WO2022004537A1 - Polyvinyl alcohol film and polarizing film in which same is used - Google Patents
Polyvinyl alcohol film and polarizing film in which same is used Download PDFInfo
- Publication number
- WO2022004537A1 WO2022004537A1 PCT/JP2021/023877 JP2021023877W WO2022004537A1 WO 2022004537 A1 WO2022004537 A1 WO 2022004537A1 JP 2021023877 W JP2021023877 W JP 2021023877W WO 2022004537 A1 WO2022004537 A1 WO 2022004537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- pva
- pva film
- stretching
- mass
- Prior art date
Links
- 239000004372 Polyvinyl alcohol Substances 0.000 title claims description 356
- 229920002451 polyvinyl alcohol Polymers 0.000 title claims description 356
- 238000000034 method Methods 0.000 claims abstract description 91
- 238000005259 measurement Methods 0.000 claims abstract description 29
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 claims abstract description 25
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 15
- 239000010432 diamond Substances 0.000 claims abstract description 15
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 15
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000010408 film Substances 0.000 claims description 451
- 239000012788 optical film Substances 0.000 claims description 23
- 230000014509 gene expression Effects 0.000 abstract 2
- 238000011282 treatment Methods 0.000 description 165
- 239000007788 liquid Substances 0.000 description 90
- 238000001035 drying Methods 0.000 description 59
- 238000004519 manufacturing process Methods 0.000 description 39
- 230000037303 wrinkles Effects 0.000 description 37
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 33
- 239000011550 stock solution Substances 0.000 description 32
- 238000004043 dyeing Methods 0.000 description 31
- 238000004132 cross linking Methods 0.000 description 29
- 239000004014 plasticizer Substances 0.000 description 28
- 150000001875 compounds Chemical class 0.000 description 27
- 238000002425 crystallisation Methods 0.000 description 27
- 230000008025 crystallization Effects 0.000 description 27
- 239000004094 surface-active agent Substances 0.000 description 27
- 238000010438 heat treatment Methods 0.000 description 24
- 229920000642 polymer Polymers 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 238000004140 cleaning Methods 0.000 description 22
- 206010042674 Swelling Diseases 0.000 description 21
- 230000008961 swelling Effects 0.000 description 21
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 20
- 229910052740 iodine Inorganic materials 0.000 description 20
- 239000011630 iodine Substances 0.000 description 20
- 229920001567 vinyl ester resin Polymers 0.000 description 20
- 239000000178 monomer Substances 0.000 description 19
- 239000002344 surface layer Substances 0.000 description 18
- 238000006116 polymerization reaction Methods 0.000 description 17
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 15
- 229910052796 boron Inorganic materials 0.000 description 15
- 239000002904 solvent Substances 0.000 description 14
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 13
- 239000004327 boric acid Substances 0.000 description 13
- -1 vinyl versatic acid Chemical compound 0.000 description 13
- 238000007127 saponification reaction Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000003431 cross linking reagent Substances 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000862 absorption spectrum Methods 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 229910021538 borax Inorganic materials 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000004328 sodium tetraborate Substances 0.000 description 4
- 235000010339 sodium tetraborate Nutrition 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000009189 diving Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- AOMUHOFOVNGZAN-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)dodecanamide Chemical compound CCCCCCCCCCCC(=O)N(CCO)CCO AOMUHOFOVNGZAN-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 229920001727 cellulose butyrate Polymers 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229940031957 lauric acid diethanolamide Drugs 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- POSICDHOUBKJKP-UHFFFAOYSA-N prop-2-enoxybenzene Chemical compound C=CCOC1=CC=CC=C1 POSICDHOUBKJKP-UHFFFAOYSA-N 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- KAKVFSYQVNHFBS-UHFFFAOYSA-N (5-hydroxycyclopenten-1-yl)-phenylmethanone Chemical compound OC1CCC=C1C(=O)C1=CC=CC=C1 KAKVFSYQVNHFBS-UHFFFAOYSA-N 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- LPMBTLLQQJBUOO-KTKRTIGZSA-N (z)-n,n-bis(2-hydroxyethyl)octadec-9-enamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)N(CCO)CCO LPMBTLLQQJBUOO-KTKRTIGZSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- LAYAKLSFVAPMEL-UHFFFAOYSA-N 1-ethenoxydodecane Chemical compound CCCCCCCCCCCCOC=C LAYAKLSFVAPMEL-UHFFFAOYSA-N 0.000 description 1
- QJJDJWUCRAPCOL-UHFFFAOYSA-N 1-ethenoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOC=C QJJDJWUCRAPCOL-UHFFFAOYSA-N 0.000 description 1
- OVGRCEFMXPHEBL-UHFFFAOYSA-N 1-ethenoxypropane Chemical compound CCCOC=C OVGRCEFMXPHEBL-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- PGYJSURPYAAOMM-UHFFFAOYSA-N 2-ethenoxy-2-methylpropane Chemical compound CC(C)(C)OC=C PGYJSURPYAAOMM-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- RWHRFHQRVDUPIK-UHFFFAOYSA-N 50867-57-7 Chemical class CC(=C)C(O)=O.CC(=C)C(O)=O RWHRFHQRVDUPIK-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical compound ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 description 1
- HETCEOQFVDFGSY-UHFFFAOYSA-N Isopropenyl acetate Chemical compound CC(=C)OC(C)=O HETCEOQFVDFGSY-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 1
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical class NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 1
- YCUBDDIKWLELPD-UHFFFAOYSA-N ethenyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=C YCUBDDIKWLELPD-UHFFFAOYSA-N 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- BLZSRIYYOIZLJL-UHFFFAOYSA-N ethenyl pentanoate Chemical compound CCCCC(=O)OC=C BLZSRIYYOIZLJL-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- SWPMNMYLORDLJE-UHFFFAOYSA-N n-ethylprop-2-enamide Chemical compound CCNC(=O)C=C SWPMNMYLORDLJE-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- UZZYXUGECOQHPU-UHFFFAOYSA-M n-octyl sulfate Chemical compound CCCCCCCCOS([O-])(=O)=O UZZYXUGECOQHPU-UHFFFAOYSA-M 0.000 description 1
- FSAJWMJJORKPKS-UHFFFAOYSA-N octadecyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C=C FSAJWMJJORKPKS-UHFFFAOYSA-N 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 229940067739 octyl sulfate Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- HVAMZGADVCBITI-UHFFFAOYSA-M pent-4-enoate Chemical compound [O-]C(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-M 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- AAYRWMCIKCRHIN-UHFFFAOYSA-N propane-1-sulfonic acid;prop-2-enamide Chemical compound NC(=O)C=C.CCCS(O)(=O)=O AAYRWMCIKCRHIN-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000000395 remineralizing effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- UZZYXUGECOQHPU-UHFFFAOYSA-N sulfuric acid monooctyl ester Natural products CCCCCCCCOS(O)(=O)=O UZZYXUGECOQHPU-UHFFFAOYSA-N 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
- G02B5/305—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2329/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
Definitions
- the present invention relates to a polyvinyl alcohol film and a polarizing film using the same.
- a polarizing plate having a light transmitting and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal having a light switching function.
- LCD liquid crystal display
- the fields of application of this LCD are also used from small devices such as calculators and watches in the early days of development to notebook computers, LCD monitors, LCD color projectors, LCD TVs, in-vehicle navigation systems, mobile phones and indoors and outdoors in recent years. It is expanding to various fields such as measuring instruments.
- the polarizing plate is manufactured by laminating a protective film such as a cellulose triacetate (TAC) film or a cellulose acetate / butyrate (CAB) film on the surface of a polarizing film.
- the polarizing film is uniaxially stretched after dyeing a polyvinyl alcohol film (hereinafter, "polyvinyl alcohol” may be referred to as "PVA"), uniaxially stretched while being dyed, or uniaxially stretched. It is generally produced by dyeing to produce a dyed uniaxially stretched film and immobilizing the uniaxially stretched film with a boron compound.
- the immobilization treatment with this boron compound may be performed at the same time as the uniaxial stretching or dyeing treatment.
- the polarizing film is also required to have higher performance, and specifically, it is required to increase the degree of polarization of the polarizing film.
- wrinkles are likely to occur on the surface of the PVA film in the process of uniaxial stretching.
- wrinkles are likely to occur on the surface of the obtained polarizing film. If many wrinkles are generated on the surface of the polarizing film, it tends to cause image unevenness in the final products such as LCD monitors and LCD televisions. Further, if many wrinkles are generated on the surface of the polarizing film, such a polarizing film cannot be used as a product, which causes a decrease in the product yield (product yield) of the polarizing film.
- the present invention [1] A water-insoluble PVA film having two surfaces orthogonal to the thickness direction of the PVA film as a first surface and a second surface, respectively, and the crystallinity index of the first surface is Fd1 and When Fg1 is used and the crystallinity index of the second surface is Fd2 and Fg2, the Fd1, Fg1, Fd2 and Fg2 satisfy the following formulas (1) to (4); Fd1 ⁇ 0.8 (1) Fd1 / Fg1 ⁇ 1 (2) Fd2 ⁇ 0.8 (3) Fd2 / Fg2 ⁇ 1 (4) [In the formulas (1) to (4), Fd1 is a crystallinity index calculated by using a diamond prism when FT-IR measurement by the ATR method is performed on the first surface, and is Fg1.
- Fd2 is the crystallinity index calculated by the ATR method on the second surface. It is a crystallinity index calculated by using a diamond prism when FT-IR measurement is performed
- Fg2 uses a germanium prism when FT-IR measurement by the ATR method is performed on the second surface. It is a crystallinity index calculated by.
- the present invention even when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film, wrinkles are less likely to occur on the surface during uniaxial stretching, and breakage occurs during uniaxial stretching.
- Suppressed PVA film is provided. According to such a PVA film, wrinkles generated on the surface of an optical film such as a polarizing film can be suppressed. Further, since breakage during uniaxial stretching is suppressed, an optical film such as a polarizing film can be produced with a high product yield.
- ⁇ PVA film> In the present invention, as shown in FIGS. 1 and 2, two surfaces orthogonal to the thickness direction 2 of the PVA film 1 are defined as the first surface 3 and the second surface 4, respectively. Therefore, the first surface 3 and the second surface 4 of the PVA film 1 of the present invention face each other.
- FT-IR Fastier transform infrared spectroscopy
- the crystallinity indexes Fd1, Fg1, Fd2 and Fg2 calculated by this measurement satisfy the following formulas (1) to (4).
- Fd1 is a crystallinity index calculated by using a diamond prism when FT-IR measurement by the ATR method is performed on the first surface 3 of the PVA film 1.
- Fg1 is a crystallinity index calculated by using a germanium prism when FT-IR measurement by the ATR method is performed on the first surface 3 of the PVA film 1.
- Fd2 is a crystallinity index calculated by using a diamond prism when FT-IR measurement by the ATR method is performed on the second surface 4 of the PVA film 1, and Fg2 is the crystallinity index of the PVA film 1.
- Fd1 / Fg1 is a value obtained by dividing Fd1 by Fg1
- Fd2 / Fg2 is a value obtained by dividing Fd2 by Fg2.
- Fd1 and Fd2 need to be 0.8 or less as shown in the above formulas (1) and (3).
- Fd1 or Fd2 exceeds 0.8, wrinkles are likely to occur on the surface of the PVA film 1 during uniaxial stretching when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film.
- the PVA film 1 is likely to break during uniaxial stretching. The reason is not always clear, but if the crystallinity of the surface of the PVA film 1 is too high, it becomes difficult for water in the stretching treatment liquid to enter the inside of the PVA film 1 during uniaxial stretching, and the flexibility of the film during uniaxial stretching becomes difficult. It is presumed that this is due to insufficient.
- Fd1 and Fd2 are preferably 0.75 or less, more preferably 0.72 or less, further preferably 0.7 or less, and particularly preferably 0.68 or less.
- Fd1 / Fg1 and Fd2 / Fg2 need to be less than 1 as shown in the above formulas (2) and (4).
- Fd1 / Fg1 or Fd2 / Fg2 is 1 or more, wrinkles occur on the surface of the PVA film 1 during uniaxial stretching when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film. It will be easier.
- Fd1 / Fg1 and Fd2 / Fg2 are preferably 0.98 or less, more preferably 0.96 or less, further preferably 0.94 or less, still more preferably 0.92 or less. It is particularly preferable that it is 0.9 or less.
- Fd1 and Fd2 are 0.8 or less as shown in the above formulas (1) and (3). Further, as shown in the above formulas (2) and (4), Fd1 / Fg1 and Fd2 / Fg2 are less than 1. As will be described later, Fd1 and Fd2 show the crystallinity inside the PVA film 1 relatively deeply, while Fg1 and Fg2 show the crystallinity of the polar surface layer near the surface of the PVA film 1. That is, the PVA film of the present invention has a relatively deep internal crystallinity of the PVA film 1 of a predetermined value or less, and the surface of the PVA film 1 is relative to the relatively deep internal crystallinity of the PVA film 1.
- the crystallinity of the nearby polar surface layer is high.
- the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film, the maximum stretching speed is high. Wrinkles are less likely to occur on the surface during uniaxial stretching, and breakage during uniaxial stretching is suppressed. The reason is not always clear, but the high crystallinity of the polar surface layer of the PVA film 1 suppresses the formation of wrinkles on the surface of the PVA film 1 during uniaxial stretching, and the PVA film 1 is relatively deep. It is presumed that the low crystallinity inside alleviates the stress generated during uniaxial stretching and suppresses breakage.
- the lower limit values of Fd1 and Fd2 are not necessarily limited, but the PVA film 1 is uniaxially stretched when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film. It is preferable to satisfy the following formulas (5) and (6) because the breakage at the time can be further suppressed.
- Fd1 and Fd2 are 0.5 or more, the crystallinity inside the PVA film 1 is relatively deep. As a result, the crystallinity of the central portion of the PVA film 1 in the thickness direction 2 is increased, and the mechanical strength of the PVA film 1 is improved. Therefore, by using such a PVA film 1, even when the maximum stretching speed is high in the uniaxial stretching when manufacturing an optical film such as a polarizing film, the breakage when the PVA film 1 is uniaxially stretched is broken. It is more suppressed.
- Fd1 and Fd2 are more preferably 0.52 or more, and further preferably 0.55 or more.
- the lower limit values of Fd1 / Fg1 and Fd2 / Fg2 are not necessarily limited, but when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film, the PVA film 1 It is preferable to satisfy the following formulas (7) and (8) because it is possible to further suppress breakage when the film is uniaxially stretched.
- Fd1 / Fg1 and Fd2 / Fg2 are 0.6 or more
- the crystallinity inside the PVA film 1 having a relatively deep depth is the polar surface layer portion of the PVA film 1. It is not too small compared to the crystallinity of.
- the crystallinity of the central portion of the PVA film 1 in the thickness direction 2 becomes relatively large, and the mechanical strength of the PVA film 1 is improved. Therefore, by using such a PVA film 1, even when the maximum stretching speed is high in the uniaxial stretching when manufacturing an optical film such as a polarizing film, the breakage when the PVA film 1 is uniaxially stretched is broken. It is more suppressed.
- Fd1 / Fg1 or Fd2 / Fg2 is more preferably 0.65 or more, further preferably 0.7 or more, and particularly preferably 0.75 or more.
- the absolute value of the difference between Fd1 and Fd2 and the difference between Fg1 and Fg2 is not necessarily limited, but when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film.
- FT-IR measurement Generally, when the infrared absorption spectrum (IR spectrum) of the PVA film 1 is measured, an absorption peak is observed at 1140 cm -1 due to the contained PVA.
- This absorption peak is generally referred to as the crystallization band of PVA film 1, and is one of the peaks derived from the expansion and contraction vibration of the carbon bond (CC) of PVA. It is known that this crystallization band is emphasized and observed so that the phase of vibration of the polymer molecular chain of PVA is aligned by crystallization of the polymer molecular chain of PVA in PVA film 1. That is, the higher the crystallinity of the PVA film 1, the higher the peak intensity of the crystallization band.
- the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film 1 can be obtained.
- the baseline of the infrared absorption spectrum at 1140 cm -1 and 1425 cm -1 is drawn, and the height from the baseline to the peak tops of 1140 cm -1 and 1425 cm -1 is taken as the respective absorption peak intensities of 1140 cm -1.
- the value obtained by dividing the absorption peak intensity of 1425 cm -1 by the peak intensity of 1425 cm-1 was taken as the crystallinity index (Fg1, Fg2, Fd1 and Fd2).
- the values of the crystallinity index (Fg1, Fg2, Fd1 and Fd2) thus obtained are proportional to the crystallinity of the PVA film 1 (for example, NA Peppas, Macromol. Chem., 178, 595 (1977), JP-A-6-138321). Since the value of this crystallinity index varies slightly depending on the amount of moisture absorbed by the PVA film 1, in the present invention, the PVA film 1 is stored for 24 hours in an environment of a temperature of 24.0 ° C. and a relative humidity of 45.0% RH. FT-IR measurement was performed in the same environment.
- the FT-IR measurement is performed by the ATR method (total reflection absorption measurement method).
- ATR method total reflection absorption measurement method
- a sample is brought into close contact with an objective lens called an ATR prism 7, the sample is obliquely irradiated with infrared rays 8 from inside the ATR prism 7, and the spectrum of the reflected light is measured.
- It is a kind of reflection type IR measurement method. Compared with the usual reflection type IR measurement method, it has the feature that a sharp spectrum with less noise can be obtained.
- the infrared rays 8 are not reflected only on the surface of the PVA film 1, but also the infrared rays 8 slightly submerged from the ATR prism 7 side to the PVA film 1 side. To. Therefore, according to the FT-IR measurement by the ATR method, it is possible to obtain information on the surface layer of the PVA film 1 (a portion slightly submerged in the depth direction from the surface of the PVA film 1).
- the value is expressed by the following equation (11).
- equation (11) if ATR prisms 7 having different refractive indexes are used, it is possible to obtain a reflection type infrared absorption spectrum having different diving depths.
- n 1 represents the refractive index of the ATR prism 7
- n 2 represents the refractive index of the PVA film 1
- ⁇ represents the wavelength of the infrared ray 8
- ⁇ represents the incident angle of the infrared ray 8.
- diamond having a refractive index of 2.4 or germanium having a refractive index of 4.0 is used as the base material of the ATR prism 7. Since the refractive index of the PVA film 1 is 1.5, the infrared rays to the surface layer of the PVA film 1 when the incident angle of the infrared rays 8 is 45 ° and the wave number of the infrared rays 8 is 1140 cm -1 in the above equation (11). When the diving depth of 8 is calculated, the diving depth 5 of the infrared ray 8 when diamond is used as the base material of the ATR prism 7, that is, when the diamond prism is used, is about 2 ⁇ m.
- the crystallinity index when the diamond prism is used corresponds to the crystallinity to the relatively deep inside of the PVA film 1.
- the crystallinity index when the germanium prism is used corresponds to the crystallinity of the polar surface layer portion near the surface of the PVA film 1.
- Fg1 and Fg2 which are the crystallinity indexes of the polar surface layer portion of the PVA film 1, and Fd1 and Fd2, which are the crystallinity indexes of the relatively deep inside of the PVA film 1, within the above ranges. Since the crystal structure of PVA film 1 is affected by various factors in the composition of PVA film 1 and the manufacturing process, as a method for controlling the crystallinity index (Fg1, Fg2, Fd1 and Fd2), for example, polyvinyl alcohol can be used.
- Methods for adjusting the type (destruction degree, modification amount, blend ratio of unmodified PVA / modified PVA, etc.), method for adjusting the amount of plasticizer added, film production conditions (surface temperature of roll support, heat treatment conditions, etc.)
- the method of adjusting, or the method of adjusting by combining these can be mentioned.
- the degree of saponification of PVA is set to 90 mol% or more, and the raw material of PVA is used.
- the ratio of structural units derived from other monomers to the vinyl ester-based polymer is 15 mol% or less based on the number of moles of all structural units constituting the vinyl ester-based polymer, and the degree of polymerization of PVA is set.
- the method of setting it to 200 to 8000 can be mentioned.
- the amount of the plasticizer added is preferably 1 to 40 parts by mass with respect to 100 parts by mass of PVA.
- the volatile content of the membrane-forming stock solution is preferably 50 to 90% by mass
- the surface temperature of the support for flowing the membrane-forming stock solution is preferably 65 to 110 ° C., and the non-contact surface.
- the temperature of the hot air blown to the side is preferably 50 to 150 ° C. or lower, and the humidity of the hot air is preferably 20 to 90% RH.
- the temperature of the drying oven or the surface temperature of the drying roll is preferably 45 to 110 ° C, and the surface temperature of the heat treatment roll is preferably 60 to 135 ° C.
- the degree of saponification of PVA is set to 95 to 99.9 mol%, and it is derived from other monomers in the vinyl ester polymer which is the raw material of PVA.
- examples thereof include a method in which the ratio of structural units is 10 mol% or less based on the number of moles of all structural units constituting the vinyl ester polymer, and the degree of polymerization of PVA is 1000 to 4000.
- the amount of the plasticizer added is preferably 5 to 20 parts by mass with respect to 100 parts by mass of PVA.
- the volatile content of the membrane-forming stock solution is preferably 60 to 80% by mass
- the surface temperature of the support for flowing the membrane-forming stock solution is preferably 80 to 110 ° C., and the non-contact surface.
- the temperature of the hot air blown to the side is preferably 70 to 110 ° C. or lower, and the humidity of the hot air is preferably 1 to 40% RH.
- the temperature of the drying oven or the surface temperature of the drying roll is preferably 60 to 110 ° C, and the surface temperature of the heat treatment roll is preferably 80 to 135 ° C.
- the degree of saponification of PVA is set to 99 to 99.9 mol%, and it is derived from other monomers in the vinyl ester polymer which is the raw material of PVA.
- the ratio of structural units to be polymerized is 5 mol% or less based on the number of moles of all structural units constituting the vinyl ester polymer, and the degree of polymerization of PVA is 1000 to 3700.
- the amount of the plasticizer added is preferably 8 to 20 parts by mass with respect to 100 parts by mass of PVA.
- the volatile content of the membrane-forming stock solution is preferably 65 to 80% by mass
- the surface temperature of the support for flowing the membrane-forming stock solution is preferably 80 to 100 ° C., and the non-contact surface.
- the temperature of the hot air blown to the side is preferably 70 to 100 ° C.
- the humidity of the hot air is preferably 3 to 40% RH.
- the temperature of the drying oven or the surface temperature of the drying roll is preferably 60 to 100 ° C.
- the surface temperature of the heat treatment roll is preferably 80 to 120 ° C.
- the volatile fraction of the membrane-forming stock solution is 65 to 75% by mass, and the support for flowing the membrane-forming stock solution.
- the surface temperature of the hot air is preferably 80 to 95 ° C.
- the temperature of the hot air blown to the non-contact surface side is preferably 75 to 90 ° C.
- the humidity of the hot air is preferably 5 to 40% RH.
- the temperature of the drying oven or the surface temperature of the drying roll is preferably 60 to 90 ° C
- the surface temperature of the heat treatment roll is preferably 80 to 110 ° C.
- PVA a polymer produced by saponifying a vinyl ester-based polymer obtained by polymerizing a vinyl ester-based monomer
- examples of the vinyl ester-based monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like.
- vinyl acetate is preferable as the vinyl ester-based monomer.
- the vinyl ester-based polymer is preferably a polymer obtained by using only one kind or two or more kinds of vinyl ester-based monomers as a monomer, and is obtained by using only one kind of vinyl ester-based monomer as a monomer.
- the obtained polymer is more preferable.
- the vinyl ester-based polymer may be a copolymer of one or more kinds of vinyl ester-based monomers and another monomer copolymerizable therewith.
- Other monomers include, for example, ethylene; olefins having 3 to 30 carbon atoms such as propylene, 1-butyl, and isobutene; acrylic acid or a salt thereof; methyl acrylate, ethyl acrylate, n-propyl acrylate, i acrylate.
- -Acrylic acid esters such as propyl, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid or a salt thereof; methacrylic acid Methyl, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, methacrylate Methacrylate esters such as octadecyl; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamide propanesulf
- N-vinylamides such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone
- methylvinyl ether ethylvinyl ether
- n-propylvinyl ether i-propylvinyl ether
- n-butylvinyl ether i-butylvinyl ether
- Vinyl ethers such as t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether
- vinyl cyanide such as acrylonitrile and methacrylonitrile
- vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride
- Allyl compounds such as; maleic acid or salts thereof, esters or acid anhydrides; itaconic acid or salts thereof, esters or acid anhydrides; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate and the like.
- the vinyl ester-based polymer can have a structural unit derived from one or more of these other monomers.
- the ratio of structural units derived from other monomers to the vinyl ester-based polymer is preferably 15 mol% or less, more preferably 8 mol% or less, based on the number of moles of all structural units constituting the vinyl ester-based polymer. preferable.
- the crystallization of PVA tends to be more difficult to proceed as the ratio of structural units derived from other monomers in the vinyl ester-based polymer increases. Therefore, the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be adjusted by appropriately copolymerizing these other monomers at the above ratio.
- the degree of polymerization of PVA is preferably 200 or more, more preferably 300 or more, and even more preferably 500 or more. By setting the degree of polymerization of PVA to the above lower limit or higher, it is possible to secure the mechanical strength of the obtained PVA film while preventing PVA from being excessively crystallized. On the other hand, the degree of polymerization of PVA is preferably 8,000 or less, more preferably 6,000 or less, and even more preferably 4,000 or less. Generally, the crystallization of PVA tends to be more difficult to proceed as the degree of polymerization of PVA is higher.
- the crystallization of PVA can be appropriately advanced and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be adjusted. Further, by setting the degree of polymerization of PVA to the above upper limit or less, the viscosity of the film-forming stock solution of the PVA film does not become too high, and the productivity of the PVA film can be increased.
- the degree of polymerization of PVA means the average degree of polymerization measured according to the description of JIS K 6726-1994. That is, the degree of polymerization (Po) is obtained by the following formula (12).
- ⁇ is the ultimate viscosity (deciliter / g) measured in water at 30 ° C. after remineralizing and purifying PVA.
- the degree of saponification of PVA is preferably 90 mol% or more, more preferably 95 mol% or more, further preferably 99 mol% or more, and particularly preferably 99.8 mol% or more. ..
- the crystallization of PVA tends to proceed more easily as the degree of saponification of PVA increases. Therefore, by setting the saponification degree of PVA to the above lower limit or more, the crystallization of PVA can be appropriately advanced and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be increased.
- the polar surface layer portion near the surface of the PVA film and the PVA film which are susceptible to heat are used.
- the crystallinity inside the relatively deep interior tends to be high.
- the degree of saponification of PVA is the ratio of the number of moles of vinyl alcohol units to the total number of moles of structural units (typically vinyl ester-based monomer units) that can be converted to vinyl alcohol units by saponification and vinyl alcohol units. (Mol%).
- the degree of saponification of PVA can be measured according to the description of JIS K 6726-1994.
- the PVA film of the present invention may contain one type of PVA alone, or may contain two or more types of PVA having different degrees of polymerization, saponification, modification, and the like.
- the content of PVA in the PVA film of the present invention is not necessarily limited, but is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 85% by mass or more.
- the PVA film of the present invention preferably contains a plasticizer.
- the plasticizer By containing the plasticizer, the PVA film can be imparted with the same flexibility as other plastic films, and the PVA film can be prevented from breaking in the film forming and stretching steps of the PVA film.
- plasticizer examples include polyhydric alcohols such as ethylene glycol, glycerin, diglycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, and sorbitol. These plasticizers may be used alone or in combination of two or more. Among these, ethylene glycol or glycerin is preferable as the plasticizer, and glycerin is more preferable as the plasticizer because it is difficult to bleed out to the surface of the PVA film.
- the content of the plasticizer in the PVA film of the present invention is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further preferably 5 parts by mass or more with respect to 100 parts by mass of PVA. preferable.
- the content of the plasticizer is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less with respect to 100 parts by mass of PVA.
- the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be easily adjusted, and in addition, the effect of improving mechanical properties such as impact strength can be sufficiently obtained. be able to.
- the reason why the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be adjusted by adjusting the content of the plasticizer is as follows. Generally, when a PVA film contains an appropriate amount of a plasticizer, crystallization of PVA proceeds. It is presumed that this is because the plasticizer facilitates the movement of the polymer molecular chain of PVA and facilitates the formation of an energetically more stable crystal or constrained amorphous structure. On the other hand, if the PVA film contains an excessive amount of plasticizer, the crystallization of PVA is likely to be inhibited.
- the crystallization of PVA can be appropriately advanced and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be adjusted.
- the PVA film of the present invention preferably contains a surfactant.
- a surfactant By containing the surfactant, the handleability of the PVA film and the peelability of the PVA film from the film forming apparatus at the time of production can be improved.
- the surfactant is not particularly limited, and for example, an anionic surfactant and a nonionic surfactant are preferably used.
- anionic surfactant examples include a carboxylic acid type surfactant such as potassium laurate; a sulfate ester type surfactant such as octyl sulfate; and a sulfonic acid type surfactant such as dodecylbenzene sulfonate.
- nonionic surfactant examples include an alkyl ether type surfactant such as polyoxyethylene lauryl ether and polyoxyethylene oleyl ether; an alkylphenyl ether type surfactant such as polyoxyethylene octylphenyl ether; and polyoxyethylene lau.
- Alkyl ester type surfactant such as rate
- Alkylamine type surfactant such as polyoxyethylene laurylamino ether
- Alkylamide type surfactant such as polyoxyethylene lauric acid amide
- Polypropylene such as polyoxyethylene polyoxypropylene ether Glycol ether type surfactants
- alkanolamide type surfactants such as lauric acid diethanolamide and oleic acid diethanolamide
- allylphenyl ether type surfactants such as polyoxyalkylene allylphenyl ether and the like can be mentioned.
- Such a surfactant may be used alone or in combination of two or more.
- a nonionic surfactant is preferable, an alkanolamide type surfactant is more preferable, and an aliphatic carboxylic acid (for example, carbon) is preferable because it is excellent in reducing surface abnormalities during film formation of PVA film.
- Dialkanolamides eg, diethanolamides, etc.
- number 8-30 saturated or unsaturated aliphatic carboxylic acids, etc. are more preferred.
- the content of the surfactant in the PVA film of the present invention is preferably 0.01 part by mass or more, more preferably 0.02 part by mass or more, and 0.05 part by mass with respect to 100 parts by mass of PVA. It is more preferable that the amount is more than one part.
- the content of the surfactant is preferably 10 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 parts by mass or less with respect to 100 parts by mass of PVA. , 0.3 parts by mass or less is particularly preferable.
- the peelability of the PVA film from the film forming apparatus at the time of production becomes good, and the sticking between the PVA films (hereinafter, also referred to as “blocking”) occurs. It can be prevented from occurring. Further, it is possible to prevent the surfactant from bleeding out to the surface of the PVA film and to prevent the appearance of the PVA film from being deteriorated due to the aggregation of the surfactant.
- the PVA film of the present invention includes water-soluble polymers, moisture, antioxidants, ultraviolet absorbers, lubricants, cross-linking agents, colorants, fillers, preservatives, fungicides, other polymer compounds, etc. Ingredients may be contained within a range that does not interfere with the effects of the present invention.
- the ratio of the total mass of PVA, surfactant, plasticizer, and other components other than PVA to the total mass of the PVA film is preferably 60% by mass or more, more preferably 80% by mass or more. It is preferably 90% by mass or more, and more preferably 90% by mass or more.
- the ratio of the total mass of the other components to the total mass of the PVA film is preferably 100% by mass or less.
- the PVA film of the present invention is water-insoluble. Since the PVA film is water-insoluble, when uniaxial stretching for producing an optical film such as a polarizing film is performed in an aqueous solution, the PVA film is broken during uniaxial stretching even if the maximum stretching speed is high. It can be stretched without causing it.
- water-insoluble in the present invention means that the PVA film does not completely dissolve when the PVA film is immersed in water (deionized water) at 30 ° C. according to the following procedures ⁇ 1> to ⁇ 4>. It means that it remains undissolved even in the part.
