[go: up one dir, main page]

WO2021215403A1 - Lithium ion-conductive glass ceramic - Google Patents

Lithium ion-conductive glass ceramic Download PDF

Info

Publication number
WO2021215403A1
WO2021215403A1 PCT/JP2021/015894 JP2021015894W WO2021215403A1 WO 2021215403 A1 WO2021215403 A1 WO 2021215403A1 JP 2021015894 W JP2021015894 W JP 2021015894W WO 2021215403 A1 WO2021215403 A1 WO 2021215403A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
component
glass ceramic
conductive glass
phase
Prior art date
Application number
PCT/JP2021/015894
Other languages
French (fr)
Japanese (ja)
Inventor
和仁 小笠
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to JP2022517036A priority Critical patent/JP7684286B2/en
Publication of WO2021215403A1 publication Critical patent/WO2021215403A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to lithium ion conductive glass ceramics.
  • lithium-ion secondary batteries having a high energy density and capable of charging and discharging have been widely used in applications such as power supplies for electric vehicles and power supplies for mobile phone terminals.
  • Most of the lithium ion secondary batteries currently on the market use a liquid electrolyte (electrolyte solution) in order to have a high energy density.
  • electrolytic solution a solution obtained by dissolving a lithium salt in an aprotic organic solvent such as a carbonic acid ester or a cyclic ester is used.
  • an organic solvent generally used for an electrolytic solution is a volatile flammable substance, and there is a problem that it is not preferable in terms of safety.
  • Solid electrolytes, including glass ceramics are disclosed.
  • Non-Patent Document 1 discloses NASICON type Li 1.15 Y 0.15 Zr 1.85 (PO 4 ) 3 having high lithium ion conductivity at room temperature, which is used as a solid electrolyte.
  • the glass ceramics described in Patent Document 1 contain Ti as a constituent component, the reduction resistance at 25 ° C. is about 2.5 V (vs. Li), and when used as a solid electrolyte, Li 4 Ti 5 O There is a problem that a low-potential negative electrode active material such as 12 or TiO 2 cannot be used.
  • Non-Patent Document 1 has improved the reduction resistance at 25 ° C. to 1.5 V (vs. Li) or less, and the lithium ion conductivity at 25 ° C. It is also reported that it is relatively high at 0.7 ⁇ 10 -4 S ⁇ cm -1.
  • SPS energization sintering method
  • this is a solid electrolyte containing almost no amorphous material (mostly in the crystalline phase), it is difficult to obtain glass ceramics.
  • this solid electrolyte is produced without using the energization sintering method, the grain growth is remarkable and the grain boundary resistance (resistance of ionic conduction generated at the contact interface between particles) of the obtained solid electrolyte becomes high.
  • Lithium ion conductivity is less than 1.0 ⁇ 10 -5 S ⁇ cm -1.
  • the present invention can be used as a solid electrolyte such as an all-solid secondary battery, which can be easily manufactured industrially, has low grain boundary resistance, and has high lithium ion conductivity and high reduction resistance.
  • An object of the present invention is to provide a lithium ion conductive glass ceramic.
  • the present inventor has diligently studied, and based on the oxide standard molar%, the Li 2 O component is 10 to 20%, the P 2 O 5 component is 30 to 40%, and the ZrO 2 component is 40 to 40. It contains 50%, Y 2 O 3 component 0 to 4%, Al 2 O 3 component 0 to 3%, and GeO 2 component 0 to 2%, and contains a crystal phase having a rhombohedral-based NASICON type structure. Lithium ion conductive glass ceramics having an a-axis lattice constant of 8.872 ⁇ or more of this crystal phase identified by X-ray diffraction and Rietbelt analysis can be industrially easily produced and can be easily produced. The present invention has been completed by finding that it is a glass ceramic having low grain boundary resistance, high lithium ion conductivity and high reduction resistance.
  • the present invention is the following (1) to (10).
  • Li 2 O component is 10 to 20%
  • P 2 O 5 component is 30 to 40%
  • ZrO 2 component is 40 to 50%
  • Y 2 O 3 component is 0 to 4.
  • Al 2 O 3 component 0 to 3%
  • GeO 2 component 0 to 2% including a crystal phase having a rhombic crystal system NASICON type structure, identified by X-ray diffraction and Rietveld analysis.
  • Lithium ion conductive glass ceramics having an a-axis lattice constant of the crystal phase of 8.872 ⁇ or more.
  • the lithium ion conductive glass ceramic according to any one of (1) to (7) which is a powder having a lithium ion conductivity of 1.0 ⁇ 10 -5 S ⁇ cm -1 or more at 25 ° C. ..
  • the lithium according to any one of (1) to (7) which is a substrate having a lithium ion conductivity of 7.0 ⁇ 10 -5 S ⁇ cm -1 or more and a thickness of 300 ⁇ m or less at 25 ° C. Ion conductive glass ceramics.
  • lithium ion conductive glass ceramics which can be easily manufactured industrially, have low grain boundary resistance, and have high lithium ion conductivity and high reduction resistance. Due to its high reduction resistance, this lithium ion conductive glass ceramic becomes a solid electrolyte having a wide potential window on the low potential side, whereby a low potential electrode active material and a high potential electrode active material are used in combination. As a result, a high-voltage battery can be obtained, so that it can be suitably used as a solid electrolyte for an all-solid secondary battery, a seawater battery, or the like.
  • LiZr 2 (PO 4 ) 3 changed by fluctuations in the ratio of Y or the ratio of Si in the solid electrolyte pellets of Examples 3 to 6 (white plot) and Examples 1 to 2 and 7 to 9 (black-painted plot). It is a graph which shows the influence which the a-axis lattice constant ( ⁇ ) of ⁇ phase has on the lithium ion conductivity (Scm -1). It is a graph which shows the impedance measurement result (Cole-Cole Plot) of the solid electrolyte substrate of Example 11. It is a secondary electron image of the outermost particle layer in the solid electrolyte substrate of Example 11 (photograph substitute for drawing). It is a state in which the particle size of the particles is measured from the secondary electron image of the outermost particle layer in the solid electrolyte substrate of Example 11 (drawing substitute photograph).
  • the Li 2 O component is 10 to 20%
  • the P 2 O 5 component is 30 to 40%
  • the ZrO 2 component is 40 to 50%
  • the Y 2 O 3 component is 0 to 0 to the molar% based on the oxide.
  • It contains 4%, 0 to 3% of Al 2 O 3 component, 0 to 2 % of GeO 2 component, contains a crystal phase having a rhombic crystal system NASICON type structure, and is identified by X-ray diffraction and Rietveld analysis.
  • It is a lithium ion conductive glass ceramic having an a-axis lattice constant of 8.872 ⁇ or more in the crystal phase of octopus. In the following, this may be referred to as "glass-ceramics of the present invention”.
  • the "glass ceramics” is obtained by precipitating a crystal phase by heat-treating the raw material glass, and the crystal phase and the amorphous phase (amorphous phase) formed by the heat treatment are referred to. include. That is, it is a mixture of ceramics and glass.
  • the content of each component contained in the glass ceramics of the present invention is expressed in mol% based on oxides.
  • the composition represented by "mol% based on oxides” is based on the assumption that the oxides, composite salts, metal fluorides, etc. used as raw materials for the glass ceramics of the present invention are all decomposed into oxides at the time of melting. In this case, the total number of moles of the produced oxide is 100 mol%, and each component contained in the glass ceramic of the present invention is described.
  • the Li 2 O component is an essential component that imparts lithium ion conductivity to the glass ceramics of the present invention. Therefore, the lower limit of the content of the Li 2 O component is 10%, preferably 12%, and more preferably 14%. On the other hand, the content of the Li 2 O component is 20%, preferably 18%, because the chemical durability of the glass ceramics of the present invention can be enhanced to enhance the morphological stability when formed into a solid electrolyte layer or the like. , More preferably 16% is the upper limit.
  • the P 2 O 5 component is an essential component necessary for forming a crystal phase having a rhombohedral NASICON type structure in the glass ceramics of the present invention. Therefore, the lower limit of the content of the P 2 O 5 component is 30%, preferably 33%, and more preferably 35%. On the other hand, since it is possible to suppress the formation of other crystal phases and make it difficult to reduce the lithium ion conductivity of the formed crystal phase, the content of the P 2 O 5 component is 40%, preferably 39%, more. The upper limit is preferably 38%.
  • the ZrO 2 component is an essential component capable of making it difficult for decomposition by reduction to occur in the crystal phase having lithium ion conductivity in the glass ceramics of the present invention. Therefore, the lower limit of the content of the ZrO 2 component is 40%, preferably 42%, and more preferably 44%. On the other hand, the content of the ZrO 2 component is set to 50%, preferably 48%, more preferably 47%, because it is possible to easily form a crystal phase having a rhombohedral-based NASICON type structure.
  • the molar ratio of P 2 O 5 component is 2.0-3.0 with respect to Li 2 O component in the glass ceramic of the present invention
  • the molar ratio of ZrO 2 component to Li 2 O component is more preferably a 2.5-3.5.
  • the Y 2 O 3 component is an optional component capable of adjusting the lithium ion conductivity of the crystal phase in the glass ceramic of the present invention and adjusting the mechanical strength and size of the crystal phase. Therefore, the content of the Y 2 O 3 component is preferably 0.1%, more preferably 0.5%, still more preferably 1%, still more preferably 1.2% as the lower limit. On the other hand, since it is possible to suppress the formation of other crystal phases and make it difficult to reduce the lithium ion conductivity of the formed crystal phase, the content of the Y 2 O 3 component is limited to 4%, more preferably 3. It is preferable that the upper limit is 5.5%, more preferably 3.2%, still more preferably 3%, still more preferably 2.8%, still more preferably 2.5%.
  • the molar ratio of Y 2 O 3 component to Li 2 O component in the glass ceramic of the present invention (Y 2 O 3 component / Li 2 O component), more preferable to be 0.05 to 0.26 0 It is more preferably 0.05 to 0.20.
  • the Al 2 O 3 component can also adjust the lithium ion conductivity of the crystal phase in the glass ceramics of the present invention, and can also adjust the mechanical strength and size of this crystal phase. It is an ingredient. Therefore, the content of the Al 2 O 3 component is preferably 0.1%, more preferably 0.5%, still more preferably 1%, still more preferably 1.2% as the lower limit. Further, as in the case of the Y 2 O 3 component, the formation of other crystal phases can be suppressed and the lithium ion conductivity of the formed crystal phase can hardly be lowered. Therefore, the content of the Al 2 O 3 component is high.
  • the upper limit is 3%, more preferably 2.8%, and even more preferably 2.5%.
  • the GeO 2 component is an optional component that promotes the crystallization of the glass ceramics of the present invention. Therefore, the content of the GeO 2 component is preferably 0.1%, more preferably 0.5%, and even more preferably 1% as the lower limit. On the other hand , the GeO 2 component is composed of the GeO 2 component because it is difficult to reduce the lithium ion conductivity of the crystal phase formed in the same manner as the Y 2 O 3 component and the Al 2 O 3 component, and it is easy to coexist with the Zr component.
  • the upper limit of the content is 2%, preferably 1.5%.
  • the SiO 2 component is an optional component capable of increasing the mechanical strength of the glass ceramic of the present invention and improving the lithium ion conductivity of the glass ceramic of the present invention by partially substituting the P 2 O 5 component. be. Therefore, the content of the SiO 2 component is preferably 0.1%, more preferably 0.5%, and even more preferably 0.7% as the lower limit. On the other hand, the content of the SiO 2 component is preferably 5% because it is possible to easily form a desired crystal phase and the crystals are likely to be adjacent to each other and the decrease in lithium ion conductivity can be suppressed.
  • the upper limit is more preferably 4%, further preferably 3%, still more preferably 2.5%.
  • the molar ratio of SiO 2 component to Li 2 O component in the glass ceramic of the present invention SiO 2 component / Li 2 O component
  • the CaO component and the MgO component are optional components that can increase the lithium ion conductivity by including a large amount of Li in the crystal phase due to the balance of valences. Therefore, both the content of the CaO component and the content of the MgO component are preferably 0.5%, more preferably 1%, and further preferably 2% as the lower limit. On the other hand, since the decrease in lithium ion conductivity of the glass ceramics of the present invention can be suppressed, the content of the CaO component and the content of the MgO component are both preferably 5%, more preferably 4%, still more preferable. Is preferably up to 3%.
  • the Sc 2 O 3 component and the Ga 2 O 3 component can adjust the lithium ion conductivity of the crystal phase in the glass ceramics of the present invention, and can adjust the lithium ion conductivity of the crystal phase. It is an optional component whose size and the like can be adjusted. Therefore, the lower limit of the content of the Sc 2 O 3 component and the content of the Ga 2 O 3 component is preferably 0.1%, more preferably 0.5%, and further preferably 1%. Is. Further, similarly to the Y 2 O 3 component and the Al 2 O 3 component, the formation of other crystal phases can be suppressed and the lithium ion conductivity of the formed crystal phase can be hardly lowered. Therefore, Sc 2 O The upper limit of the content of the three components and the content of the Ga 2 O 3 component is preferably 2%, more preferably 1.5%.
  • the SnO 2 component is an optional component that promotes the crystallization of the glass ceramics of the present invention. Therefore, the content of the SnO 2 component is preferably 0.1%, more preferably 0.5%, and even more preferably 1% as the lower limit. On the other hand, since the lithium ion conductivity of the formed crystal phase can be hardly lowered, the content of the SnO 2 component is preferably 2%, more preferably 1.5% as the upper limit.
  • the glass ceramics of the present invention may contain an inorganic component containing boron (B) or fluorine (F).
  • the content of titanium (Ti) is preferably reduced as much as possible (for example, less than 1%, further less than 0.1%, etc.), and more preferably no Ti is contained. This is because the reduction of the reduction resistance can be suppressed by reducing the Ti component. Further, not only Ti but also transition metal components such as niobium (Nb), vanadium (V), and nickel (Ni) are preferably reduced as much as possible, and more preferably not contained.
  • the content of the sulfur (S) component is preferably reduced as much as possible, and more preferably not contained. This is because the possibility of generating harmful gases such as hydrogen sulfide can be reduced in an all-solid-state secondary battery or the like by reducing the S component. Further, in order to avoid a decrease in lithium ion conductivity, it is preferable to reduce alkali metal (Na, K, etc.) components other than Li as much as possible, and it is more preferable not to contain them.
  • the glass ceramic of the present invention contains a predetermined amount of each of the above-mentioned components, and further contains a crystal phase having a rhombohedral-based NASICON-type structure composed of at least a part of each of these components.
  • the crystal phases contained in the glass ceramics of the present invention preferably have a rhombohedral NASICON type structure, but other lithium ion conductive crystal phases (for example, LISION type, perovskite type, garnet type, etc.) ) May be included in part.
  • the crystal phase having a rhombohedral NASICON type structure is preferably 80% by mass or more, and 90% by mass or more. More preferably, it is 95% by mass or more.
  • the glass ceramics of the present invention containing the crystal phase having the above-mentioned rhombohedral NASICON type structure have the a-axis lattice constant of this crystal phase identified by X-ray diffraction (XRD) and Rietveld analysis. It is 872 ⁇ or more.
  • XRD X-ray diffraction
  • Rietveld analysis Rietveld analysis. It is 872 ⁇ or more.
  • the glass ceramic has high lithium ion conductivity.
  • the a-axis lattice constant is more preferably 8.874 ⁇ or more, further preferably 8.876 ⁇ or more, and further preferably 8.878 ⁇ or more.
  • the upper limit thereof is preferably 8.892 ⁇ or less, more preferably 8.889 ⁇ or less, and further preferably 8.888 ⁇ or less.
  • the glass ceramics of the present invention containing the crystal phase having the above-mentioned rhombic crystal system NASICON type structure is the sum of the masses of the crystal components (crystal phase components) identified by X-ray diffraction (XRD) and Rietveld analysis. However, it is preferably less than 97% by weight based on the total mass of the glass ceramics of the present invention.
  • the components of the unspecified phase calculated by the difference between the total mass of the glass ceramics of the present invention and the mass sum of the crystal components identified by X-ray diffraction (XRD) and Rietbelt analysis.
  • the unspecified phase mainly includes an amorphous phase.
  • the sum of the masses of the crystal components is more preferably less than 95% by mass with respect to the total mass of the glass ceramics of the present invention, that is, the mass of the components of the unspecified phase is more preferably 5% by mass or more. ..
  • the lower limit of the mass sum of the crystal components is not limited, but is preferably 80% by weight or more, more preferably 85% by weight or more, based on the total mass of the glass ceramics of the present invention. Suitable.
  • the Rietveld analysis described above is performed by the Rietveld analysis software "Z-Rieveld code" using the XRD data measured under the above conditions.
  • the crystal phase having a rhombic crystal-based NASICON type structure contained in the glass ceramics of the present invention has higher lithium ion conductivity at room temperature. Therefore, Li 1 + x + y Y x Zr 2- It preferably contains a crystalline phase of x S y P 3-y O 12 (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), LiZr 2 (PO 4 ) 3 ⁇ phase (high temperature phase) and / or LiZr 2 ( PO 4 ) It is more preferable to include 3 ⁇ 'phase (low temperature phase).
  • the crystal phase having a NASICON type structure of this rhombic crystal system is composed of LiZr 2 (PO 4 ) 3 ⁇ phase (high temperature phase) and / or LiZr 2 (PO 4 ) 3 ⁇ 'phase (low temperature phase).
  • LiZr 2 (PO 4 ) 3 ⁇ phase high temperature phase
  • LiZr 2 (PO 4 ) 3 ⁇ 'phase low temperature phase
  • other phases of LiZr 2 (PO 4 ) 3 may be included.
  • LiZr 2 (P ⁇ 4) is a-axis lattice constant is within the range described above 3 alpha phase, 80 mass% or more with respect to the total mass of the lithium ion conductive glass-ceramics of the present invention, further more than 85 wt% If it is contained, it is very suitable because the stability over time becomes more excellent.
  • the alpha phase and [alpha] 'phase CSD number 97658 Cambridge Structural Database CSD-System ( ⁇ -LiZr 2 (PO 4) 3), CSD number 89456 ( ⁇ '-LiZr 2 (PO 4) 3 ).
  • the valence of Si contained in the entire glass ceramic of the present invention is 3.5 valence or more and less than 3.9 valence. It is more preferable to have it, and it is more preferable that it has a valence of 3.6 or more and a valence of 3.8 or less. This is because the stability of lithium ion conductivity and the mechanical strength of the crystal structure are better.
  • the coordination number of O to the Si contained in the entire glass ceramic of the present invention is 5 or more and 7 or less. Is more preferable, and it is further preferable that the coordination number is 6. This is also because the stability of lithium ion conductivity and the mechanical strength of the crystal structure are better.
  • XAFS X-ray Absorption Fine Structure
  • EXAFS Extended X-ray Absorption Fine Structure
  • the form of the glass-ceramics of the present invention is not particularly limited, but is a powder or a substrate when used for a solid electrolyte layer or an electrode layer of an all-solid secondary battery, an electrode layer or a partition wall (separator) of a seawater cell, or the like. Is preferable.
  • the form of the glass ceramics of the present invention is preferably powder.
  • the glass ceramics of the present invention have high lithium ion conductivity and high reduction resistance.
  • the lithium ion conductivity at 25 ° C. is preferably 1. 0 ⁇ 10 -5 S ⁇ cm -1 or more, more preferably 3.0 ⁇ 10 -5 S ⁇ cm -1 or more, still more preferably 6.0 ⁇ 10 -5 S ⁇ cm -1 or more, still more preferably 7 .0 ⁇ 10 -5 S ⁇ cm -1 or more
  • the reduction resistance at 25 ° C. is preferably 1.5 V (vs. Li: potential for lithium) or less, more preferably 1.0 V (vs. Li) or less. Is preferable.
  • the lithium ion conductivity at 25 ° C. is less than 1.0 ⁇ 10 -10 S ⁇ cm -1 , the lithium ion conduction does not substantially occur.
  • the lithium ion conductivity of this powder at 25 ° C. may be 1.0 ⁇ 10 ⁇ 2 S ⁇ cm -1 or less, and the reduction resistance at 25 ° C. is 0.3 V. It may be (vs. Li) or more.
  • the particles contained in this powder preferably have a maximum particle size of 30 ⁇ m or less and an average particle size of 15 ⁇ m or less.
  • the substrate has a lithium ion conductivity of 7.0 ⁇ 10 -5 S ⁇ cm -1 or more and a thickness of 300 ⁇ m or less at 25 ° C.
  • the thickness of this substrate is more preferably 200 ⁇ m or less, and further, but not limited to, the thickness of this substrate can be easily reduced when a solid electrolyte layer is used to reduce a short circuit between the positive electrode and the negative electrode. Is preferably 0.5 ⁇ m or more.
  • the maximum particle size of the particles in the outermost particle layer of this substrate is 30 ⁇ m or less and the average particle size of the particles is 15 ⁇ m or less. be.
  • the reduction resistance of this substrate is preferably 1.5 V (vs. Li) or less at 25 ° C., more preferably 1.0 V (vs. Li) or less, as in the case of powder.
  • the "outermost particle layer” of the substrate means a particle layer formed by particles exposed on the surface of the substrate in the glass ceramic of the present invention which is the substrate.
  • the "maximum particle size” and the “average particle size” of a particle are completely included in the field of view of 24 ⁇ m ⁇ 19 ⁇ m by observation with a scanning electron microscope (SEM). It is the maximum value when all the particle diameters (the length of the longest diagonal line) are measured, and the average value thereof.
  • the glass-ceramics of the present invention having the above-mentioned structure have a composition in which the particles are densified without coarsening during firing, and the crystal structure does not easily change even when cooled in a furnace from a high temperature.
  • a solid electrolyte that can be easily manufactured industrially has high lithium ion conductivity and high reduction resistance, and has a wide potential window on the low potential side due to this high reduction resistance. Therefore, the low-potential electrode active material and the high-potential electrode active material can be used in combination, and as a result, a high-voltage battery can be obtained.
  • the glass ceramics of the present invention when used as the solid electrolyte of the all-solid secondary battery, it can be used for at least one selected from the solid electrolyte layer and the electrode layer (positive electrode layer, negative electrode layer).
  • the glass ceramics of the present invention since the glass ceramics of the present invention have high reduction resistance, they are preferably used for the solid electrolyte layer or the negative electrode layer. These will be described in detail below.
  • a solid electrolyte layer for an all-solid secondary battery can be formed by mixing the glass ceramics of the present invention with an inorganic binder or the like, if necessary, and then sintering the glass ceramics.
