[go: up one dir, main page]

WO2021235523A1 - Power reception device, power transmission device, and wireless power transmission system - Google Patents

Power reception device, power transmission device, and wireless power transmission system Download PDF

Info

Publication number
WO2021235523A1
WO2021235523A1 PCT/JP2021/019210 JP2021019210W WO2021235523A1 WO 2021235523 A1 WO2021235523 A1 WO 2021235523A1 JP 2021019210 W JP2021019210 W JP 2021019210W WO 2021235523 A1 WO2021235523 A1 WO 2021235523A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
circuit
power receiving
load
Prior art date
Application number
PCT/JP2021/019210
Other languages
French (fr)
Japanese (ja)
Inventor
寿則 佐藤
浩司 山本
勉 坂田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021235523A1 publication Critical patent/WO2021235523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • This disclosure relates to a power receiving device, a power transmitting device, and a wireless power transmission system.
  • Wireless power transmission technology includes methods such as a magnetic field coupling method and an electric field coupling method.
  • a wireless power transmission system based on a magnetic field coupling method power is wirelessly transmitted from the power transmission coil to the power reception coil with the power transmission coil and the power reception coil facing each other.
  • Patent Documents 1 and 2 disclose an example of a wireless power transmission system by a magnetic field coupling method.
  • a wireless power transmission system based on an electric field coupling method power is wirelessly transmitted from a pair of power transmission electrodes to a pair of power receiving electrodes with the pair of power transmission electrodes and the pair of power receiving electrodes facing each other.
  • a wireless power transmission system based on an electric field coupling method can be used in an application of supplying power to a moving body having a load such as a battery from a plurality of power transmission electrodes provided on a floor surface, for example.
  • Patent Document 3 discloses an example of a wireless power transmission system by an electric field coupling method.
  • the present disclosure provides a technique for suppressing heat generation or damage of a circuit element that may occur when a power receiving device starts receiving power from a power transmitting device.
  • the power receiving device is a power receiving device used in a wireless power transmission system including a power transmitting device and a power receiving device, and is a power receiving antenna that wirelessly receives AC power from a power transmitting antenna included in the power transmitting device.
  • a power receiving circuit that converts the AC power received by the power receiving antenna into DC power and outputs it, and a load that operates by the DC power output from the power receiving circuit, and the voltage of the DC power is a predetermined starting voltage.
  • the power transmission device is a power transmission device used in a wireless power transmission system including a power transmission device and a power receiving device.
  • the power receiving device operates by a power receiving antenna, a power receiving circuit that converts the AC power received by the power receiving antenna into DC power and outputs the power, and the DC power output from the power receiving circuit, and operates with the DC power voltage. It comprises a load that starts when a predetermined starting voltage is exceeded.
  • the power transmission device includes a power transmission circuit that converts power supplied from a power source into AC power for power transmission and outputs the power transmission device, a power transmission antenna that wirelessly transmits the AC power to the power reception antenna, and the power reception device.
  • a detector that detects the approach to the power transmission device and a power transmission control circuit that controls the power transmission circuit, and is output from the power transmission circuit when the approach of the power receiving device to the power transmission device is detected. It comprises a power transmission control circuit that controls the power transmission circuit so that the AC power is increased and the input voltage of the load is maintained within a preset range.
  • FIG. 1 It is a figure which shows typically an example of the wireless power transmission system by the electric field coupling method. It is a figure which shows the schematic structure of the wireless power transmission system shown in FIG. 1. It is a figure which shows the example of the wireless power transmission system which each of a transmission electrode group and a power receiving electrode group includes four electrodes. It is a figure which shows the schematic structure of the wireless power transmission system shown in FIG. It is a figure which shows the example of the relationship between the ratio of the area of the part overlapping with a power transmission electrode, and the output voltage of a power receiving circuit among the power receiving electrodes. It is a figure which shows the structure which the resistor is connected in parallel between a power receiving circuit and a load.
  • FIG. 1 is a diagram schematically showing an example of a wireless power transmission system by an electric field coupling method.
  • the "electric field coupling method” is a power receiving electrode group including a plurality of power transmitting electrodes and a power receiving electrode group including a plurality of power receiving electrodes by electric field coupling (also referred to as “capacitive coupling").
  • each of the power transmission electrode group and the power reception electrode group is composed of a pair of two electrodes will be described first.
  • the wireless power transmission system shown in FIG. 1 is a system that wirelessly transmits power to a power receiving device 200 which is a mobile body.
  • the power receiving device 200 in this example is an automated guided vehicle (AGV).
  • the power receiving device 200 is used for transporting goods, for example, in a factory or a warehouse.
  • a pair of flat plate-shaped power transmission electrodes 120a and 120b are arranged on the floor surface 30.
  • the pair of power transmission electrodes 120a and 120b have a shape extending in the first direction (Y direction in FIG. 1). AC power is supplied to the pair of power transmission electrodes 120a and 120b from a power transmission circuit (not shown).
  • the power receiving device 200 includes a pair of power receiving electrodes (not shown) facing the pair of power transmission electrodes 120a and 120b.
  • the power receiving device 200 receives the AC power transmitted from the power transmitting electrodes 120a and 120b by the pair of power receiving electrodes.
  • the received electric power is supplied to a load such as a motor, a secondary battery, or a capacitor for storing electricity included in the power receiving device 200. As a result, the power receiving device 200 is charged or driven.
  • FIG. 1 shows XYZ coordinates indicating X, Y, and Z directions orthogonal to each other.
  • the direction in which the power transmission electrodes 120a and 120b extend is the Y direction
  • the direction perpendicular to the surfaces of the power transmission electrodes 120a and 120b is the Z direction
  • the direction perpendicular to the Y and Z directions is the X direction.
  • the X direction is the direction in which the power transmission electrodes 120a and 120b are lined up.
  • the orientation of the structure shown in the drawings of the present application is set in consideration of easy-to-understand explanation, and does not limit the orientation when the embodiment of the present disclosure is actually implemented. Also, the shape and size of all or part of the structure shown in the drawings does not limit the actual shape and size.
  • FIG. 2 is a diagram showing a schematic configuration of the wireless power transmission system shown in FIG. 1.
  • This wireless power transmission system includes a power transmission device 100 and a power receiving device 200.
  • the power transmission device 100 includes a pair of power transmission electrodes 120a and 120b, and a power transmission circuit 110 that supplies AC power to the power transmission electrodes 120a and 120b.
  • the power transmission circuit 110 is, for example, an AC output circuit including an inverter circuit.
  • the power transmission circuit 110 converts the DC power supplied from a power source (not shown) into AC power for power transmission and outputs the DC power to the pair of power transmission electrodes 120a and 120b.
  • the power transmission circuit 110 may include a matching circuit for impedance matching between the power transmission electrodes 120a and 120b and the inverter circuit.
  • the power source is not limited to a DC power source and may be an AC power source.
  • the power source is an AC power source
  • a power conversion circuit that converts the input AC power into, for example, another AC power having a different frequency or voltage and outputs it may be used instead of the inverter circuit.
  • the power receiving device 200 includes a pair of power receiving electrodes 220a and 220b, a power receiving circuit 210, and a load 300.
  • the power receiving circuit 210 converts the AC power received by the power receiving electrodes 220a and 220b into other forms of power required by the load 300 and supplies the AC power to the load 300.
  • the power receiving circuit 210 outputs DC power of a predetermined voltage or AC power of a predetermined frequency and voltage required by the load 300.
  • the power receiving circuit 210 may include various circuits such as a rectifier circuit and an impedance matching circuit.
  • the load 300 may include devices that consume or store power, such as motors, capacitors for storage, or secondary batteries, and circuits that control those devices. Due to the electric field coupling between the pair of power transmitting electrodes 120a and 120b and the pair of power receiving electrodes 220a and 220b, electric power is transmitted wirelessly with the two facing each other.
  • Each of the power transmission electrodes 120a and 120b and the power reception electrodes 220a and 220b may be divided into two or more portions.
  • the configurations shown in FIGS. 3 and 4 may be adopted.
  • the power transmission device 100 includes two first power transmission electrodes 120a and two second power transmission electrodes 120b.
  • the two first power transmission electrodes 120a and the two second power transmission electrodes 120b are arranged alternately.
  • the power receiving device 200 includes two first power receiving electrodes 220a and two second power receiving electrodes 220b.
  • the two first power receiving electrodes 220a and the two second power receiving electrodes 220b are also arranged alternately.
  • the two first power receiving electrodes 220a face each of the two first power transmission electrodes 120a
  • the two second power receiving electrodes 220b face each of the two second power transmission electrodes 120b.
  • the power transmission circuit 110 has two terminals for outputting AC power. One terminal is connected to the two first power transmission electrodes 120a and the other terminal is connected to the two second power transmission electrodes 120b. During power transmission, the power transmission circuit 110 applies a first voltage to the two first power transmission electrodes 120a, and applies a second voltage having a phase opposite to the first voltage to the two second power transmission electrodes 120b. Apply. As a result, electric power is transmitted wirelessly by electric field coupling between the power transmission electrode group including the four power transmission electrodes and the power reception electrode group including the four power reception electrodes. According to such a configuration, it is possible to obtain the effect of suppressing the leakage electric field on the boundary between any two adjacent power transmission electrodes. As described above, in each of the power transmission device 100 and the power reception device 200, the number of electrodes that transmit or receive power is not limited to two.
  • each of the transmitting electrode group and the receiving electrode group may include more than two electrodes as illustrated in FIGS. 3 and 4.
  • the electrodes to which the first voltage is applied at a certain moment and the electrodes to which the second voltage having the phase opposite to the first voltage is applied are arranged alternately.
  • the "opposite phase” is defined to include not only the case where the phase difference is 180 degrees but also the case where the phase difference is in the range of 90 degrees to 270 degrees.
  • the plurality of power transmission electrodes included in the power transmission device 100 may be referred to as “transmission electrode 120” without distinction, and the plurality of power receiving electrodes included in the power receiving device 200 may be referred to as “power receiving electrode 220” without distinction.
  • the power receiving device 200 which is a mobile body, can receive electric power wirelessly while moving along the power transmission electrode 120.
  • the power receiving device 200 can move along the power transmitting electrode 120 while maintaining a state in which the power transmitting electrode 120 and the power receiving electrode 220 are close to each other and face each other.
  • the power receiving device 200 can move while charging a power storage device such as a battery or a capacitor.
  • the power receiving device 200 may receive power wirelessly in a stationary state instead of receiving power while moving.
  • the power receiving device 200 is not limited to a moving body, and may be a device not provided with a power device for moving.
  • the power transmission device 100 detects that the power receiving device 200 has entered or is installed in the area where the power transmission electrode 120 is laid (hereinafter, referred to as “power transmission area”). May have functionality.
  • the power transmission device 100 may be configured to output a relatively large amount of power for power transmission when it detects that the power receiving device 200 has entered or is installed in the power transmission area. If the power transmission device 100 outputs power for power transmission before the power receiving device 200 reaches the power transmission area or is installed, the resonance circuit in the power transmission circuit 110 is greatly deviated from the matched state. As a result, the circuit element in the power transmission circuit 110 may generate heat, be damaged, or be destroyed.
  • the power transmission circuit 110 may be configured to start power transmission after detecting a state in which the power receiving electrode 220 of the power receiving device 200 faces the power transmission electrode 120. Further, particularly when the power receiving device 200 is a mobile body, it is desirable to transmit power as long as possible while the power receiving electrode 220 overlaps the power transmission electrode 120. Therefore, the power transmission circuit 110 may be configured to start power transmission immediately after the power receiving device 200 reaches the power transmission area.
  • the approach of the power receiving device 200 to the power transmission device 100 can be detected based on the result of measuring the current, voltage, or power in the power transmission circuit 110, for example, in a state where the power transmission circuit 110 is outputting weak power.
  • the approach of the power receiving device 200 can be detected based on the change in the input current of the power transmission circuit 110.
  • a mode in which the power transmission circuit 110 outputs weak power in order to detect the approach of the power receiving device 200 is referred to as a “detection power transmission mode”.
  • the power transmission circuit 110 increases the output power to a relatively large power for power transmission.
  • a mode in which the power transmission circuit 110 outputs a relatively large amount of power for power transmission is referred to as a "main power transmission mode".
  • the approach of the power receiving device 200 may be detected by a sensor such as a camera or a distance measuring device.
  • the power transmission circuit 110 detects the approach of the power receiving device 200, the power transmission circuit 110 shifts to the main power transmission mode.
  • the load 300 includes, in addition to a power storage device such as a battery and a drive device such as an electric motor, various electronic circuits such as a DC-DC converter and a control circuit thereof that supply necessary power to those devices. Is done. These circuits start when the applied voltage exceeds a certain value. Hereinafter, this constant value is referred to as “starting voltage”, and starting the electronic circuit included in the load 300 is expressed as “starting the load 300".
  • the load 300 operates at a specific input impedance during constant operation, that is, during stable operation.
  • the power transmission circuit 110 and the power reception circuit 210 are designed so that the efficiency is maximized while the load 300 is in stable operation.
  • the input impedance of the load 300 during stable operation that is, the load impedance of the power receiving circuit 210 is expressed as "design value" for the power transmission circuit 110 and the power receiving circuit 210.
  • the input impedance of the load 300 is higher than the design value before the load 300 is started and until the operation is stable after the load 300 is started. In that state, the loss in the power transmission circuit 110 and the power reception circuit 210 increases, the output voltage of the power reception circuit 210 rises, and there is a risk of heat generation, damage or destruction of the circuit element.
  • FIG. 5 is a diagram showing an example of the relationship between the ratio of the area of the portion of the power receiving electrode 220 that overlaps the power transmission electrode 120 and the output voltage of the power receiving circuit 210 in an exemplary wireless power transmission system.
  • the load impedance of the power receiving circuit 210 is substantially infinite in the state before the load 300 is started, and the input voltage of the power transmission circuit 110 in that state is 12V.
  • the power transmission circuit 110 and the power reception circuit 210 are designed so that the input voltage of the power transmission circuit 110 and the output voltage of the power reception circuit 210 are equal to each other when the load impedance of the power reception circuit 210 is the design value.
  • the vertical axis: the power receiving circuit output voltage (V) is 12V when the horizontal axis: electrode overlapping area ratio (%) in FIG. 5 is 100%.
  • the output voltage becomes larger than the input voltage of the power transmission circuit 110 as the overlap of the electrodes increases.
  • the portion shown by the dotted line in FIG. 5 indicates that the output voltage of the power receiving circuit 210 rises so much that it may cause damage to the circuit element. Therefore, measures are required to mitigate the rise in output voltage.
  • FIG. 6A is a diagram showing a configuration in which a resistor 232 is connected in parallel between the power receiving circuit 210 and the load 300.
  • FIG. 6B is a diagram showing a configuration in which a switch 234 is connected in addition to the resistor 232 between the power receiving circuit 210 and the load 300.
  • the switch 234 is controlled to be on until the load 300 is activated and turned off after the load 300 is activated.
  • the current path to the resistor 232 is cut off.
  • the load impedance of the power receiving circuit 210 (that is, the input impedance of the circuit after the power receiving circuit 210) suddenly changes due to the operation of switching the switch 234.
  • the output voltage of the power receiving circuit 210 fluctuates greatly, and in some cases, the rated voltage of the load 300 may be exceeded.
  • the above problems may occur not only in the electric field coupling type wireless power transmission system but also in the magnetic field coupling type wireless power transmission system. That is, even in a system in which power is transmitted not by electric field coupling between the power transmission electrode 120 and the power reception electrode 220 but by magnetic field coupling between the power transmission coil and the power reception coil, the above-mentioned problem may occur at the start of the main power transmission. ..
  • the power receiving device is used in a wireless power transmission system including a power transmitting device and a power receiving device.
  • the power receiving device includes a power receiving antenna that wirelessly receives AC power from a power transmitting antenna included in the power transmitting device, a power receiving circuit that converts the AC power received by the power receiving antenna into DC power and outputs the power, and outputs from the power receiving circuit.
  • a load operated by the DC power which is a load that starts when the voltage of the DC power exceeds a predetermined starting voltage, and a resistance circuit connected between the power receiving circuit and the load.
  • the resistance circuit including the resistor connected in parallel with the load and the power receiving device approach the power transmitting device so as to suppress the fluctuation of the load impedance of the power receiving circuit caused by the activation of the load.
  • a power receiving control circuit for controlling the impedance of the resistance circuit for controlling the impedance of the resistance circuit.
  • the "power transmission antenna” is an element that sends electric power to space, such as the above-mentioned power transmission electrode and power transmission coil.
  • the “power receiving antenna” is an element that receives power transmitted from the power transmission antenna, such as the above-mentioned power receiving electrode and power receiving coil.
  • the "load impedance of the power receiving circuit” means the input impedance of the circuit after the power receiving circuit.
  • Load includes any equipment and circuit operated by DC power output from the powered circuit.
  • the load may include, for example, a DC-DC converter that converts DC power output from a power receiving circuit into other DC power having a different voltage, and a control circuit thereof. In such a configuration, when the voltage applied to the control circuit exceeds a predetermined starting voltage, the control circuit starts driving the DC-DC converter.
  • the power receiving control circuit is the impedance of the resistance circuit so as to suppress the fluctuation of the load impedance of the power receiving circuit caused by the power receiving device approaching the power transmission device and activating the load. To control. Therefore, it is possible to suppress the increase in voltage due to the fluctuation of the load impedance and reduce the risk of heat generation, damage, and destruction of the circuit element.
  • the power receiving control circuit may be configured to control the impedance of the resistance circuit so as to maintain the load impedance within a preset range. By such control, the load impedance is maintained within a certain range, so that the operation before and after the start of the load can be further stabilized.
  • the resistance circuit may include a resistor connected in parallel with the load and a switch connected in parallel with the load and in series with the resistor.
  • the power receiving control circuit may control the impedance of the resistance circuit by controlling the switch.
  • the power receiving control circuit turns on the switch before the load is activated, controls the switch so that the impedance of the resistance circuit increases after the load is activated, and transmits power from the power transmission device.
  • the switch may be turned off after the power is supplied.
  • the power receiving control circuit may turn on the switch after the power transmission from the power transmission device to the power receiving device is completed.
  • the resistance value of the resistor may be substantially equal to the resistance value of the load when power for power transmission is supplied from the power transmission device.
  • the resistance circuit may include a variable resistor connected in parallel with the load.
  • the power receiving control circuit may control the impedance of the resistance circuit by controlling the resistance value of the variable resistor.
  • the load may include a DC-DC converter.
  • the activation of the load may be the activation of the DC-DC converter.
  • the power transmission device is used in a wireless power transmission system including a power transmission device and a power receiving device.
  • the power receiving device operates by a power receiving antenna, a power receiving circuit that converts the AC power received by the power receiving antenna into DC power and outputs the power, and the DC power output from the power receiving circuit, and operates with the DC power voltage. It comprises a load that starts when a predetermined starting voltage is exceeded.
  • the power transmission device includes a power transmission circuit that converts power supplied from a power source into AC power for power transmission and outputs the power transmission device, a power transmission antenna that wirelessly transmits the AC power to the power reception antenna, and the power reception device.
  • a detector that detects the approach to the power transmission device and a power transmission control circuit that controls the power transmission circuit, and is output from the power transmission circuit when the approach of the power receiving device to the power transmission device is detected. It includes a power transmission control circuit that controls the output voltage of the power transmission circuit so that the AC power is increased and the input voltage of the load is maintained within a preset range.
  • the power transmission control circuit when the power transmission control circuit detects the approach of the power receiving device to the power transmission device, the power transmission control circuit increases the AC power output from the power transmission circuit, and the input voltage of the load is set in advance.
  • the power transmission circuit is controlled so as to be maintained within a set range.
  • the lower limit of the range may be, for example, the starting voltage.
  • the upper limit of the range may be, for example, the rated voltage of the load.
  • the wireless power transmission system includes any of the above-mentioned power transmission devices and any of the above-mentioned power receiving devices.
  • the power receiving device can be, for example, a mobile body.
  • the term "moving body” is not limited to a vehicle such as the automatic guided vehicle (AGV) described above, but means any movable object driven by electric power.
  • Mobiles include, for example, electric motors and electric vehicles with one or more wheels.
  • Such vehicles may be, for example, the aforementioned AGVs, transfer robots, electric vehicles (EVs), electric carts, electric wheelchairs.
  • the "moving body” in the present disclosure also includes a movable object having no wheels.
  • unmanned aerial vehicles UAVs, so-called drones
  • UAVs unmanned aerial vehicles
  • the power receiving device is not limited to such a mobile body, but may be any portable device such as a charging pole, a smartphone, a tablet computer, or a laptop computer.
  • the wireless power transmission system of the present embodiment includes a power transmission device 100 and a power receiving device 200 that receives power wirelessly from the power transmission device 100, similar to the system described with reference to FIGS. 1 to 4.
  • the power receiving device 200 can be a moving body such as an automatic guided vehicle.
  • the power receiving device 200 is a mobile body will be mainly described, but the configuration and operation of the present embodiment are similarly applied to the case where the power receiving device 200 is a device other than the mobile body. Can be done.
  • FIG. 7 is a diagram showing the configuration of the power transmission device 100 in the present embodiment.
  • the power transmission device 100 includes a power transmission circuit 110, a plurality of power transmission electrodes 120, a power transmission control circuit 150, and a detector 140.
  • FIG. 7 also shows a power supply 400 that outputs DC power.
  • the power source 400 may be a component of the power transmission device 100 or an external element of the power transmission device 100.
  • the power transmission circuit 110 converts the DC power output from the power source 400 into AC power and outputs it.
  • the power transmission electrode 120 transmits the AC power output from the power transmission circuit 110 to the space.
  • the detector 140 is a circuit or a sensor that detects that the power receiving device 200 has approached the power transmission area in which the power transmission electrode 120 is laid.
  • the power transmission control circuit 150 controls the power transmission circuit 110 to output desired AC power from the power transmission circuit 110.
  • the power transmission control circuit 150 sends an instruction to increase the output voltage to the power transmission circuit 110.
  • the power transmission circuit 110 increases the AC power supplied to the power transmission electrode 120.
  • the detector 140 measures the current, voltage, or power in the power transmission circuit 110 while the power transmission control circuit 150 outputs a weak power to the power transmission circuit 110. Can be detected based on the results of the above.
  • the mode in which the power transmission circuit 110 outputs weak power for the detection of the power receiving device 200 is referred to as a “detection power transmission mode”.
  • a mode in which the power transmission circuit 110 outputs a relatively large amount of power for power transmission is referred to as a "main power transmission mode”.
  • the approach of the power receiving device 200 may be detected by a sensor such as a camera or a distance measuring device.
  • the power transmission control circuit 150 does not need to output the above-mentioned weak electric power to the power transmission circuit 110.
  • detecting the approach of the power receiving device 200 to the power transmission device 100 means that the plurality of power receiving electrodes 220 in the power receiving device 200 are at least partially opposed to or coupled to the plurality of power transmission electrodes 120 in the power transmission device 100. It means to detect the state to do.
  • FIG. 8 is a diagram showing the configuration of the power receiving device 200 in the present embodiment.
  • the power receiving device 200 includes a plurality of power receiving electrodes 220, a power receiving circuit 210, a resistance circuit 230, a power receiving control circuit 250, and a load 300.
  • the resistance circuit 230 is connected between the power receiving circuit 210 and the load 300.
  • the resistor circuit 230 includes a resistor 232 and a switch 234 connected in series with each other.
  • the resistor 232 and the switch 234 are connected in parallel to the load 300.
  • the resistor 232 may be a set of a plurality of resistors.
  • the plurality of power receiving electrodes 220 wirelessly receive AC power from the plurality of power transmission electrodes 120 included in the power transmission device 100.
  • the power receiving circuit 210 converts the AC power received by the power receiving electrode 220 into DC power and outputs it.
  • the load 300 operates by the DC power output from the power receiving circuit 210.
  • the load 300 includes a power storage device such as a battery, a drive device such as an electric motor, and a circuit such as a DC-DC converter that supplies necessary power to those devices.
  • the DC-DC converter is activated when the voltage of the DC power output from the power receiving circuit 210 exceeds a predetermined starting voltage. In the present embodiment, starting the DC-DC converter is expressed as "starting the load 300".
  • the impedance of the power receiving device 200 as seen from the power transmitting device 100 is substantially infinite.
  • the power transmission device 100 operates in the detection power transmission mode that outputs power far smaller than the power output in the main power transmission mode, or operates in the mode in which power transmission is stopped and the power receiving device 200 is detected by the sensor. do.
  • These modes for detecting the power receiving device 200 are referred to as "detection modes".
  • the power transmission device 100 detects the approach and increases the output power of the power transmission circuit 110. As a result, the electric power supplied to the load 300 gradually increases.
  • the load 300 starts starting.
  • the impedance of the load 300 fluctuates and decreases.
  • the impedance of the load 300 becomes a specific value.
  • the load impedance of the power receiving circuit 210 decreases with the activation of the load 300.
  • the power receiving control circuit 250 controls the impedance of the resistance circuit 230 so as to suppress the fluctuation of the load impedance of the power receiving circuit 210 caused by the activation of the load 300.
  • the power receiving control circuit 250 controls the impedance of the resistance circuit 230 so that the load impedance of the power receiving circuit 210 is maintained within a preset range regardless of the state of the load 300. By such control, the voltage in the power receiving device 200 can be maintained in an appropriate range, and the risk of heat generation, damage, or destruction of the circuit element can be reduced.
  • the impedance of the resistance circuit 230 can be controlled, for example, by controlling the switch 234.
  • the power receiving control circuit 250 in the present embodiment turns on the switch 234 before the load 300 is activated, and after the load 300 is activated, controls the switch 234 so that the impedance of the resistance circuit 230 increases to transmit power. After the power for transmission is supplied from the device 100, the switch 234 is turned off. The power receiving control circuit 250 turns on the switch 234 again after the power transmission from the power transmitting device 100 to the power receiving device 200 is completed.
  • the resistance value of the resistor 232 may be set to a value substantially equal to the resistance value of the load 300 when the power for transmission is supplied from the power transmission device 100 to the power receiving device 200. By such an operation, the load impedance of the power receiving circuit 210 can be maintained within an appropriate range.
  • FIG. 9 is a diagram showing an example of a control method of the resistance circuit 230 by the power receiving control circuit 250.
  • the switch 234 is a semiconductor switch such as a MOSFET, and the resistor 232 has a fixed resistance value.
  • the power receiving control circuit 250 controls the resistance value, that is, the impedance of the resistance circuit 230 by adjusting the voltage input to the gate of the semiconductor switch.
  • FIG. 10 is a diagram showing another example of the control method of the resistance circuit 230 by the power receiving control circuit 250.
  • the power receiving control circuit 250 controls the impedance of the resistance circuit 230 by adjusting the on / off duty ratio of the switch 234, that is, the ratio of the on time to the period.
