送風先が第2熱交換器40となるように第1送風装置80を制御するとともに、室外空気の送風先が第1熱交換器20となるように第2送風装置90を制御する。 Before time t1, the first cooling operation is performed. During the first cooling operation, the control device 100 sets the first switching valve 60 in the first state and the second switching valve 70 in the third state. Further, the control device 100 controls the first blower device 80 so that the air blow destination of the indoor air becomes the second heat exchanger 40, and the control device 100 controls the first blower device 80 so that the air blow destination of the outdoor air becomes the first heat exchanger 20. 2 Controls the blower 90.
 第1冷房運転中の時刻t1にて第2冷房運転への切替が要求された場合、制御装置100は、冷凍サイクル装置1の運転を、第1冷房運転から第1切替運転に切替える。具体的には、制御装置100は、第1切替弁60を第1状態から第2状態に切替え、第2切替弁70を第3状態から第5状態に切替える。また、制御装置100は、第1送風装置80による室内空気の送風を停止するとともに、第2送風装置90による室外空気の送風を停止する。 When switching to the second cooling operation is requested at time t1 during the first cooling operation, the control device 100 switches the operation of the refrigerating cycle device 1 from the first cooling operation to the first switching operation. Specifically, the control device 100 switches the first switching valve 60 from the first state to the second state, and switches the second switching valve 70 from the third state to the fifth state. Further, the control device 100 stops the blowing of the indoor air by the first blowing device 80 and also stops the blowing of the outdoor air by the second blowing device 90.
 第1切替運転を開始してから一定時間が経過した時刻t2にて、制御装置100は、冷凍サイクル装置1の運転を、第1切替運転から第2冷房運転に切替える。具体的には、制御装置100は、第1切替弁60を第2状態に維持しつつ、第2切替弁70を第5状態から第4状態に切替える。また、制御装置100は、室内空気の送風先が第2熱交換器40から第1熱交換器20に切替えられるように第1送風装置80を制御するとともに、室外空気の送風先が第1熱交換器20から第2熱交換器40に切替えられるように第2送風装置90を制御する。 At time t2 when a certain time has elapsed from the start of the first switching operation, the control device 100 switches the operation of the refrigerating cycle device 1 from the first switching operation to the second cooling operation. Specifically, the control device 100 switches the second switching valve 70 from the fifth state to the fourth state while maintaining the first switching valve 60 in the second state. Further, the control device 100 controls the first air blower 80 so that the air blow destination of the indoor air is switched from the second heat exchanger 40 to the first heat exchanger 20, and the air blow destination of the outdoor air is the first heat. The second blower 90 is controlled so that the exchanger 20 can be switched to the second heat exchanger 40.
 第2冷房運転中の時刻t3にて第1冷房運転への切替が要求された場合、制御装置100は、冷凍サイクル装置1の運転を、第2冷房運転から第2切替運転に切替える。具体的には、制御装置100は、第1切替弁60を第2状態から第1状態に切替え、第2切替弁70を第4状態から第5状態に切替える。また、制御装置100は、第1送風装置80による室内空気の送風を停止するとともに、第2送風装置90による室外空気の送風を停止する。 When switching to the first cooling operation is requested at time t3 during the second cooling operation, the control device 100 switches the operation of the refrigerating cycle device 1 from the second cooling operation to the second switching operation. Specifically, the control device 100 switches the first switching valve 60 from the second state to the first state, and switches the second switching valve 70 from the fourth state to the fifth state. Further, the control device 100 stops the blowing of the indoor air by the first blowing device 80 and also stops the blowing of the outdoor air by the second blowing device 90.
 第2切替運転を開始してから一定時間が経過した時刻t4にて、制御装置100は、冷凍サイクル装置1の運転を、第2切替運転から第1冷房運転に切替える。具体的には、制御装置100は、第1切替弁60を第1状態に維持しつつ、第2切替弁70を第5状態から第3状態に切替える。また、制御装置100は、室内空気の送風先が第1熱交換器20から第2熱交換器40に切替えられるように第1送風装置80を制御するとともに、室外空気の送風先が第2熱交換器40から第1熱交換器20に切替えられるように第2送風装置90を制御する。 At time t4 when a certain time has elapsed from the start of the second switching operation, the control device 100 switches the operation of the refrigerating cycle device 1 from the second switching operation to the first cooling operation. Specifically, the control device 100 switches the second switching valve 70 from the fifth state to the third state while maintaining the first switching valve 60 in the first state. Further, the control device 100 controls the first air blower 80 so that the air blow destination of the indoor air is switched from the first heat exchanger 20 to the second heat exchanger 40, and the air blow destination of the outdoor air is the second heat. The second blower 90 is controlled so that the exchanger 40 can be switched to the first heat exchanger 20.
 時刻t5以降においても、時刻t5までと同様の切替えが行なわれる。
 以上のように、本実施の形態による制御装置100は、第1冷房運転中に第2冷房運転への切替が要求された場合、第2冷房運転に切替える前に、第1切替弁60を第2状態にし第2切替弁70を第5状態にする「第1切替運転」を一定時間行なう。これにより、単純に第1冷媒運転から第2冷媒運転に切替える場合に比べて、運転切替時に高圧冷媒と低圧冷媒とが混合し均圧化されることを防止することができ、かつ予め第2冷媒運転の圧力分布に近い状態を早期に形成した後に第2冷媒運転に切替えることができる。そのため、第2冷房運転への切替後に冷凍サイクルが安定するまでに要する時間を短縮することができる。その結果、第2冷房運転への切替後に冷凍サイクルを安定させるのに消費される無駄なエネルギを低減することができ、冷凍サイクル装置1の省エネルギ化を図ることができる。
Even after the time t5, the same switching as up to the time t5 is performed.