  • the solid electrolyte layer preferably contains 80% by mass or more of the glass ceramic of the present invention, more preferably 90% by mass or more, from the viewpoint of further enhancing the lithium ion conductivity, from the glass ceramic of the present invention. Is more preferable.
  • the thickness thereof is 0.5 ⁇ m or more and 300 ⁇ m or less as in the case of the above-mentioned substrate.
  • a lithium ion conductive inorganic binder examples of the inorganic binder, LiPO 3 of amorphous or polycrystalline, 70LiPO 3 -30Li 3 PO 4 , Li 2 O-SiO 2 , Li 2 O-SiO 2 -P 2 O 5- B 2 O 5- BaO and the like.
  • Li 2 O-P 2 O 5 type glass, Li 2 O-P 2 O 5 -M 2 O 3 type glass (including those in which P is replaced with Si, M is Al or B), And one or more selected from those obtained by quenching LiPO 3 after melting to make it amorphous are preferable.
  • a particularly preferable embodiment of LiPO 3 which has been melted and then rapidly cooled to make it amorphous has a low glass transition temperature (Tg) of about 280 ° C. and is unlikely to undergo crystallization. Therefore, this inorganic binder and the glass ceramics of the present invention are used.
  • Tg glass transition temperature
  • this inorganic binder and the glass ceramics of the present invention are used.
  • a solid electrolyte layer having high lithium ion conductivity and high reduction resistance can be formed.
  • the content of the inorganic binder contained in the solid electrolyte layer is preferably 20% by mass or less, more preferably 10% by mass or less, and 5% by mass or less, based on the total mass of the solid electrolyte layer. Is more preferable.
  • the glass ceramics of the present invention are mixed with an electrode active material (positive electrode active material or negative electrode active material) and, if necessary, a conductive auxiliary agent, an inorganic binder, etc., and then sintered.
  • the electrode layer can be formed.
  • this electrode layer preferably contains the glass ceramics of the present invention in an amount of 20% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. This is because the movement path of lithium ions can be easily secured in the electrode layer, so that the charge / discharge characteristics and the battery capacity of the battery can be easily improved.
  • the glass ceramic of the present invention is preferably 80% by mass or less, more preferably 70% by mass or less. This is because the filling amount of the electrode active material is secured and the battery capacity can be increased.
  • the positive electrode active material for example, NASICON type LiV 2 (PO 4 ) 3 and olivine type Li x J y MtPO 4 (however, J is at least one selected from Al, Mg, and W, and Mt is One or more selected from Ni, Co, Fe, and Mn, x satisfies 0.9 ⁇ x ⁇ 1.5, y satisfies 0 ⁇ y ⁇ 0.2), layered oxide, or spinel-type oxide. And so on.
  • LiMtO 2 and / or LiMt 2 O 4 (where Mt is one or more selected from Fe, Ni, Co and Mn) is preferable.
  • the glass ceramics of the present invention and the positive electrode active material can be easily bonded to each other, and lithium ions can be easily transferred between them, so that the charge / discharge characteristics of the all-solid-state secondary battery can be further improved.
  • the positive electrode active material include LiCoPO 4 , LiCoO 2 , LiMn 2 O 4, and the like. Further, by adding Mg as a trace component, thermal decomposition of the positive electrode active material can be suppressed and the discharge capacity can be improved.
  • the negative electrode active material is selected from, for example, NASICON-type, olivine-type, spinel-type crystal-containing oxides, rutile-type oxides, anatase-type oxides, amorphous metal oxides, metal alloys, and the like. At least one or more. Further, low potential negative electrode active materials such as Li 4 Ti 5 O 12 and TiO 2 can also be used. In particular, Li 1 + x + z Al x Ti 2-x Si z P 3-z O 12 (where x satisfies 0 ⁇ x ⁇ 0.8 and z satisfies 0 ⁇ z ⁇ 0.6), Li 4 More preferably, it is at least one selected from Ti 5 O 12 and Ti O 2.
  • the glass ceramics of the present invention and the negative electrode active material can be easily bonded to each other, and lithium ions can be easily transferred between them, so that the charge / discharge characteristics of the all-solid-state secondary battery can be further improved.
  • the negative electrode active material include, for example, Li 2 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4 , Li 4 Ti 5 O 12 , SiO x (0.25 ⁇ x ⁇ 2). ), Cu 6 Sn 5 and the like.
  • the content of these electrode active materials is preferably 10% by mass or more and 50% by mass or less in the electrode layer.
  • this content is preferably 10% by mass or more, the battery capacity of the all-solid-state secondary battery can be further increased.
  • the lower limit is 20% by mass.
  • the upper limit is 40% by mass, more preferably 30% by mass.
  • the conductive auxiliary agent used for the electrode layer includes carbon compounds such as graphite, activated carbon, and carbon nanotubes, and metals composed of at least one selected from Ni, Fe, Mn, Co, Mo, Cr, Ag, and Cu. Examples include alloys, metals such as titanium, stainless steel, and aluminum, and precious metals such as platinum, gold, ruthenium, and rhodium.
  • this conductive auxiliary agent is 1% by mass or more with respect to the entire electrode material (that is, positive electrode active material or negative electrode active material) contained in the electrode layer in consideration of the balance between the battery capacity and the electron conductivity of the electrode layer. It is preferably 20% by mass or less, more preferably 2% by mass or more and 15% by mass or less, and most preferably 4% by mass or more and 10% by mass or less.
  • a current collector may be provided in at least one of the electrode layers, that is, the positive electrode layer and the negative electrode layer. This is because electricity can be easily taken out through the current collector, so that the all-solid-state secondary battery can be easily charged and the all-solid-state secondary battery can be easily discharged.
  • the current collector may be one in which a thin metal layer is laminated or bonded to a positive electrode layer and / or a negative electrode layer, and is fired after laminating a metal layer or a precursor of a conductor on a raw material composition. It may be the one that has been used. If the electron conductivity of the electrode layer itself is high, this current collector may not be provided.
  • An all-solid secondary battery can be formed by using the solid electrolyte layer and the electrode layer as described above, but one or two of the solid electrolyte layer, the positive electrode layer and the negative electrode layer, which are conventionally known, can be used. Alternatively, such a conventionally known one may be combined with a solid electrolyte layer containing the glass ceramics of the present invention or an electrode layer. However, by including the glass ceramics of the present invention in all of the solid electrolyte layer, the positive electrode layer, and the negative electrode layer, an all-solid secondary battery having higher charge / discharge characteristics can be formed.
  • the contents of the glass ceramics, the electrode active material, and the conductive auxiliary agent of the present invention and their compositions were mounted on a field emission transmission electron microscope (FE-TEM) by carving out a solid electrolyte layer or an electrode layer. It can be identified by using an energy loss analyzer or an X-ray analyzer, or an X-ray analyzer mounted on a field emission scanning microscope (FE-SEM).
  • FE-TEM field emission transmission electron microscope
  • FE-SEM field emission scanning microscope
  • the glass ceramics of the present invention are characterized in that general methods for producing inorganic materials such as firing, melting, and mixed firing of inorganic materials can be used, and industrial production is easy. Then, although not limited to, a mixing step of mixing the raw material compositions and firing of the mixed raw material composition or molding of the raw material composition into a desired shape and then firing are desired. It is preferable to produce the glass ceramics of the present invention by a solid phase method including a firing step of producing the crystal phase of the above.
  • a raw material glass preparation step of melting and vitrifying a lithium ion conductive raw material containing an inorganic substance containing at least Li and / or P to obtain a raw glass.
  • An amorphous precursor preparation step of crushing the raw material glass and then mixing an amorphous inorganic substance containing Zr to obtain a powdery amorphous precursor, and firing this amorphous precursor at 1100-1300 ° C. to form crystals.
  • Li 2 O component is 10 to 20%
  • P 2 O 5 component is 30 to 40%
  • ZrO 2 component is 40 to 50%
  • Y 2 O 3 component is 0 to 4.
  • a manufacturing method including a firing step for obtaining lithium ion conductive glass ceramics having an a-axis lattice constant of 8.872 ⁇ or more in the crystal phase of the octopus.
  • the above-mentioned firing step may be performed in two or more steps, but it is preferably performed in one step from the viewpoint of manufacturing efficiency and the like.
  • a molding step of molding the powdery amorphous precursor into a substrate having a target size and thickness is included, and the amorphous obtained by this molding step is included.
  • a substrate-like lithium ion conductive glass ceramic (the glass ceramic of the present invention which is a substrate) can be obtained.
  • the powdery amorphous precursor may be molded into the desired shape by the molding step in the same manner.
  • the glass ceramics of the present invention in a form other than powder, a method of firing a powdery amorphous precursor by the firing step described above and then molding the fired powder into a desired shape (
  • the glass ceramics of the present invention having low grain boundary resistance, high lithium ion conductivity and high reduction resistance cannot be obtained by the method in which the firing step is not performed after molding and the method in which molding is refired after firing).
  • the obtained precursor was pulverized using an alumina mortar and pestle to obtain a 106 ⁇ m mesh pass. Then, it was crushed with a planetary port mill until the cumulative 90% particle size (D90) became 1 ⁇ m or less, and dried. Then, the obtained dry powder was placed in a platinum pot, fired in a cantal furnace at 1200 ° C. for 20 hours, and cooled in a furnace to obtain a solid electrolyte powder of Comparative Example 1.
  • the cumulative 90% particle size (D90) described above means a cumulative 90% by volume particle size from the smaller particle size in the particle size distribution, and is based on JIS R 1629 "Laser diffraction / scattering method for fine ceramic raw materials". It was measured and calculated by a particle size distribution measuring device (manufactured by Spectris, Mastersizer 3000) by the laser diffraction / scattering method of "Particle size distribution measuring method”.
  • Examples 1 to 10 ⁇ Preparation of solid electrolyte (Examples 1 to 10) by solid phase method using a precursor having an amorphous composition
  • the present invention is obtained by pulverizing and mixing an amorphous zirconium-containing inorganic raw material and a raw material glass obtained by vitrifying other raw materials, drying the mixture to obtain a precursor having an amorphous composition, and firing the precursor after firing or tablet molding.
  • Solid electrolytes of Examples 1 to 10 which are glass ceramics were obtained.
  • Example 2 may be referred to as "LYZSP12" or "LYZSP". The details of this method will be described below step by step.
  • lithium metaphosphate (LiPO 3 ), trilithium phosphate (Li 3 PO 4 ), yttrium oxide (Y 2 O 3 ), or silicon dioxide (SiO 2 ) was prepared in the amounts shown in Table 1 below or Table 2 below. ..
  • Each of the prepared samples was placed in a platinum pot, melted and vitrified with good stirring at 1100 ° C. or higher, and cast on a metal cast plate.
  • the yield of the recovered raw material glass including the raw material glass adhering to the platinum pot was 99% or more by weight in each of Examples 1 to 10.
  • the crushed medium at this time was YTZ beads (manufactured by Nikkato Corporation) having an outer diameter of 2 mm. Then, the slurry after crushing is dried, and this dry powder is put into a platinum pot as an amorphous precursor, fired in a cantal furnace for 20 hours at 1200 ° C., and cooled in a furnace to obtain the solid electrolyte powders of Examples 1 to 10. Obtained. Further, after each of the dry powders before firing was crushed in an agate mortar, 1.5 g of a sample that passed 0.5 mm mesh was tablet-molded with a force of 20 kN using a mold having an outer diameter of 20 mm, and the obtained molded product was obtained. It was placed on a platinum plate and calcined and cooled in a cantal furnace at 1200 ° C. for 20 hours to obtain solid electrolyte pellets of Examples 1 to 10.
  • each solid electrolyte pellet was formed on both sides of each solid electrolyte pellet as blocking electrodes by a magnetron sputtering apparatus (SC-701HMC manufactured by Sanyu Electronics Co., Ltd.). Then, the impedance was measured by an electrochemical evaluation device (manufactured by Biologic, SP300) at 25 ° C. under the conditions of a frequency of 0.1 Hz to 7 MHz, an amplitude voltage of 10 mV, and an open circuit voltage, and the lithium ion conductivity was calculated. This result is also shown in Table 3 below. As a reference, the Core-Cole Plot obtained by the impedance measurement of Example 2 is shown in FIG.
  • Example 1 and Example 2 are solid electrolytes having a lithium ion conductivity of one order or more higher than that of Comparative Example 1.
  • Powder X-ray diffraction and Rietveld analysis were performed to confirm the crystal structure of the solid electrolyte.
  • the solid electrolyte powders of Comparative Example 1, Example 1, and Example 2 were crushed in an alumina mortar, and then 1 g of the crushed sample and 0.1 g of zinc oxide (ZnO, manufactured by High Purity Chemical Laboratory Co., Ltd.) as a reference. , And mixed for 5 minutes using a Menou mortar and pestle, and powder X-ray diffraction measurement was performed.
  • D8 DISCOVER manufactured by Bruker Co., Ltd.
  • ZnO was calibrated using ⁇ -Al 2 O 3 (STANDARD REFERANCE MATERIAL 674, US DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS). Incidentally, the calibration of ZnO, and ZnO 0.181 g, were mixed using an agate mortar and ⁇ -Al 2 O 3 0.122g described above, was carried out by the powder X-ray diffraction measurement using the same method as described above.
  • the correction coefficient of ZnO calibrated by Rietveld analysis was 0.879 times.
  • the solid electrolyte powders of Comparative Example 1, Example 1, and Example 2 all contain a crystal phase of LiZr 2 (PO 4 ) 3 ⁇ phase, which is a rhombic crystal-based NASICON type structure.
  • Comparative Example 1 has almost no phase other than the crystalline phase, in Examples 1 and 2, the phase other than the crystalline phase, which is mainly an amorphous phase, exceeds 3% by mass (that is, the mass of the crystal component). The sum was less than 97% by weight based on the total mass). Further, it was shown that the a-axis lattice constants of these ⁇ phases were less than 8.872 ⁇ in Comparative Example 1 and more than 8.882 ⁇ in Examples 1 and 2.
  • Example 1 the WD was 15.9 mm, the acceleration voltage was 15 kV, and the magnification was 500 times.
  • the WD was 11.5 mm, the acceleration voltage was 15 kV, and the magnification was 500 times.
  • the solid electrolyte of Comparative Example 1 obtained from the precursor having no amorphous composition showed remarkable grain growth (FIG. 2).
  • the formation of a clear neck was confirmed, and the grain boundaries were densified (FIGS. 3 and 4).
  • the solid electrolyte is mainly used for battery applications, and since it is necessary for the lithium ion conductivity to be stable for a long period of time in battery applications, a storage test was conducted.
  • the solid electrolyte pellets of Comparative Example 1, Example 1, and Example 2 were stored in an atmosphere of 25 ° C., powder X-ray diffraction and Rietveld analysis were performed by the same method as described above, and density and density and Ion conductivity was measured. The storage period was one year.
  • Table 8 shows the results of Rietveld analysis before the start of the storage test (initial product) and after storage for 1 year (1 year later), and Table 9 below shows the density and lithium ion conductivity measurement results.
  • the ⁇ phase decreased from 96.6% by mass to 28.8% by mass after storage for 1 year, and decomposed into ⁇ 'phase, YPO 4 , ZrO 2, and the like.
  • the decomposition of the ⁇ phase (decrease in mass ratio) in the solid electrolyte of Example 2 containing the Si component was suppressed to less than 10% by mass.
  • the solid electrolyte of Example 1 containing no Si component has a lithium ion conductivity reduced by about 46% after storage for one year, whereas the solid electrolyte of Example 2 containing a Si component has a lithium ion conductivity. The decrease was about 28%.
  • the a-axis lattice constants of the ⁇ phase of Examples 1 and 2 prepared from the precursor having an amorphous composition are the a-axis lattices of the literature values of Comparative Example 1 and similar products prepared from the precursor having no amorphous composition. It was larger than the constant, and in particular, Example 2 containing the Si component was the largest. From the relationship between the lithium ion conductivity and the a-axis lattice constant, it can be confirmed that the lithium ion conductivity tends to increase as the a-axis lattice constant increases. It is presumed that this is because lithium ions can move more freely in the lattice of the crystal phase.
  • Example 2 containing the Si component was particularly excellent in stability at room temperature (25 ° C.), and by replacing a part of P with Si, the a-axis direction of the lattice was further extended. It was confirmed that the lithium ion conductivity was further increased, and the stability of the crystal structure over time and the stability of the lithium ion conductivity were further enhanced.
  • a Li metal foil (electrode) and a polymer electrolyte are attached to a copper foil which is a current collector, and a solid electrolyte pellet of Example 1 or Example 2 in which an Au electrode has been sputtered is placed on the working electrode side.
  • the current was collected with aluminum foil.
  • This evaluation sample was vacuum-packed with an aluminum laminate pack, and only the copper foil and aluminum foil of the current collector could be taken out with a tab film.
  • As a pretreatment of the hermetically sealed evaluation sample it was held at 60 ° C. for 2 hours or more to promote the bonding between the polymer electrolyte and the solid electrolyte, and then the evaluation was performed.
  • the measurement temperature was 25 ° C.
  • the starting voltage was an open circuit voltage
  • the scanning speed was 0.2 mV / s
  • scanning was performed from 5 V to 0.2 V.
  • the obtained cyclic voltammetry (current-potential curve: CV curve) is shown in FIG. It was confirmed that the solid electrolyte of Example 2 containing the Si component had a small change in current and was more excellent in reduction resistance.
  • the arrow in FIG. 7 indicates a portion where the difference from SiO 2 is remarkable.
  • the solid electrolyte of Example 2 is contaminated with Si having a valence lower than tetravalent. Since the difference in absorption edge energy between Si equivalent to 0 valence and SiO 2 (equivalent to 4 valence) is 9 eV, Si having a valence of about 3.7 valence is obtained from the above-mentioned peak energy difference (about 3 eV). It was confirmed that it was included.
  • the data in FIG. 8 shows the contamination of the LIII and LII ends of Y. Therefore, in the EXAFS analysis of the solid electrolyte of Example 2, it is necessary to limit the E range (wavenumber k range) used in the analysis in order to avoid mixing these. Therefore, in order to improve the accuracy of analysis as much as possible even within this limitation, the following measures were taken.
  • the peripheral atoms are limited to the closest O so that the experimental data can be reproduced with as few variables as possible and the closest O coordination number can be determined.
  • the fitting variable scaling factor S 0 2 O coordination number N réelle
  • Si-O distance r Si-O
  • the absorption edge E 0
  • Debye-Waller factor ⁇ 0 2
  • the reference SiO 2 is analyzed in a wide E range to determine ⁇ 0 2.
  • FIG. 9 shows a “radial structure function in real space” extracted by the Fourier transform.
  • the R range and the k (or q) range used in the extraction are shown as a window function. From the fact that the function extracted from this data and the function of the fitting result matched and the R factor in Table 11, it was judged that this analysis was performed appropriately.
  • the O-coordination number for Si in the solid electrolyte of Example 2 was estimated to be 6 instead of 4. (Table 11). From this result, the inclusion of the Si component in the solid electrolyte strengthens the covalent bond in the crystal phase (particularly in the ⁇ phase), and Si is arranged at the Zr site to energetically stabilize the lattice. It was suggested that the amorphous phase is likely to be stabilized by 6-coordinated Si.
  • FIG. 12 shows the result of confirming the influence of the a-axis lattice constant of the ⁇ phase changed by the fluctuation of the ratio (the value of y in the equation) on the lithium ion conductivity.
  • Li 1 + x + y Y x Zr 2-x Si y P 3-y O 12 in the ratio of Si to (value of y in the formula) was 0,
  • Table 14 shows the results of confirming the effects of the Y ratio of P 3 O 12 (the value of x in the equation) on the lithium ion conductivity, density, and the a-axis lattice constant of the ⁇ phase.
  • the lithium ion conductivity, density, and ⁇ -phase a-axis lattice constant of each solid electrolyte pellet were all determined by the same method as described above. In addition, the lithium ion conductivity and density were measured twice for each example (Tables 12 to 14, FIGS. 10 to 12).
  • the a-axis lattice constant of the ⁇ phase is the ratio of Y in Li 1.05 + x Y x Zr 2-x Si 0.05 P 2.95 O 12 or Si in Li 1.15 + y Y 0.15 Zr 1.85 Si y P 3-y O 12 .
  • the lithium ion conductivity increases as the a-axis lattice constant of the ⁇ phase increases from 8.880 ⁇ , and the lithium ion conductivity is highest when the a-axis lattice constant of the ⁇ phase is around 8.885 ⁇ . It was confirmed that when the a-axis lattice constant of the phase exceeds 8.892 ⁇ , the lithium ion conductivity tends to decrease.
  • Example 11 ⁇ Manufacturing of sintered body by sheet molding method>
  • a sheet-like sintered body was produced by green sheet molding. Specifically, 1-propanol, a binder, and a dispersant were added as a solvent to the powder obtained by pulverizing the dry powder of the amorphous precursor having the composition of Example 2 with D90 to a thickness of 1 ⁇ m or less, and the thickness was 20 ⁇ m. After forming the sheet, 12 sheets were laminated, vacuum packed and then subjected to hot water hydrostatic pressure pressing, and fired at 1200 ° C. The obtained sheet-like sintered body (sheet-like substrate) was designated as Example 11.
  • the sheet-shaped substrate of Example 11 was measured in diameter, thickness, and weight with a caliper, a micrometer, and an electronic balance, respectively, and the density was calculated. The density was 2.6-2.85 g / cm 3 . Further, a gold electrode was formed on both sides of the sheet-shaped substrate of Example 11 as a blocking electrode by a magnetron sputtering apparatus (SC-701HMC manufactured by Sanyu Electronics Co., Ltd.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a lithium ion-conductive glass ceramic which is able to be easily produced industrially, while having low grain boundary resistivity, high lithium ion conductivity and high reduction resistance. This lithium ion-conductive glass ceramic is able to be used as a solid electrolyte for an all-solid-state secondary battery and the like. The above are achieved by means of a lithium ion-conductive glass ceramic which contains, in mol% based on oxides, from 10% to 20% of an Li2O component, from 30% to 40% of a P2O5 component, from 40% to 50% of a ZrO2 component, from 0% to 4% of a Y2O3 component, from 0% to 3% of an Al2O3 component and from 0% to 2% of a GeO2 component, while comprising a crystal phase that has a rhombohedral NASICON structure, wherein the lattice constant of the a-axis of this crystal phase as identified by means of X-ray diffractometry and Rietveld analysis is 8.872 Å or more.

