WO2022009312A1 - Refrigeration cycle device - Google Patents
Refrigeration cycle device Download PDFInfo
- Publication number
- WO2022009312A1 WO2022009312A1 PCT/JP2020/026569 JP2020026569W WO2022009312A1 WO 2022009312 A1 WO2022009312 A1 WO 2022009312A1 JP 2020026569 W JP2020026569 W JP 2020026569W WO 2022009312 A1 WO2022009312 A1 WO 2022009312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- port
- state
- switching valve
- compressor
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 40
- 230000006837 decompression Effects 0.000 claims abstract description 52
- 239000003507 refrigerant Substances 0.000 claims description 141
- 238000007664 blowing Methods 0.000 claims description 21
- 239000003463 adsorbent Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 abstract description 98
- 238000010586 diagram Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 20
- 230000004044 response Effects 0.000 description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/26—Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02742—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
Definitions
- This disclosure relates to a refrigeration cycle device.
- Patent Document 1 discloses a refrigerating cycle apparatus including a compressor, a first heat exchanger, a decompression device, a second heat exchanger, and a refrigerant circuit having a flow path switching valve. Has been done.
- this refrigeration cycle device the first operation in which the refrigerant is circulated in the order of the compressor, the first heat exchanger, the decompression device, and the second heat exchanger by switching the state of the flow path switching valve, and the compressor. It is possible to switch between the second heat exchanger, the decompressor, and the second operation in which the refrigerant is circulated in this order in the order of the first heat exchanger.
- the pressure distribution of the refrigerant differs between the first operation and the second operation described above. Specifically, in the first operation, the high-pressure refrigerant is distributed in the first heat exchanger and the low-pressure refrigerant is distributed in the second heat exchanger, while in the second operation, the high-pressure refrigerant is distributed in the second heat exchanger. Then, the low-pressure refrigerant is distributed in the first heat exchanger. Therefore, when switching from one of the first operation and the second operation to the other, the pressure distribution of the refrigerant is disrupted, and as a result, the time required for the refrigeration cycle to stabilize after the operation switching becomes long. Is a concern.
- the refrigeration cycle apparatus includes a first operation in which a compressor, a first heat exchanger, a decompression device, and a second heat exchanger are circulated in this order, a compressor, a second heat exchanger, a decompression device, and a decompression cycle apparatus. It is a refrigeration cycle device that can switch the operation between the second operation that circulates the refrigerant in the order of the first heat exchanger, the discharge port of the compressor, one port of the first heat exchanger, and the second heat exchange.
- the first switching valve connected to one port of the vessel and one port of the decompressor, the suction port of the compressor, the other port of the first heat exchanger, the other port of the second heat exchanger, and It is connected to the other port of the decompression device and includes a second switching valve and a control device for controlling the first switching valve and the second switching valve.
- the first switching valve is the first state in which one port of the second heat exchanger and one port of the decompression device are connected while connecting the discharge port of the compressor and one port of the first heat exchanger. , Switching to either the second state where one port of the first heat exchanger and one port of the decompression device are connected while connecting the discharge port of the compressor and one port of the second heat exchanger. It is configured to be possible.
- the control device When switching to the second operation is requested during the first operation, the control device performs the first switching operation in which the first switching valve is set to the second state and the second switching valve is set to the fifth state, and the first switching operation is performed. After the operation is performed, the operation of the refrigeration cycle device is switched to the second operation.
- the refrigeration cycle device capable of switching the operation between the second operation in which the refrigerant is circulated in the order of the heat exchanger the time required for the refrigeration cycle to stabilize after the operation switching can be shortened.
- FIG. It is a figure which shows typically an example of the whole structure of the refrigerating cycle apparatus by Embodiment 1.
- FIG. It is a perspective view which shows an example of the internal structure of the 2nd switching valve. It is a figure which shows the rotation position of the valve body when the 2nd switching valve is a 3rd state. It is a figure which shows the rotation position of the valve body when the 2nd switching valve is a 4th state. It is a figure which shows the rotation position of the valve body when the 2nd switching valve is in the 5th state. It is a figure (the 1) which shows the state in the 1st cooling operation of a refrigerant circuit. It is a figure (the 1) which shows the state in the 2nd cooling operation of a refrigerant circuit.