  • FIG. 11 is a diagram showing still another example of the control method of the resistance circuit 230 by the power receiving control circuit 250.
  • the resistor circuit 230 includes a variable resistor 233 connected in parallel with the load 300.
  • the power receiving control circuit 250 controls the impedance of the resistance circuit 230 by controlling the resistance value of the variable resistor 233.
  • the power receiving control circuit 250 may turn on the switch 234 before starting the load 300 and turn off the switch 234 after the start of the main power transmission.
  • the switch 234 may be omitted, and the same function may be realized only by adjusting the resistance value of the variable resistor 233.
  • FIG. 12 is a diagram showing still another example of the control method of the resistance circuit 230 by the power receiving control circuit 250.
  • the resistor circuit 230 includes a resistor 232 and a switch 234, each of which comprises a plurality of modules connected in parallel to the load 300.
  • the power receiving control circuit 250 adjusts the combined resistance, that is, the combined impedance of all the modules by controlling the switch 234 in each module in the same manner as in the example of FIG. 9 or FIG. This controls the combined impedance of the entire resistance circuit 230.
  • a variable resistor 233 may be provided instead of the resistor 232, and the combined impedance of the resistance circuit 230 may be controlled by adjusting the resistance value of each variable resistor 233. In that case, the switch 234 may be omitted.
  • the power transmission control circuit 150 in the present embodiment adjusts the output voltage of the power transmission circuit 110 so that the voltage input to the load 300 is maintained within a preset appropriate operating voltage range.
  • the lower limit of the operating voltage range may be set to a value substantially equal to, for example, the starting voltage of the load 300.
  • the upper limit of the operating voltage range may be set to a value substantially equal to, for example, the rated voltage of the load 300.
  • FIG. 13 is a sequence diagram showing an example of the operation of the power transmission device 100 and the power receiving device 200 in the present embodiment.
  • the power transmission device 100 operates in the detection power transmission mode as the detection mode, and after detecting the power receiving device 200, shifts to the main power transmission mode.
  • the power transmission control circuit 150 sets the output voltage of the power transmission circuit 110 to the initial value and starts the power transmission mode for detection (step S100).
  • the power receiving control circuit 250 sets the resistance value of the resistance circuit 230 to the initial value. This initial value may be set to, for example, a value equal to the input impedance of the load 300 in the main transmission mode. At this time, the switch 234 is kept on.
  • the power receiving device 200 enters or is installed in the power transmission area for charging (step S201). Then, the detector 140 of the power transmission device 100 detects the entry or installation of the power receiving device 200 into the power transmission area based on the change of the current, the voltage, or the power in the power transmission device 100 (step S101). After the detection, the power transmission control circuit 150 starts controlling the output voltage of the power transmission circuit 110 (step S102). After that, the power transmission control circuit 150 adjusts the output voltage of the power transmission circuit 110 so that the voltage input to the load 300 is maintained within a preset range.
  • the start of the load 300 starts (step S202).
  • the power receiving control circuit 250 starts controlling the impedance of the resistance circuit 230 (step S203).
  • the power receiving control circuit 250 grasps the activation of the load 300 based on, for example, a signal sent from the load 300.
  • the load 300 may include, for example, a voltage detector in front of the DC-DC converter. In such a configuration, when the voltage detected by the voltage detector exceeds the threshold value, the power receiving control circuit 250 can determine that the load 300 has been activated. Impedance control is started immediately after the start of the load 300 or after a certain period of time has elapsed.
  • the impedance of the load 300 changes from the start to the completion of the start of the load 300 when the impedance is not controlled. Based on that information, data that defines the relationship between the elapsed time from the start of the load 300 and the resistance value of the resistance circuit 230 to be set is prepared in advance and recorded in the storage medium of the power receiving control circuit 250. Has been done. The power receiving control circuit 250 adjusts the resistance value of the resistance circuit 230 based on the data.
  • the power receiving control circuit 250 turns off the switch 234 and ends the impedance control of the resistance circuit 230 (step S205). By turning off the switch 234 before the start of the main power transmission, heat generation and damage of the resistor 232 can be suppressed.
  • the power transmission control circuit 150 completes the transition to the main power transmission mode, and causes the power transmission control circuit 150 to output electric power for power transmission (step S103).
  • the power receiving device 200 starts charging (step S206).
  • the power receiving device 200 ends charging when the storage amount of the power storage device reaches the upper limit or when the power receiving device 200 passes through the power transmission area (step S207).
  • the power receiving control circuit 250 turns on the switch 234 (step S208).
  • the load impedance at the start of charging and the input voltage of the load 300 can be maintained in an appropriate range, heat generation and damage of the circuit element can be suppressed, and the operation can be stabilized.
  • FIG. 14 is a diagram showing an example of time change of the input impedance of the load 300, the resistance value of the resistance circuit 230, and the load impedance of the power receiving circuit 210.
  • the transition from the detection mode to the main power transmission mode is started.
  • the above-mentioned mode transition condition is only an example, and other conditions may be adopted.
  • the transition from the detection mode to the main power transmission mode may be started after the detector 140 detects that a part of the power receiving electrode 220 overlaps the power transmission electrode 120.
  • FIG. 14 shows an example of a waveform in a comparative example in which impedance control is not performed, and the solid line shows an example of a waveform in this embodiment in which impedance control is performed.
  • the configuration shown in FIG. 6B is adopted, and the switch 234 is switched from on to off after the start of the load 300 is started.
  • the power receiving control circuit 250 monotonically increases the resistance value of the resistance circuit 230 from the start of the load 300 to the completion of the start. By this control, the change in the load impedance of the power receiving circuit 210, that is, the combined impedance of the resistance circuit 230 and the load 300 is suppressed as compared with the comparative example, and is maintained within a preferable range.
  • FIG. 15 is a diagram showing an example of time-dependent changes in the power transmitted from the power transmission circuit 110, the output voltage of the power receiving circuit 210, and the load impedance of the power receiving circuit.
  • the transition from the detection mode to the main power transmission mode is started after the detector 140 detects that the entire surface of the power receiving electrode 220 overlaps the power transmission electrode 120.
  • the above-mentioned mode transition condition is only an example, and other conditions may be adopted.
  • the dotted line in FIG. 15 shows an example of a waveform in a comparative example in which the transmitted power is linearly increased, and the solid line shows an example of a waveform in the present embodiment in which the transmitted power is adjusted.
  • FIG. 15 shows an example of a waveform in a comparative example in which the transmitted power is linearly increased
  • the solid line shows an example of a waveform in the present embodiment in which the transmitted power is adjusted.
  • the origin of the time axis is the time when the power receiving device 200 reaches the power transmission area.
  • the impedance control shown in FIG. 14 is not performed, and only the switch 234 during activation of the load 300 is switched.
  • the output voltage of the power receiving circuit 210 drops immediately after the start of the load 300, and rises sharply when the switch 234 is switched off.
  • the load 300 may stop again below the start voltage, or a high voltage exceeding the rated voltage of the load 300 may be applied to the load 300.
  • the power transmission control circuit 150 adjusts the power transmission power so that the output voltage of the power receiving circuit 210 is maintained within a predetermined range from the start of the load to the completion of the start of the load.
  • the voltage input to the load 300 is maintained within the range from the starting voltage to the rated voltage, and stable operation can be realized.
  • FIG. 16 is a diagram showing an example of a configuration in which a detector 140 is connected between a power supply 400 and a power transmission circuit 110.
  • the detector 140 detects the current, voltage, or power input to the power transmission circuit 110.
  • the power transmission control circuit 150 causes the power transmission circuit 110 to output a weak electric power.
  • the detector 140 measures, for example, the current input to the power transmission circuit 110.
  • the detector 140 can determine that the power receiving device 200 has entered or is installed in the power transmission area when the current becomes equal to or higher than a preset threshold value.
  • the detector 140 is installed or entered into the power transmission area when the amount of change from the measured value of the current when the power receiving device 200 is not present in the power transmission area becomes equal to or more than the threshold value. You may judge that it was.
  • FIG. 17 is a diagram showing an example of a configuration in which a detector 140 is connected between a power transmission circuit 110 and a plurality of power transmission electrodes 120.
  • the detector 140 may be arranged on the output side of the power transmission circuit 110.
  • the detector 140 can detect the entry or installation of the power receiving device 200 into the power transmission area, for example, based on the change in the output current of the power transmission circuit 110.
  • the detector 140 may detect the approach of the power receiving device 200 based on the phase difference between the output voltage and the output current of the power transmission circuit 110. For example, when the output current is in a delayed phase with respect to the output voltage, it can be determined that the power receiving device 200 has entered or is installed in the power transmission area.
  • the detector 140 may include a sensor located away from the power transmission circuit 110 and the power transmission electrode 120.
  • the sensor can be, for example, a camera or a ranging device. Based on the position of the power receiving device 200 detected by the sensor, it can be determined that the power receiving device 200 has entered or is installed in the power transmission area.
  • the power transmission device 100 may have a configuration of any combination of the above-mentioned plurality of types of detection functions. It may be determined that the power receiving device 200 has entered or is installed in the power transmission area by satisfying the entry determination condition of one type or two or more types of detection functions among the plurality of types of detection functions.
  • FIG. 18 is a diagram showing a configuration of a power transmission device 100 according to a modified example.
  • different power paths are provided between the detection power transmission mode and the main power transmission mode.
  • the detection transmission mode the first power path is used, and in the main transmission mode, the second power path is used.
  • a switch 170 is provided on the first path and the second path.
  • the power transmission control circuit 150 controls the switch 170 to switch the power path to be used when shifting from the detection power transmission mode to the main power transmission mode.
  • the detector 140 is located only on the first power path. With such a configuration, it is possible to detect a circuit response such as current or voltage with high resolution as compared with the case where a common power path is used between the detection transmission mode and the main transmission mode.
  • FIG. 19 is a diagram showing a configuration example in which the power receiving device 200 is provided with a voltage detector 290 in front of the load 300.
  • the power receiving control circuit 250 starts impedance control of the resistance circuit 230.
  • FIG. 20 is a diagram showing an example of a power receiving device 200 in which the load 300 and the power receiving control circuit 250 have a communication function.
  • FIG. 21 is a diagram showing an example of a power transmission device 100 in which the power transmission control circuit 150 communicates with the load 300.
  • the load 300 includes a transmitter, and the power receiving control circuit 250 and the power transmission control circuit 150 include a receiver.
  • the power receiving control circuit 250 and the power transmission control circuit 150 receive, for example, a signal indicating the input voltage of the load 300, a signal indicating the start or completion of the start of the load 300, or a signal indicating the start or completion of charging from the load 300. Can be done.
  • the power receiving control circuit 250 and the power transmission control circuit 150 can always maintain the impedance of the resistance circuit 230 and the output voltage of the power transmission circuit 110 within an appropriate range according to the state of the load 300.
  • a signal such as an input voltage of the load 300 may be transmitted to the power transmission control circuit 150.
  • the power transmission control circuit 150 can control the power transmission circuit 110 so that appropriate power is supplied to the load 300.
  • FIG. 22 is a diagram showing an example in which the load 300 includes a charge control circuit 310 and a power storage device 330.
  • the power storage device 330 is any rechargeable device, such as a secondary battery or a capacitor for storage.
  • the charge control circuit 310 is a circuit that controls charging and discharging of the power storage device.
  • the activation of the charge control circuit 310 corresponds to the above-mentioned "activation of the load 300".
  • the power receiving control circuit 250 can grasp the activation state of the load 300 based on the signal output from the charge control circuit 310.
  • FIG. 23 is a diagram showing an example in which the load 300 includes a charge control circuit 310, a power storage device 330, and a load 340 (for example, a motor) of a device such as a robot.
  • the load 340 of the device is connected in parallel with the power storage device 330.
  • the charge control circuit 310 adjusts the power supply balance between the power storage device 330 and the load 340 of the device according to the received power.
  • power can be supplied from the power storage device 330 to the load 340 of the device.
  • FIG. 24 is a block diagram schematically showing the configuration of the wireless power transmission system of the present embodiment.
  • This wireless power transmission system includes a power transmission device 100 and a power receiving device 200.
  • FIG. 24 also shows a DC power supply 400, which is an external element of the wireless power transmission system.
  • the power receiving device 200 in this embodiment is a mobile body as shown in FIG. Therefore, in the following description, the power receiving device 200 is also referred to as a “mobile body 200”.
  • the power transmission device 100 includes a power transmission circuit 110, a plurality of power transmission electrodes 120, a power transmission control circuit 150, and a detector 140.
  • the power transmission circuit 110 includes an inverter circuit 160 and a matching circuit 180.
  • the inverter circuit 160 converts the DC power output from the power supply 400 into AC power and outputs it in response to a command from the power transmission control circuit 150.
  • FIG. 25 is a diagram schematically showing a configuration example of the inverter circuit 160.
  • the inverter circuit 160 is a full bridge type inverter circuit including four switching elements. Each switching element can be realized by a transistor such as an IGBT, MOSFET, or GaN. Each switching element is controlled by the power transmission control circuit 150.
  • the power transmission control circuit 150 includes a gate driver that outputs a control signal that controls the on (conducting) and off (non-conducting) states of each switching element, and a processor such as a microcontroller (MCU) that causes the gate driver to output a control signal. And can be prepared.
  • the power transmission control circuit 150 outputs AC power having a desired frequency and voltage from the inverter circuit 160 by controlling the on and off states of each switching element.
  • a half-bridge type inverter circuit or another type of oscillation circuit such as class E may be used.
  • the frequency of power transmission can be set, for example, 50 Hz to 300 GHz, 20 kHz to 10 GHz in one example, 20 kHz to 20 MHz in another example, and 80 kHz to 14 MHz in another example. However, it is not limited to these frequency ranges.
  • the matching circuit 180 matches the impedance between the inverter circuit 160 and the power transmission electrode 120.
  • 26A to 26D are diagrams showing a configuration example of the matching circuit 180.
  • FIG. 26A is a diagram showing a first example of the matching circuit 180.
  • the matching circuit 180 in this example includes a first inductor Lt1, a second inductor Lt2, and a capacitor Ct1.
  • the first inductor Lt1 is connected as a series circuit element between the power transmission electrode 120a and the first terminal 60a of the inverter circuit 160.
  • the second inductor Lt2 is connected as a series circuit element between the power transmission electrode 120b and the second terminal 60b of the inverter circuit 160.
  • the capacitor Ct1 is connected as a parallel circuit element between the wiring between the power transmission electrode 120a and the inductor Lt1 and the wiring between the power transmission electrode 120b and the inductor Lt2.
  • the first inductor Lt1 and the second inductor Lt2 are magnetically coupled.
  • the coupling coefficient k of these inductors can be set to a value satisfying, for example, -1 ⁇ k ⁇ 0.
  • the first inductor Lt1 and the second inductor Lt2 can function as a common mode choke filter. In that case, it is possible to reduce the frequency used for power transmission and the common mode noise in the low-order harmonic band.
  • the resonator composed of the first inductor Lt1, the second inductor Lt2, and the first capacitor Ct1 may be referred to as a "common mode choke resonator".
  • FIG. 26B is a diagram showing a second example of the matching circuit 180.
  • the matching circuit 180 further includes a second capacitor Ct2, a third capacitor Ct3, and a third inductor Lt3.
  • the second capacitor Ct2 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a.
  • the third capacitor Ct3 is connected as a series circuit element between the second inductor Lt2 and the second terminal 60b.
  • the third inductor Lt3 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the second capacitor Ct2 and the wiring between the second inductor Lt2 and the third capacitor Ct3. Will be done. It can be said that this configuration is a configuration in which a high-pass filter having a symmetrical circuit configuration is added in front of the configuration of the matching circuit 180 shown in FIG. 26A. According to such a configuration, the transmission efficiency can be further improved.
  • FIG. 26C is a diagram showing a third example of the matching circuit 180.
  • the matching circuit 180 further includes a second capacitor Ct2 and a third inductor Lt3 in addition to the configuration shown in FIG. 26A.
  • the second capacitor Ct2 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a.
  • the third inductor Lt3 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the second capacitor Ct2 and the wiring between the second inductor Lt2 and the second terminal 60b. Will be done. It can be said that this configuration is a configuration in which a high-pass filter having an asymmetric circuit configuration is added in front of the configuration of the matching circuit 180 shown in FIG. 26A. Compared with the configuration of FIG. 26B, the positive / negative symmetry of the circuit is lowered, but the number of elements can be reduced. The transmission efficiency can be further improved by such a configuration.
  • FIG. 26D is a diagram showing a fourth example of the matching circuit 180.
  • the matching circuit 180 further includes a third inductor Lt3 and a second capacitor Ct2 in addition to the configuration shown in FIG. 26A.
  • the third inductor Lt3 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a.
  • the second capacitor Ct2 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the third inductor Lt3 and the wiring between the second inductor Lt2 and the second terminal 60b. Will be done. It can be said that this configuration is a configuration in which a low-pass filter having an asymmetric circuit configuration is added in front of the configuration of the matching circuit 180 shown in FIG. 26A. The transmission efficiency can be further improved by such a configuration.
  • the matching circuit 180 in each of the above examples may include other circuit elements, for example, a network that functions as a filter, in addition to the circuit elements shown in the figure.
  • the element represented as one inductor or one capacitor may be an aggregate of a plurality of inductors or a plurality of capacitors.
  • the detector 140 detects the input current of the inverter circuit 160.
  • the power transmission control circuit 150 can detect the approach of the mobile body 200 based on the change in the current detected by the detector 140, and can shift from the above-mentioned detection power transmission mode to the main power transmission mode.
  • the mobile body 200 includes a plurality of power receiving electrodes 220, a power receiving circuit 210, a power receiving control circuit 250, a charging control circuit 310, a power storage device 330, and an electric motor 320.
  • the power receiving circuit 210 includes a matching circuit 280, a rectifier circuit 260, and a resistance circuit 230.
  • the matching circuit 280 matches the impedance between the power receiving electrode 220 and the rectifier circuit 260.
  • the matching circuit 280 may have the same configuration as the matching circuit 180 described, for example, with reference to FIGS. 26A to 26D.
  • the matching circuit 280 in the mobile body 200 it is possible to adopt a configuration in which the input side (left side in the figure) and the output side (right side in the figure) are inverted in each of the above configuration examples.
  • the rectifier circuit 260 converts the AC power output from the matching circuit 280 into DC power.
  • FIG. 27 is a diagram schematically showing a configuration example of the rectifier circuit 260.
  • the rectifier circuit 260 in this example is a full-wave rectifier circuit including a diode bridge and a smoothing capacitor.
  • the rectifier circuit 260 may have other configurations, such as a half-wave rectifier circuit.
  • the rectifier circuit 260 converts the received AC energy into DC energy that can be used by loads such as the power storage device 330 and the motor 320.
  • the power receiving control circuit 250 can be realized by a circuit including a processor and a storage medium such as a memory, such as an MCU. As described above, the power receiving control circuit 250 adjusts the resistance value of the resistance circuit 230 according to the operating state of the charge control circuit 310.
  • the charge control circuit 310 is connected between the resistance circuit 230 and the power storage device 330 to control charging and discharging of the power storage device 330.
  • FIG. 28 is a diagram showing a configuration example of the charge control circuit 310.
  • the charge control circuit 310 in this example includes a cell balance controller 271, an analog front-end IC (AFE-IC) 272, a thermistor 273, a current detection resistor 274, an MCU 275, a communication driver IC 276, and a protection FET 277.
  • the cell balance controller 271 is a circuit for equalizing the stored energy of each cell of the secondary battery including a plurality of cells.
  • the AFE-IC272 is a circuit that controls the cell balance controller 271 and the protection FET 277 based on the cell temperature measured by the thermistor 273 and the current detected by the current detection resistor 274.
  • the MCU 275 is a circuit that controls communication with other circuits via the communication driver IC 276.
  • the configuration shown in FIG. 28 is only an example, and the circuit configuration may be changed according to the required function or characteristic.
  • the electric motor 320 is connected to the power storage device 330 and the charge control circuit 310, and is driven by the energy stored in the power storage device 330.
  • the motor 320 can be any motor, such as a DC motor, a permanent magnet synchronous motor, an induction motor, a stepping motor, or a reluctance motor.
  • the motor 320 rotates the wheels of the moving body via a shaft, gears, and the like to move the moving body 200.
  • various circuits such as a rectifier circuit, an inverter circuit, and an inverter control circuit may be provided in front of the motor 320.
  • the power storage device 330 may be, for example, a secondary battery or a capacitor for power storage.
  • a secondary battery for example, a lithium ion battery or a nickel hydrogen battery can be used.
  • the capacitor for storage can be a high capacity and low resistance capacitor such as an electric double layer capacitor or a lithium ion capacitor.
  • the mobile body 200 moves by driving the motor 320 by the electric power stored in the capacitor or the secondary battery.
  • the mobile body 200 moves, the amount of electricity stored in the electricity storage device 330 decreases. Therefore, recharging is required to continue moving. Therefore, for example, when the charge amount falls below a predetermined threshold value during movement, the mobile body 200 charges from the power transmission device 100.
  • the sizes of the housing of the mobile body 200, the power transmission electrode 120, and the power reception electrode 220 in the present embodiment are not particularly limited, but may be set to the following sizes, for example.
  • the length of each transmission electrode 120 ie, the size in the Y direction
  • the width of each transmission electrode 120 ie, the size in the X direction
  • the respective sizes of the housing of the moving body 200 in the moving direction and the lateral direction can be set within the range of, for example, 20 cm to 5 m.
  • the size of the housing of the mobile body 200 in the moving direction may be set to less than half the length of each power transmission electrode 120 so that power can be supplied from the power transmission electrode 120 to two or more mobile bodies 200 at the same time.
  • the length (that is, the size in the moving direction) of the power receiving electrode 220a can be set in the range of, for example, 5 cm to 2 m.
  • the width (that is, the size in the lateral direction) of the power receiving electrode 220a can be set in the range of, for example, 2 cm to 2 m.
  • the gap between the transmission electrodes 120 and the gap between the power receiving electrodes 220 can be set, for example, in the range of 1 mm to 40 cm. However, it is not limited to these numerical ranges.
  • the power transmission electrode 120 is laid on the ground or the floor surface, but the power transmission electrode 120 may be laid on a side surface such as a wall or an upper surface such as a ceiling.
  • the arrangement and orientation of the power receiving electrode 220 of the mobile body 200 is determined according to the location and orientation in which the power transmission electrode 120 is laid.
  • FIG. 29A shows an example in which the power transmission electrode 120 is laid on a side surface such as a wall.
  • the power receiving electrode 220 is arranged on the side of the moving body 200.
  • FIG. 29B shows an example in which the power transmission electrode 120 is laid on the ceiling.
  • the power receiving electrode 220 is arranged on the top plate of the moving body 200.
  • the wireless power transmission system can be used as a system for transporting goods in, for example, a warehouse or a factory.
  • the mobile body 200 has a loading platform for loading articles, and functions as a trolley that autonomously moves in the factory and transports articles to a required place.
  • the wireless power transmission system and the mobile body in the present disclosure are not limited to such applications, and may be used for various other applications.
  • the moving body is not limited to the AGV, and may be another industrial machine, a service robot, an electric vehicle, a multicopter (drone), or the like.
  • Wireless power transfer systems can be used not only in factories or warehouses, but also in, for example, stores, hospitals, homes, roads, runways and anywhere else.
  • the power receiving device is not limited to a mobile body, and may be any portable device such as a charging pole, a smartphone, a tablet computer, or a laptop computer.
  • FIG. 30 is a perspective view schematically showing an example of a wireless power transmission system that supplies power to a portable power receiving device 400.
  • FIG. 31 is a schematic cross-sectional view of this system.
  • a portable power receiving device 400 receives power from the power transmission device 100 and operates. Although two power receiving devices 400 are illustrated in FIG. 30, the number of power receiving devices 400 is arbitrary.
  • the power receiving device 400 may be, for example, a portable charging pole.
  • the power receiving device 400 is arranged and used on the power transmission sheet 190 included in the power transmission device 100.
  • the power transmission sheet 190 includes a pair of power transmission electrodes 120 extending in one direction.
  • the power receiving device 400 includes a power receiving sheet 240 facing the power transmission sheet 190 when in use.
  • the power receiving sheet 240 includes a pair of power receiving electrodes 220.
  • Electric power is transmitted wirelessly with the pair of power receiving electrodes 220 facing each other of the pair of power transmission electrodes 120.
  • the power receiving device 400 is portable and can be slid along the direction in which the power transmission electrode 120 extends.
  • the dimension of the power receiving device 400 in the direction in which the power transmission electrode 120 extends is less than half the length of the power transmission electrode 120. Therefore, two or more power receiving devices 400 can be arranged on the power transmission sheet 190 at the same time.
  • the pair of power transmission electrodes 120 are connected to the power transmission circuit 110. Similar to the above-described embodiment, the power transmission circuit 110 supplies AC power to the pair of power transmission electrodes 120. As a result, AC energy is transmitted from the power transmission electrode 120 to the space.
  • the power receiving device 400 includes a power receiving circuit 210, a power storage device 330, and a load 340 in addition to the power receiving sheet 240.
  • the power receiving circuit 210 is connected to a pair of power receiving electrodes 220, and converts the AC power received by the power receiving electrodes 220 into DC power and outputs the power.
  • the power storage device 330 stores the DC power output from the power receiving circuit 210.
  • the load 340 is connected to the power storage device 330 and operates by the electric power stored in the power storage device 330.
  • the load 340 is any device operated by electric power and may include, for example, an electric motor, a power unit, or a lighting device.
  • the power receiving device 400 may include one or more outlets for supplying power to other devices.
  • the power receiving device 400 has a function of adjusting impedance, as in the examples shown in FIGS. 8 to 12 and the like. As a result, it is possible to suppress heat generation and damage of the circuit element at the start of charging and stabilize the operation.
  • FIG. 32 is a diagram showing another example of the power receiving device 400.
  • the power receiving device 400 may be a smartphone 400A, a tablet computer 400B, or a laptop computer 400C. Not limited to these examples, the power receiving device 400 can be any portable device. Regardless of the type of the power receiving device 400, by applying the technique of the present disclosure, it is possible to suppress heat generation and damage of the circuit element at the start of charging and stabilize the operation.
  • the technology of the present disclosure can be used for any device driven by electric power.
  • the techniques of the present disclosure can be applied to electric vehicles such as automatic guided vehicles (AGVs) or portable devices such as charging poles, smartphones, tablet computers, or laptop computers.
  • AGVs automatic guided vehicles
  • portable devices such as charging poles, smartphones, tablet computers, or laptop computers.
  • Power transmission device 110 Power transmission circuit 120 Power transmission electrode 140 Detector 150 Power transmission control circuit 160 Inverter circuit 170 Switch 180 Matching circuit 200 Mobile unit (power receiving device) 210 Power receiving circuit 220 Power receiving electrode 230 Resistance circuit 232 Resistor 234 Switch 250 Power receiving control circuit 260 Rectifier circuit 280 Matching circuit 290 Voltage detector 300 Load 310 Charge control circuit 320 Electric motor 330 Power storage device 340 Equipment load 400 Power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This power reception device is used in a wireless power transmission system comprising a power transmission device and a power reception device. The power reception device comprises: a power reception antenna that receives AC power wirelessly from a power transmission antenna provided to the power transmission device; a power reception circuit that converts the AC power received by the power reception antenna to DC power and outputs the power; a load that operates using the DC power outputted from the power reception circuit, and is started up when the voltage of the DC power exceeds a prescribed startup voltage; a resistance circuit connected between the power reception circuit and the load, the resistance circuit including a resistor connected in parallel to the load; and a power reception control circuit that controls the impedance of the resistance circuit so as to suppress fluctuations in the load impedance of the power reception circuit due to the power reception device approaching the power transmission device and the load starting up.