Description

リチウムイオン伝導性ガラスセラミックスLithium ion conductive glass ceramics

 本発明は、リチウムイオン伝導性ガラスセラミックスに関する。 The present invention relates to lithium ion conductive glass ceramics.

 近年、電気自動車用電源、携帯電話端末用電源などの用途で、エネルギー密度が高く、充放電が可能なリチウムイオン二次電池が広く用いられている。
 現在市販されているリチウムイオン二次電池の多くは、高いエネルギー密度を有するようにするために液体電解質(電解液)が使用されている。そして、この電解液としては、炭酸エステルや環状エステル等の非プロトン性有機溶媒などにリチウム塩を溶解させたものが用いられている。
In recent years, lithium-ion secondary batteries having a high energy density and capable of charging and discharging have been widely used in applications such as power supplies for electric vehicles and power supplies for mobile phone terminals.
Most of the lithium ion secondary batteries currently on the market use a liquid electrolyte (electrolyte solution) in order to have a high energy density. As the electrolytic solution, a solution obtained by dissolving a lithium salt in an aprotic organic solvent such as a carbonic acid ester or a cyclic ester is used.

 しかし、液体電解質(電解液)を用いたリチウムイオン二次電池においては、電解液が漏出するという危険性がある。また、電解液に一般的に用いられる有機溶媒などは揮発性がある可燃性物質であり、安全上、好ましくないという問題がある。 However, in a lithium ion secondary battery that uses a liquid electrolyte (electrolyte solution), there is a risk that the electrolyte solution will leak out. Further, an organic solvent generally used for an electrolytic solution is a volatile flammable substance, and there is a problem that it is not preferable in terms of safety.

 そこで、リチウムイオン二次電池の電解質として、有機溶媒などの液体電解質(電解液)に替えて、固体電解質を用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も全て固体で構成された全固体二次電池の開発が進められている。
 なお、全固体二次電池の固体電解質に求められる特性としては、リチウムイオン伝導性、耐還元性、焼成時の安定性、経時安定性などが代表的なものとして挙げられる。
Therefore, it has been proposed to use a solid electrolyte instead of a liquid electrolyte (electrolyte) such as an organic solvent as the electrolyte of the lithium ion secondary battery. Further, the development of an all-solid-state secondary battery in which a solid electrolyte is used as the electrolyte and all other components are also solid is underway.
Typical characteristics required for the solid electrolyte of the all-solid-state secondary battery include lithium ion conductivity, reduction resistance, stability during firing, and stability over time.

 例えば、特許文献1には、活物質を含む正極および活物質を含む負極の間に介在させる固体電解質として、Li1+x+zx(Ge1-yTiy2-xSiz3-z12(但し、0≦x≦0.8、0≦y≦1.0、0≦z≦0.6、M=Al、Gaから選ばれる1種以上)の結晶相を含有するガラスセラミックスを含む固体電解質が開示されている。また、非特許文献1には、固体電解質として用いる、室温での高いリチウムイオン伝導性を備えたNASICON型のLi1.150.15Zr1.85(PO43が開示されている。 For example, Patent Document 1, as a solid electrolyte is interposed between the negative electrode containing a positive electrode and the active material containing an active material, Li 1 + x + z M x (Ge 1-y Ti y) 2-x Si z P Contains a crystal phase of 3-z O 12 (however, one or more selected from 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.6, M = Al, and Ga). Solid electrolytes, including glass ceramics, are disclosed. Further, Non-Patent Document 1 discloses NASICON type Li 1.15 Y 0.15 Zr 1.85 (PO 4 ) 3 having high lithium ion conductivity at room temperature, which is used as a solid electrolyte.

特開2009-181921号公報Japanese Unexamined Patent Publication No. 2009-181921

Journal of Power Sources 240(2013) 50-53Journal of Power Sources 240 (2013) 50-53

 しかしながら、特許文献1に記載のガラスセラミックスは構成成分としてTiを含むため、25℃における耐還元性が2.5V(vs.Li)程度であり、固体電解質として使用する場合においてLi4Ti512やTiO2などの低電位な負極活物質を用いることができないという課題がある。 However, since the glass ceramics described in Patent Document 1 contain Ti as a constituent component, the reduction resistance at 25 ° C. is about 2.5 V (vs. Li), and when used as a solid electrolyte, Li 4 Ti 5 O There is a problem that a low-potential negative electrode active material such as 12 or TiO 2 cannot be used.

 そして、非特許文献1に記載の固体電解質は、本発明者らの調べでは25℃における耐還元性が1.5V(vs.Li)以下まで改善されており、また25℃におけるリチウムイオン伝導度も0.7×10-4S・cm-1と比較的高いことが報告されている。しかしながら、この固体電解質の製造においては、粒成長を抑制するために、高温で通電し圧力をかけながら焼成する通電焼結法(SPS)を用いる必要があり、工業的には課題が大きい。また、これは非晶質がほとんど含まれない(ほとんどが結晶相である)固体電解質となるため、ガラスセラミックスを得ることは難しい。なお、通電焼結法を用いないでこの固体電解質を製造した場合には、粒成長が顕著で、得られる固体電解質の粒界抵抗(粒子間の接触界面で生じるイオン伝導の抵抗)が高くなり、リチウムイオン伝導度は1.0×10-5S・cm-1未満となる。 According to the investigation by the present inventors, the solid electrolyte described in Non-Patent Document 1 has improved the reduction resistance at 25 ° C. to 1.5 V (vs. Li) or less, and the lithium ion conductivity at 25 ° C. It is also reported that it is relatively high at 0.7 × 10 -4 S · cm -1. However, in the production of this solid electrolyte, in order to suppress grain growth, it is necessary to use an energization sintering method (SPS) in which energization is performed at a high temperature and firing is performed while applying pressure, which poses a big problem industrially. Further, since this is a solid electrolyte containing almost no amorphous material (mostly in the crystalline phase), it is difficult to obtain glass ceramics. When this solid electrolyte is produced without using the energization sintering method, the grain growth is remarkable and the grain boundary resistance (resistance of ionic conduction generated at the contact interface between particles) of the obtained solid electrolyte becomes high. , Lithium ion conductivity is less than 1.0 × 10 -5 S · cm -1.

 そこで本発明は、工業的に容易に製造することができ、且つ、粒界抵抗が低く、高いリチウムイオン伝導性および高い耐還元性を有する、全固体二次電池などの固体電解質として使用可能なリチウムイオン伝導性ガラスセラミックスを提供することを目的とする。 Therefore, the present invention can be used as a solid electrolyte such as an all-solid secondary battery, which can be easily manufactured industrially, has low grain boundary resistance, and has high lithium ion conductivity and high reduction resistance. An object of the present invention is to provide a lithium ion conductive glass ceramic.

 上記課題を解決するために本発明者は鋭意検討し、酸化物基準のモル%で、Li2O成分を10~20%、P25成分を30~40%、ZrO2成分を40~50%、Y23成分を0~4%、Al23成分を0~3%、GeO2成分を0~2%含有し、菱面体晶系のNASICON型構造である結晶相を含み、X線回折およびリートベルト解析により同定されたこの結晶相のa軸格子定数が8.872Å以上であるリチウムイオン伝導性ガラスセラミックスが、工業的に容易に製造することが可能であり、且つ、粒界抵抗が低く、高いリチウムイオン伝導性および高い耐還元性を有するガラスセラミックスであることを見出し、本発明を完成させた。 In order to solve the above problems, the present inventor has diligently studied, and based on the oxide standard molar%, the Li 2 O component is 10 to 20%, the P 2 O 5 component is 30 to 40%, and the ZrO 2 component is 40 to 40. It contains 50%, Y 2 O 3 component 0 to 4%, Al 2 O 3 component 0 to 3%, and GeO 2 component 0 to 2%, and contains a crystal phase having a rhombohedral-based NASICON type structure. Lithium ion conductive glass ceramics having an a-axis lattice constant of 8.872 Å or more of this crystal phase identified by X-ray diffraction and Rietbelt analysis can be industrially easily produced and can be easily produced. The present invention has been completed by finding that it is a glass ceramic having low grain boundary resistance, high lithium ion conductivity and high reduction resistance.

 すなわち、本発明は次の(1)~(10)である。
(1)酸化物基準のモル%で、Li2O成分を10~20%、P25成分を30~40%、ZrO2成分を40~50%、Y23成分を0~4%、Al23成分を0~3%、GeO2成分を0~2%含有し、菱面体晶系のNASICON型構造である結晶相を含み、X線回折およびリートベルト解析により同定された前記結晶相のa軸格子定数が8.872Å以上である、リチウムイオン伝導性ガラスセラミックス。
(2)X線回折およびリートベルト解析により同定された結晶成分の質量和が、全質量に対して97質量%未満である、(1)に記載のリチウムイオン伝導性ガラスセラミックス。
(3)前記結晶相は、LiZr2(PО43α相および/またはLiZr2(PО43α´相を含む、(1)または(2)に記載のリチウムイオン伝導性ガラスセラミックス。
(4)X線回折およびリートベルト解析により同定された前記LiZr2(PО43α相の質量が、全質量に対して80質量%以上である、(3)に記載のリチウムイオン伝導性ガラスセラミックス。
(5)酸化物基準のモル%で、SiO2成分を0.1~5%含有する、(1)~(4)のいずれか1つに記載のリチウムイオン伝導性ガラスセラミックス。
(6)前記リチウムイオン伝導性ガラスセラミックス全体において、含有するSiの価数が3.5価以上3.9価未満である、(5)に記載のリチウムイオン伝導性ガラスセラミックス。
(7)前記リチウムイオン伝導性ガラスセラミックス全体において、含有するSiへのOの配位数が5以上7以下である、(5)または(6)に記載のリチウムイオン伝導性ガラスセラミックス。
(8)25℃におけるリチウムイオン伝導度が1.0×10-5S・cm-1以上の粉末である、(1)~(7)のいずれか1つに記載のリチウムイオン伝導性ガラスセラミックス。
(9)25℃におけるリチウムイオン伝導度が7.0×10-5S・cm-1以上および厚みが300μm以下の基板である、(1)~(7)のいずれか1つに記載のリチウムイオン伝導性ガラスセラミックス。
(10)前記基板の最外殻粒子層における粒子の最大粒子径が30μm以下であり、且つ前記粒子の平均粒子径が15μm以下である、(9)に記載のリチウムイオン伝導性ガラスセラミックス。
That is, the present invention is the following (1) to (10).
(1) In terms of oxide-based mol%, Li 2 O component is 10 to 20%, P 2 O 5 component is 30 to 40%, ZrO 2 component is 40 to 50%, and Y 2 O 3 component is 0 to 4. %, Al 2 O 3 component 0 to 3%, GeO 2 component 0 to 2%, including a crystal phase having a rhombic crystal system NASICON type structure, identified by X-ray diffraction and Rietveld analysis. Lithium ion conductive glass ceramics having an a-axis lattice constant of the crystal phase of 8.872 Å or more.
(2) The lithium ion conductive glass ceramic according to (1), wherein the mass sum of the crystal components identified by X-ray diffraction and Rietveld analysis is less than 97% by mass with respect to the total mass.
(3) The lithium ion conductive glass ceramic according to (1) or (2), wherein the crystal phase contains a LiZr 2 (PO 4 ) 3 α phase and / or a LiZr 2 (PO 4 ) 3 α'phase.
(4) The lithium ion conductivity according to (3), wherein the mass of the LiZr 2 (PO 4 ) 3 α phase identified by X-ray diffraction and Rietveld analysis is 80% by mass or more with respect to the total mass. Glass ceramics.
(5) The lithium ion conductive glass ceramic according to any one of (1) to (4), which contains 0.1 to 5 % of a SiO 2 component in mol% based on an oxide.
(6) The lithium ion conductive glass ceramic according to (5), wherein the valence of Si contained in the entire lithium ion conductive glass ceramic is 3.5 valence or more and less than 3.9 valence.
(7) The lithium ion conductive glass ceramic according to (5) or (6), wherein the coordination number of O to Si contained in the entire lithium ion conductive glass ceramic is 5 or more and 7 or less.
(8) The lithium ion conductive glass ceramic according to any one of (1) to (7), which is a powder having a lithium ion conductivity of 1.0 × 10 -5 S · cm -1 or more at 25 ° C. ..
(9) The lithium according to any one of (1) to (7), which is a substrate having a lithium ion conductivity of 7.0 × 10 -5 S · cm -1 or more and a thickness of 300 μm or less at 25 ° C. Ion conductive glass ceramics.
(10) The lithium ion conductive glass ceramic according to (9), wherein the maximum particle size of the particles in the outermost particle layer of the substrate is 30 μm or less, and the average particle size of the particles is 15 μm or less.

 本発明によれば、工業的に容易に製造することができ、且つ、粒界抵抗が低く、高いリチウムイオン伝導性および高い耐還元性を有するリチウムイオン伝導性ガラスセラミックスを得ることができる。そして、このリチウムイオン伝導性ガラスセラミックスは、その高い耐還元性により低電位側に広い電位窓を有する固体電解質となり、これにより低電位の電極活物質と高電位の電極活物質とを組み合わせて使用することができ、結果として高電圧の電池を得ることができるため、全固体二次電池や海水電池などの固体電解質として好適に用いることができる。 According to the present invention, it is possible to obtain lithium ion conductive glass ceramics which can be easily manufactured industrially, have low grain boundary resistance, and have high lithium ion conductivity and high reduction resistance. Due to its high reduction resistance, this lithium ion conductive glass ceramic becomes a solid electrolyte having a wide potential window on the low potential side, whereby a low potential electrode active material and a high potential electrode active material are used in combination. As a result, a high-voltage battery can be obtained, so that it can be suitably used as a solid electrolyte for an all-solid secondary battery, a seawater battery, or the like.

実施例2の固体電解質ペレットのインピーダンス測定結果(Cole-Cole Plot)を示すグラフである。It is a graph which shows the impedance measurement result (Cole-Cole Plot) of the solid electrolyte pellet of Example 2. 比較例1の固体電解質ペレットにおける最外殻粒子層の二次電子像である(図面代用写真)。It is a secondary electron image of the outermost particle layer in the solid electrolyte pellet of Comparative Example 1 (drawing substitute photograph). 実施例1の固体電解質ペレットにおける最外殻粒子層の二次電子像である(図面代用写真)。It is a secondary electron image of the outermost particle layer in the solid electrolyte pellet of Example 1 (photograph substitute for drawing). 実施例2の固体電解質ペレットにおける最外殻粒子層の二次電子像である(図面代用写真)。It is a secondary electron image of the outermost particle layer in the solid electrolyte pellet of Example 2 (drawing substitute photograph). 実施例1(初期品、1年後)および実施例2(初期品、1年後)の固体電解質ペレットにおけるLiZr2(PO43α相のa軸格子定数と、リチウムイオン伝導度(S・cm-1)との関係を示すグラフである。 LiZr 2 (PO 4 ) 3 α-phase a-axis lattice constant and lithium ion conductivity (S) in the solid electrolyte pellets of Example 1 (initial product, 1 year later) and Example 2 (initial product, 1 year later)・ It is a graph which shows the relationship with cm -1). 実施例1の固体電解質ペレット(点線)および実施例2の固体電解質ペレット(実線)のサイクリックボルタモグラムである。It is a cyclic voltammogram of the solid electrolyte pellet (dotted line) of Example 1 and the solid electrolyte pellet (solid line) of Example 2. 実施例2の固体電解質粉末およびSiO2粉末のXAFS解析結果である。It is the XAFS analysis result of the solid electrolyte powder and SiO 2 powder of Example 2. 実施例2の固体電解質粉末およびSiO2粉末おけるSiのK端EXAFSデータ(吸収端強度により規格化)である。It is K-end EXAFS data (standardized by absorption edge strength) of Si in the solid electrolyte powder and SiO 2 powder of Example 2. 実施例2の固体電解質粉末およびSiO2粉末おけるSiのK端EXAFS振動関数データ(k2重み付き)である。It is the K-end EXAFS vibration function data (k 2 weighted) of Si in the solid electrolyte powder and SiO 2 powder of Example 2. 実施例2~6の固体電解質ペレットにおける、Yの比率がリチウムイオン伝導度(S・cm-1、実線)および密度(g/cm3、点線)に与える影響を示すグラフである。 3 is a graph showing the effect of the ratio of Y on the lithium ion conductivity (S · cm -1 , solid line) and density (g / cm 3, dotted line) in the solid electrolyte pellets of Examples 2 to 6. 実施例1~2、7~9の固体電解質ペレットにおける、Siの比率がリチウムイオン伝導度(S・cm-1、実線)および密度(g/cm3、点線)に与える影響を示すグラフである。 3 is a graph showing the effect of the ratio of Si on the lithium ion conductivity (S · cm -1 , solid line) and density (g / cm 3, dotted line) in the solid electrolyte pellets of Examples 1 to 2 and 7 to 9. .. 実施例3~6(白抜きプロット)および実施例1~2、7~9(黒塗りプロット)の固体電解質ペレットにおける、Yの比率またはSiの比率の変動により変化したLiZr2(PO43α相のa軸格子定数(Å)がリチウムイオン伝導度(S・cm-1)に与える影響を示すグラフである。 LiZr 2 (PO 4 ) 3 changed by fluctuations in the ratio of Y or the ratio of Si in the solid electrolyte pellets of Examples 3 to 6 (white plot) and Examples 1 to 2 and 7 to 9 (black-painted plot). It is a graph which shows the influence which the a-axis lattice constant (Å) of α phase has on the lithium ion conductivity (Scm -1). 実施例11の固体電解質基板のインピーダンス測定結果(Cole-Cole Plot)を示すグラフである。It is a graph which shows the impedance measurement result (Cole-Cole Plot) of the solid electrolyte substrate of Example 11. 実施例11の固体電解質基板における最外殻粒子層の二次電子像である(図面代用写真)。It is a secondary electron image of the outermost particle layer in the solid electrolyte substrate of Example 11 (photograph substitute for drawing). 実施例11の固体電解質基板における最外殻粒子層の二次電子像から粒子の粒径測定を行っている状態である(図面代用写真)。It is a state in which the particle size of the particles is measured from the secondary electron image of the outermost particle layer in the solid electrolyte substrate of Example 11 (drawing substitute photograph).

 本発明について説明する。
 本発明は、酸化物基準のモル%で、Li2O成分を10~20%、P25成分を30~40%、ZrO2成分を40~50%、Y23成分を0~4%、Al23成分を0~3%、GeO2成分を0~2%含有し、菱面体晶系のNASICON型構造である結晶相を含み、X線回折およびリートベルト解析により同定されたこの結晶相のa軸格子定数が8.872Å以上であるリチウムイオン伝導性ガラスセラミックスである。
 以下においては、これを「本発明のガラスセラミックス」という場合もある。
The present invention will be described.
In the present invention, the Li 2 O component is 10 to 20%, the P 2 O 5 component is 30 to 40%, the ZrO 2 component is 40 to 50%, and the Y 2 O 3 component is 0 to 0 to the molar% based on the oxide. It contains 4%, 0 to 3% of Al 2 O 3 component, 0 to 2 % of GeO 2 component, contains a crystal phase having a rhombic crystal system NASICON type structure, and is identified by X-ray diffraction and Rietveld analysis. It is a lithium ion conductive glass ceramic having an a-axis lattice constant of 8.872 Å or more in the crystal phase of octopus.
In the following, this may be referred to as "glass-ceramics of the present invention".

 ここで、本発明において「ガラスセラミックス」とは、原料ガラスを熱処理することにより結晶相を析出させて得られるものであり、熱処理により形成された結晶相とアモルファス相(非晶質相)とを含む。つまり、セラミックスとガラスとの混合物である。
 また、本発明のガラスセラミックスに含まれる各成分の含有量は、特に断りがない限り、全て酸化物基準のモル%で表す。なお、この「酸化物基準のモル%」で表す組成とは、本発明のガラスセラミックスの原料として使用される酸化物、複合塩、金属弗化物等が溶融時に全て分解され酸化物に変化すると仮定した場合に、当該生成酸化物の総モル数を100モル%として、本発明のガラスセラミックス中に含まれる各成分を表記した組成である。
Here, in the present invention, the "glass ceramics" is obtained by precipitating a crystal phase by heat-treating the raw material glass, and the crystal phase and the amorphous phase (amorphous phase) formed by the heat treatment are referred to. include. That is, it is a mixture of ceramics and glass.
Unless otherwise specified, the content of each component contained in the glass ceramics of the present invention is expressed in mol% based on oxides. The composition represented by "mol% based on oxides" is based on the assumption that the oxides, composite salts, metal fluorides, etc. used as raw materials for the glass ceramics of the present invention are all decomposed into oxides at the time of melting. In this case, the total number of moles of the produced oxide is 100 mol%, and each component contained in the glass ceramic of the present invention is described.

<構成成分>
 まず、本発明のガラスセラミックスを構成する各成分について詳細に説明する。
<Components>
First, each component constituting the glass ceramic of the present invention will be described in detail.