- the PVA film is placed in a constant temperature and humidity chamber adjusted to 20 ° C. and 65% RH for 16 hours or more to adjust the humidity.
- ⁇ 2> After cutting out a rectangular sample of 40 mm in length ⁇ 35 mm in width from the humidity-controlled PVA film, two 50 mm ⁇ 50 mm plastic plates having a rectangular window (hole) of 35 mm in length ⁇ 23 mm in width opened. The sample is sandwiched and fixed so that the length direction of the sample is parallel to the length direction of the window and the sample is located substantially in the center of the width direction of the window.
- ⁇ 3> Put 300 mL of deionized water in a 500 mL beaker and adjust the water temperature to 30 ° C while stirring with a magnetic stirrer equipped with a 3 cm long bar at a rotation speed of 280 rpm.
- the sample fixed to the plastic plate in ⁇ 2> above is immersed in deionized water in a beaker for 1000 seconds, being careful not to contact the bar of the rotating magnetic stirrer.
- the method for producing the PVA film of the present invention is not particularly limited, and for example, any method as follows can be adopted.
- a cast film forming method a wet film forming method (a method of discharging into a poor solvent), a dry-wet film forming method, etc.
- a gel film-forming method (a method in which a film-forming stock solution is once cooled and gelled and then the solvent is extracted and removed), a method of forming a film by a combination of these methods, or a film-forming stock solution obtained by using an extruder or the like is used as T.
- Examples thereof include a melt extrusion film forming method and an inflation forming method in which a film is formed by extruding from a die or the like.
- a method for producing a PVA film a casting film forming method and a melt extrusion film forming method are preferable. By using these methods, a homogeneous PVA film can be obtained with high productivity.
- the PVA film is manufactured by the casting film forming method or the melt extrusion film forming method will be described.
- the PVA film of the present invention is produced by a casting film forming method or a melt extrusion film forming method, first, a film forming stock solution containing PVA, a solvent, and if necessary, an additive such as a plasticizer is prepared. prepare. Next, this film-forming stock solution is salivated (supplied) in the form of a film onto a rotating support such as a metal roll or a metal belt. As a result, a liquid film of the film-forming stock solution is formed on the support. The liquid film is solidified and formed into a film by being heated on the support to remove the solvent.
- Examples of the method of heating the liquid film include a method of heating the support itself to a high temperature with a heat medium or the like, a method of blowing hot air on the opposite surface of the surface in contact with the support of the liquid film, and the like.
- the solidified long film (PVA film) is peeled off from the support, dried by a drying roll, a drying furnace or the like as necessary, further heat-treated as needed, and wound into a roll.
- the rate of crystallization at this time includes the ratio of structural units derived from other monomers in PVA, the degree of polymerization of PVA, the degree of saponification of PVA, and the content of the plasticizer, as well as the water content and temperature in PVA. , And draw (tensile elongation in the flow direction). Regarding the draw, it is presumed to be the effect of orientation crystallization due to the tension of the polymer molecular chain of PVA.
- the drying of the PVA film proceeds by volatilizing the volatile matter from the released film surface that is not in contact with the support, the drying roll, or the like. Therefore, in the step during drying, the concentration distribution of volatile components such as water is generated in the thickness direction of the PVA film, so that the crystallinity index is distributed in the thickness direction of the PVA film depending on the temperature and draw conditions at that time.
- the distribution of this crystallinity index can be adjusted by the volatile fraction of the membrane-forming stock solution, the support temperature, the contact time with the support, the hot air temperature and amount, the drying roll and the drying oven temperature, and the like. Therefore, by appropriately adjusting each of the above factors, the crystallization of PVA can be appropriately advanced and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be adjusted.
- the volatile fraction of the film-forming stock solution (concentration of volatile components such as solvents removed by volatilization or evaporation during film-forming) is preferably 50% by mass or more, more preferably 55% by mass or more. preferable.
- the volatile fraction of the film-forming stock solution is preferably 90% by mass or less, and more preferably 80% by mass or less.
- the viscosity of the film-forming stock solution can be adjusted to a suitable range, so that the film-forming property of the liquid film flowed on the support is improved and the film-forming property has a uniform thickness. It becomes easier to obtain a PVA film.
- the film-forming stock solution may contain a dichroic dye, if necessary.
- the volatile fraction of the film-forming stock solution is a value obtained by the following formula (13).
- Wa represents the mass (g) of the film-forming stock solution
- Wb is the mass (g) of the film-forming stock solution of Wa (g) after being dried in an electric heating dryer at 105 ° C. for 16 hours. ).
- the method for preparing the film-forming stock solution is not particularly limited, and for example, a method of dissolving PVA and additives such as a plasticizer and a surfactant in a solvent in a dissolution tank or the like, or a uniaxial or biaxial extruder is used. Examples thereof include a method of melt-kneading PVA in a water-containing state together with additives such as a plasticizer and a surfactant.
- the undiluted film-forming solution generally passes through the die lip of a die such as a T-die and is spilled into a film on a support such as a metal roll or a metal belt.
- a free surface the surface of the flowed film-like stock solution that is not in contact with the support
- the distribution is such that the solvent concentration on the free surface side is low and the solvent concentration on the touch surface side is high with respect to the thickness direction of the film. Occurs. Therefore, the solidification of PVA also proceeds from the free side first.
- PVA crystallization progresses in parallel with PVA solidification. Crystallization of PVA is difficult to proceed even if the solvent concentration is too high or too low, and although it depends on the primary structure of the PVA molecule, the volatile fraction of the flowed membrane-forming stock solution is in the range of 20 to 60% by mass. It is easy to progress at one time. Further, the rate of crystallization of PVA increases as the temperature increases, but the rate of volatilization of the solvent increases as the temperature increases. Therefore, in order to efficiently promote the crystallization of the polar surface layer near the surface of the PVA film and control the crystallinity index (Fg1 and Fg2) of the polar surface layer, the temperature of the support and the support are used. In addition to the contact time, it is also important to control the temperature of the atmosphere near the free surface, the vapor pressure of the solvent, and the like.
- the PVA film of the present invention is a film having a high crystallinity in the extreme surface layer near the surface of the film with respect to the crystallinity inside the film, which is relatively deep inside. Therefore, in order to obtain the PVA film of the present invention, it is sufficient to select the conditions for suppressing the crystallization of the relatively deep inside of the film while proceeding with the crystallization of the polar surface layer portion near the surface of the film. For example, in the initial stage of drying when the volatile fraction of the polar surface layer near the surface of the film decreases, by adopting a condition of slow drying such as lowering the drying temperature, in the process of crystallization progressing, the polar surface layer Increase the water content. On the other hand, from the middle to late drying period when crystallization progresses in the relatively deep inside of the film, it is exemplified to adopt the condition that the internal crystallization does not proceed easily by rapidly drying at a relatively high temperature. Will be done.
- the surface temperature of the support for which the membrane-forming stock solution is spilled is preferably 65 ° C. or higher, and more preferably 70 ° C. or higher.
- the surface temperature of the support on which the membrane-forming stock solution is spilled is preferably 110 ° C. or lower, more preferably 100 ° C. or lower, and even more preferably 95 ° C. or lower.
- the crystallinity index (Fg1) of the PVA film proceeds at an appropriate rate due to the drying of the liquid film drooled on the support and the crystallization of the polar surface layer near the surface of the film.
- Fg2 can be adjusted.
- hot air with a wind speed of 1 to 10 m / sec may be uniformly blown over the entire area on the non-contact surface side of the liquid film.
- the temperature of the hot air blown to the non-contact surface side is preferably 50 ° C. or higher, more preferably 70 ° C. or higher.
- the temperature of the hot air blown to the non-contact surface side is preferably 150 ° C. or lower, more preferably 120 ° C. or lower.
- the humidity of the hot air is preferably 1% RH or more, more preferably 3% RH or more, and further preferably 5% RH or more.
- the humidity of the hot air is preferably 40% RH or less, and more preferably 30% RH or less.
- the PVA film is preferably dried (solvent removed) on the support to a volatile fraction of 5 to 50% by mass, then peeled off from the support, and further dried if necessary.
- the method of drying is not particularly limited, and examples thereof include a method of passing through a drying oven and a method of contacting with a drying roll.
- the PVA film is dried using a plurality of drying rolls, it is preferable that one surface of the PVA film and the other surface are alternately brought into contact with the drying rolls. Thereby, the difference in the crystallinity index of PVA (
- the number of dry rolls is preferably 3 or more, more preferably 4 or more, and even more preferably 5 to 30.
- the upper limit of the temperature of the drying furnace or the surface temperature of the drying roll is preferably 110 ° C. or lower, more preferably 100 ° C. or lower, further preferably 90 ° C. or lower, and preferably 85 ° C. or lower. Especially preferable.
- the lower limit of the temperature of the drying furnace or the surface temperature of the drying roll is preferably 40 ° C. or higher, more preferably 45 ° C. or higher, and even more preferably 50 ° C. or higher.
- the dried PVA film can be further heat-treated if necessary.
- the crystallinity of the polar surface layer near the surface of the film and the crystallinity of the relatively deep inside of the film can be increased, and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be increased.
- the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be increased.
- characteristics such as mechanical strength and swellability of the PVA film can be adjusted.
- the lower limit of the surface temperature of the heat treatment roll for performing the heat treatment is preferably 60 ° C. or higher.
- the upper limit of the surface temperature of the heat treatment roll is preferably 135 ° C. or lower, more preferably 130 ° C. or lower.
- the PVA film thus produced is, if necessary, further subjected to humidity control treatment, cutting of both ends (ears) of the film, and then rolled up on a cylindrical core in a roll shape. , Moisture-proof packaging to make a product.
- the volatile fraction of the PVA film finally obtained by a series of treatments is not necessarily limited.
- the volatile fraction of the PVA film is preferably 1% by mass or more, more preferably 2% by mass or more.
- the volatile fraction of the PVA film is preferably 5% by mass or less, and more preferably 4% by mass or less.
- the PVA film of the present invention is used as a raw film for producing an optical film.
- the optical film include a polarizing film, a viewing angle improving film, a retardation film, and a brightness improving film, but a polarizing film is preferable.
- a method for manufacturing an optical film a method for manufacturing a polarizing film will be specifically described.
- the polarizing film can usually be produced by using a PVA film as a raw film and undergoing treatment steps such as a swelling step, a dyeing step, a cross-linking step, a stretching step, and a fixing treatment step.
- the treatment liquid used in each step include a swelling treatment liquid used for swelling treatment, a dyeing treatment liquid (staining liquid) used for dyeing treatment, a cross-linking treatment liquid used for cross-linking treatment, and a stretching treatment liquid.
- a stretching treatment liquid a fixing treatment liquid used for the fixing treatment
- cleaning treatment liquid cleaning liquid
- the cleaning treatment is preferably performed by immersing the PVA film in the cleaning treatment liquid, but it can also be performed by spraying the cleaning treatment liquid on the PVA film.
- water can be used as the cleaning treatment liquid.
- the temperature of the cleaning treatment liquid is preferably in the range of 20 to 40 ° C. When the temperature is 20 ° C.
- the temperature of the cleaning treatment liquid is more preferably 22 ° C. or higher, further preferably 24 ° C. or higher, and particularly preferably 26 ° C. or higher. Further, the temperature of the cleaning treatment liquid is more preferably 38 ° C. or lower, further preferably 36 ° C. or lower, and particularly preferably 34 ° C. or lower.
- the swelling treatment can be performed by immersing the PVA film in a swelling treatment liquid such as water.
- the temperature of the swelling treatment liquid is preferably 20 ° C. or higher, more preferably 22 ° C. or higher, and even more preferably 24 ° C. or higher.
- the temperature of the swelling treatment liquid is preferably 40 ° C. or lower, more preferably 38 ° C. or lower, and even more preferably 36 ° C. or lower.
- the time for immersing in the swelling treatment liquid is preferably, for example, 0.1 minutes or longer, and more preferably 0.5 minutes or longer.
- the time for immersing in the swelling treatment liquid is, for example, preferably 5 minutes or less, and more preferably 3 minutes or less.
- the water used as the swelling treatment liquid is not limited to pure water, and may be an aqueous solution in which various components such as a boron-containing compound are dissolved, or may be a mixture of water and an aqueous medium.
- the type of the boron-containing compound is not particularly limited, but boric acid or borax is preferable from the viewpoint of handleability.
- the swelling treatment liquid contains a boron-containing compound, the concentration thereof is preferably 6% by mass or less from the viewpoint of improving the stretchability of the PVA film.
- the dyeing treatment is preferably carried out using an iodine-based dye as the dichroic dye, and the dyeing time may be any stage before the stretching treatment, during the stretching treatment, or after the stretching treatment.
- the dyeing treatment is preferably carried out by using a solution containing iodine-potassium iodide (preferably an aqueous solution) as the dyeing treatment liquid and immersing the PVA film in the dyeing treatment liquid.
- the concentration of iodine in the dyeing solution is preferably 0.005% by mass or more.
- the concentration of iodine in the dyeing solution is preferably 0.2% by mass or less.
- Potassium iodide / iodine (mass) is preferably 20 or more.
- Potassium iodide / iodine (mass) is preferably 100 or less.
- the temperature of the dyeing treatment liquid is preferably 20 ° C. or higher, more preferably 25 ° C. or higher.
- the temperature of the dyeing treatment liquid is preferably 50 ° C. or lower, more preferably 40 ° C. or lower.
- the dyeing solution may contain a boron-containing compound such as boric acid as a cross-linking agent. If the PVA film used as the raw film contains a dichroic dye in advance, the dyeing process can be omitted. Further, it is also possible to preliminarily contain a boron-containing compound such as boric acid or borax in the PVA film used as the raw film.
- the cross-linking treatment can be performed by using a solution containing a cross-linking agent (preferably an aqueous solution) as the cross-linking treatment liquid and immersing the PVA film in the cross-linking treatment liquid.
- a cross-linking agent preferably an aqueous solution
- the cross-linking agent one or more kinds of boron-containing compounds such as boric acid and borax can be used.
- the concentration of the cross-linking agent in the cross-linking treatment liquid is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more.
- the concentration of the cross-linking agent in the cross-linking treatment liquid is preferably 6% by mass or less, more preferably 5.5% by mass or less, and further preferably 5% by mass or less.
- the cross-linking treatment liquid may contain an iodine-containing compound such as potassium iodide. If the concentration of the iodine-containing compound in the cross-linking treatment liquid is too high, the reason is unknown, but the heat resistance of the obtained polarizing film tends to decrease. Further, if the concentration of the iodine-containing compound in the cross-linking treatment liquid is too low, the effect of suppressing the elution of the dichroic dye tends to be reduced.
- an iodine-containing compound such as potassium iodide
- the concentration of the iodine-containing compound in the cross-linking treatment liquid is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more.
- the concentration of the iodine-containing compound in the cross-linking treatment liquid is preferably 6% by mass or less, more preferably 5.5% by mass or less, and further preferably 5% by mass or less.
- the temperature of the cross-linking treatment liquid is preferably 20 ° C. or higher, more preferably 22 ° C. or higher, and even more preferably 25 ° C. or higher.
- the temperature of the cross-linking treatment liquid is preferably 45 ° C. or lower, more preferably 40 ° C. or lower, and even more preferably 35 ° C. or lower.
- the PVA film may be stretched during or between the above-mentioned treatments.
- stretching pre-stretching
- the total stretching ratio of the pre-stretching is 4 times or less based on the original length of the PVA film of the original fabric before stretching from the viewpoint of the polarization performance of the obtained polarizing film. It is preferably 3.5 times or less, and more preferably 3.5 times or less.
- the total draw ratio of the pre-stretching is preferably 1.5 times or more based on the original length of the PVA film of the original fabric before stretching from the viewpoint of the polarization performance of the obtained polarizing film.
- the draw ratio in the swelling treatment is preferably 1.1 times or more, more preferably 1.2 times or more, and further preferably 1.4 times or more.
- the draw ratio in the swelling treatment is preferably 3 times or less, more preferably 2.5 times or less, and further preferably 2.3 times or less.
- the draw ratio in the dyeing treatment is preferably 2 times or less, more preferably 1.8 times or less, and further preferably 1.5 times or less.
- the draw ratio in the dyeing treatment is more preferably 1.1 times or more.
- the draw ratio in the crosslinking treatment is preferably 2 times or less, more preferably 1.5 times or less, and further preferably 1.3 times or less.
- the stretching ratio in the crosslinking treatment is more preferably 1.05 times or more.
- the stretching treatment may be performed by either a wet stretching method or a dry stretching method.
- a solution containing a boron-containing compound such as boric acid preferably an aqueous solution
- the stretching treatment liquid can be used. It can also be performed in the treatment liquid.
- the dry stretching method it can be carried out in the air using a PVA film after water absorption.
- the wet stretching method is preferable, and uniaxial stretching is more preferable in an aqueous solution containing boric acid.
- the concentration of the boron-containing compound in the stretching treatment liquid is preferably 1.5% by mass or more because the stretchability of the PVA film can be improved. It is more preferably 0% by mass or more, and further preferably 2.5% by mass or more.
- the concentration of the boron-containing compound in the stretching treatment liquid is preferably 7% by mass or less, more preferably 6.5% by mass or less, and more preferably 6% by mass, because the stretchability of the PVA film can be improved. The following is more preferable.
- the stretching treatment liquid contains an iodine-containing compound such as potassium iodide. If the concentration of the iodine-containing compound in the stretching solution is too high, the hue of the obtained polarizing film tends to be bluish, and if it is too low, the reason is unknown, but the heat resistance of the obtained polarizing film is high. The sex tends to decrease.
- the concentration of the iodine-containing compound in the stretching treatment liquid is preferably 2% by mass or more, more preferably 2.5% by mass or more, and further preferably 3% by mass or more.
- the concentration of the iodine-containing compound in the stretching treatment liquid is preferably 8% by mass or less, more preferably 7.5% by mass or less, and further preferably 7% by mass or less.
- the temperature of the stretching treatment liquid is preferably 50 ° C. or higher, more preferably 52.5 ° C. or higher, and even more preferably 55 ° C. or higher.
- the temperature of the stretching treatment liquid is preferably 70 ° C. or lower, more preferably 67.5 ° C. or lower, and even more preferably 65 ° C. or lower.
- the preferred range of the stretching temperature when the stretching treatment is performed by the dry stretching method is also as described above.
- the stretching ratio in the stretching treatment is preferably 1.2 times or more, more preferably 1.5 times or more, and more preferably 1.5 times or more, because a polarizing film having better polarizing performance can be obtained when the drawing ratio is high. It is more preferable that the amount is double or more.
- the total draw ratio (magnification multiplied by the draw ratio in each step) including the draw ratio of the pre-stretch described above is the polarization performance of the obtained polarizing film based on the original length of the raw material PVA film before stretch. From this point of view, it is preferably 5.5 times or more, more preferably 5.7 times or more, and further preferably 5.9 times or more.
- the upper limit of the draw ratio is not particularly limited, but if it is too high, stretch breakage is likely to occur, so it is preferably 8 times or less.
- uniaxial stretching in the long direction can be performed by using a stretching device including a plurality of rolls parallel to each other and changing the peripheral speed between the rolls.
- the maximum stretching speed (% / min) when the stretching treatment is performed by uniaxial stretching is not particularly limited, but is preferably 200% / min or more, and more preferably 300% / min or more. , 400% / min or more is more preferable.
- the maximum stretching speed is the fastest stretching speed among the three or more rolls having different peripheral speeds when the PVA film is stretched in two or more stages. Say that.
- the stretching speed at that step becomes the maximum stretching rate.
- the stretching speed refers to an increase in the length of the PVA film increased by stretching with respect to the length of the PVA film before stretching per unit time.
- the stretching speed of 100% / min is the speed at which the PVA film is deformed from the length before stretching to twice the length in one minute.
- the higher the maximum stretching speed the higher the stretching treatment (uniaxial stretching) of the PVA film can be performed, and as a result, the productivity of the polarizing film is improved, which is preferable.
- the maximum stretching speed becomes too high, excessive tension may be locally applied to the PVA film in the stretching treatment (uniaxial stretching) of the PVA film, and stretching fracture is likely to occur. From this point of view, it is preferable that the maximum stretching speed does not exceed 900% / min.
- the fixing treatment liquid a solution containing one or more boron-containing compounds such as boric acid and borax (preferably an aqueous solution) is used as the fixing treatment liquid, and a PVA film (preferably after stretching treatment) is used as the fixing treatment liquid. This can be done by immersing the PVA film).
- the fixing treatment liquid may contain an iodine-containing compound or a metal compound.
- the concentration of the boron-containing compound in the fixing treatment liquid is preferably 2% by mass or more, and more preferably 3% by mass or more.
- the concentration of the boron-containing compound in the fixing treatment liquid is preferably 15% by mass or less, and more preferably 10% by mass or less.
- the temperature of the fixing treatment liquid is preferably 15 ° C. or higher, more preferably 25 ° C. or higher.
- the temperature of the fixing treatment liquid is preferably 60 ° C. or lower, more preferably 40 ° C. or lower.
- the cleaning treatment is preferably performed by immersing the PVA film in the cleaning treatment liquid, but it can also be performed by spraying the cleaning treatment liquid on the PVA film.
- water can be used as the cleaning treatment liquid.
- the water is not limited to pure water, and may contain an iodine-containing compound such as potassium iodide.
- the cleaning treatment liquid may contain a boron-containing compound, but in that case, the concentration of the boron-containing compound is preferably 2.0% by mass or less.
- the temperature of the cleaning treatment liquid is preferably in the range of 5 to 40 ° C.
- the temperature of the cleaning treatment liquid is more preferably 7 ° C. or higher, further preferably 10 ° C. or higher.
- the temperature of the cleaning treatment liquid is more preferably 38 ° C. or lower, and further preferably 35 ° C. or lower.
- Specific methods for producing a polarizing film include a method of subjecting a PVA film to a dyeing treatment, a stretching treatment, a crosslinking treatment and / or a fixing treatment.
- the stretching treatment may be performed in any of the treatment steps prior to the above, or may be performed in multiple stages of two or more stages.
- a polarizing film can be obtained by subjecting the PVA film after each of the above treatments to a drying treatment.
- the drying treatment method is not particularly limited, and examples thereof include a contact type method in which the film is brought into contact with a heating roll, a method in which the film is dried in a hot air dryer, and a floating type method in which the film is dried by hot air while floating. ..
- the polarizing film obtained as described above is preferably used as a polarizing plate by laminating a protective film that is optically transparent and has mechanical strength on both sides or one side thereof.
- a protective film a cellulose triacetate (TAC) film, a cycloolefin polymer (COP) film, a cellulose acetate / butyrate cellulose (CAB) film, an acrylic film, a polyester film and the like are used.
- the adhesive for bonding include PVA-based adhesives and urethane-based adhesives, but PVA-based adhesives are preferable.
- the polarizing plate obtained as described above can be used as a component of an LCD by laminating an adhesive such as an acrylic material and then laminating it on a glass substrate. At the same time, it may be bonded to a retardation film, a viewing angle improving film, a brightness improving film, or the like.
- NICOLET is 10 (manufactured by Thermo Fisher) Measurement conditions: 1-time reflection ATR method Incident angle 45 ° Resolution: 4.0 cm -1 Number of integrations: 32 times Measurement temperature: 24.0 ° C (environmental temperature) Measured humidity: 45.0% RH (environmental relative humidity)
- ATR prism diamond prism or germanium prism
- Example 1> ⁇ Manufacturing and evaluation of PVA film> Using 100 parts by mass of PVA (sakenization degree 99 mol%, degree of polymerization 2400), 12 parts by mass of glycerin plasticizer as a plasticizer, 0.1 part by mass of lauric acid diethanolamide and 217.6 parts by mass of water as a surfactant.
- a film-forming stock solution (volatile content of 66% by mass) was prepared by melt-mixing with a melt extruder. Next, this film-forming stock solution was discharged from the T-die onto the support (surface temperature 80 ° C.) in the form of a film to form a liquid film on the support.
- a PVA film (moisture content: 32% by mass) was obtained by blowing hot air at 85 ° C. and 3% RH at a rate of 5 m / sec on the entire non-contact surface of the liquid film on the support and drying it. rice field.
- the PVA film is then stripped from the support and from the first drying roll to the final drying roll just before the heat treatment roll so that one side and the other side of the PVA film are in alternating contact with each drying roll. After further drying up to (19th drying roll), the film was peeled off from the final drying roll. At this time, the surface temperature of each dry roll from the first dry roll to the final dry roll was set to 75 ° C.
- the PVA film was peeled off from the final dry roll, and heat treatment was performed so that one surface of the PVA film and the other surface were alternately in contact with each heat treatment roll.
- the heat treatment was performed using two heat treatment rolls, and the surface temperature of each of the heat treatment rolls was 90 ° C.
- the obtained PVA film (thickness 30 ⁇ m, width 1200 mm) was subjected to FT-IR measurement by the above method, and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) was calculated. The results are shown in Table 1.
- the obtained PVA film was slit to a width of 650 mm, and the film was continuously subjected to swelling treatment, dyeing treatment, cross-linking treatment, stretching treatment, washing treatment, and drying treatment in this order to continuously produce a polarizing film.
- the swelling treatment was carried out by uniaxially stretching 2.00 times in the length direction while immersing in pure water (swelling treatment liquid) at 25 ° C.
- the dyeing treatment is performed while being immersed in a potassium iodide / iodine staining solution (staining treatment solution) at a temperature of 32 ° C.
- the stretching treatment is performed 2.00 times in the length direction while being immersed in a 55 ° C. boric acid / potassium iodide aqueous solution (stretching treatment liquid) (boric acid concentration 2.8% by mass, potassium iodide concentration 5% by mass). It was uniaxially stretched. The maximum stretching speed of uniaxial stretching in this stretching treatment was 400% / min.
- the washing treatment is carried out by immersing in a potassium iodide / boric acid aqueous solution (washing liquid) (potassium iodide concentration 3 to 6% by mass, boric acid concentration 1.5% by mass) at 22 ° C. for 12 seconds without stretching. gone.
- the drying treatment was carried out by hot air drying at 80 ° C.
- Example 2> In ⁇ Production and Evaluation of PVA Film> of Example 1, the PVA used for preparing the film-forming stock solution is changed to PVA (sakenization degree 99 mol%, polymerization degree 2400, ethylene modification 2.5 mol%), and 2 A PVA film and a polarizing film were obtained in the same manner as in Example 1 except that the surface temperature of each of the heat-treated rolls of the book was changed to 85 ° C. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
- Example 3> In ⁇ Manufacturing and Evaluation of PVA Film> of Example 1, the surface temperature of the support is 100 ° C., the temperature of the hot air blown over the entire non-contact surface with the support of the liquid film is 105 ° C., and the heat treatment is performed from the first drying roll. The same as in Example 1 except that the surface temperature of each drying roll up to the final drying roll (19th drying roll) immediately before the roll was changed to 90 ° C. and the surface temperature of the two heat-treated rolls was changed to 80 ° C. A PVA film and a polarizing film were obtained. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
- Example 4 In ⁇ Production and Evaluation of PVA Film> of Example 1, drying from the first drying roll to the final drying roll (19th drying roll) immediately before the heat treatment roll is performed on one surface (on the support) of the PVA film. A PVA film and a polarizing film were obtained in the same manner as in Example 1 except that the drying rolls were brought into contact with each other only on the surface where the liquid film and the support were in contact with each other. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
- Example 1 In ⁇ Manufacturing and Evaluation of PVA Film> of Example 1, the surface temperature of the support is 115 ° C., the temperature of the hot air blown over the entire non-contact surface with the support of the liquid film is 120 ° C., and the heat treatment is performed from the first drying roll. The same as in Example 1 except that the surface temperature of each drying roll up to the final drying roll (19th drying roll) immediately before the roll was changed to 65 ° C. and the surface temperature of the two heat-treated rolls was changed to 65 ° C. A PVA film and a polarizing film were obtained. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
- Example 2 In ⁇ Manufacturing and Evaluation of PVA Film> of Example 1, the surface temperature of the support is 60 ° C., the temperature of the hot air blown over the entire non-contact surface of the liquid film with the support is 70 ° C., and heat treatment is performed from the first dry roll.
- a PVA film and a polarizing film were obtained in the same manner as in Example 1 except that the surface temperature of each dry roll up to the final dry roll (19th dry roll) immediately before the roll was changed to 90 ° C.
- the obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
- ⁇ Reference example 1> In ⁇ Production and Evaluation of Polarizing Film> of Example 1, a PVA film and a polarizing film were obtained in the same manner as in Comparative Example 1 except that the maximum stretching speed of uniaxial stretching in the stretching treatment was changed to 190%. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Nonlinear Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Polarising Elements (AREA)
Abstract
Provided is a PVA film in which breakage during uniaxial stretching is suppressed and which is not prone to surface wrinkling during uniaxial stretching, even when the maximum stretching speed is high. A non-aqueous PVA film, wherein Fd1, Fg1, Fd2, and Fg2 satisfy expressions (1) through (4), where Fd1 and Fg1 are crystallinity indices of a first surface, and Fd2 and Fg2 are crystallinity indices of a second surface. (1): Fd1≤0.8. (2): Fd1/Fg1<1. (3): Fd2≤0.8. (4): Fd2/Fg2<1. [In expressions (1) through (4), Fd1 and Fg1 are crystallinity indices calculated using a diamond prism and a germanium prism, respectively, in FT-IR measurement of the first surface by an ATR method, and Fd2 and Fg2 are crystallinity indices calculated using a diamond prism and a germanium prism, respectively, in the same manner with respect to the second surface.]
Description
本発明は、ポリビニルアルコールフィルム及びそれを用いた偏光フィルムに関する。
The present invention relates to a polyvinyl alcohol film and a polarizing film using the same.
光の透過及び遮蔽機能を有する偏光板は、光のスイッチング機能を有する液晶とともに、液晶ディスプレイ(LCD)の基本的な構成要素である。このLCDの適用分野も、開発初期の頃の電卓及び腕時計などの小型機器から、近年では、ノートパソコン、液晶モニタ、液晶カラープロジェクタ、液晶テレビ、車載用ナビゲーションシステム、携帯電話及び屋内外で用いられる計測機器などの種々の分野に拡大している。
A polarizing plate having a light transmitting and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal having a light switching function. The fields of application of this LCD are also used from small devices such as calculators and watches in the early days of development to notebook computers, LCD monitors, LCD color projectors, LCD TVs, in-vehicle navigation systems, mobile phones and indoors and outdoors in recent years. It is expanding to various fields such as measuring instruments.
偏光板は、偏光フィルムの表面に三酢酸セルロース(TAC)フィルムまたは酢酸・酪酸セルロース(CAB)フィルムなどの保護フィルムを貼り合わせることによって製造される。そして、偏光フィルムは、ポリビニルアルコールフィルム(以下、「ポリビニルアルコール」を「PVA」と称する場合がある)を染色処理した後に一軸延伸するか、染色処理しながら一軸延伸するか、または一軸延伸した後に染色処理して、染色された一軸延伸フィルムを製造し、この一軸延伸フィルムをホウ素化合物で固定化処理することにより製造されるのが一般的である。なお、このホウ素化合物での固定化処理は、一軸延伸または染色処理と同時に行われることもある。
The polarizing plate is manufactured by laminating a protective film such as a cellulose triacetate (TAC) film or a cellulose acetate / butyrate (CAB) film on the surface of a polarizing film. The polarizing film is uniaxially stretched after dyeing a polyvinyl alcohol film (hereinafter, "polyvinyl alcohol" may be referred to as "PVA"), uniaxially stretched while being dyed, or uniaxially stretched. It is generally produced by dyeing to produce a dyed uniaxially stretched film and immobilizing the uniaxially stretched film with a boron compound. The immobilization treatment with this boron compound may be performed at the same time as the uniaxial stretching or dyeing treatment.