Description

受電装置、送電装置、および無線電力伝送システムPower receiving equipment, power transmission equipment, and wireless power transmission system
 本開示は、受電装置、送電装置、および無線電力伝送システムに関する。 This disclosure relates to a power receiving device, a power transmitting device, and a wireless power transmission system.
 近年、携帯電話機および電気自動車などの移動性を伴う機器に、無線すなわち非接触で電力を伝送する無線電力伝送技術の開発が進められている。無線電力伝送技術には、磁界結合方式および電界結合方式などの方式がある。磁界結合方式による無線電力伝送システムでは、送電コイルと受電コイルとが対向した状態で、送電コイルから受電コイルに無線で電力が伝送される。特許文献1および2は、磁界結合方式による無線電力伝送システムの例を開示している。他方、電界結合方式による無線電力伝送システムでは、一対の送電電極と一対の受電電極とが対向した状態で、一対の送電電極から一対の受電電極に無線で電力が伝送される。電界結合方式による無線電力伝送システムは、例えば床面に設けられた複数の送電電極から、バッテリなどの負荷を備えた移動体に電力を供給する用途で用いられ得る。特許文献3は、電界結合方式による無線電力伝送システムの例を開示している。 In recent years, the development of wireless power transmission technology for transmitting power wirelessly, that is, non-contactly, to mobile devices such as mobile phones and electric vehicles has been promoted. Wireless power transmission technology includes methods such as a magnetic field coupling method and an electric field coupling method. In a wireless power transmission system based on a magnetic field coupling method, power is wirelessly transmitted from the power transmission coil to the power reception coil with the power transmission coil and the power reception coil facing each other. Patent Documents 1 and 2 disclose an example of a wireless power transmission system by a magnetic field coupling method. On the other hand, in a wireless power transmission system based on an electric field coupling method, power is wirelessly transmitted from a pair of power transmission electrodes to a pair of power receiving electrodes with the pair of power transmission electrodes and the pair of power receiving electrodes facing each other. A wireless power transmission system based on an electric field coupling method can be used in an application of supplying power to a moving body having a load such as a battery from a plurality of power transmission electrodes provided on a floor surface, for example. Patent Document 3 discloses an example of a wireless power transmission system by an electric field coupling method.
国際公開第2015/083223号明細書International Publication No. 2015/0832223 特開2009-189231号公報Japanese Unexamined Patent Publication No. 2009-189231 特開2018-108012号公報Japanese Unexamined Patent Publication No. 2018-108012
 本開示は、受電装置が送電装置から受電を開始するときに生じ得る回路素子の発熱または損傷を抑制するための技術を提供する。 The present disclosure provides a technique for suppressing heat generation or damage of a circuit element that may occur when a power receiving device starts receiving power from a power transmitting device.
 本開示の一態様に係る受電装置は、送電装置と受電装置とを備える無線電力伝送システムにおいて用いられる受電装置であって、前記送電装置が備える送電アンテナから無線で交流電力を受け取る受電アンテナと、前記受電アンテナが受け取った前記交流電力を直流電力に変換して出力する受電回路と、前記受電回路から出力された前記直流電力によって動作する負荷であって、前記直流電力の電圧が所定の起動電圧を超えたときに起動する負荷と、前記受電回路と前記負荷との間に接続された抵抗回路であって、前記負荷に並列に接続された抵抗器を含む抵抗回路と、前記受電装置が前記送電装置に接近し、前記負荷が起動することによって生じる前記受電回路の負荷インピーダンスの変動を抑制するように、前記抵抗回路のインピーダンスを制御する受電制御回路と、を備える。 The power receiving device according to one aspect of the present disclosure is a power receiving device used in a wireless power transmission system including a power transmitting device and a power receiving device, and is a power receiving antenna that wirelessly receives AC power from a power transmitting antenna included in the power transmitting device. A power receiving circuit that converts the AC power received by the power receiving antenna into DC power and outputs it, and a load that operates by the DC power output from the power receiving circuit, and the voltage of the DC power is a predetermined starting voltage. A load that starts when the voltage exceeds the above, a resistance circuit that is a resistance circuit connected between the power receiving circuit and the load, and includes a resistor connected in parallel to the load, and the power receiving device. It is provided with a power receiving control circuit that controls the impedance of the resistance circuit so as to suppress fluctuations in the load impedance of the power receiving circuit caused by approaching the power transmission device and activating the load.
 本開示の他の態様に係る送電装置は、送電装置と受電装置とを備える無線電力伝送システムにおいて用いられる送電装置である。前記受電装置は、受電アンテナと、前記受電アンテナが受け取った前記交流電力を直流電力に変換して出力する受電回路と、前記受電回路から出力された前記直流電力によって動作し、前記直流電力の電圧が所定の起動電圧を超えたときに起動する負荷と、を備える。前記送電装置は、電源から供給された電力を、電力伝送のための交流電力に変換して出力する送電回路と、前記交流電力を、前記受電アンテナに無線で伝送する送電アンテナと、前記受電装置の前記送電装置への接近を検出する検出器と、前記送電回路を制御する送電制御回路であって、前記受電装置の前記送電装置への接近が検出されたとき、前記送電回路から出力される前記交流電力を増加させ、前記負荷の入力電圧が予め設定された範囲内に維持されるように、前記送電回路を制御する、送電制御回路と、を備える。 The power transmission device according to another aspect of the present disclosure is a power transmission device used in a wireless power transmission system including a power transmission device and a power receiving device. The power receiving device operates by a power receiving antenna, a power receiving circuit that converts the AC power received by the power receiving antenna into DC power and outputs the power, and the DC power output from the power receiving circuit, and operates with the DC power voltage. It comprises a load that starts when a predetermined starting voltage is exceeded. The power transmission device includes a power transmission circuit that converts power supplied from a power source into AC power for power transmission and outputs the power transmission device, a power transmission antenna that wirelessly transmits the AC power to the power reception antenna, and the power reception device. A detector that detects the approach to the power transmission device and a power transmission control circuit that controls the power transmission circuit, and is output from the power transmission circuit when the approach of the power receiving device to the power transmission device is detected. It comprises a power transmission control circuit that controls the power transmission circuit so that the AC power is increased and the input voltage of the load is maintained within a preset range.
 本開示の包括的または具体的な態様は、装置、システム、方法、集積回路、コンピュータプログラム、または記録媒体で実現され得る。あるいは、装置、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 Comprehensive or specific embodiments of the present disclosure may be realized in devices, systems, methods, integrated circuits, computer programs, or recording media. Alternatively, it may be realized by any combination of devices, systems, methods, integrated circuits, computer programs and recording media.
 本開示の技術によれば、受電装置が送電装置から受電を開始するときに生じ得る回路素子の発熱および損傷を抑制することができる。 According to the technique of the present disclosure, it is possible to suppress heat generation and damage of the circuit element that may occur when the power receiving device starts receiving power from the power transmitting device.
電界結合方式による無線電力伝送システムの一例を模式的に示す図である。It is a figure which shows typically an example of the wireless power transmission system by the electric field coupling method. 図1に示す無線電力伝送システムの概略的な構成を示す図である。It is a figure which shows the schematic structure of the wireless power transmission system shown in FIG. 1. 送電電極群および受電電極群の各々が4つの電極を含む無線電力伝送システムの例を示す図である。It is a figure which shows the example of the wireless power transmission system which each of a transmission electrode group and a power receiving electrode group includes four electrodes. 図3に示す無線電力伝送システムの概略的な構成を示す図である。It is a figure which shows the schematic structure of the wireless power transmission system shown in FIG. 受電電極のうち、送電電極と重なっている部分の面積の割合と、受電回路の出力電圧との関係の例とを示す図である。It is a figure which shows the example of the relationship between the ratio of the area of the part overlapping with a power transmission electrode, and the output voltage of a power receiving circuit among the power receiving electrodes. 受電回路と負荷との間に抵抗器が並列に接続された構成を示す図である。It is a figure which shows the structure which the resistor is connected in parallel between a power receiving circuit and a load. 受電回路と負荷との間に、抵抗器に加えて開閉器が接続された構成を示す図である。It is a figure which shows the structure which the switch is connected in addition to the resistor between a power receiving circuit and a load. 実施形態における送電装置の構成を示す図である。It is a figure which shows the structure of the power transmission apparatus in an embodiment. 実施形態における受電装置の構成を示す図である。It is a figure which shows the structure of the power receiving device in an embodiment. 受電制御回路による抵抗回路の制御方法の一例を示す図である。It is a figure which shows an example of the control method of a resistance circuit by a power receiving control circuit. 受電制御回路による抵抗回路の制御方法の他の例を示す図である。It is a figure which shows another example of the control method of a resistance circuit by a power receiving control circuit. 受電制御回路による抵抗回路の制御方法のさらに他の例を示す図である。It is a figure which shows still another example of the control method of a resistance circuit by a power receiving control circuit. 受電制御回路による抵抗回路の制御方法のさらに他の例を示す図である。It is a figure which shows still another example of the control method of a resistance circuit by a power receiving control circuit. 送電装置および受電装置の動作の例を示すシーケンス図である。It is a sequence diagram which shows the example of the operation of a power transmission device and a power receiving device. 負荷の入力インピーダンス、抵抗回路の抵抗値、および受電回路の負荷インピーダンスの時間変化の例を示す図である。It is a figure which shows the example of the time change of the input impedance of a load, the resistance value of a resistance circuit, and the load impedance of a power receiving circuit. 送電回路から出力される送電電力、受電回路の出力電圧、および受電回路の負荷インピーダンスの時間変化の例を示す図である。It is a figure which shows the example of the time change of the transmission power output from a power transmission circuit, the output voltage of a power receiving circuit, and the load impedance of a power receiving circuit. 電源と送電回路との間に検出器が接続された構成の例を示す図である。It is a figure which shows the example of the configuration in which the detector is connected between a power source and a power transmission circuit. 送電回路と複数の送電電極との間に検出器が接続された構成の例を示す図である。It is a figure which shows the example of the configuration in which the detector is connected between the power transmission circuit and a plurality of power transmission electrodes. 変形例による送電装置の構成を示す図である。It is a figure which shows the structure of the power transmission device by a modification. 受電装置が負荷の前段に電圧検出器を備えた構成例を示す図である。It is a figure which shows the configuration example which provided the voltage detector in the front stage of a load of a power receiving device. 負荷と受電制御回路とが通信機能を有する受電装置の例を示す図である。It is a figure which shows the example of the power receiving device which the load and the power receiving control circuit have a communication function. 送電制御回路が負荷との間で通信を行う送電装置の例を示す図である。It is a figure which shows the example of the power transmission apparatus which a power transmission control circuit communicates with a load. 負荷が充電制御回路および蓄電デバイスを備えた例を示す図である。It is a figure which shows the example which a load was provided with a charge control circuit and a power storage device. 負荷が、充電制御回路と、蓄電デバイスと、ロボットなどの機器の負荷とを含む例を示す図である。It is a figure which shows the example which includes the charge control circuit, the power storage device, and the load of a device such as a robot. 無線電力伝送システムの構成例を模式的に示すブロック図である。It is a block diagram which shows the structural example of a wireless power transmission system schematically. インバータ回路の構成例を模式的に示す図である。It is a figure which shows the structural example of the inverter circuit schematically. 整合回路の第1の例を示す図である。It is a figure which shows the 1st example of a matching circuit. 整合回路の第2の例を示す図である。It is a figure which shows the 2nd example of a matching circuit. 整合回路の第3の例を示す図である。It is a figure which shows the 3rd example of a matching circuit. 整合回路の第4の例を示す図である。It is a figure which shows the 4th example of a matching circuit. 整流回路の構成例を模式的に示す図である。It is a figure which shows the structural example of a rectifier circuit schematically. 充電制御回路の構成例を示す図である。It is a figure which shows the structural example of the charge control circuit. 送電電極が壁などの側面に敷設された例を示している。An example is shown in which a power transmission electrode is laid on a side surface such as a wall. 送電電極が天井に敷設された例を示している。An example in which a power transmission electrode is laid on the ceiling is shown. 電界結合方式による無線電力伝送システムの他の例を模式的に示す図である。It is a figure which shows the other example of the wireless power transmission system by the electric field coupling system schematically. 無線電力伝送システムの他の例における受電装置および送電装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the power receiving device and the power transmission device in another example of a wireless power transmission system. 受電装置の他の例を示す図である。It is a figure which shows the other example of a power receiving device.
 (本開示の基礎となった知見)
 本開示の実施形態を説明する前に、本開示の基礎となった知見を説明する。
(Findings underlying this disclosure)
Before explaining the embodiments of the present disclosure, the findings underlying the present disclosure will be described.
 図1は、電界結合方式による無線電力伝送システムの一例を模式的に示す図である。「電界結合方式」とは、複数の送電電極を含む送電電極群と複数の受電電極を含む受電電極群との間の電界結合(「容量結合」とも称する。)により、送電電極群から受電電極群に無線すなわち非接触で電力が伝送される伝送方式をいう。簡単のため、送電電極群および受電電極群の各々が、2つの電極の対によって構成される例をまず説明する。 FIG. 1 is a diagram schematically showing an example of a wireless power transmission system by an electric field coupling method. The "electric field coupling method" is a power receiving electrode group including a plurality of power transmitting electrodes and a power receiving electrode group including a plurality of power receiving electrodes by electric field coupling (also referred to as "capacitive coupling"). A transmission method in which power is transmitted wirelessly, that is, non-contactly to a group. For simplicity, an example in which each of the power transmission electrode group and the power reception electrode group is composed of a pair of two electrodes will be described first.
 図1に示す無線電力伝送システムは、移動体である受電装置200に無線で電力を伝送するシステムである。この例における受電装置200は、無人搬送車(Automated Guided Vehicle:AGV)である。受電装置200は、例えば工場または倉庫において物品の搬送に用いられる。このシステムでは、床面30に平板状の一対の送電電極120a、120bが配置されている。一対の送電電極120a、120bは、第1の方向(図1におけるY方向)に延びた形状を有する。一対の送電電極120a、120bには、不図示の送電回路から交流電力が供給される。 The wireless power transmission system shown in FIG. 1 is a system that wirelessly transmits power to a power receiving device 200 which is a mobile body. The power receiving device 200 in this example is an automated guided vehicle (AGV). The power receiving device 200 is used for transporting goods, for example, in a factory or a warehouse. In this system, a pair of flat plate-shaped power transmission electrodes 120a and 120b are arranged on the floor surface 30. The pair of power transmission electrodes 120a and 120b have a shape extending in the first direction (Y direction in FIG. 1). AC power is supplied to the pair of power transmission electrodes 120a and 120b from a power transmission circuit (not shown).
 受電装置200は、一対の送電電極120a、120bに対向する不図示の一対の受電電極を備えている。受電装置200は、送電電極120a、120bから伝送された交流電力を、一対の受電電極によって受け取る。受け取った電力は、受電装置200が有するモータ、二次電池、または蓄電用のキャパシタなどの負荷に供給される。これにより、受電装置200の充電または駆動が行われる。 The power receiving device 200 includes a pair of power receiving electrodes (not shown) facing the pair of power transmission electrodes 120a and 120b. The power receiving device 200 receives the AC power transmitted from the power transmitting electrodes 120a and 120b by the pair of power receiving electrodes. The received electric power is supplied to a load such as a motor, a secondary battery, or a capacitor for storing electricity included in the power receiving device 200. As a result, the power receiving device 200 is charged or driven.
 図1には、互いに直交するX、Y、Z方向を示すXYZ座標が示されている。以下の説明では、図示されているXYZ座標を用いる。送電電極120a、120bが延びる方向をY方向、送電電極120a、120bの表面に垂直な方向をZ方向、Y方向およびZ方向に垂直な方向をX方向とする。X方向は、送電電極120a、120bが並ぶ方向である。なお、本願の図面に示される構造物の向きは、説明のわかりやすさを考慮して設定されており、本開示の実施形態が現実に実施されるときの向きをなんら制限するものではない。また、図面に示されている構造物の全体または一部分の形状および大きさも、現実の形状および大きさを制限するものではない。 FIG. 1 shows XYZ coordinates indicating X, Y, and Z directions orthogonal to each other. In the following description, the illustrated XYZ coordinates are used. The direction in which the power transmission electrodes 120a and 120b extend is the Y direction, the direction perpendicular to the surfaces of the power transmission electrodes 120a and 120b is the Z direction, and the direction perpendicular to the Y and Z directions is the X direction. The X direction is the direction in which the power transmission electrodes 120a and 120b are lined up. The orientation of the structure shown in the drawings of the present application is set in consideration of easy-to-understand explanation, and does not limit the orientation when the embodiment of the present disclosure is actually implemented. Also, the shape and size of all or part of the structure shown in the drawings does not limit the actual shape and size.
 図2は、図1に示す無線電力伝送システムの概略的な構成を示す図である。この無線電力伝送システムは、送電装置100と、受電装置200とを備える。送電装置100は、一対の送電電極120a、120bと、送電電極120a、120bに交流電力を供給する送電回路110とを備える。送電回路110は、例えば、インバータ回路を含む交流出力回路である。送電回路110は、不図示の電源から供給された直流電力を、電力伝送用の交流電力に変換して一対の送電電極120a、120bに出力する。送電回路110は、送電電極120a、120bとインバータ回路との間に、インピーダンス整合のための整合回路を備えていてもよい。電源は、直流電源に限らず交流電源であってもよい。電源が交流電源である場合、インバータ回路に代えて、入力された交流電力を、例えば異なる周波数または電圧を有する他の交流電力に変換して出力する電力変換回路が用いられ得る。 FIG. 2 is a diagram showing a schematic configuration of the wireless power transmission system shown in FIG. 1. This wireless power transmission system includes a power transmission device 100 and a power receiving device 200. The power transmission device 100 includes a pair of power transmission electrodes 120a and 120b, and a power transmission circuit 110 that supplies AC power to the power transmission electrodes 120a and 120b. The power transmission circuit 110 is, for example, an AC output circuit including an inverter circuit. The power transmission circuit 110 converts the DC power supplied from a power source (not shown) into AC power for power transmission and outputs the DC power to the pair of power transmission electrodes 120a and 120b. The power transmission circuit 110 may include a matching circuit for impedance matching between the power transmission electrodes 120a and 120b and the inverter circuit. The power source is not limited to a DC power source and may be an AC power source. When the power source is an AC power source, a power conversion circuit that converts the input AC power into, for example, another AC power having a different frequency or voltage and outputs it may be used instead of the inverter circuit.
 受電装置200は、一対の受電電極220a、220bと、受電回路210と、負荷300とを備える。受電回路210は、受電電極220a、220bが受け取った交流電力を負荷300が要求する他の形態の電力に変換して負荷300に供給する。受電回路210は、負荷300が要求する所定の電圧の直流電力または所定の周波数および電圧の交流電力を出力する。受電回路210は、例えば整流回路およびインピーダンス整合回路などの、各種の回路を含み得る。負荷300は、例えばモータ、蓄電用のキャパシタ、または二次電池などの、電力を消費または蓄える機器、およびそれらの機器を制御する回路を含み得る。一対の送電電極120a、120bと、一対の受電電極220a、220bとの間の電界結合により、両者が対向した状態で電力が無線で伝送される。 The power receiving device 200 includes a pair of power receiving electrodes 220a and 220b, a power receiving circuit 210, and a load 300. The power receiving circuit 210 converts the AC power received by the power receiving electrodes 220a and 220b into other forms of power required by the load 300 and supplies the AC power to the load 300. The power receiving circuit 210 outputs DC power of a predetermined voltage or AC power of a predetermined frequency and voltage required by the load 300. The power receiving circuit 210 may include various circuits such as a rectifier circuit and an impedance matching circuit. The load 300 may include devices that consume or store power, such as motors, capacitors for storage, or secondary batteries, and circuits that control those devices. Due to the electric field coupling between the pair of power transmitting electrodes 120a and 120b and the pair of power receiving electrodes 220a and 220b, electric power is transmitted wirelessly with the two facing each other.
 送電電極120a、120bおよび受電電極220a、220bの各々は、2つ以上の部分に分割されていてもよい。例えば、図3および図4に示すような構成を採用してもよい。 Each of the power transmission electrodes 120a and 120b and the power reception electrodes 220a and 220b may be divided into two or more portions. For example, the configurations shown in FIGS. 3 and 4 may be adopted.
 図3および図4は、送電電極群および受電電極群の各々が4つの電極を含む無線電力伝送システムの例を示す図である。この例では、送電装置100は、2つの第1送電電極120aと、2つの第2送電電極120bとを備える。2つの第1送電電極120aおよび2つの第2送電電極120bは、交互に並んでいる。受電装置200も同様に、2つの第1受電電極220aと、2つの第2受電電極220bとを備える。2つの第1受電電極220aおよび2つの第2受電電極220bも、交互に並んでいる。電力伝送時には、2つの第1受電電極220aは、2つの第1送電電極120aにそれぞれ対向し、2つの第2受電電極220bは、2つの第2送電電極120bにそれぞれ対向する。 3 and 4 are diagrams showing an example of a wireless power transmission system in which each of the power transmission electrode group and the power reception electrode group includes four electrodes. In this example, the power transmission device 100 includes two first power transmission electrodes 120a and two second power transmission electrodes 120b. The two first power transmission electrodes 120a and the two second power transmission electrodes 120b are arranged alternately. Similarly, the power receiving device 200 includes two first power receiving electrodes 220a and two second power receiving electrodes 220b. The two first power receiving electrodes 220a and the two second power receiving electrodes 220b are also arranged alternately. At the time of power transmission, the two first power receiving electrodes 220a face each of the two first power transmission electrodes 120a, and the two second power receiving electrodes 220b face each of the two second power transmission electrodes 120b.
 送電回路110は、交流電力を出力する2つの端子を備えている。一方の端子は、2つの第1送電電極120aに接続され、他方の端子は、2つの第2送電電極120bに接続される。電力伝送の際、送電回路110は、2つの第1送電電極120aに第1の電圧を印加し、2つの第2送電電極120bに、第1の電圧とは逆の位相の第2の電圧を印加する。これにより、4つの送電電極を含む送電電極群と4つの受電電極を含む受電電極群との間の電界結合によって電力が無線で伝送される。このような構成によれば、隣り合う任意の2つの送電電極の境界上の漏洩電界を抑制する効果を得ることができる。このように、送電装置100および受電装置200の各々において、送電または受電を行う電極の数は2個に限定されない。 The power transmission circuit 110 has two terminals for outputting AC power. One terminal is connected to the two first power transmission electrodes 120a and the other terminal is connected to the two second power transmission electrodes 120b. During power transmission, the power transmission circuit 110 applies a first voltage to the two first power transmission electrodes 120a, and applies a second voltage having a phase opposite to the first voltage to the two second power transmission electrodes 120b. Apply. As a result, electric power is transmitted wirelessly by electric field coupling between the power transmission electrode group including the four power transmission electrodes and the power reception electrode group including the four power reception electrodes. According to such a configuration, it is possible to obtain the effect of suppressing the leakage electric field on the boundary between any two adjacent power transmission electrodes. As described above, in each of the power transmission device 100 and the power reception device 200, the number of electrodes that transmit or receive power is not limited to two.