 Li2O成分は、本発明のガラスセラミックスにリチウムイオン伝導性を付与する必須成分である。そのため、Li2O成分の含有量は、10%、好ましくは12%、より好ましくは14%を下限とする。一方で、本発明のガラスセラミックスの化学的耐久性を高めて固体電解質層などとしたときの形態安定性を高めることができることから、Li2O成分の含有量は、20%、好ましくは18%、より好ましくは16%を上限とする。 The Li 2 O component is an essential component that imparts lithium ion conductivity to the glass ceramics of the present invention. Therefore, the lower limit of the content of the Li 2 O component is 10%, preferably 12%, and more preferably 14%. On the other hand, the content of the Li 2 O component is 20%, preferably 18%, because the chemical durability of the glass ceramics of the present invention can be enhanced to enhance the morphological stability when formed into a solid electrolyte layer or the like. , More preferably 16% is the upper limit.

 P25成分は、本発明のガラスセラミックス中に菱面体晶系のNASICON型構造である結晶相を形成させるのに必要な必須成分である。そのため、P25成分の含有量は、30%、好ましくは33%、より好ましくは35%を下限とする。一方で、他の結晶相などの形成を抑制し、形成される結晶相のリチウムイオン伝導度を低下し難くできることから、P25成分の含有量は、40%、好ましくは39%、より好ましくは38%を上限とする。 The P 2 O 5 component is an essential component necessary for forming a crystal phase having a rhombohedral NASICON type structure in the glass ceramics of the present invention. Therefore, the lower limit of the content of the P 2 O 5 component is 30%, preferably 33%, and more preferably 35%. On the other hand, since it is possible to suppress the formation of other crystal phases and make it difficult to reduce the lithium ion conductivity of the formed crystal phase, the content of the P 2 O 5 component is 40%, preferably 39%, more. The upper limit is preferably 38%.

 ZrO2成分は、本発明のガラスセラミックス中のリチウムイオン伝導性を有する結晶相に対して、還元による分解を起こり難くできる必須成分である。そのため、ZrO2成分の含有量は、40%、好ましくは42%、より好ましくは44%を下限とする。一方で、菱面体晶系のNASICON型構造である結晶相を形成し易くできることから、ZrO2成分の含有量は、50%、好ましくは48%、より好ましくは47%を上限とする。 The ZrO 2 component is an essential component capable of making it difficult for decomposition by reduction to occur in the crystal phase having lithium ion conductivity in the glass ceramics of the present invention. Therefore, the lower limit of the content of the ZrO 2 component is 40%, preferably 42%, and more preferably 44%. On the other hand, the content of the ZrO 2 component is set to 50%, preferably 48%, more preferably 47%, because it is possible to easily form a crystal phase having a rhombohedral-based NASICON type structure.

 なお、本発明のガラスセラミックス中におけるLi2O成分に対するP25成分のモル比(P25成分/Li2O成分)は2.0~3.0であるとより好ましく、また、Li2O成分に対するZrO2成分のモル比(ZrO2成分/Li2O成分)は2.5~3.5であるとより好ましい。 Incidentally, more preferably the molar ratio of P 2 O 5 component (P 2 O 5 component / Li 2 O component) is 2.0-3.0 with respect to Li 2 O component in the glass ceramic of the present invention, also, the molar ratio of ZrO 2 component to Li 2 O component (ZrO 2 component / Li 2 O component) is more preferably a 2.5-3.5.

 Y23成分は、本発明のガラスセラミックス中の結晶相のリチウムイオン伝導性を調整でき、且つ結晶相の機械的強度や大きさなどを調整できる任意成分である。そのため、Y23成分の含有量は、好ましくは0.1%、より好ましくは0.5%、さらに好ましくは1%、さらに好ましくは1.2%を下限とするのが好適である。一方で、他の結晶相などの形成を抑制し、形成される結晶相のリチウムイオン伝導度を低下し難くできることから、Y23成分の含有量は4%を上限とし、より好ましくは3.5%、さらに好ましくは3.2%、さらに好ましくは3%、さらに好ましくは2.8%、さらに好ましくは2.5%、を上限とするのが好適である。
 また、本発明のガラスセラミックス中におけるLi2O成分に対するY23成分のモル比(Y23成分/Li2O成分)は、0.05~0.26であるとより好ましく、0.05~0.20であるとさらに好ましい。
The Y 2 O 3 component is an optional component capable of adjusting the lithium ion conductivity of the crystal phase in the glass ceramic of the present invention and adjusting the mechanical strength and size of the crystal phase. Therefore, the content of the Y 2 O 3 component is preferably 0.1%, more preferably 0.5%, still more preferably 1%, still more preferably 1.2% as the lower limit. On the other hand, since it is possible to suppress the formation of other crystal phases and make it difficult to reduce the lithium ion conductivity of the formed crystal phase, the content of the Y 2 O 3 component is limited to 4%, more preferably 3. It is preferable that the upper limit is 5.5%, more preferably 3.2%, still more preferably 3%, still more preferably 2.8%, still more preferably 2.5%.
The molar ratio of Y 2 O 3 component to Li 2 O component in the glass ceramic of the present invention (Y 2 O 3 component / Li 2 O component), more preferable to be 0.05 to 0.26 0 It is more preferably 0.05 to 0.20.

 Al23成分も、Y23成分と同様に、本発明のガラスセラミックス中の結晶相のリチウムイオン伝導性を調整でき、且つこの結晶相の機械的強度や大きさなどを調整できる任意成分である。そのため、Al23成分の含有量は、好ましくは0.1%、より好ましくは0.5%、さらに好ましくは1%、さらに好ましくは1.2%を下限とするのが好適である。また、これもY23成分と同様に、他の結晶相などの形成を抑制し、形成される結晶相のリチウムイオン伝導度を低下し難くできることから、Al23成分の含有量は3%を上限とし、より好ましくは2.8%、さらに好ましくは2.5%を上限とするのが好適である。 Like the Y 2 O 3 component, the Al 2 O 3 component can also adjust the lithium ion conductivity of the crystal phase in the glass ceramics of the present invention, and can also adjust the mechanical strength and size of this crystal phase. It is an ingredient. Therefore, the content of the Al 2 O 3 component is preferably 0.1%, more preferably 0.5%, still more preferably 1%, still more preferably 1.2% as the lower limit. Further, as in the case of the Y 2 O 3 component, the formation of other crystal phases can be suppressed and the lithium ion conductivity of the formed crystal phase can hardly be lowered. Therefore, the content of the Al 2 O 3 component is high. The upper limit is 3%, more preferably 2.8%, and even more preferably 2.5%.

 GeO2成分は、本発明のガラスセラミックスの結晶化を促進する任意成分である。そのため、GeO2成分の含有量は、好ましくは0.1%、より好ましくは0.5%、さらに好ましくは1%を下限とするのが好適である。一方で、Y23成分やAl23成分と同様に形成される結晶相のリチウムイオン伝導度を低下し難くできることや、Zr成分との共存のし易さなどから、GeO2成分の含有量は2%を上限とし、好ましくは1.5%を上限とするのが好適である。 The GeO 2 component is an optional component that promotes the crystallization of the glass ceramics of the present invention. Therefore, the content of the GeO 2 component is preferably 0.1%, more preferably 0.5%, and even more preferably 1% as the lower limit. On the other hand , the GeO 2 component is composed of the GeO 2 component because it is difficult to reduce the lithium ion conductivity of the crystal phase formed in the same manner as the Y 2 O 3 component and the Al 2 O 3 component, and it is easy to coexist with the Zr component. The upper limit of the content is 2%, preferably 1.5%.

 SiO2成分は、本発明のガラスセラミックスの機械的強度を高め、またP25成分と部分的に置換することにより本発明のガラスセラミックスのリチウムイオン伝導性を向上させることができる任意成分である。そのため、SiO2成分の含有量は、好ましくは0.1%、より好ましくは0.5%、さらに好ましくは0.7%を下限とするのが好適である。一方で、所望の結晶相を形成し易くすることができ、且つ結晶どうしが隣接し易くなりリチウムイオン伝導度の低下を抑えることができることから、SiO2成分の含有量は、好ましくは5%、より好ましくは4%、さらに好ましくは3%、さらに好ましくは2.5%を上限とするのが好適である。
 また、本発明のガラスセラミックス中におけるLi2O成分に対するSiO2成分のモル比(SiO2成分/Li2O成分)は、0.007~0.17であるとより好ましく、0.03~0.17であるとさらに好ましい。
The SiO 2 component is an optional component capable of increasing the mechanical strength of the glass ceramic of the present invention and improving the lithium ion conductivity of the glass ceramic of the present invention by partially substituting the P 2 O 5 component. be. Therefore, the content of the SiO 2 component is preferably 0.1%, more preferably 0.5%, and even more preferably 0.7% as the lower limit. On the other hand, the content of the SiO 2 component is preferably 5% because it is possible to easily form a desired crystal phase and the crystals are likely to be adjacent to each other and the decrease in lithium ion conductivity can be suppressed. The upper limit is more preferably 4%, further preferably 3%, still more preferably 2.5%.
The molar ratio of SiO 2 component to Li 2 O component in the glass ceramic of the present invention (SiO 2 component / Li 2 O component), more preferable to be 0.007 to 0.17, 0.03 to 0 It is more preferably .17.

 CaO成分およびMgO成分は、価数のバランスによりLiを多く結晶相に含ませることによりリチウムイオン伝導性を高くすることができる任意成分である。そのため、CaO成分の含有量およびMgO成分の含有量はいずれも、好ましくは0.5%、より好ましくは1%、さらに好ましくは2%を下限とするのが好適である。一方で、本発明のガラスセラミックスのリチウムイオン伝導度低下を抑制することができることから、CaO成分の含有量およびMgO成分の含有量はいずれも、好ましくは5%、より好ましくは4%、さらに好ましくは3%を上限とするのが好適である。 The CaO component and the MgO component are optional components that can increase the lithium ion conductivity by including a large amount of Li in the crystal phase due to the balance of valences. Therefore, both the content of the CaO component and the content of the MgO component are preferably 0.5%, more preferably 1%, and further preferably 2% as the lower limit. On the other hand, since the decrease in lithium ion conductivity of the glass ceramics of the present invention can be suppressed, the content of the CaO component and the content of the MgO component are both preferably 5%, more preferably 4%, still more preferable. Is preferably up to 3%.

 Sc23成分およびGa23成分は、Y23成分やAl23成分と同様に、本発明のガラスセラミックス中の結晶相のリチウムイオン伝導性を調整でき、且つ結晶相の大きさなどを調整できることができる任意成分である。そのため、Sc23成分の含有量およびGa23成分の含有量はいずれも、好ましくは0.1%、より好ましくは0.5%、さらに好ましくは1%を下限とするのが好適である。また、これもY23成分やAl23成分と同様に、他の結晶相などの形成を抑制し、形成される結晶相のリチウムイオン伝導度を低下し難くできることから、Sc23成分の含有量およびGa23成分の含有量はいずれも、好ましくは2%、より好ましくは1.5%を上限とするのが好適である。 Similar to the Y 2 O 3 component and the Al 2 O 3 component, the Sc 2 O 3 component and the Ga 2 O 3 component can adjust the lithium ion conductivity of the crystal phase in the glass ceramics of the present invention, and can adjust the lithium ion conductivity of the crystal phase. It is an optional component whose size and the like can be adjusted. Therefore, the lower limit of the content of the Sc 2 O 3 component and the content of the Ga 2 O 3 component is preferably 0.1%, more preferably 0.5%, and further preferably 1%. Is. Further, similarly to the Y 2 O 3 component and the Al 2 O 3 component, the formation of other crystal phases can be suppressed and the lithium ion conductivity of the formed crystal phase can be hardly lowered. Therefore, Sc 2 O The upper limit of the content of the three components and the content of the Ga 2 O 3 component is preferably 2%, more preferably 1.5%.

 SnO2成分は、GeO2成分と同様に、本発明のガラスセラミックスの結晶化を促進する任意成分である。そのため、SnO2成分の含有量は、好ましくは0.1%、より好ましくは0.5%、さらに好ましくは1%を下限とするのが好適である。一方で、形成される結晶相のリチウムイオン伝導度を低下し難くできることから、SnO2成分の含有量は、好ましくは2%、より好ましくは1.5%を上限とするのが好適である。 The SnO 2 component, like the GeO 2 component, is an optional component that promotes the crystallization of the glass ceramics of the present invention. Therefore, the content of the SnO 2 component is preferably 0.1%, more preferably 0.5%, and even more preferably 1% as the lower limit. On the other hand, since the lithium ion conductivity of the formed crystal phase can be hardly lowered, the content of the SnO 2 component is preferably 2%, more preferably 1.5% as the upper limit.

 さらに、本発明のガラスセラミックスは、ホウ素(B)またはフッ素(F)を含む無機成分を含有していてもよい。 Furthermore, the glass ceramics of the present invention may contain an inorganic component containing boron (B) or fluorine (F).

 一方、本発明のガラスセラミックスでは、チタン(Ti)の含有は極力低減することが好ましく(例えば1%未満、さらには0.1%未満など)、Tiを含有しないことがより好ましい。Ti成分を低減することで、耐還元性の低減を抑制することができるからである。また、Tiだけでなく、ニオブ(Nb)、バナジウム(V)、ニッケル(Ni)などの遷移金属成分についても、同様に極力低減することが好ましく、含有しないことがより好ましい。 On the other hand, in the glass ceramics of the present invention, the content of titanium (Ti) is preferably reduced as much as possible (for example, less than 1%, further less than 0.1%, etc.), and more preferably no Ti is contained. This is because the reduction of the reduction resistance can be suppressed by reducing the Ti component. Further, not only Ti but also transition metal components such as niobium (Nb), vanadium (V), and nickel (Ni) are preferably reduced as much as possible, and more preferably not contained.

 さらに、本発明のガラスセラミックスでは、硫黄(S)成分の含有も極力低減することが好ましく、含有しないことがより好ましい。S成分の低減により全固体二次電池などにおいて硫化水素等の有害ガス発生の可能性を低減できるからである。また、リチウムイオン伝導性の低下を避けるために、Li以外のアルカリ金属(Na、K等)成分も極力低減することが好ましく、含有しないことがより好ましい。 Further, in the glass ceramics of the present invention, the content of the sulfur (S) component is preferably reduced as much as possible, and more preferably not contained. This is because the possibility of generating harmful gases such as hydrogen sulfide can be reduced in an all-solid-state secondary battery or the like by reducing the S component. Further, in order to avoid a decrease in lithium ion conductivity, it is preferable to reduce alkali metal (Na, K, etc.) components other than Li as much as possible, and it is more preferable not to contain them.

<結晶相等>
 次に、本発明のガラスセラミックスに含まれる結晶相の構成、およびこの結晶相以外の相の構成について詳細に説明する。
<Crystal phase, etc.>
Next, the composition of the crystal phase contained in the glass ceramic of the present invention and the composition of the phase other than this crystal phase will be described in detail.

 本発明のガラスセラミックスは、前述した各成分を所定量含有し、さらにこの各成分の少なくとも一部により構成される菱面体晶系のNASICON型構造である結晶相を含む。なお、本発明のガラスセラミックスに含まれる結晶相は、全て菱面体晶系のNASICON型構造あるのが好ましいが、他のリチウムイオン伝導性の結晶相(例えば、LISICON型、ペロブスカイト型、ガーネット型など)が一部含まれていてもよい。この場合でも、本発明のガラスセラミックスに含まれる全ての結晶相のうち、菱面体晶系のNASICON型構造である結晶相が80質量%以上であるのが好ましく、90質量%以上であるのがより好ましく、95質量%以上であるのがさらに好ましい。 The glass ceramic of the present invention contains a predetermined amount of each of the above-mentioned components, and further contains a crystal phase having a rhombohedral-based NASICON-type structure composed of at least a part of each of these components. The crystal phases contained in the glass ceramics of the present invention preferably have a rhombohedral NASICON type structure, but other lithium ion conductive crystal phases (for example, LISION type, perovskite type, garnet type, etc.) ) May be included in part. Even in this case, among all the crystal phases contained in the glass ceramics of the present invention, the crystal phase having a rhombohedral NASICON type structure is preferably 80% by mass or more, and 90% by mass or more. More preferably, it is 95% by mass or more.

 そして、上記した菱面体晶系のNASICON型構造である結晶相を含む本発明のガラスセラミックスは、X線回折(XRD)およびリートベルト解析により同定されたこの結晶相のa軸格子定数が8.872Å以上である。この結晶相のa軸格子定数が所定以上に伸長していることにより、高いリチウムイオン伝導性を有するガラスセラミックスとなる。なお、このa軸格子定数は、8.874Å以上であるのがより好ましく、8.876Å以上であるのがさらに好ましく、8.878Å以上であるのがさらに好ましい。また、その上限は、8.892Å以下であるのが好ましく、8.889Å以下であるのがより好ましく、8.888Å以下であるのがさらに好ましい。 The glass ceramics of the present invention containing the crystal phase having the above-mentioned rhombohedral NASICON type structure have the a-axis lattice constant of this crystal phase identified by X-ray diffraction (XRD) and Rietveld analysis. It is 872 Å or more. When the a-axis lattice constant of this crystal phase is extended more than a predetermined value, the glass ceramic has high lithium ion conductivity. The a-axis lattice constant is more preferably 8.874 Å or more, further preferably 8.876 Å or more, and further preferably 8.878 Å or more. The upper limit thereof is preferably 8.892 Å or less, more preferably 8.889 Å or less, and further preferably 8.888 Å or less.

 さらに、上記した菱面体晶系のNASICON型構造である結晶相を含む本発明のガラスセラミックスは、X線回折(XRD)およびリートベルト解析により同定された結晶成分(結晶相の成分)の質量和が、本発明のガラスセラミックスの全質量に対して97重量%未満であるのが好ましい。言い換えれば、本発明のガラスセラミックスの全質量とX線回折(XRD)およびリートベルト解析により同定された結晶成分の質量和との差により算出される不特定相(結晶相以外の相)の成分の質量が、本発明のガラスセラミックスの全質量に対して3質量%以上であるのが好ましい。粒子の過成長による粒界抵抗の増加を抑制することができ、且つ結晶相のa軸格子定数の伸長が安定化できるからである。なお、この不特定相には、アモルファス相が主体として含まれる。そして、この結晶成分の質量和が、本発明のガラスセラミックスの全質量に対して95重量%未満であるとより好ましく、つまり上記不特定相の成分の質量が5質量%以上であるとより好ましい。また、この結晶成分の質量和の下限は、限定されるものではないが、本発明のガラスセラミックスの全質量に対して80重量%以上であると好適であり、85質量%以上であるとより好適である。 Further, the glass ceramics of the present invention containing the crystal phase having the above-mentioned rhombic crystal system NASICON type structure is the sum of the masses of the crystal components (crystal phase components) identified by X-ray diffraction (XRD) and Rietveld analysis. However, it is preferably less than 97% by weight based on the total mass of the glass ceramics of the present invention. In other words, the components of the unspecified phase (phases other than the crystal phase) calculated by the difference between the total mass of the glass ceramics of the present invention and the mass sum of the crystal components identified by X-ray diffraction (XRD) and Rietbelt analysis. Is preferably 3% by mass or more with respect to the total mass of the glass ceramics of the present invention. This is because the increase in grain boundary resistance due to overgrowth of particles can be suppressed, and the elongation of the a-axis lattice constant of the crystal phase can be stabilized. The unspecified phase mainly includes an amorphous phase. The sum of the masses of the crystal components is more preferably less than 95% by mass with respect to the total mass of the glass ceramics of the present invention, that is, the mass of the components of the unspecified phase is more preferably 5% by mass or more. .. Further, the lower limit of the mass sum of the crystal components is not limited, but is preferably 80% by weight or more, more preferably 85% by weight or more, based on the total mass of the glass ceramics of the present invention. Suitable.

 なお、上記したX線回折(XRD)は、粉末X線回折装置(ブルカー社製、D8 DISCOVER)により、初期検体量に対して同じmol%量のZnOを標準試料として混合し、CuKα線を用いて測定を行う。 In the above-mentioned X-ray diffraction (XRD), ZnO having the same mol% amount as the initial sample amount is mixed as a standard sample by a powder X-ray diffractometer (D8 DISCOVER manufactured by Bruker), and CuKα ray is used. And measure.

 また、上記したリートベルト解析は、上記条件の下で測定したXRDデータを用いて、リートベルト解析ソフトウェア「Z-Rietveldコード」により実施する。 Further, the Rietveld analysis described above is performed by the Rietveld analysis software "Z-Rieveld code" using the XRD data measured under the above conditions.

 そして、本発明のガラスセラミックスに含まれる、菱面体晶系のNASICON型構造である結晶相は、室温でのリチウムイオン伝導性がより向上することから、Li1+x+yxZr2-xSiy3-y12(0≦x<2、0≦y<3)の結晶相を含むのが好ましく、LiZr2(PО43α相(高温相)および/またはLiZr2(PО43α´相(低温相)を含むのがより好ましい。そして、この菱面体晶系のNASICON型構造である結晶相は、LiZr2(PО43α相(高温相)および/またはLiZr2(PО43α´相(低温相)からなるものであってもよいが、このα相やα´相に加えてLiZr2(PО43の他の相(β相、γ相等)などを含んでいてもよい。なお、a軸格子定数が前述した範囲内であるLiZr2(PО43α相を、本発明のリチウムイオン伝導性ガラスセラミックスの全質量に対して80質量%以上、さらには85質量%以上含むものであると、経時安定性などがより優れるものとなるため非常に好適である。ここで、このα相およびα´相とは、ケンブリッジ結晶構造データベースCSD-SystemのCSD番号97658(α―LiZr2(PO43)、CSD番号89456(α´―LiZr2(PO43)である。 The crystal phase having a rhombic crystal-based NASICON type structure contained in the glass ceramics of the present invention has higher lithium ion conductivity at room temperature. Therefore, Li 1 + x + y Y x Zr 2- It preferably contains a crystalline phase of x S y P 3-y O 12 (0 ≤ x <2, 0 ≤ y <3), LiZr 2 (PO 4 ) 3 α phase (high temperature phase) and / or LiZr 2 ( PO 4 ) It is more preferable to include 3 α'phase (low temperature phase). The crystal phase having a NASICON type structure of this rhombic crystal system is composed of LiZr 2 (PO 4 ) 3 α phase (high temperature phase) and / or LiZr 2 (PO 4 ) 3 α'phase (low temperature phase). However, in addition to the α phase and the α'phase , other phases of LiZr 2 (PO 4 ) 3 (β phase, γ phase, etc.) may be included. Incidentally, LiZr 2 (PО 4) is a-axis lattice constant is within the range described above 3 alpha phase, 80 mass% or more with respect to the total mass of the lithium ion conductive glass-ceramics of the present invention, further more than 85 wt% If it is contained, it is very suitable because the stability over time becomes more excellent. Here, the alpha phase and [alpha] 'phase, CSD number 97658 Cambridge Structural Database CSD-System (α-LiZr 2 (PO 4) 3), CSD number 89456 (α'-LiZr 2 (PO 4) 3 ).