液晶モニタや液晶テレビなどの大型のLCDを有する製品においては、高コントラストで鮮明な画像が要求される。これに伴って、偏光フィルムについても高性能化が求められており、具体的には、偏光フィルムの偏光度を高めることが求められている。しかしながら、偏光フィルムの偏光度を高めるために、PVAフィルムを一軸延伸する際の延伸倍率を高くした場合には、一軸延伸の過程でPVAフィルムの表面に皺が発生しやすくなる。その結果、得られる偏光フィルムにおいても表面に皺が発生しやすくなる。偏光フィルムの表面に皺が多く発生すると、最終製品である液晶モニタや液晶テレビなどにおいて画像ムラの原因になりやすい。また、偏光フィルムの表面に皺が多く発生すると、そのような偏光フィルムは製品として使用することができないため、偏光フィルムの製品収率(製品歩留り)の低下の原因にもなる。
High-contrast and clear images are required for products with large LCDs such as LCD monitors and LCD TVs. Along with this, the polarizing film is also required to have higher performance, and specifically, it is required to increase the degree of polarization of the polarizing film. However, when the draw ratio when the PVA film is uniaxially stretched is increased in order to increase the degree of polarization of the polarizing film, wrinkles are likely to occur on the surface of the PVA film in the process of uniaxial stretching. As a result, wrinkles are likely to occur on the surface of the obtained polarizing film. If many wrinkles are generated on the surface of the polarizing film, it tends to cause image unevenness in the final products such as LCD monitors and LCD televisions. Further, if many wrinkles are generated on the surface of the polarizing film, such a polarizing film cannot be used as a product, which causes a decrease in the product yield (product yield) of the polarizing film.
偏光フィルムの表面に発生する皺を抑制する方法として、PVAフィルムをパルスNMR測定した際の緩和時間が短い成分(分子運動性が低くく硬い成分)について、緩和時間や成分比を制御することが提案されている(特許文献1参照)。
As a method of suppressing wrinkles generated on the surface of the polarizing film, it is possible to control the relaxation time and the component ratio for the components having a short relaxation time (a component having low molecular motility and being hard) when the PVA film is measured by pulse NMR. It has been proposed (see Patent Document 1).
近年、LCDの高コントラスト化、画像の鮮明化に対する要求がさらに高まっており、これに伴って、従来は問題とならなかった偏光フィルムの表面の皺が問題となることが多くなっている。また、偏光フィルムの生産効率を高めるため、偏光フィルムを製造する際の延伸処理における一軸延伸を高速で行うこと、すなわち一軸延伸の最大延伸速度を高速にすることが求められている。しかしながら、偏光フィルムを製造する際の一軸延伸において最大延伸速度を高速にすると、一軸延伸時にPVAフィルムの表面に皺がより発生しやすくなる。その結果、得られる偏光フィルムにおいても表面に皺がより発生しやすくなる。また、最大延伸速度が高速である場合には、一軸延伸時にPVAフィルムに局所的に過大な張力がかかることがある。その結果、一軸延伸時にPVAフィルムの破断が発生しやすくなり、偏光フィルムの製品収率が低下するという問題もある。
In recent years, there has been an increasing demand for higher contrast and sharper images on LCDs, and along with this, wrinkles on the surface of polarizing films, which have not been a problem in the past, are becoming more and more problematic. Further, in order to increase the production efficiency of the polarizing film, it is required to perform uniaxial stretching at high speed in the stretching process at the time of producing the polarizing film, that is, to increase the maximum stretching speed of uniaxial stretching. However, if the maximum stretching speed is increased in the uniaxial stretching in the production of the polarizing film, wrinkles are more likely to occur on the surface of the PVA film during the uniaxial stretching. As a result, wrinkles are more likely to occur on the surface of the obtained polarizing film. Further, when the maximum stretching speed is high, excessive tension may be locally applied to the PVA film during uniaxial stretching. As a result, the PVA film is likely to break during uniaxial stretching, and there is also a problem that the product yield of the polarizing film is lowered.
特許文献1に記載のPVAフィルムでは、偏光フィルムを製造する際の一軸延伸において最大延伸速度を高速にすると、一軸延伸時にPVAフィルムの表面に皺が発生しやすく、偏光フィルムの表面の皺を十分に抑制できない場合があった。また、最大延伸速度を高速にすると、一軸延伸時にPVAフィルムが破断する場合もあった。なお、一軸延伸した際のPVAフィルムの表面の皺の抑制及び、一軸延伸時のPVAフィルムの破断の抑制は、偏光フィルム以外の光学フィルムの表面の皺及び破断を抑制する上でも重要である。
In the PVA film described in Patent Document 1, if the maximum stretching speed is increased in uniaxial stretching when producing a polarizing film, wrinkles are likely to occur on the surface of the PVA film during uniaxial stretching, and the surface of the polarizing film is sufficiently wrinkled. In some cases, it could not be suppressed. Further, when the maximum stretching speed is increased, the PVA film may be broken during uniaxial stretching. It should be noted that suppressing wrinkles on the surface of the PVA film during uniaxial stretching and suppressing breakage of the PVA film during uniaxial stretching are also important for suppressing wrinkles and breakage on the surface of optical films other than the polarizing film.
そこで本発明は、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速の場合であっても、一軸延伸時に表面に皺が発生しにくく、かつ一軸延伸時の破断が抑制されたPVAフィルムを提供することを目的とする。
Therefore, according to the present invention, even when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film, wrinkles are less likely to occur on the surface during uniaxial stretching, and breakage during uniaxial stretching is suppressed. It is an object of the present invention to provide the said PVA film.
本発明者らは、鋭意検討を重ねた結果、PVAフィルムの厚み方向と直交する2つの表面の結晶度指数を特定範囲に調整することにより、上記課題を達成しうることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。
As a result of diligent studies, the present inventors have found that the above-mentioned problems can be achieved by adjusting the crystallinity indexes of two surfaces orthogonal to the thickness direction of the PVA film within a specific range. Based on this, further studies were carried out to complete the present invention.
すなわち、本発明は、
[1]非水溶性のPVAフィルムであって、前記PVAフィルムの厚み方向と直交する2つの表面をそれぞれ第1の表面、第2の表面とし、前記第1の表面の結晶度指数をFd1及びFg1とし、前記第2の表面の結晶度指数をFd2及びFg2としたとき、前記Fd1、Fg1、Fd2及びFg2が以下の式(1)~(4)を満足する、PVAフィルム;
Fd1≦0.8 (1)
Fd1/Fg1<1 (2)
Fd2≦0.8 (3)
Fd2/Fg2<1 (4)
[前記式(1)~(4)中、Fd1は、前記第1の表面に対してATR法によるFT-IR測定を行った際にダイアモンドプリズムを用いて算出される結晶度指数であり、Fg1は、前記第1の表面に対してATR法によるFT-IR測定を行った際にゲルマニウムプリズムを用いて算出される結晶度指数であり、Fd2は、前記第2の表面に対してATR法によるFT-IR測定を行った際にダイアモンドプリズムを用いて算出される結晶度指数であり、Fg2は、前記第2の表面に対してATR法によるFT-IR測定を行った際にゲルマニウムプリズムを用いて算出される結晶度指数である。]
[2]前記Fd1、Fd2が以下の式(5)~(6)を満足する、[1]のPVAフィルム;
Fd1≧0.5 (5)
Fd2≧0.5 (6)
[3]前記Fd1、Fg1、Fd2及びFg2が以下の式(7)~(8)を満足する、[1]または[2]のPVAフィルム;
Fd1/Fg1≧0.6 (7)
Fd2/Fg2≧0.6 (8)
[4]前記Fd1、Fg1、Fd2及びFg2が以下の式(9)~(10)を満足する、[1]~[3]のいずれかのPVAフィルム;
|Fd1-Fd2|≦0.07 (9)
|Fg1-Fg2|≦0.07 (10)
[5]光学フィルム製造用フィルムである、[1]~[4]のいずれかのPVAフィルム;
[6]光学フィルムが偏光フィルムである、[5]のPVAフィルム;
に関する。 That is, the present invention
[1] A water-insoluble PVA film having two surfaces orthogonal to the thickness direction of the PVA film as a first surface and a second surface, respectively, and the crystallinity index of the first surface is Fd1 and When Fg1 is used and the crystallinity index of the second surface is Fd2 and Fg2, the Fd1, Fg1, Fd2 and Fg2 satisfy the following formulas (1) to (4);
Fd1 ≤ 0.8 (1)
Fd1 / Fg1 <1 (2)
Fd2 ≤ 0.8 (3)
Fd2 / Fg2 <1 (4)
[In the formulas (1) to (4), Fd1 is a crystallinity index calculated by using a diamond prism when FT-IR measurement by the ATR method is performed on the first surface, and is Fg1. Is a crystallinity index calculated by using a germanium prism when FT-IR measurement by the ATR method is performed on the first surface, and Fd2 is the crystallinity index calculated by the ATR method on the second surface. It is a crystallinity index calculated by using a diamond prism when FT-IR measurement is performed, and Fg2 uses a germanium prism when FT-IR measurement by the ATR method is performed on the second surface. It is a crystallinity index calculated by. ]
[2] The PVA film of [1], wherein the Fd1 and Fd2 satisfy the following formulas (5) to (6);
Fd1 ≧ 0.5 (5)
Fd2 ≧ 0.5 (6)
[3] The PVA film of [1] or [2], wherein the Fd1, Fg1, Fd2 and Fg2 satisfy the following formulas (7) to (8);
Fd1 / Fg1 ≧ 0.6 (7)
Fd2 / Fg2 ≧ 0.6 (8)
[4] The PVA film according to any one of [1] to [3], wherein the Fd1, Fg1, Fd2 and Fg2 satisfy the following formulas (9) to (10);
| Fd1-Fd2 | ≤0.07 (9)
| Fg1-Fg2 | ≤0.07 (10)
[5] The PVA film according to any one of [1] to [4], which is a film for producing an optical film;
[6] The PVA film of [5], wherein the optical film is a polarizing film;
Regarding.
[1]非水溶性のPVAフィルムであって、前記PVAフィルムの厚み方向と直交する2つの表面をそれぞれ第1の表面、第2の表面とし、前記第1の表面の結晶度指数をFd1及びFg1とし、前記第2の表面の結晶度指数をFd2及びFg2としたとき、前記Fd1、Fg1、Fd2及びFg2が以下の式(1)~(4)を満足する、PVAフィルム;
Fd1≦0.8 (1)
Fd1/Fg1<1 (2)
Fd2≦0.8 (3)
Fd2/Fg2<1 (4)
[前記式(1)~(4)中、Fd1は、前記第1の表面に対してATR法によるFT-IR測定を行った際にダイアモンドプリズムを用いて算出される結晶度指数であり、Fg1は、前記第1の表面に対してATR法によるFT-IR測定を行った際にゲルマニウムプリズムを用いて算出される結晶度指数であり、Fd2は、前記第2の表面に対してATR法によるFT-IR測定を行った際にダイアモンドプリズムを用いて算出される結晶度指数であり、Fg2は、前記第2の表面に対してATR法によるFT-IR測定を行った際にゲルマニウムプリズムを用いて算出される結晶度指数である。]
[2]前記Fd1、Fd2が以下の式(5)~(6)を満足する、[1]のPVAフィルム;
Fd1≧0.5 (5)
Fd2≧0.5 (6)
[3]前記Fd1、Fg1、Fd2及びFg2が以下の式(7)~(8)を満足する、[1]または[2]のPVAフィルム;
Fd1/Fg1≧0.6 (7)
Fd2/Fg2≧0.6 (8)
[4]前記Fd1、Fg1、Fd2及びFg2が以下の式(9)~(10)を満足する、[1]~[3]のいずれかのPVAフィルム;
|Fd1-Fd2|≦0.07 (9)
|Fg1-Fg2|≦0.07 (10)
[5]光学フィルム製造用フィルムである、[1]~[4]のいずれかのPVAフィルム;
[6]光学フィルムが偏光フィルムである、[5]のPVAフィルム;
に関する。 That is, the present invention
[1] A water-insoluble PVA film having two surfaces orthogonal to the thickness direction of the PVA film as a first surface and a second surface, respectively, and the crystallinity index of the first surface is Fd1 and When Fg1 is used and the crystallinity index of the second surface is Fd2 and Fg2, the Fd1, Fg1, Fd2 and Fg2 satisfy the following formulas (1) to (4);
Fd1 ≤ 0.8 (1)
Fd1 / Fg1 <1 (2)
Fd2 ≤ 0.8 (3)
Fd2 / Fg2 <1 (4)
[In the formulas (1) to (4), Fd1 is a crystallinity index calculated by using a diamond prism when FT-IR measurement by the ATR method is performed on the first surface, and is Fg1. Is a crystallinity index calculated by using a germanium prism when FT-IR measurement by the ATR method is performed on the first surface, and Fd2 is the crystallinity index calculated by the ATR method on the second surface. It is a crystallinity index calculated by using a diamond prism when FT-IR measurement is performed, and Fg2 uses a germanium prism when FT-IR measurement by the ATR method is performed on the second surface. It is a crystallinity index calculated by. ]
[2] The PVA film of [1], wherein the Fd1 and Fd2 satisfy the following formulas (5) to (6);
Fd1 ≧ 0.5 (5)
Fd2 ≧ 0.5 (6)
[3] The PVA film of [1] or [2], wherein the Fd1, Fg1, Fd2 and Fg2 satisfy the following formulas (7) to (8);
Fd1 / Fg1 ≧ 0.6 (7)
Fd2 / Fg2 ≧ 0.6 (8)
[4] The PVA film according to any one of [1] to [3], wherein the Fd1, Fg1, Fd2 and Fg2 satisfy the following formulas (9) to (10);
| Fd1-Fd2 | ≤0.07 (9)
| Fg1-Fg2 | ≤0.07 (10)
[5] The PVA film according to any one of [1] to [4], which is a film for producing an optical film;
[6] The PVA film of [5], wherein the optical film is a polarizing film;
Regarding.
本発明によれば、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速の場合であっても、一軸延伸時に表面に皺が発生しにくく、かつ一軸延伸時の破断が抑制されたPVAフィルムが提供される。このようなPVAフィルムによれば、偏光フィルムなどの光学フィルムの表面に発生する皺を抑制できる。また、一軸延伸時の破断が抑制されているため、偏光フィルムなどの光学フィルムを高い製品収率で製造することができる。
According to the present invention, even when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film, wrinkles are less likely to occur on the surface during uniaxial stretching, and breakage occurs during uniaxial stretching. Suppressed PVA film is provided. According to such a PVA film, wrinkles generated on the surface of an optical film such as a polarizing film can be suppressed. Further, since breakage during uniaxial stretching is suppressed, an optical film such as a polarizing film can be produced with a high product yield.
以下、本発明について詳細に説明する。
Hereinafter, the present invention will be described in detail.
<PVAフィルム>
本発明においては、図1、2に示すように、PVAフィルム1の厚み方向2と直交する2つの表面をそれぞれ第1の表面3、第2の表面4と定義する。したがって、本発明のPVAフィルム1の第1の表面3及び第2の表面4は互いに対向している。本発明においては、この第1の表面3及び第2の表面4に対してそれぞれATR法によるFT-IR(フーリエ変換赤外分光)測定を行う。そして、この測定で算出される結晶度指数Fd1、Fg1、Fd2及びFg2が、以下の式(1)~(4)を満足する。
Fd1≦0.8 (1)
Fd1/Fg1<1 (2)
Fd2≦0.8 (3)
Fd2/Fg2<1 (4) <PVA film>
In the present invention, as shown in FIGS. 1 and 2, two surfaces orthogonal to thethickness direction 2 of the PVA film 1 are defined as the first surface 3 and the second surface 4, respectively. Therefore, the first surface 3 and the second surface 4 of the PVA film 1 of the present invention face each other. In the present invention, FT-IR (Fourier transform infrared spectroscopy) measurement by the ATR method is performed on the first surface 3 and the second surface 4, respectively. The crystallinity indexes Fd1, Fg1, Fd2 and Fg2 calculated by this measurement satisfy the following formulas (1) to (4).
Fd1 ≤ 0.8 (1)
Fd1 / Fg1 <1 (2)
Fd2 ≤ 0.8 (3)
Fd2 / Fg2 <1 (4)
本発明においては、図1、2に示すように、PVAフィルム1の厚み方向2と直交する2つの表面をそれぞれ第1の表面3、第2の表面4と定義する。したがって、本発明のPVAフィルム1の第1の表面3及び第2の表面4は互いに対向している。本発明においては、この第1の表面3及び第2の表面4に対してそれぞれATR法によるFT-IR(フーリエ変換赤外分光)測定を行う。そして、この測定で算出される結晶度指数Fd1、Fg1、Fd2及びFg2が、以下の式(1)~(4)を満足する。
Fd1≦0.8 (1)
Fd1/Fg1<1 (2)
Fd2≦0.8 (3)
Fd2/Fg2<1 (4) <PVA film>
In the present invention, as shown in FIGS. 1 and 2, two surfaces orthogonal to the
Fd1 ≤ 0.8 (1)
Fd1 / Fg1 <1 (2)
Fd2 ≤ 0.8 (3)
Fd2 / Fg2 <1 (4)
上記式(1)~(4)中、Fd1は、PVAフィルム1の第1の表面3に対してATR法によるFT-IR測定を行った際にダイアモンドプリズムを用いて算出される結晶度指数であり、Fg1は、PVAフィルム1の第1の表面3に対してATR法によるFT-IR測定を行った際にゲルマニウムプリズムを用いて算出される結晶度指数である。また、Fd2は、PVAフィルム1の第2の表面4に対してATR法によるFT-IR測定を行った際にダイアモンドプリズムを用いて算出される結晶度指数であり、Fg2は、PVAフィルム1の第2の表面4に対してATR法によるFT-IR測定を行った際にゲルマニウムプリズムを用いて算出される結晶度指数である。なお、上記式(2)中、Fd1/Fg1はFd1をFg1で除した値であり、上記式(4)中、Fd2/Fg2はFd2をFg2で除した値である。
In the above formulas (1) to (4), Fd1 is a crystallinity index calculated by using a diamond prism when FT-IR measurement by the ATR method is performed on the first surface 3 of the PVA film 1. Fg1 is a crystallinity index calculated by using a germanium prism when FT-IR measurement by the ATR method is performed on the first surface 3 of the PVA film 1. Further, Fd2 is a crystallinity index calculated by using a diamond prism when FT-IR measurement by the ATR method is performed on the second surface 4 of the PVA film 1, and Fg2 is the crystallinity index of the PVA film 1. It is a crystallinity index calculated by using a germanium prism when FT-IR measurement by the ATR method is performed on the second surface 4. In the above formula (2), Fd1 / Fg1 is a value obtained by dividing Fd1 by Fg1, and in the above formula (4), Fd2 / Fg2 is a value obtained by dividing Fd2 by Fg2.
本発明のPVAフィルムにおいては、上記式(1)及び(3)に示す通り、Fd1及びFd2は0.8以下である必要がある。Fd1またはFd2が0.8を超える場合、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速である場合に、一軸延伸時にPVAフィルム1の表面に皺が発生しやすくなり、また、一軸延伸時にPVAフィルム1が破断しやすくなる。その理由は必ずしも明らかではないが、PVAフィルム1表面の結晶度が高すぎると、一軸延伸時に延伸処理液中の水がPVAフィルム1の内部に侵入し難くなり、一軸延伸時のフィルムの柔軟性が不十分になるためであると推定される。Fd1及びFd2は0.75以下であることが好ましく、0.72以下であることがより好ましく、0.7以下であることがさらに好ましく、0.68以下であることが特に好ましい。
In the PVA film of the present invention, Fd1 and Fd2 need to be 0.8 or less as shown in the above formulas (1) and (3). When Fd1 or Fd2 exceeds 0.8, wrinkles are likely to occur on the surface of the PVA film 1 during uniaxial stretching when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film. In addition, the PVA film 1 is likely to break during uniaxial stretching. The reason is not always clear, but if the crystallinity of the surface of the PVA film 1 is too high, it becomes difficult for water in the stretching treatment liquid to enter the inside of the PVA film 1 during uniaxial stretching, and the flexibility of the film during uniaxial stretching becomes difficult. It is presumed that this is due to insufficient. Fd1 and Fd2 are preferably 0.75 or less, more preferably 0.72 or less, further preferably 0.7 or less, and particularly preferably 0.68 or less.
本発明のPVAフィルムにおいては、上記式(2)及び(4)に示す通り、Fd1/Fg1及びFd2/Fg2は1未満である必要がある。Fd1/Fg1またはFd2/Fg2が1以上の場合、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速である場合に、一軸延伸時にPVAフィルム1の表面に皺が発生しやすくなる。Fd1/Fg1及びFd2/Fg2は、0.98以下であることが好ましく、0.96以下がより好ましく、0.94以下であることがさらに好ましく、0.92以下であることがよりさらに好ましく、0.9以下であることが特に好ましい。
In the PVA film of the present invention, Fd1 / Fg1 and Fd2 / Fg2 need to be less than 1 as shown in the above formulas (2) and (4). When Fd1 / Fg1 or Fd2 / Fg2 is 1 or more, wrinkles occur on the surface of the PVA film 1 during uniaxial stretching when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film. It will be easier. Fd1 / Fg1 and Fd2 / Fg2 are preferably 0.98 or less, more preferably 0.96 or less, further preferably 0.94 or less, still more preferably 0.92 or less. It is particularly preferable that it is 0.9 or less.
本発明のPVAフィルムにおいては、上記式(1)及び(3)に示す通り、Fd1及びFd2は0.8以下である。また、上記式(2)及び(4)に示す通り、Fd1/Fg1及びFd2/Fg2が1未満である。後述のように、Fd1及びFd2はPVAフィルム1の比較的深い内部の結晶度を示し、一方、Fg1及びFg2はPVAフィルム1の表面近くである極表層部の結晶度を示す。すなわち、本発明のPVAフィルムは、PVAフィルム1の比較的深い内部の結晶度が所定の値以下であり、かつ、PVAフィルム1の比較的深い内部の結晶度に対して、PVAフィルム1の表面近くである極表層部の結晶度が高い。このようにPVAフィルム1の比較的深い内部と極表層部の結晶度を制御することにより、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速の場合であっても、一軸延伸時に表面に皺が発生しにくく、一軸延伸時の破断が抑制される。その理由は必ずしも明らかではないが、PVAフィルム1の極表層部の結晶度が高いことで一軸延伸時にPVAフィルム1の表面に皺が発生するのが抑制され、かつ、PVAフィルム1の比較的深い内部の結晶度が低いことで一軸延伸時に発生する応力が緩和され破断が抑制されるためであると推定される。
In the PVA film of the present invention, Fd1 and Fd2 are 0.8 or less as shown in the above formulas (1) and (3). Further, as shown in the above formulas (2) and (4), Fd1 / Fg1 and Fd2 / Fg2 are less than 1. As will be described later, Fd1 and Fd2 show the crystallinity inside the PVA film 1 relatively deeply, while Fg1 and Fg2 show the crystallinity of the polar surface layer near the surface of the PVA film 1. That is, the PVA film of the present invention has a relatively deep internal crystallinity of the PVA film 1 of a predetermined value or less, and the surface of the PVA film 1 is relative to the relatively deep internal crystallinity of the PVA film 1. The crystallinity of the nearby polar surface layer is high. By controlling the crystallinity of the relatively deep interior and the polar surface layer of the PVA film 1 in this way, even when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film, the maximum stretching speed is high. Wrinkles are less likely to occur on the surface during uniaxial stretching, and breakage during uniaxial stretching is suppressed. The reason is not always clear, but the high crystallinity of the polar surface layer of the PVA film 1 suppresses the formation of wrinkles on the surface of the PVA film 1 during uniaxial stretching, and the PVA film 1 is relatively deep. It is presumed that the low crystallinity inside alleviates the stress generated during uniaxial stretching and suppresses breakage.
本発明のPVAフィルムにおいて、Fd1及びFd2の下限値は必ずしも限定されないが、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速である場合に、PVAフィルム1を一軸延伸する際の破断をより抑制できることから、下記式(5)及び(6)を満たすことが好ましい。
Fd1 ≧ 0.5 (5)
Fd2 ≧ 0.5 (6) In the PVA film of the present invention, the lower limit values of Fd1 and Fd2 are not necessarily limited, but thePVA film 1 is uniaxially stretched when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film. It is preferable to satisfy the following formulas (5) and (6) because the breakage at the time can be further suppressed.
Fd1 ≧ 0.5 (5)
Fd2 ≧ 0.5 (6)
Fd1 ≧ 0.5 (5)
Fd2 ≧ 0.5 (6) In the PVA film of the present invention, the lower limit values of Fd1 and Fd2 are not necessarily limited, but the
Fd1 ≧ 0.5 (5)
Fd2 ≧ 0.5 (6)
上記式(5)及び(6)に示す通り、Fd1及びFd2が0.5以上であることで、PVAフィルム1の比較的深い内部の結晶度が大きくなる。その結果、PVAフィルム1の厚み方向2の中央部の結晶度が大きくなり、PVAフィルム1の機械的強度が向上する。よって、このようなPVAフィルム1を用いることで、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速の場合であっても、PVAフィルム1を一軸延伸する際の破断がより抑制される。Fd1及びFd2は、0.52以上であることがより好ましく、0.55以上であることがさらに好ましい。
As shown in the above formulas (5) and (6), when Fd1 and Fd2 are 0.5 or more, the crystallinity inside the PVA film 1 is relatively deep. As a result, the crystallinity of the central portion of the PVA film 1 in the thickness direction 2 is increased, and the mechanical strength of the PVA film 1 is improved. Therefore, by using such a PVA film 1, even when the maximum stretching speed is high in the uniaxial stretching when manufacturing an optical film such as a polarizing film, the breakage when the PVA film 1 is uniaxially stretched is broken. It is more suppressed. Fd1 and Fd2 are more preferably 0.52 or more, and further preferably 0.55 or more.
本発明のPVAフィルムにおいて、Fd1/Fg1、Fd2/Fg2の下限値は必ずしも限定されないが、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速である場合に、PVAフィルム1を一軸延伸する際の破断をより抑制できることから、下記式(7)及び(8)を満たすことが好ましい。
Fd1/Fg1 ≧ 0.6 (7)
Fd2/Fg2 ≧ 0.6 (8) In the PVA film of the present invention, the lower limit values of Fd1 / Fg1 and Fd2 / Fg2 are not necessarily limited, but when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film, thePVA film 1 It is preferable to satisfy the following formulas (7) and (8) because it is possible to further suppress breakage when the film is uniaxially stretched.
Fd1 / Fg1 ≧ 0.6 (7)
Fd2 / Fg2 ≧ 0.6 (8)
Fd1/Fg1 ≧ 0.6 (7)
Fd2/Fg2 ≧ 0.6 (8) In the PVA film of the present invention, the lower limit values of Fd1 / Fg1 and Fd2 / Fg2 are not necessarily limited, but when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film, the
Fd1 / Fg1 ≧ 0.6 (7)
Fd2 / Fg2 ≧ 0.6 (8)
上記式(7)及び(8)に示す通り、Fd1/Fg1及びFd2/Fg2が0.6以上であることで、PVAフィルム1の比較的深い内部の結晶度が、PVAフィルム1の極表層部の結晶度に比べて小さくなりすぎない。その結果、PVAフィルム1の厚み方向2の中央部の結晶度が比較的大きくなり、PVAフィルム1の機械的強度が向上する。よって、このようなPVAフィルム1を用いることで、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速の場合であっても、PVAフィルム1を一軸延伸する際の破断がより抑制される。Fd1/Fg1またはFd2/Fg2は、0.65以上であることがより好ましく、0.7以上であることがさらに好ましく、0.75以上であることが特に好ましい。
As shown in the above formulas (7) and (8), when Fd1 / Fg1 and Fd2 / Fg2 are 0.6 or more, the crystallinity inside the PVA film 1 having a relatively deep depth is the polar surface layer portion of the PVA film 1. It is not too small compared to the crystallinity of. As a result, the crystallinity of the central portion of the PVA film 1 in the thickness direction 2 becomes relatively large, and the mechanical strength of the PVA film 1 is improved. Therefore, by using such a PVA film 1, even when the maximum stretching speed is high in the uniaxial stretching when manufacturing an optical film such as a polarizing film, the breakage when the PVA film 1 is uniaxially stretched is broken. It is more suppressed. Fd1 / Fg1 or Fd2 / Fg2 is more preferably 0.65 or more, further preferably 0.7 or more, and particularly preferably 0.75 or more.
本発明のPVAフィルムにおいて、Fd1とFd2の差、及びFg1とFg2の差の絶対値は必ずしも限定されないが、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速である場合に、一軸延伸時にPVAフィルム1の表面に発生する皺をより抑制できることから、下記式(9)及び(10)を満たすことが好ましい。
|Fd1-Fd2| ≦ 0.07 (9)
|Fg1-Fg2| ≦ 0.07 (10) In the PVA film of the present invention, the absolute value of the difference between Fd1 and Fd2 and the difference between Fg1 and Fg2 is not necessarily limited, but when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film. In addition, it is preferable to satisfy the following formulas (9) and (10) because wrinkles generated on the surface of thePVA film 1 during uniaxial stretching can be further suppressed.
| Fd1-Fd2 | ≤ 0.07 (9)
| Fg1-Fg2 | ≤ 0.07 (10)
|Fd1-Fd2| ≦ 0.07 (9)
|Fg1-Fg2| ≦ 0.07 (10) In the PVA film of the present invention, the absolute value of the difference between Fd1 and Fd2 and the difference between Fg1 and Fg2 is not necessarily limited, but when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film. In addition, it is preferable to satisfy the following formulas (9) and (10) because wrinkles generated on the surface of the
| Fd1-Fd2 | ≤ 0.07 (9)
| Fg1-Fg2 | ≤ 0.07 (10)
上記式(9)及び(10)に示す通り、|Fd1-Fd2|及び|Fg1-Fg2|が0.07以下であることで、PVAフィルム1の第1の表面3と第2の表面4との結晶度指数の差が大きすぎず、PVAフィルム1の厚み方向2と直交する2つの表面(第1の表面3及び第2の表面4)において弾性率がほぼ同等になる。よって、このようなPVAフィルム1を用いることで、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において最大延伸速度が高速の場合であっても、一軸延伸時にPVAフィルム1の表面に皺が発生しにくくなる。|Fd1-Fd2|及び|Fg1-Fg2|は、0.06以下であることがより好ましく、0.05以下であることがさらに好ましく、0.04以下であることが特に好ましい。
As shown in the above formulas (9) and (10), when | Fd1-Fd2 | and | Fg1-Fg2 | are 0.07 or less, the first surface 3 and the second surface 4 of the PVA film 1 The difference in crystallinity index is not too large, and the elastic moduli are substantially the same on the two surfaces (first surface 3 and second surface 4) orthogonal to the thickness direction 2 of the PVA film 1. Therefore, by using such a PVA film 1, wrinkles are formed on the surface of the PVA film 1 during uniaxial stretching even when the maximum stretching speed is high in uniaxial stretching when manufacturing an optical film such as a polarizing film. It is less likely to occur. | Fd1-Fd2 | and | Fg1-Fg2 | are more preferably 0.06 or less, further preferably 0.05 or less, and particularly preferably 0.04 or less.
(FT-IR測定)
一般に、PVAフィルム1の赤外線吸収スペクトル(IRスペクトル)を測定すると、含有するPVAに起因して、1140cm-1に吸収ピークが観測される。この吸収ピークは一般にPVAフィルム1の結晶化バンドと言われており、PVAの炭素結合(C-C)の伸縮振動由来のピークの一つである。この結晶化バンドは、PVAフィルム1中のPVAのポリマー分子鎖が結晶化するなどして、PVAのポリマー分子鎖の振動の位相がそろうと強調されて観測されることが知られている。すなわち、PVAフィルム1の結晶度が高くなるほど、結晶化バンドのピーク強度は相対的に高くなる。また、PVAフィルム1の赤外線吸収スペクトルを測定すると、PVAの主鎖であるメチレン(-CH2-)の変角振動に由来して、1425cm-1に吸収ピークが観測される。この吸収ピークの強度は、PVAフィルム1の結晶度に依存しないとされている。 (FT-IR measurement)
Generally, when the infrared absorption spectrum (IR spectrum) of thePVA film 1 is measured, an absorption peak is observed at 1140 cm -1 due to the contained PVA. This absorption peak is generally referred to as the crystallization band of PVA film 1, and is one of the peaks derived from the expansion and contraction vibration of the carbon bond (CC) of PVA. It is known that this crystallization band is emphasized and observed so that the phase of vibration of the polymer molecular chain of PVA is aligned by crystallization of the polymer molecular chain of PVA in PVA film 1. That is, the higher the crystallinity of the PVA film 1, the higher the peak intensity of the crystallization band. Further, when the infrared absorption spectrum of the PVA film 1 is measured, an absorption peak is observed at 1425 cm -1 due to the variable angle vibration of methylene (-CH 2-), which is the main chain of PVA. The intensity of this absorption peak is said to be independent of the crystallinity of the PVA film 1.
一般に、PVAフィルム1の赤外線吸収スペクトル(IRスペクトル)を測定すると、含有するPVAに起因して、1140cm-1に吸収ピークが観測される。この吸収ピークは一般にPVAフィルム1の結晶化バンドと言われており、PVAの炭素結合(C-C)の伸縮振動由来のピークの一つである。この結晶化バンドは、PVAフィルム1中のPVAのポリマー分子鎖が結晶化するなどして、PVAのポリマー分子鎖の振動の位相がそろうと強調されて観測されることが知られている。すなわち、PVAフィルム1の結晶度が高くなるほど、結晶化バンドのピーク強度は相対的に高くなる。また、PVAフィルム1の赤外線吸収スペクトルを測定すると、PVAの主鎖であるメチレン(-CH2-)の変角振動に由来して、1425cm-1に吸収ピークが観測される。この吸収ピークの強度は、PVAフィルム1の結晶度に依存しないとされている。 (FT-IR measurement)
Generally, when the infrared absorption spectrum (IR spectrum) of the
本発明においては、この結晶化バンド(1140cm-1)の吸収ピーク強度と、PVAの主鎖であるメチレン(-CH2-)の変角振動(1425cm-1)の吸収ピーク強度との強度比を算出することで、PVAフィルム1の結晶度指数(Fg1、Fg2、Fd1及びFd2)を得ることができる。具体的には、1140cm-1及び1425cm-1における赤外線吸収スペクトルのベースラインを引き、ベースラインから1140cm-1及び1425cm-1のピークトップまでの高さをそれぞれの吸収ピーク強度として、1140cm-1の吸収ピーク強度を1425cm-1のピーク強度で除した値を、結晶度指数(Fg1、Fg2、Fd1及びFd2)とした。
In the present invention, the intensity ratio of the absorption peak intensity of this crystallization band (1140 cm -1 ) to the absorption peak intensity of the variable angle vibration (1425 cm -1 ) of methylene (-CH 2- ), which is the main chain of PVA. By calculating, the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film 1 can be obtained. Specifically, the baseline of the infrared absorption spectrum at 1140 cm -1 and 1425 cm -1 is drawn, and the height from the baseline to the peak tops of 1140 cm -1 and 1425 cm -1 is taken as the respective absorption peak intensities of 1140 cm -1. The value obtained by dividing the absorption peak intensity of 1425 cm -1 by the peak intensity of 1425 cm-1 was taken as the crystallinity index (Fg1, Fg2, Fd1 and Fd2).
こうして得られた結晶度指数(Fg1、Fg2、Fd1及びFd2)の値は、PVAフィルム1の結晶度に比例することがよく知られている(例えば、N.A.Peppas,Macromol.Chem.,178巻595(1977)、特開平6-138321号公報)。この結晶度指数の値はPVAフィルム1の吸湿量によって多少変動するため、本発明においては、温度24.0℃、相対湿度45.0%RHの環境下でPVAフィルム1を24時間保管後、同環境下でFT-IR測定を行った。
It is well known that the values of the crystallinity index (Fg1, Fg2, Fd1 and Fd2) thus obtained are proportional to the crystallinity of the PVA film 1 (for example, NA Peppas, Macromol. Chem., 178, 595 (1977), JP-A-6-138321). Since the value of this crystallinity index varies slightly depending on the amount of moisture absorbed by the PVA film 1, in the present invention, the PVA film 1 is stored for 24 hours in an environment of a temperature of 24.0 ° C. and a relative humidity of 45.0% RH. FT-IR measurement was performed in the same environment.
本発明においてFT-IR測定は、ATR法(全反射吸収測定法)によって行われる。図3に示すように、ATR法とは、ATRプリズム7と呼ばれる対物レンズに試料を密着させて、ATRプリズム7内より試料に斜めに赤外線8を照射して、その反射光のスペクトルを測定する反射型のIR測定法の一種である。通常の反射型のIR測定法と比較して、ノイズの少ないシャープなスペクトルが得られるという特徴を有する。この測定法において試料としてPVAフィルム1を用いた場合、赤外線8はPVAフィルム1の表面のみで反射されるのではなく、ATRプリズム7側から僅かにPVAフィルム1側へ潜り込んだ赤外線8も反射される。したがって、ATR法によるFT-IR測定によれば、PVAフィルム1の表層(PVAフィルム1の表面から深さ方向に僅かに潜り込んだ部分)の情報を得ることが可能である。ここで、ATRプリズム7側からPVAフィルム1側へ潜り込んだ赤外線8の潜り込みの深さをdとすると、その値は下記式(11)で示される。下記式(11)から明らかなように、屈折率が異なるATRプリズム7を使用すれば、潜り込みの深さが異なる反射型の赤外吸収スペクトルを得ることが可能である。
In the present invention, the FT-IR measurement is performed by the ATR method (total reflection absorption measurement method). As shown in FIG. 3, in the ATR method, a sample is brought into close contact with an objective lens called an ATR prism 7, the sample is obliquely irradiated with infrared rays 8 from inside the ATR prism 7, and the spectrum of the reflected light is measured. It is a kind of reflection type IR measurement method. Compared with the usual reflection type IR measurement method, it has the feature that a sharp spectrum with less noise can be obtained. When the PVA film 1 is used as a sample in this measurement method, the infrared rays 8 are not reflected only on the surface of the PVA film 1, but also the infrared rays 8 slightly submerged from the ATR prism 7 side to the PVA film 1 side. To. Therefore, according to the FT-IR measurement by the ATR method, it is possible to obtain information on the surface layer of the PVA film 1 (a portion slightly submerged in the depth direction from the surface of the PVA film 1). Here, assuming that the depth of the infrared ray 8 that has sunk from the ATR prism 7 side to the PVA film 1 side is d, the value is expressed by the following equation (11). As is clear from the following equation (11), if ATR prisms 7 having different refractive indexes are used, it is possible to obtain a reflection type infrared absorption spectrum having different diving depths.
d= λ/2Πn1 × 1/{sin2θ-(n2/n1)2}0.5 (11)
d = λ / 2Πn 1 × 1 / {sin 2 θ- (n 2 / n 1 ) 2 } 0.5 (11)
上記式(11)中、n1はATRプリズム7の屈折率、n2はPVAフィルム1の屈折率、λは赤外線8の波長、θは赤外線8の入射角を表す。
In the above equation (11), n 1 represents the refractive index of the ATR prism 7, n 2 represents the refractive index of the PVA film 1, λ represents the wavelength of the infrared ray 8, and θ represents the incident angle of the infrared ray 8.
本発明においては、図3に示すように、ATRプリズム7の基材として屈折率が2.4であるダイアモンドまたは屈折率が4.0であるゲルマニウムが使用される。PVAフィルム1の屈折率が1.5であることから、上記式(11)において、赤外線8の入射角が45°、赤外線8の波数が1140cm-1の場合のPVAフィルム1の表層への赤外線8の潜り込み深さを計算すると、ATRプリズム7の基材としてダイアモンドを用いた場合、すなわちダイアモンドプリズムを用いた場合の赤外線8の潜り込み深さ5は約2μmである。一方、ATRプリズム7としてゲルマニウムを用いた場合、すなわちゲルマニウムプリズムの場合の赤外線8の潜り込み深さ6は約0.5μmである。したがって、ダイアモンドプリズムを用いた場合の結晶度指数は、PVAフィルム1の比較的深い内部までの結晶度に対応する。一方、ゲルマニウムプリズムを用いた場合の結晶度指数は、PVAフィルム1の表面近くである極表層部の結晶度に対応する。
In the present invention, as shown in FIG. 3, diamond having a refractive index of 2.4 or germanium having a refractive index of 4.0 is used as the base material of the ATR prism 7. Since the refractive index of the PVA film 1 is 1.5, the infrared rays to the surface layer of the PVA film 1 when the incident angle of the infrared rays 8 is 45 ° and the wave number of the infrared rays 8 is 1140 cm -1 in the above equation (11). When the diving depth of 8 is calculated, the diving depth 5 of the infrared ray 8 when diamond is used as the base material of the ATR prism 7, that is, when the diamond prism is used, is about 2 μm. On the other hand, when germanium is used as the ATR prism 7, that is, in the case of the germanium prism, the depth 6 of the infrared ray 8 is about 0.5 μm. Therefore, the crystallinity index when the diamond prism is used corresponds to the crystallinity to the relatively deep inside of the PVA film 1. On the other hand, the crystallinity index when the germanium prism is used corresponds to the crystallinity of the polar surface layer portion near the surface of the PVA film 1.
本発明では、PVAフィルム1の極表層部の結晶度指数であるFg1及びFg2、PVAフィルム1の比較的深い内部の結晶度指数であるFd1及びFd2を上記範囲にコントロールすることが重要である。PVAフィルム1の結晶構造は、PVAフィルム1の組成や製造工程における様々な要因により影響を受けることから、結晶度指数(Fg1、Fg2、Fd1及びFd2)の制御方法としては、例えば、ポリビニルアルコールの種類(けん化度、変性量、未変性PVA/変性PVAのブレンド比等)を調整する方法、可塑剤の添加量を調整する方法、フィルム製造条件(ロール支持体の表面温度、熱処理条件等)を調整する方法、またはこれらを組み合わせて調整する方法が挙げられる。
In the present invention, it is important to control Fg1 and Fg2, which are the crystallinity indexes of the polar surface layer portion of the PVA film 1, and Fd1 and Fd2, which are the crystallinity indexes of the relatively deep inside of the PVA film 1, within the above ranges. Since the crystal structure of PVA film 1 is affected by various factors in the composition of PVA film 1 and the manufacturing process, as a method for controlling the crystallinity index (Fg1, Fg2, Fd1 and Fd2), for example, polyvinyl alcohol can be used. Methods for adjusting the type (destruction degree, modification amount, blend ratio of unmodified PVA / modified PVA, etc.), method for adjusting the amount of plasticizer added, film production conditions (surface temperature of roll support, heat treatment conditions, etc.) The method of adjusting, or the method of adjusting by combining these can be mentioned.
結晶度指数Fd1及びFd2を0.8以下とし、Fd1/Fg1及びFd2/Fg2を1未満に調整する方法としては、より具体的には、PVAのけん化度を90モル%以上とし、PVAの原料であるビニルエステル系重合体に占める他のモノマーに由来する構造単位の割合を、ビニルエステル系重合体を構成する全構造単位のモル数に基づいて、15モル%以下とし、PVAの重合度を200~8000とする方法があげられる。この際に、可塑剤の添加量は、PVA100質量部に対して1~40質量部とすることが好ましい。また、この際に、製膜原液の揮発分率は50~90質量%であることが好ましく、製膜原液を流涎する支持体の表面温度は65~110℃であることが好ましく、非接触面側に吹き付ける熱風の温度は、50~150℃以下であることが好ましく、熱風の湿度は20~90%RHであることが好ましい。さらに、この際に、乾燥炉の温度または乾燥ロールの表面温度は、45~110℃であることが好ましく、熱処理ロールの表面温度は、60~135℃であることが好ましい。
As a method of adjusting the crystallinity indexes Fd1 and Fd2 to 0.8 or less and adjusting Fd1 / Fg1 and Fd2 / Fg2 to less than 1, more specifically, the degree of saponification of PVA is set to 90 mol% or more, and the raw material of PVA is used. The ratio of structural units derived from other monomers to the vinyl ester-based polymer is 15 mol% or less based on the number of moles of all structural units constituting the vinyl ester-based polymer, and the degree of polymerization of PVA is set. The method of setting it to 200 to 8000 can be mentioned. At this time, the amount of the plasticizer added is preferably 1 to 40 parts by mass with respect to 100 parts by mass of PVA. At this time, the volatile content of the membrane-forming stock solution is preferably 50 to 90% by mass, and the surface temperature of the support for flowing the membrane-forming stock solution is preferably 65 to 110 ° C., and the non-contact surface. The temperature of the hot air blown to the side is preferably 50 to 150 ° C. or lower, and the humidity of the hot air is preferably 20 to 90% RH. Further, at this time, the temperature of the drying oven or the surface temperature of the drying roll is preferably 45 to 110 ° C, and the surface temperature of the heat treatment roll is preferably 60 to 135 ° C.
結晶度指数Fd1及びFd2を0.5以上に調整する方法としては、PVAのけん化度を95~99.9モル%とし、PVAの原料であるビニルエステル系重合体に占める他のモノマーに由来する構造単位の割合を、ビニルエステル系重合体を構成する全構造単位のモル数に基づいて、10モル%以下とし、PVAの重合度を1000~4000とする方法があげられる。この際に、可塑剤の添加量は、PVA100質量部に対して5~20質量部とすることが好ましい。また、この際に、製膜原液の揮発分率は60~80質量%であることが好ましく、製膜原液を流涎する支持体の表面温度は80~110℃であることが好ましく、非接触面側に吹き付ける熱風の温度は、70~110℃以下であることが好ましく、熱風の湿度は1~40%RHであることが好ましい。さらに、この際に、乾燥炉の温度または乾燥ロールの表面温度は、60~110℃であることが好ましく、熱処理ロールの表面温度は、80~135℃であることが好ましい。
As a method for adjusting the crystallinity indexes Fd1 and Fd2 to 0.5 or more, the degree of saponification of PVA is set to 95 to 99.9 mol%, and it is derived from other monomers in the vinyl ester polymer which is the raw material of PVA. Examples thereof include a method in which the ratio of structural units is 10 mol% or less based on the number of moles of all structural units constituting the vinyl ester polymer, and the degree of polymerization of PVA is 1000 to 4000. At this time, the amount of the plasticizer added is preferably 5 to 20 parts by mass with respect to 100 parts by mass of PVA. At this time, the volatile content of the membrane-forming stock solution is preferably 60 to 80% by mass, and the surface temperature of the support for flowing the membrane-forming stock solution is preferably 80 to 110 ° C., and the non-contact surface. The temperature of the hot air blown to the side is preferably 70 to 110 ° C. or lower, and the humidity of the hot air is preferably 1 to 40% RH. Further, at this time, the temperature of the drying oven or the surface temperature of the drying roll is preferably 60 to 110 ° C, and the surface temperature of the heat treatment roll is preferably 80 to 135 ° C.
Fd1/Fg1及びFd2/Fg2を0.6以上に調整する方法としては、PVAのけん化度を99~99.9モル%とし、PVAの原料であるビニルエステル系重合体に占める他のモノマーに由来する構造単位の割合を、ビニルエステル系重合体を構成する全構造単位のモル数に基づいて、5モル%以下とし、PVAの重合度を1000~3700とする方法があげられる。この際に、可塑剤の添加量は、PVA100質量部に対して8~20質量部とすることが好ましい。また、この際に、製膜原液の揮発分率は65~80質量%であることが好ましく、製膜原液を流涎する支持体の表面温度は80~100℃であることが好ましく、非接触面側に吹き付ける熱風の温度は、70~100℃であることが好ましく、熱風の湿度は3~40%RHであることが好ましい。さらに、この際に、乾燥炉の温度または乾燥ロールの表面温度は、60~100℃であることが好ましく、熱処理ロールの表面温度は、80~120℃であることが好ましい。
As a method for adjusting Fd1 / Fg1 and Fd2 / Fg2 to 0.6 or more, the degree of saponification of PVA is set to 99 to 99.9 mol%, and it is derived from other monomers in the vinyl ester polymer which is the raw material of PVA. There is a method in which the ratio of structural units to be polymerized is 5 mol% or less based on the number of moles of all structural units constituting the vinyl ester polymer, and the degree of polymerization of PVA is 1000 to 3700. At this time, the amount of the plasticizer added is preferably 8 to 20 parts by mass with respect to 100 parts by mass of PVA. At this time, the volatile content of the membrane-forming stock solution is preferably 65 to 80% by mass, and the surface temperature of the support for flowing the membrane-forming stock solution is preferably 80 to 100 ° C., and the non-contact surface. The temperature of the hot air blown to the side is preferably 70 to 100 ° C., and the humidity of the hot air is preferably 3 to 40% RH. Further, at this time, the temperature of the drying oven or the surface temperature of the drying roll is preferably 60 to 100 ° C., and the surface temperature of the heat treatment roll is preferably 80 to 120 ° C.
|Fd1-Fd2|及び|Fg1-Fg2|を0.07以下に調整する方法としては、製膜原液の揮発分率を65~75質量%とすることが好ましく、製膜原液を流涎する支持体の表面温度は80~95℃とすることが好ましく、非接触面側に吹き付ける熱風の温度は、75~90℃とすることが好ましく、熱風の湿度は5~40%RHとすることが好ましい。さらに、この際に、乾燥炉の温度または乾燥ロールの表面温度は、60~90℃であることが好ましく、熱処理ロールの表面温度は、80~110℃であることが好ましい。
As a method for adjusting | Fd1-Fd2 | and | Fg1-Fg2 | to 0.07 or less, it is preferable to set the volatile fraction of the membrane-forming stock solution to 65 to 75% by mass, and the support for flowing the membrane-forming stock solution. The surface temperature of the hot air is preferably 80 to 95 ° C., the temperature of the hot air blown to the non-contact surface side is preferably 75 to 90 ° C., and the humidity of the hot air is preferably 5 to 40% RH. Further, at this time, the temperature of the drying oven or the surface temperature of the drying roll is preferably 60 to 90 ° C, and the surface temperature of the heat treatment roll is preferably 80 to 110 ° C.
(PVA)
本発明のPVAフィルムにおいて、PVAとしては、ビニルエステル系モノマーを重合して得られるビニルエステル系重合体をけん化することにより製造された重合体を使用することができる。ビニルエステル系モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等を挙げることができる。これらの中でも、ビニルエステル系モノマーとしては、酢酸ビニルが好ましい。 (PVA)
In the PVA film of the present invention, as PVA, a polymer produced by saponifying a vinyl ester-based polymer obtained by polymerizing a vinyl ester-based monomer can be used. Examples of the vinyl ester-based monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. Among these, vinyl acetate is preferable as the vinyl ester-based monomer.
本発明のPVAフィルムにおいて、PVAとしては、ビニルエステル系モノマーを重合して得られるビニルエステル系重合体をけん化することにより製造された重合体を使用することができる。ビニルエステル系モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等を挙げることができる。これらの中でも、ビニルエステル系モノマーとしては、酢酸ビニルが好ましい。 (PVA)
In the PVA film of the present invention, as PVA, a polymer produced by saponifying a vinyl ester-based polymer obtained by polymerizing a vinyl ester-based monomer can be used. Examples of the vinyl ester-based monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. Among these, vinyl acetate is preferable as the vinyl ester-based monomer.
ビニルエステル系重合体は、単量体として1種または2種以上のビニルエステル系モノマーのみを用いて得られた重合体が好ましく、単量体として1種のビニルエステル系モノマーのみを用いて得られた重合体がより好ましい。なお、ビニルエステル系重合体は、1種または2種以上のビニルエステル系モノマーと、これと共重合可能な他のモノマーとの共重合体であってもよい。
The vinyl ester-based polymer is preferably a polymer obtained by using only one kind or two or more kinds of vinyl ester-based monomers as a monomer, and is obtained by using only one kind of vinyl ester-based monomer as a monomer. The obtained polymer is more preferable. The vinyl ester-based polymer may be a copolymer of one or more kinds of vinyl ester-based monomers and another monomer copolymerizable therewith.
他のモノマーとしては、例えば、エチレン;プロピレン、1-ブテン、イソブテン等の炭素数3~30のオレフィン;アクリル酸またはその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルへキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル;メタクリル酸またはその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸またはその塩、アクリルアミドプロピルジメチルアミンまたはその塩、N-メチロールアクリルアミドまたはその誘導体等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸またはその塩、メタクリルアミドプロピルジメチルアミンまたはその塩、N-メチロールメタクリルアミドまたはその誘導体等のメタクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸またはその塩、エステルもしくは酸無水物;イタコン酸またはその塩、エステルもしくは酸無水物;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等が挙げられる。なお、ビニルエステル系重合体は、これらの他のモノマーのうちの1種または2種以上に由来する構造単位を有することができる。
Other monomers include, for example, ethylene; olefins having 3 to 30 carbon atoms such as propylene, 1-butyl, and isobutene; acrylic acid or a salt thereof; methyl acrylate, ethyl acrylate, n-propyl acrylate, i acrylate. -Acrylic acid esters such as propyl, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid or a salt thereof; methacrylic acid Methyl, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, methacrylate Methacrylate esters such as octadecyl; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamide propanesulfonic acid or its salts, acrylamidepropyldimethylamine or its salts, N-methylolacrylamide Or an acrylamide derivative such as a derivative thereof; methacrylamide, N-methylmethacrylate, N-ethylmethacrylate, methacrylamidepropanesulfonic acid or a salt thereof, methacrylamidepropyldimethylamine or a salt thereof, N-methylolmethacrylate or a derivative thereof, etc. Methacrylate derivatives; N-vinylamides such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone; methylvinyl ether, ethylvinyl ether, n-propylvinyl ether, i-propylvinyl ether, n-butylvinyl ether, i-butylvinyl ether Vinyl ethers such as t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; vinyl cyanide such as acrylonitrile and methacrylonitrile; vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; allyl acetate and allyl chloride. Allyl compounds such as; maleic acid or salts thereof, esters or acid anhydrides; itaconic acid or salts thereof, esters or acid anhydrides; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate and the like. The vinyl ester-based polymer can have a structural unit derived from one or more of these other monomers.
ビニルエステル系重合体に占める他のモノマーに由来する構造単位の割合は、ビニルエステル系重合体を構成する全構造単位のモル数に基づいて、15モル%以下が好ましく、8モル%以下がより好ましい。一般にPVAの結晶化は、ビニルエステル系重合体に占める他のモノマーに由来する構造単位の割合が高くなるほど進行しにくくなる傾向がある。よって、これらの他のモノマーを上記の割合で適度に共重合させることにより、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)を調整することができる。
The ratio of structural units derived from other monomers to the vinyl ester-based polymer is preferably 15 mol% or less, more preferably 8 mol% or less, based on the number of moles of all structural units constituting the vinyl ester-based polymer. preferable. In general, the crystallization of PVA tends to be more difficult to proceed as the ratio of structural units derived from other monomers in the vinyl ester-based polymer increases. Therefore, the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be adjusted by appropriately copolymerizing these other monomers at the above ratio.
PVAの重合度は、200以上であることが好ましく、300以上であることがより好ましく、500以上であることがさらに好ましい。PVAの重合度を上記の下限以上とすることで、PVAが過度に結晶化することを防ぎつつ、得られるPVAフィルムの機械的強度を確保することができる。一方、PVAの重合度は、8,000以下であることが好ましく、6,000以下であることがより好ましく、4,000以下であることがさらに好ましい。一般にPVAの結晶化は、PVAの重合度が高いほど進行しにくい傾向にある。よって、PVAの重合度を上記の上限以下とすることで、PVAの結晶化を適度に進行させ、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)を調整することができる。また、PVAの重合度を上記の上限以下とすることで、PVAフィルムの製膜原液の粘度が高くなり過ぎず、PVAフィルムの生産性を高めることができる。
The degree of polymerization of PVA is preferably 200 or more, more preferably 300 or more, and even more preferably 500 or more. By setting the degree of polymerization of PVA to the above lower limit or higher, it is possible to secure the mechanical strength of the obtained PVA film while preventing PVA from being excessively crystallized. On the other hand, the degree of polymerization of PVA is preferably 8,000 or less, more preferably 6,000 or less, and even more preferably 4,000 or less. Generally, the crystallization of PVA tends to be more difficult to proceed as the degree of polymerization of PVA is higher. Therefore, by setting the degree of polymerization of PVA to the above upper limit or less, the crystallization of PVA can be appropriately advanced and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be adjusted. Further, by setting the degree of polymerization of PVA to the above upper limit or less, the viscosity of the film-forming stock solution of the PVA film does not become too high, and the productivity of the PVA film can be increased.
PVAの重合度は、JIS K 6726-1994の記載に準じて測定される平均重合度を意味する。すなわち、重合度(Po)は下記式(12)により求められる。
The degree of polymerization of PVA means the average degree of polymerization measured according to the description of JIS K 6726-1994. That is, the degree of polymerization (Po) is obtained by the following formula (12).
重合度Po = ([η]×104/8.29)(1/0.62) (12)
Degree of polymerization Po = ([η] × 10 4 / 8.29) (1 / 0.62) (12)
上記式(12)中、ηは、PVAを再けん化し、精製した後、30℃の水中で測定した極限粘度(デシリットル/g)である。
In the above formula (12), η is the ultimate viscosity (deciliter / g) measured in water at 30 ° C. after remineralizing and purifying PVA.
PVAのけん化度は、90モル%以上であることが好ましく、95モル%以上であることがより好ましく、99モル%以上であることがさらに好ましく、99.8モル%以上であることが特に好ましい。一般にPVAの結晶化は、PVAのけん化度が高いほど進行しやすい傾向にある。よって、PVAのけん化度を上記の下限以上とすることで、PVAの結晶化を適度に進行させ、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)を高めることができる。すなわち、PVAフィルムの製膜原液にケン化度が高いPVAを用いることで、乾燥処理後のPVAフィルムを熱処理する工程において、熱を受けやすいPVAフィルムの表面近くである極表層部及びPVAフィルムの比較的深い内部の結晶度が高くなりやすい。
The degree of saponification of PVA is preferably 90 mol% or more, more preferably 95 mol% or more, further preferably 99 mol% or more, and particularly preferably 99.8 mol% or more. .. Generally, the crystallization of PVA tends to proceed more easily as the degree of saponification of PVA increases. Therefore, by setting the saponification degree of PVA to the above lower limit or more, the crystallization of PVA can be appropriately advanced and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be increased. That is, in the step of heat-treating the PVA film after the drying treatment by using PVA having a high degree of saponification as the film-forming stock solution of the PVA film, the polar surface layer portion near the surface of the PVA film and the PVA film which are susceptible to heat are used. The crystallinity inside the relatively deep interior tends to be high.
PVAのけん化度は、けん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステル系モノマー単位)とビニルアルコール単位との合計モル数に対して、ビニルアルコール単位のモル数が占める割合(モル%)をいう。PVAのけん化度は、JIS K 6726-1994の記載に準じて測定することができる。
The degree of saponification of PVA is the ratio of the number of moles of vinyl alcohol units to the total number of moles of structural units (typically vinyl ester-based monomer units) that can be converted to vinyl alcohol units by saponification and vinyl alcohol units. (Mol%). The degree of saponification of PVA can be measured according to the description of JIS K 6726-1994.
本発明のPVAフィルムは、1種類のPVAを単独で含有してもよいし、重合度、けん化度及び変性度等が互いに異なる2種以上のPVAを含有してもよい。
The PVA film of the present invention may contain one type of PVA alone, or may contain two or more types of PVA having different degrees of polymerization, saponification, modification, and the like.
本発明のPVAフィルムにおけるPVAの含有量は必ずしも限定されないが、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。
The content of PVA in the PVA film of the present invention is not necessarily limited, but is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 85% by mass or more.
(可塑剤)
本発明のPVAフィルムは、可塑剤を含有することが好ましい。可塑剤を含有することにより、PVAフィルムに、他のプラスチックフィルムと同等の柔軟性を付与することができ、PVAフィルムの製膜や延伸工程においてPVAフィルムが破断するのを抑制することができる。 (Plasticizer)
The PVA film of the present invention preferably contains a plasticizer. By containing the plasticizer, the PVA film can be imparted with the same flexibility as other plastic films, and the PVA film can be prevented from breaking in the film forming and stretching steps of the PVA film.
本発明のPVAフィルムは、可塑剤を含有することが好ましい。可塑剤を含有することにより、PVAフィルムに、他のプラスチックフィルムと同等の柔軟性を付与することができ、PVAフィルムの製膜や延伸工程においてPVAフィルムが破断するのを抑制することができる。 (Plasticizer)
The PVA film of the present invention preferably contains a plasticizer. By containing the plasticizer, the PVA film can be imparted with the same flexibility as other plastic films, and the PVA film can be prevented from breaking in the film forming and stretching steps of the PVA film.
可塑剤としては、例えば、エチレングリコール、グリセリン、ジグリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、ソルビトール等の多価アルコール等が挙げられる。これらの可塑剤は1種を単独で使用しても、2種以上を併用してもよい。これらの中でも、PVAフィルムの表面へブリードアウトし難い等の理由から、可塑剤としては、エチレングリコールまたはグリセリンが好ましく、グリセリンがより好ましい。
Examples of the plasticizer include polyhydric alcohols such as ethylene glycol, glycerin, diglycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, and sorbitol. These plasticizers may be used alone or in combination of two or more. Among these, ethylene glycol or glycerin is preferable as the plasticizer, and glycerin is more preferable as the plasticizer because it is difficult to bleed out to the surface of the PVA film.
本発明のPVAフィルムにおける可塑剤の含有量は、PVA100質量部に対して、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。一方、可塑剤の含有量は、PVA100質量部に対して、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であることがさらに好ましい。可塑剤の含有量が上記範囲であると、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)の調整が容易になり、加えて衝撃強度等の機械的特性の改善効果を十分に得ることができる。また、PVAフィルムが柔軟になり過ぎて取り扱い性が低下したり、PVAフィルムの表面に可塑剤がブリードアウトしたりするのを防止することができる。
The content of the plasticizer in the PVA film of the present invention is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further preferably 5 parts by mass or more with respect to 100 parts by mass of PVA. preferable. On the other hand, the content of the plasticizer is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less with respect to 100 parts by mass of PVA. When the content of the plasticizer is within the above range, the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be easily adjusted, and in addition, the effect of improving mechanical properties such as impact strength can be sufficiently obtained. be able to. In addition, it is possible to prevent the PVA film from becoming too flexible and having poor handleability, and preventing the plasticizer from bleeding out on the surface of the PVA film.
ここで、可塑剤の含有量の調整により、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)を調整できる理由は以下のとおりである。一般に、PVAフィルムに適度な量の可塑剤を含有させると、PVAの結晶化が進行する。これは、可塑剤によりPVAのポリマー分子鎖が動きやすくなり、エネルギー的により安定な結晶あるいは拘束非晶の構造をとりやすくなるためであると推定される。一方、PVAフィルムが過剰な量の可塑剤を含有すると、PVAの結晶化が阻害されやすくなる。これは、PVAのポリマー分子鎖が有する水酸基と相互作用する可塑剤の量が多くなり、PVAのポリマー分子鎖同士の相互作用が弱まるためであると推定される。よって、可塑剤の含有量を調整することで、PVAの結晶化を適度に進行させ、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)を調整することができる。
Here, the reason why the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be adjusted by adjusting the content of the plasticizer is as follows. Generally, when a PVA film contains an appropriate amount of a plasticizer, crystallization of PVA proceeds. It is presumed that this is because the plasticizer facilitates the movement of the polymer molecular chain of PVA and facilitates the formation of an energetically more stable crystal or constrained amorphous structure. On the other hand, if the PVA film contains an excessive amount of plasticizer, the crystallization of PVA is likely to be inhibited. It is presumed that this is because the amount of the plasticizer that interacts with the hydroxyl group of the polymer molecular chain of PVA increases and the interaction between the polymer molecular chains of PVA weakens. Therefore, by adjusting the content of the plasticizer, the crystallization of PVA can be appropriately advanced and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be adjusted.
(界面活性剤)
本発明のPVAフィルムは、界面活性剤を含有することが好ましい。界面活性剤を含むことにより、PVAフィルムの取り扱い性や、製造時におけるPVAフィルムの製膜装置からの剥離性を向上させることができる。界面活性剤としては、特に制限されず、例えば、アニオン系界面活性剤、ノニオン系界面活性剤が好ましく用いられる。 (Surfactant)
The PVA film of the present invention preferably contains a surfactant. By containing the surfactant, the handleability of the PVA film and the peelability of the PVA film from the film forming apparatus at the time of production can be improved. The surfactant is not particularly limited, and for example, an anionic surfactant and a nonionic surfactant are preferably used.
本発明のPVAフィルムは、界面活性剤を含有することが好ましい。界面活性剤を含むことにより、PVAフィルムの取り扱い性や、製造時におけるPVAフィルムの製膜装置からの剥離性を向上させることができる。界面活性剤としては、特に制限されず、例えば、アニオン系界面活性剤、ノニオン系界面活性剤が好ましく用いられる。 (Surfactant)
The PVA film of the present invention preferably contains a surfactant. By containing the surfactant, the handleability of the PVA film and the peelability of the PVA film from the film forming apparatus at the time of production can be improved. The surfactant is not particularly limited, and for example, an anionic surfactant and a nonionic surfactant are preferably used.
アニオン系界面活性剤としては、例えば、ラウリン酸カリウム等のカルボン酸型界面活性剤;オクチルサルフェート等の硫酸エステル型界面活性剤;ドデシルベンゼンスルホネート等のスルホン酸型界面活性剤等が挙げられる。
Examples of the anionic surfactant include a carboxylic acid type surfactant such as potassium laurate; a sulfate ester type surfactant such as octyl sulfate; and a sulfonic acid type surfactant such as dodecylbenzene sulfonate.
ノニオン系界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル等のアルキルエーテル型界面活性剤;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型界面活性剤;ポリオキシエチレンラウレート等のアルキルエステル型界面活性剤;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型界面活性剤;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型界面活性剤;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型界面活性剤;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型界面活性剤;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型界面活性剤等が挙げられる。
Examples of the nonionic surfactant include an alkyl ether type surfactant such as polyoxyethylene lauryl ether and polyoxyethylene oleyl ether; an alkylphenyl ether type surfactant such as polyoxyethylene octylphenyl ether; and polyoxyethylene lau. Alkyl ester type surfactant such as rate; Alkylamine type surfactant such as polyoxyethylene laurylamino ether; Alkylamide type surfactant such as polyoxyethylene lauric acid amide; Polypropylene such as polyoxyethylene polyoxypropylene ether Glycol ether type surfactants; alkanolamide type surfactants such as lauric acid diethanolamide and oleic acid diethanolamide; allylphenyl ether type surfactants such as polyoxyalkylene allylphenyl ether and the like can be mentioned.
このような界面活性剤は、1種を単独で使用しても、2種以上を併用してもよい。界面活性剤としては、PVAフィルムの製膜時における表面異常の低減効果に優れること等から、ノニオン系界面活性剤が好ましく、アルカノールアミド型界面活性剤がより好ましく、脂肪族カルボン酸(例えば、炭素数8~30の飽和または不飽和脂肪族カルボン酸等)のジアルカノールアミド(例えば、ジエタノールアミド等)がさらに好ましい。
Such a surfactant may be used alone or in combination of two or more. As the surfactant, a nonionic surfactant is preferable, an alkanolamide type surfactant is more preferable, and an aliphatic carboxylic acid (for example, carbon) is preferable because it is excellent in reducing surface abnormalities during film formation of PVA film. Dialkanolamides (eg, diethanolamides, etc.) of number 8-30 saturated or unsaturated aliphatic carboxylic acids, etc. are more preferred.
本発明のPVAフィルムにおける界面活性剤の含有量は、PVA100質量部に対して、0.01質量部以上であることが好ましく、0.02質量部以上であることがより好ましく、0.05質量部以上であることがさらに好ましい。一方、界面活性剤の含有量は、PVA100質量部に対して、10質量部以下であることが好ましく、1質量部以下であることがより好ましく、0.5質量部以下であることがさらに好ましく、0.3質量部以下であることが特に好ましい。界面活性剤の含有量が上記範囲であると、製造時におけるPVAフィルムの製膜装置からの剥離性が良好になるとともに、PVAフィルム間での膠着(以下「ブロッキング」と称することもある)が発生するのを防ぐことができる。また、界面活性剤がPVAフィルムの表面にブリードアウトしたり、界面活性剤の凝集によってPVAフィルムの外観が悪化するのを防ぐことができる。
The content of the surfactant in the PVA film of the present invention is preferably 0.01 part by mass or more, more preferably 0.02 part by mass or more, and 0.05 part by mass with respect to 100 parts by mass of PVA. It is more preferable that the amount is more than one part. On the other hand, the content of the surfactant is preferably 10 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 parts by mass or less with respect to 100 parts by mass of PVA. , 0.3 parts by mass or less is particularly preferable. When the content of the surfactant is in the above range, the peelability of the PVA film from the film forming apparatus at the time of production becomes good, and the sticking between the PVA films (hereinafter, also referred to as “blocking”) occurs. It can be prevented from occurring. Further, it is possible to prevent the surfactant from bleeding out to the surface of the PVA film and to prevent the appearance of the PVA film from being deteriorated due to the aggregation of the surfactant.
(その他の成分)
本発明のPVAフィルムは、PVA以外に、水溶性高分子、水分、酸化防止剤、紫外線吸収剤、滑剤、架橋剤、着色剤、充填剤、防腐剤、防黴剤、他の高分子化合物等の成分を、本発明の効果を妨げない範囲で含有してもよい。PVA、界面活性剤、可塑剤、PVA以外のその他の成分の質量の合計値がPVAフィルムの全質量に占める割合は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。その他の成分の質量の合計値がPVAフィルムの全質量に占める割合は、100質量%以下であることが好ましい。 (Other ingredients)
In addition to PVA, the PVA film of the present invention includes water-soluble polymers, moisture, antioxidants, ultraviolet absorbers, lubricants, cross-linking agents, colorants, fillers, preservatives, fungicides, other polymer compounds, etc. Ingredients may be contained within a range that does not interfere with the effects of the present invention. The ratio of the total mass of PVA, surfactant, plasticizer, and other components other than PVA to the total mass of the PVA film is preferably 60% by mass or more, more preferably 80% by mass or more. It is preferably 90% by mass or more, and more preferably 90% by mass or more. The ratio of the total mass of the other components to the total mass of the PVA film is preferably 100% by mass or less.
本発明のPVAフィルムは、PVA以外に、水溶性高分子、水分、酸化防止剤、紫外線吸収剤、滑剤、架橋剤、着色剤、充填剤、防腐剤、防黴剤、他の高分子化合物等の成分を、本発明の効果を妨げない範囲で含有してもよい。PVA、界面活性剤、可塑剤、PVA以外のその他の成分の質量の合計値がPVAフィルムの全質量に占める割合は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。その他の成分の質量の合計値がPVAフィルムの全質量に占める割合は、100質量%以下であることが好ましい。 (Other ingredients)
In addition to PVA, the PVA film of the present invention includes water-soluble polymers, moisture, antioxidants, ultraviolet absorbers, lubricants, cross-linking agents, colorants, fillers, preservatives, fungicides, other polymer compounds, etc. Ingredients may be contained within a range that does not interfere with the effects of the present invention. The ratio of the total mass of PVA, surfactant, plasticizer, and other components other than PVA to the total mass of the PVA film is preferably 60% by mass or more, more preferably 80% by mass or more. It is preferably 90% by mass or more, and more preferably 90% by mass or more. The ratio of the total mass of the other components to the total mass of the PVA film is preferably 100% by mass or less.
(物性)
本発明のPVAフィルムは非水溶性である。PVAフィルムが非水溶性であることで、偏光フィルムなどの光学フィルムを製造する際の一軸延伸を水溶液中で行った場合に、最大延伸速度が高速であっても、一軸延伸時にPVAフィルムを破断させずに延伸することができる。ここで、本発明において非水溶性とは、以下の<1>~<4>の手順でPVAフィルムを30℃の水(脱イオン水)に浸漬した場合に、PVAフィルムが完溶せず一部でも溶け残ることをいう。 (Physical characteristics)
The PVA film of the present invention is water-insoluble. Since the PVA film is water-insoluble, when uniaxial stretching for producing an optical film such as a polarizing film is performed in an aqueous solution, the PVA film is broken during uniaxial stretching even if the maximum stretching speed is high. It can be stretched without causing it. Here, the term "water-insoluble" in the present invention means that the PVA film does not completely dissolve when the PVA film is immersed in water (deionized water) at 30 ° C. according to the following procedures <1> to <4>. It means that it remains undissolved even in the part.
本発明のPVAフィルムは非水溶性である。PVAフィルムが非水溶性であることで、偏光フィルムなどの光学フィルムを製造する際の一軸延伸を水溶液中で行った場合に、最大延伸速度が高速であっても、一軸延伸時にPVAフィルムを破断させずに延伸することができる。ここで、本発明において非水溶性とは、以下の<1>~<4>の手順でPVAフィルムを30℃の水(脱イオン水)に浸漬した場合に、PVAフィルムが完溶せず一部でも溶け残ることをいう。 (Physical characteristics)
The PVA film of the present invention is water-insoluble. Since the PVA film is water-insoluble, when uniaxial stretching for producing an optical film such as a polarizing film is performed in an aqueous solution, the PVA film is broken during uniaxial stretching even if the maximum stretching speed is high. It can be stretched without causing it. Here, the term "water-insoluble" in the present invention means that the PVA film does not completely dissolve when the PVA film is immersed in water (deionized water) at 30 ° C. according to the following procedures <1> to <4>. It means that it remains undissolved even in the part.
<1> PVAフィルムを20℃、65%RHに調整した恒温恒湿器内に、16時間以上置いて調湿する。
<2> 調湿したPVAフィルムから、長さ40mm×幅35mmの長方形のサンプルを切り出した後、長さ35mm×幅23mmの長方形の窓(穴)が開口した50mm×50mmのプラスチック板2枚の間に、サンプルの長さ方向が窓の長さ方向に平行でかつサンプルが窓の幅方向のほぼ中央に位置するように挟み込んで固定する。
<3> 500mLのビーカーに300mLの脱イオン水を入れ、回転数280rpmで3cm長のバーを備えたマグネティックスターラーで攪拌しつつ、水温を30℃に調整する。
<4> 上記<2>においてプラスチック板に固定したサンプルを、回転するマグネティックスターラーのバーに接触させないように注意しながら、ビーカー内の脱イオン水に1000秒間浸漬する。 <1> The PVA film is placed in a constant temperature and humidity chamber adjusted to 20 ° C. and 65% RH for 16 hours or more to adjust the humidity.
<2> After cutting out a rectangular sample of 40 mm in length × 35 mm in width from the humidity-controlled PVA film, two 50 mm × 50 mm plastic plates having a rectangular window (hole) of 35 mm in length × 23 mm in width opened. The sample is sandwiched and fixed so that the length direction of the sample is parallel to the length direction of the window and the sample is located substantially in the center of the width direction of the window.
<3> Put 300 mL of deionized water in a 500 mL beaker and adjust the water temperature to 30 ° C while stirring with a magnetic stirrer equipped with a 3 cm long bar at a rotation speed of 280 rpm.
<4> The sample fixed to the plastic plate in <2> above is immersed in deionized water in a beaker for 1000 seconds, being careful not to contact the bar of the rotating magnetic stirrer.
<2> 調湿したPVAフィルムから、長さ40mm×幅35mmの長方形のサンプルを切り出した後、長さ35mm×幅23mmの長方形の窓(穴)が開口した50mm×50mmのプラスチック板2枚の間に、サンプルの長さ方向が窓の長さ方向に平行でかつサンプルが窓の幅方向のほぼ中央に位置するように挟み込んで固定する。
<3> 500mLのビーカーに300mLの脱イオン水を入れ、回転数280rpmで3cm長のバーを備えたマグネティックスターラーで攪拌しつつ、水温を30℃に調整する。
<4> 上記<2>においてプラスチック板に固定したサンプルを、回転するマグネティックスターラーのバーに接触させないように注意しながら、ビーカー内の脱イオン水に1000秒間浸漬する。 <1> The PVA film is placed in a constant temperature and humidity chamber adjusted to 20 ° C. and 65% RH for 16 hours or more to adjust the humidity.
<2> After cutting out a rectangular sample of 40 mm in length × 35 mm in width from the humidity-controlled PVA film, two 50 mm × 50 mm plastic plates having a rectangular window (hole) of 35 mm in length × 23 mm in width opened. The sample is sandwiched and fixed so that the length direction of the sample is parallel to the length direction of the window and the sample is located substantially in the center of the width direction of the window.
<3> Put 300 mL of deionized water in a 500 mL beaker and adjust the water temperature to 30 ° C while stirring with a magnetic stirrer equipped with a 3 cm long bar at a rotation speed of 280 rpm.
<4> The sample fixed to the plastic plate in <2> above is immersed in deionized water in a beaker for 1000 seconds, being careful not to contact the bar of the rotating magnetic stirrer.
<PVAフィルムの製造方法>
本発明のPVAフィルムの製造方法は、特に制限されず、例えば、次のような任意の方法を採用することができる。かかる方法としては、PVAに溶媒、添加剤等を加えて均一化させた製膜原液を、流延製膜法、湿式製膜法(貧溶媒中に吐出する方法)、乾湿式製膜法、ゲル製膜法(製膜原液を一旦冷却ゲル化した後、溶媒を抽出除去する方法)、あるいはこれらの組み合わせにより製膜する方法や、押出機等を使用して得られた製膜原液をTダイ等から押出すことにより製膜する溶融押出製膜法やインフレーション成形法等が挙げられる。これらの中でも、PVAフィルムの製造方法としては、流延製膜法及び溶融押出製膜法が好ましい。これらの方法を用いれば、均質なPVAフィルムを生産性よく得ることができる。以下、PVAフィルムを流延製膜法または溶融押出製膜法を用いて製造する場合について説明する。 <Manufacturing method of PVA film>
The method for producing the PVA film of the present invention is not particularly limited, and for example, any method as follows can be adopted. As such a method, a cast film forming method, a wet film forming method (a method of discharging into a poor solvent), a dry-wet film forming method, etc. A gel film-forming method (a method in which a film-forming stock solution is once cooled and gelled and then the solvent is extracted and removed), a method of forming a film by a combination of these methods, or a film-forming stock solution obtained by using an extruder or the like is used as T. Examples thereof include a melt extrusion film forming method and an inflation forming method in which a film is formed by extruding from a die or the like. Among these, as a method for producing a PVA film, a casting film forming method and a melt extrusion film forming method are preferable. By using these methods, a homogeneous PVA film can be obtained with high productivity. Hereinafter, a case where the PVA film is manufactured by the casting film forming method or the melt extrusion film forming method will be described.
本発明のPVAフィルムの製造方法は、特に制限されず、例えば、次のような任意の方法を採用することができる。かかる方法としては、PVAに溶媒、添加剤等を加えて均一化させた製膜原液を、流延製膜法、湿式製膜法(貧溶媒中に吐出する方法)、乾湿式製膜法、ゲル製膜法(製膜原液を一旦冷却ゲル化した後、溶媒を抽出除去する方法)、あるいはこれらの組み合わせにより製膜する方法や、押出機等を使用して得られた製膜原液をTダイ等から押出すことにより製膜する溶融押出製膜法やインフレーション成形法等が挙げられる。これらの中でも、PVAフィルムの製造方法としては、流延製膜法及び溶融押出製膜法が好ましい。これらの方法を用いれば、均質なPVAフィルムを生産性よく得ることができる。以下、PVAフィルムを流延製膜法または溶融押出製膜法を用いて製造する場合について説明する。 <Manufacturing method of PVA film>
The method for producing the PVA film of the present invention is not particularly limited, and for example, any method as follows can be adopted. As such a method, a cast film forming method, a wet film forming method (a method of discharging into a poor solvent), a dry-wet film forming method, etc. A gel film-forming method (a method in which a film-forming stock solution is once cooled and gelled and then the solvent is extracted and removed), a method of forming a film by a combination of these methods, or a film-forming stock solution obtained by using an extruder or the like is used as T. Examples thereof include a melt extrusion film forming method and an inflation forming method in which a film is formed by extruding from a die or the like. Among these, as a method for producing a PVA film, a casting film forming method and a melt extrusion film forming method are preferable. By using these methods, a homogeneous PVA film can be obtained with high productivity. Hereinafter, a case where the PVA film is manufactured by the casting film forming method or the melt extrusion film forming method will be described.
本発明のPVAフィルムを流延製膜法または溶融押出製膜法を用いて製造する場合、まず、PVAと、溶媒と、必要に応じて可塑剤等の添加剤とを含有する製膜原液を準備する。次に、この製膜原液を、金属ロールや金属ベルト等の回転する支持体上へ膜状に流涎(供給)する。これにより、支持体上に製膜原液の液状被膜を形成する。液状被膜は、支持体上で加熱されて溶媒が除去されることにより、固化してフィルム化する。液状被膜を加熱する方法は、支持体そのものを熱媒等で高温化する方法や、液状被膜の支持体に接触している面の反対面に熱風を吹き付ける方法などが例示される。固化した長尺のフィルム(PVAフィルム)は、支持体より剥離されて、必要に応じて乾燥ロール、乾燥炉等により乾燥されて、さらに必要に応じて熱処理されて、ロール状に巻き取られる。
When the PVA film of the present invention is produced by a casting film forming method or a melt extrusion film forming method, first, a film forming stock solution containing PVA, a solvent, and if necessary, an additive such as a plasticizer is prepared. prepare. Next, this film-forming stock solution is salivated (supplied) in the form of a film onto a rotating support such as a metal roll or a metal belt. As a result, a liquid film of the film-forming stock solution is formed on the support. The liquid film is solidified and formed into a film by being heated on the support to remove the solvent. Examples of the method of heating the liquid film include a method of heating the support itself to a high temperature with a heat medium or the like, a method of blowing hot air on the opposite surface of the surface in contact with the support of the liquid film, and the like. The solidified long film (PVA film) is peeled off from the support, dried by a drying roll, a drying furnace or the like as necessary, further heat-treated as needed, and wound into a roll.
支持体上に流涎された液状被膜の乾燥工程(溶媒除去工程)、その後のPVAフィルムの乾燥工程で、PVAは加熱される間に結晶化が進む。この時の結晶化の速度は、前記のPVAにおける他のモノマーに由来する構造単位の割合、PVAの重合度、PVAのけん化度、及び可塑剤の含有量以外に、PVA中の水分率、温度、及びドロー(流れ方向の引張伸度)の影響を受ける。ドローについては、PVAのポリマー分子鎖の引張による配向結晶化の影響と推定される。
In the step of drying the liquid film poured on the support (solvent removal step) and then the step of drying the PVA film, PVA crystallizes while being heated. The rate of crystallization at this time includes the ratio of structural units derived from other monomers in PVA, the degree of polymerization of PVA, the degree of saponification of PVA, and the content of the plasticizer, as well as the water content and temperature in PVA. , And draw (tensile elongation in the flow direction). Regarding the draw, it is presumed to be the effect of orientation crystallization due to the tension of the polymer molecular chain of PVA.
通常、PVAフィルムの乾燥は、支持体や乾燥ロール等に接触していない、解放されたフィルム表面から揮発分が揮発していくことにより進行する。したがって、乾燥途中の工程では、PVAフィルムの厚み方向に水分などの揮発分の濃度分布が生じるため、その時々の温度、ドローの条件により、PVAフィルムの厚み方向に結晶度指数の分布が生じる。この結晶度指数の分布は、製膜原液の揮発分率、支持体温度、支持体との接触時間、熱風温度及び量、乾燥ロール及び乾燥炉温度等により調整することができる。よって、上記の各要因を適切に調整することにより、PVAの結晶化を適度に進行させ、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)を調整することができる。
Normally, the drying of the PVA film proceeds by volatilizing the volatile matter from the released film surface that is not in contact with the support, the drying roll, or the like. Therefore, in the step during drying, the concentration distribution of volatile components such as water is generated in the thickness direction of the PVA film, so that the crystallinity index is distributed in the thickness direction of the PVA film depending on the temperature and draw conditions at that time. The distribution of this crystallinity index can be adjusted by the volatile fraction of the membrane-forming stock solution, the support temperature, the contact time with the support, the hot air temperature and amount, the drying roll and the drying oven temperature, and the like. Therefore, by appropriately adjusting each of the above factors, the crystallization of PVA can be appropriately advanced and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be adjusted.
製膜原液の揮発分率(製膜時等に揮発や蒸発によって除去される溶媒等の揮発性成分の濃度)は、50質量%以上であることが好ましく、55質量%以上であることがより好ましい。製膜原液の揮発分率は、90質量%以下であることが好ましく、80質量%以下であることがより好ましい。揮発分率が上記範囲であると、製膜原液の粘度を好適な範囲に調整することができるので、支持体上に流涎された液状被膜の製膜性が向上するとともに、均一な厚みを有するPVAフィルムを得やすくなる。また、揮発分率が上記範囲であると、支持体上でPVAの結晶化が適度に進行するため、得られるPVAフィルムの結晶度指数とその分布を調整しやすくなる。製膜原液は、必要に応じて二色性染料を含有していてもよい。また、製膜原液の揮発分率は、下記式(13)により求めた値をいう。
The volatile fraction of the film-forming stock solution (concentration of volatile components such as solvents removed by volatilization or evaporation during film-forming) is preferably 50% by mass or more, more preferably 55% by mass or more. preferable. The volatile fraction of the film-forming stock solution is preferably 90% by mass or less, and more preferably 80% by mass or less. When the volatile fraction is in the above range, the viscosity of the film-forming stock solution can be adjusted to a suitable range, so that the film-forming property of the liquid film flowed on the support is improved and the film-forming property has a uniform thickness. It becomes easier to obtain a PVA film. Further, when the volatile fraction is in the above range, the crystallization of PVA proceeds appropriately on the support, so that the crystallinity index of the obtained PVA film and its distribution can be easily adjusted. The film-forming stock solution may contain a dichroic dye, if necessary. The volatile fraction of the film-forming stock solution is a value obtained by the following formula (13).
製膜原液の揮発分率(質量%)={(Wa-Wb)/Wa}×100 (13)
Volatile fraction (mass%) of membrane-forming stock solution = {(Wa-Wb) / Wa} x 100 (13)
上記式(13)中、Waは、製膜原液の質量(g)を表し、Wbは、Wa(g)の製膜原液を105℃の電熱乾燥機中で16時間乾燥した後の質量(g)を表す。
In the above formula (13), Wa represents the mass (g) of the film-forming stock solution, and Wb is the mass (g) of the film-forming stock solution of Wa (g) after being dried in an electric heating dryer at 105 ° C. for 16 hours. ).
製膜原液の調整方法としては、特に制限されず、例えば、PVAと、可塑剤、界面活性剤等の添加剤とを溶解タンク等で溶媒中に溶解させる方法や、一軸または二軸押出機を使用して含水状態のPVAを、可塑剤、界面活性剤等の添加剤と共に溶融混錬する方法等が挙げられる。
The method for preparing the film-forming stock solution is not particularly limited, and for example, a method of dissolving PVA and additives such as a plasticizer and a surfactant in a solvent in a dissolution tank or the like, or a uniaxial or biaxial extruder is used. Examples thereof include a method of melt-kneading PVA in a water-containing state together with additives such as a plasticizer and a surfactant.
製膜原液は、一般にTダイなどのダイのダイリップを通過して、金属ロールや金属ベルトなどの支持体の上へ膜状に流涎される。支持体の上では、流涎されたフィルム状の原液の支持体に接触していない面(以下、フリー面と称することがある。)から溶媒が揮発していき、一方、支持体に接触している面(以下、タッチ面と称することがある。)からは実質的に揮発しないため、フィルムの厚み方向に対し、フリー面側の溶媒濃度が低く、タッチ面側の溶媒濃度が高いという分布を生じる。よって、PVAの固化もフリー面から先に進行する。
The undiluted film-forming solution generally passes through the die lip of a die such as a T-die and is spilled into a film on a support such as a metal roll or a metal belt. On the support, the solvent volatilizes from the surface of the flowed film-like stock solution that is not in contact with the support (hereinafter, may be referred to as a free surface), while in contact with the support. Since it does not substantially volatilize from the existing surface (hereinafter, may be referred to as a touch surface), the distribution is such that the solvent concentration on the free surface side is low and the solvent concentration on the touch surface side is high with respect to the thickness direction of the film. Occurs. Therefore, the solidification of PVA also proceeds from the free side first.
PVAの固化と並行してPVAの結晶化も進行する。PVAの結晶化は、溶媒濃度が高すぎても低すぎても進行しにくく、PVA分子の一次構造にもよるが、流涎された製膜原液の揮発分率が20~60質量%の範囲にあるときに進行しやすい。また、PVAの結晶化の速度は温度が高いほど速くなるが、温度が高いほど溶媒の揮発速度も速くなる。よって、PVAフィルムの表面近くである極表層部の結晶化を効率的に進行させ、極表層部の結晶度指数(Fg1及びFg2)を制御するためには、支持体の温度、支持体との接触時間等に加え、フリー面近傍の雰囲気の温度、溶媒の蒸気圧などを制御することも重要である。
PVA crystallization progresses in parallel with PVA solidification. Crystallization of PVA is difficult to proceed even if the solvent concentration is too high or too low, and although it depends on the primary structure of the PVA molecule, the volatile fraction of the flowed membrane-forming stock solution is in the range of 20 to 60% by mass. It is easy to progress at one time. Further, the rate of crystallization of PVA increases as the temperature increases, but the rate of volatilization of the solvent increases as the temperature increases. Therefore, in order to efficiently promote the crystallization of the polar surface layer near the surface of the PVA film and control the crystallinity index (Fg1 and Fg2) of the polar surface layer, the temperature of the support and the support are used. In addition to the contact time, it is also important to control the temperature of the atmosphere near the free surface, the vapor pressure of the solvent, and the like.
本発明のPVAフィルムは、フィルムの比較的深い内部の結晶度に対する、フィルムの表面近くである極表層部の結晶度が高いフィルムである。よって、本発明のPVAフィルムを得るためには、フィルムの表面近くである極表層部の結晶化を進行させつつ、フィルムの比較的深い内部の結晶化を抑制させる条件を選択すればよい。例えば、フィルムの表面近くである極表層部の揮発分率が低下する乾燥初期では、乾燥温度を下げるなどゆっくりと乾燥させる条件を採用することにより、結晶化が進行する過程では、極表層部の水分率を上げておく。一方で、フィルムの比較的深い内部で結晶化が進行する乾燥中期から後期にかけては、比較的高い温度で急速に乾燥することにより、内部の結晶化が進行しにくい条件を採用することなどが例示される。
The PVA film of the present invention is a film having a high crystallinity in the extreme surface layer near the surface of the film with respect to the crystallinity inside the film, which is relatively deep inside. Therefore, in order to obtain the PVA film of the present invention, it is sufficient to select the conditions for suppressing the crystallization of the relatively deep inside of the film while proceeding with the crystallization of the polar surface layer portion near the surface of the film. For example, in the initial stage of drying when the volatile fraction of the polar surface layer near the surface of the film decreases, by adopting a condition of slow drying such as lowering the drying temperature, in the process of crystallization progressing, the polar surface layer Increase the water content. On the other hand, from the middle to late drying period when crystallization progresses in the relatively deep inside of the film, it is exemplified to adopt the condition that the internal crystallization does not proceed easily by rapidly drying at a relatively high temperature. Will be done.
製膜原液を流涎する支持体の表面温度は、65℃以上であることが好ましく、70℃以上であることがさらに好ましい。製膜原液を流涎する支持体の表面温度は、110℃以下であることが好ましく、100℃以下であることがより好ましく、95℃以下であることがさらに好ましい。表面温度が上記範囲であると、支持体上に流涎された液状被膜の乾燥及びフィルムの表面近くである極表層部の結晶化が適度な速度で進むことにより、PVAフィルムの結晶度指数(Fg1及びFg2)を調整することができる。
The surface temperature of the support for which the membrane-forming stock solution is spilled is preferably 65 ° C. or higher, and more preferably 70 ° C. or higher. The surface temperature of the support on which the membrane-forming stock solution is spilled is preferably 110 ° C. or lower, more preferably 100 ° C. or lower, and even more preferably 95 ° C. or lower. When the surface temperature is within the above range, the crystallinity index (Fg1) of the PVA film proceeds at an appropriate rate due to the drying of the liquid film drooled on the support and the crystallization of the polar surface layer near the surface of the film. And Fg2) can be adjusted.
支持体上で液状被膜を加熱すると同時に、液状被膜の非接触面側の全領域に、風速1~10m/秒の熱風を均一に吹き付けてもよい。非接触面側に吹き付ける熱風の温度は、50℃以上であることが好ましく、70℃以上であることがより好ましい。非接触面側に吹き付ける熱風の温度は、150℃以下であることが好ましく、120℃以下であることがより好ましい。また、熱風の湿度は1%RH以上であることが好ましく、3%RH以上であることがより好ましく、5%RH以上であることが更に好ましい。熱風の湿度は40%RH以下であることが好ましく、30%RH以下であることがより好ましい。非接触面側に吹き付ける熱風の温度及び湿度が上記範囲であると、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)を調整しやすくなる。
At the same time as heating the liquid film on the support, hot air with a wind speed of 1 to 10 m / sec may be uniformly blown over the entire area on the non-contact surface side of the liquid film. The temperature of the hot air blown to the non-contact surface side is preferably 50 ° C. or higher, more preferably 70 ° C. or higher. The temperature of the hot air blown to the non-contact surface side is preferably 150 ° C. or lower, more preferably 120 ° C. or lower. Further, the humidity of the hot air is preferably 1% RH or more, more preferably 3% RH or more, and further preferably 5% RH or more. The humidity of the hot air is preferably 40% RH or less, and more preferably 30% RH or less. When the temperature and humidity of the hot air blown to the non-contact surface side are within the above ranges, it becomes easy to adjust the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film.
PVAフィルムは、支持体上で好ましくは揮発分率5~50質量%にまで乾燥(溶媒除去)された後、支持体から剥離され、必要に応じてさらに乾燥される。乾燥の方法としては、特に制限されず、乾燥炉に通過させる方法や、乾燥ロールに接触させる方法が挙げられる。複数の乾燥ロールを用いてPVAフィルムを乾燥させる場合は、PVAフィルムの一方の表面と他方の表面とを交互に乾燥ロールに接触させることが好ましい。これにより、PVAフィルムの両面(厚み方向と直交する2つの表面)におけるPVAの結晶度指数の差(|Fd1-Fd2|及び|Fg1-Fg2|)を調整することができる。この場合、乾燥ロールの数は、3個以上が好ましく、4個以上がより好ましく、5~30個がさらに好ましい。
The PVA film is preferably dried (solvent removed) on the support to a volatile fraction of 5 to 50% by mass, then peeled off from the support, and further dried if necessary. The method of drying is not particularly limited, and examples thereof include a method of passing through a drying oven and a method of contacting with a drying roll. When the PVA film is dried using a plurality of drying rolls, it is preferable that one surface of the PVA film and the other surface are alternately brought into contact with the drying rolls. Thereby, the difference in the crystallinity index of PVA (| Fd1-Fd2 | and | Fg1-Fg2 |) on both sides of the PVA film (two surfaces orthogonal to the thickness direction) can be adjusted. In this case, the number of dry rolls is preferably 3 or more, more preferably 4 or more, and even more preferably 5 to 30.
乾燥炉の温度または乾燥ロールの表面温度の上限は、110℃以下であることが好ましく、100℃以下であることがより好ましく、90℃以下であることがさらに好ましく、85℃以下であることが特に好ましい。一方、乾燥炉の温度または乾燥ロールの表面温度の下限は、40℃以上であることが好ましく、45℃以上であることがより好ましく、50℃以上であることがさらに好ましい。乾燥炉の温度または乾燥ロールの表面温度を上記範囲内にすることにより、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)を調整しやすくなる。
The upper limit of the temperature of the drying furnace or the surface temperature of the drying roll is preferably 110 ° C. or lower, more preferably 100 ° C. or lower, further preferably 90 ° C. or lower, and preferably 85 ° C. or lower. Especially preferable. On the other hand, the lower limit of the temperature of the drying furnace or the surface temperature of the drying roll is preferably 40 ° C. or higher, more preferably 45 ° C. or higher, and even more preferably 50 ° C. or higher. By keeping the temperature of the drying oven or the surface temperature of the drying roll within the above range, it becomes easy to adjust the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film.
乾燥後のPVAフィルムには、必要に応じてさらに熱処理を行うことができる。熱処理を行うことにより、フィルムの表面近くである極表層部の結晶度及びフィルムの比較的深い内部の結晶度を高めることができ、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)を調整することができる。また、PVAフィルムの機械的強度、膨潤性等の特性も調整することができる。
The dried PVA film can be further heat-treated if necessary. By performing the heat treatment, the crystallinity of the polar surface layer near the surface of the film and the crystallinity of the relatively deep inside of the film can be increased, and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film can be increased. Can be adjusted. In addition, characteristics such as mechanical strength and swellability of the PVA film can be adjusted.
熱処理を行うための熱処理ロールの表面温度の下限は、60℃以上であることが好ましい。熱処理ロールの表面温度の上限は、135℃以下であることが好ましく、130℃以下であることがより好ましい。熱処理ロールの表面温度を上記範囲内にすることにより、PVAフィルムの結晶度指数(Fg1、Fg2、Fd1及びFd2)を調整しやすくなる。
The lower limit of the surface temperature of the heat treatment roll for performing the heat treatment is preferably 60 ° C. or higher. The upper limit of the surface temperature of the heat treatment roll is preferably 135 ° C. or lower, more preferably 130 ° C. or lower. By keeping the surface temperature of the heat treatment roll within the above range, it becomes easy to adjust the crystallinity index (Fg1, Fg2, Fd1 and Fd2) of the PVA film.
このようにして製造されたPVAフィルムは、必要に応じて、さらに、調湿処理、フィルム両端部(耳部)のカット等を施した後、円筒状のコアの上にロール状に巻き取られ、防湿包装されて製品となる。
The PVA film thus produced is, if necessary, further subjected to humidity control treatment, cutting of both ends (ears) of the film, and then rolled up on a cylindrical core in a roll shape. , Moisture-proof packaging to make a product.
一連の処理によって最終的に得られるPVAフィルムの揮発分率は必ずしも限定されない。PVAフィルムの揮発分率は1質量%以上であることが好ましく、2質量%以上であることがより好ましい。PVAフィルムの揮発分率は5質量%以下であることが好ましく、4質量%以下であることがより好ましい。
The volatile fraction of the PVA film finally obtained by a series of treatments is not necessarily limited. The volatile fraction of the PVA film is preferably 1% by mass or more, more preferably 2% by mass or more. The volatile fraction of the PVA film is preferably 5% by mass or less, and more preferably 4% by mass or less.
<光学フィルムの製造方法>
本発明のPVAフィルムは、光学フィルムを製造する際の原反フィルムとして用いられる。光学フィルムとしては、偏光フィルム、視野角向上フィルム、位相差フィルム、輝度向上フィルムなどが例示されるが、偏光フィルムであることが好ましい。以下では、光学フィルムの製造方法の一例として、偏光フィルムの製造方法を挙げて具体的に説明する。 <Manufacturing method of optical film>
The PVA film of the present invention is used as a raw film for producing an optical film. Examples of the optical film include a polarizing film, a viewing angle improving film, a retardation film, and a brightness improving film, but a polarizing film is preferable. Hereinafter, as an example of the method for manufacturing an optical film, a method for manufacturing a polarizing film will be specifically described.
本発明のPVAフィルムは、光学フィルムを製造する際の原反フィルムとして用いられる。光学フィルムとしては、偏光フィルム、視野角向上フィルム、位相差フィルム、輝度向上フィルムなどが例示されるが、偏光フィルムであることが好ましい。以下では、光学フィルムの製造方法の一例として、偏光フィルムの製造方法を挙げて具体的に説明する。 <Manufacturing method of optical film>
The PVA film of the present invention is used as a raw film for producing an optical film. Examples of the optical film include a polarizing film, a viewing angle improving film, a retardation film, and a brightness improving film, but a polarizing film is preferable. Hereinafter, as an example of the method for manufacturing an optical film, a method for manufacturing a polarizing film will be specifically described.
偏光フィルムは、通常、PVAフィルムを原反フィルムとして用いて、膨潤工程、染色工程、架橋工程、延伸工程、固定処理工程などの処理工程を経て製造することができる。各工程に用いる処理液の具体例としては、膨潤処理に使用される膨潤処理液、染色処理に使用される染色処理液(染色液)、架橋処理に使用される架橋処理液、延伸処理に使用される延伸処理液、固定処理に使用される固定処理液及び洗浄処理に使用される洗浄処理液(洗浄液)などが挙げられる。
The polarizing film can usually be produced by using a PVA film as a raw film and undergoing treatment steps such as a swelling step, a dyeing step, a cross-linking step, a stretching step, and a fixing treatment step. Specific examples of the treatment liquid used in each step include a swelling treatment liquid used for swelling treatment, a dyeing treatment liquid (staining liquid) used for dyeing treatment, a cross-linking treatment liquid used for cross-linking treatment, and a stretching treatment liquid. Examples thereof include a stretching treatment liquid, a fixing treatment liquid used for the fixing treatment, and a cleaning treatment liquid (cleaning liquid) used for the cleaning treatment.
偏光フィルムを製造するための製造方法において採用することのできる各処理工程について、以下に詳細に説明する。なお、偏光フィルムの製造方法において、以下の各処理の1つまたは2つ以上を省略してもよいし、同じ処理を複数回行ってもよいし、別の処理を同時に行ってもよい。
Each processing step that can be adopted in the manufacturing method for manufacturing the polarizing film will be described in detail below. In the method for producing a polarizing film, one or two or more of the following processes may be omitted, the same process may be performed a plurality of times, or another process may be performed at the same time.
(膨潤処理前の洗浄処理)
PVAフィルムに膨潤処理を行う前に、PVAフィルムに洗浄処理を行うことが好ましい。このような膨潤処理前の洗浄処理によりPVAフィルムに付着しているブロッキング防止剤などを除去することができ、偏光フィルムの製造工程における各処理液がブロッキング防止剤などにより汚染されることを防止することができる。洗浄処理は、PVAフィルムを洗浄処理液に浸漬させることにより行うことが好ましいが、洗浄処理液をPVAフィルムに対して吹き付けることにより行うこともできる。洗浄処理液としては、例えば水を用いることができる。洗浄処理液の温度は20~40℃の範囲内であることが好ましい。温度が20℃以上であることにより、PVAフィルムに付着しているブロッキング防止剤などの除去が行いやすくなる。また温度が40℃以下であることにより、PVAフィルムの表面の一部が溶解してフィルム同士が膠着して取り扱い性が低下することを防止することができる。洗浄処理液の温度は、22℃以上であることがより好ましく、24℃以上であることがさらに好ましく、26℃以上であることが特に好ましい。また、洗浄処理液の温度は、38℃以下であることがより好ましく、36℃以下であることがさらに好ましく、34℃以下であることが特に好ましい。 (Washing treatment before swelling treatment)
It is preferable to perform a cleaning treatment on the PVA film before performing the swelling treatment on the PVA film. By such a cleaning treatment before the swelling treatment, the blocking inhibitor or the like adhering to the PVA film can be removed, and it is possible to prevent each treatment liquid in the polarizing film manufacturing process from being contaminated by the blocking inhibitor or the like. be able to. The cleaning treatment is preferably performed by immersing the PVA film in the cleaning treatment liquid, but it can also be performed by spraying the cleaning treatment liquid on the PVA film. For example, water can be used as the cleaning treatment liquid. The temperature of the cleaning treatment liquid is preferably in the range of 20 to 40 ° C. When the temperature is 20 ° C. or higher, it becomes easy to remove the blocking inhibitor and the like adhering to the PVA film. Further, when the temperature is 40 ° C. or lower, it is possible to prevent a part of the surface of the PVA film from melting and the films from sticking to each other to deteriorate the handleability. The temperature of the cleaning treatment liquid is more preferably 22 ° C. or higher, further preferably 24 ° C. or higher, and particularly preferably 26 ° C. or higher. Further, the temperature of the cleaning treatment liquid is more preferably 38 ° C. or lower, further preferably 36 ° C. or lower, and particularly preferably 34 ° C. or lower.
PVAフィルムに膨潤処理を行う前に、PVAフィルムに洗浄処理を行うことが好ましい。このような膨潤処理前の洗浄処理によりPVAフィルムに付着しているブロッキング防止剤などを除去することができ、偏光フィルムの製造工程における各処理液がブロッキング防止剤などにより汚染されることを防止することができる。洗浄処理は、PVAフィルムを洗浄処理液に浸漬させることにより行うことが好ましいが、洗浄処理液をPVAフィルムに対して吹き付けることにより行うこともできる。洗浄処理液としては、例えば水を用いることができる。洗浄処理液の温度は20~40℃の範囲内であることが好ましい。温度が20℃以上であることにより、PVAフィルムに付着しているブロッキング防止剤などの除去が行いやすくなる。また温度が40℃以下であることにより、PVAフィルムの表面の一部が溶解してフィルム同士が膠着して取り扱い性が低下することを防止することができる。洗浄処理液の温度は、22℃以上であることがより好ましく、24℃以上であることがさらに好ましく、26℃以上であることが特に好ましい。また、洗浄処理液の温度は、38℃以下であることがより好ましく、36℃以下であることがさらに好ましく、34℃以下であることが特に好ましい。 (Washing treatment before swelling treatment)
It is preferable to perform a cleaning treatment on the PVA film before performing the swelling treatment on the PVA film. By such a cleaning treatment before the swelling treatment, the blocking inhibitor or the like adhering to the PVA film can be removed, and it is possible to prevent each treatment liquid in the polarizing film manufacturing process from being contaminated by the blocking inhibitor or the like. be able to. The cleaning treatment is preferably performed by immersing the PVA film in the cleaning treatment liquid, but it can also be performed by spraying the cleaning treatment liquid on the PVA film. For example, water can be used as the cleaning treatment liquid. The temperature of the cleaning treatment liquid is preferably in the range of 20 to 40 ° C. When the temperature is 20 ° C. or higher, it becomes easy to remove the blocking inhibitor and the like adhering to the PVA film. Further, when the temperature is 40 ° C. or lower, it is possible to prevent a part of the surface of the PVA film from melting and the films from sticking to each other to deteriorate the handleability. The temperature of the cleaning treatment liquid is more preferably 22 ° C. or higher, further preferably 24 ° C. or higher, and particularly preferably 26 ° C. or higher. Further, the temperature of the cleaning treatment liquid is more preferably 38 ° C. or lower, further preferably 36 ° C. or lower, and particularly preferably 34 ° C. or lower.
(膨潤処理)
膨潤処理は、PVAフィルムを水等の膨潤処理液に浸漬させることにより行うことができる。膨潤処理液の温度は、20℃以上であることが好ましく、22℃以上であることがより好ましく、24℃以上であることがさらに好ましい。膨潤処理液の温度は、40℃以下であることが好ましく、38℃以下であることがより好ましく、36℃以下であることがさらに好ましい。また、膨潤処理液に浸漬する時間は、例えば0.1分以上であることが好ましく、0.5分以上であることがより好ましい。膨潤処理液に浸漬する時間は、例えば5分以下であることが好ましく、3分以下であることがより好ましい。なお、膨潤処理液として使用される水は純水に限定されず、ホウ素含有化合物等の各種成分が溶解した水溶液であってもよいし、水と水性媒体との混合物であってもよい。ホウ素含有化合物の種類は特に限定されないが、取り扱い性の観点からホウ酸またはホウ砂が好ましい。膨潤処理液がホウ素含有化合物を含む場合、PVAフィルムの延伸性を向上させる観点から、その濃度は6質量%以下であることが好ましい。 (Swelling treatment)
The swelling treatment can be performed by immersing the PVA film in a swelling treatment liquid such as water. The temperature of the swelling treatment liquid is preferably 20 ° C. or higher, more preferably 22 ° C. or higher, and even more preferably 24 ° C. or higher. The temperature of the swelling treatment liquid is preferably 40 ° C. or lower, more preferably 38 ° C. or lower, and even more preferably 36 ° C. or lower. Further, the time for immersing in the swelling treatment liquid is preferably, for example, 0.1 minutes or longer, and more preferably 0.5 minutes or longer. The time for immersing in the swelling treatment liquid is, for example, preferably 5 minutes or less, and more preferably 3 minutes or less. The water used as the swelling treatment liquid is not limited to pure water, and may be an aqueous solution in which various components such as a boron-containing compound are dissolved, or may be a mixture of water and an aqueous medium. The type of the boron-containing compound is not particularly limited, but boric acid or borax is preferable from the viewpoint of handleability. When the swelling treatment liquid contains a boron-containing compound, the concentration thereof is preferably 6% by mass or less from the viewpoint of improving the stretchability of the PVA film.
膨潤処理は、PVAフィルムを水等の膨潤処理液に浸漬させることにより行うことができる。膨潤処理液の温度は、20℃以上であることが好ましく、22℃以上であることがより好ましく、24℃以上であることがさらに好ましい。膨潤処理液の温度は、40℃以下であることが好ましく、38℃以下であることがより好ましく、36℃以下であることがさらに好ましい。また、膨潤処理液に浸漬する時間は、例えば0.1分以上であることが好ましく、0.5分以上であることがより好ましい。膨潤処理液に浸漬する時間は、例えば5分以下であることが好ましく、3分以下であることがより好ましい。なお、膨潤処理液として使用される水は純水に限定されず、ホウ素含有化合物等の各種成分が溶解した水溶液であってもよいし、水と水性媒体との混合物であってもよい。ホウ素含有化合物の種類は特に限定されないが、取り扱い性の観点からホウ酸またはホウ砂が好ましい。膨潤処理液がホウ素含有化合物を含む場合、PVAフィルムの延伸性を向上させる観点から、その濃度は6質量%以下であることが好ましい。 (Swelling treatment)
The swelling treatment can be performed by immersing the PVA film in a swelling treatment liquid such as water. The temperature of the swelling treatment liquid is preferably 20 ° C. or higher, more preferably 22 ° C. or higher, and even more preferably 24 ° C. or higher. The temperature of the swelling treatment liquid is preferably 40 ° C. or lower, more preferably 38 ° C. or lower, and even more preferably 36 ° C. or lower. Further, the time for immersing in the swelling treatment liquid is preferably, for example, 0.1 minutes or longer, and more preferably 0.5 minutes or longer. The time for immersing in the swelling treatment liquid is, for example, preferably 5 minutes or less, and more preferably 3 minutes or less. The water used as the swelling treatment liquid is not limited to pure water, and may be an aqueous solution in which various components such as a boron-containing compound are dissolved, or may be a mixture of water and an aqueous medium. The type of the boron-containing compound is not particularly limited, but boric acid or borax is preferable from the viewpoint of handleability. When the swelling treatment liquid contains a boron-containing compound, the concentration thereof is preferably 6% by mass or less from the viewpoint of improving the stretchability of the PVA film.
(染色処理)
染色処理は、二色性色素としてヨウ素系色素を用いて行うのがよく、染色の時期として
は、延伸処理前、延伸処理時、延伸処理後のいずれの段階であってもよい。染色処理は、染色処理液としてヨウ素-ヨウ化カリウムを含有する溶液(好適には水溶液)を用い、染色処理液にPVAフィルムを浸漬させることにより行うことが好ましい。染色処理液におけるヨウ素の濃度は0.005質量%以上であることが好ましい。染色処理液におけるヨウ素の濃度は0.2質量%以下であることが好ましい。ヨウ化カリウム/ヨウ素(質量)は20以上であることが好ましい。ヨウ化カリウム/ヨウ素(質量)は100以下であることが好ましい。染色処理液の温度は20℃以上であることが好ましく、25℃以上であることがより好ましい。染色処理液の温度は50℃以下であることが好ましく、40℃以下であることがより好ましい。染色処理液には、ホウ酸等のホウ素含有化合物が架橋剤として含有されていてもよい。なお、原反フィルムとして使用するPVAフィルムに予め二色性色素を含有させておけば、染色処理を省略することができる。また、原反フィルムとして使用するPVAフィルムに予めホウ酸、ホウ砂等のホウ素含有化合物を含有させておくこともできる。 (Dyeing process)
The dyeing treatment is preferably carried out using an iodine-based dye as the dichroic dye, and the dyeing time may be any stage before the stretching treatment, during the stretching treatment, or after the stretching treatment. The dyeing treatment is preferably carried out by using a solution containing iodine-potassium iodide (preferably an aqueous solution) as the dyeing treatment liquid and immersing the PVA film in the dyeing treatment liquid. The concentration of iodine in the dyeing solution is preferably 0.005% by mass or more. The concentration of iodine in the dyeing solution is preferably 0.2% by mass or less. Potassium iodide / iodine (mass) is preferably 20 or more. Potassium iodide / iodine (mass) is preferably 100 or less. The temperature of the dyeing treatment liquid is preferably 20 ° C. or higher, more preferably 25 ° C. or higher. The temperature of the dyeing treatment liquid is preferably 50 ° C. or lower, more preferably 40 ° C. or lower. The dyeing solution may contain a boron-containing compound such as boric acid as a cross-linking agent. If the PVA film used as the raw film contains a dichroic dye in advance, the dyeing process can be omitted. Further, it is also possible to preliminarily contain a boron-containing compound such as boric acid or borax in the PVA film used as the raw film.
染色処理は、二色性色素としてヨウ素系色素を用いて行うのがよく、染色の時期として
は、延伸処理前、延伸処理時、延伸処理後のいずれの段階であってもよい。染色処理は、染色処理液としてヨウ素-ヨウ化カリウムを含有する溶液(好適には水溶液)を用い、染色処理液にPVAフィルムを浸漬させることにより行うことが好ましい。染色処理液におけるヨウ素の濃度は0.005質量%以上であることが好ましい。染色処理液におけるヨウ素の濃度は0.2質量%以下であることが好ましい。ヨウ化カリウム/ヨウ素(質量)は20以上であることが好ましい。ヨウ化カリウム/ヨウ素(質量)は100以下であることが好ましい。染色処理液の温度は20℃以上であることが好ましく、25℃以上であることがより好ましい。染色処理液の温度は50℃以下であることが好ましく、40℃以下であることがより好ましい。染色処理液には、ホウ酸等のホウ素含有化合物が架橋剤として含有されていてもよい。なお、原反フィルムとして使用するPVAフィルムに予め二色性色素を含有させておけば、染色処理を省略することができる。また、原反フィルムとして使用するPVAフィルムに予めホウ酸、ホウ砂等のホウ素含有化合物を含有させておくこともできる。 (Dyeing process)
The dyeing treatment is preferably carried out using an iodine-based dye as the dichroic dye, and the dyeing time may be any stage before the stretching treatment, during the stretching treatment, or after the stretching treatment. The dyeing treatment is preferably carried out by using a solution containing iodine-potassium iodide (preferably an aqueous solution) as the dyeing treatment liquid and immersing the PVA film in the dyeing treatment liquid. The concentration of iodine in the dyeing solution is preferably 0.005% by mass or more. The concentration of iodine in the dyeing solution is preferably 0.2% by mass or less. Potassium iodide / iodine (mass) is preferably 20 or more. Potassium iodide / iodine (mass) is preferably 100 or less. The temperature of the dyeing treatment liquid is preferably 20 ° C. or higher, more preferably 25 ° C. or higher. The temperature of the dyeing treatment liquid is preferably 50 ° C. or lower, more preferably 40 ° C. or lower. The dyeing solution may contain a boron-containing compound such as boric acid as a cross-linking agent. If the PVA film used as the raw film contains a dichroic dye in advance, the dyeing process can be omitted. Further, it is also possible to preliminarily contain a boron-containing compound such as boric acid or borax in the PVA film used as the raw film.
(架橋処理)
偏光フィルムの製造にあたって、PVAフィルムへの二色性色素の吸着を強固にするなどの目的のために、染色処理後に架橋処理を行うことが好ましい。架橋処理は、架橋処理液として架橋剤を含有する溶液(好適には水溶液)を用い、架橋処理液にPVAフィルムを浸漬させることにより行うことができる。架橋剤としては、ホウ酸、ホウ砂等のホウ素含有化合物の1種または2種以上を使用することができる。架橋処理液における架橋剤の濃度は、あまりに高すぎると架橋反応が進みすぎてその後に行う延伸処理で十分な延伸を行うのが困難になる傾向があり、また、あまりに少なすぎると架橋処理の効果が低減する傾向にある。架橋処理液における架橋剤の濃度は、1質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。架橋処理液における架橋剤の濃度は、6質量%以下であることが好ましく、5.5質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。 (Crosslinking)
In the production of the polarizing film, it is preferable to carry out a cross-linking treatment after the dyeing treatment for the purpose of strengthening the adsorption of the dichroic dye on the PVA film. The cross-linking treatment can be performed by using a solution containing a cross-linking agent (preferably an aqueous solution) as the cross-linking treatment liquid and immersing the PVA film in the cross-linking treatment liquid. As the cross-linking agent, one or more kinds of boron-containing compounds such as boric acid and borax can be used. If the concentration of the cross-linking agent in the cross-linking treatment liquid is too high, the cross-linking reaction tends to proceed too much and it tends to be difficult to carry out sufficient stretching in the subsequent stretching treatment, and if it is too low, the effect of the cross-linking treatment tends to be difficult. Tends to decrease. The concentration of the cross-linking agent in the cross-linking treatment liquid is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more. The concentration of the cross-linking agent in the cross-linking treatment liquid is preferably 6% by mass or less, more preferably 5.5% by mass or less, and further preferably 5% by mass or less.
偏光フィルムの製造にあたって、PVAフィルムへの二色性色素の吸着を強固にするなどの目的のために、染色処理後に架橋処理を行うことが好ましい。架橋処理は、架橋処理液として架橋剤を含有する溶液(好適には水溶液)を用い、架橋処理液にPVAフィルムを浸漬させることにより行うことができる。架橋剤としては、ホウ酸、ホウ砂等のホウ素含有化合物の1種または2種以上を使用することができる。架橋処理液における架橋剤の濃度は、あまりに高すぎると架橋反応が進みすぎてその後に行う延伸処理で十分な延伸を行うのが困難になる傾向があり、また、あまりに少なすぎると架橋処理の効果が低減する傾向にある。架橋処理液における架橋剤の濃度は、1質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。架橋処理液における架橋剤の濃度は、6質量%以下であることが好ましく、5.5質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。 (Crosslinking)
In the production of the polarizing film, it is preferable to carry out a cross-linking treatment after the dyeing treatment for the purpose of strengthening the adsorption of the dichroic dye on the PVA film. The cross-linking treatment can be performed by using a solution containing a cross-linking agent (preferably an aqueous solution) as the cross-linking treatment liquid and immersing the PVA film in the cross-linking treatment liquid. As the cross-linking agent, one or more kinds of boron-containing compounds such as boric acid and borax can be used. If the concentration of the cross-linking agent in the cross-linking treatment liquid is too high, the cross-linking reaction tends to proceed too much and it tends to be difficult to carry out sufficient stretching in the subsequent stretching treatment, and if it is too low, the effect of the cross-linking treatment tends to be difficult. Tends to decrease. The concentration of the cross-linking agent in the cross-linking treatment liquid is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more. The concentration of the cross-linking agent in the cross-linking treatment liquid is preferably 6% by mass or less, more preferably 5.5% by mass or less, and further preferably 5% by mass or less.
染色処理後のPVAフィルムから二色性色素が溶出するのを抑制するため、架橋処理液には、ヨウ化カリウム等のヨウ素含有化合物を含有させてもよい。架橋処理液におけるヨウ素含有化合物の濃度は、あまりに高すぎると理由は不明であるが得られる偏光フィルムの耐熱性が低下する傾向がある。また、架橋処理液におけるヨウ素含有化合物の濃度が、あまりに低すぎると、二色性色素の溶出を抑制する効果が低減する傾向にある。架橋処理液におけるヨウ素含有化合物の濃度は、1質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。架橋処理液におけるヨウ素含有化合物の濃度は、6質量%以下であることが好ましく、5.5質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。
In order to suppress the elution of the dichroic dye from the PVA film after the dyeing treatment, the cross-linking treatment liquid may contain an iodine-containing compound such as potassium iodide. If the concentration of the iodine-containing compound in the cross-linking treatment liquid is too high, the reason is unknown, but the heat resistance of the obtained polarizing film tends to decrease. Further, if the concentration of the iodine-containing compound in the cross-linking treatment liquid is too low, the effect of suppressing the elution of the dichroic dye tends to be reduced. The concentration of the iodine-containing compound in the cross-linking treatment liquid is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more. The concentration of the iodine-containing compound in the cross-linking treatment liquid is preferably 6% by mass or less, more preferably 5.5% by mass or less, and further preferably 5% by mass or less.
架橋処理液の温度は、あまりに高すぎると二色性色素が溶出して得られる偏光フィルムに染色むらが生じやすくなる傾向があり、また、あまりに低すぎると架橋処理の効果が低減することがある。架橋処理液の温度は、20℃以上であることが好ましく、22℃以上であることがより好ましく、25℃以上であることがさらに好ましい。架橋処理液の温度は、45℃以下であることが好ましく、40℃以下であることがより好ましく、35℃以下であることがさらに好ましい。
If the temperature of the cross-linking treatment liquid is too high, the polarizing film obtained by elution of the dichroic dye tends to cause uneven dyeing, and if it is too low, the effect of the cross-linking treatment may be reduced. .. The temperature of the cross-linking treatment liquid is preferably 20 ° C. or higher, more preferably 22 ° C. or higher, and even more preferably 25 ° C. or higher. The temperature of the cross-linking treatment liquid is preferably 45 ° C. or lower, more preferably 40 ° C. or lower, and even more preferably 35 ° C. or lower.
後述する延伸処理とは別に、上述した各処理中や処理間において、PVAフィルムを延伸してもよい。このような延伸(前延伸)することにより、PVAフィルムの表面に皺が発生するのを防止することができる。前延伸の総延伸倍率(各処理における延伸倍率を掛け合わせた倍率)は、得られる偏光フィルムの偏光性能などの観点から、延伸前の原反のPVAフィルムの元長に基づいて、4倍以下であることが好ましく、3.5倍以下であることがより好ましい。前延伸の総延伸倍率は、得られる偏光フィルムの偏光性能などの観点から、延伸前の原反のPVAフィルムの元長に基づいて、1.5倍以上であることが好ましい。膨潤処理における延伸倍率は、1.1倍以上であることが好ましく、1.2倍以上であることがより好ましく、1.4倍以上であることが更に好ましい。膨潤処理における延伸倍率は、3倍以下であることが好ましく、2.5倍以下であることがより好ましく、2.3倍以下であることが更に好ましい。染色処理における延伸倍率は、2倍以下であることが好ましく、1.8倍以下であることがより好ましく、1.5倍以下であることが更に好ましい。染色処理における延伸倍率は、1.1倍以上であることが更に好ましい。架橋処理における延伸倍率は、2倍以下であることが好ましく、1.5倍以下であることがより好ましく、1.3倍以下であることが更に好ましい。架橋処理における延伸倍率は、1.05倍以上であることが更に好ましい。
Apart from the stretching treatment described later, the PVA film may be stretched during or between the above-mentioned treatments. By such stretching (pre-stretching), it is possible to prevent wrinkles from being generated on the surface of the PVA film. The total stretching ratio of the pre-stretching (magnification obtained by multiplying the stretching ratio in each treatment) is 4 times or less based on the original length of the PVA film of the original fabric before stretching from the viewpoint of the polarization performance of the obtained polarizing film. It is preferably 3.5 times or less, and more preferably 3.5 times or less. The total draw ratio of the pre-stretching is preferably 1.5 times or more based on the original length of the PVA film of the original fabric before stretching from the viewpoint of the polarization performance of the obtained polarizing film. The draw ratio in the swelling treatment is preferably 1.1 times or more, more preferably 1.2 times or more, and further preferably 1.4 times or more. The draw ratio in the swelling treatment is preferably 3 times or less, more preferably 2.5 times or less, and further preferably 2.3 times or less. The draw ratio in the dyeing treatment is preferably 2 times or less, more preferably 1.8 times or less, and further preferably 1.5 times or less. The draw ratio in the dyeing treatment is more preferably 1.1 times or more. The draw ratio in the crosslinking treatment is preferably 2 times or less, more preferably 1.5 times or less, and further preferably 1.3 times or less. The stretching ratio in the crosslinking treatment is more preferably 1.05 times or more.
(延伸処理)
延伸処理は、湿式延伸法または乾式延伸法のいずれで行ってもよい。湿式延伸法の場合は、延伸処理液としてホウ酸等のホウ素含有化合物を含有する溶液(好適には水溶液)を用い、延伸処理液中で行うこともできるし、染色処理液中や後述する固定処理液中で行うこともできる。また乾式延伸法の場合は、吸水後のPVAフィルムを用いて空気中で行うことができる。これらの中でも、湿式延伸法が好ましく、ホウ酸を含む水溶液中で一軸延伸するのがより好ましい。延伸処理液がホウ素含有化合物を含有する場合、延伸処理液におけるホウ素含有化合物の濃度は、PVAフィルムの延伸性を向上させることができることから、1.5質量%以上であることが好ましく、2.0質量%以上であることがより好ましく、2.5質量%以上であることがさらに好ましい。延伸処理液におけるホウ素含有化合物の濃度は、PVAフィルムの延伸性を向上させることができることから、7質量%以下であることが好ましく、6.5質量%以下であることがより好ましく、6質量%以下であることがさらに好ましい。 (Stretching treatment)
The stretching treatment may be performed by either a wet stretching method or a dry stretching method. In the case of the wet stretching method, a solution containing a boron-containing compound such as boric acid (preferably an aqueous solution) can be used as the stretching treatment liquid, and the stretching treatment liquid can be used. It can also be performed in the treatment liquid. Further, in the case of the dry stretching method, it can be carried out in the air using a PVA film after water absorption. Among these, the wet stretching method is preferable, and uniaxial stretching is more preferable in an aqueous solution containing boric acid. When the stretching treatment liquid contains a boron-containing compound, the concentration of the boron-containing compound in the stretching treatment liquid is preferably 1.5% by mass or more because the stretchability of the PVA film can be improved. It is more preferably 0% by mass or more, and further preferably 2.5% by mass or more. The concentration of the boron-containing compound in the stretching treatment liquid is preferably 7% by mass or less, more preferably 6.5% by mass or less, and more preferably 6% by mass, because the stretchability of the PVA film can be improved. The following is more preferable.
延伸処理は、湿式延伸法または乾式延伸法のいずれで行ってもよい。湿式延伸法の場合は、延伸処理液としてホウ酸等のホウ素含有化合物を含有する溶液(好適には水溶液)を用い、延伸処理液中で行うこともできるし、染色処理液中や後述する固定処理液中で行うこともできる。また乾式延伸法の場合は、吸水後のPVAフィルムを用いて空気中で行うことができる。これらの中でも、湿式延伸法が好ましく、ホウ酸を含む水溶液中で一軸延伸するのがより好ましい。延伸処理液がホウ素含有化合物を含有する場合、延伸処理液におけるホウ素含有化合物の濃度は、PVAフィルムの延伸性を向上させることができることから、1.5質量%以上であることが好ましく、2.0質量%以上であることがより好ましく、2.5質量%以上であることがさらに好ましい。延伸処理液におけるホウ素含有化合物の濃度は、PVAフィルムの延伸性を向上させることができることから、7質量%以下であることが好ましく、6.5質量%以下であることがより好ましく、6質量%以下であることがさらに好ましい。 (Stretching treatment)
The stretching treatment may be performed by either a wet stretching method or a dry stretching method. In the case of the wet stretching method, a solution containing a boron-containing compound such as boric acid (preferably an aqueous solution) can be used as the stretching treatment liquid, and the stretching treatment liquid can be used. It can also be performed in the treatment liquid. Further, in the case of the dry stretching method, it can be carried out in the air using a PVA film after water absorption. Among these, the wet stretching method is preferable, and uniaxial stretching is more preferable in an aqueous solution containing boric acid. When the stretching treatment liquid contains a boron-containing compound, the concentration of the boron-containing compound in the stretching treatment liquid is preferably 1.5% by mass or more because the stretchability of the PVA film can be improved. It is more preferably 0% by mass or more, and further preferably 2.5% by mass or more. The concentration of the boron-containing compound in the stretching treatment liquid is preferably 7% by mass or less, more preferably 6.5% by mass or less, and more preferably 6% by mass, because the stretchability of the PVA film can be improved. The following is more preferable.
延伸処理液には、ヨウ化カリウム等のヨウ素含有化合物を含有させることが好ましい。延伸処理液におけるヨウ素含有化合物の濃度は、あまりに高すぎると得られる偏光フィルムの色相が青みの強いものとなる傾向があり、また、あまりに低すぎると理由は不明であるが得られる偏光フィルムの耐熱性が低下する傾向がある。延伸処理液におけるヨウ素含有化合物の濃度は、2質量%以上であることが好ましく、2.5質量%以上であることがより好ましく、3質量%以上であることがさらに好ましい。延伸処理液におけるヨウ素含有化合物の濃度は、8質量%以下であることが好ましく、7.5質量%以下であることがより好ましく、7質量%以下であることがさらに好ましい。
It is preferable that the stretching treatment liquid contains an iodine-containing compound such as potassium iodide. If the concentration of the iodine-containing compound in the stretching solution is too high, the hue of the obtained polarizing film tends to be bluish, and if it is too low, the reason is unknown, but the heat resistance of the obtained polarizing film is high. The sex tends to decrease. The concentration of the iodine-containing compound in the stretching treatment liquid is preferably 2% by mass or more, more preferably 2.5% by mass or more, and further preferably 3% by mass or more. The concentration of the iodine-containing compound in the stretching treatment liquid is preferably 8% by mass or less, more preferably 7.5% by mass or less, and further preferably 7% by mass or less.
延伸処理液の温度は、あまりに高すぎるとPVAフィルムが溶けかけて柔らくなり破断しやすくなる傾向があり、また、あまりに低すぎると延伸性が低下する傾向がある。延伸処理液の温度は、50℃以上であることが好ましく、52.5℃以上であることがより好ましく、55℃以上であることがさらに好ましい。延伸処理液の温度は、70℃以下であることが好ましく、67.5℃以下であることがより好ましく、65℃以下であることがさらに好ましい。なお、延伸処理を乾式延伸法で行う場合の延伸温度の好ましい範囲も前記の通りである。
If the temperature of the stretching treatment liquid is too high, the PVA film tends to melt and become soft and easily break, and if it is too low, the stretchability tends to decrease. The temperature of the stretching treatment liquid is preferably 50 ° C. or higher, more preferably 52.5 ° C. or higher, and even more preferably 55 ° C. or higher. The temperature of the stretching treatment liquid is preferably 70 ° C. or lower, more preferably 67.5 ° C. or lower, and even more preferably 65 ° C. or lower. The preferred range of the stretching temperature when the stretching treatment is performed by the dry stretching method is also as described above.
延伸処理における延伸倍率は、高い方がより優れた偏光性能を有する偏光フィルムが得られることなどから、1.2倍以上であることが好ましく、1.5倍以上であることがより好ましく、2倍以上であることが更に好ましい。また、上記した前延伸の延伸倍率も含めた総延伸倍率(各工程における延伸倍率を掛け合わせた倍率)は、延伸前の原料のPVAフィルムの元長に基づいて、得られる偏光フィルムの偏光性能の点から、5.5倍以上であることが好ましく、5.7倍以上であることがより好ましく、5.9倍以上であることが更に好ましい。延伸倍率の上限は特に制限されないが、高すぎると延伸破断が発生しやすくなることから8倍以下であることが好ましい。
The stretching ratio in the stretching treatment is preferably 1.2 times or more, more preferably 1.5 times or more, and more preferably 1.5 times or more, because a polarizing film having better polarizing performance can be obtained when the drawing ratio is high. It is more preferable that the amount is double or more. Further, the total draw ratio (magnification multiplied by the draw ratio in each step) including the draw ratio of the pre-stretch described above is the polarization performance of the obtained polarizing film based on the original length of the raw material PVA film before stretch. From this point of view, it is preferably 5.5 times or more, more preferably 5.7 times or more, and further preferably 5.9 times or more. The upper limit of the draw ratio is not particularly limited, but if it is too high, stretch breakage is likely to occur, so it is preferably 8 times or less.
延伸処理を一軸延伸で行う方法に特に制限はなく、長尺方向への一軸延伸や幅方向への横一軸延伸を採用することができる。偏光フィルムを製造する場合に、偏光性能に優れたものが得られる点からは、長尺方向への一軸延伸が好ましい。長尺方向への一軸延伸は、互いに平行な複数のロールを備える延伸装置を使用して、各ロール間の周速を変えることにより行うことができる。
There is no particular limitation on the method of performing the stretching process by uniaxial stretching, and uniaxial stretching in the long direction and lateral uniaxial stretching in the width direction can be adopted. In the case of producing a polarizing film, uniaxial stretching in the long direction is preferable from the viewpoint of obtaining an excellent polarizing film. Uniaxial stretching in the long direction can be performed by using a stretching device including a plurality of rolls parallel to each other and changing the peripheral speed between the rolls.
本発明において、延伸処理を一軸延伸で行う際の最大延伸速度(%/min)に特に制限はないが、200%/min以上であることが好ましく、300%/min以上であることがより好ましく、400%/min以上であることが更に好ましい。ここで、最大延伸速度とは、3本以上の周速が異なるロールを使用して2段階以上の段階に分けてPVAフィルムの延伸処理を行う場合において、その段階の中で最も速い延伸速度のことをいう。なお、PVAフィルムの延伸処理を2段階以上に分けず1段階で行う場合には、その段階における延伸速度が最大延伸速度となる。また、延伸速度とは、単位時間当たりの、延伸前のPVAフィルムの長さに対して延伸により増加したPVAフィルムの長さの増加分のことをいう。例えば、延伸速度100%/minとは、延伸前の長さから1分間に2倍の長さにPVAフィルムを変形させるときの速度である。最大延伸速度が大きくなるほど、PVAフィルムの延伸処理(一軸延伸)を高速で行うことができ、その結果、偏光フィルムの生産性が向上することから好ましい。一方で、最大延伸速度が大きくなりすぎると、PVAフィルムの延伸処理(一軸延伸)においてPVAフィルムに局所的に過大な張力がかかることがあり、延伸破断が発生しやすくなる。このような観点から、最大延伸速度は900%/minを超えないことが好ましい。
In the present invention, the maximum stretching speed (% / min) when the stretching treatment is performed by uniaxial stretching is not particularly limited, but is preferably 200% / min or more, and more preferably 300% / min or more. , 400% / min or more is more preferable. Here, the maximum stretching speed is the fastest stretching speed among the three or more rolls having different peripheral speeds when the PVA film is stretched in two or more stages. Say that. When the stretching treatment of the PVA film is performed in one step without dividing into two or more steps, the stretching speed at that step becomes the maximum stretching rate. Further, the stretching speed refers to an increase in the length of the PVA film increased by stretching with respect to the length of the PVA film before stretching per unit time. For example, the stretching speed of 100% / min is the speed at which the PVA film is deformed from the length before stretching to twice the length in one minute. The higher the maximum stretching speed, the higher the stretching treatment (uniaxial stretching) of the PVA film can be performed, and as a result, the productivity of the polarizing film is improved, which is preferable. On the other hand, if the maximum stretching speed becomes too high, excessive tension may be locally applied to the PVA film in the stretching treatment (uniaxial stretching) of the PVA film, and stretching fracture is likely to occur. From this point of view, it is preferable that the maximum stretching speed does not exceed 900% / min.
(固定処理)
偏光フィルムの製造に当たっては、PVAフィルムへの二色性色素の吸着を強固にするために固定処理を行うことが好ましい。固定処理は、固定処理液としてホウ酸、ホウ砂等のホウ素含有化合物の1種または2種以上を含む溶液(好適には水溶液)を用い、固定処理液にPVAフィルム(好適には延伸処理後のPVAフィルム)を浸漬させることにより行うことができる。また必要に応じて、固定処理液にはヨウ素含有化合物や金属化合物を含有させてもよい。固定処理液におけるホウ素含有化合物の濃度は、2質量%以上であることが好ましく、3質量%以上であることがより好ましい。固定処理液におけるホウ素含有化合物の濃度は、15質量%以下であることが好ましく、10質量%以下であることがより好ましい。固定処理液の温度は、15℃以上であることが好ましく、25℃以上であることがより好ましい。固定処理液の温度は、60℃以下であることが好ましく、40℃以下であることがより好ましい。 (Fixed processing)
In the production of the polarizing film, it is preferable to carry out a fixing treatment in order to strengthen the adsorption of the dichroic dye on the PVA film. For the fixing treatment, a solution containing one or more boron-containing compounds such as boric acid and borax (preferably an aqueous solution) is used as the fixing treatment liquid, and a PVA film (preferably after stretching treatment) is used as the fixing treatment liquid. This can be done by immersing the PVA film). Further, if necessary, the fixing treatment liquid may contain an iodine-containing compound or a metal compound. The concentration of the boron-containing compound in the fixing treatment liquid is preferably 2% by mass or more, and more preferably 3% by mass or more. The concentration of the boron-containing compound in the fixing treatment liquid is preferably 15% by mass or less, and more preferably 10% by mass or less. The temperature of the fixing treatment liquid is preferably 15 ° C. or higher, more preferably 25 ° C. or higher. The temperature of the fixing treatment liquid is preferably 60 ° C. or lower, more preferably 40 ° C. or lower.
偏光フィルムの製造に当たっては、PVAフィルムへの二色性色素の吸着を強固にするために固定処理を行うことが好ましい。固定処理は、固定処理液としてホウ酸、ホウ砂等のホウ素含有化合物の1種または2種以上を含む溶液(好適には水溶液)を用い、固定処理液にPVAフィルム(好適には延伸処理後のPVAフィルム)を浸漬させることにより行うことができる。また必要に応じて、固定処理液にはヨウ素含有化合物や金属化合物を含有させてもよい。固定処理液におけるホウ素含有化合物の濃度は、2質量%以上であることが好ましく、3質量%以上であることがより好ましい。固定処理液におけるホウ素含有化合物の濃度は、15質量%以下であることが好ましく、10質量%以下であることがより好ましい。固定処理液の温度は、15℃以上であることが好ましく、25℃以上であることがより好ましい。固定処理液の温度は、60℃以下であることが好ましく、40℃以下であることがより好ましい。 (Fixed processing)
In the production of the polarizing film, it is preferable to carry out a fixing treatment in order to strengthen the adsorption of the dichroic dye on the PVA film. For the fixing treatment, a solution containing one or more boron-containing compounds such as boric acid and borax (preferably an aqueous solution) is used as the fixing treatment liquid, and a PVA film (preferably after stretching treatment) is used as the fixing treatment liquid. This can be done by immersing the PVA film). Further, if necessary, the fixing treatment liquid may contain an iodine-containing compound or a metal compound. The concentration of the boron-containing compound in the fixing treatment liquid is preferably 2% by mass or more, and more preferably 3% by mass or more. The concentration of the boron-containing compound in the fixing treatment liquid is preferably 15% by mass or less, and more preferably 10% by mass or less. The temperature of the fixing treatment liquid is preferably 15 ° C. or higher, more preferably 25 ° C. or higher. The temperature of the fixing treatment liquid is preferably 60 ° C. or lower, more preferably 40 ° C. or lower.
(染色処理後の洗浄処理)
染色処理後、好ましくは延伸処理後のPVAフィルムに対して洗浄処理を行うことが好ましい。洗浄処理は、PVAフィルムを洗浄処理液に浸漬させることにより行うことが好ましいが、洗浄処理液をPVAフィルムに対して吹き付けることにより行うこともできる。洗浄処理液としては、例えば水を用いることができる。水は純水に限定されず、例えばヨウ化カリウム等のヨウ素含有化合物を含有していてもよい。なお、洗浄処理液はホウ素含有化合物を含有していてもよいが、その場合、ホウ素含有化合物の濃度は2.0質量%以下であることが好ましい。 (Washing treatment after dyeing treatment)
After the dyeing treatment, it is preferable to perform a washing treatment on the PVA film after the stretching treatment. The cleaning treatment is preferably performed by immersing the PVA film in the cleaning treatment liquid, but it can also be performed by spraying the cleaning treatment liquid on the PVA film. For example, water can be used as the cleaning treatment liquid. The water is not limited to pure water, and may contain an iodine-containing compound such as potassium iodide. The cleaning treatment liquid may contain a boron-containing compound, but in that case, the concentration of the boron-containing compound is preferably 2.0% by mass or less.
染色処理後、好ましくは延伸処理後のPVAフィルムに対して洗浄処理を行うことが好ましい。洗浄処理は、PVAフィルムを洗浄処理液に浸漬させることにより行うことが好ましいが、洗浄処理液をPVAフィルムに対して吹き付けることにより行うこともできる。洗浄処理液としては、例えば水を用いることができる。水は純水に限定されず、例えばヨウ化カリウム等のヨウ素含有化合物を含有していてもよい。なお、洗浄処理液はホウ素含有化合物を含有していてもよいが、その場合、ホウ素含有化合物の濃度は2.0質量%以下であることが好ましい。 (Washing treatment after dyeing treatment)
After the dyeing treatment, it is preferable to perform a washing treatment on the PVA film after the stretching treatment. The cleaning treatment is preferably performed by immersing the PVA film in the cleaning treatment liquid, but it can also be performed by spraying the cleaning treatment liquid on the PVA film. For example, water can be used as the cleaning treatment liquid. The water is not limited to pure water, and may contain an iodine-containing compound such as potassium iodide. The cleaning treatment liquid may contain a boron-containing compound, but in that case, the concentration of the boron-containing compound is preferably 2.0% by mass or less.
洗浄処理液の温度は5~40℃の範囲内であることが好ましい。洗浄処理液の温度が5℃以上であることにより水分の凍結によるPVAフィルムの破断を抑制することができる。また、洗浄処理液の温度が40℃以下であることにより、得られる偏光フィルムの光学特性が向上する。洗浄処理液の温度は、7℃以上であることがより好ましく、10℃以上であることがさらに好ましい。また、洗浄処理液の温度は、38℃以下であることがより好ましく、35℃以下であることがさらに好ましい。
The temperature of the cleaning treatment liquid is preferably in the range of 5 to 40 ° C. When the temperature of the cleaning treatment liquid is 5 ° C. or higher, it is possible to suppress the breakage of the PVA film due to freezing of water. Further, when the temperature of the cleaning treatment liquid is 40 ° C. or lower, the optical characteristics of the obtained polarizing film are improved. The temperature of the cleaning treatment liquid is more preferably 7 ° C. or higher, further preferably 10 ° C. or higher. Further, the temperature of the cleaning treatment liquid is more preferably 38 ° C. or lower, and further preferably 35 ° C. or lower.
偏光フィルムを製造する際の具体的な方法としては、PVAフィルムに対して染色処理、延伸処理、ならびに、架橋処理及び/または固定処理を施す方法が挙げられる。好ましい一例としては、PVAフィルムに対して、膨潤処理、染色処理、架橋処理、延伸処理(特に一軸延伸処理)、洗浄処理をこの順番で施す方法が挙げられる。また、延伸処理は、上記よりも前のいずれかの処理工程で行ってもよいし、2段以上の多段で行ってもよい。
Specific methods for producing a polarizing film include a method of subjecting a PVA film to a dyeing treatment, a stretching treatment, a crosslinking treatment and / or a fixing treatment. As a preferable example, there is a method in which the PVA film is subjected to a swelling treatment, a dyeing treatment, a crosslinking treatment, a stretching treatment (particularly a uniaxial stretching treatment), and a washing treatment in this order. Further, the stretching treatment may be performed in any of the treatment steps prior to the above, or may be performed in multiple stages of two or more stages.
上記のような各処理を経た後のPVAフィルムに乾燥処理を行うことにより、偏光フィルムを得ることができる。乾燥処理の方法に特に制限はなく、例えば、フィルムを加熱ロールに接触させる接触式の方法、熱風乾燥機中で乾燥させる方法、フィルムを浮遊させながら熱風により乾燥させるフローティング式の方法などが挙げられる。
A polarizing film can be obtained by subjecting the PVA film after each of the above treatments to a drying treatment. The drying treatment method is not particularly limited, and examples thereof include a contact type method in which the film is brought into contact with a heating roll, a method in which the film is dried in a hot air dryer, and a floating type method in which the film is dried by hot air while floating. ..
<偏光板>
以上のようにして得られた偏光フィルムは、その両面または片面に、光学的に透明で且
つ機械的強度を有する保護フィルムを貼り合わせて偏光板にして使用されることが好ましい。保護フィルムとしては、三酢酸セルロース(TAC)フィルム、シクロオレフィンポリマー(COP)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルムなどが使用される。また、貼り合わせのための接着剤としては、PVA系接着剤やウレタン系接着剤などが挙げられるが、PVA系接着剤が好ましい。 <Polarizer>
The polarizing film obtained as described above is preferably used as a polarizing plate by laminating a protective film that is optically transparent and has mechanical strength on both sides or one side thereof. As the protective film, a cellulose triacetate (TAC) film, a cycloolefin polymer (COP) film, a cellulose acetate / butyrate cellulose (CAB) film, an acrylic film, a polyester film and the like are used. Further, examples of the adhesive for bonding include PVA-based adhesives and urethane-based adhesives, but PVA-based adhesives are preferable.
以上のようにして得られた偏光フィルムは、その両面または片面に、光学的に透明で且
つ機械的強度を有する保護フィルムを貼り合わせて偏光板にして使用されることが好ましい。保護フィルムとしては、三酢酸セルロース(TAC)フィルム、シクロオレフィンポリマー(COP)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルムなどが使用される。また、貼り合わせのための接着剤としては、PVA系接着剤やウレタン系接着剤などが挙げられるが、PVA系接着剤が好ましい。 <Polarizer>
The polarizing film obtained as described above is preferably used as a polarizing plate by laminating a protective film that is optically transparent and has mechanical strength on both sides or one side thereof. As the protective film, a cellulose triacetate (TAC) film, a cycloolefin polymer (COP) film, a cellulose acetate / butyrate cellulose (CAB) film, an acrylic film, a polyester film and the like are used. Further, examples of the adhesive for bonding include PVA-based adhesives and urethane-based adhesives, but PVA-based adhesives are preferable.
上記のようにして得られた偏光板は、アクリル系等の粘着剤を積層した後、ガラス基板に貼り合わせてLCDの部品として使用することができる。同時に位相差フィルムや視野角向上フィルム、輝度向上フィルム等と貼り合わせてもよい。
The polarizing plate obtained as described above can be used as a component of an LCD by laminating an adhesive such as an acrylic material and then laminating it on a glass substrate. At the same time, it may be bonded to a retardation film, a viewing angle improving film, a brightness improving film, or the like.
以下に本発明を実施例などにより具体的に説明するが、本発明は、以下の実施例により何ら限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to Examples and the like, but the present invention is not limited to the following Examples.
<FT-IR測定による結晶度指数の算出>
以下の実施例または比較例で得られたPVAフィルムから、幅30mm×長さ30mmのPVAフィルムを切り出し、測定サンプルとした。PVAフィルムの結晶度指数の値はPVAフィルムの吸湿量によって多少変動するため、この測定サンプルを温度24.0℃、相対湿度45.0%RHの環境下で24時間保管し、同環境の部屋内に設置した測定装置にてFT-IR測定を行った。FT-IR測定は、PVAフィルムの両面(PVAフィルムの厚み方向と直交する2つの表面であり、第1の表面及び第2の表面)に対して、下記条件にて測定した。 <Calculation of crystallinity index by FT-IR measurement>
A PVA film having a width of 30 mm and a length of 30 mm was cut out from the PVA film obtained in the following Example or Comparative Example and used as a measurement sample. Since the value of the crystallinity index of the PVA film varies slightly depending on the amount of moisture absorbed by the PVA film, this measurement sample is stored for 24 hours in an environment with a temperature of 24.0 ° C and a relative humidity of 45.0% RH, and a room in the same environment. FT-IR measurement was performed with the measuring device installed inside. The FT-IR measurement was performed on both sides of the PVA film (two surfaces orthogonal to the thickness direction of the PVA film, the first surface and the second surface) under the following conditions.
以下の実施例または比較例で得られたPVAフィルムから、幅30mm×長さ30mmのPVAフィルムを切り出し、測定サンプルとした。PVAフィルムの結晶度指数の値はPVAフィルムの吸湿量によって多少変動するため、この測定サンプルを温度24.0℃、相対湿度45.0%RHの環境下で24時間保管し、同環境の部屋内に設置した測定装置にてFT-IR測定を行った。FT-IR測定は、PVAフィルムの両面(PVAフィルムの厚み方向と直交する2つの表面であり、第1の表面及び第2の表面)に対して、下記条件にて測定した。 <Calculation of crystallinity index by FT-IR measurement>
A PVA film having a width of 30 mm and a length of 30 mm was cut out from the PVA film obtained in the following Example or Comparative Example and used as a measurement sample. Since the value of the crystallinity index of the PVA film varies slightly depending on the amount of moisture absorbed by the PVA film, this measurement sample is stored for 24 hours in an environment with a temperature of 24.0 ° C and a relative humidity of 45.0% RH, and a room in the same environment. FT-IR measurement was performed with the measuring device installed inside. The FT-IR measurement was performed on both sides of the PVA film (two surfaces orthogonal to the thickness direction of the PVA film, the first surface and the second surface) under the following conditions.
測定装置:NICOLET is 10(Thermo Fisher社製)
測定条件:1回反射ATR法 入射角45°
分解能:4.0cm-1
積算回数:32回
測定温度:24.0℃(環境温度)
測定湿度:45.0%RH(環境相対湿度)
ATRプリズム:ダイアモンドプリズムまたはゲルマニウムプリズム Measuring device: NICOLET is 10 (manufactured by Thermo Fisher)
Measurement conditions: 1-time reflection ATR method Incident angle 45 °
Resolution: 4.0 cm -1
Number of integrations: 32 times Measurement temperature: 24.0 ° C (environmental temperature)
Measured humidity: 45.0% RH (environmental relative humidity)
ATR prism: diamond prism or germanium prism
測定条件:1回反射ATR法 入射角45°
分解能:4.0cm-1
積算回数:32回
測定温度:24.0℃(環境温度)
測定湿度:45.0%RH(環境相対湿度)
ATRプリズム:ダイアモンドプリズムまたはゲルマニウムプリズム Measuring device: NICOLET is 10 (manufactured by Thermo Fisher)
Measurement conditions: 1-time reflection ATR method Incident angle 45 °
Resolution: 4.0 cm -1
Number of integrations: 32 times Measurement temperature: 24.0 ° C (environmental temperature)
Measured humidity: 45.0% RH (environmental relative humidity)
ATR prism: diamond prism or germanium prism
PVAフィルムのFT-IR測定で得た赤外線吸収スペクトルから、前記の方法にてPVAフィルムの両面(PVAフィルムの厚み方向と直交する2つの表面であり、第1の表面及び第2の表面)の結晶度指数を算出した。
From the infrared absorption spectrum obtained by FT-IR measurement of the PVA film, both sides of the PVA film (two surfaces orthogonal to the thickness direction of the PVA film, the first surface and the second surface) by the above method. The crystallinity index was calculated.
<偏光フィルムの表面の皺評価>
以下の実施例または比較例で得られた偏光フィルムについて、偏光フィルムの表面に蛍光灯で光を斜めから照射し反射光を目視で外観観察することにより、偏光フィルムの表面の皺の状態を確認し、以下の基準で評価した。
評価基準:
A:皺が確認されなかった。
B:実用上問題がない程度の僅かな皺が確認された。
C:実用上問題となる程度の皺が明瞭に確認された。 <Evaluation of wrinkles on the surface of polarizing film>
With respect to the polarizing film obtained in the following Example or Comparative Example, the state of wrinkles on the surface of the polarizing film was confirmed by irradiating the surface of the polarizing film with light from an angle with a fluorescent lamp and visually observing the reflected light. However, it was evaluated according to the following criteria.
Evaluation criteria:
A: No wrinkles were confirmed.
B: Slight wrinkles were confirmed to the extent that there was no problem in practical use.
C: Wrinkles that were practically problematic were clearly confirmed.
以下の実施例または比較例で得られた偏光フィルムについて、偏光フィルムの表面に蛍光灯で光を斜めから照射し反射光を目視で外観観察することにより、偏光フィルムの表面の皺の状態を確認し、以下の基準で評価した。
評価基準:
A:皺が確認されなかった。
B:実用上問題がない程度の僅かな皺が確認された。
C:実用上問題となる程度の皺が明瞭に確認された。 <Evaluation of wrinkles on the surface of polarizing film>
With respect to the polarizing film obtained in the following Example or Comparative Example, the state of wrinkles on the surface of the polarizing film was confirmed by irradiating the surface of the polarizing film with light from an angle with a fluorescent lamp and visually observing the reflected light. However, it was evaluated according to the following criteria.
Evaluation criteria:
A: No wrinkles were confirmed.
B: Slight wrinkles were confirmed to the extent that there was no problem in practical use.
C: Wrinkles that were practically problematic were clearly confirmed.
<偏光フィルム製造時の延伸破断頻度の評価>
以下の実施例または比較例において、偏光フィルムを製造する際の延伸処理における一軸延伸を20分間連続で行った。この20分間の連続延伸で発生した延伸破断の回数を測定し、延伸破断頻度(回/20mim)を評価した。 <Evaluation of stretching fracture frequency during polarizing film manufacturing>
In the following Examples or Comparative Examples, uniaxial stretching in the stretching treatment for producing a polarizing film was continuously performed for 20 minutes. The number of stretch breaks generated in this continuous stretching for 20 minutes was measured, and the stretch break frequency (times / 20 mim) was evaluated.
以下の実施例または比較例において、偏光フィルムを製造する際の延伸処理における一軸延伸を20分間連続で行った。この20分間の連続延伸で発生した延伸破断の回数を測定し、延伸破断頻度(回/20mim)を評価した。 <Evaluation of stretching fracture frequency during polarizing film manufacturing>
In the following Examples or Comparative Examples, uniaxial stretching in the stretching treatment for producing a polarizing film was continuously performed for 20 minutes. The number of stretch breaks generated in this continuous stretching for 20 minutes was measured, and the stretch break frequency (times / 20 mim) was evaluated.
<実施例1>
<PVAフィルムの製造及び評価>
PVA(ケン化度99モル%、重合度2400)100質量部、可塑剤としてグリセリン可塑剤12質量部、界面活性剤としてラウリン酸ジエタノールアミド0.1質量部及び水217.6質量部を用いて溶融押出機で溶融混合して製膜原液(揮発分率66質量%)を調製した。次に、この製膜原液をTダイから支持体(表面温度80℃)上に膜状に吐出して、支持体上に液状被膜を形成した。支持体上で、液状被膜の支持体との非接触面の全体に、85℃、3%RHの熱風を5m/秒の速度で吹き付けて乾燥し、PVAフィルム(水分率32質量%)を得た。次いで、このPVAフィルムを支持体から剥離して、PVAフィルムの一方の面と他方の面とが各乾燥ロールに交互に接触するように、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの間で更に乾燥した後、最終乾燥ロールから剥離した。このとき、第1乾燥ロールから最終乾燥ロールまでの各乾燥ロールの表面温度は75℃とした。さらに、最終乾燥ロールからPVAフィルムを剥離して、PVAフィルムの一方の面と他方の面とが各熱処理ロールに交互に接触するように、熱処理を行った。このとき、熱処理は2本の熱処理ロールを用いて行い、熱処理ロールの表面温度はいずれも90℃とした。得られたPVAフィルム(厚み30μm、幅1200mm)に対して上記した方法でFT-IR測定を行い、結晶度指数(Fg1、Fg2、Fd1及びFd2)を算出した。結果を表1に示す。 <Example 1>
<Manufacturing and evaluation of PVA film>
Using 100 parts by mass of PVA (sakenization degree 99 mol%, degree of polymerization 2400), 12 parts by mass of glycerin plasticizer as a plasticizer, 0.1 part by mass of lauric acid diethanolamide and 217.6 parts by mass of water as a surfactant. A film-forming stock solution (volatile content of 66% by mass) was prepared by melt-mixing with a melt extruder. Next, this film-forming stock solution was discharged from the T-die onto the support (surface temperature 80 ° C.) in the form of a film to form a liquid film on the support. A PVA film (moisture content: 32% by mass) was obtained by blowing hot air at 85 ° C. and 3% RH at a rate of 5 m / sec on the entire non-contact surface of the liquid film on the support and drying it. rice field. The PVA film is then stripped from the support and from the first drying roll to the final drying roll just before the heat treatment roll so that one side and the other side of the PVA film are in alternating contact with each drying roll. After further drying up to (19th drying roll), the film was peeled off from the final drying roll. At this time, the surface temperature of each dry roll from the first dry roll to the final dry roll was set to 75 ° C. Further, the PVA film was peeled off from the final dry roll, and heat treatment was performed so that one surface of the PVA film and the other surface were alternately in contact with each heat treatment roll. At this time, the heat treatment was performed using two heat treatment rolls, and the surface temperature of each of the heat treatment rolls was 90 ° C. The obtained PVA film (thickness 30 μm, width 1200 mm) was subjected to FT-IR measurement by the above method, and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) was calculated. The results are shown in Table 1.
<PVAフィルムの製造及び評価>
PVA(ケン化度99モル%、重合度2400)100質量部、可塑剤としてグリセリン可塑剤12質量部、界面活性剤としてラウリン酸ジエタノールアミド0.1質量部及び水217.6質量部を用いて溶融押出機で溶融混合して製膜原液(揮発分率66質量%)を調製した。次に、この製膜原液をTダイから支持体(表面温度80℃)上に膜状に吐出して、支持体上に液状被膜を形成した。支持体上で、液状被膜の支持体との非接触面の全体に、85℃、3%RHの熱風を5m/秒の速度で吹き付けて乾燥し、PVAフィルム(水分率32質量%)を得た。次いで、このPVAフィルムを支持体から剥離して、PVAフィルムの一方の面と他方の面とが各乾燥ロールに交互に接触するように、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの間で更に乾燥した後、最終乾燥ロールから剥離した。このとき、第1乾燥ロールから最終乾燥ロールまでの各乾燥ロールの表面温度は75℃とした。さらに、最終乾燥ロールからPVAフィルムを剥離して、PVAフィルムの一方の面と他方の面とが各熱処理ロールに交互に接触するように、熱処理を行った。このとき、熱処理は2本の熱処理ロールを用いて行い、熱処理ロールの表面温度はいずれも90℃とした。得られたPVAフィルム(厚み30μm、幅1200mm)に対して上記した方法でFT-IR測定を行い、結晶度指数(Fg1、Fg2、Fd1及びFd2)を算出した。結果を表1に示す。 <Example 1>
<Manufacturing and evaluation of PVA film>
Using 100 parts by mass of PVA (sakenization degree 99 mol%, degree of polymerization 2400), 12 parts by mass of glycerin plasticizer as a plasticizer, 0.1 part by mass of lauric acid diethanolamide and 217.6 parts by mass of water as a surfactant. A film-forming stock solution (volatile content of 66% by mass) was prepared by melt-mixing with a melt extruder. Next, this film-forming stock solution was discharged from the T-die onto the support (surface temperature 80 ° C.) in the form of a film to form a liquid film on the support. A PVA film (moisture content: 32% by mass) was obtained by blowing hot air at 85 ° C. and 3% RH at a rate of 5 m / sec on the entire non-contact surface of the liquid film on the support and drying it. rice field. The PVA film is then stripped from the support and from the first drying roll to the final drying roll just before the heat treatment roll so that one side and the other side of the PVA film are in alternating contact with each drying roll. After further drying up to (19th drying roll), the film was peeled off from the final drying roll. At this time, the surface temperature of each dry roll from the first dry roll to the final dry roll was set to 75 ° C. Further, the PVA film was peeled off from the final dry roll, and heat treatment was performed so that one surface of the PVA film and the other surface were alternately in contact with each heat treatment roll. At this time, the heat treatment was performed using two heat treatment rolls, and the surface temperature of each of the heat treatment rolls was 90 ° C. The obtained PVA film (thickness 30 μm, width 1200 mm) was subjected to FT-IR measurement by the above method, and the crystallinity index (Fg1, Fg2, Fd1 and Fd2) was calculated. The results are shown in Table 1.