 以下の実施形態では、図1および図2に示すように、送電装置100が2つの送電電極を備え、受電装置200が2つの受電電極を備えた構成を主に説明する。以下の各実施形態において、送電電極群および受電電極群の各々は、図3および図4に例示されるように、2つよりも多くの電極を含んでいてもよい。いずれの場合も、ある瞬間に第1の電圧が印加される電極と、第1の電圧とは逆の位相の第2の電圧が印加される電極とが交互に並ぶように配置される。ここで「逆の位相」とは、位相差が180度である場合に限らず、位相差が90度から270度の範囲内である場合を含むものと定義する。以下の説明において、送電装置100が備える複数の送電電極を区別せず「送電電極120」と称し、受電装置200が備える複数の受電電極を区別せず「受電電極220」と称することがある。 In the following embodiments, as shown in FIGS. 1 and 2, a configuration in which the power transmission device 100 includes two power transmission electrodes and the power reception device 200 includes two power reception electrodes will be mainly described. In each of the following embodiments, each of the transmitting electrode group and the receiving electrode group may include more than two electrodes as illustrated in FIGS. 3 and 4. In either case, the electrodes to which the first voltage is applied at a certain moment and the electrodes to which the second voltage having the phase opposite to the first voltage is applied are arranged alternately. Here, the "opposite phase" is defined to include not only the case where the phase difference is 180 degrees but also the case where the phase difference is in the range of 90 degrees to 270 degrees. In the following description, the plurality of power transmission electrodes included in the power transmission device 100 may be referred to as “transmission electrode 120” without distinction, and the plurality of power receiving electrodes included in the power receiving device 200 may be referred to as “power receiving electrode 220” without distinction.
 上記のような無線電力伝送システムによれば、移動体である受電装置200は、送電電極120に沿って移動しながら、無線で電力を受け取ることができる。受電装置200は、送電電極120と受電電極220とが近接して対向した状態を保ちながら、送電電極120に沿って移動することができる。これにより、受電装置200は、例えばバッテリまたはキャパシタ等の蓄電デバイスを充電しながら移動することができる。なお、受電装置200は、移動しながら電力を受け取るのではなく、静止状態で電力を無線で受け取ってもよい。また、受電装置200は、移動体に限定されず、移動のための動力装置を備えない機器であってもよい。 According to the wireless power transmission system as described above, the power receiving device 200, which is a mobile body, can receive electric power wirelessly while moving along the power transmission electrode 120. The power receiving device 200 can move along the power transmitting electrode 120 while maintaining a state in which the power transmitting electrode 120 and the power receiving electrode 220 are close to each other and face each other. As a result, the power receiving device 200 can move while charging a power storage device such as a battery or a capacitor. The power receiving device 200 may receive power wirelessly in a stationary state instead of receiving power while moving. Further, the power receiving device 200 is not limited to a moving body, and may be a device not provided with a power device for moving.
 このような無線電力伝送システムにおいて、送電装置100は、送電電極120が敷設されたエリア(以下、「送電エリア」と称する。)に受電装置200が進入したこと、または設置されたことを検出する機能を備え得る。送電装置100は、受電装置200が送電エリアに進入したこと、または設置されたことを検出した場合に、送電用の比較的大きい電力を出力するように構成され得る。受電装置200が送電エリアに到達する前、または設置される前に送電装置100が送電用の電力を出力してしまうと、送電回路110内の共振回路が整合状態から大きくずれる。その結果、送電回路110における回路素子の発熱、損傷または破壊を招くおそれがある。そこで、送電回路110は、受電装置200の受電電極220が送電電極120に対向する状態を検出した上で送電を開始するように構成され得る。また、特に受電装置200が移動体である場合においては、受電電極220が送電電極120に重なっている間はできる限り長く送電されることが望ましい。そのため、受電装置200が送電エリアに到達後、送電回路110が直ちに送電を開始するように構成され得る。 In such a wireless power transmission system, the power transmission device 100 detects that the power receiving device 200 has entered or is installed in the area where the power transmission electrode 120 is laid (hereinafter, referred to as “power transmission area”). May have functionality. The power transmission device 100 may be configured to output a relatively large amount of power for power transmission when it detects that the power receiving device 200 has entered or is installed in the power transmission area. If the power transmission device 100 outputs power for power transmission before the power receiving device 200 reaches the power transmission area or is installed, the resonance circuit in the power transmission circuit 110 is greatly deviated from the matched state. As a result, the circuit element in the power transmission circuit 110 may generate heat, be damaged, or be destroyed. Therefore, the power transmission circuit 110 may be configured to start power transmission after detecting a state in which the power receiving electrode 220 of the power receiving device 200 faces the power transmission electrode 120. Further, particularly when the power receiving device 200 is a mobile body, it is desirable to transmit power as long as possible while the power receiving electrode 220 overlaps the power transmission electrode 120. Therefore, the power transmission circuit 110 may be configured to start power transmission immediately after the power receiving device 200 reaches the power transmission area.
 受電装置200の送電装置100への接近は、例えば送電回路110が微弱な電力を出力している状態で、送電回路110内の電流、電圧、または電力を計測した結果に基づいて検出され得る。例えば、送電回路110の入力電流の変化に基づいて、受電装置200の接近を検出することができる。以下の説明において、送電回路110が受電装置200の接近を検出するために微弱な電力を出力するモードを「検出用送電モード」と称する。送電回路110は、受電装置200の接近を検出すると、出力電力を送電用の比較的大きい電力に増加させる。送電回路110が送電用の比較的大きい電力を出力するモードを「本送電モード」と称する。検出用送電モードによる受電装置200の検出に替えて、カメラまたは測距装置などのセンサによって受電装置200の接近を検出してもよい。送電回路110は、受電装置200の接近を検出すると、本送電モードに移行する。 The approach of the power receiving device 200 to the power transmission device 100 can be detected based on the result of measuring the current, voltage, or power in the power transmission circuit 110, for example, in a state where the power transmission circuit 110 is outputting weak power. For example, the approach of the power receiving device 200 can be detected based on the change in the input current of the power transmission circuit 110. In the following description, a mode in which the power transmission circuit 110 outputs weak power in order to detect the approach of the power receiving device 200 is referred to as a “detection power transmission mode”. When the power transmission circuit 110 detects the approach of the power receiving device 200, the power transmission circuit 110 increases the output power to a relatively large power for power transmission. A mode in which the power transmission circuit 110 outputs a relatively large amount of power for power transmission is referred to as a "main power transmission mode". Instead of detecting the power receiving device 200 by the detection power transmission mode, the approach of the power receiving device 200 may be detected by a sensor such as a camera or a distance measuring device. When the power transmission circuit 110 detects the approach of the power receiving device 200, the power transmission circuit 110 shifts to the main power transmission mode.
 ここで、負荷300には、バッテリ等の蓄電デバイスおよび電気モータ等の駆動装置に加えて、それらの機器に必要な電力を供給するDC-DCコンバータおよびその制御回路などの各種の電子回路が含まれる。それらの回路は、印加される電圧がある一定の値を超えると起動する。以下、この一定の値を「起動電圧」と称し、負荷300に含まれる電子回路が起動することを「負荷300が起動する」と表現する。定常時すなわち安定動作時において、負荷300は特定の入力インピーダンスで動作する。送電回路110および受電回路210は、負荷300が安定動作中に効率が最大となるように設計されている。この場合、以下の説明において、安定動作中の負荷300の入力インピーダンス、すなわち受電回路210の負荷インピーダンスが、送電回路110と受電回路の210にとって「設計値である」と表現する。 Here, the load 300 includes, in addition to a power storage device such as a battery and a drive device such as an electric motor, various electronic circuits such as a DC-DC converter and a control circuit thereof that supply necessary power to those devices. Is done. These circuits start when the applied voltage exceeds a certain value. Hereinafter, this constant value is referred to as "starting voltage", and starting the electronic circuit included in the load 300 is expressed as "starting the load 300". The load 300 operates at a specific input impedance during constant operation, that is, during stable operation. The power transmission circuit 110 and the power reception circuit 210 are designed so that the efficiency is maximized while the load 300 is in stable operation. In this case, in the following description, the input impedance of the load 300 during stable operation, that is, the load impedance of the power receiving circuit 210 is expressed as "design value" for the power transmission circuit 110 and the power receiving circuit 210.
 負荷300の起動前、および起動してから動作が安定するまでは、負荷300の入力インピーダンスが設計値よりも高い状態にある。その状態では、送電回路110および受電回路210での損失が増え、受電回路210の出力電圧が上昇し、回路素子の発熱、損傷または破壊のリスクがある。 The input impedance of the load 300 is higher than the design value before the load 300 is started and until the operation is stable after the load 300 is started. In that state, the loss in the power transmission circuit 110 and the power reception circuit 210 increases, the output voltage of the power reception circuit 210 rises, and there is a risk of heat generation, damage or destruction of the circuit element.
 図5は、例示的な無線電力伝送システムにおいて、受電電極220のうち、送電電極120と重なっている部分の面積の割合と、受電回路210の出力電圧との関係の例を示す図である。この例では、負荷300の起動前の状態においては受電回路210の負荷インピーダンスが実質的に無限大であり、その状態における送電回路110の入力電圧は12Vである。なお、受電回路210の負荷インピーダンスが設計値のときに、送電回路110の入力電圧と受電回路210の出力電圧が等しくなるように送電回路110および受電回路210が設計されている。つまり受電回路210の負荷インピーダンスが設計値であれば、図5の横軸:電極重なり面積比率(%)が100%のとき、縦軸:受電回路出力電圧(V)は12Vとなる。しかし、図5に示すように、受電回路210の負荷インピーダンスが設計値と比較して高いインピーダンス状態のときには、電極の重なりが増加するにつれて、出力電圧が送電回路110の入力電圧と比較して大きく増加する。図5において点線で示されている部分は、受電回路210の出力電圧が回路素子の損傷を招き得るほどに大きく上昇することを表している。このため、出力電圧の上昇を緩和するための対策が求められる。 FIG. 5 is a diagram showing an example of the relationship between the ratio of the area of the portion of the power receiving electrode 220 that overlaps the power transmission electrode 120 and the output voltage of the power receiving circuit 210 in an exemplary wireless power transmission system. In this example, the load impedance of the power receiving circuit 210 is substantially infinite in the state before the load 300 is started, and the input voltage of the power transmission circuit 110 in that state is 12V. The power transmission circuit 110 and the power reception circuit 210 are designed so that the input voltage of the power transmission circuit 110 and the output voltage of the power reception circuit 210 are equal to each other when the load impedance of the power reception circuit 210 is the design value. That is, if the load impedance of the power receiving circuit 210 is a design value, the vertical axis: the power receiving circuit output voltage (V) is 12V when the horizontal axis: electrode overlapping area ratio (%) in FIG. 5 is 100%. However, as shown in FIG. 5, when the load impedance of the power receiving circuit 210 is higher than the design value, the output voltage becomes larger than the input voltage of the power transmission circuit 110 as the overlap of the electrodes increases. To increase. The portion shown by the dotted line in FIG. 5 indicates that the output voltage of the power receiving circuit 210 rises so much that it may cause damage to the circuit element. Therefore, measures are required to mitigate the rise in output voltage.
 図6Aは、受電回路210と負荷300との間に抵抗器232が並列に接続された構成を示す図である。このように抵抗器232を配置することにより、送電装置100から見た受電装置200のインピーダンスを低減させることができる。そのため、負荷300が高インピーダンス状態にあったとしても、送電回路110および受電回路210の電圧の上昇を抑えることができる。これにより、受電装置200の安全な検出および負荷300の起動が可能である。しかし、この構成では、送電装置100が本送電モードに移行した場合に抵抗器232に大電流が流れるため、発熱および破壊のリスクがある。 FIG. 6A is a diagram showing a configuration in which a resistor 232 is connected in parallel between the power receiving circuit 210 and the load 300. By arranging the resistor 232 in this way, the impedance of the power receiving device 200 as seen from the power transmission device 100 can be reduced. Therefore, even if the load 300 is in a high impedance state, it is possible to suppress an increase in the voltage of the power transmission circuit 110 and the power reception circuit 210. This enables safe detection of the power receiving device 200 and activation of the load 300. However, in this configuration, when the power transmission device 100 shifts to the main power transmission mode, a large current flows through the resistor 232, so that there is a risk of heat generation and destruction.
 図6Bは、受電回路210と負荷300との間に、抵抗器232に加えて開閉器234が接続された構成を示す図である。この例では、開閉器234は、負荷300が起動するまではオンに、負荷300が起動した後はオフに制御される。これにより、負荷300が起動した後、抵抗器232への電流経路が遮断される。このような構成により、負荷300が起動する前の電圧上昇を回避でき、起動後、送電装置100が本送電モードに移行した後の発熱リスクも低減できる。しかし、開閉器234を切り替える動作により、受電回路210の負荷インピーダンス(すなわち受電回路210の後段の回路の入力インピーダンス)が急激に変化する。その結果、受電回路210の出力電圧が大きく変動し、場合によっては負荷300の定格電圧を越えるおそれもある。 FIG. 6B is a diagram showing a configuration in which a switch 234 is connected in addition to the resistor 232 between the power receiving circuit 210 and the load 300. In this example, the switch 234 is controlled to be on until the load 300 is activated and turned off after the load 300 is activated. As a result, after the load 300 is started, the current path to the resistor 232 is cut off. With such a configuration, it is possible to avoid a voltage increase before the load 300 is started, and it is possible to reduce the risk of heat generation after the power transmission device 100 shifts to the main power transmission mode after the start. However, the load impedance of the power receiving circuit 210 (that is, the input impedance of the circuit after the power receiving circuit 210) suddenly changes due to the operation of switching the switch 234. As a result, the output voltage of the power receiving circuit 210 fluctuates greatly, and in some cases, the rated voltage of the load 300 may be exceeded.
 上記の課題は、電界結合方式の無線電力伝送システムに限らず、磁界結合方式の無線電力伝送システムにおいても同様に発生し得る。すなわち、送電電極120と受電電極220との間の電界結合ではなく、送電コイルと受電コイルとの間の磁界結合によって電力を伝送するシステムにおいても、本送電の開始時に上記の課題が発生し得る。 The above problems may occur not only in the electric field coupling type wireless power transmission system but also in the magnetic field coupling type wireless power transmission system. That is, even in a system in which power is transmitted not by electric field coupling between the power transmission electrode 120 and the power reception electrode 220 but by magnetic field coupling between the power transmission coil and the power reception coil, the above-mentioned problem may occur at the start of the main power transmission. ..
 本発明者らは、上記の課題を解決するために、以下に説明する本開示の実施形態の構成に想到した。以下、本開示の実施形態の概要を説明する。 The present inventors have come up with the configuration of the embodiment of the present disclosure described below in order to solve the above-mentioned problems. Hereinafter, an outline of the embodiments of the present disclosure will be described.
 本開示の一実施形態に係る受電装置は、送電装置と受電装置とを備える無線電力伝送システムにおいて用いられる。前記受電装置は、前記送電装置が備える送電アンテナから無線で交流電力を受け取る受電アンテナと、前記受電アンテナが受け取った前記交流電力を直流電力に変換して出力する受電回路と、前記受電回路から出力された前記直流電力によって動作する負荷であって、前記直流電力の電圧が所定の起動電圧を超えたときに起動する負荷と、前記受電回路と前記負荷との間に接続された抵抗回路であって、前記負荷に並列に接続された抵抗器を含む抵抗回路と、前記受電装置が前記送電装置に接近し、前記負荷が起動することによって生じる前記受電回路の負荷インピーダンスの変動を抑制するように、前記抵抗回路のインピーダンスを制御する受電制御回路と、を備える。 The power receiving device according to the embodiment of the present disclosure is used in a wireless power transmission system including a power transmitting device and a power receiving device. The power receiving device includes a power receiving antenna that wirelessly receives AC power from a power transmitting antenna included in the power transmitting device, a power receiving circuit that converts the AC power received by the power receiving antenna into DC power and outputs the power, and outputs from the power receiving circuit. A load operated by the DC power, which is a load that starts when the voltage of the DC power exceeds a predetermined starting voltage, and a resistance circuit connected between the power receiving circuit and the load. Then, the resistance circuit including the resistor connected in parallel with the load and the power receiving device approach the power transmitting device so as to suppress the fluctuation of the load impedance of the power receiving circuit caused by the activation of the load. , A power receiving control circuit for controlling the impedance of the resistance circuit.
 ここで、「送電アンテナ」は、前述の送電電極および送電コイルなどの、電力を空間に送出する要素である。「受電アンテナ」は、前述の受電電極および受電コイルなどの、送電アンテナから送出された電力を受け取る要素である。「受電回路の負荷インピーダンス」とは、受電回路の後段の回路の入力インピーダンスを意味する。「負荷」は、受電回路から出力された直流電力によって動作する任意の機器および回路を含む。負荷は、例えば受電回路から出力された直流電力を、電圧の異なる他の直流電力に変換するDC-DCコンバータと、その制御回路とを含み得る。そのような構成においては、制御回路に印加される電圧が所定の起動電圧を超えると、制御回路はDC-DCコンバータの駆動を開始する。 Here, the "power transmission antenna" is an element that sends electric power to space, such as the above-mentioned power transmission electrode and power transmission coil. The “power receiving antenna” is an element that receives power transmitted from the power transmission antenna, such as the above-mentioned power receiving electrode and power receiving coil. The "load impedance of the power receiving circuit" means the input impedance of the circuit after the power receiving circuit. "Load" includes any equipment and circuit operated by DC power output from the powered circuit. The load may include, for example, a DC-DC converter that converts DC power output from a power receiving circuit into other DC power having a different voltage, and a control circuit thereof. In such a configuration, when the voltage applied to the control circuit exceeds a predetermined starting voltage, the control circuit starts driving the DC-DC converter.
 上記の構成によれば、受電制御回路は、前記受電装置が前記送電装置に接近し、前記負荷が起動することによって生じる前記受電回路の負荷インピーダンスの変動を抑制するように、前記抵抗回路のインピーダンスを制御する。このため、負荷インピーダンスの変動に起因する電圧の増加を抑制し、回路素子の発熱、損傷、および破壊のリスクを低減することができる。 According to the above configuration, the power receiving control circuit is the impedance of the resistance circuit so as to suppress the fluctuation of the load impedance of the power receiving circuit caused by the power receiving device approaching the power transmission device and activating the load. To control. Therefore, it is possible to suppress the increase in voltage due to the fluctuation of the load impedance and reduce the risk of heat generation, damage, and destruction of the circuit element.
 前記受電制御回路は、前記負荷インピーダンスを、予め設定された範囲内に維持するように、前記抵抗回路の前記インピーダンスを制御するように構成され得る。そのような制御により、負荷インピーダンスが一定の範囲内に維持されるため、負荷の起動前後の動作をより安定化させることができる。 The power receiving control circuit may be configured to control the impedance of the resistance circuit so as to maintain the load impedance within a preset range. By such control, the load impedance is maintained within a certain range, so that the operation before and after the start of the load can be further stabilized.
 前記抵抗回路は、前記負荷に並列に接続された抵抗器と、前記負荷に並列で且つ前記抵抗器に直列に接続された開閉器と、を含み得る。前記受電制御回路は、前記開閉器を制御することにより、前記抵抗回路の前記インピーダンスを制御してもよい。 The resistance circuit may include a resistor connected in parallel with the load and a switch connected in parallel with the load and in series with the resistor. The power receiving control circuit may control the impedance of the resistance circuit by controlling the switch.
 前記受電制御回路は、前記負荷が起動する前は前記開閉器をオンにし、前記負荷が起動した後、前記抵抗回路の前記インピーダンスが増加するように前記開閉器を制御し、前記送電装置から送電用の電力が供給された後、前記開閉器をオフにしてもよい。 The power receiving control circuit turns on the switch before the load is activated, controls the switch so that the impedance of the resistance circuit increases after the load is activated, and transmits power from the power transmission device. The switch may be turned off after the power is supplied.
 前記受電制御回路は、前記送電装置から前記受電装置への送電が終了した後、前記開閉器をオンにしてもよい。 The power receiving control circuit may turn on the switch after the power transmission from the power transmission device to the power receiving device is completed.
 前記抵抗器の抵抗値は、前記送電装置から送電用の電力が供給されているときの前記負荷の抵抗値に実質的に等しくてもよい。 The resistance value of the resistor may be substantially equal to the resistance value of the load when power for power transmission is supplied from the power transmission device.
 前記抵抗回路は、前記負荷に並列に接続された可変抵抗器を含んでいてもよい。前記受電制御回路は、前記可変抵抗器の抵抗値を制御することにより、前記抵抗回路の前記インピーダンスを制御してもよい。 The resistance circuit may include a variable resistor connected in parallel with the load. The power receiving control circuit may control the impedance of the resistance circuit by controlling the resistance value of the variable resistor.
 前記負荷は、DC-DCコンバータを含んでいてもよい。前記負荷の起動は、前記DC-DCコンバータの起動であり得る。 The load may include a DC-DC converter. The activation of the load may be the activation of the DC-DC converter.
 本開示の他の実施形態による送電装置は、送電装置と受電装置とを備える無線電力伝送システムにおいて用いられる。前記受電装置は、受電アンテナと、前記受電アンテナが受け取った前記交流電力を直流電力に変換して出力する受電回路と、前記受電回路から出力された前記直流電力によって動作し、前記直流電力の電圧が所定の起動電圧を超えたときに起動する負荷と、を備える。前記送電装置は、電源から供給された電力を、電力伝送のための交流電力に変換して出力する送電回路と、前記交流電力を、前記受電アンテナに無線で伝送する送電アンテナと、前記受電装置の前記送電装置への接近を検出する検出器と、前記送電回路を制御する送電制御回路であって、前記受電装置の前記送電装置への接近が検出されたとき、前記送電回路から出力される前記交流電力を増加させ、前記負荷の入力電圧が予め設定された範囲内に維持されるように、前記送電回路の出力電圧を制御する送電制御回路と、を備える。 The power transmission device according to another embodiment of the present disclosure is used in a wireless power transmission system including a power transmission device and a power receiving device. The power receiving device operates by a power receiving antenna, a power receiving circuit that converts the AC power received by the power receiving antenna into DC power and outputs the power, and the DC power output from the power receiving circuit, and operates with the DC power voltage. It comprises a load that starts when a predetermined starting voltage is exceeded. The power transmission device includes a power transmission circuit that converts power supplied from a power source into AC power for power transmission and outputs the power transmission device, a power transmission antenna that wirelessly transmits the AC power to the power reception antenna, and the power reception device. A detector that detects the approach to the power transmission device and a power transmission control circuit that controls the power transmission circuit, and is output from the power transmission circuit when the approach of the power receiving device to the power transmission device is detected. It includes a power transmission control circuit that controls the output voltage of the power transmission circuit so that the AC power is increased and the input voltage of the load is maintained within a preset range.