 さらに、本発明のガラスセラミックスがSiO2成分を含有する場合、本発明のガラスセラミックス全体(結晶相および不特定相)において、含有するSiの価数が3.5価以上3.9価未満であるのがより好ましく、3.6価以上3.8価以下であるのがさらに好ましい。リチウムイオン伝導度の安定性および結晶構造の機械的強度がより優れるからである。 Further, when the glass ceramic of the present invention contains a SiO 2 component, the valence of Si contained in the entire glass ceramic of the present invention (crystal phase and unspecified phase) is 3.5 valence or more and less than 3.9 valence. It is more preferable to have it, and it is more preferable that it has a valence of 3.6 or more and a valence of 3.8 or less. This is because the stability of lithium ion conductivity and the mechanical strength of the crystal structure are better.

 また、本発明のガラスセラミックスがSiO2成分を含有する場合、本発明のガラスセラミックス全体(結晶相および不特定相)において、含有するSiへのOの配位数が5以上7以下であるのがより好ましく、この配位数が6であるのがさらに好ましい。これもリチウムイオン伝導度の安定性および結晶構造の機械的強度がより優れるからである。 Further, when the glass ceramic of the present invention contains a SiO 2 component, the coordination number of O to the Si contained in the entire glass ceramic of the present invention (crystal phase and unspecified phase) is 5 or more and 7 or less. Is more preferable, and it is further preferable that the coordination number is 6. This is also because the stability of lithium ion conductivity and the mechanical strength of the crystal structure are better.

 なお、上記したSiの価数は、X線吸収微細構造解析(XAFS:X-ray Absorption Fine Structure)により測定する。
 また、上記したSiへのOの配位数は、広域X線吸収微細構造解析(EXAFS:Extended X-ray Absorption Fine Structure)により測定する。
The valence of Si described above is measured by X-ray absorption fine structure analysis (XAFS: X-ray Absorption Fine Structure).
Further, the coordination number of O to Si described above is measured by wide area X-ray absorption fine structure analysis (EXAFS: Extended X-ray Absorption Fine Structure).

<形態>
 次に、本発明のガラスセラミックスの形態について詳細に説明する。
<Form>
Next, the form of the glass-ceramics of the present invention will be described in detail.

 本発明のガラスセラミックスの形態は、特段限定されないが、全固体二次電池の固体電解質層や電極層、海水電池の電極層や隔壁層(セパレータ)などに用いる場合には、粉末あるいは基板であるのが好適である。特に、本発明のガラスセラミックスと電極活物質とを混合して電極層を形成する場合には、本発明のガラスセラミックスの形態は粉末であるのが好ましい。 The form of the glass-ceramics of the present invention is not particularly limited, but is a powder or a substrate when used for a solid electrolyte layer or an electrode layer of an all-solid secondary battery, an electrode layer or a partition wall (separator) of a seawater cell, or the like. Is preferable. In particular, when the glass ceramics of the present invention and the electrode active material are mixed to form an electrode layer, the form of the glass ceramics of the present invention is preferably powder.

 そして、本発明のガラスセラミックスは高いリチウムイオン伝導性および高い耐還元性を有するものであるが、本発明のガラスセラミックスが粉末である場合、例えば、25℃におけるリチウムイオン伝導度が好ましくは1.0×10-5S・cm-1以上、より好ましくは3.0×10-5S・cm-1以上、さらに好ましくは6.0×10-5S・cm-1以上、さらに好ましくは7.0×10-5S・cm-1以上であり、25℃における耐還元性が好ましくは1.5V(vs.Li:リチウムに対する電位)以下、より好ましくは1.0V(vs.Li)以下であると好適である。なお、上記した25℃におけるリチウムイオン伝導度が1.0×10-10S・cm-1未満である場合、リチウムイオンの伝導は実質的に起こらない。また、限定されるものではないが、この粉末の25℃におけるリチウムイオン伝導度は1.0×10-2S・cm-1以下であってもよく、25℃における耐還元性は0.3V(vs.Li)以上であってもよい。さらに、この粉末に含まれる粒子は、最大粒子径が30μm以下であり、且つ平均粒子径が15μm以下であると好適である。 The glass ceramics of the present invention have high lithium ion conductivity and high reduction resistance. When the glass ceramics of the present invention are powders, for example, the lithium ion conductivity at 25 ° C. is preferably 1. 0 × 10 -5 S · cm -1 or more, more preferably 3.0 × 10 -5 S · cm -1 or more, still more preferably 6.0 × 10 -5 S · cm -1 or more, still more preferably 7 .0 × 10 -5 S · cm -1 or more, and the reduction resistance at 25 ° C. is preferably 1.5 V (vs. Li: potential for lithium) or less, more preferably 1.0 V (vs. Li) or less. Is preferable. When the lithium ion conductivity at 25 ° C. is less than 1.0 × 10 -10 S · cm -1 , the lithium ion conduction does not substantially occur. Further, although not limited, the lithium ion conductivity of this powder at 25 ° C. may be 1.0 × 10 −2 S · cm -1 or less, and the reduction resistance at 25 ° C. is 0.3 V. It may be (vs. Li) or more. Further, the particles contained in this powder preferably have a maximum particle size of 30 μm or less and an average particle size of 15 μm or less.

 また、本発明のガラスセラミックスが基板である場合、25℃におけるリチウムイオン伝導度が7.0×10-5S・cm-1以上および厚みが300μm以下の基板であると好適である。なお、この基板の厚みは200μm以下であるのがより好ましく、さらに、限定されるものではないが、固体電解質層としたときに正極と負極との短絡を低減し易いことから、この基板の厚みは0.5μm以上であると好ましい。そしてさらに、リチウムイオン伝導性がより高まることから、この基板の最外殻粒子層における粒子の最大粒子径が30μm以下であり、且つこの粒子の平均粒子径が15μm以下であると非常に好適である。また、この基板の耐還元性は、粉末と同様に25℃において1.5V(vs.Li)以下であるのが好ましく、1.0V(vs.Li)以下であるのがより好ましい。 When the glass ceramic of the present invention is a substrate, it is preferable that the substrate has a lithium ion conductivity of 7.0 × 10 -5 S · cm -1 or more and a thickness of 300 μm or less at 25 ° C. The thickness of this substrate is more preferably 200 μm or less, and further, but not limited to, the thickness of this substrate can be easily reduced when a solid electrolyte layer is used to reduce a short circuit between the positive electrode and the negative electrode. Is preferably 0.5 μm or more. Further, since the lithium ion conductivity is further enhanced, it is very preferable that the maximum particle size of the particles in the outermost particle layer of this substrate is 30 μm or less and the average particle size of the particles is 15 μm or less. be. Further, the reduction resistance of this substrate is preferably 1.5 V (vs. Li) or less at 25 ° C., more preferably 1.0 V (vs. Li) or less, as in the case of powder.

 ここで、本発明において基板の「最外殻粒子層」とは、基板である本発明のガラスセラミックスにおける、基板表面に露出している粒子により形成されている粒子層を意味する。基板以外の形態においても同様である。
 また、本発明において粒子の「最大粒子径」、および「平均粒子径」とは、走査型電子顕微鏡(SEM)観察により、24μm×19μmの視野において粒子全体が完全にこの視野中に含まれている粒子について、全ての粒子径(最も長くなる対角線の長さ)を測定したときの最大値、およびその平均値である。
Here, in the present invention, the "outermost particle layer" of the substrate means a particle layer formed by particles exposed on the surface of the substrate in the glass ceramic of the present invention which is the substrate. The same applies to forms other than the substrate.
Further, in the present invention, the "maximum particle size" and the "average particle size" of a particle are completely included in the field of view of 24 μm × 19 μm by observation with a scanning electron microscope (SEM). It is the maximum value when all the particle diameters (the length of the longest diagonal line) are measured, and the average value thereof.

 以上のような構成である本発明のガラスセラミックスは、焼成時などにおいて粒子が粗大化せずに緻密化する組成であり、高温から炉冷しても結晶構造が変わりにくい組成である。そして、工業的に容易に製造することが可能であり、また、高いリチウムイオン伝導性と高い耐還元性とを合わせ持ち、この高い耐還元性により低電位側に広い電位窓を有する固体電解質となるため、低電位の電極活物質と高電位の電極活物質とを組み合わせて使用することができ、結果として高電圧の電池を得ることができる。そして、高い電圧で充放電を行っても還元による分解が起こり難く、長期間リチウムイオン伝導性が安定である。したがって、全固体二次電池や海水電池などの固体電解質として好適に用いることができる。 The glass-ceramics of the present invention having the above-mentioned structure have a composition in which the particles are densified without coarsening during firing, and the crystal structure does not easily change even when cooled in a furnace from a high temperature. A solid electrolyte that can be easily manufactured industrially, has high lithium ion conductivity and high reduction resistance, and has a wide potential window on the low potential side due to this high reduction resistance. Therefore, the low-potential electrode active material and the high-potential electrode active material can be used in combination, and as a result, a high-voltage battery can be obtained. Further, even if charging / discharging is performed at a high voltage, decomposition due to reduction is unlikely to occur, and lithium ion conductivity is stable for a long period of time. Therefore, it can be suitably used as a solid electrolyte for all-solid-state secondary batteries and seawater batteries.

 例えば、本発明のガラスセラミックスを全固体二次電池の固体電解質として用いる場合には、固体電解質層、および電極層(正極層、負極層)から選ばれる少なくとも1つに用いることができる。特に、本発明のガラスセラミックスは、高い耐還元性を有することから、固体電解質層または負極層に用いるのが好適である。以下において、これらについて詳細に説明する。 For example, when the glass ceramics of the present invention are used as the solid electrolyte of the all-solid secondary battery, it can be used for at least one selected from the solid electrolyte layer and the electrode layer (positive electrode layer, negative electrode layer). In particular, since the glass ceramics of the present invention have high reduction resistance, they are preferably used for the solid electrolyte layer or the negative electrode layer. These will be described in detail below.

<固体電解質層>
 本発明のガラスセラミックスに、必要に応じて無機バインダーなどを混合してから焼結することにより、全固体二次電池用の固体電解質層を形成することができる。特に、この固体電解質層は、リチウムイオン伝導性をより高めるという観点から、本発明のガラスセラミックスを80質量%以上含むのが好ましく、90質量%以上含むのがより好ましく、本発明のガラスセラミックスからなるのがより好ましい。そして、板状の固体電解質層である場合には、その厚みは前述した基板と同様に0.5μm以上300μm以下であると好適である。
<Solid electrolyte layer>
A solid electrolyte layer for an all-solid secondary battery can be formed by mixing the glass ceramics of the present invention with an inorganic binder or the like, if necessary, and then sintering the glass ceramics. In particular, the solid electrolyte layer preferably contains 80% by mass or more of the glass ceramic of the present invention, more preferably 90% by mass or more, from the viewpoint of further enhancing the lithium ion conductivity, from the glass ceramic of the present invention. Is more preferable. In the case of a plate-shaped solid electrolyte layer, it is preferable that the thickness thereof is 0.5 μm or more and 300 μm or less as in the case of the above-mentioned substrate.

 なお、無機バインダーを使用する場合には、リチウムイオン伝導性の無機バインダーを用いるのが好ましく、このような無機バインダーとしては、非晶質または多晶質のLiPO3、70LiPO3-30Li3PO4、Li2O-SiO2、Li2O-SiO2-P25-B25-BaOなどが例示される。特に、Li2O-P25系ガラス、Li2O-P25-M23系のガラス(PがSiに置換されたものも含み、MはAlまたはBである)、およびLiPO3を溶融後に急冷して非晶質にしたものから選択される1種以上が好ましい。特に好ましい態様であるLiPO3を溶融後に急冷して非晶質にしたものは、ガラス転移温度(Tg)が約280℃と低く且つ結晶化も起こり難いため、この無機バインダーと本発明のガラスセラミックスとを混合して600℃に加熱することで、高いリチウムイオン伝導性および高い耐還元性を有する固体電解質層を形成できる。そして、固体電解質層に含まれる無機バインダーの含有量は、固体電解質層の全質量に対して、20質量%以下であるのが好ましく、10質量%以下であるのがより好ましく、5質量%以下であるのがさらに好ましい。 In the case of using an inorganic binder, it is preferable to use a lithium ion conductive inorganic binder Examples of the inorganic binder, LiPO 3 of amorphous or polycrystalline, 70LiPO 3 -30Li 3 PO 4 , Li 2 O-SiO 2 , Li 2 O-SiO 2 -P 2 O 5- B 2 O 5- BaO and the like. In particular, Li 2 O-P 2 O 5 type glass, Li 2 O-P 2 O 5 -M 2 O 3 type glass (including those in which P is replaced with Si, M is Al or B), And one or more selected from those obtained by quenching LiPO 3 after melting to make it amorphous are preferable. A particularly preferable embodiment of LiPO 3 which has been melted and then rapidly cooled to make it amorphous has a low glass transition temperature (Tg) of about 280 ° C. and is unlikely to undergo crystallization. Therefore, this inorganic binder and the glass ceramics of the present invention are used. By mixing and heating to 600 ° C., a solid electrolyte layer having high lithium ion conductivity and high reduction resistance can be formed. The content of the inorganic binder contained in the solid electrolyte layer is preferably 20% by mass or less, more preferably 10% by mass or less, and 5% by mass or less, based on the total mass of the solid electrolyte layer. Is more preferable.

<電極層>
 本発明のガラスセラミックスに、電極活物質(正極活物質または負極活物質)と、必要に応じて導電助剤、無機バインダー等とを混合してから焼結することにより、全固体二次電池用の電極層を形成することができる。特に、この電極層は、本発明のガラスセラミックスを20質量%以上含むのが好ましく、40質量%以上含むのがより好ましく、50質量%以上含むのがさらに好ましい。電極層においてリチウムイオンの移動経路が確保され易くなるため、電池の充放電特性や電池容量を高め易くできるからである。一方で、この電極層において、本発明のガラスセラミックスは80質量%以下であるのが好ましく、70質量%以下であるのがより好ましい。電極活物質の充填量が確保され、電池容量を高くすることができるからである。
<Electrode layer>
For all-solid-state secondary batteries, the glass ceramics of the present invention are mixed with an electrode active material (positive electrode active material or negative electrode active material) and, if necessary, a conductive auxiliary agent, an inorganic binder, etc., and then sintered. The electrode layer can be formed. In particular, this electrode layer preferably contains the glass ceramics of the present invention in an amount of 20% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. This is because the movement path of lithium ions can be easily secured in the electrode layer, so that the charge / discharge characteristics and the battery capacity of the battery can be easily improved. On the other hand, in this electrode layer, the glass ceramic of the present invention is preferably 80% by mass or less, more preferably 70% by mass or less. This is because the filling amount of the electrode active material is secured and the battery capacity can be increased.

 なお、正極活物質としては、例えば、NASICON型のLiV2(PO43、オリビン型のLixyMtPO4(但し、JはAl、Mg、Wから選ばれる少なくとも1種以上、MtはNi、Co、Fe、Mnから選ばれる1種以上であり、xは0.9≦x≦1.5、yは0≦y≦0.2を満たす)、層状酸化物、またはスピネル型酸化物などが挙げられる。特に、LiMtO2及び/又はLiMt24(但し、MtはFe、Ni、Co及びMnの中から選ばれる1種以上)であるのが好ましい。本発明のガラスセラミックスと正極活物質とが接合し易くなり、これらの間でのリチウムイオンの受け渡しが行われ易くなるため、全固体二次電池の充放電特性をより高めることができるからである。正極活物質の具体例としては、例えばLiCoPO4、LiCoO2、LiMn24などが挙げられる。さらに微量成分としてMgを添加することにより、正極活物質の熱分解を抑制し、放電容量を向上することができる。 As the positive electrode active material, for example, NASICON type LiV 2 (PO 4 ) 3 and olivine type Li x J y MtPO 4 (however, J is at least one selected from Al, Mg, and W, and Mt is One or more selected from Ni, Co, Fe, and Mn, x satisfies 0.9 ≦ x ≦ 1.5, y satisfies 0 ≦ y ≦ 0.2), layered oxide, or spinel-type oxide. And so on. In particular, LiMtO 2 and / or LiMt 2 O 4 (where Mt is one or more selected from Fe, Ni, Co and Mn) is preferable. This is because the glass ceramics of the present invention and the positive electrode active material can be easily bonded to each other, and lithium ions can be easily transferred between them, so that the charge / discharge characteristics of the all-solid-state secondary battery can be further improved. .. Specific examples of the positive electrode active material include LiCoPO 4 , LiCoO 2 , LiMn 2 O 4, and the like. Further, by adding Mg as a trace component, thermal decomposition of the positive electrode active material can be suppressed and the discharge capacity can be improved.

 また、負極活物質としては、例えば、NASICON型、オリビン型、スピネル型の結晶を含む酸化物、ルチル型酸化物、アナターゼ型酸化物、もしくは非晶質金属酸化物、または金属合金等から選ばれる少なくとも1種以上が挙げられる。さらに、Li4Ti512やTiO2などの低電位な負極活物質も使用可能である。特に、Li1+x+zAlxTi2-xSiz3-z12(但し、xは0≦x≦0.8、zは0≦z≦0.6を満たす)、Li4Ti512、TiO2から選ばれる少なくとも1つであるのがより好ましい。本発明のガラスセラミックスと負極活物質とが接合し易くなり、これらの間でのリチウムイオンの受け渡しが行われ易くなるため、全固体二次電池の充放電特性をより高めることができるからである。負極活物質の具体例としては、例えばLi22(PO43、Li3Fe2(PO43、LiFePO4、Li4Ti512、SiOx(0.25≦x≦2)、Cu6Sn5などが挙げられる。 The negative electrode active material is selected from, for example, NASICON-type, olivine-type, spinel-type crystal-containing oxides, rutile-type oxides, anatase-type oxides, amorphous metal oxides, metal alloys, and the like. At least one or more. Further, low potential negative electrode active materials such as Li 4 Ti 5 O 12 and TiO 2 can also be used. In particular, Li 1 + x + z Al x Ti 2-x Si z P 3-z O 12 (where x satisfies 0 ≦ x ≦ 0.8 and z satisfies 0 ≦ z ≦ 0.6), Li 4 More preferably, it is at least one selected from Ti 5 O 12 and Ti O 2. This is because the glass ceramics of the present invention and the negative electrode active material can be easily bonded to each other, and lithium ions can be easily transferred between them, so that the charge / discharge characteristics of the all-solid-state secondary battery can be further improved. .. Specific examples of the negative electrode active material include, for example, Li 2 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4 , Li 4 Ti 5 O 12 , SiO x (0.25 ≤ x ≤ 2). ), Cu 6 Sn 5 and the like.

 これらの電極活物質の含有量は、電極層において10質量%以上50質量%以下であるのが好ましい。特にこの含有量を10質量%以上にすることで、全固体二次電池の電池容量をより高めることができる。そして、より好ましくは20質量%を下限とするのが好適である。一方で、この含有量を50質量%以下にすることで、電極層のイオン伝導性を確保し易くできる。そして、より好ましくは40質量%、さらに好ましくは30質量%を上限とするのが好適である。 The content of these electrode active materials is preferably 10% by mass or more and 50% by mass or less in the electrode layer. In particular, by setting this content to 10% by mass or more, the battery capacity of the all-solid-state secondary battery can be further increased. Then, more preferably, the lower limit is 20% by mass. On the other hand, by setting this content to 50% by mass or less, it is possible to easily secure the ionic conductivity of the electrode layer. Then, it is more preferable that the upper limit is 40% by mass, more preferably 30% by mass.

 なお、電極層に用いる導電助剤としては、黒鉛、活性炭、カーボンナノチューブなどの炭素化合物、Ni、Fe、Mn、Co、Mo、Cr、AgおよびCuから選ばれる少なくとも1種からなる金属、これらの合金、チタンやステンレス、アルミニウム等の金属、白金、金、ルテニウム、ロジウム等の貴金属などが例示される。このような電子伝導性の高い材料を導電助剤として用いることにより、電極層中に形成された狭い電子伝導経路を通じて伝導できる電流量が増大するため、全固体二次電池の充放電特性を高めることができる。 The conductive auxiliary agent used for the electrode layer includes carbon compounds such as graphite, activated carbon, and carbon nanotubes, and metals composed of at least one selected from Ni, Fe, Mn, Co, Mo, Cr, Ag, and Cu. Examples include alloys, metals such as titanium, stainless steel, and aluminum, and precious metals such as platinum, gold, ruthenium, and rhodium. By using such a material having high electron conductivity as a conductive auxiliary agent, the amount of current that can be conducted through the narrow electron conduction path formed in the electrode layer is increased, so that the charge / discharge characteristics of the all-solid-state secondary battery are improved. be able to.

 この導電助剤の含有率は、電池容量と電極層の電子伝導性のバランスを考慮し、電極層に含まれる電極材料(すなわち、正極活物質または負極活物質)全体に対し、1質量%以上20質量%以下であることが好ましく、2質量%以上15質量%以下であることがより好ましく、4質量%以上10質量%以下であることが最も好ましい。 The content of this conductive auxiliary agent is 1% by mass or more with respect to the entire electrode material (that is, positive electrode active material or negative electrode active material) contained in the electrode layer in consideration of the balance between the battery capacity and the electron conductivity of the electrode layer. It is preferably 20% by mass or less, more preferably 2% by mass or more and 15% by mass or less, and most preferably 4% by mass or more and 10% by mass or less.