As described above, when the control device 100 according to the present embodiment is requested to switch to the second cooling operation during the first cooling operation, the control device 100 sets the first switching valve 60 before switching to the second cooling operation. The "first switching operation" in which the second switching valve 70 is set to the fifth state in the second state is performed for a certain period of time. As a result, it is possible to prevent the high-pressure refrigerant and the low-pressure refrigerant from being mixed and equalized at the time of operation switching, as compared with the case of simply switching from the first refrigerant operation to the second refrigerant operation, and it is possible to prevent the pressure from being equalized in advance. It is possible to switch to the second refrigerant operation after forming a state close to the pressure distribution of the refrigerant operation at an early stage. Therefore, it is possible to shorten the time required for the refrigeration cycle to stabilize after switching to the second cooling operation. As a result, the wasteful energy consumed for stabilizing the refrigeration cycle after switching to the second cooling operation can be reduced, and the energy saving of the refrigeration cycle apparatus 1 can be achieved.
 また、本実施の形態による制御装置100は、第2冷房運転中に第1冷房運転への切替が要求された場合、第1冷房運転に切替える前に、第1切替弁60を第1状態にし第2切替弁70を第5状態にする「第2切替運転」を一定時間行なう。これにより、単純に第2冷媒運転から第1冷媒運転に切替える場合に比べて、運転切替時に高圧冷媒と低圧冷媒とが混合し均圧化されることを防止することができ、かつ予め第1冷媒運転の圧力分布に近い状態を早期に形成した後に第1冷媒運転に切替えることができる。そのため、第1冷房運転への切替後に冷凍サイクルが安定するまでに要する時間を短縮することができる。その結果、第1冷房運転への切替後に冷凍サイクルを安定させるのに消費される無駄なエネルギを低減することができ、冷凍サイクル装置1の省エネルギ化を図ることができる。 Further, when the control device 100 according to the present embodiment is requested to switch to the first cooling operation during the second cooling operation, the first switching valve 60 is set to the first state before switching to the first cooling operation. The "second switching operation" for setting the second switching valve 70 to the fifth state is performed for a certain period of time. As a result, it is possible to prevent the high-pressure refrigerant and the low-pressure refrigerant from being mixed and equalized at the time of operation switching, as compared with the case of simply switching from the second refrigerant operation to the first refrigerant operation, and it is possible to prevent the pressure from being equalized in advance. It is possible to switch to the first refrigerant operation after forming a state close to the pressure distribution of the refrigerant operation at an early stage. Therefore, it is possible to shorten the time required for the refrigeration cycle to stabilize after switching to the first cooling operation. As a result, the wasteful energy consumed for stabilizing the refrigeration cycle after switching to the first cooling operation can be reduced, and the energy saving of the refrigeration cycle apparatus 1 can be achieved.
 実施の形態2.
 図11~図14には、本実施の形態2による冷凍サイクル装置の冷媒回路RCaの構成の一例が模式的に示される。本実施の形態2による冷媒回路RCaは、上述の実施の形態1による冷媒回路RCに対して、減圧装置32および第3熱交換器42を追加したものである。冷媒回路RCaのその他の構成は、冷媒回路RCと同じである。また、本実施の形態2による冷凍サイクル装置のその他の構成および動作は、上述の図1に示す冷凍サイクル装置1と同じである。
Embodiment 2.
11 to 14 schematically show an example of the configuration of the refrigerant circuit RCA of the refrigeration cycle apparatus according to the second embodiment. The refrigerant circuit RCa according to the second embodiment is obtained by adding a decompression device 32 and a third heat exchanger 42 to the refrigerant circuit RC according to the first embodiment described above. Other configurations of the refrigerant circuit RCa are the same as those of the refrigerant circuit RC. Further, other configurations and operations of the refrigerating cycle apparatus according to the second embodiment are the same as those of the refrigerating cycle apparatus 1 shown in FIG. 1 above.
 減圧装置32および第3熱交換器42は、第2切替弁70と圧縮機10の吸入ポートとの間に配置される。 The decompression device 32 and the third heat exchanger 42 are arranged between the second switching valve 70 and the suction port of the compressor 10.
 減圧装置32は、第2切替弁70からの冷媒を減圧して第3熱交換器42に出力する。減圧装置32としては、制御装置100からの指令に応じて開度を調整可能な弁体を備えた装置、例えば電子制御式膨張弁を用いることができる。 The decompression device 32 decompresses the refrigerant from the second switching valve 70 and outputs it to the third heat exchanger 42. As the pressure reducing device 32, a device provided with a valve body whose opening degree can be adjusted in response to a command from the control device 100, for example, an electronically controlled expansion valve can be used.
 第3熱交換器42は、減圧装置32によって減圧された冷媒と、外部の空気との間で熱交換を行う。 The third heat exchanger 42 exchanges heat between the refrigerant decompressed by the decompression device 32 and the external air.
 図11は、冷媒回路RCaの第1冷房運転中における状態を示す図である。図12は、冷媒回路RCaの第1切替運転中における状態を示す図である。図13は、冷媒回路RCaの第2冷房運転中における状態を示す図である。図14は、冷媒回路RCaの第2切替運転中における状態を示す図である。 FIG. 11 is a diagram showing a state of the refrigerant circuit RCA during the first cooling operation. FIG. 12 is a diagram showing a state of the refrigerant circuit RCA during the first switching operation. FIG. 13 is a diagram showing a state of the refrigerant circuit RCA during the second cooling operation. FIG. 14 is a diagram showing a state of the refrigerant circuit RCA during the second switching operation.
 各運転中における圧縮機10、第1切替弁60、第2切替弁70、第1送風装置80、および第2送風装置90の状態は、基本的に、上述の実施の形態1と同様に制御される。 The states of the compressor 10, the first switching valve 60, the second switching valve 70, the first blower device 80, and the second blower device 90 during each operation are basically controlled in the same manner as in the first embodiment described above. Will be done.
 ただし、本実施の形態2による冷媒回路RCaにおいては、減圧装置32が追加されたことによって、各運転中において、圧縮機10の吐出ポートから減圧装置30までの回路に高圧の冷媒が分布し、減圧装置30から減圧装置32までの回路に中間圧の冷媒が分布し、減圧装置32から圧縮機10の吸入ポートまでの回路に低圧の冷媒が分布する状態となる。 However, in the refrigerant circuit RCa according to the second embodiment, the addition of the decompression device 32 causes the high-pressure refrigerant to be distributed in the circuit from the discharge port of the compressor 10 to the decompression device 30 during each operation. The intermediate pressure refrigerant is distributed in the circuit from the decompression device 30 to the decompression device 32, and the low pressure refrigerant is distributed in the circuit from the decompression device 32 to the suction port of the compressor 10.