 上記の構成によれば、前記送電制御回路は、前記受電装置の前記送電装置への接近が検出されたとき、前記送電回路から出力される前記交流電力を増加させ、前記負荷の入力電圧が予め設定された範囲内に維持されるように、前記送電回路を制御する。前記範囲の下限は、例えば前記起動電圧であり得る。前記範囲の上限は、例えば前記負荷の定格電圧であり得る。上記のような制御により、負荷の入力電圧が予め設定された範囲内に維持される。このため、例えば負荷の入力電圧が負荷の起動電圧を下回ることや、負荷の定格電圧を超えることを回避することができる。 According to the above configuration, when the power transmission control circuit detects the approach of the power receiving device to the power transmission device, the power transmission control circuit increases the AC power output from the power transmission circuit, and the input voltage of the load is set in advance. The power transmission circuit is controlled so as to be maintained within a set range. The lower limit of the range may be, for example, the starting voltage. The upper limit of the range may be, for example, the rated voltage of the load. By the above control, the input voltage of the load is maintained within the preset range. Therefore, for example, it is possible to prevent the input voltage of the load from falling below the starting voltage of the load or exceeding the rated voltage of the load.
 本開示の他の実施形態による無線電力伝送システムは、上記のいずれかの送電装置と、上記のいずれかの受電装置とを備える。 The wireless power transmission system according to another embodiment of the present disclosure includes any of the above-mentioned power transmission devices and any of the above-mentioned power receiving devices.
 受電装置は、例えば移動体であり得る。本開示における「移動体」は、前述の無人搬送車(AGV)のような車両に限定されず、電力によって駆動される任意の可動物体を意味する。移動体には、例えば、電気モータおよび1以上の車輪を備える電動車両が含まれる。そのような車両は、例えば、前述のAGV、搬送ロボット、電気自動車(EV)、電動カート、電動車椅子であり得る。本開示における「移動体」には、車輪を有しない可動物体も含まれる。例えば、二足歩行ロボット、マルチコプターなどの無人航空機(Unmanned Aerial Vehicle:UAV、所謂ドローン)、および有人の電動航空機、およびエレベータも、「移動体」に含まれる。受電装置は、このような移動体に限らず、例えば充電ポール、スマートフォン、タブレットコンピュータ、またはラップトップコンピュータなどの、持ち運びが可能な任意の機器であり得る。 The power receiving device can be, for example, a mobile body. As used in the present disclosure, the term "moving body" is not limited to a vehicle such as the automatic guided vehicle (AGV) described above, but means any movable object driven by electric power. Mobiles include, for example, electric motors and electric vehicles with one or more wheels. Such vehicles may be, for example, the aforementioned AGVs, transfer robots, electric vehicles (EVs), electric carts, electric wheelchairs. The "moving body" in the present disclosure also includes a movable object having no wheels. For example, unmanned aerial vehicles (UAVs, so-called drones) such as biped robots and multicopters, and manned electric aircraft, and elevators are also included in the "mobile body". The power receiving device is not limited to such a mobile body, but may be any portable device such as a charging pole, a smartphone, a tablet computer, or a laptop computer.
 以下、本開示のより具体的な実施形態を説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明および実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似する機能を有する構成要素については、同じ参照符号を付している。 Hereinafter, a more specific embodiment of the present disclosure will be described. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations for substantially the same configuration may be omitted. This is to avoid unnecessary redundancy of the following description and to facilitate the understanding of those skilled in the art. It should be noted that the inventor intends to limit the subject matter described in the claims by those skilled in the art by providing the accompanying drawings and the following description in order to fully understand the present disclosure. No. In the following description, components having the same or similar functions are designated by the same reference numerals.
 (実施形態)
 本開示の例示的な実施形態による無線電力伝送システムを説明する。本実施形態の無線電力伝送システムは、図1から図4を参照して説明したシステムと同様、送電装置100と、送電装置100から無線で電力を受ける受電装置200とを備える。受電装置200は、例えば無人搬送車などの移動体であり得る。本実施形態では、受電装置200が移動体である場合の例を主に説明するが、受電装置200が移動体以外の機器である場合にも本実施形態の構成および動作を同様に適用することができる。
(Embodiment)
A wireless power transmission system according to an exemplary embodiment of the present disclosure will be described. The wireless power transmission system of the present embodiment includes a power transmission device 100 and a power receiving device 200 that receives power wirelessly from the power transmission device 100, similar to the system described with reference to FIGS. 1 to 4. The power receiving device 200 can be a moving body such as an automatic guided vehicle. In the present embodiment, an example in which the power receiving device 200 is a mobile body will be mainly described, but the configuration and operation of the present embodiment are similarly applied to the case where the power receiving device 200 is a device other than the mobile body. Can be done.
 図7は、本実施形態における送電装置100の構成を示す図である。送電装置100は、送電回路110と、複数の送電電極120と、送電制御回路150と、検出器140とを備える。図7には、直流電力を出力する電源400も示されている。電源400は、送電装置100の構成要素であってもよいし、送電装置100の外部の要素であってもよい。送電回路110は、電源400から出力された直流電力を交流電力に変換して出力する。送電電極120は、送電回路110から出力された交流電力を空間に送出する。検出器140は、送電電極120が敷設された送電エリアに受電装置200が接近したことを検出する回路またはセンサである。送電制御回路150は、送電回路110を制御して、送電回路110から所望の交流電力を出力させる。送電制御回路150は、検出器140が受電装置200の接近を検出すると、送電回路110に出力電圧を増加させる指示を送る。送電回路110は、この指示を受け、送電電極120に供給する交流電力を増加させる。 FIG. 7 is a diagram showing the configuration of the power transmission device 100 in the present embodiment. The power transmission device 100 includes a power transmission circuit 110, a plurality of power transmission electrodes 120, a power transmission control circuit 150, and a detector 140. FIG. 7 also shows a power supply 400 that outputs DC power. The power source 400 may be a component of the power transmission device 100 or an external element of the power transmission device 100. The power transmission circuit 110 converts the DC power output from the power source 400 into AC power and outputs it. The power transmission electrode 120 transmits the AC power output from the power transmission circuit 110 to the space. The detector 140 is a circuit or a sensor that detects that the power receiving device 200 has approached the power transmission area in which the power transmission electrode 120 is laid. The power transmission control circuit 150 controls the power transmission circuit 110 to output desired AC power from the power transmission circuit 110. When the detector 140 detects the approach of the power receiving device 200, the power transmission control circuit 150 sends an instruction to increase the output voltage to the power transmission circuit 110. In response to this instruction, the power transmission circuit 110 increases the AC power supplied to the power transmission electrode 120.
 受電装置200の送電装置100への接近は、例えば送電制御回路150が送電回路110に微弱な電力を出力させている状態で、検出器140が送電回路110内の電流、電圧、または電力を計測した結果に基づいて検出され得る。前述のように、受電装置200の検出のために送電回路110が微弱な電力を出力するモードを「検出用送電モード」と称する。一方、送電回路110が送電用の比較的大きい電力を出力するモードを「本送電モード」と称する。検出用送電モードによる受電装置200の検出に替えて、カメラまたは測距装置などのセンサによって受電装置200の接近を検出してもよい。その場合、送電制御回路150は、前述の微弱な電力を送電回路110に出力させる必要はない。ここで、「受電装置200の送電装置100への接近を検出する」とは、受電装置200における複数の受電電極220が、送電装置100における複数の送電電極120に、少なくとも部分的に対向または結合する状態を検出することを意味する。 When the power receiving device 200 approaches the power transmission device 100, for example, the detector 140 measures the current, voltage, or power in the power transmission circuit 110 while the power transmission control circuit 150 outputs a weak power to the power transmission circuit 110. Can be detected based on the results of the above. As described above, the mode in which the power transmission circuit 110 outputs weak power for the detection of the power receiving device 200 is referred to as a “detection power transmission mode”. On the other hand, a mode in which the power transmission circuit 110 outputs a relatively large amount of power for power transmission is referred to as a "main power transmission mode". Instead of detecting the power receiving device 200 by the detection power transmission mode, the approach of the power receiving device 200 may be detected by a sensor such as a camera or a distance measuring device. In that case, the power transmission control circuit 150 does not need to output the above-mentioned weak electric power to the power transmission circuit 110. Here, "detecting the approach of the power receiving device 200 to the power transmission device 100" means that the plurality of power receiving electrodes 220 in the power receiving device 200 are at least partially opposed to or coupled to the plurality of power transmission electrodes 120 in the power transmission device 100. It means to detect the state to do.
 図8は、本実施形態における受電装置200の構成を示す図である。受電装置200は、複数の受電電極220と、受電回路210と、抵抗回路230と、受電制御回路250と、負荷300とを備える。抵抗回路230は、受電回路210と負荷300との間に接続されている。抵抗回路230は、互いに直列に接続された抵抗器232と開閉器234とを含む。抵抗器232および開閉器234は、負荷300に並列に接続されている。図8には1つの抵抗器232が示されているが、抵抗器232は、複数の抵抗器の集合であってもよい。 FIG. 8 is a diagram showing the configuration of the power receiving device 200 in the present embodiment. The power receiving device 200 includes a plurality of power receiving electrodes 220, a power receiving circuit 210, a resistance circuit 230, a power receiving control circuit 250, and a load 300. The resistance circuit 230 is connected between the power receiving circuit 210 and the load 300. The resistor circuit 230 includes a resistor 232 and a switch 234 connected in series with each other. The resistor 232 and the switch 234 are connected in parallel to the load 300. Although one resistor 232 is shown in FIG. 8, the resistor 232 may be a set of a plurality of resistors.
 複数の受電電極220は、送電装置100が備える複数の送電電極120から無線で交流電力を受け取る。受電回路210は、受電電極220が受け取った交流電力を直流電力に変換して出力する。負荷300は、受電回路210から出力された直流電力によって動作する。負荷300は、バッテリ等の蓄電デバイス、電気モータ等の駆動装置、およびそれらの機器に必要な電力を供給するDC-DCコンバータなどの回路を含む。DC-DCコンバータは、受電回路210から出力された直流電力の電圧が所定の起動電圧を超えたときに起動する。本実施形態において、DC-DCコンバータが起動することを「負荷300が起動する」と表現する。 The plurality of power receiving electrodes 220 wirelessly receive AC power from the plurality of power transmission electrodes 120 included in the power transmission device 100. The power receiving circuit 210 converts the AC power received by the power receiving electrode 220 into DC power and outputs it. The load 300 operates by the DC power output from the power receiving circuit 210. The load 300 includes a power storage device such as a battery, a drive device such as an electric motor, and a circuit such as a DC-DC converter that supplies necessary power to those devices. The DC-DC converter is activated when the voltage of the DC power output from the power receiving circuit 210 exceeds a predetermined starting voltage. In the present embodiment, starting the DC-DC converter is expressed as "starting the load 300".
 受電装置200が送電装置100から離れている状態では、送電装置100から見た受電装置200のインピーダンスは、実質的に無限大である。この状態では、送電装置100は、本送電モードにおいて出力する電力よりも遥かに小さい電力を出力する検出用送電モードで動作するか、送電を停止してセンサで受電装置200を検出するモードで動作する。受電装置200を検出するためのこれらのモードを「検出モード」と称する。受電装置200が蓄電デバイスを充電するために送電装置100に接近すると、送電装置100は、その接近を検出し、送電回路110の出力電力を増加させる。これにより、負荷300に供給される電力が徐々に増加する。負荷300の入力電圧が起動電圧を超えると、負荷300が起動を開始する。負荷300の起動中は、負荷300のインピーダンスが変動しながら低下する。負荷300の起動が完了すると、負荷300のインピーダンスは特定の値になる。このように、負荷300の起動に伴い、受電回路210の負荷インピーダンスが低下する。受電制御回路250は、負荷300が起動することによって生じる受電回路210の負荷インピーダンスの変動を抑制するように、抵抗回路230のインピーダンスを制御する。受電制御回路250は、負荷300の状態によらず、受電回路210の負荷インピーダンスが、予め設定された範囲内に維持されるように、抵抗回路230のインピーダンスを制御する。このような制御により、受電装置200内の電圧を適正な範囲に維持し、回路素子の発熱、損傷、または破壊のリスクを低下させることができる。抵抗回路230のインピーダンスは、例えば開閉器234を制御することによって制御され得る。 When the power receiving device 200 is separated from the power transmitting device 100, the impedance of the power receiving device 200 as seen from the power transmitting device 100 is substantially infinite. In this state, the power transmission device 100 operates in the detection power transmission mode that outputs power far smaller than the power output in the main power transmission mode, or operates in the mode in which power transmission is stopped and the power receiving device 200 is detected by the sensor. do. These modes for detecting the power receiving device 200 are referred to as "detection modes". When the power receiving device 200 approaches the power transmission device 100 to charge the power storage device, the power transmission device 100 detects the approach and increases the output power of the power transmission circuit 110. As a result, the electric power supplied to the load 300 gradually increases. When the input voltage of the load 300 exceeds the starting voltage, the load 300 starts starting. During the activation of the load 300, the impedance of the load 300 fluctuates and decreases. When the start of the load 300 is completed, the impedance of the load 300 becomes a specific value. As described above, the load impedance of the power receiving circuit 210 decreases with the activation of the load 300. The power receiving control circuit 250 controls the impedance of the resistance circuit 230 so as to suppress the fluctuation of the load impedance of the power receiving circuit 210 caused by the activation of the load 300. The power receiving control circuit 250 controls the impedance of the resistance circuit 230 so that the load impedance of the power receiving circuit 210 is maintained within a preset range regardless of the state of the load 300. By such control, the voltage in the power receiving device 200 can be maintained in an appropriate range, and the risk of heat generation, damage, or destruction of the circuit element can be reduced. The impedance of the resistance circuit 230 can be controlled, for example, by controlling the switch 234.
 本実施形態における受電制御回路250は、負荷300が起動する前は、開閉器234をオンにし、負荷300が起動した後、抵抗回路230のインピーダンスが増加するように開閉器234を制御し、送電装置100から送電用の電力が供給された後、開閉器234をオフにする。受電制御回路250は、送電装置100から受電装置200への送電が終了した後、開閉器234を再びオンにする。抵抗器232の抵抗値は、送電装置100から受電装置200に送電用の電力が供給されているときの負荷300の抵抗値に実質的に等しい値に設定され得る。このような動作により、受電回路210の負荷インピーダンスを適正な範囲内に維持することができる。 The power receiving control circuit 250 in the present embodiment turns on the switch 234 before the load 300 is activated, and after the load 300 is activated, controls the switch 234 so that the impedance of the resistance circuit 230 increases to transmit power. After the power for transmission is supplied from the device 100, the switch 234 is turned off. The power receiving control circuit 250 turns on the switch 234 again after the power transmission from the power transmitting device 100 to the power receiving device 200 is completed. The resistance value of the resistor 232 may be set to a value substantially equal to the resistance value of the load 300 when the power for transmission is supplied from the power transmission device 100 to the power receiving device 200. By such an operation, the load impedance of the power receiving circuit 210 can be maintained within an appropriate range.
 次に、図9から図12を参照しながら、抵抗回路230の制御方法のいくつかの例を説明する。 Next, some examples of the control method of the resistance circuit 230 will be described with reference to FIGS. 9 to 12.
 図9は、受電制御回路250による抵抗回路230の制御方法の一例を示す図である。この例では、開閉器234はMOSFETなどの半導体スイッチであり、抵抗器232は固定の抵抗値を有する。受電制御回路250は、半導体スイッチのゲートに入力される電圧を調整することにより、抵抗回路230の抵抗値すなわちインピーダンスを制御する。 FIG. 9 is a diagram showing an example of a control method of the resistance circuit 230 by the power receiving control circuit 250. In this example, the switch 234 is a semiconductor switch such as a MOSFET, and the resistor 232 has a fixed resistance value. The power receiving control circuit 250 controls the resistance value, that is, the impedance of the resistance circuit 230 by adjusting the voltage input to the gate of the semiconductor switch.
 図10は、受電制御回路250による抵抗回路230の制御方法の他の例を示す図である。この例では、受電制御回路250は、開閉器234のオン/オフのデューティ比すなわちオン時間と周期との比率を調整することにより、抵抗回路230のインピーダンスを制御する。 FIG. 10 is a diagram showing another example of the control method of the resistance circuit 230 by the power receiving control circuit 250. In this example, the power receiving control circuit 250 controls the impedance of the resistance circuit 230 by adjusting the on / off duty ratio of the switch 234, that is, the ratio of the on time to the period.
 図11は、受電制御回路250による抵抗回路230の制御方法のさらに他の例を示す図である。この例では、抵抗回路230は、負荷300に並列に接続された可変抵抗器233を含む。受電制御回路250は、可変抵抗器233の抵抗値を制御することにより、抵抗回路230のインピーダンスを制御する。この例においても、受電制御回路250は、負荷300の起動前は開閉器234をオンにし、本送電開始後、開閉器234をオフにしてもよい。あるいは、開閉器234を省略し、可変抵抗器233の抵抗値の調整のみで同様の機能を実現してもよい。 FIG. 11 is a diagram showing still another example of the control method of the resistance circuit 230 by the power receiving control circuit 250. In this example, the resistor circuit 230 includes a variable resistor 233 connected in parallel with the load 300. The power receiving control circuit 250 controls the impedance of the resistance circuit 230 by controlling the resistance value of the variable resistor 233. In this example as well, the power receiving control circuit 250 may turn on the switch 234 before starting the load 300 and turn off the switch 234 after the start of the main power transmission. Alternatively, the switch 234 may be omitted, and the same function may be realized only by adjusting the resistance value of the variable resistor 233.
 図12は、受電制御回路250による抵抗回路230の制御方法のさらに他の例を示す図である。この例では、抵抗回路230は、各々が抵抗器232と開閉器234とを含み、負荷300に並列に接続された複数のモジュールを備える。受電制御回路250は、各モジュールにおける開閉器234に図9または図10の例と同様の制御を行うことにより、全モジュールの合成抵抗すなわち合成インピーダンスを調整する。これにより、抵抗回路230全体の合成インピーダンスを制御する。なお、図11の例のように、抵抗器232に代えて可変抵抗器233を設け、各可変抵抗器233の抵抗値を調整することによって抵抗回路230の合成インピーダンスを制御してもよい。その場合、開閉器234を省略してもよい。 FIG. 12 is a diagram showing still another example of the control method of the resistance circuit 230 by the power receiving control circuit 250. In this example, the resistor circuit 230 includes a resistor 232 and a switch 234, each of which comprises a plurality of modules connected in parallel to the load 300. The power receiving control circuit 250 adjusts the combined resistance, that is, the combined impedance of all the modules by controlling the switch 234 in each module in the same manner as in the example of FIG. 9 or FIG. This controls the combined impedance of the entire resistance circuit 230. As in the example of FIG. 11, a variable resistor 233 may be provided instead of the resistor 232, and the combined impedance of the resistance circuit 230 may be controlled by adjusting the resistance value of each variable resistor 233. In that case, the switch 234 may be omitted.
 次に、再び図7を参照して、送電装置100の動作をより詳細に説明する。 Next, the operation of the power transmission device 100 will be described in more detail with reference to FIG. 7 again.
 本実施形態における送電制御回路150は、負荷300に入力される電圧が、予め設定された適正な動作電圧範囲内に維持されるように、送電回路110の出力電圧を調整する。ここで、動作電圧範囲の下限は、例えば負荷300の起動電圧に実質的に等しい値に設定され得る。動作電圧範囲の上限は、例えば負荷300の定格電圧に実質的に等しい値に設定され得る。このような制御により、負荷300に入力される電圧を適正な範囲に維持し、安定的な動作を実現することができる。 The power transmission control circuit 150 in the present embodiment adjusts the output voltage of the power transmission circuit 110 so that the voltage input to the load 300 is maintained within a preset appropriate operating voltage range. Here, the lower limit of the operating voltage range may be set to a value substantially equal to, for example, the starting voltage of the load 300. The upper limit of the operating voltage range may be set to a value substantially equal to, for example, the rated voltage of the load 300. By such control, the voltage input to the load 300 can be maintained in an appropriate range, and stable operation can be realized.
 図13は、本実施形態における送電装置100および受電装置200の動作の例を示すシーケンス図である。この例では、送電装置100は、検出モードとして検出用送電モードで動作し、受電装置200を検出した後、本送電モードに移行する。 FIG. 13 is a sequence diagram showing an example of the operation of the power transmission device 100 and the power receiving device 200 in the present embodiment. In this example, the power transmission device 100 operates in the detection power transmission mode as the detection mode, and after detecting the power receiving device 200, shifts to the main power transmission mode.
 受電装置200が送電エリアに進入する前または設置される前に、送電制御回路150は、送電回路110の出力電圧を初期値に設定し、検出用送電モードを開始する(ステップS100)。一方、受電制御回路250は、抵抗回路230の抵抗値を初期値に設定する。この初期値は、例えば、本送電モードにおける負荷300の入力インピーダンスに等しい値に設定され得る。このとき、開閉器234はオンに維持される。 Before the power receiving device 200 enters or is installed in the power transmission area, the power transmission control circuit 150 sets the output voltage of the power transmission circuit 110 to the initial value and starts the power transmission mode for detection (step S100). On the other hand, the power receiving control circuit 250 sets the resistance value of the resistance circuit 230 to the initial value. This initial value may be set to, for example, a value equal to the input impedance of the load 300 in the main transmission mode. At this time, the switch 234 is kept on.
 受電装置200は、充電のために、送電エリアに進入する、または設置される(ステップS201)。すると、送電装置100の検出器140は、送電装置100内の電流、電圧、または電力の変化に基づいて、受電装置200の送電エリアへの進入または設置を検出する(ステップS101)。検出後、送電制御回路150は、送電回路110の出力電圧の制御を開始する(ステップS102)。以後、送電制御回路150は、負荷300に入力される電圧が、予め設定された範囲内に維持されるように、送電回路110の出力電圧を調整する。本実施形態では、送電制御回路150による送電制御が行われなかった場合に、受電装置200が送電エリアに到達してから送電エリアを通過するまでに負荷300の入力電圧がどのように変化するかが予めわかっている。その情報に基づいて、受電装置200が送電エリアに到達してからの経過時間と、送電回路110が出力すべき電圧との関係を規定するデータが予め用意され、送電制御回路150の記憶媒体に記録されている。送電制御回路150は、そのデータに基づき、本送電を開始するまでの間、送電回路110の出力電圧を調整する。 The power receiving device 200 enters or is installed in the power transmission area for charging (step S201). Then, the detector 140 of the power transmission device 100 detects the entry or installation of the power receiving device 200 into the power transmission area based on the change of the current, the voltage, or the power in the power transmission device 100 (step S101). After the detection, the power transmission control circuit 150 starts controlling the output voltage of the power transmission circuit 110 (step S102). After that, the power transmission control circuit 150 adjusts the output voltage of the power transmission circuit 110 so that the voltage input to the load 300 is maintained within a preset range. In the present embodiment, how the input voltage of the load 300 changes from the time when the power receiving device 200 reaches the power transmission area to the time when the power transmission device 200 passes through the power transmission area when the power transmission control by the power transmission control circuit 150 is not performed. Is known in advance. Based on that information, data defining the relationship between the elapsed time since the power receiving device 200 reaches the power transmission area and the voltage to be output by the power transmission circuit 110 is prepared in advance, and is stored in the storage medium of the power transmission control circuit 150. It has been recorded. Based on the data, the power transmission control circuit 150 adjusts the output voltage of the power transmission circuit 110 until the main power transmission is started.