 また、電極層に用いる無機バインダーとしては、前述した固体電解質層と同じものが使用可能である。さらには、この電極層、つまり正極層および負極層から選ばれる少なくとも1つに集電体を設けてもよい。集電体を通じて電気を取り出し易くなるため、全固体二次電池への充電や、全固体二次電池からの放電を行い易くできるからである。集電体としては、正極層および/または負極層に薄膜状の金属層が積層あるいは接合されたものであってもよく、原料組成物に金属層や導電体の前駆体を積層した後で焼成したものであってもよい。なお、電極層自体の電子伝導性が高ければ、この集電体は設けなくてもよい。 Further, as the inorganic binder used for the electrode layer, the same one as the above-mentioned solid electrolyte layer can be used. Further, a current collector may be provided in at least one of the electrode layers, that is, the positive electrode layer and the negative electrode layer. This is because electricity can be easily taken out through the current collector, so that the all-solid-state secondary battery can be easily charged and the all-solid-state secondary battery can be easily discharged. The current collector may be one in which a thin metal layer is laminated or bonded to a positive electrode layer and / or a negative electrode layer, and is fired after laminating a metal layer or a precursor of a conductor on a raw material composition. It may be the one that has been used. If the electron conductivity of the electrode layer itself is high, this current collector may not be provided.

 以上のような固体電解質層および電極層を用いて全固体二次電池を形成することができるが、固体電解質層、正極層および負極層のうち1種または2種について従来公知のものを用いてもよく、こうした従来公知のものと本発明のガラスセラミックスを含む固体電解質層、または電極層とを組み合わせてもよい。しかしながら、固体電解質層、正極層および負極層のいずれも本発明のガラスセラミックスを含むものとすることにより、より充放電特性の高い全固体二次電池を形成することができる。 An all-solid secondary battery can be formed by using the solid electrolyte layer and the electrode layer as described above, but one or two of the solid electrolyte layer, the positive electrode layer and the negative electrode layer, which are conventionally known, can be used. Alternatively, such a conventionally known one may be combined with a solid electrolyte layer containing the glass ceramics of the present invention or an electrode layer. However, by including the glass ceramics of the present invention in all of the solid electrolyte layer, the positive electrode layer, and the negative electrode layer, an all-solid secondary battery having higher charge / discharge characteristics can be formed.

 なお、本発明のガラスセラミックス、電極活物質および導電助剤の含有量とこれらの組成は、固体電解質層または電極層を削り出して、電界放出形透過電子顕微鏡(FE-TEM)に搭載されたエネルギー損出分析装置若しくはX線分析装置、あるいは電界放出形走査顕微鏡(FE-SEM)に搭載されたX線分析装置を用いて特定することが可能である。ここで、X線分析装置を用いた場合、Li2O成分は直接分析できないが、他の構成成分から電荷を算出することで、Li2O成分の含有量を推定することが可能である。 The contents of the glass ceramics, the electrode active material, and the conductive auxiliary agent of the present invention and their compositions were mounted on a field emission transmission electron microscope (FE-TEM) by carving out a solid electrolyte layer or an electrode layer. It can be identified by using an energy loss analyzer or an X-ray analyzer, or an X-ray analyzer mounted on a field emission scanning microscope (FE-SEM). Here, when the X-ray analyzer is used, the Li 2 O component cannot be analyzed directly, but the content of the Li 2 O component can be estimated by calculating the electric charge from other constituent components.

<本発明のガラスセラミックスの製造方法>
 次に、本発明のガラスセラミックスの製造方法について詳細に説明する。
 本発明のガラスセラミックスは、無機材料の焼成や熔解、混合焼成などの、無機材料製造の一般的な方法を用いることができ、工業的な製造が容易であることが大きな特徴である。そして、限定されるものではないが、原料組成物を混合する混合工程、およびこの混合された原料組成物を焼成するか、この原料組成物を所望の形状に成形してから焼成することにより所望の結晶相を生成させる焼成工程を含む固相法により本発明のガラスセラミックスを製造するのが好適である。
<Manufacturing method of glass ceramics of the present invention>
Next, the method for producing the glass ceramics of the present invention will be described in detail.
The glass ceramics of the present invention are characterized in that general methods for producing inorganic materials such as firing, melting, and mixed firing of inorganic materials can be used, and industrial production is easy. Then, although not limited to, a mixing step of mixing the raw material compositions and firing of the mixed raw material composition or molding of the raw material composition into a desired shape and then firing are desired. It is preferable to produce the glass ceramics of the present invention by a solid phase method including a firing step of producing the crystal phase of the above.

 例えば、本発明のガラスセラミックスの製造方法の一例としては、少なくともLiおよび/またはPを含有する無機物質を含むリチウムイオン伝導性原料を溶解およびガラス化して原料ガラスを得る原料ガラス調製工程と、この原料ガラスを粉砕してからZrを含有するアモルファス状の無機物質を混合して粉末状のアモルファス前駆体を得るアモルファス前駆体調製工程と、このアモルファス前駆体を1100~1300℃で焼成して結晶を析出させ、酸化物基準のモル%で、Li2O成分を10~20%、P25成分を30~40%、ZrO2成分を40~50%、Y23成分を0~4%、Al23成分を0~3%、およびGeO2成分を0~2%含有し、菱面体晶系のNASICON型構造である結晶相を含み、X線回折およびリートベルト解析により同定されたこの結晶相のa軸格子定数が8.872Å以上であるリチウムイオン伝導性ガラスセラミックスを得る焼成工程と、を備える製造方法が挙げられる。なお、上記した焼成工程は、2段階以上に分けて行ってもよいが、製造効率などの観点から、1段階で行うのが好ましい。 For example, as an example of the method for producing glass ceramics of the present invention, there is a raw material glass preparation step of melting and vitrifying a lithium ion conductive raw material containing an inorganic substance containing at least Li and / or P to obtain a raw glass. An amorphous precursor preparation step of crushing the raw material glass and then mixing an amorphous inorganic substance containing Zr to obtain a powdery amorphous precursor, and firing this amorphous precursor at 1100-1300 ° C. to form crystals. Precipitated, in terms of oxide-based mol%, Li 2 O component is 10 to 20%, P 2 O 5 component is 30 to 40%, ZrO 2 component is 40 to 50%, and Y 2 O 3 component is 0 to 4. %, Al 2 O 3 component 0 to 3%, and GeO 2 component 0 to 2%, including a crystal phase having a rhombohedral-based NASICON type structure, identified by X-ray diffraction and Rietbelt analysis. Examples thereof include a manufacturing method including a firing step for obtaining lithium ion conductive glass ceramics having an a-axis lattice constant of 8.872 Å or more in the crystal phase of the octopus. The above-mentioned firing step may be performed in two or more steps, but it is preferably performed in one step from the viewpoint of manufacturing efficiency and the like.

 そして、前述した製造方法の例において、焼成工程の前に、粉末状のアモルファス前駆体を目的とする大きさおよび厚さの基板状に成形する成形工程を含み、この成形工程により得られたアモルファス前駆体の成形体を前述した焼成工程によって焼成することにより、基板状のリチウムイオン伝導性ガラスセラミックス(基板である本発明のガラスセラミックス)を得ることができる。基板以外の形態である本発明のガラスセラミックスを製造する場合であっても、同様に成形工程により粉末状のアモルファス前駆体を目的とする形状に成形すればよい。 Then, in the above-mentioned example of the manufacturing method, before the firing step, a molding step of molding the powdery amorphous precursor into a substrate having a target size and thickness is included, and the amorphous obtained by this molding step is included. By firing the molded body of the precursor by the firing step described above, a substrate-like lithium ion conductive glass ceramic (the glass ceramic of the present invention which is a substrate) can be obtained. Even in the case of producing the glass ceramics of the present invention in a form other than the substrate, the powdery amorphous precursor may be molded into the desired shape by the molding step in the same manner.

 なお、粉末以外の形態である本発明のガラスセラミックスを製造する場合において、粉末状のアモルファス前駆体を前述した焼成工程によって焼成した後、この焼成後の粉末を目的とする形状に成形する方法(成形後に焼成工程を行わない方法、および焼成後に成形再焼成する方法)では、粒界抵抗が低く、高いリチウムイオン伝導性および高い耐還元性を有する本発明のガラスセラミックスを得ることができない。ポリマー等に混合してシート成形する場合などにおいても同様である。 In the case of producing the glass ceramics of the present invention in a form other than powder, a method of firing a powdery amorphous precursor by the firing step described above and then molding the fired powder into a desired shape ( The glass ceramics of the present invention having low grain boundary resistance, high lithium ion conductivity and high reduction resistance cannot be obtained by the method in which the firing step is not performed after molding and the method in which molding is refired after firing). The same applies when the sheet is molded by mixing with a polymer or the like.

 上記において説明した実施形態は、本発明の理解を容易にするための一例に過ぎず、本発明を限定するものではない。すなわち、上記において説明した成分等については、本発明の趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることは勿論である。 The embodiments described above are merely examples for facilitating the understanding of the present invention, and do not limit the present invention. That is, the components and the like described above can be changed and improved without departing from the spirit of the present invention, and it goes without saying that the present invention includes equivalents thereof.

 以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されるものではなく、本発明の技術的思想内において様々な変形が可能である。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to the following examples, and various modifications can be made within the technical idea of the present invention.

<アモルファス組成を有さない前駆体を用いた固相法による固体電解質(比較例1)の作製>
 原料粉末として酸化ジルコニア(ZrO2)、炭酸リチウム(Li2CO3)、リン酸二水素アンモニウム(NH42PO4)、および酸化イットリウム(Y23)を用い、Li1.150.15Zr1.85312の組成の量論比となるように調合した後、600mlのPPカップに入れて、外径10mmのYTZボールを用いてポットミルで3時間混合した。そして、得られた混合粉末を白金ポットに入れ、900℃で3時間焼成して前駆体を得た。なお、この際の昇温速度は300℃/hとした。
 さらに、得られた前駆体を、アルミナ乳鉢および乳棒を用いて粉砕し、106μmメッシュパスのものを得た。その後、遊星型ポートミルで累積90%粒子径(D90)が1μm以下となるまで粉砕し、乾燥した。そして、得られた乾燥粉末を白金ポットに入れてカンタル炉にて1200℃で20時間焼成し、炉冷して、比較例1の固体電解質粉末を得た。
<Preparation of solid electrolyte (Comparative Example 1) by solid phase method using a precursor having no amorphous composition>
Using zirconia oxide (ZrO 2 ), lithium carbonate (Li 2 CO 3 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and yttrium oxide (Y 2 O 3 ) as raw material powders, Li 1.15 Y 0.15 Zr After being prepared so as to have a quantitative ratio of 1.85 P 3 O 12 , the mixture was placed in a 600 ml PP cup and mixed with a YTZ ball having an outer diameter of 10 mm for 3 hours in a pot mill. Then, the obtained mixed powder was placed in a platinum pot and calcined at 900 ° C. for 3 hours to obtain a precursor. The rate of temperature rise at this time was set to 300 ° C./h.
Further, the obtained precursor was pulverized using an alumina mortar and pestle to obtain a 106 μm mesh pass. Then, it was crushed with a planetary port mill until the cumulative 90% particle size (D90) became 1 μm or less, and dried. Then, the obtained dry powder was placed in a platinum pot, fired in a cantal furnace at 1200 ° C. for 20 hours, and cooled in a furnace to obtain a solid electrolyte powder of Comparative Example 1.

 また、上記焼成前の乾燥粉末をメノウ乳鉢で粉砕後に、0.5mmメッシュパスしたサンプル1.5gを外径20mmの金型を用いて20kNの力で錠剤成形し、得られた成形体を白金板の上にのせてカンタル炉にて1200℃で20時間焼成および炉冷して、比較例1の固体電解質ペレットも得た。 Further, after crushing the dry powder before firing in an agate mortar, 1.5 g of a sample that passed 0.5 mm mesh was tablet-molded with a force of 20 kN using a mold having an outer diameter of 20 mm, and the obtained molded product was platinum. The solid electrolyte pellets of Comparative Example 1 were also obtained by placing them on a plate and calcining them in a cantal furnace at 1200 ° C. for 20 hours and cooling them.

 なお、上記した累積90%粒子径(D90)は、粒子径分布において粒子径の小さい方からの累積90体積%の粒子径を意味し、JIS R 1629「ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定方法」のレーザー回折・散乱法による粒子径分布測定装置(スペクトリス社製、マスターサイザー3000)によって測定、算出した。 The cumulative 90% particle size (D90) described above means a cumulative 90% by volume particle size from the smaller particle size in the particle size distribution, and is based on JIS R 1629 "Laser diffraction / scattering method for fine ceramic raw materials". It was measured and calculated by a particle size distribution measuring device (manufactured by Spectris, Mastersizer 3000) by the laser diffraction / scattering method of "Particle size distribution measuring method".

<アモルファス組成を有する前駆体を用いた固相法による固体電解質(実施例1~10)の作製>
 アモルファス状のジルコニウム含有無機原料とそれ以外の原料をガラス化した原料ガラスとを粉砕混合後に乾燥し、アモルファス組成を有する前駆体を得て、これを焼成あるいは錠剤成形後に焼成することにより本発明のガラスセラミックスである実施例1~10の固体電解質を得た。なお、後述する図面においては、これら実施例のうち、実施例2を「LYZSP12」あるいは「LYZSP」と示す場合もある。
 以下、この方法について手順を追って詳細を示す。
<Preparation of solid electrolyte (Examples 1 to 10) by solid phase method using a precursor having an amorphous composition>
The present invention is obtained by pulverizing and mixing an amorphous zirconium-containing inorganic raw material and a raw material glass obtained by vitrifying other raw materials, drying the mixture to obtain a precursor having an amorphous composition, and firing the precursor after firing or tablet molding. Solid electrolytes of Examples 1 to 10 which are glass ceramics were obtained. In the drawings described later, of these examples, Example 2 may be referred to as "LYZSP12" or "LYZSP".
The details of this method will be described below step by step.

(原料ガラスの作製)
 まず、メタリン酸リチウム(LiPO3)、リン酸三リチウム(Li3PO4)、酸化イットリウム(Y23)、または二酸化ケイ素(SiO2)を下記表1あるいは下記表2の量で調合した。この調合した各試料を白金ポットに入れ、1100℃以上でよく撹拌しながら熔解してガラス化し、金属製のキャスト版の上にキャストした。白金ポットに付着した原料ガラスを含めて、回収した原料ガラスの収率は、実施例1~10のいずれも重量比で99%以上であった。
(Making raw glass)
First, lithium metaphosphate (LiPO 3 ), trilithium phosphate (Li 3 PO 4 ), yttrium oxide (Y 2 O 3 ), or silicon dioxide (SiO 2 ) was prepared in the amounts shown in Table 1 below or Table 2 below. .. Each of the prepared samples was placed in a platinum pot, melted and vitrified with good stirring at 1100 ° C. or higher, and cast on a metal cast plate. The yield of the recovered raw material glass including the raw material glass adhering to the platinum pot was 99% or more by weight in each of Examples 1 to 10.

(ガラスセラミックス固体電解質の作製)
 上記各原料ガラスを106μmメッシュパスとなるまで粉砕後、実施例1~9についてはアモルファス状のリン酸ジルコニウム((ZrO)2(HPO42)をそれぞれ下記表1の量で、実施例10については酸化イットリウム(Y23)とアモルファス状のリン酸ジルコニウム((ZrO)2(HPO42)とを下記表2の量で加え、1-プロパノールを分散媒として遊星ボールミルにより粉砕した。このときの粉砕メディアは、外径2mmのYTZビーズ(ニッカトー社製)とした。そして、粉砕後のスラリーを乾燥し、この乾燥粉末をアモルファス前駆体として、白金ポットにいれて、カンタル炉にて1200℃20時間焼成および炉冷して、実施例1~10の固体電解質粉末を得た。
 また、上記焼成前の各乾燥粉末をメノウ乳鉢で粉砕後に、0.5mmメッシュパスしたサンプル1.5gを外径20mmの金型を用いて20kNの力で錠剤成形し、得られた成形体を白金板の上にのせて、カンタル炉にて1200℃で20時間焼成および炉冷して、実施例1~10の固体電解質ペレットも得た。
(Preparation of glass ceramic solid electrolyte)
After crushing each of the above raw material glasses until a 106 μm mesh pass is obtained, in Examples 1 to 9, amorphous zirconium phosphate ((ZrO) 2 (HPO 4 ) 2 ) was added in the amount shown in Table 1 below, respectively, in Example 10 Yttrium oxide (Y 2 O 3 ) and amorphous zirconium phosphate ((ZrO) 2 (HPO 4 ) 2 ) were added in the amounts shown in Table 2 below, and 1-propanol was used as a dispersion medium and pulverized by a planetary ball mill. .. The crushed medium at this time was YTZ beads (manufactured by Nikkato Corporation) having an outer diameter of 2 mm. Then, the slurry after crushing is dried, and this dry powder is put into a platinum pot as an amorphous precursor, fired in a cantal furnace for 20 hours at 1200 ° C., and cooled in a furnace to obtain the solid electrolyte powders of Examples 1 to 10. Obtained.
Further, after each of the dry powders before firing was crushed in an agate mortar, 1.5 g of a sample that passed 0.5 mm mesh was tablet-molded with a force of 20 kN using a mold having an outer diameter of 20 mm, and the obtained molded product was obtained. It was placed on a platinum plate and calcined and cooled in a cantal furnace at 1200 ° C. for 20 hours to obtain solid electrolyte pellets of Examples 1 to 10.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

<密度およびリチウムイオン伝導度測定>
 比較例1、実施例1、および実施例2の固体電解質ペレットを、#800および#2000の耐水研磨紙と1-プロパノールとを用いて表面を研磨した後、ノギス、マイクロメータ、および電子天秤により、それぞれ直径、厚さ、重量を測定し、密度を算出した。この結果を下記表3に示す。
<Density and lithium ion conductivity measurement>
The surfaces of the solid electrolyte pellets of Comparative Examples 1, 1 and 2 were polished with # 800 and # 2000 water-resistant abrasive paper and 1-propanol, and then calipers, a micrometer, and an electronic balance were used. , The diameter, thickness, and weight were measured, respectively, and the density was calculated. The results are shown in Table 3 below.

 さらに、マグネトロンスパッタ装置(サンユー電子社製、SC-701HMC)により、ブロッキング電極として金電極を各固体電解質ペレットの両面に形成した。そして、電気化学評価装置(バイオロジック社製、SP300)により、25℃において、周波数0.1Hz~7MHz、振幅電圧10mV、開回路電圧の条件によりインピーダンス測定を行い、リチウムイオン伝導度を算出した。この結果も下記表3に示す。なお、参考として、実施例2のインピーダンス測定により得られたCole-Cole Plotを図1に示した。上記したリチウムイオン伝導度は、低周波側の屈曲点(実施例2では図1の矢印で示される部分)の抵抗と、厚さ、電極面積を基に算出した。
 実施例1および実施例2は、比較例1よりも1オーダーあるいはそれ以上リチウムイオン伝導度が高い固体電解質であることが示された。
Further, gold electrodes were formed on both sides of each solid electrolyte pellet as blocking electrodes by a magnetron sputtering apparatus (SC-701HMC manufactured by Sanyu Electronics Co., Ltd.). Then, the impedance was measured by an electrochemical evaluation device (manufactured by Biologic, SP300) at 25 ° C. under the conditions of a frequency of 0.1 Hz to 7 MHz, an amplitude voltage of 10 mV, and an open circuit voltage, and the lithium ion conductivity was calculated. This result is also shown in Table 3 below. As a reference, the Core-Cole Plot obtained by the impedance measurement of Example 2 is shown in FIG. The above-mentioned lithium ion conductivity was calculated based on the resistance, thickness, and electrode area of the bending point on the low frequency side (the portion indicated by the arrow in FIG. 1 in Example 2).
It was shown that Example 1 and Example 2 are solid electrolytes having a lithium ion conductivity of one order or more higher than that of Comparative Example 1.

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

<粉末X線回折およびリートベルト解析>
 固体電解質の結晶構造を確認するために、粉末X線回折およびリートベルト解析を行った。まず、比較例1、実施例1、および実施例2の固体電解質粉末をアルミナ乳鉢で粉砕後に、粉砕した試料1gと、基準として酸化亜鉛(ZnO、高純度化学研究所社製)0.1gと、を加えてメノウ乳鉢乳棒を用いて5分間混合し、粉末X線回折測定を行った。なお、粉末X線回折測定は、ブルカー社製のD8 DISCOVERを用い、重量計測は、0.1mg単位まで秤量できる電子天秤を用いて、静電気などにより測定前後に重量変化がないようにイオナイザーを用いて除電しながら秤量した。ZnOについては、α―Al23(STANDARD REFERANCE MATERIAL 674、US DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS製)を用いて校正を行った。なお、ZnOの校正は、ZnO 0.181gと、前述したα―Al23 0.122gとをメノウ乳鉢を用いて混合し、前述と同様の方法によるこの粉末X線回折測定により行った。
<Powder X-ray diffraction and Rietveld analysis>
Powder X-ray diffraction and Rietveld analysis were performed to confirm the crystal structure of the solid electrolyte. First, the solid electrolyte powders of Comparative Example 1, Example 1, and Example 2 were crushed in an alumina mortar, and then 1 g of the crushed sample and 0.1 g of zinc oxide (ZnO, manufactured by High Purity Chemical Laboratory Co., Ltd.) as a reference. , And mixed for 5 minutes using a Menou mortar and pestle, and powder X-ray diffraction measurement was performed. For powder X-ray diffraction measurement, D8 DISCOVER manufactured by Bruker Co., Ltd. is used, and for weight measurement, an electronic balance capable of weighing up to 0.1 mg is used, and an ionizer is used so that the weight does not change before and after the measurement due to static electricity or the like. Weighed while removing static electricity. ZnO was calibrated using α-Al 2 O 3 (STANDARD REFERANCE MATERIAL 674, US DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS). Incidentally, the calibration of ZnO, and ZnO 0.181 g, were mixed using an agate mortar and α-Al 2 O 3 0.122g described above, was carried out by the powder X-ray diffraction measurement using the same method as described above.