 さらに、本実施の形態2による冷媒回路RCaは、図11に示されるように、第1冷房運転中において、室内空気が第2熱交換器40、第3熱交換器42の順に送風されるように構成される。すなわち、第1冷房運転中においては、第2熱交換器40および第3熱交換器42が蒸発器として機能するところ、室内空気は、第2熱交換器40を通過した後に、第3熱交換器42へと送風される。 Further, in the refrigerant circuit RCA according to the second embodiment, as shown in FIG. 11, the indoor air is blown in the order of the second heat exchanger 40 and the third heat exchanger 42 during the first cooling operation. It is composed of. That is, during the first cooling operation, the second heat exchanger 40 and the third heat exchanger 42 function as evaporators, whereas the indoor air passes through the second heat exchanger 40 and then exchanges the third heat. It is blown to the vessel 42.
 このように、本実施の形態2においては、第1冷房運転中において、室内空気が、第2熱交換器40、第3熱交換器42の順に送風される。そのため、第1冷房運転中に蒸発器として機能する(すなわち霜が付着し得る)第2熱交換器40および第3熱交換器42のうち、第2冷房運転への切替後に凝縮器として機能する第2熱交換器40に積極的に霜を付着させ、第2冷房運転への切替後も蒸発器として機能する第3熱交換器42には霜を付着させ難くすることができる。その結果、その後に第2冷房運転に切替えて除霜する際に、多くの霜が付着した第2熱交換器40だけを除霜することができるので、効率の良い除霜運転を行なうことができる。 As described above, in the second embodiment, the indoor air is blown in the order of the second heat exchanger 40 and the third heat exchanger 42 during the first cooling operation. Therefore, of the second heat exchanger 40 and the third heat exchanger 42 that function as an evaporator during the first cooling operation (that is, frost may adhere to them), they function as a condenser after switching to the second cooling operation. It is possible to positively attach frost to the second heat exchanger 40 and make it difficult for frost to adhere to the third heat exchanger 42, which functions as an evaporator even after switching to the second cooling operation. As a result, when the second cooling operation is subsequently switched to defrost, only the second heat exchanger 40 to which a large amount of frost is attached can be defrosted, so that efficient defrosting operation can be performed. can.
 また、本実施の形態2による冷媒回路RCaは、図13に示されるように、第2冷房運転中において、室内空気が第1熱交換器20、第3熱交換器42の順に送風される。すなわち、第2冷房運転中においては、第1熱交換器20および第3熱交換器42が蒸発器として機能するところ、室内空気は、第1熱交換器20を通過した後に、第3熱交換器42へと送風される。 Further, in the refrigerant circuit RCA according to the second embodiment, as shown in FIG. 13, indoor air is blown in the order of the first heat exchanger 20 and the third heat exchanger 42 during the second cooling operation. That is, during the second cooling operation, the first heat exchanger 20 and the third heat exchanger 42 function as evaporators, whereas the indoor air passes through the first heat exchanger 20 and then exchanges the third heat. It is blown to the vessel 42.
 このように、本実施の形態2においては、第2冷房運転中において、室内空気が、第1熱交換器20、第3熱交換器42の順に送風される。そのため、第2冷房運転中に蒸発器として機能する(すなわち霜が付着し得る)第1熱交換器20および第3熱交換器42のうち、第1冷房運転への切替後に凝縮器として機能する第1熱交換器20に積極的に霜を付着させ、第1冷房運転への切替後も蒸発器として機能する第3熱交換器42に霜を付着させ難くすることができる。その結果、その後に第1冷房運転に切替えて除霜する際に、多くの霜が付着した第1熱交換器20だけを除霜することができるので、効率の良い除霜運転を行なうことができる。 As described above, in the second embodiment, the indoor air is blown in the order of the first heat exchanger 20 and the third heat exchanger 42 during the second cooling operation. Therefore, among the first heat exchanger 20 and the third heat exchanger 42 that function as an evaporator (that is, frost may adhere) during the second cooling operation, they function as a condenser after switching to the first cooling operation. It is possible to positively adhere frost to the first heat exchanger 20 and make it difficult for frost to adhere to the third heat exchanger 42 which functions as an evaporator even after switching to the first cooling operation. As a result, when the first cooling operation is subsequently switched to defrost, only the first heat exchanger 20 to which a large amount of frost is attached can be defrosted, so that efficient defrosting operation can be performed. can.
 なお、本実施の形態2による冷媒回路RCaにおいて、第1熱交換器20および第2熱交換器40の表面に、空気中の水分を吸着する吸着剤(デシカント材等)を塗布しておくようにしてもよい。これにより、第1熱交換器20あるいは第2熱交換器40で空気中の水分が吸着されるため、第3熱交換器42に着霜することを防ぐことができる。 In the refrigerant circuit RCa according to the second embodiment, an adsorbent (desiccant material or the like) that adsorbs moisture in the air is applied to the surfaces of the first heat exchanger 20 and the second heat exchanger 40. You may do it. As a result, the moisture in the air is adsorbed by the first heat exchanger 20 or the second heat exchanger 40, so that it is possible to prevent frost from forming on the third heat exchanger 42.
 たとえば、第1熱交換器20を蒸発器として機能させる第2冷房運転中において、室内空気中の水分は第1熱交換器20を通過する際に第1熱交換器20の吸着剤に吸着されるので、第1熱交換器20を通過した後に第3熱交換器42に送風される室内空気は乾燥した状態となる。その結果、第3熱交換器42に霜を付着し難くすることができる。 For example, during the second cooling operation in which the first heat exchanger 20 functions as an evaporator, the moisture in the room air is adsorbed by the adsorbent of the first heat exchanger 20 as it passes through the first heat exchanger 20. Therefore, the indoor air blown to the third heat exchanger 42 after passing through the first heat exchanger 20 is in a dry state. As a result, it is possible to prevent frost from adhering to the third heat exchanger 42.
 また、その後に第1冷房運転に切替えて第1熱交換器20を凝縮器として機能させることで、第1熱交換器20の吸着剤に含まれている水分を室外空気に放出させることができる。その結果、第1熱交換器20の吸着剤が乾燥するため、第2冷媒運転に再度切替えて第1熱交換器20を蒸発器として機能させる際、第1熱交換器20の吸着剤に室内空気中の水分を再び吸着させることができる。 Further, by switching to the first cooling operation and causing the first heat exchanger 20 to function as a condenser, the moisture contained in the adsorbent of the first heat exchanger 20 can be released to the outdoor air. .. As a result, the adsorbent of the first heat exchanger 20 dries. Therefore, when the first heat exchanger 20 is made to function as an evaporator by switching to the second refrigerant operation again, the adsorbent of the first heat exchanger 20 is used indoors. Moisture in the air can be adsorbed again.
 実施の形態3.
 図15~図18には、本実施の形態3による冷凍サイクル装置の冷媒回路RCbの構成の一例が模式的に示される。本実施の形態3による冷媒回路RCbは、上述の実施の形態2による冷媒回路RCaに対して、第4熱交換器44を追加したものである。冷媒回路RCbのその他の構成は、冷媒回路RCaと同じである。また、本実施の形態3による冷凍サイクル装置のその他の構成および動作は、上述の図1に示す冷凍サイクル装置1と同じである。
Embodiment 3.
15 to 18 schematically show an example of the configuration of the refrigerant circuit RCb of the refrigeration cycle apparatus according to the third embodiment. The refrigerant circuit RCb according to the third embodiment is an addition of the fourth heat exchanger 44 to the refrigerant circuit RCA according to the second embodiment described above. Other configurations of the refrigerant circuit RCb are the same as those of the refrigerant circuit RCA. Further, other configurations and operations of the refrigerating cycle apparatus according to the third embodiment are the same as those of the refrigerating cycle apparatus 1 shown in FIG. 1 above.
 第4熱交換器44は、圧縮機10の吐出ポートと第1切替弁60との間に配置される。第4熱交換器44は、圧縮機10から吐出された冷媒と、外部の空気との間で熱交換を行う。 The fourth heat exchanger 44 is arranged between the discharge port of the compressor 10 and the first switching valve 60. The fourth heat exchanger 44 exchanges heat between the refrigerant discharged from the compressor 10 and the external air.
 図15は、冷媒回路RCbの第1冷房運転中における状態を示す図である。図16は、冷媒回路RCbの第1切替運転中における状態を示す図である。図17は、冷媒回路RCbの第2冷房運転中における状態を示す図である。図18は、冷媒回路RCbの第2切替運転中における状態を示す図である。 FIG. 15 is a diagram showing a state of the refrigerant circuit RCb during the first cooling operation. FIG. 16 is a diagram showing a state of the refrigerant circuit RCb during the first switching operation. FIG. 17 is a diagram showing a state of the refrigerant circuit RCb during the second cooling operation. FIG. 18 is a diagram showing a state of the refrigerant circuit RCb during the second switching operation.
 各運転中における圧縮機10、第1切替弁60、第2切替弁70、第1送風装置80、および第2送風装置90の状態は、基本的に、上述の実施の形態2と同様に制御される。 The states of the compressor 10, the first switching valve 60, the second switching valve 70, the first blower device 80, and the second blower device 90 during each operation are basically controlled in the same manner as in the second embodiment described above. Will be done.
 第1熱交換器20または第2熱交換器40を凝縮器として機能させる場合に凝縮器に霜あるいは水分が付着していた場合、霜あるいは水分の付着量によって凝縮器の熱変換効率が変化する。また凝縮器として使っているため霜や水分の付着量は運転とともに変化し得るため、凝縮器内の高圧が時々刻々と変化する。 If frost or moisture adheres to the condenser when the first heat exchanger 20 or the second heat exchanger 40 functions as a condenser, the heat conversion efficiency of the condenser changes depending on the amount of frost or moisture adhered to the condenser. .. Also, since it is used as a condenser, the amount of frost and moisture attached can change with operation, so the high pressure inside the condenser changes from moment to moment.
 この点に鑑み、本実施の形態3による冷媒回路RCbにおいては、圧縮機10の吐出ポートと第1切替弁60との間に第4熱交換器44が追加される。これにより、第1熱交換器20または第2熱交換器40の熱交換器性能が変化した場合でも、安定して高圧を一定値に維持することができる。 In view of this point, in the refrigerant circuit RCb according to the third embodiment, a fourth heat exchanger 44 is added between the discharge port of the compressor 10 and the first switching valve 60. As a result, even if the heat exchanger performance of the first heat exchanger 20 or the second heat exchanger 40 changes, the high pressure can be stably maintained at a constant value.
 さらに、本実施の形態3による冷媒回路RCbは、図15に示されるように、第1冷房運転中において、室外空気が第1熱交換器20を通過した後に第3熱交換器42へと送風されるように構成される。これにより、凝縮器として作用する第4熱交換器44の熱交換を促進することができる。 Further, as shown in FIG. 15, the refrigerant circuit RCb according to the third embodiment blows air to the third heat exchanger 42 after the outdoor air has passed through the first heat exchanger 20 during the first cooling operation. It is configured to be. This makes it possible to promote heat exchange in the fourth heat exchanger 44, which acts as a condenser.
 [第1送風装置80および第2送風装置90の構成例]
 以下、上述の実施の形態1~3における冷凍サイクル装置に用いられる第1送風装置80および第2送風装置90の構成例について説明する。
[Structure example of the first blower 80 and the second blower 90]
Hereinafter, configuration examples of the first blower device 80 and the second blower device 90 used in the refrigeration cycle device according to the above-described first to third embodiments will be described.
 図19および図20は、上述の実施の形態1における冷凍サイクル装置に適した第1送風装置80および第2送風装置90の構成例を示す図である。なお、図19は実施の形態1による第1冷房運転中(図6参照)における状態を示し、図20は実施の形態1による第2冷房運転中(図7参照)における状態を示す。 19 and 20 are diagrams showing configuration examples of the first blower device 80 and the second blower device 90 suitable for the refrigeration cycle device according to the first embodiment described above. Note that FIG. 19 shows a state during the first cooling operation according to the first embodiment (see FIG. 6), and FIG. 20 shows a state during the second cooling operation according to the first embodiment (see FIG. 7).