 負荷300に入力される電圧が予め設定された起動電圧を超えると、負荷300の起動が開始する(ステップS202)。負荷300の起動開始後、受電制御回路250は、抵抗回路230のインピーダンスの制御を開始する(ステップS203)。受電制御回路250は、例えば負荷300から送られる信号に基づいて負荷300の起動を把握する。負荷300は、例えばDC-DCコンバータの前段に電圧検出器を備え得る。そのような構成においては、電圧検出器によって検出された電圧が閾値を超えたとき、受電制御回路250は、負荷300が起動したと判断できる。インピーダンスの制御は、負荷300の起動開始の直後または一定時間経過後に開始される。本実施形態では、インピーダンスの制御が行われなかった場合に、負荷300の起動が開始してから完了するまでに負荷300のインピーダンスがどのように変化するかが予めわかっている。その情報に基づいて、負荷300の起動が開始してからの経過時間と、設定すべき抵抗回路230の抵抗値との関係を規定するデータが予め用意され、受電制御回路250の記憶媒体に記録されている。受電制御回路250は、そのデータに基づき、抵抗回路230の抵抗値を調整する。ステップS204において負荷300の起動処理が完了すると、受電制御回路250は、開閉器234をオフにして抵抗回路230のインピーダンスの制御を終了する(ステップS205)。本送電の開始前に開閉器234をオフにすることにより、抵抗器232の発熱および損傷を抑制することができる。 When the voltage input to the load 300 exceeds the preset start voltage, the start of the load 300 starts (step S202). After the start of the load 300 is started, the power receiving control circuit 250 starts controlling the impedance of the resistance circuit 230 (step S203). The power receiving control circuit 250 grasps the activation of the load 300 based on, for example, a signal sent from the load 300. The load 300 may include, for example, a voltage detector in front of the DC-DC converter. In such a configuration, when the voltage detected by the voltage detector exceeds the threshold value, the power receiving control circuit 250 can determine that the load 300 has been activated. Impedance control is started immediately after the start of the load 300 or after a certain period of time has elapsed. In the present embodiment, it is known in advance how the impedance of the load 300 changes from the start to the completion of the start of the load 300 when the impedance is not controlled. Based on that information, data that defines the relationship between the elapsed time from the start of the load 300 and the resistance value of the resistance circuit 230 to be set is prepared in advance and recorded in the storage medium of the power receiving control circuit 250. Has been done. The power receiving control circuit 250 adjusts the resistance value of the resistance circuit 230 based on the data. When the activation process of the load 300 is completed in step S204, the power receiving control circuit 250 turns off the switch 234 and ends the impedance control of the resistance circuit 230 (step S205). By turning off the switch 234 before the start of the main power transmission, heat generation and damage of the resistor 232 can be suppressed.
 その後、送電制御回路150は、本送電モードへの移行が完了し、送電制御回路150に、送電用の電力を出力させる(ステップS103)。これにより、受電装置200は、充電を開始する(ステップS206)。受電装置200は、蓄電デバイスの蓄電量が上限に達する、あるいは受電装置200が送電エリアを通過すると、充電を終了する(ステップS207)。充電終了後、受電制御回路250は、開閉器234をオンにする(ステップS208)。 After that, the power transmission control circuit 150 completes the transition to the main power transmission mode, and causes the power transmission control circuit 150 to output electric power for power transmission (step S103). As a result, the power receiving device 200 starts charging (step S206). The power receiving device 200 ends charging when the storage amount of the power storage device reaches the upper limit or when the power receiving device 200 passes through the power transmission area (step S207). After the charging is completed, the power receiving control circuit 250 turns on the switch 234 (step S208).
 以上の動作により、充電開始時における負荷インピーダンスと、負荷300の入力電圧とを適正な範囲に維持し、回路素子の発熱および損傷を抑制し、動作を安定化させることができる。 By the above operation, the load impedance at the start of charging and the input voltage of the load 300 can be maintained in an appropriate range, heat generation and damage of the circuit element can be suppressed, and the operation can be stabilized.
 図14は、負荷300の入力インピーダンス、抵抗回路230の抵抗値、および受電回路210の負荷インピーダンスの時間変化の例を示す図である。この例では、受電電極220の全面が送電電極120に重なったことを検出器140が検出してから、検出モードから本送電モードへの移行が開始される。ただし、上記のモード移行の条件は、一例にすぎず、他の条件を採用してもよい。例えば、受電電極220の一部が送電電極120に重なったことを検出器140が検出してから、検出モードから本送電モードへの移行が開始されてもよい。図14における点線はインピーダンス制御が行われない比較例における波形の例を示し、実線はインピーダンス制御が行われる本実施形態における波形の例を示している。比較例においては、図6Bに示す構成が採用され、負荷300の起動開始後、開閉器234がオンからオフに切替えられる。本実施形態では、受電制御回路250は、負荷300の起動開始から起動完了まで、抵抗回路230の抵抗値を単調に増加させる。この制御により、受電回路210の負荷インピーダンス、すなわち、抵抗回路230と負荷300の合成インピーダンスの変化が、比較例よりも抑えられ、好ましい範囲内に維持される。 FIG. 14 is a diagram showing an example of time change of the input impedance of the load 300, the resistance value of the resistance circuit 230, and the load impedance of the power receiving circuit 210. In this example, after the detector 140 detects that the entire surface of the power receiving electrode 220 overlaps the power transmission electrode 120, the transition from the detection mode to the main power transmission mode is started. However, the above-mentioned mode transition condition is only an example, and other conditions may be adopted. For example, the transition from the detection mode to the main power transmission mode may be started after the detector 140 detects that a part of the power receiving electrode 220 overlaps the power transmission electrode 120. The dotted line in FIG. 14 shows an example of a waveform in a comparative example in which impedance control is not performed, and the solid line shows an example of a waveform in this embodiment in which impedance control is performed. In the comparative example, the configuration shown in FIG. 6B is adopted, and the switch 234 is switched from on to off after the start of the load 300 is started. In the present embodiment, the power receiving control circuit 250 monotonically increases the resistance value of the resistance circuit 230 from the start of the load 300 to the completion of the start. By this control, the change in the load impedance of the power receiving circuit 210, that is, the combined impedance of the resistance circuit 230 and the load 300 is suppressed as compared with the comparative example, and is maintained within a preferable range.
 図15は、送電回路110から出力される送電電力、受電回路210の出力電圧、および受電回路の負荷インピーダンスの時間変化の例を示す図である。この例でも、受電電極220の全面が送電電極120に重なったことを検出器140が検出してから、検出モードから本送電モードへの移行が開始される。前述のように、上記のモード移行の条件は、一例にすぎず、他の条件を採用してもよい。図15における点線は送電電力をリニアに増加させる比較例における波形の例を示し、実線は送電電力の調整が行われる本実施形態における波形の例を示している。図15において、時間軸の原点は、受電装置200が送電エリアに到達した時点である。この例においては、送電電力の制御による効果を説明するために、図14に示すインピーダンス制御は行われず、負荷300の起動中の開閉器234の切り替えのみが行われるものとしている。比較例においては、受電回路210の出力電圧は、負荷300の起動開始直後に低下し、開閉器234がオフに切替えられると、急上昇する。この場合、負荷300の起動開始後に起動電圧を下回って負荷300が再び停止する、または負荷300の定格電圧を超える高い電圧が負荷300に印加される可能性がある。これに対し、本実施形態では、送電制御回路150が、負荷の起動開始から起動完了までの間、受電回路210の出力電圧が所定の範囲内に維持されるように送電電力を調整する。これにより、負荷300に入力される電圧が、起動電圧から定格電圧までの範囲内に維持され、安定した動作を実現できる。図15に示す送電電力の制御と、図14に示すインピーダンス制御とを併用することにより、充電開始時の動作をさらに安定化させることができる。 FIG. 15 is a diagram showing an example of time-dependent changes in the power transmitted from the power transmission circuit 110, the output voltage of the power receiving circuit 210, and the load impedance of the power receiving circuit. In this example as well, the transition from the detection mode to the main power transmission mode is started after the detector 140 detects that the entire surface of the power receiving electrode 220 overlaps the power transmission electrode 120. As described above, the above-mentioned mode transition condition is only an example, and other conditions may be adopted. The dotted line in FIG. 15 shows an example of a waveform in a comparative example in which the transmitted power is linearly increased, and the solid line shows an example of a waveform in the present embodiment in which the transmitted power is adjusted. In FIG. 15, the origin of the time axis is the time when the power receiving device 200 reaches the power transmission area. In this example, in order to explain the effect of controlling the transmitted power, the impedance control shown in FIG. 14 is not performed, and only the switch 234 during activation of the load 300 is switched. In the comparative example, the output voltage of the power receiving circuit 210 drops immediately after the start of the load 300, and rises sharply when the switch 234 is switched off. In this case, after the start of the load 300 is started, the load 300 may stop again below the start voltage, or a high voltage exceeding the rated voltage of the load 300 may be applied to the load 300. On the other hand, in the present embodiment, the power transmission control circuit 150 adjusts the power transmission power so that the output voltage of the power receiving circuit 210 is maintained within a predetermined range from the start of the load to the completion of the start of the load. As a result, the voltage input to the load 300 is maintained within the range from the starting voltage to the rated voltage, and stable operation can be realized. By using the control of the transmitted power shown in FIG. 15 and the impedance control shown in FIG. 14 in combination, the operation at the start of charging can be further stabilized.
 次に、送電装置100による受電装置200の接近を検出する方法の例を説明する。 Next, an example of a method of detecting the approach of the power receiving device 200 by the power transmitting device 100 will be described.
 図16は、電源400と送電回路110との間に検出器140が接続された構成の例を示す図である。この例では、検出器140は、送電回路110に入力される電流、電圧、または電力を検出する。受電装置200が送電エリアに到達する前に、送電制御回路150は、送電回路110に、微弱な電力を出力させる。検出器140は、例えば送電回路110に入力される電流を計測する。検出器140は、当該電流が予め設定された閾値以上になった場合に、受電装置200が送電エリアに進入した、または設置されたと判断することができる。あるいは、検出器140は、受電装置200が送電エリアに存在していない場合における電流の計測値からの変化量が閾値以上になった場合に、受電装置200が送電エリアに進入した、または設置されたと判断してもよい。 FIG. 16 is a diagram showing an example of a configuration in which a detector 140 is connected between a power supply 400 and a power transmission circuit 110. In this example, the detector 140 detects the current, voltage, or power input to the power transmission circuit 110. Before the power receiving device 200 reaches the power transmission area, the power transmission control circuit 150 causes the power transmission circuit 110 to output a weak electric power. The detector 140 measures, for example, the current input to the power transmission circuit 110. The detector 140 can determine that the power receiving device 200 has entered or is installed in the power transmission area when the current becomes equal to or higher than a preset threshold value. Alternatively, the detector 140 is installed or entered into the power transmission area when the amount of change from the measured value of the current when the power receiving device 200 is not present in the power transmission area becomes equal to or more than the threshold value. You may judge that it was.
 図17は、送電回路110と複数の送電電極120との間に検出器140が接続された構成の例を示す図である。この例のように、送電回路110の出力側に検出器140が配置されていてもよい。検出器140は、例えば送電回路110の出力電流の変化に基づいて受電装置200の送電エリアへの進入または設置を検出することができる。あるいは、検出器140は、送電回路110の出力電圧と出力電流との位相差に基づいて受電装置200の接近を検出してもよい。例えば、出力電圧に対して出力電流が遅相状態になった場合に受電装置200が送電エリアに進入した、または設置されたと判断することができる。 FIG. 17 is a diagram showing an example of a configuration in which a detector 140 is connected between a power transmission circuit 110 and a plurality of power transmission electrodes 120. As in this example, the detector 140 may be arranged on the output side of the power transmission circuit 110. The detector 140 can detect the entry or installation of the power receiving device 200 into the power transmission area, for example, based on the change in the output current of the power transmission circuit 110. Alternatively, the detector 140 may detect the approach of the power receiving device 200 based on the phase difference between the output voltage and the output current of the power transmission circuit 110. For example, when the output current is in a delayed phase with respect to the output voltage, it can be determined that the power receiving device 200 has entered or is installed in the power transmission area.
 検出器140は、送電回路110および送電電極120から離れて配置されたセンサを含んでいてもよい。センサは、例えばカメラまたは測距装置であり得る。センサによって検出される受電装置200の位置に基づいて、受電装置200が送電エリアに進入した、または設置されたと判断することができる。 The detector 140 may include a sensor located away from the power transmission circuit 110 and the power transmission electrode 120. The sensor can be, for example, a camera or a ranging device. Based on the position of the power receiving device 200 detected by the sensor, it can be determined that the power receiving device 200 has entered or is installed in the power transmission area.
 送電装置100は、前述の複数種類の検出機能のうちの任意の組み合わせの構成を備えていてもよい。複数種類の検出機能のうちの1種類または2種類以上の検出機能の進入判断条件を満たすことで、受電装置200が送電エリアに進入した、または設置されたと判断してもよい。 The power transmission device 100 may have a configuration of any combination of the above-mentioned plurality of types of detection functions. It may be determined that the power receiving device 200 has entered or is installed in the power transmission area by satisfying the entry determination condition of one type or two or more types of detection functions among the plurality of types of detection functions.
 次に、本実施形態の変形例を説明する。 Next, a modified example of this embodiment will be described.
 図18は、変形例による送電装置100の構成を示す図である。この例では、検出用送電モードと本送電モードとで、異なる電力経路が設けられている。検出用送電モードでは、第1電力経路が使用され、本送電モードでは第2電力経路が使用される。第1経路上および第2経路上には開閉器170が設けられている。送電制御回路150は、検出用送電モードから本送電モードに移行するとき、開閉器170を制御して使用する電力経路を切り替える。図18の例では、検出器140は、第1電力経路上にのみ配置されている。このような構成により、検出用送電モードと本送電モードとで共通の電力経路を使用する場合と比較して、高い分解能で電流または電圧などの回路応答を検出することができる。 FIG. 18 is a diagram showing a configuration of a power transmission device 100 according to a modified example. In this example, different power paths are provided between the detection power transmission mode and the main power transmission mode. In the detection transmission mode, the first power path is used, and in the main transmission mode, the second power path is used. A switch 170 is provided on the first path and the second path. The power transmission control circuit 150 controls the switch 170 to switch the power path to be used when shifting from the detection power transmission mode to the main power transmission mode. In the example of FIG. 18, the detector 140 is located only on the first power path. With such a configuration, it is possible to detect a circuit response such as current or voltage with high resolution as compared with the case where a common power path is used between the detection transmission mode and the main transmission mode.
 図19は、受電装置200が負荷300の前段に電圧検出器290を備えた構成例を示す図である。この例では、電圧検出器290によって検出された電圧が閾値(例えば負荷300の起動電圧)に達した後、受電制御回路250は、抵抗回路230のインピーダンス制御を開始する。 FIG. 19 is a diagram showing a configuration example in which the power receiving device 200 is provided with a voltage detector 290 in front of the load 300. In this example, after the voltage detected by the voltage detector 290 reaches a threshold value (for example, the starting voltage of the load 300), the power receiving control circuit 250 starts impedance control of the resistance circuit 230.
 図20は、負荷300と受電制御回路250とが通信機能を有する受電装置200の例を示す図である。図21は、送電制御回路150が負荷300との間で通信を行う送電装置100の例を示す図である。この例では、負荷300は送信器を備え、受電制御回路250および送電制御回路150は、受信器を備える。受電制御回路250および送電制御回路150は、負荷300から、例えば負荷300の入力電圧を示す信号、負荷300の起動の開始もしくは完了を示す信号、または充電の開始もしくは完了を示す信号を受信することができる。これにより、受電制御回路250および送電制御回路150は、負荷300の状態に応じて、抵抗回路230のインピーダンスおよび送電回路110の出力電圧を、常に適正な範囲内に維持することができる。本送電が開始された後、負荷300の入力電圧などの信号を送電制御回路150に送信してもよい。これにより、送電制御回路150は、負荷300に適正な電力が供給されるように、送電回路110を制御できる。 FIG. 20 is a diagram showing an example of a power receiving device 200 in which the load 300 and the power receiving control circuit 250 have a communication function. FIG. 21 is a diagram showing an example of a power transmission device 100 in which the power transmission control circuit 150 communicates with the load 300. In this example, the load 300 includes a transmitter, and the power receiving control circuit 250 and the power transmission control circuit 150 include a receiver. The power receiving control circuit 250 and the power transmission control circuit 150 receive, for example, a signal indicating the input voltage of the load 300, a signal indicating the start or completion of the start of the load 300, or a signal indicating the start or completion of charging from the load 300. Can be done. As a result, the power receiving control circuit 250 and the power transmission control circuit 150 can always maintain the impedance of the resistance circuit 230 and the output voltage of the power transmission circuit 110 within an appropriate range according to the state of the load 300. After the main power transmission is started, a signal such as an input voltage of the load 300 may be transmitted to the power transmission control circuit 150. As a result, the power transmission control circuit 150 can control the power transmission circuit 110 so that appropriate power is supplied to the load 300.
 図22は、負荷300が充電制御回路310および蓄電デバイス330を備えた例を示す図である。蓄電デバイス330は、例えば二次電池または蓄電用のキャパシタなどの充電可能な任意のデバイスである。充電制御回路310は、蓄電デバイスの充電および放電を制御する回路である。この例では、充電制御回路310の起動が、前述の「負荷300の起動」に該当する。受電制御回路250は、充電制御回路310から出力される信号に基づき、負荷300の起動状態を把握することができる。 FIG. 22 is a diagram showing an example in which the load 300 includes a charge control circuit 310 and a power storage device 330. The power storage device 330 is any rechargeable device, such as a secondary battery or a capacitor for storage. The charge control circuit 310 is a circuit that controls charging and discharging of the power storage device. In this example, the activation of the charge control circuit 310 corresponds to the above-mentioned "activation of the load 300". The power receiving control circuit 250 can grasp the activation state of the load 300 based on the signal output from the charge control circuit 310.
 図23は、負荷300が、充電制御回路310と、蓄電デバイス330と、ロボットなどの機器の負荷340(例えばモータ)とを含む例を示す図である。機器の負荷340は、蓄電デバイス330と並列に接続されている。充電制御回路310は、受電電力に応じて蓄電デバイス330と機器の負荷340への電力供給バランスを調整する。受電装置200が受電動作を行っていないときは、蓄電デバイス330から機器の負荷340に電力を供給することができる。 FIG. 23 is a diagram showing an example in which the load 300 includes a charge control circuit 310, a power storage device 330, and a load 340 (for example, a motor) of a device such as a robot. The load 340 of the device is connected in parallel with the power storage device 330. The charge control circuit 310 adjusts the power supply balance between the power storage device 330 and the load 340 of the device according to the received power. When the power receiving device 200 is not performing the power receiving operation, power can be supplied from the power storage device 330 to the load 340 of the device.
 次に、前述の送電装置100および受電装置200を備えた無線電力伝送システムの一例を説明する。 Next, an example of a wireless power transmission system including the above-mentioned power transmission device 100 and power receiving device 200 will be described.
 図24は、本実施形態の無線電力伝送システムの構成を模式的に示すブロック図である。この無線電力伝送システムは、送電装置100と、受電装置200とを備える。図24には、無線電力伝送システムの外部の要素である直流電源400も示されている。本実施形態における受電装置200は、図1に示すような移動体である。このため、以下の説明において、受電装置200を「移動体200」とも称する。 FIG. 24 is a block diagram schematically showing the configuration of the wireless power transmission system of the present embodiment. This wireless power transmission system includes a power transmission device 100 and a power receiving device 200. FIG. 24 also shows a DC power supply 400, which is an external element of the wireless power transmission system. The power receiving device 200 in this embodiment is a mobile body as shown in FIG. Therefore, in the following description, the power receiving device 200 is also referred to as a “mobile body 200”.
 送電装置100は、送電回路110と、複数の送電電極120と、送電制御回路150と、検出器140とを備える。送電回路110は、インバータ回路160と、整合回路180とを備える。 The power transmission device 100 includes a power transmission circuit 110, a plurality of power transmission electrodes 120, a power transmission control circuit 150, and a detector 140. The power transmission circuit 110 includes an inverter circuit 160 and a matching circuit 180.
 インバータ回路160は、送電制御回路150からの指令に応答して電源400から出力された直流電力を交流電力に変換して出力する。図25は、インバータ回路160の構成例を模式的に示す図である。この例では、インバータ回路160は、4つのスイッチング素子を含むフルブリッジ型のインバータ回路である。各スイッチング素子は、例えばIGBT、MOSFET、またはGaN等のトランジスタによって実現され得る。各スイッチング素子は、送電制御回路150によって制御される。送電制御回路150は、各スイッチング素子のオン(導通)およびオフ(非導通)の状態を制御する制御信号を出力するゲートドライバと、ゲートドライバに制御信号を出力させるマイクロコントローラ(MCU)等のプロセッサとを備え得る。送電制御回路150は、各スイッチング素子のオンおよびオフの状態を制御することにより、インバータ回路160から所望の周波数および電圧を有する交流電力を出力させる。図示されるフルブリッジ型のインバータ回路の代わりに、ハーフブリッジ型のインバータ回路、または、E級などの他の種類の発振回路を用いてもよい。 The inverter circuit 160 converts the DC power output from the power supply 400 into AC power and outputs it in response to a command from the power transmission control circuit 150. FIG. 25 is a diagram schematically showing a configuration example of the inverter circuit 160. In this example, the inverter circuit 160 is a full bridge type inverter circuit including four switching elements. Each switching element can be realized by a transistor such as an IGBT, MOSFET, or GaN. Each switching element is controlled by the power transmission control circuit 150. The power transmission control circuit 150 includes a gate driver that outputs a control signal that controls the on (conducting) and off (non-conducting) states of each switching element, and a processor such as a microcontroller (MCU) that causes the gate driver to output a control signal. And can be prepared. The power transmission control circuit 150 outputs AC power having a desired frequency and voltage from the inverter circuit 160 by controlling the on and off states of each switching element. Instead of the full-bridge type inverter circuit shown in the figure, a half-bridge type inverter circuit or another type of oscillation circuit such as class E may be used.
 電力伝送の周波数は、例えば50Hz~300GHz、ある例では20kHz~10GHz、他の例では20kHz~20MHz、さらに他の例では80kHz~14MHzに設定され得る。ただしこれらの周波数範囲に限定されない。 The frequency of power transmission can be set, for example, 50 Hz to 300 GHz, 20 kHz to 10 GHz in one example, 20 kHz to 20 MHz in another example, and 80 kHz to 14 MHz in another example. However, it is not limited to these frequency ranges.
 整合回路180は、インバータ回路160と送電電極120との間のインピーダンスを整合させる。図26Aから図26Dは、整合回路180の構成例を示す図である。 The matching circuit 180 matches the impedance between the inverter circuit 160 and the power transmission electrode 120. 26A to 26D are diagrams showing a configuration example of the matching circuit 180.
 図26Aは、整合回路180の第1の例を示す図である。この例における整合回路180は、第1のインダクタLt1と、第2のインダクタLt2と、キャパシタCt1とを備える。第1のインダクタLt1は、送電電極120aと、インバータ回路160の第1の端子60aとの間に直列回路素子として接続される。第2のインダクタLt2は、送電電極120bと、インバータ回路160の第2の端子60bとの間に直列回路素子として接続される。キャパシタCt1は、送電電極120aとインダクタLt1との間の配線と、送電電極120bとインダクタLt2との間の配線との間に並列回路素子として接続される。 FIG. 26A is a diagram showing a first example of the matching circuit 180. The matching circuit 180 in this example includes a first inductor Lt1, a second inductor Lt2, and a capacitor Ct1. The first inductor Lt1 is connected as a series circuit element between the power transmission electrode 120a and the first terminal 60a of the inverter circuit 160. The second inductor Lt2 is connected as a series circuit element between the power transmission electrode 120b and the second terminal 60b of the inverter circuit 160. The capacitor Ct1 is connected as a parallel circuit element between the wiring between the power transmission electrode 120a and the inductor Lt1 and the wiring between the power transmission electrode 120b and the inductor Lt2.