 また、リートベルト解析は、上記した粉末X線回折測定結果を、リートベルト解析ソフトウェア「Z-Rietveldコード」によりプロファイル関数「Split Pseudo Voigt function」で解析した。なお、結晶構造の初期パラメーター値は、CSD番号でα相(LiZr2(PО43α)が97658、ZnOが26170、α´相(LiZr2(PО43α´)が89456、YPO4が201131、ZrO2が80046とした。また、空間群は全ての相について初期のまま固定し、格子定数は全ての相について空間群で許容される全ての値を可変とした。 In the Rietveld analysis, the powder X-ray diffraction measurement result described above was analyzed by the profile function "Split Pseudo Voigt function" by the Rietveld analysis software "Z-Rieveld code". The initial parameter values of crystal structure, alpha-phase in the CSD numbers (LiZr 2 (PО 4) 3 α) is 97 658, ZnO is twenty-six thousand one hundred seventy, [alpha] 'phase (LiZr 2 (PО 4) 3 α') is 89456, YPO 4 was 201113 and ZrO 2 was 80046. In addition, the space group was fixed as it was for all phases, and the lattice constant was variable for all the values allowed in the space group for all phases.

 このリートベルト解析の結果を下記表4に示す。また、このリートベルト解析により得られた、比較例1のα相の構造パラメーターを下記表5に、実施例1のα相の構造パラメーターを下記表6に、実施例2のα相の構造パラメーターを下記表7に示す。なお、結晶相以外の相(不特定相、アモルファス相が主体)については、以下の計算式により算出した。 The results of this Rietveld analysis are shown in Table 4 below. Further, the structural parameters of the α phase of Comparative Example 1 obtained by this Rietbelt analysis are shown in Table 5 below, the structural parameters of the α phase of Example 1 are shown in Table 6 below, and the structural parameters of the α phase of Example 2 are shown in Table 6 below. Is shown in Table 7 below. The phases other than the crystalline phase (mainly unspecified phase and amorphous phase) were calculated by the following formula.

(結晶相以外の相の計算式)
 結晶相以外の相の質量比(ZnOで規格化)=(混合したZnOを1とした評価試料の質量比-リートベルト解析により得られたZnOを1としたZnO以外の各結晶相の質量比の総和)÷混合したZnOを1とした評価試料の質量比
(結晶相以外の相のZnOを除いた質量比の計算式)
 結晶相以外の相の質量比(ZnOで規格化)/ZnO以外の各結晶相の質量比の総和×100%
 リートベルト解析によって校正されたZnOの補正係数は0.879倍であった。
(Calculation formula for phases other than crystalline phase)
Mass ratio of phases other than crystal phase (standardized by ZnO) = (mass ratio of evaluation sample with mixed ZnO as 1-mass ratio of each crystal phase other than ZnO with ZnO as 1 obtained by Rietbelt analysis ÷ Mass ratio of the evaluation sample with the mixed ZnO as 1 (calculation formula of the mass ratio excluding ZnO of phases other than the crystal phase)
Mass ratio of phases other than crystal phase (standardized by ZnO) / Total mass ratio of each crystal phase other than ZnO x 100%
The correction coefficient of ZnO calibrated by Rietveld analysis was 0.879 times.

 この結果からわかるように、比較例1、実施例1、および実施例2の固体電解質粉末はいずれも菱面体晶系のNASICON型構造であるLiZr2(PО43α相の結晶相を含むが、比較例1は結晶相以外の相がほとんどないのに対して、実施例1および実施例2は、アモルファス相が主体である結晶相以外の相が3質量%超(つまり結晶成分の質量和が全質量に対して97重量%未満)であった。また、これらのα相のa軸格子定数は、比較例1が8.872Å未満であるのに対して、実施例1および実施例2は8.882Å超であることが示された。 As can be seen from this result, the solid electrolyte powders of Comparative Example 1, Example 1, and Example 2 all contain a crystal phase of LiZr 2 (PO 4 ) 3 α phase, which is a rhombic crystal-based NASICON type structure. However, while Comparative Example 1 has almost no phase other than the crystalline phase, in Examples 1 and 2, the phase other than the crystalline phase, which is mainly an amorphous phase, exceeds 3% by mass (that is, the mass of the crystal component). The sum was less than 97% by weight based on the total mass). Further, it was shown that the a-axis lattice constants of these α phases were less than 8.872 Å in Comparative Example 1 and more than 8.882 Å in Examples 1 and 2.

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

<二次電子像観察>
 粒子の状態はリチウムイオン伝導性に大きく影響することから、比較例1、実施例1、および実施例2の固体電解質ペレットについて、最外殻粒子層の二次電子像観察も行った。なお、二次電子像観察は、日立ハイテクノロジーズ社製のS-3000Nを用いた。この結果について、比較例1の二次電子像を図2に、実施例1の二次電子像を図3に、実施例2の二次電子像を図4に示す。観察条件は、比較例1については、ワーキングディスタンス(WD;作動距離(対物レンズ中心から試料面までの距離))を16.5mm、加速電圧を15kV、倍率を500倍とした。実施例1については、WDを15.9mm、加速電圧を15kV、倍率を500倍とした。実施例2については、WDを11.5mm、加速電圧を15kV、倍率を500倍とした。
 同じ焼成条件であっても、アモルファス組成を有さない前駆体から得られた比較例1の固体電解質では、粒成長が顕著であった(図2)。一方、アモルファス組成を有する前駆体から得られた実施例1および実施例2の固体電解質では、明確なネックの形成が確認でき、粒界が緻密化されていた(図3、4)。
<Observation of secondary electron image>
Since the state of the particles greatly affects the lithium ion conductivity, the secondary electron image of the outermost particle layer was also observed for the solid electrolyte pellets of Comparative Example 1, Example 1, and Example 2. For the secondary electron image observation, S-3000N manufactured by Hitachi High-Technologies Corporation was used. Regarding this result, the secondary electron image of Comparative Example 1 is shown in FIG. 2, the secondary electron image of Example 1 is shown in FIG. 3, and the secondary electron image of Example 2 is shown in FIG. As for the observation conditions, for Comparative Example 1, the working distance (WD; working distance (distance from the center of the objective lens to the sample surface)) was 16.5 mm, the acceleration voltage was 15 kV, and the magnification was 500 times. In Example 1, the WD was 15.9 mm, the acceleration voltage was 15 kV, and the magnification was 500 times. In Example 2, the WD was 11.5 mm, the acceleration voltage was 15 kV, and the magnification was 500 times.
Even under the same firing conditions, the solid electrolyte of Comparative Example 1 obtained from the precursor having no amorphous composition showed remarkable grain growth (FIG. 2). On the other hand, in the solid electrolytes of Examples 1 and 2 obtained from the precursor having an amorphous composition, the formation of a clear neck was confirmed, and the grain boundaries were densified (FIGS. 3 and 4).

<保存試験>
 固体電解質は主として電池用途として用いられ、電池用途においては長期間リチウムイオン伝導性が安定であることも必要になるため、保存試験を行った。評価方法としては、25℃大気下にて、比較例1、実施例1、および実施例2の固体電解質ペレットを保存し、前述と同様の方法により粉末X線回折およびリートベルト解析、ならびに密度およびイオン伝導度測定を行った。なお、保存期間は1年とした。
<Preservation test>
The solid electrolyte is mainly used for battery applications, and since it is necessary for the lithium ion conductivity to be stable for a long period of time in battery applications, a storage test was conducted. As an evaluation method, the solid electrolyte pellets of Comparative Example 1, Example 1, and Example 2 were stored in an atmosphere of 25 ° C., powder X-ray diffraction and Rietveld analysis were performed by the same method as described above, and density and density and Ion conductivity was measured. The storage period was one year.

 下記表8に実施例の保存試験開始前(初期品)および1年保存後(1年後)のリートベルト解析の結果を、下記表9にその密度およびリチウムイオン伝導度測定結果を示す。Si成分を含まない実施例1の固体電解質は、1年保存後にα相が96.6質量%から28.8質量%まで低下し、α´相、YPO4、ZrO2などに分解した。一方で、Si成分を含有する実施例2の固体電解質におけるα相の分解(質量比低下)は、10質量%未満に抑制されていた。そして、Si成分を含まない実施例1の固体電解質は1年保存後にリチウムイオン伝導度が約46%低下しているのに対し、Si成分を含有する実施例2の固体電解質はリチウムイオン伝導度の低下が約28%であった。 Table 8 below shows the results of Rietveld analysis before the start of the storage test (initial product) and after storage for 1 year (1 year later), and Table 9 below shows the density and lithium ion conductivity measurement results. In the solid electrolyte of Example 1 containing no Si component, the α phase decreased from 96.6% by mass to 28.8% by mass after storage for 1 year, and decomposed into α'phase, YPO 4 , ZrO 2, and the like. On the other hand, the decomposition of the α phase (decrease in mass ratio) in the solid electrolyte of Example 2 containing the Si component was suppressed to less than 10% by mass. The solid electrolyte of Example 1 containing no Si component has a lithium ion conductivity reduced by about 46% after storage for one year, whereas the solid electrolyte of Example 2 containing a Si component has a lithium ion conductivity. The decrease was about 28%.

 また、この保存試験の結果と、同系品の文献値(Li1.150.15Zr1.85312(JCPDS 01-083-4639)、Li1.2Ca0.1Zr1.9312(RSC Advances 2011(1)1728-1731)、LiZr2312 菱面体晶系(JCPDS 01-084-0998))との比較を、格子定数(a軸(a/Å)、c軸(c/Å))とリチウムイオン伝導度について整理したものを表10に、実施例1および実施例2の初期値および1年後のリチウムイオン伝導度とa軸格子定数についてプロットしたものを図5に示した。アモルファス組成を有する前駆体より作製した実施例1および実施例2のα相のa軸格子定数は、アモルファス組成を有さない前駆体より作製した比較例1や同系品の文献値のa軸格子定数と比べて大きく、特にSi成分を含む実施例2が最も大きかった。リチウムイオン伝導度とa軸格子定数との関係から、このa軸格子定数が大きくなるとリチウムイオン伝導度が高くなる傾向が確認できる。これは、結晶相の格子内をリチウムイオンがより自由に移動できるようになるためであると推定される。
 つまり、Si成分を含有する実施例2の固体電解質は室温(25℃)での安定性に特に優れることが確認され、Pの一部をSiに置き換えることにより、格子のa軸方向をより伸長させてリチウムイオン伝導度をより高くし、さらに結晶構造の経時的な安定性およびリチウムイオン伝導度の安定性がより高まることが確認された。
In addition, the results of this storage test and the literature values of similar products (Li 1.15 Y 0.15 Zr 1.85 P 3 O 12 (JCPDS 01-083-4639), Li 1.2 Ca 0.1 Zr 1.9 P 3 O 12 (RSC Advances 2011 (1)) ) 1728-1731), LiZr 2 P 3 O 12 rhombic crystal system (JCPDS 01-084-0998)) with lattice constants (a-axis (a / Å), c-axis (c / Å)) Table 10 shows a summary of lithium ion conductivity, and FIG. 5 shows a plot of the initial values of Examples 1 and 2 and the lithium ion conductivity and a-axis lattice constant one year later. The a-axis lattice constants of the α phase of Examples 1 and 2 prepared from the precursor having an amorphous composition are the a-axis lattices of the literature values of Comparative Example 1 and similar products prepared from the precursor having no amorphous composition. It was larger than the constant, and in particular, Example 2 containing the Si component was the largest. From the relationship between the lithium ion conductivity and the a-axis lattice constant, it can be confirmed that the lithium ion conductivity tends to increase as the a-axis lattice constant increases. It is presumed that this is because lithium ions can move more freely in the lattice of the crystal phase.
That is, it was confirmed that the solid electrolyte of Example 2 containing the Si component was particularly excellent in stability at room temperature (25 ° C.), and by replacing a part of P with Si, the a-axis direction of the lattice was further extended. It was confirmed that the lithium ion conductivity was further increased, and the stability of the crystal structure over time and the stability of the lithium ion conductivity were further enhanced.

Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

<サイクリックボルタンメトリーによる酸化還元電位の確認>
 実施例1および実施例2の固体電解質の耐還元性について、リチウムを対極としてサイクリックボルタンメトリー(cyclic voltammetry:CV)により評価した。
<Confirmation of redox potential by cyclic voltammetry>
The reduction resistance of the solid electrolytes of Examples 1 and 2 was evaluated by cyclic voltammetry (CV) with lithium as the counter electrode.

 集電体である銅箔に、Li金属箔(電極)、ポリマー電解質を貼り付け、その上から、作用極側にAu電極をスパッタ済みの実施例1または実施例2の固体電解質ペレットを置き、アルミ箔にて集電を取った。この評価試料はアルミラミネートパックにて真空パックし、タブフィルムで集電体の銅箔およびアルミ箔のみ外部に取り出せる形とした。密閉処理した評価試料の前処理として、60℃で2時間以上保持してポリマー電解質と固体電解質との接合を促したあと、評価を行った。
 測定温度は25℃、開始電圧は開回路電圧とし、走査速度は0.2mV/sで、5Vから0.2Vまで走査した。得られたサイクリックボルタモグラム(電流-電位曲線:CV曲線)を図6に示す。Si成分を含有する実施例2の固体電解質は電流の変化が少なく、耐還元性がより優れることが確認できた。
A Li metal foil (electrode) and a polymer electrolyte are attached to a copper foil which is a current collector, and a solid electrolyte pellet of Example 1 or Example 2 in which an Au electrode has been sputtered is placed on the working electrode side. The current was collected with aluminum foil. This evaluation sample was vacuum-packed with an aluminum laminate pack, and only the copper foil and aluminum foil of the current collector could be taken out with a tab film. As a pretreatment of the hermetically sealed evaluation sample, it was held at 60 ° C. for 2 hours or more to promote the bonding between the polymer electrolyte and the solid electrolyte, and then the evaluation was performed.
The measurement temperature was 25 ° C., the starting voltage was an open circuit voltage, the scanning speed was 0.2 mV / s, and scanning was performed from 5 V to 0.2 V. The obtained cyclic voltammetry (current-potential curve: CV curve) is shown in FIG. It was confirmed that the solid electrolyte of Example 2 containing the Si component had a small change in current and was more excellent in reduction resistance.

<X線吸収微細構造解析(XAFS)によるSiの有効価数の確認>
 前述の結果から、実施例2の固体電解質は高いリチウムイオン伝導性および高い耐還元性を有することが確認できた。しかし、この実施例2の固体電解質におけるSi成分の効果やSiの状態は不明であったため、実施例2の固体電解質ペレットについて、X線吸収微細構造解析(XAFS)によりSiの価数を確認した。なお、X線吸収微細構造解析は、愛知シンクロトロン光センターのBL6N1にて行った。この結果を図7に示す。
<Confirmation of effective valence of Si by X-ray absorption fine structure analysis (XAFS)>
From the above results, it was confirmed that the solid electrolyte of Example 2 has high lithium ion conductivity and high reduction resistance. However, since the effect of the Si component and the state of Si in the solid electrolyte of Example 2 were unknown, the valence of Si was confirmed by X-ray absorption fine structure analysis (XAFS) for the solid electrolyte pellet of Example 2. .. The X-ray absorption fine structure analysis was performed at BL6N1 of the Aichi Synchrotron Optical Center. The result is shown in FIG.

 図7の結果は、SiO6配位に対して実測・計算されたXAFSスペクトル(Photon Factory Activity Report 2012#30(2013)B)と良い一致を示した。このことから、Siは固体電解質中のSiO6配位にある可能性が高く、結晶中のZrO6サイトあるいは、固体電解質中のアモルファス部分に存在する可能性が高いことが示唆された。 The results in FIG. 7 showed good agreement with the XAFS spectrum (Photon Factory Activity Report 2012 # 30 (2013) B) actually measured and calculated for the SiO 6 coordination. From this, it was suggested that Si is likely to be in the SiO 6 coordination in the solid electrolyte, and is likely to be present in the ZrO 6 site in the crystal or in the amorphous portion in the solid electrolyte.

 なお、図7中の矢印は、SiO2との差異が顕著である部分を表している。特に、左側の矢印で示される約1845eVに発生した新たなピークから、実施例2の固体電解質は4価よりも低い価数のSiが混入していると解釈することができる。0価相当のSiとSiO2(4価相当)との吸収端エネルギーの差が9eVであることから、上記したピークのエネルギー差(約3eV)より、価数が約3.7価のSiが含まれていることが確認できた。 The arrow in FIG. 7 indicates a portion where the difference from SiO 2 is remarkable. In particular, from the new peak generated at about 1845 eV indicated by the arrow on the left side, it can be interpreted that the solid electrolyte of Example 2 is contaminated with Si having a valence lower than tetravalent. Since the difference in absorption edge energy between Si equivalent to 0 valence and SiO 2 (equivalent to 4 valence) is 9 eV, Si having a valence of about 3.7 valence is obtained from the above-mentioned peak energy difference (about 3 eV). It was confirmed that it was included.

<広域X線吸収微細構造解析(EXAFS)によるSiへのOの配位数の確認>
 さらに、広域X線吸収微細構造解析(EXAFS)により、実施例2の固体電解質におけるSiへのOの配位数も確認した。なお、広域X線吸収微細構造解析は、前述したXAFS測定で用いた愛知シンクロトロンセンターのBL6N1にて測定した放射光データを用いた。解析条件は下記の通りである。
<Confirmation of the coordination number of O to Si by wide area X-ray absorption fine structure analysis (EXAFS)>
Furthermore, the coordination number of O to Si in the solid electrolyte of Example 2 was also confirmed by wide area X-ray absorption fine structure analysis (EXAFS). For the wide area X-ray absorption fine structure analysis, the synchrotron radiation data measured by BL6N1 of the Aichi Synchrotron Center used in the above-mentioned XAFS measurement was used. The analysis conditions are as follows.

 SiのK端がE=1847eVであるのに対し、YのLIII、LII、LI端がそれぞれE=2080eV、2156eV、2373eV、ZrのLIII、LII、LI端がそれぞれE=2222eV、2307eV、2532eVであり、SiのK端EXAFS領域に存在する。図8のデータはYのLIII端とLII端の混入を示す。そのため、実施例2の固体電解質のEXAFS解析では、これらの混入を避けるため、解析に用いるE範囲(波数k範囲)を制限する必要がある。そこで、この制限の中でも解析の確度をできるだけ向上させるため、以下の工夫を行った。 The K end of Si is E = 1847 eV, while the LIII, LII, and LI ends of Y are E = 2080 eV, 2156 eV, 2373 eV, and Zr LIII, LII, and LI ends are E = 2222 eV, 2307 eV, and 2532 eV, respectively. Yes, it exists in the K-end EXAFS region of Si. The data in FIG. 8 shows the contamination of the LIII and LII ends of Y. Therefore, in the EXAFS analysis of the solid electrolyte of Example 2, it is necessary to limit the E range (wavenumber k range) used in the analysis in order to avoid mixing these. Therefore, in order to improve the accuracy of analysis as much as possible even within this limitation, the following measures were taken.

 できるだけ少ない変数で実験データを再現し、最近接O配位数を決定できるように、周囲原子は最近接Oのみとした。その結果、フィッティング変数は、スケール因子S0 2O配位数(Nо)、Si-O間距離(rSi-O)、吸収端(E0)、デバイワラー因子(σ0 2)となった。
 そして、制限E範囲:1897~2061eVkmax=7.4に対応、波数の重み次数:2次、フィッティング空間:波数空間、として、以下のフローにて、順次、フィッティング変数を決定した。
(1)リファレンスSiO2を広いE範囲で解析し、σ0 2を決定。
(2)リファレンスSiO2を制限E範囲で解析し(σ0 2を(1)の値に固定)、No=4と固定できるこのデータにてS0 2を決定。
(3)実施例2(LYZSP12)を制限E範囲で解析し(σ0 2を(1)の値に、S0 2を(2)の値に固定)、目的の結晶相のNоを評価。
The peripheral atoms are limited to the closest O so that the experimental data can be reproduced with as few variables as possible and the closest O coordination number can be determined. As a result, the fitting variable scaling factor S 0 2 O coordination number (Nо), Si-O distance (r Si-O), the absorption edge (E 0), became Debye-Waller factor (σ 0 2).
Then, the fitting variables were sequentially determined in the following flow with the limit E range: 1897 to 2061 eVkmax = 7.4, the wave number weight order: secondary, and the fitting space: wave number space.
(1) The reference SiO 2 is analyzed in a wide E range to determine σ 0 2.
(2) The reference SiO 2 is analyzed in the limit E range (σ 0 2 is fixed to the value of (1)), and S 0 2 is determined by this data that can be fixed to No = 4.
(3) Example 2 (LYZSP12) was analyzed in the restricted E range (σ 0 2 was fixed to the value of (1) and S 0 2 was fixed to the value of (2)), and Nо of the target crystal phase was evaluated.

 この解析結果を下記表11および図9に示す。図9は、フーリエ変換で抽出した「実空間における動径構造関数」を示す。ここで、抽出で用いたR範囲とk(あるいはq)範囲は、window関数として図示している。このデータから抽出された関数とフィッティング結果の関数が一致したことと、表11のR因子から、本解析は適切に実施されたと判断された。
 そして、実施例2の固体電解質におけるSiへのO配位数は、4ではなく6であると見積もられた(表11)。この結果から、固体電解質にSi成分が含まれることによって、結晶相内(特にα相内)での共有結合が強固となるとともに、SiがZrサイトに配置されて格子がエネルギー的に安定化される、あるいはアモルファス相が6配位のSiにより安定化される可能性が高いことが示唆された。
The analysis results are shown in Table 11 and FIG. 9 below. FIG. 9 shows a “radial structure function in real space” extracted by the Fourier transform. Here, the R range and the k (or q) range used in the extraction are shown as a window function. From the fact that the function extracted from this data and the function of the fitting result matched and the R factor in Table 11, it was judged that this analysis was performed appropriately.
Then, the O-coordination number for Si in the solid electrolyte of Example 2 was estimated to be 6 instead of 4. (Table 11). From this result, the inclusion of the Si component in the solid electrolyte strengthens the covalent bond in the crystal phase (particularly in the α phase), and Si is arranged at the Zr site to energetically stabilize the lattice. It was suggested that the amorphous phase is likely to be stabilized by 6-coordinated Si.

Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

<Y、Siの比率がリチウムイオン伝導度と密度に与える影響の確認>
 実施例2を基準として、実施例3~6の固体電解質ペレットにおけるLi1.05+xxZr2-xSi0.052.9512のYの比率(式中のxの値)がリチウムイオン伝導度、密度およびα相のa軸格子定数に与える影響について確認した結果を下記表12および図10に示した。
 また、実施例1および実施例2を基準として、実施例7~9の固体電解質ペレットにおけるLi1.15+y0.15Zr1.85Siy3-y12のSiの比率(式中のyの値)がリチウムイオン伝導度、密度およびα相のa軸格子定数に与える影響について確認した結果を表13および図11に示した。
 さらに、Li1.05+xxZr2-xSi0.052.9512のYの比率(式中のxの値)およびLi1.15+y0.15Zr1.85Siy3-y12のSiの比率(式中のyの値)の変動により変化したα相のa軸格子定数が、リチウムイオン伝導度に与える影響を確認した結果を図12に示した。
 さらには、Li1+x+yxZr2-xSi3-y12のSiの比率(式中のyの値)を0とした、Li1+xxZr2-x312のYの比率(式中のxの値)がリチウムイオン伝導度、密度およびα相のa軸格子定数に与える影響について確認した結果を表14に示した。
<Confirmation of the effect of the ratio of Y and Si on lithium ion conductivity and density>
Based on Example 2, the ratio of Y of Li 1.05 + x Y x Zr 2-x Si 0.05 P 2.95 O 12 (the value of x in the formula) in the solid electrolyte pellets of Examples 3 to 6 is the lithium ion conductivity. The results of confirming the effects of density and α-phase on the a-axis lattice constant are shown in Table 12 and FIG. 10 below.
Further, based on Examples 1 and 2, the ratio of Si of Li 1.15 + y Y 0.15 Zr 1.85 Si y P 3-y O 12 in the solid electrolyte pellets of Examples 7 to 9 (value of y in the formula). The effects of) on the lithium ion conductivity, density and α-phase a-axis lattice constant are shown in Tables 13 and 11.
Furthermore, the ratio of Y of Li 1.05 + x Y x Zr 2-x Si 0.05 P 2.95 O 12 (value of x in the formula) and Si of Li 1.15 + y Y 0.15 Zr 1.85 Si y P 3-y O 12 FIG. 12 shows the result of confirming the influence of the a-axis lattice constant of the α phase changed by the fluctuation of the ratio (the value of y in the equation) on the lithium ion conductivity.
Furthermore, Li 1 + x + y Y x Zr 2-x Si y P 3-y O 12 in the ratio of Si to (value of y in the formula) was 0, Li 1 + x Y x Zr 2-x Table 14 shows the results of confirming the effects of the Y ratio of P 3 O 12 (the value of x in the equation) on the lithium ion conductivity, density, and the a-axis lattice constant of the α phase.

 なお、各固体電解質ペレットのリチウムイオン伝導度、密度およびα相のa軸格子定数は、いずれも前述と同様の方法により行った。また、リチウムイオン伝導度および密度については、それぞれの実施例について2回測定を行った(表12~14、図10~12)。 The lithium ion conductivity, density, and α-phase a-axis lattice constant of each solid electrolyte pellet were all determined by the same method as described above. In addition, the lithium ion conductivity and density were measured twice for each example (Tables 12 to 14, FIGS. 10 to 12).

Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012

Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014

 この結果、Li1.05+xxZr2-xSi0.052.9512におけるYの比率が0.10~0.17である場合、ならびに、Li1.15+y0.15Zr1.85Siy3-y12におけるSiの比率が0.00~0.07である場合、そのリチウムイオン伝導度がより高まることが示された。
 また、α相のa軸格子定数は、Li1.05+xxZr2-xSi0.052.9512におけるYの比率あるいはLi1.15+y0.15Zr1.85Siy3-y12におけるSiの比率を変動させることにより8.880Åから8.8892Åまで変動し、α相のa軸格子定数の値とリチウムイオン伝導度の値が相関していることが確認できた。つまり、α相のa軸格子定数が8.880Åから増大するのに合わせてリチウムイオン伝導度は高くなり、α相のa軸格子定数が8.885Å付近においてリチウムイオン伝導度が最も高く、α相のa軸格子定数が8.892Åを超えるとリチウムイオン伝導度が低下傾向となることが確認できた。
 さらに、Li1+x+yxZr2-xSiy3-y12におけるYの比率が0.25と0.2を超える場合であっても、Siの比率が0であれば、Siの比率が0.05の場合と比べて高いリチウムイオン伝導度が比較的維持されることが確認された。この実施例10のα相のa軸格子定数は8.888Åであり、これが上記したα相a軸の格子定数の閾値である8.892Å以下であったことが影響していると考えられる。
As a result, when the ratio of Y in Li 1.05 + x Y x Zr 2-x Si 0.05 P 2.95 O 12 is 0.10 to 0.17, and when Li 1.15 + y Y 0.15 Zr 1.85 Si y P 3- It was shown that when the ratio of Si in y O 12 was 0.00 to 0.07, the lithium ion conductivity was higher.
The a-axis lattice constant of the α phase is the ratio of Y in Li 1.05 + x Y x Zr 2-x Si 0.05 P 2.95 O 12 or Si in Li 1.15 + y Y 0.15 Zr 1.85 Si y P 3-y O 12 . By changing the ratio of 8.8880 Å to 8.8892 Å, it was confirmed that the value of the a-axis lattice constant of the α phase and the value of the lithium ion conductivity are correlated. That is, the lithium ion conductivity increases as the a-axis lattice constant of the α phase increases from 8.880 Å, and the lithium ion conductivity is highest when the a-axis lattice constant of the α phase is around 8.885 Å. It was confirmed that when the a-axis lattice constant of the phase exceeds 8.892 Å, the lithium ion conductivity tends to decrease.
Further, even when the ratio of Y in Li 1 + x + y Y x Zr 2-x Si y P 3-y O 12 exceeds 0.25 and 0.2, if the ratio of Si is 0. It was confirmed that the high lithium ion conductivity was relatively maintained as compared with the case where the ratio of Si was 0.05. The α-phase a-axis lattice constant of Example 10 was 8.888 Å, which is considered to be due to the fact that it was 8.892 Å or less, which is the threshold value of the α-phase a-axis lattice constant described above.

<シート成形法による焼結体の作製>
 ペレットや粉末において高いリチウムイオン伝導性と安定な性能が確認された実施例2の固体電解質について、グリーンシート成形によりシート状焼結体の作製を行った。
 具体的には、実施例2の組成のアモルファス前駆体の乾燥粉末をD90で1μm以下まで粉砕して得られた粉末に対して、溶剤として1-プロパノール、バインダー、分散剤を加え、20μm厚さのシート成形後に、12枚積層し、真空パック後に温水静水圧プレスを行い、1200℃で焼成した。得られたシート状焼結体(シート状基板)を実施例11とした。
<Manufacturing of sintered body by sheet molding method>
For the solid electrolyte of Example 2 in which high lithium ion conductivity and stable performance were confirmed in pellets and powders, a sheet-like sintered body was produced by green sheet molding.
Specifically, 1-propanol, a binder, and a dispersant were added as a solvent to the powder obtained by pulverizing the dry powder of the amorphous precursor having the composition of Example 2 with D90 to a thickness of 1 μm or less, and the thickness was 20 μm. After forming the sheet, 12 sheets were laminated, vacuum packed and then subjected to hot water hydrostatic pressure pressing, and fired at 1200 ° C. The obtained sheet-like sintered body (sheet-like substrate) was designated as Example 11.

<シート状基板の密度およびリチウムイオン伝導度測定>
 実施例11のシート状基板を、ノギス、マイクロメータ、および電子天秤によりそれぞれ直径、厚さ、重量を測定し、密度を算出した。密度は2.6~2.85g/cm3であった。さらに、マグネトロンスパッタ装置(サンユー電子社製、SC-701HMC)により、ブロッキング電極として金電極を実施例11のシート状基板の両面に形成した。そして、これを25℃の恒温槽に入れ、電気化学評価装置(バイオロジック社製、SP300)で、周波数7MHz~0.1Hz、振幅電圧10mVにてインピーダンス測定を行い、リチウムイオン伝導度を測定した。このCole-Cole Plotを図13に示す。この25℃におけるリチウムイオン伝導度は8.5~9.3×10-5S・cm-1であり、これはSPSにより合成されている固体電解質(Li1.150.15Zr1.85312)のリチウムイオン伝導度(文献値)よりも高い値であった。
<Measurement of density and lithium ion conductivity of sheet-shaped substrate>
The sheet-shaped substrate of Example 11 was measured in diameter, thickness, and weight with a caliper, a micrometer, and an electronic balance, respectively, and the density was calculated. The density was 2.6-2.85 g / cm 3 . Further, a gold electrode was formed on both sides of the sheet-shaped substrate of Example 11 as a blocking electrode by a magnetron sputtering apparatus (SC-701HMC manufactured by Sanyu Electronics Co., Ltd.). Then, this was placed in a constant temperature bath at 25 ° C., and impedance was measured with an electrochemical evaluation device (Biologic, SP300) at a frequency of 7 MHz to 0.1 Hz and an amplitude voltage of 10 mV to measure lithium ion conductivity. .. This Core-Cole Plot is shown in FIG. The lithium ion conductivity at 25 ° C. is 8.5 to 9.3 × 10 -5 S · cm -1 , which is a solid electrolyte synthesized by SPS (Li 1.15 Y 0.15 Zr 1.85 P 3 O 12 ). It was a value higher than the lithium ion conductivity (literature value) of.

<二次電子像観察結果>
 実施例11のシート状基板について、前述と同じ装置を用い、WD15.0mm、加速電圧15.1kVで観察した。そして、倍率は5000倍とし、最外殻粒子層の二次電子像観察を行った。この結果を図14および図15に示す。この結果から、粒界の存在は認められるが、粒界面が緻密に接合されていることが確認できた。
 また、最外殻粒子層に存在する粒子については、24μm×19μm視野において粒子が完全に入っているもの27粒子をカウントした。この結果を下記表15に示す。なお、粒径は、最も長くなる対角線の長さ(対角線の最大値)とした(図15)。この結果から、最大粒径10.2μm、最少粒径0.7μm、平均粒径3.7μmと、小さな粒径で焼結できていることが確認できた。
<Results of secondary electron image observation>
The sheet-shaped substrate of Example 11 was observed at a WD of 15.0 mm and an acceleration voltage of 15.1 kV using the same apparatus as described above. Then, the magnification was set to 5000 times, and the secondary electron image of the outermost particle layer was observed. The results are shown in FIGS. 14 and 15. From this result, it was confirmed that the grain interfaces were densely joined, although the existence of grain boundaries was recognized.
As for the particles existing in the outermost particle layer, 27 particles in which the particles were completely contained in the field of view of 24 μm × 19 μm were counted. The results are shown in Table 15 below. The particle size was the length of the longest diagonal line (maximum value of the diagonal line) (FIG. 15). From this result, it was confirmed that sintering was possible with a small particle size such as a maximum particle size of 10.2 μm, a minimum particle size of 0.7 μm, and an average particle size of 3.7 μm.

Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

 この出願は、2020年4月22日に出願された日本出願特願2020-076009を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2020-076009 filed on April 22, 2020, and incorporates all of its disclosures herein.

Claims (10)

 酸化物基準のモル%で、
Li2O成分を10~20%、
25成分を30~40%、
ZrO2成分を40~50%、
23成分を0~4%、
Al23成分を0~3%、
GeO2成分を0~2%
含有し、
 菱面体晶系のNASICON型構造である結晶相を含み、
 X線回折およびリートベルト解析により同定された前記結晶相のa軸格子定数が8.872Å以上である、
リチウムイオン伝導性ガラスセラミックス。
Oxide-based mol%,
Li 2 O component 10-20%,
30-40% of P 2 O 5 ingredients,
40-50% of ZrO 2 component,
Y 2 O 3 component 0-4%,
Al 2 O 3 component 0-3%,
0-2% of GeO 2 component
Contains,
It contains a crystal phase that is a rhombohedral NASICON type structure.
The a-axis lattice constant of the crystal phase identified by X-ray diffraction and Rietveld analysis is 8.872 Å or more.
Lithium ion conductive glass ceramics.
 X線回折およびリートベルト解析により同定された結晶成分の質量和が、全質量に対して97質量%未満である、請求項1に記載のリチウムイオン伝導性ガラスセラミックス。 The lithium ion conductive glass ceramic according to claim 1, wherein the mass sum of the crystal components identified by X-ray diffraction and Rietveld analysis is less than 97% by mass with respect to the total mass.  前記結晶相は、LiZr2(PО43α相および/またはLiZr2(PО43α´相を含む、請求項1または2に記載のリチウムイオン伝導性ガラスセラミックス。 The lithium ion conductive glass ceramic according to claim 1 or 2, wherein the crystal phase includes a LiZr 2 (PO 4 ) 3 α phase and / or a LiZr 2 (PO 4 ) 3 α'phase.  X線回折およびリートベルト解析により同定された前記LiZr2(PО43α相の質量が、全質量に対して80質量%以上である、請求項3に記載のリチウムイオン伝導性ガラスセラミックス。 The lithium ion conductive glass ceramic according to claim 3, wherein the mass of the LiZr 2 (PO 4 ) 3 α phase identified by X-ray diffraction and Rietveld analysis is 80% by mass or more with respect to the total mass.  酸化物基準のモル%で、
SiO2成分を0.1~5%
含有する、請求項1~4のいずれか1項に記載のリチウムイオン伝導性ガラスセラミックス。
Oxide-based mol%,
0.1 to 5% of SiO 2 component
The lithium ion conductive glass ceramic according to any one of claims 1 to 4, which is contained.
 前記リチウムイオン伝導性ガラスセラミックス全体において、含有するSiの価数が3.5価以上3.9価未満である、請求項5に記載のリチウムイオン伝導性ガラスセラミックス。 The lithium ion conductive glass ceramic according to claim 5, wherein the valence of Si contained in the entire lithium ion conductive glass ceramic is 3.5 valence or more and less than 3.9 valence.  前記リチウムイオン伝導性ガラスセラミックス全体において、含有するSiへのOの配位数が5以上7以下である、請求項5または6に記載のリチウムイオン伝導性ガラスセラミックス。 The lithium ion conductive glass ceramic according to claim 5 or 6, wherein the coordination number of O to Si contained in the entire lithium ion conductive glass ceramic is 5 or more and 7 or less.  25℃におけるリチウムイオン伝導度が1.0×10-5S・cm-1以上の粉末である、請求項1~7のいずれか1項に記載のリチウムイオン伝導性ガラスセラミックス。 The lithium ion conductive glass ceramic according to any one of claims 1 to 7, which is a powder having a lithium ion conductivity of 1.0 × 10 -5 S · cm -1 or more at 25 ° C.  25℃におけるリチウムイオン伝導度が7.0×10-5S・cm-1以上および厚みが300μm以下の基板である、請求項1~7のいずれか1項に記載のリチウムイオン伝導性ガラスセラミックス。 The lithium ion conductive glass ceramic according to any one of claims 1 to 7, which is a substrate having a lithium ion conductivity of 7.0 × 10 -5 S · cm -1 or more and a thickness of 300 μm or less at 25 ° C. ..  前記基板の最外殻粒子層における粒子の最大粒子径が30μm以下であり、且つ前記粒子の平均粒子径が15μm以下である、請求項9に記載のリチウムイオン伝導性ガラスセラミックス。 The lithium ion conductive glass ceramic according to claim 9, wherein the maximum particle size of the particles in the outermost particle layer of the substrate is 30 μm or less, and the average particle size of the particles is 15 μm or less.
PCT/JP2021/015894 2020-04-22 2021-04-19 Lithium ion-conductive glass ceramic WO2021215403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022517036A JP7684286B2 (en) 2020-04-22 2021-04-19 Lithium-ion conductive glass ceramics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-076009 2020-04-22
JP2020076009 2020-04-22

Publications (1)

Publication Number Publication Date
WO2021215403A1 true WO2021215403A1 (en) 2021-10-28

Family

ID=78269260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015894 WO2021215403A1 (en) 2020-04-22 2021-04-19 Lithium ion-conductive glass ceramic

Country Status (2)

Country Link
JP (1) JP7684286B2 (en)
WO (1) WO2021215403A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116947005A (en) * 2023-09-18 2023-10-27 四川富临新能源科技有限公司 Lithium iron phosphate positive electrode material with rapid lithium ion diffusion rate and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246196A (en) * 2011-05-30 2012-12-13 Ohara Inc Lithium ion conductive inorganic material
WO2013031508A1 (en) * 2011-08-31 2013-03-07 旭硝子株式会社 Lithium-ion conductive glass ceramic and method for producing same
WO2014034482A1 (en) * 2012-08-31 2014-03-06 旭硝子株式会社 Method for manufacturing lithium-ion-conducting glass ceramic
JP2014229579A (en) * 2013-05-27 2014-12-08 株式会社オハラ Lithium ion conductive inorganic solid composite
JP2015076324A (en) * 2013-10-10 2015-04-20 株式会社村田製作所 Solid electrolytic material and all-solid battery arranged by use thereof
JP2016009626A (en) * 2014-06-25 2016-01-18 株式会社オハラ Composite solid electrolyte body
JP2017157543A (en) * 2016-02-29 2017-09-07 スズキ株式会社 Solid electrolyte and method for producing solid electrolyte
WO2017154922A1 (en) * 2016-03-08 2017-09-14 株式会社村田製作所 Solid electrolyte, all-solid battery, solid electrolyte manufacturing method and all-solid battery manufacturing method
JP2018006297A (en) * 2016-07-08 2018-01-11 旭化成株式会社 Lithium ion conductor
JP2019067511A (en) * 2017-09-28 2019-04-25 スズキ株式会社 Solid electrolyte and method for manufacturing the same
JP2019096478A (en) * 2017-11-22 2019-06-20 株式会社オハラ Negative electrode material, negative electrode and battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246196A (en) * 2011-05-30 2012-12-13 Ohara Inc Lithium ion conductive inorganic material
WO2013031508A1 (en) * 2011-08-31 2013-03-07 旭硝子株式会社 Lithium-ion conductive glass ceramic and method for producing same
WO2014034482A1 (en) * 2012-08-31 2014-03-06 旭硝子株式会社 Method for manufacturing lithium-ion-conducting glass ceramic
JP2014229579A (en) * 2013-05-27 2014-12-08 株式会社オハラ Lithium ion conductive inorganic solid composite
JP2015076324A (en) * 2013-10-10 2015-04-20 株式会社村田製作所 Solid electrolytic material and all-solid battery arranged by use thereof
JP2016009626A (en) * 2014-06-25 2016-01-18 株式会社オハラ Composite solid electrolyte body
JP2017157543A (en) * 2016-02-29 2017-09-07 スズキ株式会社 Solid electrolyte and method for producing solid electrolyte
WO2017154922A1 (en) * 2016-03-08 2017-09-14 株式会社村田製作所 Solid electrolyte, all-solid battery, solid electrolyte manufacturing method and all-solid battery manufacturing method
JP2018006297A (en) * 2016-07-08 2018-01-11 旭化成株式会社 Lithium ion conductor
JP2019067511A (en) * 2017-09-28 2019-04-25 スズキ株式会社 Solid electrolyte and method for manufacturing the same
JP2019096478A (en) * 2017-11-22 2019-06-20 株式会社オハラ Negative electrode material, negative electrode and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116947005A (en) * 2023-09-18 2023-10-27 四川富临新能源科技有限公司 Lithium iron phosphate positive electrode material with rapid lithium ion diffusion rate and preparation method thereof
CN116947005B (en) * 2023-09-18 2023-12-01 四川富临新能源科技有限公司 Lithium iron phosphate positive electrode material with rapid lithium ion diffusion rate and preparation method thereof

Also Published As

Publication number Publication date
JP7684286B2 (en) 2025-05-27
JPWO2021215403A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP6460316B2 (en) Sodium ion battery electrode mixture, method for producing the same, and sodium all-solid battery
JP6672848B2 (en) Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure
JP5732352B2 (en) Method for producing lithium ion conductive solid electrolyte
CN107851843B (en) Solid electrolyte sheet, method for producing same, and sodium ion all-solid-state secondary battery
JP5312969B2 (en) Method for producing lithium ion secondary battery
JP5721540B2 (en) Lithium ion conductive inorganic material
JP5299860B2 (en) All solid battery
JP7394757B2 (en) Amorphous solid electrolyte and all-solid-state secondary battery using it
JP5304168B2 (en) All solid battery
JP2007294429A (en) Lithium ion conductive solid electrolyte and its manufacturing method
EP3758120A1 (en) All-solid battery
JP2007134305A (en) Lithium ion conductive solid electrolyte and method for manufacturing same
JP2014229579A (en) Lithium ion conductive inorganic solid composite
JP7274868B2 (en) Cathode material for all-solid-state battery, all-solid-state battery, and method for producing cathode active material for all-solid-state battery
CN116981649B (en) Lithium ion conductive materials
JP7684286B2 (en) Lithium-ion conductive glass ceramics
WO2019163448A1 (en) All-solid battery
JP2014017137A (en) Lithium ion conductive glass ceramic
JP6090290B2 (en) COMPOSITE, BATTERY, COMPOSITE MANUFACTURING METHOD AND ION CONDUCTIVE SOLID MANUFACTURING METHOD
JP2023019865A (en) lithium ion conductive material
JP7274670B2 (en) Ion-conducting solid-state and all-solid-state batteries
WO2023203986A1 (en) Lithium ion conductive glass ceramic precursor
CN119365429A (en) Lithium ion conductive glass material
CN120091977A (en) Lithium-ion conductive glass-ceramic precursor
WO2024096113A1 (en) Battery and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517036

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792720

Country of ref document: EP

Kind code of ref document: A1