- the refrigerant circuit RC connects the compressor 10, the first heat exchanger 20, the decompression device 30, and the second heat exchanger 40 by pipes 51 to 58, a first switching valve 60, and a second switching valve 70. , It constitutes a circulation flow path in which the refrigerant circulates.
- a refrigerant with a phase change such as carbon dioxide and R410A circulates inside the refrigerant circuit RC.
- the decompression device 30 decompresses the high-pressure refrigerant.
- a device provided with a valve body whose opening degree can be adjusted in response to a command from the control device 100 for example, an electronically controlled expansion valve can be used.
- the pipe 51 is connected to the pipe 56 and the pipe 52 is connected to the pipe 55.
- the discharge port of the compressor 10 is connected to one port of the second heat exchanger 40, and one port of the first heat exchanger 20 is connected to one port of the decompression device 30.
- the second switching valve 70 has a port connected to the suction port of the compressor 10 via the pipe 58, a port connected to the other port of the first heat exchanger 20 via the pipe 53, and the pipe 57. It is a four-way valve having a port connected to the other port of the second heat exchanger 40 via a pipe 54 and a port connected to the other port of the decompression device 30 via a pipe 54.
- the pipe 57 is connected to the pipe 54 and the pipe 53 is connected to the pipe 58.
- the other port of the second heat exchanger 40 is connected to the other port of the decompression device 30, and the other port of the first heat exchanger 20 is connected to the suction port of the compressor 10.
- FIG. 6 is a diagram showing a state of the refrigerant circuit RC during the first cooling operation.
- the control device 100 operates the compressor 10 and puts the first switching valve 60 in the first state and the second switching valve 70 in the third state.
- the control device 100 determines that switching to the first cooling operation is requested, and switches to the first cooling operation.
- the first heat exchanger 20 that has functioned as an evaporator now functions as a condenser, so that the frost adhering to the first heat exchanger 20 can be removed.
- the control device 100 sets the first switching valve 60 before switching to the second cooling operation.
- the "first switching operation" in which the second switching valve 70 is set to the fifth state in the second state is performed for a certain period of time.
- FIG. 11 is a diagram showing a state of the refrigerant circuit RCA during the first cooling operation.
- FIG. 12 is a diagram showing a state of the refrigerant circuit RCA during the first switching operation.
- FIG. 13 is a diagram showing a state of the refrigerant circuit RCA during the second cooling operation.
- FIG. 14 is a diagram showing a state of the refrigerant circuit RCA during the second switching operation.
- the indoor air is blown in the order of the second heat exchanger 40 and the third heat exchanger 42 during the first cooling operation. Therefore, of the second heat exchanger 40 and the third heat exchanger 42 that function as an evaporator during the first cooling operation (that is, frost may adhere to them), they function as a condenser after switching to the second cooling operation. It is possible to positively attach frost to the second heat exchanger 40 and make it difficult for frost to adhere to the third heat exchanger 42, which functions as an evaporator even after switching to the second cooling operation. As a result, when the second cooling operation is subsequently switched to defrost, only the second heat exchanger 40 to which a large amount of frost is attached can be defrosted, so that efficient defrosting operation can be performed. can.
- the moisture in the room air is adsorbed by the adsorbent of the first heat exchanger 20 as it passes through the first heat exchanger 20. Therefore, the indoor air blown to the third heat exchanger 42 after passing through the first heat exchanger 20 is in a dry state. As a result, it is possible to prevent frost from adhering to the third heat exchanger 42.
- Embodiment 3. 15 to 18 schematically show an example of the configuration of the refrigerant circuit RCb of the refrigeration cycle apparatus according to the third embodiment.
- the refrigerant circuit RCb according to the third embodiment is an addition of the fourth heat exchanger 44 to the refrigerant circuit RCA according to the second embodiment described above.
- Other configurations of the refrigerant circuit RCb are the same as those of the refrigerant circuit RCA.
- other configurations and operations of the refrigerating cycle apparatus according to the third embodiment are the same as those of the refrigerating cycle apparatus 1 shown in FIG. 1 above.