<偏光フィルムの製造及び評価>
得られたPVAフィルムを幅650mmにスリットし、このフィルムに対して膨潤処理、染色処理、架橋処理、延伸処理、洗浄処理、乾燥処理をこの順に行って偏光フィルムを連続的に製造した。膨潤処理は、25℃の純水(膨潤処理液)に浸漬しながら長さ方向に2.00倍に一軸延伸して行った。染色処理は、温度32℃のヨウ化カリウム/ヨウ素染色液(染色処理液)(ヨウ化カリウム/ヨウ素(質量比)23、ヨウ素濃度0.03~0.05質量%)に浸漬しながら長さ方向に1.26倍に一軸延伸して行った。この染色処理では、延伸処理における一軸延伸後に得られる偏光フィルムの単体透過率が43.5%±0.2%の範囲になるように、染色処理液におけるヨウ素濃度を0.03~0.05質量%の範囲内で調整した。架橋処理は、32℃のホウ酸水溶液(架橋処理液)(ホウ酸濃度2.6質量%)に浸漬しながら長さ方向に1.19倍に一軸延伸して行った。延伸処理は、55℃のホウ酸/ヨウ化カリウム水溶液(延伸処理液)(ホウ酸濃度2.8質量%、ヨウ化カリウム濃度5質量%)に浸漬しながら長さ方向に2.00倍に一軸延伸して行った。この延伸処理における一軸延伸の最大延伸速度は、400%/minであった。洗浄処理は、22℃のヨウ化カリウム/ホウ酸水溶液(洗浄処理液)(ヨウ化カリウム濃度3~6質量%、ホウ酸濃度1.5質量%)に延伸せずに12秒間浸漬することにより行った。乾燥処理は、延伸せずに80℃で1.5分間熱風乾燥することにより行い、偏光フィルムを得た。得られた偏光フィルムに対して、上記した方法で偏光フィルムの表面の皺と偏光フィルム製造時の延伸破断頻度を評価した。結果を表2に示す。 <Manufacturing and evaluation of polarizing film>
The obtained PVA film was slit to a width of 650 mm, and the film was continuously subjected to swelling treatment, dyeing treatment, cross-linking treatment, stretching treatment, washing treatment, and drying treatment in this order to continuously produce a polarizing film. The swelling treatment was carried out by uniaxially stretching 2.00 times in the length direction while immersing in pure water (swelling treatment liquid) at 25 ° C. The dyeing treatment is performed while being immersed in a potassium iodide / iodine staining solution (staining treatment solution) at a temperature of 32 ° C. (potassium iodide / iodine (mass ratio) 23, iodine concentration 0.03 to 0.05% by mass). It was uniaxially stretched 1.26 times in the direction. In this dyeing treatment, the iodine concentration in the dyeing treatment liquid is 0.03 to 0.05 so that the simple substance transmittance of the polarizing film obtained after uniaxial stretching in the stretching treatment is in the range of 43.5% ± 0.2%. Adjusted within the range of mass%. The cross-linking treatment was carried out by uniaxially stretching 1.19 times in the length direction while immersing in a boric acid aqueous solution (cross-linking treatment liquid) (boric acid concentration 2.6% by mass) at 32 ° C. The stretching treatment is performed 2.00 times in the length direction while being immersed in a 55 ° C. boric acid / potassium iodide aqueous solution (stretching treatment liquid) (boric acid concentration 2.8% by mass,potassium iodide concentration 5% by mass). It was uniaxially stretched. The maximum stretching speed of uniaxial stretching in this stretching treatment was 400% / min. The washing treatment is carried out by immersing in a potassium iodide / boric acid aqueous solution (washing liquid) (potassium iodide concentration 3 to 6% by mass, boric acid concentration 1.5% by mass) at 22 ° C. for 12 seconds without stretching. gone. The drying treatment was carried out by hot air drying at 80 ° C. for 1.5 minutes without stretching to obtain a polarizing film. With respect to the obtained polarizing film, wrinkles on the surface of the polarizing film and the frequency of stretch breakage during the production of the polarizing film were evaluated by the above method. The results are shown in Table 2.
得られたPVAフィルムを幅650mmにスリットし、このフィルムに対して膨潤処理、染色処理、架橋処理、延伸処理、洗浄処理、乾燥処理をこの順に行って偏光フィルムを連続的に製造した。膨潤処理は、25℃の純水(膨潤処理液)に浸漬しながら長さ方向に2.00倍に一軸延伸して行った。染色処理は、温度32℃のヨウ化カリウム/ヨウ素染色液(染色処理液)(ヨウ化カリウム/ヨウ素(質量比)23、ヨウ素濃度0.03~0.05質量%)に浸漬しながら長さ方向に1.26倍に一軸延伸して行った。この染色処理では、延伸処理における一軸延伸後に得られる偏光フィルムの単体透過率が43.5%±0.2%の範囲になるように、染色処理液におけるヨウ素濃度を0.03~0.05質量%の範囲内で調整した。架橋処理は、32℃のホウ酸水溶液(架橋処理液)(ホウ酸濃度2.6質量%)に浸漬しながら長さ方向に1.19倍に一軸延伸して行った。延伸処理は、55℃のホウ酸/ヨウ化カリウム水溶液(延伸処理液)(ホウ酸濃度2.8質量%、ヨウ化カリウム濃度5質量%)に浸漬しながら長さ方向に2.00倍に一軸延伸して行った。この延伸処理における一軸延伸の最大延伸速度は、400%/minであった。洗浄処理は、22℃のヨウ化カリウム/ホウ酸水溶液(洗浄処理液)(ヨウ化カリウム濃度3~6質量%、ホウ酸濃度1.5質量%)に延伸せずに12秒間浸漬することにより行った。乾燥処理は、延伸せずに80℃で1.5分間熱風乾燥することにより行い、偏光フィルムを得た。得られた偏光フィルムに対して、上記した方法で偏光フィルムの表面の皺と偏光フィルム製造時の延伸破断頻度を評価した。結果を表2に示す。 <Manufacturing and evaluation of polarizing film>
The obtained PVA film was slit to a width of 650 mm, and the film was continuously subjected to swelling treatment, dyeing treatment, cross-linking treatment, stretching treatment, washing treatment, and drying treatment in this order to continuously produce a polarizing film. The swelling treatment was carried out by uniaxially stretching 2.00 times in the length direction while immersing in pure water (swelling treatment liquid) at 25 ° C. The dyeing treatment is performed while being immersed in a potassium iodide / iodine staining solution (staining treatment solution) at a temperature of 32 ° C. (potassium iodide / iodine (mass ratio) 23, iodine concentration 0.03 to 0.05% by mass). It was uniaxially stretched 1.26 times in the direction. In this dyeing treatment, the iodine concentration in the dyeing treatment liquid is 0.03 to 0.05 so that the simple substance transmittance of the polarizing film obtained after uniaxial stretching in the stretching treatment is in the range of 43.5% ± 0.2%. Adjusted within the range of mass%. The cross-linking treatment was carried out by uniaxially stretching 1.19 times in the length direction while immersing in a boric acid aqueous solution (cross-linking treatment liquid) (boric acid concentration 2.6% by mass) at 32 ° C. The stretching treatment is performed 2.00 times in the length direction while being immersed in a 55 ° C. boric acid / potassium iodide aqueous solution (stretching treatment liquid) (boric acid concentration 2.8% by mass,
<実施例2>
実施例1の<PVAフィルムの製造及び評価>において、製膜原液の調製に用いるPVAをPVA(ケン化度99モル%、重合度2400、エチレン変性2.5モル%)に変更するとともに、2本の熱処理ロールの表面温度をいずれも85℃に変更した以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Example 2>
In <Production and Evaluation of PVA Film> of Example 1, the PVA used for preparing the film-forming stock solution is changed to PVA (sakenization degree 99 mol%, polymerization degree 2400, ethylene modification 2.5 mol%), and 2 A PVA film and a polarizing film were obtained in the same manner as in Example 1 except that the surface temperature of each of the heat-treated rolls of the book was changed to 85 ° C. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
実施例1の<PVAフィルムの製造及び評価>において、製膜原液の調製に用いるPVAをPVA(ケン化度99モル%、重合度2400、エチレン変性2.5モル%)に変更するとともに、2本の熱処理ロールの表面温度をいずれも85℃に変更した以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Example 2>
In <Production and Evaluation of PVA Film> of Example 1, the PVA used for preparing the film-forming stock solution is changed to PVA (sakenization degree 99 mol%, polymerization degree 2400, ethylene modification 2.5 mol%), and 2 A PVA film and a polarizing film were obtained in the same manner as in Example 1 except that the surface temperature of each of the heat-treated rolls of the book was changed to 85 ° C. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
<実施例3>
実施例1の<PVAフィルムの製造及び評価>において、支持体の表面温度を100℃、液状被膜の支持体との非接触面の全体に吹き付ける熱風の温度を105℃、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの各乾燥ロールの表面温度を90℃、2本の熱処理ロールの表面温度をいずれも80℃に変更した以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Example 3>
In <Manufacturing and Evaluation of PVA Film> of Example 1, the surface temperature of the support is 100 ° C., the temperature of the hot air blown over the entire non-contact surface with the support of the liquid film is 105 ° C., and the heat treatment is performed from the first drying roll. The same as in Example 1 except that the surface temperature of each drying roll up to the final drying roll (19th drying roll) immediately before the roll was changed to 90 ° C. and the surface temperature of the two heat-treated rolls was changed to 80 ° C. A PVA film and a polarizing film were obtained. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
実施例1の<PVAフィルムの製造及び評価>において、支持体の表面温度を100℃、液状被膜の支持体との非接触面の全体に吹き付ける熱風の温度を105℃、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの各乾燥ロールの表面温度を90℃、2本の熱処理ロールの表面温度をいずれも80℃に変更した以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Example 3>
In <Manufacturing and Evaluation of PVA Film> of Example 1, the surface temperature of the support is 100 ° C., the temperature of the hot air blown over the entire non-contact surface with the support of the liquid film is 105 ° C., and the heat treatment is performed from the first drying roll. The same as in Example 1 except that the surface temperature of each drying roll up to the final drying roll (19th drying roll) immediately before the roll was changed to 90 ° C. and the surface temperature of the two heat-treated rolls was changed to 80 ° C. A PVA film and a polarizing film were obtained. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
<実施例4>
実施例1の<PVAフィルムの製造及び評価>において、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの乾燥を、PVAフィルムの一方の面(支持体上で液状被膜と支持体が接触していた面)にのみ各乾燥ロールを接触させて行った以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Example 4>
In <Production and Evaluation of PVA Film> of Example 1, drying from the first drying roll to the final drying roll (19th drying roll) immediately before the heat treatment roll is performed on one surface (on the support) of the PVA film. A PVA film and a polarizing film were obtained in the same manner as in Example 1 except that the drying rolls were brought into contact with each other only on the surface where the liquid film and the support were in contact with each other. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
実施例1の<PVAフィルムの製造及び評価>において、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの乾燥を、PVAフィルムの一方の面(支持体上で液状被膜と支持体が接触していた面)にのみ各乾燥ロールを接触させて行った以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Example 4>
In <Production and Evaluation of PVA Film> of Example 1, drying from the first drying roll to the final drying roll (19th drying roll) immediately before the heat treatment roll is performed on one surface (on the support) of the PVA film. A PVA film and a polarizing film were obtained in the same manner as in Example 1 except that the drying rolls were brought into contact with each other only on the surface where the liquid film and the support were in contact with each other. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
<比較例1>
実施例1の<PVAフィルムの製造及び評価>において、支持体の表面温度を115℃、液状被膜の支持体との非接触面の全体に吹き付ける熱風の温度を120℃、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの各乾燥ロールの表面温度を65℃、2本の熱処理ロールの表面温度をいずれも65℃に変更した以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Comparative Example 1>
In <Manufacturing and Evaluation of PVA Film> of Example 1, the surface temperature of the support is 115 ° C., the temperature of the hot air blown over the entire non-contact surface with the support of the liquid film is 120 ° C., and the heat treatment is performed from the first drying roll. The same as in Example 1 except that the surface temperature of each drying roll up to the final drying roll (19th drying roll) immediately before the roll was changed to 65 ° C. and the surface temperature of the two heat-treated rolls was changed to 65 ° C. A PVA film and a polarizing film were obtained. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
実施例1の<PVAフィルムの製造及び評価>において、支持体の表面温度を115℃、液状被膜の支持体との非接触面の全体に吹き付ける熱風の温度を120℃、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの各乾燥ロールの表面温度を65℃、2本の熱処理ロールの表面温度をいずれも65℃に変更した以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Comparative Example 1>
In <Manufacturing and Evaluation of PVA Film> of Example 1, the surface temperature of the support is 115 ° C., the temperature of the hot air blown over the entire non-contact surface with the support of the liquid film is 120 ° C., and the heat treatment is performed from the first drying roll. The same as in Example 1 except that the surface temperature of each drying roll up to the final drying roll (19th drying roll) immediately before the roll was changed to 65 ° C. and the surface temperature of the two heat-treated rolls was changed to 65 ° C. A PVA film and a polarizing film were obtained. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
<比較例2>
実施例1の<PVAフィルムの製造及び評価>において、支持体の表面温度を60℃、液状被膜の支持体との非接触面の全体に吹き付ける熱風の温度を70℃、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの各乾燥ロールの表面温度を90℃に変更した以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Comparative Example 2>
In <Manufacturing and Evaluation of PVA Film> of Example 1, the surface temperature of the support is 60 ° C., the temperature of the hot air blown over the entire non-contact surface of the liquid film with the support is 70 ° C., and heat treatment is performed from the first dry roll. A PVA film and a polarizing film were obtained in the same manner as in Example 1 except that the surface temperature of each dry roll up to the final dry roll (19th dry roll) immediately before the roll was changed to 90 ° C. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
実施例1の<PVAフィルムの製造及び評価>において、支持体の表面温度を60℃、液状被膜の支持体との非接触面の全体に吹き付ける熱風の温度を70℃、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの各乾燥ロールの表面温度を90℃に変更した以外は実施例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Comparative Example 2>
In <Manufacturing and Evaluation of PVA Film> of Example 1, the surface temperature of the support is 60 ° C., the temperature of the hot air blown over the entire non-contact surface of the liquid film with the support is 70 ° C., and heat treatment is performed from the first dry roll. A PVA film and a polarizing film were obtained in the same manner as in Example 1 except that the surface temperature of each dry roll up to the final dry roll (19th dry roll) immediately before the roll was changed to 90 ° C. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
<参考例1>
実施例1の<偏光フィルムの製造及び評価>において、延伸処理における一軸延伸の最大延伸速度を190%に変更した以外は比較例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Reference example 1>
In <Production and Evaluation of Polarizing Film> of Example 1, a PVA film and a polarizing film were obtained in the same manner as in Comparative Example 1 except that the maximum stretching speed of uniaxial stretching in the stretching treatment was changed to 190%. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
実施例1の<偏光フィルムの製造及び評価>において、延伸処理における一軸延伸の最大延伸速度を190%に変更した以外は比較例1と同様にして、PVAフィルム及び偏光フィルムを得た。得られたPVAフィルム及び偏光フィルムに対して実施例1と同様に測定及び評価を行った。結果をそれぞれ表1、2に示す。 <Reference example 1>
In <Production and Evaluation of Polarizing Film> of Example 1, a PVA film and a polarizing film were obtained in the same manner as in Comparative Example 1 except that the maximum stretching speed of uniaxial stretching in the stretching treatment was changed to 190%. The obtained PVA film and polarizing film were measured and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2, respectively.
表1、2に示す通り、実施例1~4のPVAフィルムを用いて偏光フィルムを製造した場合には、得られる偏光フィルムの表面において、皺が確認されなかったか、実用上問題がない程度の僅かな皺が確認された。ここで、偏光フィルムの表面に発生する皺は、PVAフィルムの表面の皺、すなわち、偏光フィルムを製造する際の延伸処理における一軸延伸時に発生する、PVAフィルムの表面の皺に起因する。よって、実施例1~4のPVAフィルムは、一軸延伸時に表面に皺が発生しにくいものであるといえる。
As shown in Tables 1 and 2, when the polarizing film was produced using the PVA films of Examples 1 to 4, no wrinkles were confirmed on the surface of the obtained polarizing film, or there was no practical problem. A slight wrinkle was confirmed. Here, the wrinkles generated on the surface of the polarizing film are caused by the wrinkles on the surface of the PVA film, that is, the wrinkles on the surface of the PVA film generated during uniaxial stretching in the stretching process for producing the polarizing film. Therefore, it can be said that the PVA films of Examples 1 to 4 are less likely to have wrinkles on the surface during uniaxial stretching.
表1、2に示される通り、実施例1~4のPVAフィルムを用いて偏光フィルムを製造した場合には、延伸処理における一軸延伸を20分間連続で行った場合に、延伸破断の頻度が0~2回/20minであった。よって、実施例1~4のPVAフィルムは、延伸時(一軸延伸時)の破断が抑制されたものであるといえる。
As shown in Tables 1 and 2, when the polarizing film was produced using the PVA films of Examples 1 to 4, the frequency of stretching breakage was 0 when the uniaxial stretching in the stretching treatment was continuously performed for 20 minutes. It was ~ 2 times / 20 min. Therefore, it can be said that the PVA films of Examples 1 to 4 are suppressed from breaking during stretching (at the time of uniaxial stretching).
また、参考例1に示す通り、偏光フィルムを製造する際の延伸処理における一軸延伸の最大延伸速度が比較的低速(190%/min)である場合、比較例1のPVAフィルムを用いた場合であっても、得られる偏光フィルムの表面において皺が確認されず、延伸時(一軸延伸時)の破断頻度は0回/20minであった。一方で、比較例1に示す通り、最大延伸速度が高速(400%/min)である場合、比較例1のPVAフィルムを用いた場合には、得られる偏光フィルムの表面において実用上問題となる程度の皺が明瞭に確認され、延伸時(一軸延伸時)の破断頻度は5回/20minであった。
Further, as shown in Reference Example 1, when the maximum stretching speed of uniaxial stretching in the stretching process in producing a polarizing film is relatively low (190% / min), when the PVA film of Comparative Example 1 is used. Even if there were, no wrinkles were confirmed on the surface of the obtained polarizing film, and the breaking frequency during stretching (uniaxial stretching) was 0 times / 20 min. On the other hand, as shown in Comparative Example 1, when the maximum stretching speed is high (400% / min), when the PVA film of Comparative Example 1 is used, there is a practical problem on the surface of the obtained polarizing film. The degree of wrinkles was clearly confirmed, and the breaking frequency during stretching (uniaxial stretching) was 5 times / 20 min.
すなわち、比較例1のPVAフィルムは、最大延伸速度が高速(400%/min)である場合に、一軸延伸時に表面に皺が発生しやすく、延伸時(一軸延伸時)の破断が発生しやすいものであるといえる。一方で、実施例1~4のPVAフィルムは、最大延伸速度が高速(400%/min)である場合であっても、一軸延伸時に表面に皺が発生しにくく、延伸時(一軸延伸時)の破断が抑制されたものであるといえる。
That is, when the maximum stretching speed of the PVA film of Comparative Example 1 is high (400% / min), wrinkles are likely to occur on the surface during uniaxial stretching, and breakage is likely to occur during stretching (uniaxial stretching). It can be said that it is a thing. On the other hand, in the PVA films of Examples 1 to 4, even when the maximum stretching speed is high (400% / min), wrinkles are less likely to occur on the surface during uniaxial stretching, and during stretching (uniaxial stretching). It can be said that the breakage of the film is suppressed.
1 PVAフィルム
2 PVAフィルムの厚み方向
3 第1の表面
4 第2の表面
5 ダイアモンドプリズムを用いた場合の赤外線の潜り込み深さ(約2μm)
6 ゲルマニウムプリズムを用いた場合の赤外線の潜り込み深さ(約0.5μm)
7 ATRプリズム(ダイアモンドプリズムまたはゲルマニウムプリズム)
8 赤外線
1PVA film 2 PVA film thickness direction 3 First surface 4 Second surface 5 Infrared dive depth when using a diamond prism (about 2 μm)
6 Infrared dive depth when using a germanium prism (about 0.5 μm)
7 ATR prism (diamond prism or germanium prism)
8 infrared
2 PVAフィルムの厚み方向
3 第1の表面
4 第2の表面
5 ダイアモンドプリズムを用いた場合の赤外線の潜り込み深さ(約2μm)
6 ゲルマニウムプリズムを用いた場合の赤外線の潜り込み深さ(約0.5μm)
7 ATRプリズム(ダイアモンドプリズムまたはゲルマニウムプリズム)
8 赤外線
1
6 Infrared dive depth when using a germanium prism (about 0.5 μm)
7 ATR prism (diamond prism or germanium prism)
8 infrared
Claims (6)
- 非水溶性のポリビニルアルコールフィルムであって、
前記ポリビニルアルコールフィルムの厚み方向と直交する2つの表面をそれぞれ第1の表面、第2の表面とし、
前記第1の表面の結晶度指数をFd1及びFg1とし、
前記第2の表面の結晶度指数をFd2及びFg2としたとき、
前記Fd1、Fg1、Fd2及びFg2が以下の式(1)~(4)を満足する、ポリビニルアルコールフィルム。
Fd1≦0.8 (1)
Fd1/Fg1<1 (2)
Fd2≦0.8 (3)
Fd2/Fg2<1 (4)
[前記式(1)~(4)中、Fd1は、前記第1の表面に対してATR法によるFT-IR測定を行った際にダイアモンドプリズムを用いて算出される結晶度指数であり、Fg1は、前記第1の表面に対してATR法によるFT-IR測定を行った際にゲルマニウムプリズムを用いて算出される結晶度指数であり、Fd2は、前記第2の表面に対してATR法によるFT-IR測定を行った際にダイアモンドプリズムを用いて算出される結晶度指数であり、Fg2は、前記第2の表面に対してATR法によるFT-IR測定を行った際にゲルマニウムプリズムを用いて算出される結晶度指数である。] A water-insoluble polyvinyl alcohol film
The two surfaces orthogonal to the thickness direction of the polyvinyl alcohol film are designated as the first surface and the second surface, respectively.
The crystallinity index of the first surface is Fd1 and Fg1.
When the crystallinity index of the second surface is Fd2 and Fg2,
A polyvinyl alcohol film in which Fd1, Fg1, Fd2 and Fg2 satisfy the following formulas (1) to (4).
Fd1 ≤ 0.8 (1)
Fd1 / Fg1 <1 (2)
Fd2 ≤ 0.8 (3)
Fd2 / Fg2 <1 (4)
[In the formulas (1) to (4), Fd1 is a crystallinity index calculated by using a diamond prism when FT-IR measurement by the ATR method is performed on the first surface, and is Fg1. Is a crystallinity index calculated by using a germanium prism when FT-IR measurement by the ATR method is performed on the first surface, and Fd2 is the crystallinity index calculated by the ATR method on the second surface. It is a crystallinity index calculated by using a diamond prism when FT-IR measurement is performed, and Fg2 uses a germanium prism when FT-IR measurement by the ATR method is performed on the second surface. It is a crystallinity index calculated by. ] - 前記Fd1、Fd2が以下の式(5)~(6)を満足する、請求項1に記載のポリビニルアルコールフィルム。
Fd1≧0.5 (5)
Fd2≧0.5 (6) The polyvinyl alcohol film according to claim 1, wherein Fd1 and Fd2 satisfy the following formulas (5) to (6).
Fd1 ≧ 0.5 (5)
Fd2 ≧ 0.5 (6) - 前記Fd1、Fg1、Fd2及びFg2が以下の式(7)~(8)を満足する、請求項1または2に記載のポリビニルアルコールフィルム。
Fd1/Fg1≧0.6 (7)
Fd2/Fg2≧0.6 (8) The polyvinyl alcohol film according to claim 1 or 2, wherein the Fd1, Fg1, Fd2 and Fg2 satisfy the following formulas (7) to (8).
Fd1 / Fg1 ≧ 0.6 (7)
Fd2 / Fg2 ≧ 0.6 (8) - 前記Fd1、Fg1、Fd2及びFg2が以下の式(9)~(10)を満足する、請求項1~3のいずれか1項に記載のポリビニルアルコールフィルム。
|Fd1-Fd2|≦0.07 (9)
|Fg1-Fg2|≦0.07 (10) The polyvinyl alcohol film according to any one of claims 1 to 3, wherein the Fd1, Fg1, Fd2 and Fg2 satisfy the following formulas (9) to (10).
| Fd1-Fd2 | ≤0.07 (9)
| Fg1-Fg2 | ≤0.07 (10) - 光学フィルム製造用フィルムである、請求項1~4のいずれか1項に記載のポリビニルアルコールフィルム。 The polyvinyl alcohol film according to any one of claims 1 to 4, which is a film for producing an optical film.
- 光学フィルムが偏光フィルムである、請求項5に記載のポリビニルアルコールフィルム。
The polyvinyl alcohol film according to claim 5, wherein the optical film is a polarizing film.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180047201.5A CN115777075A (en) | 2020-06-30 | 2021-06-23 | Polyvinyl alcohol film and polarizing film using the same |
JP2022533925A JPWO2022004537A1 (en) | 2020-06-30 | 2021-06-23 | |
KR1020227041802A KR20230027003A (en) | 2020-06-30 | 2021-06-23 | Polyvinyl alcohol film and polarizing film using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-112281 | 2020-06-30 | ||
JP2020112281 | 2020-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022004537A1 true WO2022004537A1 (en) | 2022-01-06 |
Family
ID=79316148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/023877 WO2022004537A1 (en) | 2020-06-30 | 2021-06-23 | Polyvinyl alcohol film and polarizing film in which same is used |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2022004537A1 (en) |
KR (1) | KR20230027003A (en) |
CN (1) | CN115777075A (en) |
TW (1) | TW202216806A (en) |
WO (1) | WO2022004537A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023145298A (en) * | 2022-03-28 | 2023-10-11 | 長春石油化學股▲分▼有限公司 | Polyvinyl alcohol film, optical film produced using the same, and manufacturing methods therefor |
JP2023145299A (en) * | 2022-03-28 | 2023-10-11 | 長春石油化學股▲分▼有限公司 | Polyvinyl alcohol film, optical film produced using the same, and manufacturing methods therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06138321A (en) * | 1992-10-27 | 1994-05-20 | Kuraray Co Ltd | Polyvinyl alcohol polymer film |
JP2002030162A (en) * | 2000-07-17 | 2002-01-31 | Kuraray Co Ltd | Polyvinyl alcohol film and polarizing film |
WO2013146146A1 (en) * | 2012-03-30 | 2013-10-03 | 株式会社クラレ | Polyvinyl alcohol-type polymer film and polarizing film |
WO2014050696A1 (en) * | 2012-09-26 | 2014-04-03 | 株式会社クラレ | Polyvinyl alcohol-based polymer film and manufacturing process therefor |
WO2020138440A1 (en) * | 2018-12-28 | 2020-07-02 | 株式会社クラレ | Water-soluble film and package |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102735583B1 (en) | 2018-03-30 | 2024-11-29 | 세키스이가가쿠 고교가부시키가이샤 | Polyvinyl alcohol film and method for producing polarizing film |
-
2021
- 2021-06-23 CN CN202180047201.5A patent/CN115777075A/en active Pending
- 2021-06-23 JP JP2022533925A patent/JPWO2022004537A1/ja active Pending
- 2021-06-23 KR KR1020227041802A patent/KR20230027003A/en active Pending
- 2021-06-23 WO PCT/JP2021/023877 patent/WO2022004537A1/en active Application Filing
- 2021-06-30 TW TW110123973A patent/TW202216806A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06138321A (en) * | 1992-10-27 | 1994-05-20 | Kuraray Co Ltd | Polyvinyl alcohol polymer film |
JP2002030162A (en) * | 2000-07-17 | 2002-01-31 | Kuraray Co Ltd | Polyvinyl alcohol film and polarizing film |
WO2013146146A1 (en) * | 2012-03-30 | 2013-10-03 | 株式会社クラレ | Polyvinyl alcohol-type polymer film and polarizing film |
WO2014050696A1 (en) * | 2012-09-26 | 2014-04-03 | 株式会社クラレ | Polyvinyl alcohol-based polymer film and manufacturing process therefor |
WO2020138440A1 (en) * | 2018-12-28 | 2020-07-02 | 株式会社クラレ | Water-soluble film and package |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023145298A (en) * | 2022-03-28 | 2023-10-11 | 長春石油化學股▲分▼有限公司 | Polyvinyl alcohol film, optical film produced using the same, and manufacturing methods therefor |
JP2023145299A (en) * | 2022-03-28 | 2023-10-11 | 長春石油化學股▲分▼有限公司 | Polyvinyl alcohol film, optical film produced using the same, and manufacturing methods therefor |
JP7592048B2 (en) | 2022-03-28 | 2024-11-29 | 長春石油化學股▲分▼有限公司 | Polyvinyl alcohol film, optical film produced therefrom and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
CN115777075A (en) | 2023-03-10 |
KR20230027003A (en) | 2023-02-27 |
TW202216806A (en) | 2022-05-01 |
JPWO2022004537A1 (en) | 2022-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105431751B (en) | Vinyl alcohol system polymer film | |
JP6788673B2 (en) | Polarizing film and its manufacturing method | |
TW201416218A (en) | Polyvinyl alcohol film and polarizing film | |
WO2022004537A1 (en) | Polyvinyl alcohol film and polarizing film in which same is used | |
JPWO2019054487A1 (en) | Polyvinyl alcohol film and its manufacturing method | |
CN107000270B (en) | Polyvinyl alcohol film and its manufacturing method | |
KR20160113595A (en) | Master film for producing optical film | |
JP2018135426A (en) | Polyvinyl alcohol film and method for producing the same, and polarization film prepared therewith | |
WO2023074639A1 (en) | Polyvinyl alcohol film | |
TWI693151B (en) | PVA film | |
WO2022004535A1 (en) | Polyvinyl alcohol film and method for producing optical film using same | |
WO2022004536A1 (en) | Polyvinyl alcohol film and method for manufacturing optical film in which same is used | |
WO2022145441A1 (en) | Polyvinyl alcohol film, polarizing film using same, and polarizing plate | |
JP6858499B2 (en) | Optical film manufacturing method | |
JP6776129B2 (en) | the film | |
JP7583745B2 (en) | Polyvinyl alcohol film and polarizing film | |
JP7328992B2 (en) | Polyvinyl alcohol film and method for producing polarizing film using the same | |
JP3516394B2 (en) | Method for producing polyvinyl alcohol film for polarizing film | |
JP5496731B2 (en) | Retardation film | |
JP5563331B2 (en) | Method for producing polyvinyl alcohol polymer film | |
JP5901193B2 (en) | Polyvinyl alcohol retardation film | |
WO2022113958A1 (en) | Method for producing polarizing film and polarizing film | |
WO2022092038A1 (en) | Poly(vinyl alcohol) film and polarizing film obtained therefrom | |
JP7561262B2 (en) | Polarizing film and method for producing same | |
JP7610509B2 (en) | Polarizing film and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21832910 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022533925 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21832910 Country of ref document: EP Kind code of ref document: A1 |