 第1送風装置80は、ファン81と、風路82と、風路切替器83とを備える。ファン81は、制御装置100からの指令に応じて作動し、室内空気を風路82内に送風する。風路82は、冷却対象である室内と第1熱交換器20および第2熱交換器40とを連通する。風路切替器83は、制御装置100からの指令に応じて風路82内の経路を切替えることによって、室内空気の供給先を第1熱交換器20と第2熱交換器40との間で切替可能に構成される。なお、風路切替器83の状態は、たとえば図示しないモータを駆動することによって切替えられる。 The first blower device 80 includes a fan 81, an air passage 82, and an air passage switch 83. The fan 81 operates in response to a command from the control device 100 to blow indoor air into the air passage 82. The air passage 82 communicates the room to be cooled with the first heat exchanger 20 and the second heat exchanger 40. The air passage switch 83 switches the path in the air passage 82 in response to a command from the control device 100 to supply indoor air between the first heat exchanger 20 and the second heat exchanger 40. It is configured to be switchable. The state of the air passage switch 83 is switched, for example, by driving a motor (not shown).
 第2送風装置90は、ファン91と、風路92と、第1送風装置80と間で共用される風路切替器83とを備える。ファン91は、制御装置100からの指令に応じて作動し、室外空気を風路92内に送風する。風路92は、冷却対象でない室外と第1熱交換器20および第2熱交換器40とを連通する。風路切替器83は、制御装置100からの指令に応じて風路92内の経路を切替えることによって、室外空気の供給先を第1熱交換器20と第2熱交換器40との間で切替可能に構成される。 The second blower 90 includes a fan 91, an air passage 92, and an air passage switch 83 shared between the first blower 80. The fan 91 operates in response to a command from the control device 100 to blow outdoor air into the air passage 92. The air passage 92 communicates the outdoor area, which is not the object of cooling, with the first heat exchanger 20 and the second heat exchanger 40. The air passage switch 83 switches the path in the air passage 92 in response to a command from the control device 100, so that the outdoor air supply destination is between the first heat exchanger 20 and the second heat exchanger 40. It is configured to be switchable.
 第1冷房運転中においては、ファン81,91を作動させつつ、風路切替器83を図19に示す状態にすることによって、室内空気の送風先を第2熱交換器40とし室外空気の送風先を第1熱交換器20とすることができる。第2冷房運転中においては、ファン81,91を作動させつつ、風路切替器83を図20に示す状態にすることによって、室内空気の送風先を第1熱交換器20とし室外空気の送風先を第2熱交換器40とすることができる。 During the first cooling operation, by operating the fans 81 and 91 and setting the air passage switch 83 to the state shown in FIG. 19, the indoor air is blown to the second heat exchanger 40 and the outdoor air is blown. The tip can be the first heat exchanger 20. During the second cooling operation, by operating the fans 81 and 91 and setting the air passage switch 83 to the state shown in FIG. 20, the indoor air is blown to the first heat exchanger 20 and the outdoor air is blown. The tip can be the second heat exchanger 40.
 図21および図22は、上述の実施の形態2における冷凍サイクル装置に適した第1送風装置80Aおよび第2送風装置90Aの構成例を示す図である。なお、図21は実施の形態2による第1冷房運転中(図11参照)における状態を示し、図22は実施の形態2による第2冷房運転中(図13参照)における状態を示す。 21 and 22 are diagrams showing configuration examples of the first blower 80A and the second blower 90A suitable for the refrigeration cycle device according to the second embodiment described above. Note that FIG. 21 shows a state during the first cooling operation according to the second embodiment (see FIG. 11), and FIG. 22 shows a state during the second cooling operation according to the second embodiment (see FIG. 13).
 第1送風装置80Aは、上述の第1送風装置80に対して、風路82a,82bと、風路切替器83a,83bとを追加したものである。第2送風装置90Aは、上述の第2送風装置90に対して、風路92a,92bと、第1送風装置80Aとの間で共用される風路切替器83a,83bとを追加したものである。 The first blower device 80A is the above-mentioned first blower device 80 to which the air passages 82a and 82b and the air passage switching devices 83a and 83b are added. The second blower 90A is the above-mentioned second blower 90 with the addition of the air passages 92a and 92b and the air passage switching devices 83a and 83b shared between the first blower 80A. be.
 風路82aは、第1熱交換器20を通過した後の空気を第3熱交換器42に供給するように形成される。風路82bは、第2熱交換器40を通過した後の空気を第3熱交換器42に供給するように形成される。風路92aは、第1熱交換器20を通過した後の空気を室外に供給するように形成される。風路92bは、第2熱交換器40を通過した後の空気を室外に供給するように形成される。 The air passage 82a is formed so as to supply the air after passing through the first heat exchanger 20 to the third heat exchanger 42. The air passage 82b is formed so as to supply the air after passing through the second heat exchanger 40 to the third heat exchanger 42. The air passage 92a is formed so as to supply the air after passing through the first heat exchanger 20 to the outside of the room. The air passage 92b is formed so as to supply the air after passing through the second heat exchanger 40 to the outside of the room.
 風路切替器83aは、制御装置100からの指令に応じて、第1熱交換器20を通過した後の空気の供給先を風路82aと風路92aとの間で切替可能に構成される。風路切替器83bは、制御装置100からの指令に応じて、第2熱交換器40を通過した後の空気の供給先を風路82bと風路92bとの間で切替可能に構成される。なお、風路切替器83a,83bの状態は、たとえば図示しないモータを駆動することによって切替えられる。 The air passage switch 83a is configured to be able to switch the air supply destination after passing through the first heat exchanger 20 between the air passage 82a and the air passage 92a in response to a command from the control device 100. .. The air passage switch 83b is configured to be able to switch the air supply destination after passing through the second heat exchanger 40 between the air passage 82b and the air passage 92b in response to a command from the control device 100. .. The states of the air passage switching devices 83a and 83b are switched, for example, by driving a motor (not shown).
 第1冷房運転中においては、ファン81,91を作動させつつ、風路切替器83,83a,83bを図21に示す状態にすることによって、室内空気を第2熱交換器40、第3熱交換器42の順に送風させつつ、室外空気の送風先を第1熱交換器20とすることができる。第2冷房運転中においては、ファン81,91を作動させつつ、風路切替器83,83a,83bを図22に示す状態にすることによって、室内空気を、第1熱交換器20、第3熱交換器42の順に送風させつつ、室外空気の送風先を第2熱交換器40とすることができる。 During the first cooling operation, the indoor air is brought into the second heat exchanger 40 and the third heat by operating the fans 81 and 91 and setting the air passage switches 83, 83a and 83b to the states shown in FIG. The first heat exchanger 20 can be the destination for blowing the outdoor air while blowing the air in the order of the exchanger 42. During the second cooling operation, the air passage switches 83, 83a, 83b are brought into the state shown in FIG. 22 while operating the fans 81, 91, so that the indoor air is brought into the first heat exchangers 20, the third. The second heat exchanger 40 can be the destination of the outdoor air while blowing air in the order of the heat exchanger 42.
 図23および図24は、上述の実施の形態3における冷凍サイクル装置に適した第1送風装置80Aおよび第2送風装置90Bの構成例を示す図である。なお、図23は実施の形態3による第1冷房運転中(図15参照)における状態を示し、図24は実施の形態3による第2冷房運転中(図17参照)における状態を示す。 23 and 24 are diagrams showing configuration examples of the first blower 80A and the second blower 90B suitable for the refrigeration cycle device according to the third embodiment described above. Note that FIG. 23 shows a state during the first cooling operation according to the third embodiment (see FIG. 15), and FIG. 24 shows a state during the second cooling operation according to the third embodiment (see FIG. 17).
 第1送風装置80Aは、上述の図21に示した第1送風装置80Aと同じである。第2送風装置90Bは、上述の図21に示した第2送風装置90Aの風路92a,92bをそれぞれ風路92c,92dに変更したものである。 The first blower 80A is the same as the first blower 80A shown in FIG. 21 above. The second blower 90B is obtained by changing the air passages 92a and 92b of the second blower 90A shown in FIG. 21 to the air passages 92c and 92d, respectively.
 風路92cは、第1熱交換器20を通過した後の空気を第4熱交換器44に供給するように形成される。風路92dは、第2熱交換器40を通過した後の空気を第4熱交換器44に供給するように形成される。 The air passage 92c is formed so as to supply the air after passing through the first heat exchanger 20 to the fourth heat exchanger 44. The air passage 92d is formed so as to supply the air after passing through the second heat exchanger 40 to the fourth heat exchanger 44.
 第1冷房運転中においては、ファン81,91を作動させつつ、風路切替器83,83a,83bを図23に示す状態にすることによって、室内空気を第2熱交換器40、第3熱交換器42の順に送風させつつ、室外空気を第1熱交換器20、第4熱交換器44の順に送風させることができる。第2冷房運転中においては、ファン81,91を作動させつつ、風路切替器83,83a,83bを図24に示す状態にすることによって、室内空気を第1熱交換器20、第3熱交換器42の順に送風させつつ、室外空気を第2熱交換器40、第4熱交換器44の順に送風させることができる。 During the first cooling operation, the indoor air is brought into the second heat exchanger 40 and the third heat by operating the fans 81 and 91 and setting the air passage switches 83, 83a and 83b to the states shown in FIG. The outdoor air can be blown in the order of the first heat exchanger 20 and the fourth heat exchanger 44 while blowing the air in the order of the exchanger 42. During the second cooling operation, the indoor air is brought into the first heat exchanger 20 and the third heat by operating the fans 81 and 91 and putting the air passage switches 83, 83a and 83b in the state shown in FIG. 24. The outdoor air can be blown in the order of the second heat exchanger 40 and the fourth heat exchanger 44 while blowing the air in the order of the exchanger 42.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 冷凍サイクル装置、10 圧縮機、20 第1熱交換器、30,32 減圧装置、40 第2熱交換器、42 第3熱交換器、44 第4熱交換器、51~58 配管、60 第1切替弁、70 第2切替弁、71 容器、72 弁体、73~75 流路、76 回転軸、80,80A 第1送風装置、81,91 ファン、82,82a,82b,92,92a,92b,92c,92d 風路、83,83a,83b 風路切替器、90,90A 第2送風装置、100 制御装置、RC,RCa,RCb 冷媒回路。 1 Refrigeration cycle device, 10 compressor, 20 1st heat exchanger, 30, 32 decompression device, 40 2nd heat exchanger, 42 3rd heat exchanger, 44 4th heat exchanger, 51-58 piping, 60th 1 switching valve, 70 2nd switching valve, 71 container, 72 valve body, 73-75 flow path, 76 rotary shaft, 80, 80A 1st blower, 81, 91 fan, 82, 82a, 82b, 92, 92a, 92b, 92c, 92d air passage, 83, 83a, 83b air passage switch, 90, 90A second blower, 100 control device, RC, RCa, RCb refrigerant circuit.

Claims (9)

  1.  圧縮機、第1熱交換器、減圧装置、および第2熱交換器の順に冷媒を循環させる第1運転と、前記圧縮機、前記第2熱交換器、前記減圧装置、および前記第1熱交換器の順に冷媒を循環させる第2運転との間で運転を切替可能な冷凍サイクル装置であって、
     前記圧縮機の吐出ポート、前記第1熱交換器の一方のポート、前記第2熱交換器の一方のポート、および前記減圧装置の一方のポートに接続される第1切替弁と、
     前記圧縮機の吸入ポート、前記第1熱交換器の他方のポート、前記第2熱交換器の他方のポート、および前記減圧装置の他方のポートに接続され第2切替弁と、
     前記第1切替弁および前記第2切替弁を制御する制御装置とを備え、
     前記第1切替弁は、前記圧縮機の前記吐出ポートと前記第1熱交換器の前記一方のポートとを接続しつつ前記第2熱交換器の前記一方のポートと前記減圧装置の前記一方のポートとを接続する第1状態と、前記圧縮機の前記吐出ポートと前記第2熱交換器の前記一方のポートとを接続しつつ前記第1熱交換器の前記一方のポートと前記減圧装置の前記一方のポートとを接続する第2状態とのどちらかに切替可能に構成され、
     前記第2切替弁は、前記第1熱交換器の前記他方のポートと前記減圧装置の前記他方のポートとを接続しつつ前記第2熱交換器の前記他方のポートと前記圧縮機の前記吸入ポートとを接続する第3状態と、前記第2熱交換器の前記他方のポートと前記減圧装置の前記他方のポートとを接続しつつ前記第1熱交換器の前記他方のポートと前記圧縮機の前記吸入ポートとを接続する第4状態と、前記減圧装置の前記他方のポートと前記圧縮機の前記吸入ポートとを接続しつつ前記第1熱交換器の前記他方のポートと前記第2熱交換器の前記他方のポートとを遮断する第5状態とのいずれかに切替可能に構成され、
     前記制御装置は、前記第1運転中において前記第1切替弁を前記第1状態にし前記第2切替弁を前記第3状態にし、前記第2運転中において前記第1切替弁を前記第2状態にし前記第2切替弁を前記第4状態にし、
     前記制御装置は、前記第1運転中に前記第2運転への切替が要求された場合、前記第1切替弁を前記第2状態にし前記第2切替弁を前記第5状態にする第1切替運転を行ない、前記第1切替運転を行なった後に前記冷凍サイクル装置の運転を前記第2運転に切替える、冷凍サイクル装置。
    The first operation of circulating the refrigerant in the order of the compressor, the first heat exchanger, the decompression device, and the second heat exchanger, and the compressor, the second heat exchanger, the decompression device, and the first heat exchange. It is a refrigeration cycle device that can switch the operation between the second operation that circulates the refrigerant in the order of the vessels.
    A first switching valve connected to the discharge port of the compressor, one port of the first heat exchanger, one port of the second heat exchanger, and one port of the decompression device.
    A second switching valve connected to the suction port of the compressor, the other port of the first heat exchanger, the other port of the second heat exchanger, and the other port of the decompression device.
    A control device for controlling the first switching valve and the second switching valve is provided.
    The first switching valve connects the discharge port of the compressor and the one port of the first heat exchanger, and connects the one port of the second heat exchanger and the one port of the decompression device. The first state of connecting the port and the one port of the first heat exchanger and the decompression device while connecting the discharge port of the compressor and the one port of the second heat exchanger. It is configured to be switchable to either the second state that connects to one of the ports.
    The second switching valve connects the other port of the first heat exchanger and the other port of the decompression device to the other port of the second heat exchanger and the suction of the compressor. The third state of connecting the port and the other port of the first heat exchanger and the compressor while connecting the other port of the second heat exchanger and the other port of the decompression device. The fourth state of connecting the suction port of the first heat exchanger and the other port of the first heat exchanger and the second heat while connecting the other port of the decompression device and the suction port of the compressor. It is configured to be switchable to any of the fifth states that shut off the other port of the exchanger.
    The control device puts the first switching valve in the first state, the second switching valve in the third state during the first operation, and the first switching valve in the second state during the second operation. The second switching valve is set to the fourth state, and the second switching valve is set to the fourth state.
    When the control device is requested to switch to the second operation during the first operation, the control device makes the first switching valve in the second state and the second switching valve in the fifth state. A refrigerating cycle device that performs an operation and switches the operation of the refrigerating cycle device to the second operation after performing the first switching operation.
  2.  前記制御装置は、前記第2運転中に前記第1運転への切替が要求された場合、前記第1切替弁を前記第1状態にし前記第2切替弁を前記第5状態にする第2切替運転を行ない、前記第2切替運転を行なった後に前記冷凍サイクル装置の運転を前記第1運転に切替える、請求項1に記載の冷凍サイクル装置。 When the control device is requested to switch to the first operation during the second operation, the control device sets the first switching valve to the first state and the second switching valve to the fifth state. The refrigerating cycle apparatus according to claim 1, wherein the refrigerating cycle apparatus is operated and the operation of the refrigerating cycle apparatus is switched to the first operation after the second switching operation is performed.
  3.  前記冷凍サイクル装置は、前記第1熱交換器および前記第2熱交換器に送風可能に構成された送風装置をさらに備え、
     前記制御装置は、前記第1切替運転中および前記第2切替運転中において前記第1熱交換器および前記第2熱交換器への送風を停止するように前記送風装置を制御する、請求項2に記載の冷凍サイクル装置。
    The refrigeration cycle device further includes a blower configured to blow air to the first heat exchanger and the second heat exchanger.
    2. The control device controls the blower device so as to stop blowing air to the first heat exchanger and the second heat exchanger during the first switching operation and the second switching operation. The refrigeration cycle device described in.
  4.  前記送風装置は、冷却対象である室内空気の送風先を前記第1熱交換器および前記第2熱交換器のどちらかに切替可能に構成された第1送風装置を含み、
     前記制御装置は、前記第1運転中において前記室内空気の送風先を前記第2熱交換器とし、前記第2運転中において前記室内空気の送風先を前記第1熱交換器とするように、前記第1送風装置を制御する、請求項3に記載の冷凍サイクル装置。
    The blower includes a first blower configured so that the destination of the indoor air to be cooled can be switched to either the first heat exchanger or the second heat exchanger.
    In the control device, the air outlet of the indoor air is the second heat exchanger during the first operation, and the air outlet of the indoor air is the first heat exchanger during the second operation. The refrigeration cycle device according to claim 3, which controls the first air blower.
  5.  前記送風装置は、冷却対象でない室外空気の送風先を前記第1熱交換器および前記第2熱交換器のどちらかに切替可能に構成された第2送風装置を含み、
     前記制御装置は、前記第1運転中において前記室外空気の送風先を前記第1熱交換器とし、前記第2運転中において前記室外空気の送風先を前記第2熱交換器とするように、前記第2送風装置を制御する、請求項4に記載の冷凍サイクル装置。
    The blower includes a second blower configured to switch the destination of outdoor air that is not to be cooled to either the first heat exchanger or the second heat exchanger.
    In the control device, the outdoor air is blown to the first heat exchanger during the first operation, and the outdoor air is blown to the second heat exchanger during the second operation. The refrigeration cycle device according to claim 4, which controls the second blower device.