- the fourth heat exchanger 44 is arranged between the discharge port of the compressor 10 and the first switching valve 60.
- the fourth heat exchanger 44 exchanges heat between the refrigerant discharged from the compressor 10 and the external air.
- the states of the compressor 10, the first switching valve 60, the second switching valve 70, the first blower device 80, and the second blower device 90 during each operation are basically controlled in the same manner as in the second embodiment described above. Will be done.
- the indoor air is brought into the second heat exchanger 40 and the third heat by operating the fans 81 and 91 and setting the air passage switches 83, 83a and 83b to the states shown in FIG.
- the first heat exchanger 20 can be the destination for blowing the outdoor air while blowing the air in the order of the exchanger 42.
- the air passage switches 83, 83a, 83b are brought into the state shown in FIG. 22 while operating the fans 81, 91, so that the indoor air is brought into the first heat exchangers 20, the third.
- the second heat exchanger 40 can be the destination of the outdoor air while blowing air in the order of the heat exchanger 42.
- FIG. 23 and 24 are diagrams showing configuration examples of the first blower 80A and the second blower 90B suitable for the refrigeration cycle device according to the third embodiment described above. Note that FIG. 23 shows a state during the first cooling operation according to the third embodiment (see FIG. 15), and FIG. 24 shows a state during the second cooling operation according to the third embodiment (see FIG. 17).
- Refrigeration cycle device 10 compressor, 20 1st heat exchanger, 30, 32 decompression device, 40 2nd heat exchanger, 42 3rd heat exchanger, 44 4th heat exchanger, 51-58 piping, 60th 1 switching valve, 70 2nd switching valve, 71 container, 72 valve body, 73-75 flow path, 76 rotary shaft, 80, 80A 1st blower, 81, 91 fan, 82, 82a, 82b, 92, 92a, 92b, 92c, 92d air passage, 83, 83a, 83b air passage switch, 90, 90A second blower, 100 control device, RC, RCa, RCb refrigerant circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
[構成の説明]
図1は、本実施の形態1による冷凍サイクル装置1の全体構成の一例を模式的に示す図である。冷凍サイクル装置1は、冷媒回路RCと、第1送風装置80と、第2送風装置90と、制御装置100とを備える。冷媒回路RCは、圧縮機10と、第1熱交換器20と、減圧装置30と、第2熱交換器40と、配管51~58と、第1切替弁60と、第2切替弁70とを含む。
[Description of configuration]
FIG. 1 is a diagram schematically showing an example of the overall configuration of the
冷凍サイクル装置1においては、第1切替弁60および第2切替弁70の状態を切替えることによって、第1冷房運転と第2冷房運転との切替えが可能である。 [1st cooling operation and 2nd cooling operation]
In the
上述のように、第1冷房運転中においては高圧冷媒が第1熱交換器20に分布し低圧冷媒が第2熱交換器40に分布する状態となる一方、第2冷房運転では高圧冷媒が第2熱交換器40に分布し低圧冷媒が第1熱交換器20に分布する状態となる。そのため、第1冷房運転および第2冷房運転の一方から他方に切替える際には、冷媒の圧力分布が崩れることになり、その影響で運転切替後に冷凍サイクルが安定するまでに要する時間が長くなってしまうことが懸念される。 [1st switching operation and 2nd switching operation]
As described above, during the first cooling operation, the high-pressure refrigerant is distributed in the
以上のように、本実施の形態による制御装置100は、第1冷房運転中に第2冷房運転への切替が要求された場合、第2冷房運転に切替える前に、第1切替弁60を第2状態にし第2切替弁70を第5状態にする「第1切替運転」を一定時間行なう。これにより、単純に第1冷媒運転から第2冷媒運転に切替える場合に比べて、運転切替時に高圧冷媒と低圧冷媒とが混合し均圧化されることを防止することができ、かつ予め第2冷媒運転の圧力分布に近い状態を早期に形成した後に第2冷媒運転に切替えることができる。そのため、第2冷房運転への切替後に冷凍サイクルが安定するまでに要する時間を短縮することができる。その結果、第2冷房運転への切替後に冷凍サイクルを安定させるのに消費される無駄なエネルギを低減することができ、冷凍サイクル装置1の省エネルギ化を図ることができる。 Even after the time t5, the same switching as up to the time t5 is performed.
As described above, when the
図11~図14には、本実施の形態2による冷凍サイクル装置の冷媒回路RCaの構成の一例が模式的に示される。本実施の形態2による冷媒回路RCaは、上述の実施の形態1による冷媒回路RCに対して、減圧装置32および第3熱交換器42を追加したものである。冷媒回路RCaのその他の構成は、冷媒回路RCと同じである。また、本実施の形態2による冷凍サイクル装置のその他の構成および動作は、上述の図1に示す冷凍サイクル装置1と同じである。 Embodiment 2.
11 to 14 schematically show an example of the configuration of the refrigerant circuit RCA of the refrigeration cycle apparatus according to the second embodiment. The refrigerant circuit RCa according to the second embodiment is obtained by adding a
図15~図18には、本実施の形態3による冷凍サイクル装置の冷媒回路RCbの構成の一例が模式的に示される。本実施の形態3による冷媒回路RCbは、上述の実施の形態2による冷媒回路RCaに対して、第4熱交換器44を追加したものである。冷媒回路RCbのその他の構成は、冷媒回路RCaと同じである。また、本実施の形態3による冷凍サイクル装置のその他の構成および動作は、上述の図1に示す冷凍サイクル装置1と同じである。 Embodiment 3.
15 to 18 schematically show an example of the configuration of the refrigerant circuit RCb of the refrigeration cycle apparatus according to the third embodiment. The refrigerant circuit RCb according to the third embodiment is an addition of the
以下、上述の実施の形態1~3における冷凍サイクル装置に用いられる第1送風装置80および第2送風装置90の構成例について説明する。 [Structure example of the
Hereinafter, configuration examples of the
Claims (9)
- 圧縮機、第1熱交換器、減圧装置、および第2熱交換器の順に冷媒を循環させる第1運転と、前記圧縮機、前記第2熱交換器、前記減圧装置、および前記第1熱交換器の順に冷媒を循環させる第2運転との間で運転を切替可能な冷凍サイクル装置であって、
前記圧縮機の吐出ポート、前記第1熱交換器の一方のポート、前記第2熱交換器の一方のポート、および前記減圧装置の一方のポートに接続される第1切替弁と、
前記圧縮機の吸入ポート、前記第1熱交換器の他方のポート、前記第2熱交換器の他方のポート、および前記減圧装置の他方のポートに接続され第2切替弁と、
前記第1切替弁および前記第2切替弁を制御する制御装置とを備え、
前記第1切替弁は、前記圧縮機の前記吐出ポートと前記第1熱交換器の前記一方のポートとを接続しつつ前記第2熱交換器の前記一方のポートと前記減圧装置の前記一方のポートとを接続する第1状態と、前記圧縮機の前記吐出ポートと前記第2熱交換器の前記一方のポートとを接続しつつ前記第1熱交換器の前記一方のポートと前記減圧装置の前記一方のポートとを接続する第2状態とのどちらかに切替可能に構成され、
前記第2切替弁は、前記第1熱交換器の前記他方のポートと前記減圧装置の前記他方のポートとを接続しつつ前記第2熱交換器の前記他方のポートと前記圧縮機の前記吸入ポートとを接続する第3状態と、前記第2熱交換器の前記他方のポートと前記減圧装置の前記他方のポートとを接続しつつ前記第1熱交換器の前記他方のポートと前記圧縮機の前記吸入ポートとを接続する第4状態と、前記減圧装置の前記他方のポートと前記圧縮機の前記吸入ポートとを接続しつつ前記第1熱交換器の前記他方のポートと前記第2熱交換器の前記他方のポートとを遮断する第5状態とのいずれかに切替可能に構成され、
前記制御装置は、前記第1運転中において前記第1切替弁を前記第1状態にし前記第2切替弁を前記第3状態にし、前記第2運転中において前記第1切替弁を前記第2状態にし前記第2切替弁を前記第4状態にし、
前記制御装置は、前記第1運転中に前記第2運転への切替が要求された場合、前記第1切替弁を前記第2状態にし前記第2切替弁を前記第5状態にする第1切替運転を行ない、前記第1切替運転を行なった後に前記冷凍サイクル装置の運転を前記第2運転に切替える、冷凍サイクル装置。 The first operation of circulating the refrigerant in the order of the compressor, the first heat exchanger, the decompression device, and the second heat exchanger, and the compressor, the second heat exchanger, the decompression device, and the first heat exchange. It is a refrigeration cycle device that can switch the operation between the second operation that circulates the refrigerant in the order of the vessels.
A first switching valve connected to the discharge port of the compressor, one port of the first heat exchanger, one port of the second heat exchanger, and one port of the decompression device.
A second switching valve connected to the suction port of the compressor, the other port of the first heat exchanger, the other port of the second heat exchanger, and the other port of the decompression device.
A control device for controlling the first switching valve and the second switching valve is provided.
The first switching valve connects the discharge port of the compressor and the one port of the first heat exchanger, and connects the one port of the second heat exchanger and the one port of the decompression device. The first state of connecting the port and the one port of the first heat exchanger and the decompression device while connecting the discharge port of the compressor and the one port of the second heat exchanger. It is configured to be switchable to either the second state that connects to one of the ports.
The second switching valve connects the other port of the first heat exchanger and the other port of the decompression device to the other port of the second heat exchanger and the suction of the compressor. The third state of connecting the port and the other port of the first heat exchanger and the compressor while connecting the other port of the second heat exchanger and the other port of the decompression device. The fourth state of connecting the suction port of the first heat exchanger and the other port of the first heat exchanger and the second heat while connecting the other port of the decompression device and the suction port of the compressor. It is configured to be switchable to any of the fifth states that shut off the other port of the exchanger.
The control device puts the first switching valve in the first state, the second switching valve in the third state during the first operation, and the first switching valve in the second state during the second operation. The second switching valve is set to the fourth state, and the second switching valve is set to the fourth state.
When the control device is requested to switch to the second operation during the first operation, the control device makes the first switching valve in the second state and the second switching valve in the fifth state. A refrigerating cycle device that performs an operation and switches the operation of the refrigerating cycle device to the second operation after performing the first switching operation. - 前記制御装置は、前記第2運転中に前記第1運転への切替が要求された場合、前記第1切替弁を前記第1状態にし前記第2切替弁を前記第5状態にする第2切替運転を行ない、前記第2切替運転を行なった後に前記冷凍サイクル装置の運転を前記第1運転に切替える、請求項1に記載の冷凍サイクル装置。 When the control device is requested to switch to the first operation during the second operation, the control device sets the first switching valve to the first state and the second switching valve to the fifth state. The refrigerating cycle apparatus according to claim 1, wherein the refrigerating cycle apparatus is operated and the operation of the refrigerating cycle apparatus is switched to the first operation after the second switching operation is performed.
- 前記冷凍サイクル装置は、前記第1熱交換器および前記第2熱交換器に送風可能に構成された送風装置をさらに備え、
前記制御装置は、前記第1切替運転中および前記第2切替運転中において前記第1熱交換器および前記第2熱交換器への送風を停止するように前記送風装置を制御する、請求項2に記載の冷凍サイクル装置。 The refrigeration cycle device further includes a blower configured to blow air to the first heat exchanger and the second heat exchanger.
2. The control device controls the blower device so as to stop blowing air to the first heat exchanger and the second heat exchanger during the first switching operation and the second switching operation. The refrigeration cycle device described in. - 前記送風装置は、冷却対象である室内空気の送風先を前記第1熱交換器および前記第2熱交換器のどちらかに切替可能に構成された第1送風装置を含み、
前記制御装置は、前記第1運転中において前記室内空気の送風先を前記第2熱交換器とし、前記第2運転中において前記室内空気の送風先を前記第1熱交換器とするように、前記第1送風装置を制御する、請求項3に記載の冷凍サイクル装置。 The blower includes a first blower configured so that the destination of the indoor air to be cooled can be switched to either the first heat exchanger or the second heat exchanger.
In the control device, the air outlet of the indoor air is the second heat exchanger during the first operation, and the air outlet of the indoor air is the first heat exchanger during the second operation. The refrigeration cycle device according to claim 3, which controls the first air blower. - 前記送風装置は、冷却対象でない室外空気の送風先を前記第1熱交換器および前記第2熱交換器のどちらかに切替可能に構成された第2送風装置を含み、
前記制御装置は、前記第1運転中において前記室外空気の送風先を前記第1熱交換器とし、前記第2運転中において前記室外空気の送風先を前記第2熱交換器とするように、前記第2送風装置を制御する、請求項4に記載の冷凍サイクル装置。 The blower includes a second blower configured to switch the destination of outdoor air that is not to be cooled to either the first heat exchanger or the second heat exchanger.
In the control device, the outdoor air is blown to the first heat exchanger during the first operation, and the outdoor air is blown to the second heat exchanger during the second operation. The refrigeration cycle device according to claim 4, which controls the second blower device. - 前記冷凍サイクル装置は、前記第2切替弁と前記圧縮機の吸入ポートとの間に配置される第2減圧装置および第3熱交換器をさらに備える、請求項4または5に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 4 or 5, further comprising a second decompression device and a third heat exchanger arranged between the second switching valve and the suction port of the compressor. ..
- 前記室内空気は、前記第1運転中において前記第2熱交換器、前記第3熱交換器の順に送風され、前記第2運転中において前記第1熱交換器、前記第3熱交換器の順に送風される、請求項6に記載の冷凍サイクル装置。 The indoor air is blown in the order of the second heat exchanger and the third heat exchanger during the first operation, and the first heat exchanger and the third heat exchanger are blown in this order during the second operation. The refrigerating cycle apparatus according to claim 6, wherein the air is blown.
- 前記第1熱交換器および前記第2熱交換器の表面には、空気中の水分を吸着する吸着剤が塗布される、請求項7に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7, wherein an adsorbent that adsorbs moisture in the air is applied to the surfaces of the first heat exchanger and the second heat exchanger.
- 前記冷凍サイクル装置は、前記圧縮機の吐出ポートと前記第1切替弁との間に配置される第4熱交換器をさらに備える、請求項6~8のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 6 to 8, further comprising a fourth heat exchanger arranged between the discharge port of the compressor and the first switching valve. ..
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2020457289A AU2020457289B2 (en) | 2020-07-07 | 2020-07-07 | Refrigeration cycle device |
EP20944786.1A EP4180742A4 (en) | 2020-07-07 | 2020-07-07 | REFRIGERATION CIRCUIT DEVICE |
JP2022534537A JP7357793B2 (en) | 2020-07-07 | 2020-07-07 | Refrigeration cycle equipment |
US17/922,545 US20230175744A1 (en) | 2020-07-07 | 2020-07-07 | Refrigeration cycle apparatus |
PCT/JP2020/026569 WO2022009312A1 (en) | 2020-07-07 | 2020-07-07 | Refrigeration cycle device |
CN202080102589.XA CN115803571A (en) | 2020-07-07 | 2020-07-07 | Refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/026569 WO2022009312A1 (en) | 2020-07-07 | 2020-07-07 | Refrigeration cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022009312A1 true WO2022009312A1 (en) | 2022-01-13 |
Family
ID=79552325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/026569 WO2022009312A1 (en) | 2020-07-07 | 2020-07-07 | Refrigeration cycle device |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230175744A1 (en) |
EP (1) | EP4180742A4 (en) |
JP (1) | JP7357793B2 (en) |
CN (1) | CN115803571A (en) |
AU (1) | AU2020457289B2 (en) |
WO (1) | WO2022009312A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117146343A (en) * | 2022-05-24 | 2023-12-01 | 开利公司 | Heat pump system and control method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6073071U (en) * | 1983-10-27 | 1985-05-23 | 株式会社東芝 | Heat pump refrigeration equipment |
JPH04254158A (en) * | 1991-01-31 | 1992-09-09 | Daikin Ind Ltd | Refrigerating cycle for heat pump type air conditioner |
US6817205B1 (en) * | 2003-10-24 | 2004-11-16 | Carrier Corporation | Dual reversing valves for economized heat pump |
JP2005134099A (en) | 2003-10-09 | 2005-05-26 | Daikin Ind Ltd | Air conditioner |
JP2015075188A (en) * | 2013-10-10 | 2015-04-20 | 日立アプライアンス株式会社 | Refrigerant switching valve and device provided with refrigerant switching valve |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6161741B2 (en) * | 2016-01-20 | 2017-07-12 | 三菱電機株式会社 | Air conditioner |
WO2017216861A1 (en) * | 2016-06-14 | 2017-12-21 | 三菱電機株式会社 | Air conditioner |
ES2918024T3 (en) * | 2017-06-27 | 2022-07-13 | Mitsubishi Electric Corp | Air conditioner |
US12196462B2 (en) * | 2021-03-23 | 2025-01-14 | Copeland Lp | Heat-pump system with multiway valve |
-
2020
- 2020-07-07 WO PCT/JP2020/026569 patent/WO2022009312A1/en unknown
- 2020-07-07 CN CN202080102589.XA patent/CN115803571A/en active Pending
- 2020-07-07 JP JP2022534537A patent/JP7357793B2/en active Active
- 2020-07-07 EP EP20944786.1A patent/EP4180742A4/en not_active Withdrawn
- 2020-07-07 US US17/922,545 patent/US20230175744A1/en not_active Abandoned
- 2020-07-07 AU AU2020457289A patent/AU2020457289B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6073071U (en) * | 1983-10-27 | 1985-05-23 | 株式会社東芝 | Heat pump refrigeration equipment |
JPH04254158A (en) * | 1991-01-31 | 1992-09-09 | Daikin Ind Ltd | Refrigerating cycle for heat pump type air conditioner |
JP2005134099A (en) | 2003-10-09 | 2005-05-26 | Daikin Ind Ltd | Air conditioner |
US6817205B1 (en) * | 2003-10-24 | 2004-11-16 | Carrier Corporation | Dual reversing valves for economized heat pump |
JP2015075188A (en) * | 2013-10-10 | 2015-04-20 | 日立アプライアンス株式会社 | Refrigerant switching valve and device provided with refrigerant switching valve |
Also Published As
Publication number | Publication date |
---|---|
CN115803571A (en) | 2023-03-14 |
EP4180742A1 (en) | 2023-05-17 |
JP7357793B2 (en) | 2023-10-06 |
AU2020457289B2 (en) | 2023-11-23 |
AU2020457289A1 (en) | 2022-12-22 |
EP4180742A4 (en) | 2023-08-09 |
JPWO2022009312A1 (en) | 2022-01-13 |
US20230175744A1 (en) | 2023-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5467604A (en) | Multiroom air conditioner and driving method therefor | |
JP2528601B2 (en) | Air conditioner and air conditioning method | |
JP2003207218A (en) | Air conditioner | |
US20090301117A1 (en) | Air conditioning apparatus | |
KR100554076B1 (en) | Freezer | |
KR19980076725A (en) | Control method of HVAC and HVAC | |
EP1806542A1 (en) | Air conditioner | |
JP2000274879A (en) | Air conditioner | |
JP2004170023A (en) | Control method for multicellular air-conditioner | |
WO2022009312A1 (en) | Refrigeration cycle device | |
JP3764551B2 (en) | Air conditioner | |
JP4622901B2 (en) | Air conditioner | |
JP2522361B2 (en) | Air conditioner | |
JP4270555B2 (en) | Reheat dehumidification type air conditioner | |
JP2020193760A (en) | Air conditioning system | |
CN112902311B (en) | Heat exchange device, outdoor unit, air conditioning system and control method, device and equipment thereof | |
JP7105372B2 (en) | air conditioner | |
JP2006194525A (en) | Multi-room air conditioner | |
JP6835055B2 (en) | Refrigeration equipment | |
JP2001227841A (en) | Multi-room type air conditioner | |
JP2522360B2 (en) | Air conditioner | |
JPH08128748A (en) | Multi-room type air conditioner | |
JPH06337176A (en) | Air-conditioner | |
JP2692856B2 (en) | Multi-room air conditioner | |
JP2024080933A (en) | Air Conditioning Equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20944786 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022534537 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020457289 Country of ref document: AU Date of ref document: 20200707 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020944786 Country of ref document: EP Effective date: 20230207 |