 第1のインダクタLt1と第2のインダクタLt2とは磁気的に結合する。これらのインダクタの結合係数kは、例えば-1<k<0を満足する値に設定され得る。第1のインダクタLt1および第2のインダクタLt2は、コモンモードチョークフィルタとしての機能を果たすことが可能である。その場合、電力伝送に用いられる周波数、および低次の高調波帯域でのコモンモードノイズを低減することができる。そのような構成では、第1のインダクタLt1、第2のインダクタLt2、および第1のキャパシタCt1によって構成される共振器を「コモンモードチョーク共振器」と称することがある。 The first inductor Lt1 and the second inductor Lt2 are magnetically coupled. The coupling coefficient k of these inductors can be set to a value satisfying, for example, -1 <k <0. The first inductor Lt1 and the second inductor Lt2 can function as a common mode choke filter. In that case, it is possible to reduce the frequency used for power transmission and the common mode noise in the low-order harmonic band. In such a configuration, the resonator composed of the first inductor Lt1, the second inductor Lt2, and the first capacitor Ct1 may be referred to as a "common mode choke resonator".
 図26Bは、整合回路180の第2の例を示す図である。この整合回路180は、図26Aに示す構成に加えて、第2のキャパシタCt2と、第3のキャパシタCt3と、第3のインダクタLt3とをさらに備える。第2のキャパシタCt2は、第1のインダクタLt1と第1の端子60aとの間に直列回路素子として接続される。第3のキャパシタCt3は、第2のインダクタLt2と第2の端子60bとの間に直列回路素子として接続される。第3のインダクタLt3は、第1のインダクタLt1と第2のキャパシタCt2との間の配線と、第2のインダクタLt2と第3のキャパシタCt3との間の配線との間に並列回路素子として接続される。この構成は、図26Aに示す整合回路180の構成の前段に、対称的な回路構成を有するハイパスフィルタが追加された構成であると言える。このような構成によれば、伝送効率をさらに向上させることができる。 FIG. 26B is a diagram showing a second example of the matching circuit 180. In addition to the configuration shown in FIG. 26A, the matching circuit 180 further includes a second capacitor Ct2, a third capacitor Ct3, and a third inductor Lt3. The second capacitor Ct2 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a. The third capacitor Ct3 is connected as a series circuit element between the second inductor Lt2 and the second terminal 60b. The third inductor Lt3 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the second capacitor Ct2 and the wiring between the second inductor Lt2 and the third capacitor Ct3. Will be done. It can be said that this configuration is a configuration in which a high-pass filter having a symmetrical circuit configuration is added in front of the configuration of the matching circuit 180 shown in FIG. 26A. According to such a configuration, the transmission efficiency can be further improved.
 図26Cは、整合回路180の第3の例を示す図である。この整合回路180は、図26Aに示す構成に加えて、第2のキャパシタCt2と、第3のインダクタLt3とをさらに備える。第2のキャパシタCt2は、第1のインダクタLt1と第1の端子60aとの間に直列回路素子として接続される。第3のインダクタLt3は、第1のインダクタLt1と第2のキャパシタCt2との間の配線と、第2のインダクタLt2と第2の端子60bとの間の配線との間に並列回路素子として接続される。この構成は、図26Aに示す整合回路180の構成の前段に、非対称な回路構成を有するハイパスフィルタが追加された構成であると言える。図26Bの構成と比較して、回路の正負対称性は低下するが素子数を削減することが可能である。このような構成によっても伝送効率をさらに向上させることができる。 FIG. 26C is a diagram showing a third example of the matching circuit 180. The matching circuit 180 further includes a second capacitor Ct2 and a third inductor Lt3 in addition to the configuration shown in FIG. 26A. The second capacitor Ct2 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a. The third inductor Lt3 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the second capacitor Ct2 and the wiring between the second inductor Lt2 and the second terminal 60b. Will be done. It can be said that this configuration is a configuration in which a high-pass filter having an asymmetric circuit configuration is added in front of the configuration of the matching circuit 180 shown in FIG. 26A. Compared with the configuration of FIG. 26B, the positive / negative symmetry of the circuit is lowered, but the number of elements can be reduced. The transmission efficiency can be further improved by such a configuration.
 図26Dは、整合回路180の第4の例を示す図である。この整合回路180は、図26Aに示す構成に加えて、第3のインダクタLt3と、第2のキャパシタCt2とをさらに備える。第3のインダクタLt3は、第1のインダクタLt1と第1の端子60aとの間に直列回路素子として接続される。第2のキャパシタCt2は、第1のインダクタLt1と第3のインダクタLt3との間の配線と、第2のインダクタLt2と第2の端子60bとの間の配線との間に並列回路素子として接続される。この構成は、図26Aに示す整合回路180の構成の前段に、非対称な回路構成を有するローパスフィルタが追加された構成であると言える。このような構成によっても伝送効率をさらに向上させることができる。 FIG. 26D is a diagram showing a fourth example of the matching circuit 180. The matching circuit 180 further includes a third inductor Lt3 and a second capacitor Ct2 in addition to the configuration shown in FIG. 26A. The third inductor Lt3 is connected as a series circuit element between the first inductor Lt1 and the first terminal 60a. The second capacitor Ct2 is connected as a parallel circuit element between the wiring between the first inductor Lt1 and the third inductor Lt3 and the wiring between the second inductor Lt2 and the second terminal 60b. Will be done. It can be said that this configuration is a configuration in which a low-pass filter having an asymmetric circuit configuration is added in front of the configuration of the matching circuit 180 shown in FIG. 26A. The transmission efficiency can be further improved by such a configuration.
 以上の各例における整合回路180は、図示されている回路素子以外にも、他の回路素子、例えばフィルタ機能を果たす回路網などを含んでいてもよい。また、各図において、1つのインダクタまたは1つのキャパシタとして表現された素子は、複数のインダクタまたは複数のキャパシタの集合体であってもよい。 The matching circuit 180 in each of the above examples may include other circuit elements, for example, a network that functions as a filter, in addition to the circuit elements shown in the figure. Further, in each figure, the element represented as one inductor or one capacitor may be an aggregate of a plurality of inductors or a plurality of capacitors.
 検出器140は、インバータ回路160の入力電流を検出する。送電制御回路150は、検出器140によって検出された電流の変化に基づいて、移動体200の接近を検知し、前述の検出用送電モードから本送電モードに移行することができる。 The detector 140 detects the input current of the inverter circuit 160. The power transmission control circuit 150 can detect the approach of the mobile body 200 based on the change in the current detected by the detector 140, and can shift from the above-mentioned detection power transmission mode to the main power transmission mode.
 移動体200は、複数の受電電極220と、受電回路210と、受電制御回路250と、充電制御回路310と、蓄電デバイス330と、電気モータ320とを備える。受電回路210は、整合回路280と、整流回路260と、抵抗回路230とを備える。 The mobile body 200 includes a plurality of power receiving electrodes 220, a power receiving circuit 210, a power receiving control circuit 250, a charging control circuit 310, a power storage device 330, and an electric motor 320. The power receiving circuit 210 includes a matching circuit 280, a rectifier circuit 260, and a resistance circuit 230.
 整合回路280は、受電電極220と整流回路260との間のインピーダンスを整合させる。整合回路280は、例えば図26Aから図26Dを参照して説明した整合回路180と同様の構成を備え得る。移動体200における整合回路280には、上記の各構成例において入力側(図の左側)と出力側(図の右側)とを反転させた構成を採用することができる。 The matching circuit 280 matches the impedance between the power receiving electrode 220 and the rectifier circuit 260. The matching circuit 280 may have the same configuration as the matching circuit 180 described, for example, with reference to FIGS. 26A to 26D. For the matching circuit 280 in the mobile body 200, it is possible to adopt a configuration in which the input side (left side in the figure) and the output side (right side in the figure) are inverted in each of the above configuration examples.
 整流回路260は、整合回路280から出力された交流電力を直流電力に変換する。図27は、整流回路260の構成例を模式的に示す図である。この例における整流回路260は、ダイオードブリッジと平滑コンデンサとを含む全波整流回路である。整流回路260は、例えば半波整流回路などの、他の構成を有していてもよい。整流回路260は、受け取った交流エネルギーを蓄電デバイス330およびモータ320などの負荷が利用可能な直流エネルギーに変換する。 The rectifier circuit 260 converts the AC power output from the matching circuit 280 into DC power. FIG. 27 is a diagram schematically showing a configuration example of the rectifier circuit 260. The rectifier circuit 260 in this example is a full-wave rectifier circuit including a diode bridge and a smoothing capacitor. The rectifier circuit 260 may have other configurations, such as a half-wave rectifier circuit. The rectifier circuit 260 converts the received AC energy into DC energy that can be used by loads such as the power storage device 330 and the motor 320.
 受電制御回路250は、例えばMCUなどの、プロセッサとメモリなどの記憶媒体とを備えた回路によって実現され得る。受電制御回路250は、前述のように、充電制御回路310の動作状態に応じて抵抗回路230の抵抗値を調整する。 The power receiving control circuit 250 can be realized by a circuit including a processor and a storage medium such as a memory, such as an MCU. As described above, the power receiving control circuit 250 adjusts the resistance value of the resistance circuit 230 according to the operating state of the charge control circuit 310.
 充電制御回路310は、抵抗回路230と蓄電デバイス330との間に接続され、蓄電デバイス330の充電および放電を制御する。 The charge control circuit 310 is connected between the resistance circuit 230 and the power storage device 330 to control charging and discharging of the power storage device 330.
 図28は、充電制御回路310の構成例を示す図である。この例における充電制御回路310は、セルバランス制御器271と、アナログフロントエンドIC(AFE-IC)272と、サーミスタ273と、電流検出抵抗274と、MCU275と、通信用ドライバIC276と、保護FET277とを含む。セルバランス制御器271は、複数のセルを含む二次電池のそれぞれのセルの蓄電エネルギーを均一化する回路である。AFE-IC272は、サーミスタ273によって計測されたセル温度と、電流検出抵抗274が検出した電流とに基づいて、セルバランス制御器271および保護FET277を制御する回路である。MCU275は、通信用ドライバIC276を介した他の回路との通信を制御する回路である。なお、図28に示す構成は一例に過ぎず、要求される機能または特性に応じて回路構成を変更してもよい。 FIG. 28 is a diagram showing a configuration example of the charge control circuit 310. The charge control circuit 310 in this example includes a cell balance controller 271, an analog front-end IC (AFE-IC) 272, a thermistor 273, a current detection resistor 274, an MCU 275, a communication driver IC 276, and a protection FET 277. including. The cell balance controller 271 is a circuit for equalizing the stored energy of each cell of the secondary battery including a plurality of cells. The AFE-IC272 is a circuit that controls the cell balance controller 271 and the protection FET 277 based on the cell temperature measured by the thermistor 273 and the current detected by the current detection resistor 274. The MCU 275 is a circuit that controls communication with other circuits via the communication driver IC 276. The configuration shown in FIG. 28 is only an example, and the circuit configuration may be changed according to the required function or characteristic.
 電気モータ320は、蓄電デバイス330および充電制御回路310に接続され、蓄電デバイス330に蓄積されたエネルギーによって駆動される。モータ320は、例えば直流モータ、永久磁石同期モータ、誘導モータ、ステッピングモータ、またはリラクタンスモータなどの、任意のモータであり得る。モータ320は、シャフトおよびギア等を介して移動体の車輪を回転させ、移動体200を移動させる。モータの種類に応じて、整流回路、インバータ回路、インバータ制御回路などの、各種の回路がモータ320の前段に設けられ得る。 The electric motor 320 is connected to the power storage device 330 and the charge control circuit 310, and is driven by the energy stored in the power storage device 330. The motor 320 can be any motor, such as a DC motor, a permanent magnet synchronous motor, an induction motor, a stepping motor, or a reluctance motor. The motor 320 rotates the wheels of the moving body via a shaft, gears, and the like to move the moving body 200. Depending on the type of motor, various circuits such as a rectifier circuit, an inverter circuit, and an inverter control circuit may be provided in front of the motor 320.
 蓄電デバイス330は、例えば二次電池または蓄電用のキャパシタであり得る。二次電池として、例えばリチウムイオン電池またはニッケル水素電池を用いることができる。蓄電用のキャパシタは、例えば電気二重層キャパシタまたはリチウムイオンキャパシタなどの、高容量かつ低抵抗のキャパシタであり得る。移動体200は、キャパシタまたは二次電池に蓄えられた電力によってモータ320を駆動して移動する。 The power storage device 330 may be, for example, a secondary battery or a capacitor for power storage. As the secondary battery, for example, a lithium ion battery or a nickel hydrogen battery can be used. The capacitor for storage can be a high capacity and low resistance capacitor such as an electric double layer capacitor or a lithium ion capacitor. The mobile body 200 moves by driving the motor 320 by the electric power stored in the capacitor or the secondary battery.
 移動体200が移動すると、蓄電デバイス330の蓄電量が低下する。このため、移動を継続するためには、再充電が必要になる。そこで、移動体200は、例えば移動中に充電量が所定の閾値を下回ると、送電装置100から充電を行う。 When the mobile body 200 moves, the amount of electricity stored in the electricity storage device 330 decreases. Therefore, recharging is required to continue moving. Therefore, for example, when the charge amount falls below a predetermined threshold value during movement, the mobile body 200 charges from the power transmission device 100.
 本実施形態における移動体200の筐体、送電電極120、および受電電極220のそれぞれのサイズは、特に限定されないが、例えば以下のサイズに設定され得る。各送電電極120の長さ(すなわちY方向のサイズ)は、例えば50cm~20mの範囲内に設定され得る。各送電電極120のそれぞれの幅(すなわちX方向のサイズ)は、例えば5cm~2mの範囲内に設定され得る。移動体200の筐体の移動方向および横方向におけるそれぞれのサイズは、例えば20cm~5mの範囲内に設定され得る。送電電極120から同時に2台以上の移動体200に給電できるように、移動体200の筐体の移動方向におけるサイズは、各送電電極120の長さの半分未満に設定されてもよい。受電電極220aの長さ(すなわち移動方向におけるサイズ)は、例えば5cm~2mの範囲内に設定され得る。受電電極220aの幅(すなわち横方向におけるサイズ)は、例えば2cm~2mの範囲内に設定され得る。送電電極120間のギャップ、および受電電極220間のギャップは、例えば1mm~40cmの範囲内に設定され得る。但し、これらの数値範囲に限定されない。 The sizes of the housing of the mobile body 200, the power transmission electrode 120, and the power reception electrode 220 in the present embodiment are not particularly limited, but may be set to the following sizes, for example. The length of each transmission electrode 120 (ie, the size in the Y direction) can be set, for example, in the range of 50 cm to 20 m. The width of each transmission electrode 120 (ie, the size in the X direction) can be set, for example, within the range of 5 cm to 2 m. The respective sizes of the housing of the moving body 200 in the moving direction and the lateral direction can be set within the range of, for example, 20 cm to 5 m. The size of the housing of the mobile body 200 in the moving direction may be set to less than half the length of each power transmission electrode 120 so that power can be supplied from the power transmission electrode 120 to two or more mobile bodies 200 at the same time. The length (that is, the size in the moving direction) of the power receiving electrode 220a can be set in the range of, for example, 5 cm to 2 m. The width (that is, the size in the lateral direction) of the power receiving electrode 220a can be set in the range of, for example, 2 cm to 2 m. The gap between the transmission electrodes 120 and the gap between the power receiving electrodes 220 can be set, for example, in the range of 1 mm to 40 cm. However, it is not limited to these numerical ranges.
 以上の実施形態では、送電電極120は、地面または床面に敷設されているが、送電電極120は、壁などの側面、または天井などの上面に敷設されていてもよい。送電電極120が敷設される場所および向きに応じて、移動体200の受電電極220の配置および向きが決定される。 In the above embodiment, the power transmission electrode 120 is laid on the ground or the floor surface, but the power transmission electrode 120 may be laid on a side surface such as a wall or an upper surface such as a ceiling. The arrangement and orientation of the power receiving electrode 220 of the mobile body 200 is determined according to the location and orientation in which the power transmission electrode 120 is laid.
 図29Aは、送電電極120が壁などの側面に敷設された例を示している。この例では、受電電極220は、移動体200の側方に配置される。図29Bは、送電電極120が天井に敷設された例を示している。この例では、受電電極220は、移動体200の天板に配置される。これらの例のように、送電電極120および受電電極220の配置には様々なバリエーションがある。 FIG. 29A shows an example in which the power transmission electrode 120 is laid on a side surface such as a wall. In this example, the power receiving electrode 220 is arranged on the side of the moving body 200. FIG. 29B shows an example in which the power transmission electrode 120 is laid on the ceiling. In this example, the power receiving electrode 220 is arranged on the top plate of the moving body 200. As in these examples, there are various variations in the arrangement of the power transmission electrode 120 and the power reception electrode 220.
 本開示の実施形態における無線電力伝送システムは、前述のように、例えば倉庫または工場内における物品の搬送用のシステムとして利用され得る。移動体200は、物品を積載する荷台を有し、工場内を自律的に移動して物品を必要な場所に搬送する台車として機能する。しかし、本開示における無線電力伝送システムおよび移動体は、このような用途に限らず、他の様々な用途に利用され得る。例えば、移動体は、AGVに限らず、他の産業機械、サービスロボット、電気自動車、マルチコプター(ドローン)等であってもよい。無線電力伝送システムは、工場または倉庫に限らず、例えば、店舗、病院、家庭、道路、滑走路その他のあらゆる場所で利用され得る。また、受電装置は、移動体に限定されず、例えば充電ポール、スマートフォン、タブレットコンピュータ、またはラップトップコンピュータなどの、持ち運びが可能な任意の機器であり得る。 As described above, the wireless power transmission system according to the embodiment of the present disclosure can be used as a system for transporting goods in, for example, a warehouse or a factory. The mobile body 200 has a loading platform for loading articles, and functions as a trolley that autonomously moves in the factory and transports articles to a required place. However, the wireless power transmission system and the mobile body in the present disclosure are not limited to such applications, and may be used for various other applications. For example, the moving body is not limited to the AGV, and may be another industrial machine, a service robot, an electric vehicle, a multicopter (drone), or the like. Wireless power transfer systems can be used not only in factories or warehouses, but also in, for example, stores, hospitals, homes, roads, runways and anywhere else. Further, the power receiving device is not limited to a mobile body, and may be any portable device such as a charging pole, a smartphone, a tablet computer, or a laptop computer.
 以下、受電装置が移動のための動力装置を備えていない無線電力伝送システムの例を説明する。 Hereinafter, an example of a wireless power transmission system in which the power receiving device is not equipped with a power device for movement will be described.
 図30は、可搬型の受電装置400に電力を供給する無線電力伝送システムの例を模式的に示す斜視図である。図31は、このシステムの模式断面図である。 FIG. 30 is a perspective view schematically showing an example of a wireless power transmission system that supplies power to a portable power receiving device 400. FIG. 31 is a schematic cross-sectional view of this system.
 図30に示すように、このシステムでは、移動体ではなく、可搬型の受電装置400が送電装置100から電力を受け取って動作する。図30には、2つの受電装置400が例示されているが、受電装置400の個数は任意である。受電装置400は、例えば持ち運びが可能な充電ポールであり得る。受電装置400は、送電装置100が備える送電シート190の上に配置されて使用される。送電シート190は、一方向に延びる一対の送電電極120を備える。受電装置400は、使用時に送電シート190に対向する受電シート240を備える。受電シート240は、一対の受電電極220を備える。一対の受電電極220が一対の送電電極120にそれぞれ対向する状態で、電力が無線で伝送される。受電装置400は、持ち運びが可能であり、送電電極120が延びる方向に沿ってスライドさせることもできる。送電電極120が延びる方向における受電装置400の寸法は、送電電極120の長さの半分未満である。このため、同時に2台以上の受電装置400を送電シート190の上に配置することができる。 As shown in FIG. 30, in this system, a portable power receiving device 400, not a mobile body, receives power from the power transmission device 100 and operates. Although two power receiving devices 400 are illustrated in FIG. 30, the number of power receiving devices 400 is arbitrary. The power receiving device 400 may be, for example, a portable charging pole. The power receiving device 400 is arranged and used on the power transmission sheet 190 included in the power transmission device 100. The power transmission sheet 190 includes a pair of power transmission electrodes 120 extending in one direction. The power receiving device 400 includes a power receiving sheet 240 facing the power transmission sheet 190 when in use. The power receiving sheet 240 includes a pair of power receiving electrodes 220. Electric power is transmitted wirelessly with the pair of power receiving electrodes 220 facing each other of the pair of power transmission electrodes 120. The power receiving device 400 is portable and can be slid along the direction in which the power transmission electrode 120 extends. The dimension of the power receiving device 400 in the direction in which the power transmission electrode 120 extends is less than half the length of the power transmission electrode 120. Therefore, two or more power receiving devices 400 can be arranged on the power transmission sheet 190 at the same time.
 図31に示すように、一対の送電電極120は、送電回路110に接続されている。前述の実施形態と同様、送電回路110は、一対の送電電極120に交流電力を供給する。これにより、送電電極120から交流エネルギが空間に送出される。受電装置400は、受電シート240に加えて、受電回路210と、蓄電デバイス330と、負荷340とを備える。受電回路210は、一対の受電電極220に接続され、受電電極220が受け取った交流電力を直流電力に変換して出力する。蓄電デバイス330は、受電回路210から出力された直流電力を蓄える。負荷340は、蓄電デバイス330に接続され、蓄電デバイス330に蓄積された電力によって動作する。負荷340は、電力で動作する任意の機器であり、例えば、電気モータ、動力装置、または照明装置を含み得る。受電装置400が充電ポールである場合、受電装置400は、他の機器に電力を供給するための1つ以上のコンセント(outlet)を備えていてもよい。図31には示されていないが、受電装置400は、図8から図12などに示す例と同様に、インピーダンスを調整する機能を備える。これにより、充電開始時における回路素子の発熱および損傷を抑制し、動作を安定化させることができる。 As shown in FIG. 31, the pair of power transmission electrodes 120 are connected to the power transmission circuit 110. Similar to the above-described embodiment, the power transmission circuit 110 supplies AC power to the pair of power transmission electrodes 120. As a result, AC energy is transmitted from the power transmission electrode 120 to the space. The power receiving device 400 includes a power receiving circuit 210, a power storage device 330, and a load 340 in addition to the power receiving sheet 240. The power receiving circuit 210 is connected to a pair of power receiving electrodes 220, and converts the AC power received by the power receiving electrodes 220 into DC power and outputs the power. The power storage device 330 stores the DC power output from the power receiving circuit 210. The load 340 is connected to the power storage device 330 and operates by the electric power stored in the power storage device 330. The load 340 is any device operated by electric power and may include, for example, an electric motor, a power unit, or a lighting device. When the power receiving device 400 is a charging pole, the power receiving device 400 may include one or more outlets for supplying power to other devices. Although not shown in FIG. 31, the power receiving device 400 has a function of adjusting impedance, as in the examples shown in FIGS. 8 to 12 and the like. As a result, it is possible to suppress heat generation and damage of the circuit element at the start of charging and stabilize the operation.
 図32は、受電装置400の他の例を示す図である。図32に示すように、受電装置400は、スマートフォン400A、タブレットコンピュータ400B、またはラップトップコンピュータ400Cであってもよい。これらの例に限らず、受電装置400は、可搬型の任意の機器であり得る。受電装置400の種類に関わらず、本開示の技術を適用することにより、充電開始時における回路素子の発熱および損傷を抑制し、動作を安定化させることができる。 FIG. 32 is a diagram showing another example of the power receiving device 400. As shown in FIG. 32, the power receiving device 400 may be a smartphone 400A, a tablet computer 400B, or a laptop computer 400C. Not limited to these examples, the power receiving device 400 can be any portable device. Regardless of the type of the power receiving device 400, by applying the technique of the present disclosure, it is possible to suppress heat generation and damage of the circuit element at the start of charging and stabilize the operation.
 本開示の技術は、電力によって駆動される任意の機器に利用できる。例えば、無人搬送車(AGV)などの電動車両、または充電ポール、スマートフォン、タブレットコンピュータ、もしくはラップトップコンピュータなどの可搬型の機器に本開示の技術を利用できる。 The technology of the present disclosure can be used for any device driven by electric power. For example, the techniques of the present disclosure can be applied to electric vehicles such as automatic guided vehicles (AGVs) or portable devices such as charging poles, smartphones, tablet computers, or laptop computers.
 30 床面
 100 送電装置
 110 送電回路
 120 送電電極
 140 検出器
 150 送電制御回路
 160 インバータ回路
 170 開閉器
 180 整合回路
 200 移動体(受電装置)
 210 受電回路
 220 受電電極
 230 抵抗回路
 232 抵抗器
 234 開閉器
 250 受電制御回路
 260 整流回路
 280 整合回路
 290 電圧検出器
 300 負荷
 310 充電制御回路
 320 電気モータ
 330 蓄電デバイス
 340 機器の負荷
 400 電源
 