  6.  前記冷凍サイクル装置は、前記第2切替弁と前記圧縮機の吸入ポートとの間に配置される第2減圧装置および第3熱交換器をさらに備える、請求項4または5に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 4 or 5, further comprising a second decompression device and a third heat exchanger arranged between the second switching valve and the suction port of the compressor. ..
  7.  前記室内空気は、前記第1運転中において前記第2熱交換器、前記第3熱交換器の順に送風され、前記第2運転中において前記第1熱交換器、前記第3熱交換器の順に送風される、請求項6に記載の冷凍サイクル装置。 The indoor air is blown in the order of the second heat exchanger and the third heat exchanger during the first operation, and the first heat exchanger and the third heat exchanger are blown in this order during the second operation. The refrigerating cycle apparatus according to claim 6, wherein the air is blown.
  8.  前記第1熱交換器および前記第2熱交換器の表面には、空気中の水分を吸着する吸着剤が塗布される、請求項7に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7, wherein an adsorbent that adsorbs moisture in the air is applied to the surfaces of the first heat exchanger and the second heat exchanger.
  9.  前記冷凍サイクル装置は、前記圧縮機の吐出ポートと前記第1切替弁との間に配置される第4熱交換器をさらに備える、請求項6~8のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 6 to 8, further comprising a fourth heat exchanger arranged between the discharge port of the compressor and the first switching valve. ..
PCT/JP2020/026569 2020-07-07 2020-07-07 Refrigeration cycle device WO2022009312A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2020457289A AU2020457289B2 (en) 2020-07-07 2020-07-07 Refrigeration cycle device
EP20944786.1A EP4180742A4 (en) 2020-07-07 2020-07-07 REFRIGERATION CIRCUIT DEVICE
JP2022534537A JP7357793B2 (en) 2020-07-07 2020-07-07 Refrigeration cycle equipment
US17/922,545 US20230175744A1 (en) 2020-07-07 2020-07-07 Refrigeration cycle apparatus
PCT/JP2020/026569 WO2022009312A1 (en) 2020-07-07 2020-07-07 Refrigeration cycle device
CN202080102589.XA CN115803571A (en) 2020-07-07 2020-07-07 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026569 WO2022009312A1 (en) 2020-07-07 2020-07-07 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022009312A1 true WO2022009312A1 (en) 2022-01-13

Family

ID=79552325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026569 WO2022009312A1 (en) 2020-07-07 2020-07-07 Refrigeration cycle device

Country Status (6)

Country Link
US (1) US20230175744A1 (en)
EP (1) EP4180742A4 (en)
JP (1) JP7357793B2 (en)
CN (1) CN115803571A (en)
AU (1) AU2020457289B2 (en)
WO (1) WO2022009312A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117146343A (en) * 2022-05-24 2023-12-01 开利公司 Heat pump system and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073071U (en) * 1983-10-27 1985-05-23 株式会社東芝 Heat pump refrigeration equipment
JPH04254158A (en) * 1991-01-31 1992-09-09 Daikin Ind Ltd Refrigerating cycle for heat pump type air conditioner
US6817205B1 (en) * 2003-10-24 2004-11-16 Carrier Corporation Dual reversing valves for economized heat pump
JP2005134099A (en) 2003-10-09 2005-05-26 Daikin Ind Ltd Air conditioner
JP2015075188A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Refrigerant switching valve and device provided with refrigerant switching valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161741B2 (en) * 2016-01-20 2017-07-12 三菱電機株式会社 Air conditioner
WO2017216861A1 (en) * 2016-06-14 2017-12-21 三菱電機株式会社 Air conditioner
ES2918024T3 (en) * 2017-06-27 2022-07-13 Mitsubishi Electric Corp Air conditioner
US12196462B2 (en) * 2021-03-23 2025-01-14 Copeland Lp Heat-pump system with multiway valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073071U (en) * 1983-10-27 1985-05-23 株式会社東芝 Heat pump refrigeration equipment
JPH04254158A (en) * 1991-01-31 1992-09-09 Daikin Ind Ltd Refrigerating cycle for heat pump type air conditioner
JP2005134099A (en) 2003-10-09 2005-05-26 Daikin Ind Ltd Air conditioner
US6817205B1 (en) * 2003-10-24 2004-11-16 Carrier Corporation Dual reversing valves for economized heat pump
JP2015075188A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Refrigerant switching valve and device provided with refrigerant switching valve

Also Published As

Publication number Publication date
CN115803571A (en) 2023-03-14
EP4180742A1 (en) 2023-05-17
JP7357793B2 (en) 2023-10-06
AU2020457289B2 (en) 2023-11-23
AU2020457289A1 (en) 2022-12-22
EP4180742A4 (en) 2023-08-09
JPWO2022009312A1 (en) 2022-01-13
US20230175744A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
US5467604A (en) Multiroom air conditioner and driving method therefor
JP2528601B2 (en) Air conditioner and air conditioning method
JP2003207218A (en) Air conditioner
US20090301117A1 (en) Air conditioning apparatus
KR100554076B1 (en) Freezer
KR19980076725A (en) Control method of HVAC and HVAC
EP1806542A1 (en) Air conditioner
JP2000274879A (en) Air conditioner
JP2004170023A (en) Control method for multicellular air-conditioner
WO2022009312A1 (en) Refrigeration cycle device
JP3764551B2 (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP2522361B2 (en) Air conditioner
JP4270555B2 (en) Reheat dehumidification type air conditioner
JP2020193760A (en) Air conditioning system
CN112902311B (en) Heat exchange device, outdoor unit, air conditioning system and control method, device and equipment thereof
JP7105372B2 (en) air conditioner
JP2006194525A (en) Multi-room air conditioner
JP6835055B2 (en) Refrigeration equipment
JP2001227841A (en) Multi-room type air conditioner
JP2522360B2 (en) Air conditioner
JPH08128748A (en) Multi-room type air conditioner
JPH06337176A (en) Air-conditioner
JP2692856B2 (en) Multi-room air conditioner
JP2024080933A (en) Air Conditioning Equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534537

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020457289

Country of ref document: AU

Date of ref document: 20200707

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020944786

Country of ref document: EP

Effective date: 20230207