30 Floor surface 100 Power transmission device 110 Power transmission circuit 120 Power transmission electrode 140 Detector 150 Power transmission control circuit 160 Inverter circuit 170 Switch 180 Matching circuit 200 Mobile unit (power receiving device)
210 Power receiving circuit 220 Power receiving electrode 230 Resistance circuit 232 Resistor 234 Switch 250 Power receiving control circuit 260 Rectifier circuit 280 Matching circuit 290 Voltage detector 300 Load 310 Charge control circuit 320 Electric motor 330 Power storage device 340 Equipment load 400 Power supply

Claims (14)

  1.  送電装置と受電装置とを備える無線電力伝送システムにおいて用いられる受電装置であって、
     前記送電装置が備える送電アンテナから無線で交流電力を受け取る受電アンテナと、
     前記受電アンテナが受け取った前記交流電力を直流電力に変換して出力する受電回路と、
     前記受電回路から出力された前記直流電力によって動作する負荷であって、前記直流電力の電圧が所定の起動電圧を超えたときに起動する負荷と、
     前記受電回路と前記負荷との間に接続された抵抗回路であって、前記負荷に並列に接続された抵抗器を含む抵抗回路と、
     前記受電装置が前記送電装置に接近し、前記負荷が起動することによって生じる前記受電回路の負荷インピーダンスの変動を抑制するように、前記抵抗回路のインピーダンスを制御する受電制御回路と、
    を備える受電装置。
    A power receiving device used in a wireless power transmission system including a power transmitting device and a power receiving device.
    A power receiving antenna that wirelessly receives AC power from the power transmission antenna of the power transmission device,
    A power receiving circuit that converts the AC power received by the power receiving antenna into DC power and outputs it.
    A load operated by the DC power output from the power receiving circuit, and a load that starts when the voltage of the DC power exceeds a predetermined starting voltage.
    A resistance circuit connected between the power receiving circuit and the load, including a resistor connected in parallel with the load, and a resistance circuit.
    A power receiving control circuit that controls the impedance of the resistance circuit so as to suppress fluctuations in the load impedance of the power receiving circuit caused by the power receiving device approaching the power transmission device and activating the load.
    A power receiving device equipped with.
  2.  前記受電制御回路は、前記負荷インピーダンスを、予め設定された範囲内に維持するように、前記抵抗回路の前記インピーダンスを制御する、請求項1に記載の受電装置。 The power receiving device according to claim 1, wherein the power receiving control circuit controls the impedance of the resistance circuit so as to maintain the load impedance within a preset range.
  3.  前記抵抗回路は、
     前記負荷に並列に接続された抵抗器と、
     前記負荷に並列で且つ前記抵抗器に直列に接続された開閉器と、
    を含み、
     前記受電制御回路は、前記開閉器を制御することにより、前記抵抗回路の前記インピーダンスを制御する、
    請求項1または2に記載の受電装置。
    The resistance circuit is
    With a resistor connected in parallel with the load,
    A switch connected in parallel with the load and in series with the resistor.
    Including
    The power receiving control circuit controls the impedance of the resistance circuit by controlling the switch.
    The power receiving device according to claim 1 or 2.
  4.  前記受電制御回路は、
     前記負荷が起動する前は前記開閉器をオンにし、
     前記負荷が起動した後、前記抵抗回路の前記インピーダンスが増加するように前記開閉器を制御し、
     前記送電装置から送電用の電力が供給された後、前記開閉器をオフにする、
    請求項3に記載の受電装置。
    The power receiving control circuit is
    Before the load is activated, the switch is turned on and the switch is turned on.
    After the load is activated, the switch is controlled so that the impedance of the resistance circuit increases.
    After the power for transmission is supplied from the power transmission device, the switch is turned off.
    The power receiving device according to claim 3.
  5.  前記受電制御回路は、前記送電装置から前記受電装置への送電が終了した後、前記開閉器をオンにする、請求項4に記載の受電装置。 The power receiving device according to claim 4, wherein the power receiving control circuit turns on the switch after the power transmission from the power transmitting device to the power receiving device is completed.
  6.  前記抵抗器の抵抗値は、前記送電装置から送電用の電力が供給されているときの前記負荷の抵抗値に実質的に等しい、請求項3から5のいずれかに記載の受電装置。 The power receiving device according to any one of claims 3 to 5, wherein the resistance value of the resistor is substantially equal to the resistance value of the load when power for power transmission is supplied from the power transmission device.
  7.  前記抵抗回路は、前記負荷に並列に接続された可変抵抗器を含み、
     前記受電制御回路は、前記可変抵抗器の抵抗値を制御することにより、前記抵抗回路の前記インピーダンスを制御する、
    請求項1または2に記載の受電装置。
    The resistance circuit includes a variable resistor connected in parallel with the load.
    The power receiving control circuit controls the impedance of the resistance circuit by controlling the resistance value of the variable resistor.
    The power receiving device according to claim 1 or 2.
  8.  前記負荷は、DC-DCコンバータを含み、
     前記負荷の起動は、前記DC-DCコンバータの起動である、
    請求項1から7のいずれかに記載の受電装置。
    The load includes a DC-DC converter.
    The activation of the load is the activation of the DC-DC converter.
    The power receiving device according to any one of claims 1 to 7.
  9.  送電装置と受電装置とを備える無線電力伝送システムにおいて用いられる送電装置であって、
     前記受電装置は、受電アンテナと、前記受電アンテナが受け取った前記交流電力を直流電力に変換して出力する受電回路と、前記受電回路から出力された前記直流電力によって動作し、前記直流電力の電圧が所定の起動電圧を超えたときに起動する負荷と、を備え、
     前記送電装置は、
     電源から供給された電力を、電力伝送のための交流電力に変換して出力する送電回路と、
     前記交流電力を、前記受電アンテナに無線で伝送する送電アンテナと、
     前記受電装置の前記送電装置への接近を検出する検出器と、
     前記送電回路を制御する送電制御回路であって、前記受電装置の前記送電装置への接近が検出されたとき、前記送電回路から出力される前記交流電力を増加させ、前記負荷の入力電圧が予め設定された範囲内に維持されるように、前記送電回路を制御する、送電制御回路と、
    を備える送電装置。
    A power transmission device used in a wireless power transmission system including a power transmission device and a power receiving device.
    The power receiving device operates by a power receiving antenna, a power receiving circuit that converts the AC power received by the power receiving antenna into DC power and outputs it, and the DC power output from the power receiving circuit, and operates with the DC power voltage. With a load that starts when the specified starting voltage is exceeded,
    The power transmission device
    A power transmission circuit that converts the power supplied from the power supply into AC power for power transmission and outputs it.
    A power transmission antenna that wirelessly transmits the AC power to the power receiving antenna,
    A detector that detects the approach of the power receiving device to the power transmission device, and
    It is a power transmission control circuit that controls the power transmission circuit, and when the approach of the power receiving device to the power transmission device is detected, the AC power output from the power transmission circuit is increased, and the input voltage of the load is set in advance. A power transmission control circuit that controls the power transmission circuit so that it is maintained within the set range.
    A power transmission device equipped with.
  10.  前記範囲の下限は、前記起動電圧である、請求項9に記載の送電装置。 The power transmission device according to claim 9, wherein the lower limit of the range is the starting voltage.
  11.  前記範囲の上限は、前記負荷の定格電圧である、請求項9または10に記載の送電装置。 The power transmission device according to claim 9 or 10, wherein the upper limit of the range is the rated voltage of the load.
  12.  請求項1から8のいずれかに記載の受電装置と、
     前記送電装置と、
    を備える無線電力伝送システム。
    The power receiving device according to any one of claims 1 to 8.
    With the power transmission device
    A wireless power transmission system equipped with.
  13.  受電装置と、前記受電装置に電力を供給する送電装置とを備える無線電力伝送システムであって、
     前記送電装置は、
     送電回路と、
     前記送電回路に電気的に接続された送電アンテナと、
     前記送電回路を制御する送電制御回路と、
     前記受電装置の接近を検出する検出器と、
    を備え、
     前記受電装置は、
     受電アンテナと、
     前記受電アンテナに電気的に接続された受電回路と、
     前記受電回路に電気的に接続された負荷と、
    を備え、
     前記送電回路は、前記送電アンテナに交流電力を出力し、
     前記送電アンテナは、前記受電アンテナに前記交流電力を出力し、
     前記受電アンテナは、前記受電回路に前記交流電力を出力し、
     前記受電回路は、前記交流電力を直流電力に変換して前記負荷に出力し、
     前記検出器が前記受電装置の接近を検出したとき、前記送電制御回路は、前記負荷に入力される電圧が予め設定された範囲内に維持されるように、前記送電回路が出力する前記交流電力を増加させ、
     前記負荷に入力される電圧が所定の起動電圧を超えたときに、前記負荷は起動する、
     無線電力伝送システム。
    A wireless power transmission system including a power receiving device and a power transmitting device that supplies power to the power receiving device.
    The power transmission device
    Power transmission circuit and
    A power transmission antenna electrically connected to the power transmission circuit,
    The power transmission control circuit that controls the power transmission circuit and
    A detector that detects the approach of the power receiving device and
    Equipped with
    The power receiving device is
    With the power receiving antenna
    A power receiving circuit electrically connected to the power receiving antenna and
    The load electrically connected to the power receiving circuit and
    Equipped with
    The power transmission circuit outputs AC power to the power transmission antenna.
    The power transmission antenna outputs the AC power to the power reception antenna, and the power transmission antenna outputs the AC power to the power reception antenna.
    The power receiving antenna outputs the AC power to the power receiving circuit, and the power receiving antenna outputs the AC power to the power receiving circuit.
    The power receiving circuit converts the AC power into DC power and outputs it to the load.
    When the detector detects the approach of the power receiving device, the power transmission control circuit outputs the AC power so that the voltage input to the load is maintained within a preset range. Increase,
    When the voltage input to the load exceeds a predetermined starting voltage, the load starts.
    Wireless power transmission system.
  14.  前記受電装置は、
     前記負荷に並列に接続された抵抗器を含む抵抗回路と、
     前記抵抗回路を制御し、前記負荷の起動により生じる前記受電回路の負荷インピーダンスの変動を抑制するように前記抵抗回路のインピーダンスを制御する受電制御回路と、
    をさらに備える、請求項13に記載の無線電力伝送システム。
    The power receiving device is
    A resistor circuit containing a resistor connected in parallel with the load,
    A power receiving control circuit that controls the resistance circuit and controls the impedance of the resistance circuit so as to suppress fluctuations in the load impedance of the power receiving circuit caused by the activation of the load.
    13. The wireless power transmission system according to claim 13.
PCT/JP2021/019210 2020-05-22 2021-05-20 Power reception device, power transmission device, and wireless power transmission system WO2021235523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089916 2020-05-22
JP2020-089916 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021235523A1 true WO2021235523A1 (en) 2021-11-25

Family

ID=78707901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019210 WO2021235523A1 (en) 2020-05-22 2021-05-20 Power reception device, power transmission device, and wireless power transmission system

Country Status (1)

Country Link
WO (1) WO2021235523A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146141A (en) * 2012-01-13 2013-07-25 Toshiba Corp Power receiving device, power transmitting device and control device
JP2017135981A (en) * 2017-04-13 2017-08-03 ソニー株式会社 Electronic apparatus and power supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146141A (en) * 2012-01-13 2013-07-25 Toshiba Corp Power receiving device, power transmitting device and control device
JP2017135981A (en) * 2017-04-13 2017-08-03 ソニー株式会社 Electronic apparatus and power supply system

Similar Documents

Publication Publication Date Title
JP6986712B2 (en) Mobile and wireless power transfer systems
KR102361035B1 (en) Power transmission device, power reception device, and noncontact charging system
CN104734315B (en) A wireless charging control method for an electric vehicle battery
JP7496532B2 (en) Wireless power transmission system, power transmitting device, power receiving device, and mobile object
EP3419144B1 (en) Wireless power transmission system, power transmitting device, and power receiving device
JP2018068077A (en) Mobile body and wireless power transmission system
CN110212649A (en) Wireless power transfer control
US11159048B2 (en) Wireless power transmission system, power transmitting device, and power receiving device with circuit to apply a trigger signal
JPWO2019189578A1 (en) Electrode unit, power transmission device, power receiving device, and wireless power transmission system
JP7373776B2 (en) Power receiving devices, mobile objects, and wireless power transmission systems
WO2020203689A1 (en) Electricity transmitting device, and wireless electric power transmission system
US20210075265A1 (en) Power transmitting module, power receiving module, power transmitting device, power receiving device, and wireless power transmission system
WO2021235523A1 (en) Power reception device, power transmission device, and wireless power transmission system
WO2020241677A1 (en) Power transmission device and wireless power transfer system
JP2022142089A (en) Voltage switching circuit, power transmission device, and wireless power transmission system
WO2020196785A1 (en) Power receiving device, moving body, wireless power transmission system, and moving body system
WO2021192623A1 (en) Power reception device, power transmission device, and wireless power transmission system
JP2019180184A (en) Mobile body and mobile body system
JP2019180185A (en) Mobile body and mobile body system
JP7486074B2 (en) Power transmission device and wireless power transmission system
JP2022012250A (en) Power reception device, power transmission device and wireless power transmission system
WO2019189374A1 (en) Power transmission module, power transmission device, and wireless power transfer system
WO2021049346A1 (en) Power transmission device and wireless power transfer system
JP7043296B2 (en) Capacitor unit, power receiving device and automatic guided vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP