WO2021215162A1 - Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same - Google Patents
Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same Download PDFInfo
- Publication number
- WO2021215162A1 WO2021215162A1 PCT/JP2021/011452 JP2021011452W WO2021215162A1 WO 2021215162 A1 WO2021215162 A1 WO 2021215162A1 JP 2021011452 W JP2021011452 W JP 2021011452W WO 2021215162 A1 WO2021215162 A1 WO 2021215162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- reinforced resin
- resin composite
- composite sheet
- flame
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
Definitions
- the present invention relates to a fiber-reinforced resin composite sheet containing a flame-retardant resin film and reinforcing fibers.
- Fiber reinforced resin composite materials are widely used materials from parts for sports and leisure use to parts for industrial use such as automobiles and aircraft. Further, the fiber-reinforced resin composite material is manufactured by using an intermediate material, that is, a prepreg, in which a reinforcing material made of long fibers (continuous fibers) such as reinforcing fibers is impregnated into a resin matrix. Specifically, a molded product of a fiber-reinforced resin composite material can be obtained by laminating a plurality of prepregs and heating and curing them, or by heating and cooling to solidify them.
- thermosetting resins have been often used as resins used for prepregs from the viewpoint of excellent strength and rigidity in the production of fiber-reinforced resin composite materials (see, for example, Patent Document 1).
- the prepreg using the thermosetting resin has a problem that the impact resistance is low and the secondary processability is difficult.
- a prepreg in which a matrix resin is impregnated with reinforcing fibers using a thermoplastic resin has been widely developed. According to such a prepreg, since it is easy to melt by heating and solidify by cooling, it is excellent in operability at the time of molding the prepreg, and it is expected to have an effect of shortening the production time, which leads to cost reduction.
- thermosetting resins are excellent in flame retardancy, but thermoplastic resins are inferior in flame retardancy, and thermoplastic resins having sufficient flame retardancy by themselves without adding a flame retardant are There are few (see, for example, Patent Document 2). Therefore, when producing a fiber-reinforced resin composite material that requires flame retardancy, a thermosetting resin is mainly used as the matrix resin.
- a fiber reinforced resin composite material (hereinafter, "fiber reinforced resin composite sheet”).
- fiber reinforced resin composite sheet In some cases, good molding processability is required.
- a fiber-reinforced resin composite sheet using a thermoplastic resin as a matrix resin is superior in moldability to a fiber-reinforced resin composite sheet using a thermosetting resin, but has a problem of being inferior in strength. ..
- strength for example, tensile strength may also be required.
- an object of the present invention is to provide a fiber reinforced resin composite sheet having excellent flame retardancy, good molding processability, and sufficient tensile strength under high temperature conditions.
- the fiber-reinforced resin composite sheet according to the first aspect of the present invention comprises a flame-retardant resin film made of a thermoplastic resin composition having a glass transition temperature Tg of 90 ° C. or higher, and a reinforced fiber bundle formed on the flame-retardant resin film. It is a fiber reinforced resin composite sheet containing a plurality of reinforcing fibers laminated in a state in which a plurality of reinforcing fibers opened from the above are oriented in the same direction.
- the flammability classification of the flame-retardant resin film determined in the UL94 VTM combustion test conforming to the ASTM D4804 standard is VTM-0.
- the volume content Vf of the reinforcing fiber is 30% or more and 65% or less.
- the thickness of the fiber reinforced resin composite sheet is 20 ⁇ m or more and 100 ⁇ m or less.
- the combustibility classification of the fiber reinforced resin composite sheet determined in the UL94-5V combustion test conforming to the ASTM D5048 standard is 5VA or 5V-B.
- FIG. 1 is a diagram showing an example of a schematic configuration of a fiber-reinforced resin composite sheet manufacturing apparatus according to the present embodiment.
- FIG. 2 is a diagram showing an example of a method of cutting out a chop material from a fiber reinforced resin composite sheet in the present embodiment.
- FIG. 3 is a diagram for explaining a method for producing a laminated chopped sheet, which is an example of the fiber reinforced resin composite material in the present embodiment.
- FIG. 4 is a cross-sectional view of a laminated chopped sheet which is an example of the fiber reinforced resin composite material in the present embodiment.
- FIG. 5 is a laser microscope image of a cross section of a test piece of a fiber reinforced resin composite sheet in Example 2-1 and Example 2-2 and Comparative Example 2-1 and Comparative Example 2-2.
- FIG. 6 is an image showing the results of a flame-retardant additional test of the test pieces of the fiber-reinforced resin composite sheet in Example 2-1 and Example 2-2 and Comparative Example 2-1 and Comparative Example 2-2.
- the fiber-reinforced resin composite sheet which is an intermediate material, is manufactured, the sheet becomes thicker just by increasing the amount of the reinforcing fibers impregnated in the resin matrix, and the moldability of the fiber-reinforced resin composite sheet deteriorates. It ends up.
- the structure of the reinforcing fibers, the value of the volume content Vf, and the like will affect the flame retardancy of the fiber reinforced resin composite sheet and the like.
- the fiber reinforced resin composite sheet using the thermoplastic resin it is difficult to adjust so that the characteristics of flame retardancy, moldability and strength are all suitable.
- the polyamide 6 resin when a thermoplastic resin is used as the matrix resin, the polyamide 6 resin may be used from the viewpoint of excellent physical properties such as impact resistance, toughness and flexibility, as well as from the viewpoint of cost and ease of handling. many.
- the polyamide 6 resin since the polyamide 6 resin has a relatively low glass transition temperature Tg, the strength of the fiber-reinforced resin composite sheet produced using the polyamide 6 resin may decrease under high temperature conditions. Therefore, the polyamide 6 resin is not suitable as a material that may be exposed to heat from the inside of the housing or parts of an electric device or an electronic device.
- the present inventors have diligently studied a fiber-reinforced resin composite sheet having excellent flame retardancy, good molding processability, and sufficient tensile strength under high temperature conditions. As a result, the present invention has been reached. Specifically, a composition of a thermoplastic resin having a predetermined property is selected, a fiber-reinforced resin composite sheet having a predetermined structure is formed, and the type and amount of the flame retardant to be optionally added are appropriately selected.
- the fiber-reinforced resin composite sheet as described above can be provided by setting and appropriately adjusting the volume content Vf of the reinforcing fibers within a predetermined range.
- the fiber-reinforced resin composite sheet in the present embodiment includes a flame-retardant resin film and a plurality of reinforcing fibers laminated on the flame-retardant resin film.
- the plurality of reinforcing fibers are laminated on a flame-retardant resin film in a state in which a plurality of reinforcing fibers opened from the reinforcing fiber bundle are oriented in the same direction.
- "reinforcing fibers are laminated" used in the "flame-retardant resin film” means a treatment performed for the physical property value, shape, and lamination of the flame-retardant resin film.
- the reinforcing fibers are laminated after being pressure-bonded to the flame-retardant resin film at least in part
- the reinforcing fibers are laminated after being pressure-bonded to the flame-retardant resin film
- the reinforcing fibers are laminated in about half of each reinforcing fiber. It also includes the meaning of "it is in a state of being impregnated from the surface to the inside”. More specifically, at the time of "lamination", heating, cooling and / or pressure treatment may be performed as necessary.
- the flame-retardant resin film comprises a thermoplastic resin composition having a glass transition temperature Tg of 90 ° C. or higher.
- the thermoplastic resin composition may consist of the thermoplastic resin alone.
- the thermoplastic resin composition may contain a flame retardant.
- the thermoplastic resin composition may contain additives other than the flame retardant, if necessary.
- each component contained in the thermoplastic resin composition will be described.
- thermoplastic resin composition is not particularly limited as long as the glass transition temperature Tg is 90 ° C. or higher, and may consist of the thermoplastic resin alone, or may be a composition containing the thermoplastic resin and a flame retardant. good. Alternatively, a commercially available product can also be used.
- type of thermoplastic resin include methacrylic resin such as polymethylmethacrylate resin, polystyrene resin, ABS resin, polystyrene resin such as AS resin, polyamide (PA) resin such as PA9T, polycarbonate (PC) resin, and polyphenylene.
- thermoplastic resin Sulfide (PPS) resin, modified polyphenylene ether (PPE) resin, polyetherimide (PEI) resin, polysulfone (PSF) resin, polyethersulfone (PES) resin, polyarylate (PAR) resin, polyethernitrile (PEN) resin , Polyetherketone (PEK) resin, polyetheretherketone (PEEK) resin, polyetherketoneketone (PEKK) resin, polyimide (PI) resin, polyamideimide (PAI) resin, fluorine (F) resin; liquid crystal polyester resin, etc.
- the liquid crystal polymer (LCP) resin of the above, or a copolymer resin or a modified resin thereof and the like can be mentioned.
- thermoplastic resin composition is preferably a polyphenylene sulfide (PPS) resin, a polyetheretherketone (PEEK) resin, a polyetherketoneketone (PEKK) resin, a polyetherimide (PEI) resin, or a polyethersulfone (PES).
- PPS polyphenylene sulfide
- PEEK polyetheretherketone
- PEKK polyetherketoneketone
- PEI polyetherimide
- PES polyethersulfone
- the flame retardant is used. It does not have to be included.
- the thermoplastic resin composition is a polyphenylene sulfide (PPS) resin, a polyetheretherketone (PEEK) resin, and a polyetherketoneketone (PEKK) resin. It is more preferable to include one or more selected from.
- a flame-retardant resin film made of a thermoplastic resin composition comprises any one of a polyphenylene sulfide (PPS) resin, a polyetheretherketone (PEEK) resin, and a polyetherketoneketone (PEKK) resin. May be.
- PPS polyphenylene sulfide
- PEEK polyetheretherketone
- PEKK polyetherketoneketone
- PPS polyphenylene sulfide
- PES polyphenylene sulfide
- PEEK polyetheretherketone
- Examples of commercially available products of the polyetherketoneketone (PEKK) resin include “Kepstan (registered trademark) PEKK” manufactured by Arkema.
- Examples of commercially available polyetherimide (PEI) resins include “Ultem (registered trademark)” manufactured by Sabic.
- Commercially available products of polyether sulfone (PES) resin include, for example, “Sumika Excel PES” manufactured by Sumitomo Chemical Co., Ltd., “Mitsui PES (registered trademark)” manufactured by Mitsui Chemical Fine Co., Ltd., and “Ultrazone (registered)” manufactured by BASF. Trademark) E ”and the like.
- liquid crystal polymer (LCP) resins include, for example, "Sumika Super LCP” manufactured by Sumitomo Chemical Co., Ltd., “Laperos (registered trademark) LCP” manufactured by Polyplastics Co., Ltd., and “UENOLCP (registered)” manufactured by Ueno Junyaku Co., Ltd. Trademark) ”and the like.
- the thermoplastic resin composition preferably contains a polycarbonate (PC) resin from the viewpoint of obtaining a fiber-reinforced resin composite sheet having excellent processability.
- the thermoplastic resin composition contains a polycarbonate (PC) resin as the thermoplastic resin
- the thermoplastic resin composition is selected from a halogen-based flame retardant, a phosphorus-based flame retardant, a silicone-based flame retardant, and an inorganic flame retardant. It is preferable to further contain one or more flame retardants.
- the glass transition temperature Tg of the thermoplastic resin composition constituting the flame-retardant resin film is 90 ° C. or higher, the fiber-reinforced resin composite sheet or the like produced by using the thermoplastic resin composition is It is expected that properties such as tensile strength and bending strength will not deteriorate even under high temperature conditions.
- the glass transition temperature Tg of the polyamide 6 resin matrix widely used as the resin matrix of the prepreg is about 50 ° C. (see Comparative Example 1-1 described later). Therefore, it is predicted that the fiber-reinforced resin composite sheet or the like produced by using the polyamide 6 resin will have reduced properties such as strength under high temperature conditions.
- thermoplastic resin composition contains a flame retardant, if necessary.
- the thermoplastic resin composition when the thermoplastic resin contained in the thermoplastic resin composition does not have flame retardant properties, the thermoplastic resin composition contains a flame retardant as an essential component. Even when the thermoplastic resin contained in the thermoplastic resin composition has flame-retardant properties, a flame retardant may be further contained from the viewpoint of improving the flame-retardant properties.
- the flame retardant is not particularly limited, and examples thereof include halogen-based flame retardants, phosphorus-based flame retardants, silicone-based flame retardants, inorganic flame retardants, and other flame retardants. Each will be described below.
- halogen-based flame retardant examples include a bromine-based flame retardant and a chlorine-based flame retardant.
- brominated flame retardant examples include decabromodiphenyl ether; tetrabromobisphenol A, derivatives thereof, tetrabromobisphenol A carbonate oligomer, tetrabromobisphenol A epoxy oligomer, etc.; polybenzene ring compound-based bis (pentabromophenyl) ethane.
- chlorine-based flame retardant examples include chlorinated paraffin, declorane, chlorendic acid, and chlorendic anhydride.
- phosphorus-based flame retardants include aromatic phosphate ester-based flame retardants, aromatic condensation-type phosphoric acid ester-based flame retardants, halogen-containing phosphoric acid ester-based flame retardants, and other phosphorus-based flame retardants.
- aromatic phosphoric acid ester flame retardant examples include triphenyl phosphate, cresylphenyl phosphate, tricresyl phosphate, trixilinyl phosphate, tris (t-butylated phenyl) phosphate, and tris (i).
- -Phenyl propylated) phosphate, 2-ethylhexyldiphenyl phosphate and the like can be mentioned.
- aromatic condensed phosphoric acid ester flame retardant examples include 1,3 phenylenebis (diphenylphosphate) and 1,2phenylenbis (dixylenyl phosphate).
- halogen-containing phosphoric acid ester flame retardant examples include tris (dichloropropyl) phosphate, trischloroethyl phosphate, 2,2 bis (dichloromethyl) trimethylene, and bis (2-chloroethyl) phosphate.
- phosphorus-based flame retardants include red phosphorus, phosphate ester amide, and ammonium polyphosphate.
- silicone-based flame retardant examples include polydimethylsiloxane, polymethylethylsiloxane, polymethyloctylsiloxane, polymethylvinylsiloxane, polydimethylphenylsiloxane, polydiphenylsiloxane, polydimethyldiphenylsiloxane, and polymethyl (3,3,3-). Trifluoropropyl) siloxane and the like.
- the inorganic flame retardant examples include antimony compounds such as antimony trioxide, antimony tetroxide, antimony tetroxide, and sodium antimonate; molybdenum compounds such as molybdenum oxide and ammon molybdenate; water such as aluminum hydroxide and magnesium hydroxide.
- antimony compounds such as antimony trioxide, antimony tetroxide, antimony tetroxide, and sodium antimonate
- molybdenum compounds such as molybdenum oxide and ammon molybdenate
- water such as aluminum hydroxide and magnesium hydroxide.
- Japanese metal compounds; nanofillers such as titanium oxide, montmorillonite, silica; or zinc borate, zinc tinate, zinc sulfide, tin oxide, zirconium oxide, zeolite, low melting point glass and the like can be mentioned.
- flame retardants include, for example, melamine compounds such as melamine cyanurate and melamine sulfate, nitrogen compounds such as triazine compounds and guanidine compounds; calcium perfluorobutanesulfonate, potassium perfluorobutanesulfonate, potassium diphenylsulphonate, diphenyl.
- Organic metal compounds such as potassium sulphon-3-sulphonate and potassium p-toluene sulphonate; or hindered amine compounds, expansive graphite and the like can be mentioned.
- halogen-based flame retardants phosphorus-based flame retardants, hindered amine compounds and antimony compounds have flame retardancy due to radical trapping action.
- the hydrated metal compound and the expandable graphite have flame retardancy due to the endothermic action.
- Phosphorus-based flame retardants, halogen-based flame retardants, nitrogen compounds, hydrated metal compounds, antimony compounds and ammonium polyphosphate have flame retardancy due to oxygen blocking action or flammable gas dilution action.
- Silicone flame retardants, low melting point glass, hydrated metal compounds, red phosphorus, ammonium polyphosphate, expansive graphite and organic metal compounds have flame retardancy due to heat insulating action.
- the flame retardant is suitable in the thermoplastic resin composition so that the flame retardant resin film made of the thermoplastic resin composition becomes VTM-0 in the flammability classification determined in the UL94 VTM combustion test conforming to the ASTM D4804 standard.
- the amount may be adjusted and included.
- the UL94 VTM combustion test conforming to the ASTM D4804 standard will be described in detail in Examples described later.
- the value of the volume content Vf of the reinforcing fiber is taken into consideration so that the fiber-reinforced resin composite sheet manufactured by using the flame-retardant resin film also satisfies the conditions of the flammability classification described later. It is necessary to adjust the addition amount and include it.
- the flame retardant in the thermoplastic resin composition, may be contained in an amount of 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
- the flame retardant may not be contained.
- the thermoplastic resin composition may contain various known additives as long as the effects of the present invention are not impaired.
- an antioxidant in order to improve the storage stability of the thermoplastic resin composition and avoid discoloration or alteration of the solidified product, an antioxidant, a light stabilizer, a weather resistance improving material and the like can be added.
- additives include, for example, thermosetting polymers, thermoplastic elastomers, silicone oils, wet dispersants, defoamers, defoamers, natural waxes, synthetic waxes, and metal salts of linear fatty acids. , Acid amides, esters, defoamers such as paraffins, crystalline silica, molten silica, calcium silicate, alumina, calcium carbonate, talc, barium sulfate and other powders, metal oxides, metal hydroxides, glass Inorganic fillers such as fibers, carbon nanotubes and fullerene, organic fillers such as carbon fibers and cellulose nanofibers, colorants such as red iron oxide, silane coupling agents, conductive materials, slip agents, leveling agents, polymerization inhibitors such as hydroquinone monomethyl ethers. , UV absorber and the like. These additives may be used alone or in combination of two or more as appropriate.
- the flame-retardant resin film made of the thermoplastic resin composition can be produced by applying any method known to those skilled in the art.
- the method for producing the film is not particularly limited, and examples thereof include a roll coating, a reverse coating, a comma coating, a knife coating, a die coating, a gravure coating, a melt extrusion method, a solution casting method, a T die method, and a calendar method. Be done. Further, by using the coextrusion method or the laminating method, it is possible to increase the thickness or to laminate resin films having different resin compositions.
- the lower limit of the thickness of the flame-retardant resin film is not particularly limited, but preferably 5 ⁇ m or more, it is easy to maintain the morphology of the film well at the time of film molding.
- the thickness of the flame-retardant resin film is preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, still more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less, 25 ⁇ m or less, or 20 ⁇ m or less.
- the flame-retardant resin film made of such a thermoplastic resin composition is an intermediate material for producing the fiber-reinforced resin composite sheet in the present embodiment.
- a plurality of reinforcing fibers opened from a reinforcing fiber bundle are laminated in a state of being oriented in the same direction on one or both surfaces of a flame-retardant resin film, and heat, cool, and / or pressurize the fibers.
- the fiber reinforced resin composite sheet in this embodiment is obtained. From the viewpoint of obtaining more excellent flame-retardant properties, it is preferable that the plurality of reinforcing fibers are laminated on both surfaces of the flame-retardant resin film.
- the reinforcing fibers are laminated on a flame-retardant resin film made of the above-mentioned thermoplastic resin composition in a state in which a plurality of reinforcing fibers opened from the reinforcing fiber bundles are oriented in the same direction.
- the "state in which a plurality of reinforcing fibers are oriented in the same direction” means a state in which each reinforcing fiber extends in a substantially parallel direction with respect to the plurality of reinforcing fibers.
- the fiber-reinforced resin composite sheet in the present embodiment is very stable. Has excellent flame retardancy. Specifically, not only the resin film itself has flame-retardant properties, but also a plurality of non-flammable reinforcing fibers (preferably carbon fibers) are exposed without being completely impregnated on the flame-retardant resin film. By being laminated in this state, the spread of the flame can be suppressed as compared with the sheet in which the reinforcing fibers are completely impregnated in the molten resin.
- the material of the reinforcing fiber is not particularly limited, but is known as a reinforcing fiber constituting a fiber-reinforced resin composite sheet, and when the sheet is formed, the sheet satisfies the conditions of combustibility classification described in detail later. May be appropriately selected according to the intended use.
- various fibers such as carbon fiber, aramid fiber, glass fiber, boron fiber, alumina fiber, silicon nitride fiber, and basalt fiber can be used.
- carbon fibers, aramid fibers, glass fibers, boron fibers, alumina fibers, and silicon nitride fibers are preferable from the viewpoint of specific strength and specific elasticity.
- carbon fiber is more preferable because the strength and corrosion resistance of the molded product using the fiber-reinforced resin composite sheet in the present embodiment can be improved.
- the carbon fiber it is preferable to use a PAN (polyacrylonitrile) -based carbon fiber having particularly high strength.
- PAN polyacrylonitrile
- the surface treatment with metal may be applied.
- the reinforcing fibers opened from these reinforcing fiber bundles can be used alone or in combination of two or more as long as they are oriented in the same direction.
- the volume content Vf of the reinforcing fibers with respect to the fiber-reinforced resin composite sheet is 30% or more and 65% or less.
- the volume content Vf of the reinforcing fibers is 30% or more, the fiber-reinforced resin composite sheet is sufficiently reinforced by the reinforcing fibers, and therefore has excellent strength, particularly tensile strength.
- the volume content Vf of the reinforcing fibers is set to 65% or less, it is possible to maintain good molding processability of the fiber-reinforced resin composite sheet made of the thermoplastic resin.
- the fiber reinforcement is performed by adjusting the volume content Vf of the reinforcing fiber within the range of 30% or more and 65% or less while considering the type of the resin selected and the type and amount of the flame retardant added optionally.
- the resin composite sheet can meet the conditions of the flammability classification described in detail later.
- the volume content Vf of the reinforcing fiber is preferably 35% or more, more preferably 40% or more, and further preferably 44% or more.
- the volume content Vf of the reinforcing fiber is preferably 60% or less, more preferably 55% or less, still more preferably 53% or less.
- the volume content Vf of the reinforcing fibers in the fiber-reinforced resin composite sheet is not only the type and thickness of the reinforcing fibers, the fiber width in which the reinforcing fibers are oriented, the thickness of the flame-retardant resin film, etc., but also the fiber-reinforced resin composite. It can be adjusted within the above range by appropriately controlling the temperature and pressure applied during the production of the sheet.
- the volume content Vf of the reinforcing fiber can be measured by a combustion method, a nitric acid decomposition method, a sulfuric acid decomposition method, or the like, but the volume content Vf of the reinforcing fiber in the present specification is measured by the same combustion method as in the examples. Value.
- the thickness of the fiber reinforced resin composite sheet in the present embodiment is 20 ⁇ m or more and 100 ⁇ m or less.
- the thickness of the fiber-reinforced resin composite sheet is preferably 25 ⁇ m or more, more preferably 30 ⁇ m or more, still more preferably 35 ⁇ m or more, still more preferably 40 ⁇ m or more.
- the thickness of the fiber-reinforced resin composite sheet is preferably 90 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 70 ⁇ m or less, still more preferably 60 ⁇ m or less, 55 ⁇ m or less, or 50 ⁇ m or less.
- the flame-retardant resin film and the reinforcing fiber are mostly fused and laminated, so that the reinforcing fiber is formed. You will be able to fully demonstrate the strength you have.
- delamination of the laminate made of the fiber-reinforced composite sheet (fiber-reinforced resin composite material described later) is unlikely to occur, and the fatigue characteristics are also excellent. Further, the molding processability when the fiber reinforced resin composite sheet is used can be made more excellent.
- the thickness of the fiber-reinforced resin composite sheet is also affected by the thickness of the flame-retardant resin film, but it can be kept within the above range by appropriately controlling the temperature and pressure applied during the production of the fiber-reinforced resin composite sheet. can.
- the fiber-reinforced resin composite sheet in this embodiment has a flammability classification of 5VA or 5V-B determined in the UL94-5V combustion test conforming to the ASTM D5048 standard.
- the UL94-5V combustion test conforming to the ASTM D5804 standard will be described in detail in Examples described later.
- the flammability classification determined in the UL94-5V combustion test conforming to the ASTM D5048 standard is 5VA.
- the flammability of the fiber-reinforced resin composite sheet is 30% or more and 65% or less of the selected resin type, the type and amount of the flame retardant added optionally, and the volume content Vf of the reinforcing fiber.
- the condition of the combustibility classification can be satisfied by the adjustment ratio within the range of.
- the fiber-reinforced resin composite sheet in the present embodiment not only has excellent flame-retardant and high heat-resistant physical properties, but is also excellent due to the volume content Vf of the reinforcing fiber occupying a sufficient value. It has a reinforcing effect, fatigue resistance, and excellent molding processability due to the relatively thin thickness of the fiber reinforced resin composite sheet. That is, the fiber-reinforced resin composite sheet in the present embodiment is a resin molded product such as a housing or part of an electric device such as a smartphone, a tablet, a notebook computer, or an electronic device, which may generate heat, ignite, or burn from the inside of the device. Etc. are preferably used as a material for producing the above.
- a plurality of fiber-reinforced resin composite sheets can be laminated to form various shapes at high density while reducing voids as much as possible, so that excellent strength can be obtained. It is possible to manufacture a fiber-reinforced resin composite material and a resin molded product.
- each reference numeral is a fiber reinforced resin composite sheet manufacturing apparatus 1, a heating roller 2, a cooling roller 3, an endless belt 4, a pull-out roller 5, a bobbin 6, a fiber reinforced resin composite sheet S, a flame-retardant resin film R0, and reinforced. It represents a fiber bundle F0 and a reinforcing fiber (reinforcing fiber opened (from the reinforcing fiber bundle) F).
- the fiber-reinforced resin composite sheet S can be continuously manufactured by using, for example, the fiber-reinforced resin composite sheet manufacturing apparatus 1 shown in FIG.
- the fiber-reinforced resin composite sheet manufacturing apparatus 1 is an apparatus for continuously producing a fiber-reinforced resin composite sheet S from a flame-retardant resin film R0 composed of a reinforcing fiber bundle F0 and a thermoplastic resin composition.
- the fiber-reinforced resin composite sheet manufacturing apparatus 1 includes a plurality of pairs of heating rollers 2 arranged vertically (two pairs in FIG. 1) and a plurality of pairs arranged vertically below the heating rollers 2 (two pairs in FIG. 1). ), A pair of endless belts 4 hung between the heating roller 2 and the cooling roller 3, a pair of pull-out rollers 5 located below the endless belt 4, and under the pull-out roller 5. It is provided with a winding bobbin 6 arranged on the side.
- a fiber opening mechanism for opening the reinforcing fiber bundle F0 and spreading it in a band shape is provided in the vicinity of the heating roller 2 on the uppermost stage.
- this fiber opening mechanism can form a large number of continuous reinforcing fibers F while spreading them so as to be oriented in the same direction and extend.
- the fiber opening mechanism may be any mechanism capable of such processing, such as a mechanism for striking and expanding the reinforcing fiber bundle F0, a mechanism for blowing and expanding the reinforcing fiber bundle F0, and a mechanism for applying ultrasonic waves to the reinforcing fiber bundle F0.
- Various mechanisms such as a mechanism for spreading can be used.
- the fiber opening mechanism includes a mechanism for supplying the reinforcing fiber F after opening the fiber to one surface of the flame-retardant resin film R0 and a mechanism for supplying the reinforcing fiber F after opening the fiber to the other surface of the flame-retardant resin film R0. It has a mechanism for supplying the reinforcing fiber F of the above.
- the former mechanism is provided so as to introduce the reinforcing fiber F between one surface of the flame-retardant resin film R0 and the heating roller 2 in contact with the surface, and the latter mechanism is the flame-retardant resin film R0.
- the reinforcing fiber F is provided between the other surface and the heating roller 2 in contact with the surface.
- the fiber opening mechanism may supply the reinforcing fiber F only to one surface of the flame-retardant resin film R0.
- the heating roller 2 is a high-temperature roller heated by an electric heater, a heating medium, or the like (for example, a heating fluid).
- the two pairs of heating rollers 2 heat the reinforcing fibers F while sandwiching the flame-retardant resin film R0 and the reinforcing fibers F introduced on both sides thereof from both sides via the endless belt 4, thereby heating the reinforcing fibers F with the flame-retardant resin film R0. It is continuously laminated on.
- the reinforcing fibers F are laminated on the flame-retardant resin film R0 in a state of being oriented in the same direction (a state of being aligned in the vertical direction of FIG. 1).
- the cooling roller 3 is a low-temperature roller cooled by a cooling medium or the like (for example, a cooling fluid).
- the cooling roller 3 fixes the reinforcing fibers F to the flame-retardant resin film R0 by cooling the flame-retardant resin film R0 in which the reinforcing fibers F are laminated while sandwiching the flame-retardant resin film R0 from both sides via the endless belt 4.
- the fiber-reinforced resin composite sheet S in which the flame-retardant resin film R0 (resin matrix) and the reinforcing fibers F are integrated is formed.
- the pull-out roller 5 is a roller that pulls out the molded fiber-reinforced resin composite sheet S downward while applying tension to it.
- the bobbin 6 for winding is a core material for winding the fiber reinforced resin composite sheet S.
- the bobbin 6 is rotationally driven by a drive source such as a motor, and the fiber-reinforced resin composite sheet S drawn out by the drawing roller 5 is sequentially wound up to form a roll-shaped fiber-reinforced resin composite sheet S.
- the fiber-reinforced resin composite sheet S can also be produced by a method in which the flame-retardant resin film R0 and the opened reinforcing fibers are flowed together in the same direction and wound without using the endless belt 4 shown in FIG. Is possible.
- the reinforcing fibers When the reinforcing fibers are laminated on one surface of the flame-retardant resin film R0 with the opened reinforcing fibers oriented in the same direction, the reinforcing fibers F shown in FIG. 1 are not sent from both sides. By feeding from one side, a fiber-reinforced resin composite sheet S in which reinforcing fibers F are laminated on one surface of a flame-retardant resin film can be obtained.
- the fiber-reinforced resin composite material in the present embodiment is a fiber-reinforced composite material in which a plurality of fiber-reinforced resin composite sheets in the above-described embodiment are laminated in the thickness direction.
- the “lamination” used in “the fiber reinforced resin composite sheet (or its chop material) is laminated” means the physical properties of the fiber reinforced resin composite sheet (or its chop material).
- “lamination after fixing at least partly”, “lamination after bonding at least partly”, “at least partly bonding” It also includes the meanings of "lamination after fusion in a part”, “lamination after adhesion in at least a part”, and “lamination after crimping in at least a part”. More specifically, at the time of "lamination”, heating, cooling and / or pressure treatment may be performed as necessary.
- the fiber-reinforced resin composite sheet to be laminated may be laminated by being shredded or the like as necessary according to the desired shape of the fiber-reinforced resin composite material.
- the number of laminated fiber-reinforced resin composite sheets is also not particularly limited, and may be appropriately set according to the desired size of the fiber-reinforced resin composite material and the like.
- the fiber-reinforced resin composite sheet may be laminated in any state with respect to the fiber direction of the reinforcing fiber, but preferably, the fiber directions of the reinforcing fibers of the plurality of fiber-reinforced resin composite sheets differ in two-dimensional directions. It is laminated in a state of having.
- a plurality of fiber-reinforced resin composite sheets have an angle difference of approximately 45 ° in each of the fiber directions of the reinforcing fibers, in other words, 0 °, 45 °, ⁇ 45 °, and 90 in the two-dimensional plane.
- Two or more sheets, preferably 4 ⁇ n sheets (n is an integer of 1 or more) are laminated in the thickness direction so as to have a four-axis direction of ° (hereinafter, also referred to as “four-axis direction with an angle difference of 45 °”).
- four-axis direction with an angle difference of 45 ° examples of fiber-reinforced composite materials are available.
- the fiber-reinforced resin composite sheet in the above-described embodiment may be laminated in the shape of a plurality of chops in the thickness direction.
- a plurality of chop materials can be produced, for example, by shredding the fiber-reinforced resin composite sheet S shown in FIG. 1 in the above-described embodiment in the longitudinal direction and the width direction.
- a chop material can be produced by the following procedure. The procedure will be described with reference to FIG.
- each reference numeral represents a fiber reinforced resin composite sheet S, a notch X, a notch Y, a section I, a section II, and a chop material C.
- a notch X extending in the longitudinal direction is formed. That is, while feeding the fiber-reinforced resin composite sheet S in the longitudinal direction, a large number of cuts X continuous in the longitudinal direction are formed in the section I in the middle of the feeding path.
- the cut X can be formed by using, for example, a shredding device including a large number of blades arranged at equal intervals in the width direction of the fiber reinforced resin composite sheet S.
- a continuous notch Y is formed from one end to the other end of the fiber reinforced resin composite sheet S in the width direction.
- the notch Y can be formed by using, for example, a rotary cutter or the like.
- the notch Y is formed each time the fiber reinforced resin composite sheet S is fed out by a fixed distance in the longitudinal direction. As a result, a large number of rectangular chop materials C having a short side having a length corresponding to the pitch of the cut X and a long side having a length corresponding to the pitch of the cut Y are cut out.
- the fiber-reinforced resin composite sheet S is a sheet in which a large number of reinforcing fibers F are laminated in the same direction in the longitudinal direction thereof. Therefore, each chop material C cut out from the fiber-reinforced resin composite sheet S is also laminated in a state in which a large number of reinforcing fibers F are oriented in the same direction in the longitudinal direction (long side direction). That is, the chop material C contains a flame-retardant resin film R0 and a large number of reinforcing fibers F laminated on the flame-retardant resin film R0 in the same direction.
- the size of the chop material C is adjusted and the balance is appropriately controlled to impart properties suitable for the intended use of the molded product. can do.
- the length of the short side of the chop material C is preferably 2 mm or more, more preferably 3 mm or more, further preferably 4 mm or more, still more preferably 4.5 mm or more, and preferably 50 mm or less, more preferably 40 mm. Hereinafter, it is more preferably 30 mm or less, or even more preferably 20 mm or less, 15 mm or less, or 10 mm or less.
- the length of the long side of the chop material C is preferably 2 mm or more, more preferably 4 mm or more, further preferably 6 mm or more, or even more preferably 8 mm or more or 10 mm or more, and preferably 80 mm or less. It is preferably 70 mm or less, more preferably 60 mm or less, or even more preferably 50 mm or less or 45 mm or less.
- the thickness of the chop material C is the same as the thickness of the fiber-reinforced resin composite sheet in the above-described embodiment, and is 20 ⁇ m or more and 100 ⁇ m or less.
- the preferable thickness is also the same as the thickness of the fiber reinforced resin composite sheet in the above-described embodiment. That is, similarly to the fiber-reinforced resin composite sheet in the above-described embodiment, a plurality of sheets can be laminated in a small size as the chop material C while reducing the voids as much as possible due to its thinness. Therefore, it is possible to manufacture a fiber-reinforced resin composite material having a significantly higher density and remarkably excellent strength and low water absorption, and a resin molded product using the same. Further, by forming the chop material C into a shape, the shapeability is improved, and a resin molded product having a complicated shape can be manufactured.
- such a plurality of chop materials C may be laminated in any state of the fiber directions of the reinforcing fibers, but the fiber directions of the reinforcing fibers of the plurality of chop materials C.
- the fibers are laminated in a two-dimensionally random state (pseudo-isotropic).
- each reference numeral represents a belt conveyor 7, a release film 8, a heating roller 9, a bobbin 10 for a laminated chopped sheet, a chop material C, a section XI, a section XII, a section XIII, and a laminated chopped sheet CS.
- a large number of chop materials C are arranged while being dispersed on the upper surface thereof.
- a drop device that drops the chop material C while vibrating from above the belt conveyor 7 can be used.
- the density and the number of laminated chop materials C on the upper surface of the belt conveyor 7 are increased. That is, in a plurality of sections XI, sections XII, sections XIII, ...
- the chop material C is contained in each chop material C by repeatedly dropping the chop material C using the drop device.
- a large number of reinforcing fibers F are placed on the belt conveyor 7 so that the fiber directions (in other words, the longitudinal direction of the chop material C) vary in various directions on the horizontal plane and a plurality of chop materials C are stacked in the thickness direction. Chop material C is laminated.
- the chop material C laminated on the upper surface of the belt conveyor 7 is pressurized and heated by using a heating roller 9 or a heat-resistant endless belt via a release film 8. It is processed and a large number of chop materials C are integrated. That is, the laminated chop materials C are bonded to each other by pressurization and heat treatment using the heating roller 9. As described above, the dispersion and lamination of a large number of chop materials C on the upper surface of the belt conveyor 7 and the pressurization and heat treatment using the heating roller 9 are continuously performed.
- each reference numeral represents a thickness t of the chopped material C, the laminated chopped sheet (fiber reinforced composite material) CS, and the laminated chopped sheet CS.
- the thickness t of the laminated chopped sheet CS that is, the total thickness of the chopped materials C in which a plurality of sheets or more are laminated can be appropriately set.
- a large number of chopped materials C may be laminated on a carrier sheet made of a thermoplastic resin composition when producing a laminated chopped sheet.
- a large number of chop materials C are arranged while being dispersed on the upper surface of the carrier sheet.
- a dropping device similar to the above can be used from above the carrier sheet. Then, the drop operation of the chop material C using such a drop device is repeated at a plurality of places in the feed direction of the carrier sheet in the same manner as described above to increase the density and the number of laminated chop materials C on the carrier sheet. May be good.
- the carrier sheet and the chop material C on the carrier sheet are pressurized and heat-treated using a heating roller to integrate the carrier sheet and the chop material C with each other. That is, by pressurizing and heat-treating using the heating roller, the chop material C is supported on the carrier sheet in a laminated state, and the laminated chop materials C are bonded to each other.
- a laminated chopped sheet CS in which a plurality of chopping materials C are laminated on the upper surface of the carrier sheet can be formed.
- the material of the carrier sheet is basically the same thermoplastic resin composition as the thermoplastic resin composition of the chop material C, a resin composition containing another thermoplastic resin having flame-retardant properties, or flame-retardant.
- a thermoplastic resin composition that does not have the above can be used.
- These thermoplastic resin compositions may consist of the thermoplastic resin alone without any additives.
- the chopped material C is laminated only on the upper surface of the carrier sheet to produce the laminated chopped sheet CS
- it is preferable to perform the work of laminating the chop material C on the carrier sheet that is, the work of arranging the chop material C in multiple random manners and heating and pressurizing the chop material C
- the carrier sheet is turned over so that the lower surface of the carrier sheet is on top, and the operation of laminating the chop material C in that state is repeated in the same manner.
- a laminated chopped sheet in which the chopping material C is laminated on both sides of the carrier sheet can be produced.
- the resin molded product in this embodiment includes the fiber reinforced resin composite material in the above-described embodiment.
- the resin molded product may be any molded product having an arbitrary shape that can be manufactured by using the fiber-reinforced resin composite material in the above-described embodiment by any molding method known to those skilled in the art. Examples thereof include molded products such as housings and parts used in electric devices such as smartphones, tablets, notebook computers, video cameras, mobile devices, and other household electric devices, or electronic devices.
- the method for producing the resin molded product in this embodiment is not particularly limited.
- a plurality of laminated chopped sheet CS described in the above-described embodiment, which are plate-shaped cut out to a predetermined size, are prepared, and these are stacked in the thickness direction in a mold such as a heat press machine. Place in.
- a resin molded product can be manufactured by performing a heating and / or pressure treatment and, if necessary, a cooling treatment on a plurality of stacked laminated chopped sheet CS.
- the flame-retardant resin film R0 made of a highly heat-resistant thermoplastic resin composition since the flame-retardant resin film R0 made of a highly heat-resistant thermoplastic resin composition is used, the physical properties of the tensile strength and bending strength of the resin molded product even under high temperature conditions. It is possible to obtain a resin molded product whose value is unlikely to decrease. Further, since the resin molded product is molded using the laminated chopped sheet CS containing a sufficient amount of the reinforcing fiber F so that the volume content Vf of the reinforcing fiber is 30% or more and 65% or less, the reinforcing fiber F is used. An excellent reinforcing effect can be obtained, and the strength of the resin molded product can be increased.
- the laminated chopped sheet CS which is laminated in a state where the fiber directions of the reinforcing fibers F of the plurality of chop materials C are two-dimensionally random (pseudo isotropic), is when the laminated chopped sheet CS is pressed.
- the possibility that the reinforcing fiber F is shredded can be reduced, and the flow of the resin during press working can be promoted to increase the degree of freedom in the shape of the resin molded product.
- resin molded products having various shapes can be molded without any trouble while exhibiting the reinforcing effect of the reinforcing fibers F isotropically.
- the fiber-reinforced resin composite sheet according to the first aspect of the present invention comprises a flame-retardant resin film made of a thermoplastic resin composition having a glass transition temperature Tg of 90 ° C. or higher, and a reinforced fiber bundle formed on the flame-retardant resin film. It is a fiber reinforced resin composite sheet containing a plurality of reinforcing fibers laminated in a state in which a plurality of reinforcing fibers opened from the above are oriented in the same direction.
- the flammability classification of the flame-retardant resin film determined in the UL94 VTM combustion test conforming to the ASTM D4804 standard is VTM-0.
- the volume content Vf of the reinforcing fiber is 30% or more and 65% or less.
- the thickness of the fiber reinforced resin composite sheet is 20 ⁇ m or more and 100 ⁇ m or less.
- the combustibility classification of the fiber reinforced resin composite sheet determined in the UL94-5V combustion test conforming to the ASTM D5048 standard is 5VA or 5V-B.
- the fiber reinforced resin composite sheet having such a structure has excellent flame retardancy, good molding processability, and sufficient tensile strength under high temperature conditions.
- the plurality of reinforcing fibers are laminated on one or both surfaces of the flame-retardant resin film.
- the prepreg in which the reinforcing fibers are completely impregnated in the molten resin Has very good flame retardancy compared to.
- the plurality of reinforcing fibers are laminated on both surfaces of the flame-retardant resin film.
- the fiber-reinforced resin composite sheet having such a structure surely has extremely excellent flame retardancy as compared with the prepreg in which the reinforcing fibers are completely impregnated in the molten resin.
- thermoplastic resin composition contains a polycarbonate resin and one or more flame retardants selected from a halogen-based flame retardant, a phosphorus-based flame retardant, a silicone-based flame retardant, and an inorganic flame retardant.
- flame retardants selected from a halogen-based flame retardant, a phosphorus-based flame retardant, a silicone-based flame retardant, and an inorganic flame retardant.
- the fiber reinforced resin composite sheet having such a structure surely has excellent flame retardancy.
- thermoplastic resin composition contains one or more selected from polyphenylene sulfide resin, polyetheretherketone resin, polyetherketoneketone resin, polyetherimide resin, polyethersulfone resin and liquid crystal polymer resin.
- the fiber reinforced resin composite sheet having such a structure surely has excellent flame retardancy.
- the reinforcing fiber is more preferably carbon fiber.
- the fiber reinforced resin composite sheet having such a structure can improve the strength and corrosion resistance of the molded product using the fiber reinforced resin composite sheet, and the nonflammable carbon fiber surely has extremely excellent flame retardancy.
- the thickness of the flame-retardant resin film is more preferably 5 ⁇ m or more and 50 ⁇ m or less.
- the fiber-reinforced resin composite sheet having such a structure can be made thin even in the sheet itself, and as a result, can have good molding processability.
- the fiber-reinforced resin composite material according to the second aspect of the present invention is a fiber-reinforced composite material in which a plurality of fiber-reinforced resin composite sheets of the fiber-reinforced resin composite sheet according to the first aspect are laminated in the thickness direction.
- the fiber-reinforced composite material is laminated in a state in which the fiber directions of the reinforcing fibers of the plurality of fiber-reinforced resin composite sheets have an angle difference in the two-dimensional direction.
- the fiber-reinforced resin composite material having such a structure can effectively improve the strength of the fiber-reinforced resin composite material as a whole.
- the fiber-reinforced resin composite material according to the second aspect of the present invention is a fiber-reinforced composite material in which the fiber-reinforced resin composite sheet according to the first aspect is laminated in the shape of a plurality of chops in the thickness direction. And The chop material is formed so that the fiber-reinforced resin composite sheet exhibits a rectangular shape having a short side length of 2 mm or more and 50 mm or less and a long side length of 2 mm or more and 80 mm or less.
- the fiber-reinforced composite material is laminated in a state in which the fiber directions of the reinforcing fibers of the plurality of chop materials are two-dimensionally random.
- the fiber-reinforced resin composite material having such a structure can mold resin molded products of various shapes without any trouble while exerting the reinforcing effect of the reinforcing fibers isotropically.
- the resin molded product according to the third aspect of the present invention includes the fiber reinforced resin composite material according to the second aspect.
- a resin molded product having such a structure has excellent flame retardancy and sufficient tensile strength under high temperature conditions.
- the fiber-reinforced resin composite sheet and the test piece of the fiber-reinforced resin composite material of Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-5 were prepared as follows.
- Example 1-1 In order to prepare a fiber-reinforced resin composite sheet, a flame-retardant resin film made of a thermoplastic resin composition was prepared.
- a flame-retardant resin film containing a polycarbonate resin and made of a thermoplastic resin composition to which a non-bromine-based and non-phosphorus-based flame retardant was added was used.
- the glass transition temperature Tg of this thermoplastic resin composition is 148 ° C. to 150 ° C.
- the thickness of the flame-retardant resin film is 20 ⁇ m.
- This flame-retardant resin film and carbon fiber (manufactured by Toray Co., Ltd., "TORAYCA", grade: T-700 (PAN-based carbon fiber), fiber diameter: 7 ⁇ m, number of filaments: 12K, fineness: 800tex) are used as reinforcing fibers.
- TORAYCA grade: T-700 (PAN-based carbon fiber), fiber diameter: 7 ⁇ m, number of filaments: 12K, fineness: 800tex
- the fiber-reinforced resin composite sheet according to the above-described embodiment was obtained while opening the carbon fiber bundle.
- the pressing force was 0.5 MPa
- the roll temperature (the temperature of the heating roller 2 shown in FIG. 1) was 270 ° C.
- the feed rate was 10 m / min.
- the opened carbon fiber bundles are laminated on both sides of the flame-retardant resin film.
- the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 53%, and the thickness of the fiber-reinforced resin composite sheet was 40 ⁇ m to 50 ⁇ m.
- the laminated fiber-reinforced resin composite sheet was put into a mold and pressurized while heating at 300 ° C. and 2 MPa for 15 minutes, and then pressurized while cooling at room temperature and 3 MPa for 10 minutes.
- a 300 mm ⁇ 300 mm ⁇ 2 mm (thickness) fiber reinforced resin composite material is taken out from the mold, the fiber reinforced resin composite material is cut out, and a test piece of the 150 mm ⁇ 150 mm ⁇ 2 mm (thickness) fiber reinforced resin composite material is cut out. Obtained.
- the volume content Vf of the carbon fiber of the test piece was also 53%.
- Example 1-2 In Example 1-2, instead of the thermoplastic resin composition containing the polycarbonate resin to which the flame-retardant agent of Example 1-1 was added, a polyphenylene sulfide (PPS) resin having flame-retardant properties (manufactured by Solvay, “Ryton ( A thermoplastic resin composition consisting only of the registered trademark) QC200N ”) was used.
- the glass transition temperature Tg of the thermoplastic resin composition made of polyphenylene sulfide (PPS) resin is 90 ° C.
- Pellets of polyphenylene sulfide (PPS) resin are set under conditions of a molding temperature of 280 ° C. using an extrusion molding machine equipped with a T-die, and a flame-retardant resin film made of polyphenylene sulfide (PPS) resin having a thickness of 25 ⁇ m.
- PPS polyphenylene sulfide
- a fiber-reinforced resin composite sheet was obtained while opening the carbon fiber bundles by the manufacturing apparatus shown in FIG. At this time, the pressing force was 0.5 MPa, the roll temperature (the temperature of the heating roller 2 shown in FIG. 1) was 280 ° C., the feed rate was 20 m / min, and the fiber reinforcement had the same shape as that of Example 1-1.
- a resin composite sheet was obtained.
- the volume content Vf of the carbon fiber with respect to the fiber-reinforced resin composite sheet was 44.7%, and the thickness of the fiber-reinforced resin composite sheet was 50 ⁇ m.
- a test piece of a fiber-reinforced resin composite material having a size of 150 mm ⁇ 150 mm ⁇ 2 mm (thickness) was obtained by the same method as in Example 1-1 described above.
- the volume content Vf of the carbon fiber of the test piece was also 44.7%.
- Example 1-3 When laminating the fiber-reinforced resin composite sheet of carbon fiber so that the volume content Vf of the carbon fiber with respect to the fiber-reinforced resin composite sheet is 35%, a film made of polyphenylene sulfide (PPS) resin having a thickness of 25 ⁇ m is further added. Except for the above, test pieces of a fiber-reinforced resin composite sheet having a thickness of 50 ⁇ m and a fiber-reinforced resin composite material having a thickness of 150 mm ⁇ 150 mm ⁇ 2 mm (thickness) were obtained by the same method as in Example 1-2 described above. ..
- PPS polyphenylene sulfide
- Example 1-4 instead of the flame-retardant resin film made of polyphenylene sulfide (PPS) resin having a thickness of 25 ⁇ m produced in Example 1-2, polyetheretherketone (PEEK) having flame-retardant properties and having a thickness of 20 ⁇ m.
- PPS polyphenylene sulfide
- PEEK polyetheretherketone
- a resin film manufactured by Mitsubishi Chemical, "Superio UT (registered trademark) ⁇ KN-type" was used.
- the glass transition temperature Tg of the thermoplastic resin composition made of polyetheretherketone (PEEK) resin is 143 ° C to 147 ° C.
- a fiber-reinforced resin composite sheet was obtained while opening the carbon fiber bundles by the manufacturing apparatus shown in FIG. At this time, the pressing force was 0.5 MPa, the roll temperature (the temperature of the heating roller 2 shown in FIG. 1) was 360 ° C., the feed rate was 10 m / min, and the fiber reinforcement had the same shape as that of Example 1-1.
- a resin composite sheet was obtained.
- the volume content Vf of the carbon fiber with respect to the fiber-reinforced resin composite sheet was 53%, and the thickness of the fiber-reinforced resin composite sheet was 40 ⁇ m.
- a test piece of a fiber-reinforced resin composite material having a size of 150 mm ⁇ 150 mm ⁇ 2 mm (thickness) was obtained by the same method as in Example 1-1 described above.
- the volume content Vf of the carbon fiber of the test piece was also 53%.
- Comparative Example 1-1 As Comparative Example 1-1, a commercially available fiber-reinforced resin composite sheet of a polyamide 6 resin matrix (“TC910” manufactured by TCAC), which is produced by impregnating a carbon fiber bundle into a molten resin as it is without opening the fibers. was used.
- the glass transition temperature Tg of the polyamide 6 resin matrix is about 50 ° C. (reference value).
- the volume content Vf of the carbon fiber with respect to the fiber-reinforced resin composite sheet was 48%, and the thickness of the fiber-reinforced resin composite sheet was 180 ⁇ m.
- Comparative Example 1-2 Comparative Example 1-2
- a fiber-reinforced resin composite sheet having a thickness of 30 ⁇ m was obtained by the same method as in Example 1-1 described above except that the amount was reduced.
- 74 sheets of the obtained fiber-reinforced resin composite sheet were laminated so that the opened carbon fibers were oriented at an angle difference of 0 °. Then, a test piece of a fiber-reinforced resin composite material having a size of 150 mm ⁇ 150 mm ⁇ 2 mm (thickness) was obtained by the same method as in Example 1-1 described above. The volume content Vf of the carbon fiber of the test piece was also 25%.
- Comparative Example 1-3 Comparative Example 1-3
- a fiber-reinforced resin composite sheet having a thickness of 70 ⁇ m was obtained by the same method as in Example 1-1 described above except that the amount was increased.
- Comparative Example 1-4 Comparative Example 1-4
- a fiber-reinforced resin composite sheet having a thickness of 35 ⁇ m was obtained by the same method as in Example 1-2 described above, except that the amount was reduced.
- Comparative Example 1-5) In Comparative Example 1-5, the amount of carbon fibers laminated on both sides of the flame-retardant resin film made of polyphenylene sulfide (PPS) resin so that the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet is 70%.
- a fiber-reinforced resin composite sheet having a thickness of 85 ⁇ m was obtained by the same method as in Example 1-2 described above, except that the amount was increased.
- the volume content Vf of the reinforcing fiber with respect to the reinforced resin composite sheet and the fiber reinforced resin composite material was measured by the combustion method.
- the glass transition temperature Tg of each thermoplastic resin composition or the thermoplastic resin itself is a temperature measured by a differential scanning calorimeter (DSC).
- Table 3 shows the characteristics and evaluation results of the thermoplastic resin film or resin matrix and the fiber-reinforced resin composite sheet in Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-5. And are summarized in Table 4.
- the resin films of Examples 1-1 to 1-4 and the fiber-reinforced resin composite sheet thereof are the polyamide 6 resin matrix of Comparative Example 1-1 and the fiber-reinforced resin composite thereof. It had excellent flame retardancy as compared with the sheet.
- the fiber-reinforced resin composite sheets of Examples 1-1 to 1-4 are the same as the fiber-reinforced resin composite sheets of Comparative Example 1-1 produced by impregnating the resin matrix with the carbon fiber bundles without opening the fibers. In comparison, the thickness could be significantly reduced.
- the test pieces of the fiber-reinforced resin composite material of Examples 1-2 and 1-3 have a volume content of the reinforcing fibers as compared with the test pieces of the fiber-reinforced resin composite material of Comparative Example 1-1. Despite the small value of Vf, it had high tensile strength, contrary to the normally expected result.
- the fiber-reinforced resin composite sheets of Examples 1-1 to 1-4 are composed of many layers of thin fiber-reinforced resin composite sheets, and therefore have good dispersibility between the reinforcing fibers and the resin. Therefore, it is presumed that, as compared with the laminated board in Comparative Example 1-1 composed of a thick layer, delamination is less likely to occur and the original strength of the fiber is exhibited. As described above, the fiber-reinforced resin composite sheets of Examples 1-1 to 1-4 are excellent in molding processability as an intermediate material, and also have the tensile strength of the fiber-reinforced resin composite material produced from the sheets. It was excellent.
- the glass transition temperature Tg of the resin film (thermoplastic resin composition or thermoplastic resin) used in Examples 1-1 to 1-4 is the glass of the polyamide 6 resin matrix used in Comparative Example 1-1. It is a value significantly higher than the transition temperature Tg. Therefore, the fiber-reinforced resin composite sheet of Examples 1-1 to 1-4 and the fiber-reinforced resin composite material produced from the fiber-reinforced resin composite sheet have heat resistance and have good strength even under high temperature conditions, for example, tensile strength ( Or it is assumed to have bending strength).
- thermoplastic resins polyetherketone-ketone (PEKK) resin, polyetherimide (PEI) resin, polyethersulfone (PES) of Reference Examples 1 to 4 having a high glass transition temperature Tg and high flammability shown in Table 5 below.
- Resin and liquid crystal polymer (LCP) resin are also expected to exert the same effects as those of the present invention.
- test pieces of the fiber-reinforced resin composite sheet in Example 2-1 and Example 2-2 and Comparative Example 2-1 and Comparative Example 2-2 were prepared by the following methods.
- Example 2-1 a fiber-reinforced resin composite sheet containing a polycarbonate resin to which a flame retardant was added was obtained by the same method as in Example 1-1 described above.
- the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 53%, and the thickness of the fiber-reinforced resin composite sheet was 40 to 50 ⁇ m.
- the cross section of the test piece of the prepared fiber-reinforced resin composite sheet was observed using a laser microscope ("VK-X160", manufactured by Keyence Corporation).
- VK-X160 manufactured by Keyence Corporation
- a plurality of carbon fibers are laminated on both sides of a flame-retardant resin film containing a polycarbonate resin to which a flame-retardant is added.
- a plurality of carbon fibers are impregnated from the surface of the film to the inside in about half of each carbon fiber.
- Example 2-2 a fiber reinforced resin composite sheet containing a polyphenylene sulfide (PPS) resin was obtained by the same method as in Example 1-2 described above.
- the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 44.7%, and the thickness of the fiber-reinforced resin composite sheet was 50 ⁇ m.
- the cross section of the test piece of the prepared fiber reinforced resin composite sheet was observed by the same method as in Example 2-1.
- a plurality of carbon fibers are laminated on both sides of a flame-retardant resin film made of polyphenylene sulfide (PPS) resin.
- PPS polyphenylene sulfide
- Comparative Example 2-1 a fiber-reinforced resin composite sheet containing a polycarbonate resin to which a flame retardant was added was obtained by the same method as in Example 1-1 described above. Further, the sheet is sandwiched between iron plates heated to 300 ° C. and pressed by a press machine at 5 kgf ⁇ 60 seconds to obtain a fiber reinforced resin composite sheet containing the polycarbonate resin to which the flame retardant added in Comparative Example 2-1 is added. rice field. The volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 53%, and the thickness of the fiber-reinforced resin composite sheet was 38 ⁇ m. Next, a test piece of a fiber-reinforced resin composite sheet having a size of 13 mm ⁇ 125 mm ⁇ 38 ⁇ m (thickness) was cut out from the obtained fiber-reinforced resin composite sheet.
- the cross section of the test piece of the prepared fiber reinforced resin composite sheet was observed by the same method as in Example 2-1.
- the cross-sectional view of the test piece of the fiber-reinforced resin composite sheet in Comparative Example 2-1 shows that a plurality of carbon fibers are completely contained inside a flame-retardant resin film containing a polycarbonate resin to which a flame retardant is added. It was in a state of being impregnated.
- Comparative Example 2-2 a fiber reinforced resin composite sheet containing a polyphenylene sulfide (PPS) resin was obtained by the same method as in Example 1-2 described above. Further, the sheet was sandwiched between iron plates heated to 330 ° C. and pressed at 5 kgf ⁇ 60 seconds using a press to obtain a fiber reinforced resin composite sheet containing the polyphenylene sulfide (PPS) resin in Comparative Example 2-2. ..
- the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 44.7%, and the thickness of the fiber-reinforced resin composite sheet was 42 ⁇ m.
- a test piece of a fiber-reinforced resin composite sheet having a size of 13 mm ⁇ 125 mm ⁇ 42 ⁇ m (thickness) was cut out from the obtained fiber-reinforced resin composite sheet.
- the cross section of the test piece of the prepared fiber reinforced resin composite sheet was observed by the same method as in Example 2-1. As shown in FIG. 5, in the cross-sectional view of the test piece of the fiber reinforced resin composite sheet in Comparative Example 2-2, a plurality of carbon fibers are completely impregnated in the flame-retardant resin film made of polyphenylene sulfide (PPS) resin. It was in a state of being.
- PPS polyphenylene sulfide
- the flame retardancy of the test pieces of the fiber-reinforced resin composite sheet produced in Example 2-1 and Example 2-2 and Comparative Example 2-1 and Comparative Example 2-2 was determined by a method different from the above-mentioned method. bottom.
- a test method first, a test piece of the produced fiber-reinforced resin composite sheet was hung with a clamp. Next, the flame of the prepared gas burner was adjusted to be blue. Then, the gas burner was moved so that the test piece of the fiber reinforced resin composite sheet suspended by the clamp was positioned at a place about 1 cm away from the tip of the flame of the gas burner. In this way, a flame was applied from the lower part of the test piece of the fiber reinforced resin composite sheet suspended by the clamp, and the state at the initial stage of ignition, specifically, 1 second after ignition was observed.
- FIG. 6 is an image showing the result of a flame retardant additional test of a test piece of each fiber reinforced resin composite sheet. Specifically, FIG. 6 is an image of each fiber-reinforced resin composite sheet test piece 1 second after ignition.
- the test pieces of Example 2-1 and Example 2-2 in which carbon fibers were impregnated from the surface of the film to the inside in approximately half of each carbon fiber were resin films. It was observed that the flame was less likely to spread as compared with the test pieces of Comparative Example 2-1 and Comparative Example 2-2 in which a plurality of carbon fibers were completely impregnated inside.
- the test pieces of Example 2-1 and Example 2-2 are laminated on a flame-retardant resin film in an exposed state without being completely impregnated with a plurality of non-flammable carbon fibers. It is probable that the spread of the carbon fiber was suppressed.
- the fiber-reinforced resin composite sheet in the present embodiment has a structure in which not only the resin film has flame-retardant properties but also a plurality of reinforcing fibers are laminated on the flame-retardant resin film. Therefore, it is considered to have very excellent flame retardancy.
- the present invention can improve the flame retardancy, moldability and strength of a sheet under high temperature conditions in the technical field related to a fiber reinforced resin composite sheet, and is an industrial member such as a sports or leisure member, an automobile or an aircraft. , Can be widely used as a material for housings and parts of electrical equipment or electronic equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Provided is a fiber-reinforced resin composite sheet that has excellent flame retardant properties, that has favorable moldability, and that has sufficient tensile strength in high temperature conditions. The fiber-reinforced resin composite sheet includes a flame-retardant resin film which is made from a thermoplastic resin composition that has a glass transition temperature Tg of not less than 90°C, and a plurality of reinforcement fibers which are from an opened reinforcement fiber bundle and which are laminated in the flame-retardant resin film so as to be aligned along the same direction. The flammability category of the flame-retardant resin film as determined by the UL94VTM flammability test according to the ASTM D4804 standard is VTM-0. The volume content Vf of the reinforcement fibers is 30-65%. The thickness of the fiber-reinforced resin composite sheet is 20-100 μm. The flammability category of the fiber-reinforced resin composite sheet as determined by the UL94-5V flammability test according to the ASTM D5048 standard is 5V-A or 5V-B.
Description
本発明は、難燃性樹脂フィルムと強化繊維とを含む繊維強化樹脂複合シートに関する。
The present invention relates to a fiber-reinforced resin composite sheet containing a flame-retardant resin film and reinforcing fibers.
繊維強化樹脂複合材は、スポーツやレジャー用途の部材等から、自動車や航空機等の産業用途の部材等まで、幅広く用いられている材料である。また、繊維強化樹脂複合材は、強化繊維等の長繊維(連続繊維)からなる補強材を樹脂マトリックスに含浸させた中間材料、すなわちプリプレグを用いて製造される。具体的には、プリプレグを複数積層して加熱および硬化、または加熱および冷却して固化させることにより、繊維強化樹脂複合材の成形品を得ることができる。
Fiber reinforced resin composite materials are widely used materials from parts for sports and leisure use to parts for industrial use such as automobiles and aircraft. Further, the fiber-reinforced resin composite material is manufactured by using an intermediate material, that is, a prepreg, in which a reinforcing material made of long fibers (continuous fibers) such as reinforcing fibers is impregnated into a resin matrix. Specifically, a molded product of a fiber-reinforced resin composite material can be obtained by laminating a plurality of prepregs and heating and curing them, or by heating and cooling to solidify them.
従来、繊維強化樹脂複合材の製造の際に、強度および剛性に優れるとの観点から、プリプレグに使用される樹脂として熱硬化性樹脂が多く用いられていた(例えば特許文献1参照)。しかしながら、熱硬化性樹脂を用いたプリプレグは、耐衝撃性が低く、かつ二次加工性が困難であるという問題がある。これらの問題を解決するため、マトリックスの樹脂に熱可塑性樹脂を用いて強化繊維を含浸させたプリプレグが広く開発されている。このようなプリプレグによると、加熱による溶融および冷却による固化が容易であるため、プリプレグの成形加工時における操作性に優れ、生産時間短縮等の効果も見込まれ、コスト低減にも繋がる。
Conventionally, thermosetting resins have been often used as resins used for prepregs from the viewpoint of excellent strength and rigidity in the production of fiber-reinforced resin composite materials (see, for example, Patent Document 1). However, the prepreg using the thermosetting resin has a problem that the impact resistance is low and the secondary processability is difficult. In order to solve these problems, a prepreg in which a matrix resin is impregnated with reinforcing fibers using a thermoplastic resin has been widely developed. According to such a prepreg, since it is easy to melt by heating and solidify by cooling, it is excellent in operability at the time of molding the prepreg, and it is expected to have an effect of shortening the production time, which leads to cost reduction.
また、最近では、繊維強化樹脂複合材は、スマートフォン、タブレット、ノートパソコン、ビデオカメラ、モバイル機器、その他の電気機器または電子機器の筐体や部品等の材料としても用いられている。電気機器または電子機器の筐体や部品等は、機器内部からの発熱や高温環境下に曝されることにより、筐体や部品等が発火して、燃焼してしまうおそれがある。このような事故を防ぐため、材料のプリプレグは難燃性を有することが必要とされる。一般的に、熱硬化性樹脂は難燃性に優れているが、熱可塑性樹脂は難燃性に劣っており、難燃剤を添加することなく単独で十分な難燃性を有する熱可塑性樹脂は少ない(例えば特許文献2参照)。そのため、難燃性を必要とする繊維強化樹脂複合材を製造する場合は、マトリックスの樹脂として主に熱硬化性樹脂が使用されている。
Recently, fiber-reinforced resin composite materials have also been used as materials for housings and parts of smartphones, tablets, notebook computers, video cameras, mobile devices, and other electrical or electronic devices. When the housing or parts of an electric device or electronic device is exposed to heat generated from the inside of the device or in a high temperature environment, the housing or parts may ignite and burn. In order to prevent such accidents, the material prepreg is required to be flame retardant. In general, thermosetting resins are excellent in flame retardancy, but thermoplastic resins are inferior in flame retardancy, and thermoplastic resins having sufficient flame retardancy by themselves without adding a flame retardant are There are few (see, for example, Patent Document 2). Therefore, when producing a fiber-reinforced resin composite material that requires flame retardancy, a thermosetting resin is mainly used as the matrix resin.
しかしながら、成形品の種類、例えば電気機器または電子機器の筐体や部品等の種類によっては、形状の自由度を高くするために、繊維強化樹脂複合材(以下、「繊維強化樹脂複合シート」ともいう)に良好な成形加工性が求められる場合がある。一方、マトリックスの樹脂に熱可塑性樹脂を使用した繊維強化樹脂複合シートは、熱硬化性樹脂を使用した繊維強化樹脂複合シートと比較して成形加工性には優れるが、強度に劣るという問題を有する。前述したような電気機器または電子機器の筐体や部品等の種類によっては、強度、例えば引張強度をも求められる場合がある。
However, depending on the type of molded product, for example, the type of housing or parts of electrical equipment or electronic equipment, in order to increase the degree of freedom in shape, it is also referred to as a fiber reinforced resin composite material (hereinafter, "fiber reinforced resin composite sheet"). In some cases, good molding processability is required. On the other hand, a fiber-reinforced resin composite sheet using a thermoplastic resin as a matrix resin is superior in moldability to a fiber-reinforced resin composite sheet using a thermosetting resin, but has a problem of being inferior in strength. .. Depending on the type of housing, parts, etc. of the electric device or electronic device as described above, strength, for example, tensile strength may also be required.
そこで、本発明は、優れた難燃性を有し、良好な成形加工性かつ高温条件下における十分な引張強度を有する繊維強化樹脂複合シートを提供することを目的とする。
Therefore, an object of the present invention is to provide a fiber reinforced resin composite sheet having excellent flame retardancy, good molding processability, and sufficient tensile strength under high temperature conditions.
本発明の第一の局面に係る繊維強化樹脂複合シートは、ガラス転移温度Tgが90℃以上である熱可塑性樹脂組成物からなる難燃性樹脂フィルムと、前記難燃性樹脂フィルムに強化繊維束から開繊した複数の強化繊維が同一方向に配向した状態で積層された複数の強化繊維とを含む繊維強化樹脂複合シートであり、
ASTM D4804規格に準拠するUL94VTM燃焼試験において判定した前記難燃性樹脂フィルムの燃焼性分類がVTM-0であり、
前記強化繊維の体積含有率Vfは、30%以上65%以下であり、
前記繊維強化樹脂複合シートの厚さは、20μm以上100μm以下であり、
ASTM D5048規格に準拠するUL94-5V燃焼試験において判定した前記繊維強化樹脂複合シートの燃焼性分類が5V-Aまたは5V-Bである。 The fiber-reinforced resin composite sheet according to the first aspect of the present invention comprises a flame-retardant resin film made of a thermoplastic resin composition having a glass transition temperature Tg of 90 ° C. or higher, and a reinforced fiber bundle formed on the flame-retardant resin film. It is a fiber reinforced resin composite sheet containing a plurality of reinforcing fibers laminated in a state in which a plurality of reinforcing fibers opened from the above are oriented in the same direction.
The flammability classification of the flame-retardant resin film determined in the UL94 VTM combustion test conforming to the ASTM D4804 standard is VTM-0.
The volume content Vf of the reinforcing fiber is 30% or more and 65% or less.
The thickness of the fiber reinforced resin composite sheet is 20 μm or more and 100 μm or less.
The combustibility classification of the fiber reinforced resin composite sheet determined in the UL94-5V combustion test conforming to the ASTM D5048 standard is 5VA or 5V-B.
ASTM D4804規格に準拠するUL94VTM燃焼試験において判定した前記難燃性樹脂フィルムの燃焼性分類がVTM-0であり、
前記強化繊維の体積含有率Vfは、30%以上65%以下であり、
前記繊維強化樹脂複合シートの厚さは、20μm以上100μm以下であり、
ASTM D5048規格に準拠するUL94-5V燃焼試験において判定した前記繊維強化樹脂複合シートの燃焼性分類が5V-Aまたは5V-Bである。 The fiber-reinforced resin composite sheet according to the first aspect of the present invention comprises a flame-retardant resin film made of a thermoplastic resin composition having a glass transition temperature Tg of 90 ° C. or higher, and a reinforced fiber bundle formed on the flame-retardant resin film. It is a fiber reinforced resin composite sheet containing a plurality of reinforcing fibers laminated in a state in which a plurality of reinforcing fibers opened from the above are oriented in the same direction.
The flammability classification of the flame-retardant resin film determined in the UL94 VTM combustion test conforming to the ASTM D4804 standard is VTM-0.
The volume content Vf of the reinforcing fiber is 30% or more and 65% or less.
The thickness of the fiber reinforced resin composite sheet is 20 μm or more and 100 μm or less.
The combustibility classification of the fiber reinforced resin composite sheet determined in the UL94-5V combustion test conforming to the ASTM D5048 standard is 5VA or 5V-B.
繊維強化樹脂複合材における強化繊維の体積含有率Vfがより大きい程、繊維強化樹脂複合材の引張強度もより大きくなる傾向にある。しかしながら、中間材料である繊維強化樹脂複合シートの製造時において、樹脂マトリックスに含浸させる強化繊維の量を増加しただけでは当該シートが厚くなってしまい、繊維強化樹脂複合シートの成形加工性が低下してしまう。さらには、強化繊維の構造および体積含有率Vfの値等は、繊維強化樹脂複合シート等の難燃性にも影響を与えてしまうことが予測される。このように、熱可塑性樹脂を用いる繊維強化樹脂複合シートにおいて、難燃性、成形加工性および強度の特性がいずれも好適となるように調整することは難しい。
The larger the volume content Vf of the reinforcing fiber in the fiber-reinforced resin composite material, the larger the tensile strength of the fiber-reinforced resin composite material tends to be. However, when the fiber-reinforced resin composite sheet, which is an intermediate material, is manufactured, the sheet becomes thicker just by increasing the amount of the reinforcing fibers impregnated in the resin matrix, and the moldability of the fiber-reinforced resin composite sheet deteriorates. It ends up. Furthermore, it is predicted that the structure of the reinforcing fibers, the value of the volume content Vf, and the like will affect the flame retardancy of the fiber reinforced resin composite sheet and the like. As described above, in the fiber reinforced resin composite sheet using the thermoplastic resin, it is difficult to adjust so that the characteristics of flame retardancy, moldability and strength are all suitable.
さらに、マトリックスの樹脂に熱可塑性樹脂を用いる場合、耐衝撃性、強靭性および柔軟性等の物性に優れるとの観点、ならびにコスト面および取り扱い易さの観点から、ポリアミド6樹脂が用いられることが多い。しかし、ポリアミド6樹脂はガラス転移温度Tgが比較的低いため、当該ポリアミド6樹脂を用いて製造された繊維強化樹脂複合シートは高温条件下において強度が低下してしまうおそれがある。そのため、ポリアミド6樹脂は、電気機器または電子機器の筐体や部品等の内部からの熱に曝される可能性がある材料としては不向きである。
Further, when a thermoplastic resin is used as the matrix resin, the polyamide 6 resin may be used from the viewpoint of excellent physical properties such as impact resistance, toughness and flexibility, as well as from the viewpoint of cost and ease of handling. many. However, since the polyamide 6 resin has a relatively low glass transition temperature Tg, the strength of the fiber-reinforced resin composite sheet produced using the polyamide 6 resin may decrease under high temperature conditions. Therefore, the polyamide 6 resin is not suitable as a material that may be exposed to heat from the inside of the housing or parts of an electric device or an electronic device.
そのため、本発明者らは、優れた難燃性を有し、良好な成形加工性かつ高温条件下における十分な引張強度を有する繊維強化樹脂複合シートについて、鋭意検討を行った。その結果、本発明に到達した。具体的には、所定の特性を有する熱可塑性樹脂の組成物を選択し、所定の構造を有する繊維強化樹脂複合シートを構成して、任意で添加される難燃剤の種類および添加量を適切に設定し、かつ強化繊維の体積含有率Vfを所定の範囲内で適切に調整することによって、前述したような繊維強化樹脂複合シートを提供することができる。
Therefore, the present inventors have diligently studied a fiber-reinforced resin composite sheet having excellent flame retardancy, good molding processability, and sufficient tensile strength under high temperature conditions. As a result, the present invention has been reached. Specifically, a composition of a thermoplastic resin having a predetermined property is selected, a fiber-reinforced resin composite sheet having a predetermined structure is formed, and the type and amount of the flame retardant to be optionally added are appropriately selected. The fiber-reinforced resin composite sheet as described above can be provided by setting and appropriately adjusting the volume content Vf of the reinforcing fibers within a predetermined range.
以下、本発明の実施形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。
Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described here, and various modifications can be made without impairing the gist of the present invention.
<繊維強化樹脂複合シート>
本実施形態における繊維強化樹脂複合シートは、難燃性樹脂フィルムと、当該難燃性樹脂フィルムに積層された複数の強化繊維とを含む。複数の強化繊維は、難燃性樹脂フィルムに、強化繊維束から開繊した複数の強化繊維が同一方向に配向した状態で積層されている。 <Fiber reinforced plastic composite sheet>
The fiber-reinforced resin composite sheet in the present embodiment includes a flame-retardant resin film and a plurality of reinforcing fibers laminated on the flame-retardant resin film. The plurality of reinforcing fibers are laminated on a flame-retardant resin film in a state in which a plurality of reinforcing fibers opened from the reinforcing fiber bundle are oriented in the same direction.
本実施形態における繊維強化樹脂複合シートは、難燃性樹脂フィルムと、当該難燃性樹脂フィルムに積層された複数の強化繊維とを含む。複数の強化繊維は、難燃性樹脂フィルムに、強化繊維束から開繊した複数の強化繊維が同一方向に配向した状態で積層されている。 <Fiber reinforced plastic composite sheet>
The fiber-reinforced resin composite sheet in the present embodiment includes a flame-retardant resin film and a plurality of reinforcing fibers laminated on the flame-retardant resin film. The plurality of reinforcing fibers are laminated on a flame-retardant resin film in a state in which a plurality of reinforcing fibers opened from the reinforcing fiber bundle are oriented in the same direction.
ここで、本明細書全体において、「難燃性樹脂フィルム」において使用される「強化繊維が積層されている」とは、難燃性樹脂フィルムの物性値、形状、積層のために行われる処理の種類およびその条件等に応じて、「強化繊維が少なくとも一部において難燃性樹脂フィルムに融着した上で積層されている」、「強化繊維が少なくとも一部において難燃性樹脂フィルムに付着した上で積層されている」、「強化繊維が少なくとも一部において難燃性樹脂フィルムに圧着した上で積層されている」および「強化繊維が各々の強化繊維の略半分において難燃性樹脂フィルム表面から内部に含浸している状態である」の意味も含む。より具体的には、「積層」の際に、必要に応じて加熱、冷却および/または加圧処理がなされていてもよい。
Here, in the entire specification, "reinforcing fibers are laminated" used in the "flame-retardant resin film" means a treatment performed for the physical property value, shape, and lamination of the flame-retardant resin film. "Reinforcing fibers are laminated on the flame-retardant resin film at least in part" and "Reinforcing fibers adhere to the flame-retardant resin film in at least part" depending on the type and conditions thereof. "The reinforcing fibers are laminated after being pressure-bonded to the flame-retardant resin film at least in part" and "The reinforcing fibers are laminated after being pressure-bonded to the flame-retardant resin film" and "The reinforcing fibers are laminated in about half of each reinforcing fiber. It also includes the meaning of "it is in a state of being impregnated from the surface to the inside". More specifically, at the time of "lamination", heating, cooling and / or pressure treatment may be performed as necessary.
まず、本実施形態における繊維強化樹脂複合シートに含まれる各構成要素について説明する。
First, each component included in the fiber-reinforced resin composite sheet in the present embodiment will be described.
[難燃性樹脂フィルム]
難燃性樹脂フィルムは、ガラス転移温度Tgが90℃以上である熱可塑性樹脂組成物からなる。熱可塑性樹脂組成物に含まれる熱可塑性樹脂が難燃性特性を有する場合、熱可塑性樹脂組成物は熱可塑性樹脂単独からなってもよい。あるいは、熱可塑性樹脂組成物に含まれる熱可塑性樹脂が難燃性特性を持たない場合、熱可塑性樹脂組成物は難燃剤を含む。さらに、熱可塑性樹脂組成物は、必要に応じて、難燃剤以外の他の添加物等を含んでもよい。以下、熱可塑性樹脂組成物に含まれる各成分について説明する。 [Flame-retardant resin film]
The flame-retardant resin film comprises a thermoplastic resin composition having a glass transition temperature Tg of 90 ° C. or higher. When the thermoplastic resin contained in the thermoplastic resin composition has flame-retardant properties, the thermoplastic resin composition may consist of the thermoplastic resin alone. Alternatively, if the thermoplastic resin contained in the thermoplastic resin composition does not have flame retardant properties, the thermoplastic resin composition contains a flame retardant. Further, the thermoplastic resin composition may contain additives other than the flame retardant, if necessary. Hereinafter, each component contained in the thermoplastic resin composition will be described.
難燃性樹脂フィルムは、ガラス転移温度Tgが90℃以上である熱可塑性樹脂組成物からなる。熱可塑性樹脂組成物に含まれる熱可塑性樹脂が難燃性特性を有する場合、熱可塑性樹脂組成物は熱可塑性樹脂単独からなってもよい。あるいは、熱可塑性樹脂組成物に含まれる熱可塑性樹脂が難燃性特性を持たない場合、熱可塑性樹脂組成物は難燃剤を含む。さらに、熱可塑性樹脂組成物は、必要に応じて、難燃剤以外の他の添加物等を含んでもよい。以下、熱可塑性樹脂組成物に含まれる各成分について説明する。 [Flame-retardant resin film]
The flame-retardant resin film comprises a thermoplastic resin composition having a glass transition temperature Tg of 90 ° C. or higher. When the thermoplastic resin contained in the thermoplastic resin composition has flame-retardant properties, the thermoplastic resin composition may consist of the thermoplastic resin alone. Alternatively, if the thermoplastic resin contained in the thermoplastic resin composition does not have flame retardant properties, the thermoplastic resin composition contains a flame retardant. Further, the thermoplastic resin composition may contain additives other than the flame retardant, if necessary. Hereinafter, each component contained in the thermoplastic resin composition will be described.
(熱可塑性樹脂)
熱可塑性樹脂組成物は、ガラス転移温度Tgが90℃以上であれば、特に限定されず、熱可塑性樹脂単独からなってもよく、または熱可塑性樹脂と難燃剤とを含む組成物であってもよい。あるいは、市販品も使用することができる。熱可塑性樹脂の種類としては、例えば、ポリメチルメタクリレート樹脂等のメタクリル系樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂等のポリスチレン系樹脂、PA9T等のポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリフェニレンサルファイド(PPS)樹脂、変性ポリフェニレンエーテル(PPE)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSF)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、フッ素(F)樹脂;液晶ポリエステル樹脂等の液晶ポリマー(LCP)樹脂、またはこれらの共重合体樹脂もしくは変性樹脂等が挙げられる。熱可塑性樹脂組成物において、これらの熱可塑性樹脂を単独または組み合わせて含んでもよい。 (Thermoplastic resin)
The thermoplastic resin composition is not particularly limited as long as the glass transition temperature Tg is 90 ° C. or higher, and may consist of the thermoplastic resin alone, or may be a composition containing the thermoplastic resin and a flame retardant. good. Alternatively, a commercially available product can also be used. Examples of the type of thermoplastic resin include methacrylic resin such as polymethylmethacrylate resin, polystyrene resin, ABS resin, polystyrene resin such as AS resin, polyamide (PA) resin such as PA9T, polycarbonate (PC) resin, and polyphenylene. Sulfide (PPS) resin, modified polyphenylene ether (PPE) resin, polyetherimide (PEI) resin, polysulfone (PSF) resin, polyethersulfone (PES) resin, polyarylate (PAR) resin, polyethernitrile (PEN) resin , Polyetherketone (PEK) resin, polyetheretherketone (PEEK) resin, polyetherketoneketone (PEKK) resin, polyimide (PI) resin, polyamideimide (PAI) resin, fluorine (F) resin; liquid crystal polyester resin, etc. The liquid crystal polymer (LCP) resin of the above, or a copolymer resin or a modified resin thereof and the like can be mentioned. These thermoplastic resins may be contained alone or in combination in the thermoplastic resin composition.
熱可塑性樹脂組成物は、ガラス転移温度Tgが90℃以上であれば、特に限定されず、熱可塑性樹脂単独からなってもよく、または熱可塑性樹脂と難燃剤とを含む組成物であってもよい。あるいは、市販品も使用することができる。熱可塑性樹脂の種類としては、例えば、ポリメチルメタクリレート樹脂等のメタクリル系樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂等のポリスチレン系樹脂、PA9T等のポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリフェニレンサルファイド(PPS)樹脂、変性ポリフェニレンエーテル(PPE)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSF)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、フッ素(F)樹脂;液晶ポリエステル樹脂等の液晶ポリマー(LCP)樹脂、またはこれらの共重合体樹脂もしくは変性樹脂等が挙げられる。熱可塑性樹脂組成物において、これらの熱可塑性樹脂を単独または組み合わせて含んでもよい。 (Thermoplastic resin)
The thermoplastic resin composition is not particularly limited as long as the glass transition temperature Tg is 90 ° C. or higher, and may consist of the thermoplastic resin alone, or may be a composition containing the thermoplastic resin and a flame retardant. good. Alternatively, a commercially available product can also be used. Examples of the type of thermoplastic resin include methacrylic resin such as polymethylmethacrylate resin, polystyrene resin, ABS resin, polystyrene resin such as AS resin, polyamide (PA) resin such as PA9T, polycarbonate (PC) resin, and polyphenylene. Sulfide (PPS) resin, modified polyphenylene ether (PPE) resin, polyetherimide (PEI) resin, polysulfone (PSF) resin, polyethersulfone (PES) resin, polyarylate (PAR) resin, polyethernitrile (PEN) resin , Polyetherketone (PEK) resin, polyetheretherketone (PEEK) resin, polyetherketoneketone (PEKK) resin, polyimide (PI) resin, polyamideimide (PAI) resin, fluorine (F) resin; liquid crystal polyester resin, etc. The liquid crystal polymer (LCP) resin of the above, or a copolymer resin or a modified resin thereof and the like can be mentioned. These thermoplastic resins may be contained alone or in combination in the thermoplastic resin composition.
これらの熱可塑性樹脂のうち、耐熱性、難燃性および強度等の様々な特性に優れるという観点から、いわゆるスーパーエンプラと呼ばれる高耐熱性のプラスチック樹脂が用いられると好ましい。すなわち、熱可塑性樹脂組成物は、好ましくは、ポリフェニレンサルファイド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリエーテルイミド(PEI)樹脂、ポリエーテルスルホン(PES)樹脂および液晶ポリマー(LCP)樹脂から選択される1つ以上を含む。これらの熱可塑性樹脂は優れた難燃性特性を有するため、熱可塑性樹脂組成物がこれらの熱可塑性樹脂単独からなってもよい。具体的には、これらの樹脂フィルムが後述する燃焼性分類の条件を満たし、かつ当該樹脂フィルムを用いて製造される繊維強化樹脂複合シートも後述する燃焼性分類の条件を満たす場合、難燃剤は含まれなくてもよい。さらに、これらのスーパーエンプラのうち、高い連続使用温度を有するという観点から、熱可塑性樹脂組成物は、ポリフェニレンサルファイド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂およびポリエーテルケトンケトン(PEKK)樹脂から選択される1つ以上を含むとより好ましい。例えば、熱可塑性樹脂組成物からなる難燃性樹脂フィルムは、ポリフェニレンサルファイド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂およびポリエーテルケトンケトン(PEKK)樹脂のうちのいずれか1つの樹脂からなっていてもよい。
Among these thermoplastic resins, it is preferable to use a highly heat-resistant plastic resin, so-called super engineering plastic, from the viewpoint of being excellent in various properties such as heat resistance, flame retardancy and strength. That is, the thermoplastic resin composition is preferably a polyphenylene sulfide (PPS) resin, a polyetheretherketone (PEEK) resin, a polyetherketoneketone (PEKK) resin, a polyetherimide (PEI) resin, or a polyethersulfone (PES). ) Includes one or more selected from resins and liquid crystal polymer (LCP) resins. Since these thermoplastic resins have excellent flame retardant properties, the thermoplastic resin composition may consist of these thermoplastic resins alone. Specifically, if these resin films satisfy the conditions of the flammability classification described later, and the fiber-reinforced resin composite sheet produced using the resin film also satisfies the conditions of the flammability classification described later, the flame retardant is used. It does not have to be included. Further, among these superempuras, from the viewpoint of having a high continuous use temperature, the thermoplastic resin composition is a polyphenylene sulfide (PPS) resin, a polyetheretherketone (PEEK) resin, and a polyetherketoneketone (PEKK) resin. It is more preferable to include one or more selected from. For example, a flame-retardant resin film made of a thermoplastic resin composition comprises any one of a polyphenylene sulfide (PPS) resin, a polyetheretherketone (PEEK) resin, and a polyetherketoneketone (PEKK) resin. May be.
これらのスーパーエンプラは公知の市販品を用いればよい。ポリフェニレンサルファイド(PPS)樹脂の市販品としては、例えば、東レ社製の「トレリナ(登録商標)」、ポリプラスチック社製の「ジュラファイド(登録商標)」、Solvay社製の「Ryton(登録商標)」等が挙げられる。ポリエーテルエーテルケトン(PEEK)樹脂の市販品としては、例えば、東レ社製の「TORAY TPS(登録商標)PEEK」、ダイセル・エボニック社製の「ベスタキープ」、Victrex社製の「PEEKポリマー」等が挙げられる。ポリエーテルケトンケトン(PEKK)樹脂の市販品としては、例えば、アルケマ社製の「Kepstan(登録商標)PEKK」等が挙げられる。ポリエーテルイミド(PEI)樹脂の市販品としては、例えば、Sabic社製の「Ultem(登録商標)」等が挙げられる。ポリエーテルスルホン(PES)樹脂の市販品としては、例えば、住友化学社製の「スミカエクセルPES」、三井化学ファイン社製の「三井PES(登録商標)」、BASF社製の「ウルトラゾーン(登録商標)E」等が挙げられる。液晶ポリマー(LCP)樹脂の市販品としては、例えば、住友化学社製の「スミカスーパーLCP」、ポリプラスチックス社製の「ラペロス(登録商標)LCP」、上野純薬社製の「UENOLCP(登録商標)」等が挙げられる。
For these super engineering plastics, known commercially available products may be used. Commercially available products of polyphenylene sulfide (PPS) resin include, for example, Toray's "Trelina (registered trademark)", Polyplastics' "Durafide (registered trademark)", and Solvay's "Ryton (registered trademark)". , Etc. can be mentioned. Commercially available products of polyetheretherketone (PEEK) resin include, for example, "TORAY TPS (registered trademark) PEEK" manufactured by Toray Industries, "Vestakeep" manufactured by Daicel Ebonic, and "PEEK polymer" manufactured by Victrex. Can be mentioned. Examples of commercially available products of the polyetherketoneketone (PEKK) resin include "Kepstan (registered trademark) PEKK" manufactured by Arkema. Examples of commercially available polyetherimide (PEI) resins include "Ultem (registered trademark)" manufactured by Sabic. Commercially available products of polyether sulfone (PES) resin include, for example, "Sumika Excel PES" manufactured by Sumitomo Chemical Co., Ltd., "Mitsui PES (registered trademark)" manufactured by Mitsui Chemical Fine Co., Ltd., and "Ultrazone (registered)" manufactured by BASF. Trademark) E ”and the like. Commercially available liquid crystal polymer (LCP) resins include, for example, "Sumika Super LCP" manufactured by Sumitomo Chemical Co., Ltd., "Laperos (registered trademark) LCP" manufactured by Polyplastics Co., Ltd., and "UENOLCP (registered)" manufactured by Ueno Junyaku Co., Ltd. Trademark) ”and the like.
あるいは、熱可塑性樹脂組成物は、加工性に優れた繊維強化樹脂複合シートが得られるという観点から、ポリカーボネート(PC)樹脂を含むと好ましい。熱可塑性樹脂組成物が熱可塑性樹脂としてポリカーボネート(PC)樹脂を含む場合、熱可塑性樹脂組成物は、ハロゲン系難燃剤、リン系難燃剤、シリコーン系難燃剤および無機系難燃剤から選択される1つ以上の難燃剤をさらに含むと好ましい。
Alternatively, the thermoplastic resin composition preferably contains a polycarbonate (PC) resin from the viewpoint of obtaining a fiber-reinforced resin composite sheet having excellent processability. When the thermoplastic resin composition contains a polycarbonate (PC) resin as the thermoplastic resin, the thermoplastic resin composition is selected from a halogen-based flame retardant, a phosphorus-based flame retardant, a silicone-based flame retardant, and an inorganic flame retardant. It is preferable to further contain one or more flame retardants.
本実施形態では、難燃性樹脂フィルムを構成する熱可塑性樹脂組成物のガラス転移温度Tgが90℃以上であるため、当該熱可塑性樹脂組成物を用いて製造される繊維強化樹脂複合シート等は、高温条件下でも引張強度または曲げ強度等の特性が低下しないことが予測される。これに対して、例えば、プリプレグの樹脂マトリックスとして幅広く使用されているポリアミド6樹脂マトリックスのガラス転移温度Tgは50℃程度である(後述の比較例1-1参照)。そのため、ポリアミド6樹脂を用いて製造した繊維強化樹脂複合シート等は、高温条件下では強度等の特性が低下してしまうことが予測される。
In the present embodiment, since the glass transition temperature Tg of the thermoplastic resin composition constituting the flame-retardant resin film is 90 ° C. or higher, the fiber-reinforced resin composite sheet or the like produced by using the thermoplastic resin composition is It is expected that properties such as tensile strength and bending strength will not deteriorate even under high temperature conditions. On the other hand, for example, the glass transition temperature Tg of the polyamide 6 resin matrix widely used as the resin matrix of the prepreg is about 50 ° C. (see Comparative Example 1-1 described later). Therefore, it is predicted that the fiber-reinforced resin composite sheet or the like produced by using the polyamide 6 resin will have reduced properties such as strength under high temperature conditions.
(難燃剤)
熱可塑性樹脂組成物は、必要に応じて難燃剤を含む。特に、熱可塑性樹脂組成物に含まれる熱可塑性樹脂が難燃性特性を有さない場合には、熱可塑性樹脂組成物は必須の構成要素として難燃剤を含む。熱可塑性樹脂組成物に含まれる熱可塑性樹脂が難燃性特性を有する場合であっても、難燃性特性の向上等の観点から、難燃剤をさらに含んでもよい。 (Flame retardants)
The thermoplastic resin composition contains a flame retardant, if necessary. In particular, when the thermoplastic resin contained in the thermoplastic resin composition does not have flame retardant properties, the thermoplastic resin composition contains a flame retardant as an essential component. Even when the thermoplastic resin contained in the thermoplastic resin composition has flame-retardant properties, a flame retardant may be further contained from the viewpoint of improving the flame-retardant properties.
熱可塑性樹脂組成物は、必要に応じて難燃剤を含む。特に、熱可塑性樹脂組成物に含まれる熱可塑性樹脂が難燃性特性を有さない場合には、熱可塑性樹脂組成物は必須の構成要素として難燃剤を含む。熱可塑性樹脂組成物に含まれる熱可塑性樹脂が難燃性特性を有する場合であっても、難燃性特性の向上等の観点から、難燃剤をさらに含んでもよい。 (Flame retardants)
The thermoplastic resin composition contains a flame retardant, if necessary. In particular, when the thermoplastic resin contained in the thermoplastic resin composition does not have flame retardant properties, the thermoplastic resin composition contains a flame retardant as an essential component. Even when the thermoplastic resin contained in the thermoplastic resin composition has flame-retardant properties, a flame retardant may be further contained from the viewpoint of improving the flame-retardant properties.
難燃剤は、特に限定されないが、例えば、ハロゲン系難燃剤、リン系難燃剤、シリコーン系難燃剤、無機系難燃剤、その他の難燃剤等が挙げられる。以下、それぞれについて説明する。
The flame retardant is not particularly limited, and examples thereof include halogen-based flame retardants, phosphorus-based flame retardants, silicone-based flame retardants, inorganic flame retardants, and other flame retardants. Each will be described below.
ハロゲン系難燃剤としては、例えば、臭素系難燃剤、塩素系難燃剤等が挙げられる。
Examples of the halogen-based flame retardant include a bromine-based flame retardant and a chlorine-based flame retardant.
臭素系難燃剤としては、例えば、デカブロモジフェニルエーテル;テトラブロモビスフェノールA、その誘導体であるテトラブロモビスフェノールAカーボネートオリゴマー、テトラブロモビスフェノールAエポキシオリゴマー等;多ベンゼン環化合物系のビス(ペンタブロモフェニール)エタン、1,2-ビス(2,4,6-トリブロモフェノキシ)エタン等;臭素化ポリスチレン系の臭素化ポリスチレン、ポリ臭素化スチレン等;フタール酸系のエチレンビステトラブロモフタールイミド等;環状脂肪族系のヘキサブロモシクロドデカン等;または、その他のヘキサブロモベンゼン、ペンタブロモベンジルアクリレート等が挙げられる。塩素系難燃剤としては、例えば、塩素化パラフィン、デクロラン、クロレンド酸、無水クロレンド酸等が挙げられる。
Examples of the brominated flame retardant include decabromodiphenyl ether; tetrabromobisphenol A, derivatives thereof, tetrabromobisphenol A carbonate oligomer, tetrabromobisphenol A epoxy oligomer, etc.; polybenzene ring compound-based bis (pentabromophenyl) ethane. , 1,2-bis (2,4,6-tribromophenoxy) ethane, etc .; brominated polystyrene-based brominated polystyrene, polybrominated styrene, etc .; Group hexabromocyclododecane and the like; or other hexabromobenzene, pentabromobenzyl acrylate and the like can be mentioned. Examples of the chlorine-based flame retardant include chlorinated paraffin, declorane, chlorendic acid, and chlorendic anhydride.
リン系難燃剤としては、例えば、芳香族リン酸エステル系難燃剤、芳香族縮合型リン酸エステル系難燃剤、含ハロゲンリン酸エステル系難燃剤、その他のリン系難燃剤等が挙げられる。
Examples of phosphorus-based flame retardants include aromatic phosphate ester-based flame retardants, aromatic condensation-type phosphoric acid ester-based flame retardants, halogen-containing phosphoric acid ester-based flame retardants, and other phosphorus-based flame retardants.
芳香族リン酸エステル系難燃剤としては、例えば、トリフェニルフォスフェート、クレジルフェニルフォスフェート、トリクレジルフォスフェート、トリキシリニルフォスフェート、トリス(t-ブチル化フェニル)フォスフェート、トリス(i-プロピル化フェニル)フォスフェート、2-エチルヘキシルジフェニルフォスフェート等が挙げられる。芳香族縮合型リン酸エステル系難燃剤としては、例えば、1,3フェニレンビス(ジフェニルフォスフェート)、1,2フェニレンビス(ジキシレニルフォスフェート)等が挙げられる。含ハロゲンリン酸エステル系難燃剤としては、例えば、トリス(ジクロロプロピル)フォスフェート、トリスクロロエチルフォスフェート、2,2ビス(ジクロロメチル)トリメチレン,ビス(2-クロロエチル)フォスフェート等が挙げられる。その他のリン系難燃剤としては、例えば、赤燐、リン酸エステルアミド、ポリリン酸アンモニウム等が挙げられる。
Examples of the aromatic phosphoric acid ester flame retardant include triphenyl phosphate, cresylphenyl phosphate, tricresyl phosphate, trixilinyl phosphate, tris (t-butylated phenyl) phosphate, and tris (i). -Phenyl propylated) phosphate, 2-ethylhexyldiphenyl phosphate and the like can be mentioned. Examples of the aromatic condensed phosphoric acid ester flame retardant include 1,3 phenylenebis (diphenylphosphate) and 1,2phenylenbis (dixylenyl phosphate). Examples of the halogen-containing phosphoric acid ester flame retardant include tris (dichloropropyl) phosphate, trischloroethyl phosphate, 2,2 bis (dichloromethyl) trimethylene, and bis (2-chloroethyl) phosphate. Examples of other phosphorus-based flame retardants include red phosphorus, phosphate ester amide, and ammonium polyphosphate.
シリコーン系難燃剤としては、例えば、ポリジメチルシロキサン、ポリメチルエチルシロキサン、ポリメチルオクチルシロキサン、ポリメチルビニルシロキサン、ポリジメチルフェニルシロキサン、ポリジフェニルシロキサン、ポリジメチルジフェニルシロキサン、ポリメチル(3,3,3-トリフルオロプロピル)シロキサン等が挙げられる。
Examples of the silicone-based flame retardant include polydimethylsiloxane, polymethylethylsiloxane, polymethyloctylsiloxane, polymethylvinylsiloxane, polydimethylphenylsiloxane, polydiphenylsiloxane, polydimethyldiphenylsiloxane, and polymethyl (3,3,3-). Trifluoropropyl) siloxane and the like.
無機系難燃剤としては、例えば、三酸化アンチモン、四酸化アンチモン、5酸化アンチモン、アンチモン酸ソーダ等のアンチモン化合物;酸化モリブデン、モリブデン酸アンモン等のモリブデン化合物;水酸化アルミニウム、水酸化マグネシウム等の水和金属化合物;酸化チタン、モンモリロナイト、シリカ等のナノフィラー;または、ホウ酸亜鉛、錫酸亜鉛、硫化亜鉛、酸化錫、酸化ジルコニウム、ゼオライト、低融点ガラス等が挙げられる。
Examples of the inorganic flame retardant include antimony compounds such as antimony trioxide, antimony tetroxide, antimony tetroxide, and sodium antimonate; molybdenum compounds such as molybdenum oxide and ammon molybdenate; water such as aluminum hydroxide and magnesium hydroxide. Japanese metal compounds; nanofillers such as titanium oxide, montmorillonite, silica; or zinc borate, zinc tinate, zinc sulfide, tin oxide, zirconium oxide, zeolite, low melting point glass and the like can be mentioned.
その他の難燃剤としては、例えば、メラミンシアヌレート、硫酸メラミン等のメラミン化合物、トリアジン化合物、グアニジン化合物等の窒素化合物;パーフルオロブタンスルフォン酸カルシウム、パーフルオロブタンスルフォン酸カリウム、ジフェニルスルフォン酸カリウム、ジフェニルスルフォン-3-スルフォン酸カリウム、p-トルエンスルフォン酸カリウム等の有機金属化合物;または、ヒンダードアミン化合物、膨張性黒鉛等が挙げられる。
Other flame retardants include, for example, melamine compounds such as melamine cyanurate and melamine sulfate, nitrogen compounds such as triazine compounds and guanidine compounds; calcium perfluorobutanesulfonate, potassium perfluorobutanesulfonate, potassium diphenylsulphonate, diphenyl. Organic metal compounds such as potassium sulphon-3-sulphonate and potassium p-toluene sulphonate; or hindered amine compounds, expansive graphite and the like can be mentioned.
上述した難燃剤のうち、ハロゲン系難燃剤、リン系難燃剤、ヒンダードアミン化合物およびアンチモン化合物は、ラジカルトラップ作用による難燃性を有する。また、水和金属化合物および膨張性黒鉛は、吸熱作用による難燃性を有する。リン系難燃剤、ハロゲン系難燃剤、窒素化合物、水和金属化合物、アンチモン化合物およびポリリン酸アンモニウムは、酸素遮断作用または可燃ガス希釈作用による難燃性を有する。シリコーン系難燃剤、低融点ガラス、水和金属化合物、赤燐、ポリリン酸アンモニウム、膨張性黒鉛および有機金属化合物は、断熱作用による難燃性を有する。このような作用の異なる難燃剤を所望する難燃作用を有するように組み合わせることによって、所望の難燃作用を有する熱可塑性樹脂組成物を得ることができる。
Among the above-mentioned flame retardants, halogen-based flame retardants, phosphorus-based flame retardants, hindered amine compounds and antimony compounds have flame retardancy due to radical trapping action. Further, the hydrated metal compound and the expandable graphite have flame retardancy due to the endothermic action. Phosphorus-based flame retardants, halogen-based flame retardants, nitrogen compounds, hydrated metal compounds, antimony compounds and ammonium polyphosphate have flame retardancy due to oxygen blocking action or flammable gas dilution action. Silicone flame retardants, low melting point glass, hydrated metal compounds, red phosphorus, ammonium polyphosphate, expansive graphite and organic metal compounds have flame retardancy due to heat insulating action. By combining flame retardants having different actions so as to have a desired flame retardant action, a thermoplastic resin composition having a desired flame retardant action can be obtained.
難燃剤は、熱可塑性樹脂組成物からなる難燃性樹脂フィルムがASTM D4804規格に準拠するUL94VTM燃焼試験において判定した燃焼性分類においてVTM-0となるように、熱可塑性樹脂組成物中に適切な量において調整して含ませればよい。ASTM D4804規格に準拠するUL94VTM燃焼試験については、後述する実施例にて詳細に説明する。さらに、難燃剤は、難燃性樹脂フィルムを用いて製造される繊維強化樹脂複合シートが後述する燃焼性分類の条件も満たすように、強化繊維の体積含有率Vfの値も考慮しつつ、その添加量を調整して含ませる必要がある。
The flame retardant is suitable in the thermoplastic resin composition so that the flame retardant resin film made of the thermoplastic resin composition becomes VTM-0 in the flammability classification determined in the UL94 VTM combustion test conforming to the ASTM D4804 standard. The amount may be adjusted and included. The UL94 VTM combustion test conforming to the ASTM D4804 standard will be described in detail in Examples described later. Further, as the flame retardant, the value of the volume content Vf of the reinforcing fiber is taken into consideration so that the fiber-reinforced resin composite sheet manufactured by using the flame-retardant resin film also satisfies the conditions of the flammability classification described later. It is necessary to adjust the addition amount and include it.
具体的には、例えば、熱可塑性樹脂組成物中において、難燃剤を、熱可塑性樹脂100質量部に対して、1質量部以上30質量部以下程度含ませればよい。あるいは、前述したように、熱可塑性樹脂組成物に含まれる熱可塑性樹脂自体が好適な難燃性特性を有する場合は、難燃剤を含ませなくてもかまわない。
Specifically, for example, in the thermoplastic resin composition, the flame retardant may be contained in an amount of 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. Alternatively, as described above, if the thermoplastic resin itself contained in the thermoplastic resin composition has suitable flame retardant properties, the flame retardant may not be contained.
(その他の添加剤)
熱可塑性樹脂組成物は、必要に応じて、本発明の効果を損なわない範囲で、公知の様々な添加剤を含んでもよい。例えば、熱可塑性樹脂組成物の貯蔵安定性向上、固化物の変色または変質の回避のために、酸化防止剤、光安定剤、耐候性改良材等を添加することができる。 (Other additives)
If necessary, the thermoplastic resin composition may contain various known additives as long as the effects of the present invention are not impaired. For example, in order to improve the storage stability of the thermoplastic resin composition and avoid discoloration or alteration of the solidified product, an antioxidant, a light stabilizer, a weather resistance improving material and the like can be added.
熱可塑性樹脂組成物は、必要に応じて、本発明の効果を損なわない範囲で、公知の様々な添加剤を含んでもよい。例えば、熱可塑性樹脂組成物の貯蔵安定性向上、固化物の変色または変質の回避のために、酸化防止剤、光安定剤、耐候性改良材等を添加することができる。 (Other additives)
If necessary, the thermoplastic resin composition may contain various known additives as long as the effects of the present invention are not impaired. For example, in order to improve the storage stability of the thermoplastic resin composition and avoid discoloration or alteration of the solidified product, an antioxidant, a light stabilizer, a weather resistance improving material and the like can be added.
具体的な他の添加剤としては、例えば、熱硬化性エラストマー、熱可塑性エラストマー、シリコーンオイル、湿潤分散剤、消泡剤、脱泡剤、天然ワックス類、合成ワックス類、直鎖脂肪酸の金属塩、酸アミド、エステル類、パラフィン類等の離型剤、結晶質シリカ、溶融シリカ、ケイ酸カルシウム、アルミナ、炭酸カルシウム、タルク、硫酸バリウム等の粉体や金属酸化物、金属水酸化物、ガラス繊維、カーボンナノチューブ、フラーレン等の無機フィラー、炭素繊維、セルロースナノファイバー等の有機フィラー、ベンガラ等の着色剤、シランカップリング剤、導電材、スリップ剤、レベリング剤、ハイドロキノンモノメチルエーテル等の重合禁止剤、紫外線吸収剤等が挙げられる。これらの添加剤は、1種または2種以上を適宜組み合わせて使用することができる。
Specific other additives include, for example, thermosetting polymers, thermoplastic elastomers, silicone oils, wet dispersants, defoamers, defoamers, natural waxes, synthetic waxes, and metal salts of linear fatty acids. , Acid amides, esters, defoamers such as paraffins, crystalline silica, molten silica, calcium silicate, alumina, calcium carbonate, talc, barium sulfate and other powders, metal oxides, metal hydroxides, glass Inorganic fillers such as fibers, carbon nanotubes and fullerene, organic fillers such as carbon fibers and cellulose nanofibers, colorants such as red iron oxide, silane coupling agents, conductive materials, slip agents, leveling agents, polymerization inhibitors such as hydroquinone monomethyl ethers. , UV absorber and the like. These additives may be used alone or in combination of two or more as appropriate.
また、熱可塑性樹脂組成物からなる難燃性樹脂フィルムは、当業者に公知である任意の方法を適用して製造することができる。フィルムの製造方法としては、特に限定されないが、例えば、ロールコート、リバースコート、コンマコート、ナイフコート、ダイコート、グラビアコート、溶融押出成形法、溶液流延法、Tダイ法、カレンダー法等が挙げられる。また、共押出法やラミネート法を用いることにより、厚さを厚くしたり、樹脂組成の異なる樹脂フィルムを積層したりして製造することもできる。
Further, the flame-retardant resin film made of the thermoplastic resin composition can be produced by applying any method known to those skilled in the art. The method for producing the film is not particularly limited, and examples thereof include a roll coating, a reverse coating, a comma coating, a knife coating, a die coating, a gravure coating, a melt extrusion method, a solution casting method, a T die method, and a calendar method. Be done. Further, by using the coextrusion method or the laminating method, it is possible to increase the thickness or to laminate resin films having different resin compositions.
難燃性樹脂フィルムの厚さの下限は、特に限定されないが、好ましくは5μm以上にすることによって、フィルム成形時においてフィルムの形態を良好に維持し易い。また、難燃性樹脂フィルムの厚さは、好ましくは50μm以下、より好ましくは45μm以下、さらに好ましくは40μm以下、よりさらに好ましくは30μm以下、25μm以下、または20μm以下である。難燃性樹脂フィルムの厚さを50μm以下とすることによって、本実施形態における繊維強化樹脂複合シートも薄く構成することができ、その結果、良好な成形加工性を有することができる。
The lower limit of the thickness of the flame-retardant resin film is not particularly limited, but preferably 5 μm or more, it is easy to maintain the morphology of the film well at the time of film molding. The thickness of the flame-retardant resin film is preferably 50 μm or less, more preferably 45 μm or less, still more preferably 40 μm or less, still more preferably 30 μm or less, 25 μm or less, or 20 μm or less. By setting the thickness of the flame-retardant resin film to 50 μm or less, the fiber-reinforced resin composite sheet in the present embodiment can also be made thin, and as a result, good molding processability can be obtained.
このような熱可塑性樹脂組成物からなる難燃性樹脂フィルムは、本実施形態における繊維強化樹脂複合シートを製造するための中間材料である。難燃性樹脂フィルムの一方または両方の面に、強化繊維束から開繊した複数の強化繊維が同一方向に配向した状態で積層されて、加熱、冷却および/または加圧処理されることによって、本実施形態における繊維強化樹脂複合シートが得られる。より優れた難燃性特性が得られるとの観点から、当該複数の強化繊維は難燃性樹脂フィルムの両方の面に積層されていると好ましい。
The flame-retardant resin film made of such a thermoplastic resin composition is an intermediate material for producing the fiber-reinforced resin composite sheet in the present embodiment. A plurality of reinforcing fibers opened from a reinforcing fiber bundle are laminated in a state of being oriented in the same direction on one or both surfaces of a flame-retardant resin film, and heat, cool, and / or pressurize the fibers. The fiber reinforced resin composite sheet in this embodiment is obtained. From the viewpoint of obtaining more excellent flame-retardant properties, it is preferable that the plurality of reinforcing fibers are laminated on both surfaces of the flame-retardant resin film.
[強化繊維]
強化繊維は、前述の熱可塑性樹脂組成物からなる難燃性樹脂フィルムに、強化繊維束から開繊した複数の強化繊維が同一方向に配向した状態で積層されている。本明細書において、「複数の強化繊維が同一方向に配向した状態」とは、複数の強化繊維について、各々の強化繊維が略平行方向に延びている状態を意味する。 [Reinforcing fiber]
The reinforcing fibers are laminated on a flame-retardant resin film made of the above-mentioned thermoplastic resin composition in a state in which a plurality of reinforcing fibers opened from the reinforcing fiber bundles are oriented in the same direction. As used herein, the "state in which a plurality of reinforcing fibers are oriented in the same direction" means a state in which each reinforcing fiber extends in a substantially parallel direction with respect to the plurality of reinforcing fibers.
強化繊維は、前述の熱可塑性樹脂組成物からなる難燃性樹脂フィルムに、強化繊維束から開繊した複数の強化繊維が同一方向に配向した状態で積層されている。本明細書において、「複数の強化繊維が同一方向に配向した状態」とは、複数の強化繊維について、各々の強化繊維が略平行方向に延びている状態を意味する。 [Reinforcing fiber]
The reinforcing fibers are laminated on a flame-retardant resin film made of the above-mentioned thermoplastic resin composition in a state in which a plurality of reinforcing fibers opened from the reinforcing fiber bundles are oriented in the same direction. As used herein, the "state in which a plurality of reinforcing fibers are oriented in the same direction" means a state in which each reinforcing fiber extends in a substantially parallel direction with respect to the plurality of reinforcing fibers.
複数の強化繊維がこのような状態で難燃性樹脂フィルムに(具体的には難燃性樹脂フィルム表面上に)積層されていることによって、本実施形態における繊維強化樹脂複合シートは、非常に優れた難燃性を有する。具体的には、樹脂フィルム自体が難燃特性を有しているだけでなく、当該難燃性樹脂フィルム上に複数の不燃性の強化繊維(好ましくは炭素繊維)が完全に含浸することなく露出した状態で積層されていることによって、強化繊維が溶融樹脂中に完全に含浸されているシートと比較して、炎の広がりを抑制することができる。
By laminating a plurality of reinforcing fibers on the flame-retardant resin film (specifically, on the surface of the flame-retardant resin film) in such a state, the fiber-reinforced resin composite sheet in the present embodiment is very stable. Has excellent flame retardancy. Specifically, not only the resin film itself has flame-retardant properties, but also a plurality of non-flammable reinforcing fibers (preferably carbon fibers) are exposed without being completely impregnated on the flame-retardant resin film. By being laminated in this state, the spread of the flame can be suppressed as compared with the sheet in which the reinforcing fibers are completely impregnated in the molten resin.
強化繊維の材料としては、特に限定されないが、繊維強化樹脂複合シートを構成する強化繊維として公知であり、かつシートを構成した際に当該シートが後に詳説する燃焼性分類の条件を満たすような繊維を用途等に応じて適宜選択すればよい。具体例としては、炭素繊維、アラミド繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維、バサルト繊維等の各種の繊維を用いることができる。これらのうち、比強度および比弾性の観点から、炭素繊維、アラミド繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維が好ましい。さらに、本実施形態における繊維強化樹脂複合シートを用いた成形品の強度および耐食性等を向上させることができるため、炭素繊維がより好ましい。炭素繊維としては、強度が特に高いPAN(ポリアクリロニトリル)系の炭素繊維を用いることが好ましい。強化繊維として炭素繊維を用いる場合、金属による表面処理を施してもよい。なお、これら強化繊維束から開繊した強化繊維は、同一方向に配向した状態であれば、1種または2種以上を適宜組み合わせて使用することができる。
The material of the reinforcing fiber is not particularly limited, but is known as a reinforcing fiber constituting a fiber-reinforced resin composite sheet, and when the sheet is formed, the sheet satisfies the conditions of combustibility classification described in detail later. May be appropriately selected according to the intended use. As a specific example, various fibers such as carbon fiber, aramid fiber, glass fiber, boron fiber, alumina fiber, silicon nitride fiber, and basalt fiber can be used. Of these, carbon fibers, aramid fibers, glass fibers, boron fibers, alumina fibers, and silicon nitride fibers are preferable from the viewpoint of specific strength and specific elasticity. Further, carbon fiber is more preferable because the strength and corrosion resistance of the molded product using the fiber-reinforced resin composite sheet in the present embodiment can be improved. As the carbon fiber, it is preferable to use a PAN (polyacrylonitrile) -based carbon fiber having particularly high strength. When carbon fiber is used as the reinforcing fiber, the surface treatment with metal may be applied. The reinforcing fibers opened from these reinforcing fiber bundles can be used alone or in combination of two or more as long as they are oriented in the same direction.
本実施形態における繊維強化樹脂複合シートでは、繊維強化樹脂複合シートに対する強化繊維の体積含有率Vfが30%以上65%以下である。強化繊維の体積含有率Vfを30%以上にすることによって、繊維強化樹脂複合シートは、強化繊維によって十分に補強されるため、優れた強度、特に引張強度を有する。一方で、強化繊維の体積含有率Vfを65%以下にすることによって、熱可塑性樹脂による繊維強化樹脂複合シートの良好な成形加工性を保つことができる。さらに、選択される樹脂の種類ならびに任意で添加される難燃剤の種類および量を考慮しつつ、強化繊維の体積含有率Vfを30%以上65%以下の範囲内で調整することによって、繊維強化樹脂複合シートを後に詳説する燃焼性分類の条件を満たすようにすることができる。
In the fiber-reinforced resin composite sheet of the present embodiment, the volume content Vf of the reinforcing fibers with respect to the fiber-reinforced resin composite sheet is 30% or more and 65% or less. By setting the volume content Vf of the reinforcing fibers to 30% or more, the fiber-reinforced resin composite sheet is sufficiently reinforced by the reinforcing fibers, and therefore has excellent strength, particularly tensile strength. On the other hand, by setting the volume content Vf of the reinforcing fibers to 65% or less, it is possible to maintain good molding processability of the fiber-reinforced resin composite sheet made of the thermoplastic resin. Further, the fiber reinforcement is performed by adjusting the volume content Vf of the reinforcing fiber within the range of 30% or more and 65% or less while considering the type of the resin selected and the type and amount of the flame retardant added optionally. The resin composite sheet can meet the conditions of the flammability classification described in detail later.
強化繊維の体積含有率Vfは、好ましくは35%以上、より好ましくは40%以上、さらに好ましくは44%以上である。また、強化繊維の体積含有率Vfは、好ましくは60%以下、より好ましくは55%以下、さらに好ましくは53%以下である。なお、繊維強化樹脂複合シートにおける強化繊維の体積含有率Vfは、強化繊維の種類および太さ、強化繊維が配向する繊維幅、難燃性樹脂フィルムの厚さ等だけでなく、繊維強化樹脂複合シートの製造時に加える温度および圧力等を適宜制御することによって上記範囲内に調整することができる。強化繊維の体積含有率Vfは、燃焼法、硝酸分解法および硫酸分解法等によって測定することができるが、本明細書における強化繊維の体積含有率Vfは、実施例と同じ燃焼法によって測定される値とする。
The volume content Vf of the reinforcing fiber is preferably 35% or more, more preferably 40% or more, and further preferably 44% or more. The volume content Vf of the reinforcing fiber is preferably 60% or less, more preferably 55% or less, still more preferably 53% or less. The volume content Vf of the reinforcing fibers in the fiber-reinforced resin composite sheet is not only the type and thickness of the reinforcing fibers, the fiber width in which the reinforcing fibers are oriented, the thickness of the flame-retardant resin film, etc., but also the fiber-reinforced resin composite. It can be adjusted within the above range by appropriately controlling the temperature and pressure applied during the production of the sheet. The volume content Vf of the reinforcing fiber can be measured by a combustion method, a nitric acid decomposition method, a sulfuric acid decomposition method, or the like, but the volume content Vf of the reinforcing fiber in the present specification is measured by the same combustion method as in the examples. Value.
さらに、本実施形態における繊維強化樹脂複合シートの厚さは、20μm以上100μm以下となっている。繊維強化樹脂複合シートの厚さは、好ましくは25μm以上、より好ましくは30μm以上、さらに好ましくは35μm以上、よりさらに好ましくは40μm以上である。また、繊維強化樹脂複合シートの厚さは、好ましくは90μm以下、より好ましくは80μm以下、さらに好ましくは70μm以下、よりさらに好ましくは60μm以下、55μm以下、または50μm以下である。
Further, the thickness of the fiber reinforced resin composite sheet in the present embodiment is 20 μm or more and 100 μm or less. The thickness of the fiber-reinforced resin composite sheet is preferably 25 μm or more, more preferably 30 μm or more, still more preferably 35 μm or more, still more preferably 40 μm or more. The thickness of the fiber-reinforced resin composite sheet is preferably 90 μm or less, more preferably 80 μm or less, still more preferably 70 μm or less, still more preferably 60 μm or less, 55 μm or less, or 50 μm or less.
具体的には、繊維強化樹脂複合シートの厚さを上記範囲内でなるべく薄くすることによって、難燃性樹脂フィルムと強化繊維とが大部分において融着した上で積層されるため、強化繊維が有する強度を十分に発揮できるようになる。また、応力がかかった際に、繊維強化複合シートからなる積層体(後述する繊維強化樹脂複合材)の層間剥離が発生し難く、疲労特性にも優れる。さらに、繊維強化樹脂複合シートを用いる際の成形加工性をより優れたものにすることができる。なお、繊維強化樹脂複合シートの厚さは、難燃性樹脂フィルムの厚さも影響するが、繊維強化樹脂複合シートの製造時に加える温度および圧力等を適宜制御することによって上記範囲内にすることができる。
Specifically, by reducing the thickness of the fiber-reinforced resin composite sheet as much as possible within the above range, the flame-retardant resin film and the reinforcing fiber are mostly fused and laminated, so that the reinforcing fiber is formed. You will be able to fully demonstrate the strength you have. In addition, when stress is applied, delamination of the laminate made of the fiber-reinforced composite sheet (fiber-reinforced resin composite material described later) is unlikely to occur, and the fatigue characteristics are also excellent. Further, the molding processability when the fiber reinforced resin composite sheet is used can be made more excellent. The thickness of the fiber-reinforced resin composite sheet is also affected by the thickness of the flame-retardant resin film, but it can be kept within the above range by appropriately controlling the temperature and pressure applied during the production of the fiber-reinforced resin composite sheet. can.
本実施形態における繊維強化樹脂複合シートは、ASTM D5048規格に準拠するUL94-5V燃焼試験において判定した燃焼性分類が5V-Aまたは5V-Bである。ASTM D5804規格に準拠するUL94-5V燃焼試験については、後述の実施例にて詳細に説明する。好ましくは、当該ASTM D5048規格に準拠するUL94-5V燃焼試験において判定した燃焼性分類が5V-Aである。繊維強化樹脂複合シートの燃焼性は、前述したように、選択される樹脂の種類、任意で添加される難燃剤の種類および添加量、ならびに強化繊維の体積含有率Vfの30%以上65%以下の範囲内での調整割合によって、当該燃焼性分類の条件を満たすようにすることができる。
The fiber-reinforced resin composite sheet in this embodiment has a flammability classification of 5VA or 5V-B determined in the UL94-5V combustion test conforming to the ASTM D5048 standard. The UL94-5V combustion test conforming to the ASTM D5804 standard will be described in detail in Examples described later. Preferably, the flammability classification determined in the UL94-5V combustion test conforming to the ASTM D5048 standard is 5VA. As described above, the flammability of the fiber-reinforced resin composite sheet is 30% or more and 65% or less of the selected resin type, the type and amount of the flame retardant added optionally, and the volume content Vf of the reinforcing fiber. The condition of the combustibility classification can be satisfied by the adjustment ratio within the range of.
このように、本実施形態における繊維強化樹脂複合シートは、優れた難燃性かつ高耐熱性の物性を有しているだけでなく、十分な値を占める強化繊維の体積含有率Vfによる優れた補強効果や耐疲労特性、さらには繊維強化樹脂複合シートの厚さが比較的薄いことによる優れた成形加工性を有する。すなわち、本実施形態における繊維強化樹脂複合シートは、特に機器内部からの発熱、発火および燃焼のおそれがあるスマートフォン、タブレット、ノートパソコン等の電気機器または電子機器の筐体や部品等の樹脂成形品等を製造する際の材料として好適に用いられる。さらには、本実施形態における繊維強化樹脂複合シートによると、空隙をなるべく少なくしながら繊維強化樹脂複合シートを複数枚積層して高密度で様々な形状を成形することができるため、優れた強度を有する繊維強化樹脂複合材および樹脂成形品を製造することができる。
As described above, the fiber-reinforced resin composite sheet in the present embodiment not only has excellent flame-retardant and high heat-resistant physical properties, but is also excellent due to the volume content Vf of the reinforcing fiber occupying a sufficient value. It has a reinforcing effect, fatigue resistance, and excellent molding processability due to the relatively thin thickness of the fiber reinforced resin composite sheet. That is, the fiber-reinforced resin composite sheet in the present embodiment is a resin molded product such as a housing or part of an electric device such as a smartphone, a tablet, a notebook computer, or an electronic device, which may generate heat, ignite, or burn from the inside of the device. Etc. are preferably used as a material for producing the above. Furthermore, according to the fiber-reinforced resin composite sheet in the present embodiment, a plurality of fiber-reinforced resin composite sheets can be laminated to form various shapes at high density while reducing voids as much as possible, so that excellent strength can be obtained. It is possible to manufacture a fiber-reinforced resin composite material and a resin molded product.
本実施形態における繊維強化樹脂複合シートの製造方法の1例について、図1に基づいて説明する。図1において各符号は、繊維強化樹脂複合シート製造装置1、加熱ローラ2、冷却ローラ3、無端ベルト4、引き出しローラ5、ボビン6、繊維強化樹脂複合シートS、難燃性樹脂フィルムR0、強化繊維束F0、および、強化繊維((強化繊維束から)開繊した強化繊維)Fを表している。
An example of the method for manufacturing the fiber-reinforced resin composite sheet in the present embodiment will be described with reference to FIG. In FIG. 1, each reference numeral is a fiber reinforced resin composite sheet manufacturing apparatus 1, a heating roller 2, a cooling roller 3, an endless belt 4, a pull-out roller 5, a bobbin 6, a fiber reinforced resin composite sheet S, a flame-retardant resin film R0, and reinforced. It represents a fiber bundle F0 and a reinforcing fiber (reinforcing fiber opened (from the reinforcing fiber bundle) F).
繊維強化樹脂複合シートSは、例えば、図1に示す繊維強化樹脂複合シート製造装置1を用いて連続的に製造することができる。この繊維強化樹脂複合シート製造装置1は、強化繊維束F0および熱可塑性樹脂組成物からなる難燃性樹脂フィルムR0から、繊維強化樹脂複合シートSを連続的に製造する装置である。
The fiber-reinforced resin composite sheet S can be continuously manufactured by using, for example, the fiber-reinforced resin composite sheet manufacturing apparatus 1 shown in FIG. The fiber-reinforced resin composite sheet manufacturing apparatus 1 is an apparatus for continuously producing a fiber-reinforced resin composite sheet S from a flame-retardant resin film R0 composed of a reinforcing fiber bundle F0 and a thermoplastic resin composition.
具体的に、繊維強化樹脂複合シート製造装置1は、上下に並ぶ複数対(図1では2対)の加熱ローラ2と、加熱ローラ2の下側において上下に並ぶ複数対(図1では2対)の冷却ローラ3と、加熱ローラ2と冷却ローラ3との間に掛け回された一対の無端ベルト4と、無端ベルト4の下側に位置する一対の引き出しローラ5と、引き出しローラ5の下側に配置された巻き取り用のボビン6とを備えている。
Specifically, the fiber-reinforced resin composite sheet manufacturing apparatus 1 includes a plurality of pairs of heating rollers 2 arranged vertically (two pairs in FIG. 1) and a plurality of pairs arranged vertically below the heating rollers 2 (two pairs in FIG. 1). ), A pair of endless belts 4 hung between the heating roller 2 and the cooling roller 3, a pair of pull-out rollers 5 located below the endless belt 4, and under the pull-out roller 5. It is provided with a winding bobbin 6 arranged on the side.
図示されていないが、最上段の加熱ローラ2の近傍には、強化繊維束F0を開繊して帯状に広げる開繊機構が設けられている。この開繊機構は、強化繊維束F0を連続的に開繊することにより、多数の連続した強化繊維Fを同一方向に配向して延びるように広げつつ形成することが可能である。開繊機構としては、このような処理が可能な機構であればよく、強化繊維束F0を叩いて広げる機構、強化繊維束F0に風を当てて広げる機構、強化繊維束F0に超音波を当てて広げる機構等、種々の機構を用いることができる。
Although not shown, a fiber opening mechanism for opening the reinforcing fiber bundle F0 and spreading it in a band shape is provided in the vicinity of the heating roller 2 on the uppermost stage. By continuously opening the reinforcing fiber bundle F0, this fiber opening mechanism can form a large number of continuous reinforcing fibers F while spreading them so as to be oriented in the same direction and extend. The fiber opening mechanism may be any mechanism capable of such processing, such as a mechanism for striking and expanding the reinforcing fiber bundle F0, a mechanism for blowing and expanding the reinforcing fiber bundle F0, and a mechanism for applying ultrasonic waves to the reinforcing fiber bundle F0. Various mechanisms such as a mechanism for spreading can be used.
図1の例において、上記開繊機構は、難燃性樹脂フィルムR0の一方の面に開繊後の強化繊維Fを供給する機構と、難燃性樹脂フィルムR0の他方の面に開繊後の強化繊維Fを供給する機構とを有する。前者の機構は、難燃性樹脂フィルムR0の一方の面と当該面と接する加熱ローラ2との間に強化繊維Fを導入するように設けられ、後者の機構は、難燃性樹脂フィルムR0の他方の面と当該面と接する加熱ローラ2との間に強化繊維Fを導入するように設けられる。ただし、開繊機構は、難燃性樹脂フィルムR0の一方の面のみに強化繊維Fを供給するものであってもよい。
In the example of FIG. 1, the fiber opening mechanism includes a mechanism for supplying the reinforcing fiber F after opening the fiber to one surface of the flame-retardant resin film R0 and a mechanism for supplying the reinforcing fiber F after opening the fiber to the other surface of the flame-retardant resin film R0. It has a mechanism for supplying the reinforcing fiber F of the above. The former mechanism is provided so as to introduce the reinforcing fiber F between one surface of the flame-retardant resin film R0 and the heating roller 2 in contact with the surface, and the latter mechanism is the flame-retardant resin film R0. The reinforcing fiber F is provided between the other surface and the heating roller 2 in contact with the surface. However, the fiber opening mechanism may supply the reinforcing fiber F only to one surface of the flame-retardant resin film R0.
加熱ローラ2は、電気ヒータまたは加熱媒体等(例えば加熱流体)により加熱された高温のローラである。2対の加熱ローラ2は、難燃性樹脂フィルムR0およびその両面に導入された強化繊維Fを無端ベルト4を介して両側から挟み込みながら加熱することにより、強化繊維Fを難燃性樹脂フィルムR0に連続的に積層させる。強化繊維Fは、同一方向に配向した状態(図1の上下方向に引き揃えられた状態)で難燃性樹脂フィルムR0に積層される。
The heating roller 2 is a high-temperature roller heated by an electric heater, a heating medium, or the like (for example, a heating fluid). The two pairs of heating rollers 2 heat the reinforcing fibers F while sandwiching the flame-retardant resin film R0 and the reinforcing fibers F introduced on both sides thereof from both sides via the endless belt 4, thereby heating the reinforcing fibers F with the flame-retardant resin film R0. It is continuously laminated on. The reinforcing fibers F are laminated on the flame-retardant resin film R0 in a state of being oriented in the same direction (a state of being aligned in the vertical direction of FIG. 1).
冷却ローラ3は、冷却媒体等(例えば冷却流体)により冷却された低温のローラである。冷却ローラ3は、強化繊維Fが積層された状態の難燃性樹脂フィルムR0を無端ベルト4を介して両側から挟み込みながら冷却することにより、強化繊維Fを難燃性樹脂フィルムR0に固定する。これにより、難燃性樹脂フィルムR0(樹脂マトリックス)と強化繊維Fとが一体化された繊維強化樹脂複合シートSが成形される。
The cooling roller 3 is a low-temperature roller cooled by a cooling medium or the like (for example, a cooling fluid). The cooling roller 3 fixes the reinforcing fibers F to the flame-retardant resin film R0 by cooling the flame-retardant resin film R0 in which the reinforcing fibers F are laminated while sandwiching the flame-retardant resin film R0 from both sides via the endless belt 4. As a result, the fiber-reinforced resin composite sheet S in which the flame-retardant resin film R0 (resin matrix) and the reinforcing fibers F are integrated is formed.
引き出しローラ5は、成形された繊維強化樹脂複合シートSに張力を付与しつつこれを下方へ引き出すローラである。
The pull-out roller 5 is a roller that pulls out the molded fiber-reinforced resin composite sheet S downward while applying tension to it.
巻き取り用のボビン6は、繊維強化樹脂複合シートSを巻き取るための芯材である。ボビン6は、モータ等の駆動源により回転駆動され、引き出しローラ5により引き出された繊維強化樹脂複合シートSを順次巻き取ることにより、ロール状の繊維強化樹脂複合シートSを形成する。
The bobbin 6 for winding is a core material for winding the fiber reinforced resin composite sheet S. The bobbin 6 is rotationally driven by a drive source such as a motor, and the fiber-reinforced resin composite sheet S drawn out by the drawing roller 5 is sequentially wound up to form a roll-shaped fiber-reinforced resin composite sheet S.
なお、図1に示される無端ベルト4を用いずに難燃性樹脂フィルムR0と開繊した強化繊維を同一方向に一緒に流して巻き取る方法によっても、繊維強化樹脂複合シートSを製造することが可能である。
The fiber-reinforced resin composite sheet S can also be produced by a method in which the flame-retardant resin film R0 and the opened reinforcing fibers are flowed together in the same direction and wound without using the endless belt 4 shown in FIG. Is possible.
難燃性樹脂フィルムR0の一方の面に、開繊した強化繊維が同一の方向に配向した状態で強化繊維を積層する場合には、図1で示した強化繊維Fを両側から送らずに、片方側から送ることによって、難燃性樹脂フィルムの一方の面に強化繊維Fを積層した繊維強化樹脂複合シートSが得られる。
When the reinforcing fibers are laminated on one surface of the flame-retardant resin film R0 with the opened reinforcing fibers oriented in the same direction, the reinforcing fibers F shown in FIG. 1 are not sent from both sides. By feeding from one side, a fiber-reinforced resin composite sheet S in which reinforcing fibers F are laminated on one surface of a flame-retardant resin film can be obtained.
<繊維強化樹脂複合材>
本実施形態における繊維強化樹脂複合材は、前述の実施形態における繊維強化樹脂複合シートが、厚さ方向に複数積層された繊維強化複合材である。 <Fiber reinforced plastic composite material>
The fiber-reinforced resin composite material in the present embodiment is a fiber-reinforced composite material in which a plurality of fiber-reinforced resin composite sheets in the above-described embodiment are laminated in the thickness direction.
本実施形態における繊維強化樹脂複合材は、前述の実施形態における繊維強化樹脂複合シートが、厚さ方向に複数積層された繊維強化複合材である。 <Fiber reinforced plastic composite material>
The fiber-reinforced resin composite material in the present embodiment is a fiber-reinforced composite material in which a plurality of fiber-reinforced resin composite sheets in the above-described embodiment are laminated in the thickness direction.
ここで、本明細書全体において、「繊維強化樹脂複合シート(またはそのチョップ材)が積層された」において使用されている「積層」とは、繊維強化樹脂複合シート(またはそのチョップ材)の物性値、形状、積層のために行われる処理の種類およびその条件等に応じて、「少なくとも一部において固定された上での積層」、「少なくとも一部において結合した上での積層」、「少なくとも一部において融着した上での積層」、「少なくとも一部において付着した上での積層」および「少なくとも一部において圧着した上での積層」の意味も含む。より具体的には、「積層」の際に、必要に応じて加熱、冷却および/または加圧処理がなされていてもよい。
Here, in the entire specification, the "lamination" used in "the fiber reinforced resin composite sheet (or its chop material) is laminated" means the physical properties of the fiber reinforced resin composite sheet (or its chop material). Depending on the value, shape, type of processing performed for lamination and its conditions, etc., "lamination after fixing at least partly", "lamination after bonding at least partly", "at least partly bonding" It also includes the meanings of "lamination after fusion in a part", "lamination after adhesion in at least a part", and "lamination after crimping in at least a part". More specifically, at the time of "lamination", heating, cooling and / or pressure treatment may be performed as necessary.
積層される繊維強化樹脂複合シートは、所望する繊維強化樹脂複合材の形状に合わせて必要に応じて細断等が行われ、積層されてもよい。繊維強化樹脂複合シートの積層枚数も、特に限定されず、所望する繊維強化樹脂複合材の大きさ等に合わせて適宜設定すればよい。繊維強化樹脂複合シートは、その強化繊維の繊維方向についてどのような状態で積層されていてもよいが、好ましくは、複数の繊維強化樹脂複合シートの強化繊維の繊維方向が二次元方向に角度差を有する状態で積層されている。
The fiber-reinforced resin composite sheet to be laminated may be laminated by being shredded or the like as necessary according to the desired shape of the fiber-reinforced resin composite material. The number of laminated fiber-reinforced resin composite sheets is also not particularly limited, and may be appropriately set according to the desired size of the fiber-reinforced resin composite material and the like. The fiber-reinforced resin composite sheet may be laminated in any state with respect to the fiber direction of the reinforcing fiber, but preferably, the fiber directions of the reinforcing fibers of the plurality of fiber-reinforced resin composite sheets differ in two-dimensional directions. It is laminated in a state of having.
例えば、複数の繊維強化樹脂複合シートが、強化繊維の繊維方向が二次元方向に略45°ずつ角度差を有するように、換言すれば二次元平面において0°、45°、-45°および90°の4軸方向(以下、「角度差45°の4軸方向」とも称する)を有するように厚さ方向に2枚以上、好ましくは4×n枚(nは1以上の整数)積層されている繊維強化複合材を挙げることができる。このように繊維強化樹脂複合シートが積層されることによって、各々の繊維方向に沿った引張強度および曲げ強度を向上させることができるため、繊維強化樹脂複合材の全体としての強度を効果的に向上させることができる。
For example, a plurality of fiber-reinforced resin composite sheets have an angle difference of approximately 45 ° in each of the fiber directions of the reinforcing fibers, in other words, 0 °, 45 °, −45 °, and 90 in the two-dimensional plane. Two or more sheets, preferably 4 × n sheets (n is an integer of 1 or more) are laminated in the thickness direction so as to have a four-axis direction of ° (hereinafter, also referred to as “four-axis direction with an angle difference of 45 °”). Examples of fiber-reinforced composite materials are available. By laminating the fiber-reinforced resin composite sheet in this way, the tensile strength and the bending strength along each fiber direction can be improved, so that the overall strength of the fiber-reinforced resin composite material is effectively improved. Can be made to.
あるいは、本実施形態における別の繊維強化樹脂複合材は、前述の実施形態における繊維強化樹脂複合シートが、複数のチョップ材の形状で、厚さ方向に積層されていてもよい。
Alternatively, as another fiber-reinforced resin composite material in the present embodiment, the fiber-reinforced resin composite sheet in the above-described embodiment may be laminated in the shape of a plurality of chops in the thickness direction.
チョップ材は、例えば、前述の実施形態における図1に示す繊維強化樹脂複合シートSを長手方向および幅方向に細断することにより、複数作製することができる。
A plurality of chop materials can be produced, for example, by shredding the fiber-reinforced resin composite sheet S shown in FIG. 1 in the above-described embodiment in the longitudinal direction and the width direction.
具体例としては、次のような手順でチョップ材を作製することができる。図2を用いながら手順を説明する。図2において各符号は、繊維強化樹脂複合シートS、切込みX、切込みY、区間I、区間II、および、チョップ材Cを表している。まず、図2に示すように、長手方向に延びる切込みXを形成する。すなわち、繊維強化樹脂複合シートSを長手方向に送り出しながら、その送り経路の途中の区間Iにおいて、長手方向に連続する多数の切込みXを形成する。切込みXは、例えば、繊維強化樹脂複合シートSの幅方向に等間隔に並ぶ多数の刃を含む細断装置を用いて形成することができる。
As a specific example, a chop material can be produced by the following procedure. The procedure will be described with reference to FIG. In FIG. 2, each reference numeral represents a fiber reinforced resin composite sheet S, a notch X, a notch Y, a section I, a section II, and a chop material C. First, as shown in FIG. 2, a notch X extending in the longitudinal direction is formed. That is, while feeding the fiber-reinforced resin composite sheet S in the longitudinal direction, a large number of cuts X continuous in the longitudinal direction are formed in the section I in the middle of the feeding path. The cut X can be formed by using, for example, a shredding device including a large number of blades arranged at equal intervals in the width direction of the fiber reinforced resin composite sheet S.
次いで、続く区間IIにおいて、繊維強化樹脂複合シートSの幅方向の一端から他端まで連続する切込みYを形成する。切込みYは、例えばロータリーカッター等を用いて形成することができる。切込みYは、繊維強化樹脂複合シートSが長手方向に一定距離ずつ送り出される度に形成される。これにより、切込みXのピッチに相当する長さの短辺と切込みYのピッチに相当する長さの長辺とを有する矩形状の多数のチョップ材Cが切り出される。
Next, in the subsequent section II, a continuous notch Y is formed from one end to the other end of the fiber reinforced resin composite sheet S in the width direction. The notch Y can be formed by using, for example, a rotary cutter or the like. The notch Y is formed each time the fiber reinforced resin composite sheet S is fed out by a fixed distance in the longitudinal direction. As a result, a large number of rectangular chop materials C having a short side having a length corresponding to the pitch of the cut X and a long side having a length corresponding to the pitch of the cut Y are cut out.
上述したように、繊維強化樹脂複合シートSは、その長手方向に多数の強化繊維Fが同一方向に配向した状態で積層されたシートである。そのため、当該繊維強化樹脂複合シートSから切り出された各チョップ材Cも、その長手方向(長辺の方向)に多数の強化繊維Fが同一方向に配向した状態で積層している。すなわち、チョップ材Cは、難燃性樹脂フィルムR0と、当該難燃性樹脂フィルムR0に同一方向に配向した状態で積層された多数の強化繊維Fとを含んでいる。
As described above, the fiber-reinforced resin composite sheet S is a sheet in which a large number of reinforcing fibers F are laminated in the same direction in the longitudinal direction thereof. Therefore, each chop material C cut out from the fiber-reinforced resin composite sheet S is also laminated in a state in which a large number of reinforcing fibers F are oriented in the same direction in the longitudinal direction (long side direction). That is, the chop material C contains a flame-retardant resin film R0 and a large number of reinforcing fibers F laminated on the flame-retardant resin film R0 in the same direction.
チョップ材Cのサイズがより大きいほどより高強度の繊維強化樹脂複合材または樹脂成形品が製造できるが、その賦形性は低くなる。一方、チョップ材Cのサイズがより小さいほどその賦形性はより優れ、自由度の高い形状の繊維強化樹脂複合材または樹脂成形品を製造することができるが、当該製造品の強度は低下する。このようなチョップ材Cのサイズによる賦形性と力学特性とのバランスを考慮し、チョップ材Cのサイズを調整し、当該バランスを適宜制御することによって、成形品の用途に適した特性を付与することができる。
The larger the size of the chop material C, the higher the strength of the fiber-reinforced resin composite material or the resin molded product can be produced, but the shapeability thereof becomes lower. On the other hand, the smaller the size of the chop material C, the better the shapeability, and it is possible to manufacture a fiber-reinforced resin composite material or a resin molded product having a high degree of freedom, but the strength of the manufactured product decreases. .. In consideration of the balance between the shapeability and the mechanical properties depending on the size of the chop material C, the size of the chop material C is adjusted and the balance is appropriately controlled to impart properties suitable for the intended use of the molded product. can do.
チョップ材Cの短辺の長さは、好ましくは2mm以上、より好ましくは3mm以上、さらに好ましくは4mm以上、よりさらに好ましくは4.5mm以上であり、また、好ましくは50mm以下、より好ましくは40mm以下、さらに好ましくは30mm以下、または、よりさらに好ましくは20mm以下、15mm以下もしくは10mm以下である。チョップ材Cの長辺の長さは、好ましくは2mm以上、より好ましくは4mm以上、さらに好ましくは6mm以上、または、よりさらに好ましくは8mm以上もしくは10mm以上であり、また、好ましくは80mm以下、より好ましくは70mm以下、さらに好ましくは60mm以下、または、よりさらに好ましくは50mm以下もしくは45mm以下である。
The length of the short side of the chop material C is preferably 2 mm or more, more preferably 3 mm or more, further preferably 4 mm or more, still more preferably 4.5 mm or more, and preferably 50 mm or less, more preferably 40 mm. Hereinafter, it is more preferably 30 mm or less, or even more preferably 20 mm or less, 15 mm or less, or 10 mm or less. The length of the long side of the chop material C is preferably 2 mm or more, more preferably 4 mm or more, further preferably 6 mm or more, or even more preferably 8 mm or more or 10 mm or more, and preferably 80 mm or less. It is preferably 70 mm or less, more preferably 60 mm or less, or even more preferably 50 mm or less or 45 mm or less.
チョップ材Cの厚さは、前述の実施形態における繊維強化樹脂複合シートの厚さと同じであり、20μm以上100μm以下である。好ましい厚さについても、前述の実施形態における繊維強化樹脂複合シートの厚さと同じである。すなわち、前述の実施形態における繊維強化樹脂複合シートと同様に、その薄さのために空隙をなるべく少なくしながら、かつチョップ材Cとしての小さいサイズで複数枚積層することができる。そのため、より密度が高まった顕著に優れた強度および低吸水性を有する繊維強化樹脂複合材およびそれを用いた樹脂成形品を製造することができる。さらにチョップ材Cの形状にすることによって、賦形性がよくなり、複雑な形状の樹脂成形品を製造することもできる。
The thickness of the chop material C is the same as the thickness of the fiber-reinforced resin composite sheet in the above-described embodiment, and is 20 μm or more and 100 μm or less. The preferable thickness is also the same as the thickness of the fiber reinforced resin composite sheet in the above-described embodiment. That is, similarly to the fiber-reinforced resin composite sheet in the above-described embodiment, a plurality of sheets can be laminated in a small size as the chop material C while reducing the voids as much as possible due to its thinness. Therefore, it is possible to manufacture a fiber-reinforced resin composite material having a significantly higher density and remarkably excellent strength and low water absorption, and a resin molded product using the same. Further, by forming the chop material C into a shape, the shapeability is improved, and a resin molded product having a complicated shape can be manufactured.
本実施形態における繊維強化複合材では、このような複数のチョップ材Cがその強化繊維の繊維方向がどのような状態で積層されていてもよいが、複数のチョップ材Cの強化繊維の繊維方向が、二次元的にランダムになる状態(疑似等方)で積層されていると好ましい。
In the fiber-reinforced composite material of the present embodiment, such a plurality of chop materials C may be laminated in any state of the fiber directions of the reinforcing fibers, but the fiber directions of the reinforcing fibers of the plurality of chop materials C. However, it is preferable that the fibers are laminated in a two-dimensionally random state (pseudo-isotropic).
このような繊維強化複合材の製造方法の1例について図3を用いながら説明する。図3において各符号は、ベルトコンベア7、離形フィルム8、加熱ローラ9、積層チョップドシート用ボビン10、チョップ材C、、区間XI、区間XII、区間XIII、および、積層チョップドシートCSを表している。まず、図3に示すように略水平に配置され回転しているベルトコンベア7を回転させながら、その上面に多数のチョップ材Cを分散させつつ配置する。このチョップ材Cの分散配置には、例えばベルトコンベア7の上方からチョップ材Cを振動させつつ落下させる落下装置を用いることができる。そして、このような落下装置を用いたチョップ材Cの落下操作を繰り返すことにより、ベルトコンベア7上面のチョップ材Cの密度および積層枚数を増やしていく。すなわち、ベルトコンベア7の回転方向の複数の区間XI、区間XII、区間XIII・・・・において、落下装置を用いたチョップ材Cの落下操作を繰り返し行うことにより、各チョップ材Cに含有される強化繊維Fの繊維方向(換言すればチョップ材Cの長手方向)が水平面上で種々の方向にばらつき、かつ厚さ方向に複数枚のチョップ材Cが積み重なるように、ベルトコンベア7の上に多数のチョップ材Cを積層する。
An example of such a method for producing a fiber-reinforced composite material will be described with reference to FIG. In FIG. 3, each reference numeral represents a belt conveyor 7, a release film 8, a heating roller 9, a bobbin 10 for a laminated chopped sheet, a chop material C, a section XI, a section XII, a section XIII, and a laminated chopped sheet CS. There is. First, as shown in FIG. 3, while rotating the belt conveyor 7 which is arranged substantially horizontally and is rotating, a large number of chop materials C are arranged while being dispersed on the upper surface thereof. For the distributed arrangement of the chop material C, for example, a drop device that drops the chop material C while vibrating from above the belt conveyor 7 can be used. Then, by repeating the drop operation of the chop material C using such a drop device, the density and the number of laminated chop materials C on the upper surface of the belt conveyor 7 are increased. That is, in a plurality of sections XI, sections XII, sections XIII, ... In the rotation direction of the belt conveyor 7, the chop material C is contained in each chop material C by repeatedly dropping the chop material C using the drop device. A large number of reinforcing fibers F are placed on the belt conveyor 7 so that the fiber directions (in other words, the longitudinal direction of the chop material C) vary in various directions on the horizontal plane and a plurality of chop materials C are stacked in the thickness direction. Chop material C is laminated.
そして、多数のチョップ材Cが積層された末端側から、離形フィルム8を介した加熱ローラ9または耐熱性の無端ベルトを用いてベルトコンベア7上面に積層されたチョップ材Cを加圧および加熱処理し、多数のチョップ材Cを一体化させる。すなわち、当該加熱ローラ9を用いた加圧および加熱処理により、積層されたチョップ材C同士が互いに結合する。このようにベルトコンベア7の上面への多数のチョップ材Cの分散および積層と加熱ローラ9を用いた加圧および加熱処理は、連続的に行われる。その後、複数枚のチョップ材Cが互いに一体化して積層された積層チョップドシートCSとして、積層チョップドシート用ボビン10等を用いて巻物状で連続成形される。連続成形された巻物状の積層チョップドシートCSの一部断面を、図4に示す。図4において各符号は、チョップ材C、積層チョップドシート(繊維強化複合材)CS、および、積層チョップドシートCSの厚さtを表している。この積層チョップドシートCSの厚さt、すなわち複数枚以上積層されたチョップ材Cの合計の厚さは、適宜設定することができる。
Then, from the terminal side on which a large number of chop materials C are laminated, the chop material C laminated on the upper surface of the belt conveyor 7 is pressurized and heated by using a heating roller 9 or a heat-resistant endless belt via a release film 8. It is processed and a large number of chop materials C are integrated. That is, the laminated chop materials C are bonded to each other by pressurization and heat treatment using the heating roller 9. As described above, the dispersion and lamination of a large number of chop materials C on the upper surface of the belt conveyor 7 and the pressurization and heat treatment using the heating roller 9 are continuously performed. After that, as a laminated chopped sheet CS in which a plurality of chopped materials C are integrally laminated with each other, a scroll-like continuous molding is performed using a bobbin 10 for a laminated chopped sheet or the like. A partial cross section of the continuously molded scroll-shaped laminated chopped sheet CS is shown in FIG. In FIG. 4, each reference numeral represents a thickness t of the chopped material C, the laminated chopped sheet (fiber reinforced composite material) CS, and the laminated chopped sheet CS. The thickness t of the laminated chopped sheet CS, that is, the total thickness of the chopped materials C in which a plurality of sheets or more are laminated can be appropriately set.
あるいは、繊維強化複合材の製造方法の他の例として、積層チョップドシートを作製する際に、熱可塑性樹脂組成物からなるキャリアシートの上に多数のチョップ材Cを積層してもよい。
Alternatively, as another example of the method for producing a fiber-reinforced composite material, a large number of chopped materials C may be laminated on a carrier sheet made of a thermoplastic resin composition when producing a laminated chopped sheet.
詳細には、キャリアシートを図3にて示したベルトコンベア7のように長手方向に送り出しながら、当該キャリアシートの上面に多数のチョップ材Cを分散させつつ配置する。このチョップ材Cの分散配置には、例えばキャリアシートの上方から前述と同様の落下装置を用いることができる。そして、このような落下装置を用いたチョップ材Cの落下操作も、前述と同様にキャリアシートの送り方向の複数個所で繰り返すことにより、キャリアシート上のチョップ材Cの密度および積層枚数を増やしてもよい。すなわち、各チョップ材Cに含有される強化繊維Fの繊維方向が水平面上で種々の方向にばらつき、かつ厚さ方向に複数枚のチョップ材Cが積み重なるように、キャリアシートの上に多数のチョップ材Cを積層してもよい。
Specifically, while feeding the carrier sheet in the longitudinal direction as in the belt conveyor 7 shown in FIG. 3, a large number of chop materials C are arranged while being dispersed on the upper surface of the carrier sheet. For the dispersed arrangement of the chop material C, for example, a dropping device similar to the above can be used from above the carrier sheet. Then, the drop operation of the chop material C using such a drop device is repeated at a plurality of places in the feed direction of the carrier sheet in the same manner as described above to increase the density and the number of laminated chop materials C on the carrier sheet. May be good. That is, a large number of chops are placed on the carrier sheet so that the fiber directions of the reinforcing fibers F contained in each chop material C vary in various directions on the horizontal plane and a plurality of chop materials C are stacked in the thickness direction. Material C may be laminated.
その後、加熱ローラを用いてキャリアシートおよびその上のチョップ材Cを加圧および加熱処理し、キャリアシートとチョップ材Cとを互いに一体化する。すなわち、当該加熱ローラを用いた加圧および加熱処理により、キャリアシートにチョップ材Cを積層状態で支持させるとともに、積層されたチョップ材C同士が互いに結合する。このような方法によって、キャリアシートの上面に複数枚のチョップ材Cが積層された積層チョップドシートCSを成形させることができる。
After that, the carrier sheet and the chop material C on the carrier sheet are pressurized and heat-treated using a heating roller to integrate the carrier sheet and the chop material C with each other. That is, by pressurizing and heat-treating using the heating roller, the chop material C is supported on the carrier sheet in a laminated state, and the laminated chop materials C are bonded to each other. By such a method, a laminated chopped sheet CS in which a plurality of chopping materials C are laminated on the upper surface of the carrier sheet can be formed.
キャリアシートの材質としては、基本的にチョップ材Cの熱可塑性樹脂組成物と同一の熱可塑性樹脂組成物、難燃性特性を有するその他の熱可塑性樹脂を含む樹脂組成物、または、難燃性を持たない熱可塑性樹脂組成物を用いることができる。これらの熱可塑性樹脂組成物は、添加物を含まず熱可塑性樹脂単独からなっていてもよい。
The material of the carrier sheet is basically the same thermoplastic resin composition as the thermoplastic resin composition of the chop material C, a resin composition containing another thermoplastic resin having flame-retardant properties, or flame-retardant. A thermoplastic resin composition that does not have the above can be used. These thermoplastic resin compositions may consist of the thermoplastic resin alone without any additives.
なお、キャリアシートの上面のみにチョップ材Cを積層して積層チョップドシートCSを作製する場合を説明したが、キャリアシートの両面にチョップ材Cを積層することも当然に可能である。この場合は、キャリアシートにチョップ材Cを積層する作業(つまりチョップ材Cを多重にランダムに配置して加熱および加圧処理する作業)を、キャリアシートの上面および下面に対して順に行うとよい。すなわち、キャリアシートの上面にチョップ材Cを積層した後、キャリアシートの下面が上にくるようにキャリアシートを裏返し、その状態でチョップ材Cを積層する作業を同様に繰り返す。その結果、キャリアシートの両面にチョップ材Cが積層された積層チョップドシートを作製することができる。
Although the case where the chopped material C is laminated only on the upper surface of the carrier sheet to produce the laminated chopped sheet CS has been described, it is naturally possible to laminate the chop material C on both sides of the carrier sheet. In this case, it is preferable to perform the work of laminating the chop material C on the carrier sheet (that is, the work of arranging the chop material C in multiple random manners and heating and pressurizing the chop material C) in order on the upper surface and the lower surface of the carrier sheet. .. That is, after laminating the chop material C on the upper surface of the carrier sheet, the carrier sheet is turned over so that the lower surface of the carrier sheet is on top, and the operation of laminating the chop material C in that state is repeated in the same manner. As a result, a laminated chopped sheet in which the chopping material C is laminated on both sides of the carrier sheet can be produced.
<樹脂成形品>
本実施形態における樹脂成形品は、前述の実施形態における繊維強化樹脂複合材を備える。 <Resin molded product>
The resin molded product in this embodiment includes the fiber reinforced resin composite material in the above-described embodiment.
本実施形態における樹脂成形品は、前述の実施形態における繊維強化樹脂複合材を備える。 <Resin molded product>
The resin molded product in this embodiment includes the fiber reinforced resin composite material in the above-described embodiment.
樹脂成形品は、当業者に公知である任意の成形方法により、前述の実施形態における繊維強化樹脂複合材を用いて製造可能な任意の形状の成形品であればどのようなものでもよい。例えば、スマートフォン、タブレット、ノートパソコン、ビデオカメラ、モバイル機器、その他の家庭用電気機器等の電気機器または電子機器等に用いられている筐体や部品等の成形品が挙げられる。
The resin molded product may be any molded product having an arbitrary shape that can be manufactured by using the fiber-reinforced resin composite material in the above-described embodiment by any molding method known to those skilled in the art. Examples thereof include molded products such as housings and parts used in electric devices such as smartphones, tablets, notebook computers, video cameras, mobile devices, and other household electric devices, or electronic devices.
本実施形態における樹脂成形品の製造方法は、特に限定されない。1例を挙げると、まず、所定サイズに切り出された板状の前述の実施形態で述べた積層チョップドシートCSを複数枚用意し、これを厚さ方向に積み重ねつつ熱プレス機等の金型内に配置する。その後、積み重ねられた複数枚の積層チョップドシートCSに対して加熱および/または加圧処理ならびに必要に応じて冷却処理を行うことによって、樹脂成形品を製造することができる。
The method for producing the resin molded product in this embodiment is not particularly limited. To give an example, first, a plurality of laminated chopped sheet CS described in the above-described embodiment, which are plate-shaped cut out to a predetermined size, are prepared, and these are stacked in the thickness direction in a mold such as a heat press machine. Place in. After that, a resin molded product can be manufactured by performing a heating and / or pressure treatment and, if necessary, a cooling treatment on a plurality of stacked laminated chopped sheet CS.
上述したような製造方法によると、高耐熱性の熱可塑性樹脂組成物からなる難燃性樹脂フィルムR0を用いているため、高温条件下であっても樹脂成形品の引張強度や曲げ強度の物性値の低下が生じ難い樹脂成形品を得ることができる。さらには、強化繊維の体積含有率Vfが30%以上65%以下となる十分な量の強化繊維Fが含有された積層チョップドシートCSを用いて樹脂成形品が成形されるので、強化繊維Fによる優れた補強効果を得ることができ、樹脂成形品の強度を高めることができる。さらには、複数のチョップ材Cの強化繊維Fの繊維方向が二次元的にランダムになる状態(疑似等方)で積層されている積層チョップドシートCSは、積層チョップドシートCSがプレス加工されたときに強化繊維Fが細断される可能性を低減できるとともに、プレス加工時の樹脂の流動を促進して樹脂成形品の形状自由度を高めることができる。これにより、強化繊維Fによる補強効果を等方的に発揮させつつ、種々の形状の樹脂成形品を支障なく成形することができる。
According to the manufacturing method as described above, since the flame-retardant resin film R0 made of a highly heat-resistant thermoplastic resin composition is used, the physical properties of the tensile strength and bending strength of the resin molded product even under high temperature conditions. It is possible to obtain a resin molded product whose value is unlikely to decrease. Further, since the resin molded product is molded using the laminated chopped sheet CS containing a sufficient amount of the reinforcing fiber F so that the volume content Vf of the reinforcing fiber is 30% or more and 65% or less, the reinforcing fiber F is used. An excellent reinforcing effect can be obtained, and the strength of the resin molded product can be increased. Furthermore, the laminated chopped sheet CS, which is laminated in a state where the fiber directions of the reinforcing fibers F of the plurality of chop materials C are two-dimensionally random (pseudo isotropic), is when the laminated chopped sheet CS is pressed. The possibility that the reinforcing fiber F is shredded can be reduced, and the flow of the resin during press working can be promoted to increase the degree of freedom in the shape of the resin molded product. As a result, resin molded products having various shapes can be molded without any trouble while exhibiting the reinforcing effect of the reinforcing fibers F isotropically.
以上、本発明の概要について説明したが、本実施形態における繊維強化樹脂複合シート、繊維強化樹脂複合材およびそれを備える樹脂成形品をまとめると以下の通りである。
The outline of the present invention has been described above, but the fiber-reinforced resin composite sheet, the fiber-reinforced resin composite material, and the resin molded product provided with the same are summarized below.
本発明の第一の局面に係る繊維強化樹脂複合シートは、ガラス転移温度Tgが90℃以上である熱可塑性樹脂組成物からなる難燃性樹脂フィルムと、前記難燃性樹脂フィルムに強化繊維束から開繊した複数の強化繊維が同一方向に配向した状態で積層された複数の強化繊維とを含む繊維強化樹脂複合シートであり、
ASTM D4804規格に準拠するUL94VTM燃焼試験において判定した前記難燃性樹脂フィルムの燃焼性分類がVTM-0であり、
前記強化繊維の体積含有率Vfは、30%以上65%以下であり、
前記繊維強化樹脂複合シートの厚さは、20μm以上100μm以下であり、
ASTM D5048規格に準拠するUL94-5V燃焼試験において判定した前記繊維強化樹脂複合シートの燃焼性分類が5V-Aまたは5V-Bである。 The fiber-reinforced resin composite sheet according to the first aspect of the present invention comprises a flame-retardant resin film made of a thermoplastic resin composition having a glass transition temperature Tg of 90 ° C. or higher, and a reinforced fiber bundle formed on the flame-retardant resin film. It is a fiber reinforced resin composite sheet containing a plurality of reinforcing fibers laminated in a state in which a plurality of reinforcing fibers opened from the above are oriented in the same direction.
The flammability classification of the flame-retardant resin film determined in the UL94 VTM combustion test conforming to the ASTM D4804 standard is VTM-0.
The volume content Vf of the reinforcing fiber is 30% or more and 65% or less.
The thickness of the fiber reinforced resin composite sheet is 20 μm or more and 100 μm or less.
The combustibility classification of the fiber reinforced resin composite sheet determined in the UL94-5V combustion test conforming to the ASTM D5048 standard is 5VA or 5V-B.
ASTM D4804規格に準拠するUL94VTM燃焼試験において判定した前記難燃性樹脂フィルムの燃焼性分類がVTM-0であり、
前記強化繊維の体積含有率Vfは、30%以上65%以下であり、
前記繊維強化樹脂複合シートの厚さは、20μm以上100μm以下であり、
ASTM D5048規格に準拠するUL94-5V燃焼試験において判定した前記繊維強化樹脂複合シートの燃焼性分類が5V-Aまたは5V-Bである。 The fiber-reinforced resin composite sheet according to the first aspect of the present invention comprises a flame-retardant resin film made of a thermoplastic resin composition having a glass transition temperature Tg of 90 ° C. or higher, and a reinforced fiber bundle formed on the flame-retardant resin film. It is a fiber reinforced resin composite sheet containing a plurality of reinforcing fibers laminated in a state in which a plurality of reinforcing fibers opened from the above are oriented in the same direction.
The flammability classification of the flame-retardant resin film determined in the UL94 VTM combustion test conforming to the ASTM D4804 standard is VTM-0.
The volume content Vf of the reinforcing fiber is 30% or more and 65% or less.
The thickness of the fiber reinforced resin composite sheet is 20 μm or more and 100 μm or less.
The combustibility classification of the fiber reinforced resin composite sheet determined in the UL94-5V combustion test conforming to the ASTM D5048 standard is 5VA or 5V-B.
このような構成を有する繊維強化樹脂複合シートは、優れた難燃性を有し、良好な成形加工性かつ高温条件下における十分な引張強度を有する。
The fiber reinforced resin composite sheet having such a structure has excellent flame retardancy, good molding processability, and sufficient tensile strength under high temperature conditions.
前記複数の強化繊維は、前記難燃性樹脂フィルムの一方または両方の面に積層されていると好ましい。
It is preferable that the plurality of reinforcing fibers are laminated on one or both surfaces of the flame-retardant resin film.
このような構成を有する繊維強化樹脂複合シートは、難燃性樹脂フィルムの一方または両方の表面に複数の強化繊維が積層されているため、強化繊維が溶融樹脂中に完全に含浸しているプリプレグと比較して、非常に優れた難燃性を有する。
In the fiber reinforced resin composite sheet having such a structure, since a plurality of reinforcing fibers are laminated on one or both surfaces of the flame-retardant resin film, the prepreg in which the reinforcing fibers are completely impregnated in the molten resin. Has very good flame retardancy compared to.
前記複数の強化繊維は、前記難燃性樹脂フィルムの両方の面に積層されているとより好ましい。
It is more preferable that the plurality of reinforcing fibers are laminated on both surfaces of the flame-retardant resin film.
このような構成を有する繊維強化樹脂複合シートは、強化繊維が溶融樹脂中に完全に含浸しているプリプレグと比較して、非常に優れた難燃性を確実に有する。
The fiber-reinforced resin composite sheet having such a structure surely has extremely excellent flame retardancy as compared with the prepreg in which the reinforcing fibers are completely impregnated in the molten resin.
前記熱可塑性樹脂組成物は、ポリカーボネート樹脂と、ハロゲン系難燃剤、リン系難燃剤、シリコーン系難燃剤および無機系難燃剤から選択される1つ以上の難燃剤とを含むとさらに好ましい。
It is more preferable that the thermoplastic resin composition contains a polycarbonate resin and one or more flame retardants selected from a halogen-based flame retardant, a phosphorus-based flame retardant, a silicone-based flame retardant, and an inorganic flame retardant.
このような構成を有する繊維強化樹脂複合シートは、優れた難燃性を確実に有する。
The fiber reinforced resin composite sheet having such a structure surely has excellent flame retardancy.
前記熱可塑性樹脂組成物は、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂および液晶ポリマー樹脂から選択される1つ以上を含むと特に好ましい。
It is particularly preferable that the thermoplastic resin composition contains one or more selected from polyphenylene sulfide resin, polyetheretherketone resin, polyetherketoneketone resin, polyetherimide resin, polyethersulfone resin and liquid crystal polymer resin.
このような構成を有する繊維強化樹脂複合シートは、優れた難燃性を確実に有する。
The fiber reinforced resin composite sheet having such a structure surely has excellent flame retardancy.
前記強化繊維は、炭素繊維であるとより好ましい。
The reinforcing fiber is more preferably carbon fiber.
このような構成を有する繊維強化樹脂複合シートは、それを用いた成形品の強度および耐食性等を向上させることができ、かつ、不燃性の炭素繊維によって極めて優れた難燃性を確実に有する。
The fiber reinforced resin composite sheet having such a structure can improve the strength and corrosion resistance of the molded product using the fiber reinforced resin composite sheet, and the nonflammable carbon fiber surely has extremely excellent flame retardancy.
前記難燃性樹脂フィルムの厚さは、5μm以上50μm以下であるとよりさらに好ましい。
The thickness of the flame-retardant resin film is more preferably 5 μm or more and 50 μm or less.
このような構成を有する繊維強化樹脂複合シートは、当該シート自体も薄く構成することができ、その結果、良好な成形加工性を有することができる。
The fiber-reinforced resin composite sheet having such a structure can be made thin even in the sheet itself, and as a result, can have good molding processability.
本発明の第二の局面に係る繊維強化樹脂複合材は、第一の局面に係る繊維強化樹脂複合シートの繊維強化樹脂複合シートが、厚さ方向に複数積層された繊維強化複合材であり、
前記繊維強化複合材は、複数の前記繊維強化樹脂複合シートの前記強化繊維の繊維方向が二次元方向に角度差を有する状態で積層されている。 The fiber-reinforced resin composite material according to the second aspect of the present invention is a fiber-reinforced composite material in which a plurality of fiber-reinforced resin composite sheets of the fiber-reinforced resin composite sheet according to the first aspect are laminated in the thickness direction.
The fiber-reinforced composite material is laminated in a state in which the fiber directions of the reinforcing fibers of the plurality of fiber-reinforced resin composite sheets have an angle difference in the two-dimensional direction.
前記繊維強化複合材は、複数の前記繊維強化樹脂複合シートの前記強化繊維の繊維方向が二次元方向に角度差を有する状態で積層されている。 The fiber-reinforced resin composite material according to the second aspect of the present invention is a fiber-reinforced composite material in which a plurality of fiber-reinforced resin composite sheets of the fiber-reinforced resin composite sheet according to the first aspect are laminated in the thickness direction.
The fiber-reinforced composite material is laminated in a state in which the fiber directions of the reinforcing fibers of the plurality of fiber-reinforced resin composite sheets have an angle difference in the two-dimensional direction.
このような構成を有する繊維強化樹脂複合材は、当該繊維強化樹脂複合材の全体としての強度を効果的に向上させることができる。
The fiber-reinforced resin composite material having such a structure can effectively improve the strength of the fiber-reinforced resin composite material as a whole.
あるいは、本発明の第二の局面に係る繊維強化樹脂複合材は、第一の局面に係る繊維強化樹脂複合シートが、複数のチョップ材の形状で、厚さ方向に積層された繊維強化複合材であり、
前記チョップ材は、前記繊維強化樹脂複合シートが短辺の長さが2mm以上50mm以下で、かつ長辺の長さが2mm以上80mm以下の矩形を呈するように形成されており、
前記繊維強化複合材は、複数の前記チョップ材の前記強化繊維の繊維方向が二次元的にランダムになる状態で積層されている。 Alternatively, the fiber-reinforced resin composite material according to the second aspect of the present invention is a fiber-reinforced composite material in which the fiber-reinforced resin composite sheet according to the first aspect is laminated in the shape of a plurality of chops in the thickness direction. And
The chop material is formed so that the fiber-reinforced resin composite sheet exhibits a rectangular shape having a short side length of 2 mm or more and 50 mm or less and a long side length of 2 mm or more and 80 mm or less.
The fiber-reinforced composite material is laminated in a state in which the fiber directions of the reinforcing fibers of the plurality of chop materials are two-dimensionally random.
前記チョップ材は、前記繊維強化樹脂複合シートが短辺の長さが2mm以上50mm以下で、かつ長辺の長さが2mm以上80mm以下の矩形を呈するように形成されており、
前記繊維強化複合材は、複数の前記チョップ材の前記強化繊維の繊維方向が二次元的にランダムになる状態で積層されている。 Alternatively, the fiber-reinforced resin composite material according to the second aspect of the present invention is a fiber-reinforced composite material in which the fiber-reinforced resin composite sheet according to the first aspect is laminated in the shape of a plurality of chops in the thickness direction. And
The chop material is formed so that the fiber-reinforced resin composite sheet exhibits a rectangular shape having a short side length of 2 mm or more and 50 mm or less and a long side length of 2 mm or more and 80 mm or less.
The fiber-reinforced composite material is laminated in a state in which the fiber directions of the reinforcing fibers of the plurality of chop materials are two-dimensionally random.
このような構成を有する繊維強化樹脂複合材は、強化繊維による補強効果を等方的に発揮させつつ、種々の形状の樹脂成形品を支障なく成形することができる。
The fiber-reinforced resin composite material having such a structure can mold resin molded products of various shapes without any trouble while exerting the reinforcing effect of the reinforcing fibers isotropically.
本発明の第三の局面に係る樹脂成形品は、第二の局面に係る繊維強化樹脂複合材を備える。
The resin molded product according to the third aspect of the present invention includes the fiber reinforced resin composite material according to the second aspect.
このような構成を有する樹脂成形品は、優れた難燃性を有し、かつ高温条件下における十分な引張強度を有する。
A resin molded product having such a structure has excellent flame retardancy and sufficient tensile strength under high temperature conditions.
以下に、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to any examples.
実施例1-1~実施例1-4および比較例1-1~比較例1-5の繊維強化樹脂複合シートおよび繊維強化樹脂複合材の試験片は、以下のように作製した。
The fiber-reinforced resin composite sheet and the test piece of the fiber-reinforced resin composite material of Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-5 were prepared as follows.
(実施例1-1)
繊維強化樹脂複合シートを作製するために、熱可塑性樹脂組成物からなる難燃性樹脂フィルムを準備した。実施例1-1では、ポリカーボネート樹脂を含み、非臭素系かつ非リン系の難燃剤が添加された熱可塑性樹脂組成物からなる難燃性樹脂フィルムを使用した。この熱可塑性樹脂組成物のガラス転移温度Tgは、148℃~150℃である。また、難燃性樹脂フィルムの厚さは、20μmである。 (Example 1-1)
In order to prepare a fiber-reinforced resin composite sheet, a flame-retardant resin film made of a thermoplastic resin composition was prepared. In Example 1-1, a flame-retardant resin film containing a polycarbonate resin and made of a thermoplastic resin composition to which a non-bromine-based and non-phosphorus-based flame retardant was added was used. The glass transition temperature Tg of this thermoplastic resin composition is 148 ° C. to 150 ° C. The thickness of the flame-retardant resin film is 20 μm.
繊維強化樹脂複合シートを作製するために、熱可塑性樹脂組成物からなる難燃性樹脂フィルムを準備した。実施例1-1では、ポリカーボネート樹脂を含み、非臭素系かつ非リン系の難燃剤が添加された熱可塑性樹脂組成物からなる難燃性樹脂フィルムを使用した。この熱可塑性樹脂組成物のガラス転移温度Tgは、148℃~150℃である。また、難燃性樹脂フィルムの厚さは、20μmである。 (Example 1-1)
In order to prepare a fiber-reinforced resin composite sheet, a flame-retardant resin film made of a thermoplastic resin composition was prepared. In Example 1-1, a flame-retardant resin film containing a polycarbonate resin and made of a thermoplastic resin composition to which a non-bromine-based and non-phosphorus-based flame retardant was added was used. The glass transition temperature Tg of this thermoplastic resin composition is 148 ° C. to 150 ° C. The thickness of the flame-retardant resin film is 20 μm.
この難燃性樹脂フィルムと、強化繊維として炭素繊維(東レ社製、「TORAYCA」、グレード:T-700(PAN系炭素繊維)、繊維径:7μm、フィラメント数:12K、繊度:800tex)とを用い、図1に示した製造装置によって、炭素繊維束を開繊しながら上述した本実施形態における繊維強化樹脂複合シートを得た。このとき、加圧力を0.5MPaとし、ロール温度(図1に示した加熱ローラ2の温度)は270℃とし、送り速度は10m/分とした。得られた繊維強化樹脂複合シートは、難燃性樹脂フィルムの両面に、開繊された炭素繊維束が積層されている。繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは53%であり、繊維強化樹脂複合シートの厚さは40μm~50μmであった。
This flame-retardant resin film and carbon fiber (manufactured by Toray Co., Ltd., "TORAYCA", grade: T-700 (PAN-based carbon fiber), fiber diameter: 7 μm, number of filaments: 12K, fineness: 800tex) are used as reinforcing fibers. Using the manufacturing apparatus shown in FIG. 1, the fiber-reinforced resin composite sheet according to the above-described embodiment was obtained while opening the carbon fiber bundle. At this time, the pressing force was 0.5 MPa, the roll temperature (the temperature of the heating roller 2 shown in FIG. 1) was 270 ° C., and the feed rate was 10 m / min. In the obtained fiber-reinforced resin composite sheet, the opened carbon fiber bundles are laminated on both sides of the flame-retardant resin film. The volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 53%, and the thickness of the fiber-reinforced resin composite sheet was 40 μm to 50 μm.
得られた繊維強化樹脂複合シートを、開繊した炭素繊維が角度差0°の方向となるように40枚積層した。積層した繊維強化樹脂複合シートを金型に投入し、300℃、2MPaの条件下において15分間加熱しながら加圧し、その後、常温、3MPaの条件下において10分間冷却しながら加圧した。金型から300mm×300mm×2mm(厚さ)の繊維強化樹脂複合材を取り出し、当該繊維強化樹脂複合材を切り出して、150mm×150mm×2mm(厚さ)の繊維強化樹脂複合材の試験片を得た。当該試験片の炭素繊維の体積含有率Vfも53%であった。
40 sheets of the obtained fiber-reinforced resin composite sheet were laminated so that the opened carbon fibers were oriented at an angle difference of 0 °. The laminated fiber-reinforced resin composite sheet was put into a mold and pressurized while heating at 300 ° C. and 2 MPa for 15 minutes, and then pressurized while cooling at room temperature and 3 MPa for 10 minutes. A 300 mm × 300 mm × 2 mm (thickness) fiber reinforced resin composite material is taken out from the mold, the fiber reinforced resin composite material is cut out, and a test piece of the 150 mm × 150 mm × 2 mm (thickness) fiber reinforced resin composite material is cut out. Obtained. The volume content Vf of the carbon fiber of the test piece was also 53%.
(実施例1-2)
実施例1-2では、実施例1-1の難燃剤を添加したポリカーボネート樹脂を含む熱可塑性樹脂組成物に替えて、難燃性特性を有するポリフェニレンサルファイド(PPS)樹脂(Solvay製、「Ryton(登録商標)QC200N」)のみからなる熱可塑性樹脂組成物を使用した。ポリフェニレンサルファイド(PPS)樹脂からなる熱可塑性樹脂組成物のガラス転移温度Tgは、90℃である。ポリフェニレンサルファイド(PPS)樹脂のペレットを、Tダイが取り付けられた押出成形機を用いて成形温度280℃の条件下に設定し、厚さ25μmのポリフェニレンサルファイド(PPS)樹脂からなる難燃性樹脂フィルムを作製した。 (Example 1-2)
In Example 1-2, instead of the thermoplastic resin composition containing the polycarbonate resin to which the flame-retardant agent of Example 1-1 was added, a polyphenylene sulfide (PPS) resin having flame-retardant properties (manufactured by Solvay, “Ryton ( A thermoplastic resin composition consisting only of the registered trademark) QC200N ”) was used. The glass transition temperature Tg of the thermoplastic resin composition made of polyphenylene sulfide (PPS) resin is 90 ° C. Pellets of polyphenylene sulfide (PPS) resin are set under conditions of a molding temperature of 280 ° C. using an extrusion molding machine equipped with a T-die, and a flame-retardant resin film made of polyphenylene sulfide (PPS) resin having a thickness of 25 μm. Was produced.
実施例1-2では、実施例1-1の難燃剤を添加したポリカーボネート樹脂を含む熱可塑性樹脂組成物に替えて、難燃性特性を有するポリフェニレンサルファイド(PPS)樹脂(Solvay製、「Ryton(登録商標)QC200N」)のみからなる熱可塑性樹脂組成物を使用した。ポリフェニレンサルファイド(PPS)樹脂からなる熱可塑性樹脂組成物のガラス転移温度Tgは、90℃である。ポリフェニレンサルファイド(PPS)樹脂のペレットを、Tダイが取り付けられた押出成形機を用いて成形温度280℃の条件下に設定し、厚さ25μmのポリフェニレンサルファイド(PPS)樹脂からなる難燃性樹脂フィルムを作製した。 (Example 1-2)
In Example 1-2, instead of the thermoplastic resin composition containing the polycarbonate resin to which the flame-retardant agent of Example 1-1 was added, a polyphenylene sulfide (PPS) resin having flame-retardant properties (manufactured by Solvay, “Ryton ( A thermoplastic resin composition consisting only of the registered trademark) QC200N ”) was used. The glass transition temperature Tg of the thermoplastic resin composition made of polyphenylene sulfide (PPS) resin is 90 ° C. Pellets of polyphenylene sulfide (PPS) resin are set under conditions of a molding temperature of 280 ° C. using an extrusion molding machine equipped with a T-die, and a flame-retardant resin film made of polyphenylene sulfide (PPS) resin having a thickness of 25 μm. Was produced.
この難燃性樹脂フィルムと、実施例1-1で述べた炭素繊維とを用い、図1に示した製造装置によって、炭素繊維束を開繊しながら繊維強化樹脂複合シートを得た。このとき、加圧力を0.5MPaとし、ロール温度(図1に示した加熱ローラ2の温度)は280℃とし、送り速度は20m/分とし、実施例1-1と同様の形状の繊維強化樹脂複合シートを得た。維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは44.7%であり、繊維強化樹脂複合シートの厚さは50μmであった。
Using this flame-retardant resin film and the carbon fibers described in Example 1-1, a fiber-reinforced resin composite sheet was obtained while opening the carbon fiber bundles by the manufacturing apparatus shown in FIG. At this time, the pressing force was 0.5 MPa, the roll temperature (the temperature of the heating roller 2 shown in FIG. 1) was 280 ° C., the feed rate was 20 m / min, and the fiber reinforcement had the same shape as that of Example 1-1. A resin composite sheet was obtained. The volume content Vf of the carbon fiber with respect to the fiber-reinforced resin composite sheet was 44.7%, and the thickness of the fiber-reinforced resin composite sheet was 50 μm.
得られた繊維強化樹脂複合シートを用いて、前述した実施例1-1と同じ方法により、150mm×150mm×2mm(厚さ)の繊維強化樹脂複合材の試験片を得た。当該試験片の炭素繊維の体積含有率Vfも44.7%であった。
Using the obtained fiber-reinforced resin composite sheet, a test piece of a fiber-reinforced resin composite material having a size of 150 mm × 150 mm × 2 mm (thickness) was obtained by the same method as in Example 1-1 described above. The volume content Vf of the carbon fiber of the test piece was also 44.7%.
(実施例1-3)
繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfが35%になるように、炭素繊維の繊維強化樹脂複合シートを積層する際、厚さ25μmのポリフェニレンサルファイド(PPS)樹脂からなるフィルムをさらに追加したことを除き、その他は前述の実施例1-2と同じ方法により、厚さ50μmの繊維強化樹脂複合シートおよび150mm×150mm×2mm(厚さ)の繊維強化樹脂複合材の試験片を得た。 (Example 1-3)
When laminating the fiber-reinforced resin composite sheet of carbon fiber so that the volume content Vf of the carbon fiber with respect to the fiber-reinforced resin composite sheet is 35%, a film made of polyphenylene sulfide (PPS) resin having a thickness of 25 μm is further added. Except for the above, test pieces of a fiber-reinforced resin composite sheet having a thickness of 50 μm and a fiber-reinforced resin composite material having a thickness of 150 mm × 150 mm × 2 mm (thickness) were obtained by the same method as in Example 1-2 described above. ..
繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfが35%になるように、炭素繊維の繊維強化樹脂複合シートを積層する際、厚さ25μmのポリフェニレンサルファイド(PPS)樹脂からなるフィルムをさらに追加したことを除き、その他は前述の実施例1-2と同じ方法により、厚さ50μmの繊維強化樹脂複合シートおよび150mm×150mm×2mm(厚さ)の繊維強化樹脂複合材の試験片を得た。 (Example 1-3)
When laminating the fiber-reinforced resin composite sheet of carbon fiber so that the volume content Vf of the carbon fiber with respect to the fiber-reinforced resin composite sheet is 35%, a film made of polyphenylene sulfide (PPS) resin having a thickness of 25 μm is further added. Except for the above, test pieces of a fiber-reinforced resin composite sheet having a thickness of 50 μm and a fiber-reinforced resin composite material having a thickness of 150 mm × 150 mm × 2 mm (thickness) were obtained by the same method as in Example 1-2 described above. ..
(実施例1-4)
実施例1-2において作製した厚さ25μmのポリフェニレンサルファイド(PPS)樹脂からなる難燃性樹脂フィルムに替えて、難燃性特性を有し、その厚さが20μmであるポリエーテルエーテルケトン(PEEK)樹脂フィルム(三菱ケミカル製、「スペリオUT(登録商標)αKN-type」)を使用した。ポリエーテルエーテルケトン(PEEK)樹脂からなる熱可塑性樹脂組成物のガラス転移温度Tgは、143℃~147℃である。 (Example 1-4)
Instead of the flame-retardant resin film made of polyphenylene sulfide (PPS) resin having a thickness of 25 μm produced in Example 1-2, polyetheretherketone (PEEK) having flame-retardant properties and having a thickness of 20 μm. ) A resin film (manufactured by Mitsubishi Chemical, "Superio UT (registered trademark) αKN-type") was used. The glass transition temperature Tg of the thermoplastic resin composition made of polyetheretherketone (PEEK) resin is 143 ° C to 147 ° C.
実施例1-2において作製した厚さ25μmのポリフェニレンサルファイド(PPS)樹脂からなる難燃性樹脂フィルムに替えて、難燃性特性を有し、その厚さが20μmであるポリエーテルエーテルケトン(PEEK)樹脂フィルム(三菱ケミカル製、「スペリオUT(登録商標)αKN-type」)を使用した。ポリエーテルエーテルケトン(PEEK)樹脂からなる熱可塑性樹脂組成物のガラス転移温度Tgは、143℃~147℃である。 (Example 1-4)
Instead of the flame-retardant resin film made of polyphenylene sulfide (PPS) resin having a thickness of 25 μm produced in Example 1-2, polyetheretherketone (PEEK) having flame-retardant properties and having a thickness of 20 μm. ) A resin film (manufactured by Mitsubishi Chemical, "Superio UT (registered trademark) αKN-type") was used. The glass transition temperature Tg of the thermoplastic resin composition made of polyetheretherketone (PEEK) resin is 143 ° C to 147 ° C.
この難燃性樹脂フィルムと、実施例1-1で述べた炭素繊維とを用い、図1に示した製造装置によって、炭素繊維束を開繊しながら繊維強化樹脂複合シートを得た。このとき、加圧力を0.5MPaとし、ロール温度(図1に示した加熱ローラ2の温度)は360℃とし、送り速度は10m/分とし、実施例1-1と同様の形状の繊維強化樹脂複合シートを得た。維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは53%であり、繊維強化樹脂複合シートの厚さは40μmであった。
Using this flame-retardant resin film and the carbon fibers described in Example 1-1, a fiber-reinforced resin composite sheet was obtained while opening the carbon fiber bundles by the manufacturing apparatus shown in FIG. At this time, the pressing force was 0.5 MPa, the roll temperature (the temperature of the heating roller 2 shown in FIG. 1) was 360 ° C., the feed rate was 10 m / min, and the fiber reinforcement had the same shape as that of Example 1-1. A resin composite sheet was obtained. The volume content Vf of the carbon fiber with respect to the fiber-reinforced resin composite sheet was 53%, and the thickness of the fiber-reinforced resin composite sheet was 40 μm.
得られた繊維強化樹脂複合シートを用いて、前述した実施例1-1と同じ方法により、150mm×150mm×2mm(厚さ)の繊維強化樹脂複合材の試験片を得た。当該試験片の炭素繊維の体積含有率Vfも53%であった。
Using the obtained fiber-reinforced resin composite sheet, a test piece of a fiber-reinforced resin composite material having a size of 150 mm × 150 mm × 2 mm (thickness) was obtained by the same method as in Example 1-1 described above. The volume content Vf of the carbon fiber of the test piece was also 53%.
(比較例1-1)
比較例1-1として、炭素繊維束が開繊されずにそのまま溶融樹脂中に含浸されて製造される、市販品のポリアミド6樹脂マトリックスの繊維強化樹脂複合シート(TCAC社製、「TC910」)を用いた。ポリアミド6樹脂マトリックスのガラス転移温度Tgは、50℃程度(参考値)である。当該繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは48%であり、繊維強化樹脂複合シートの厚さは180μmであった。 (Comparative Example 1-1)
As Comparative Example 1-1, a commercially available fiber-reinforced resin composite sheet of apolyamide 6 resin matrix (“TC910” manufactured by TCAC), which is produced by impregnating a carbon fiber bundle into a molten resin as it is without opening the fibers. Was used. The glass transition temperature Tg of the polyamide 6 resin matrix is about 50 ° C. (reference value). The volume content Vf of the carbon fiber with respect to the fiber-reinforced resin composite sheet was 48%, and the thickness of the fiber-reinforced resin composite sheet was 180 μm.
比較例1-1として、炭素繊維束が開繊されずにそのまま溶融樹脂中に含浸されて製造される、市販品のポリアミド6樹脂マトリックスの繊維強化樹脂複合シート(TCAC社製、「TC910」)を用いた。ポリアミド6樹脂マトリックスのガラス転移温度Tgは、50℃程度(参考値)である。当該繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは48%であり、繊維強化樹脂複合シートの厚さは180μmであった。 (Comparative Example 1-1)
As Comparative Example 1-1, a commercially available fiber-reinforced resin composite sheet of a
繊維強化樹脂複合シートを、炭素繊維束が角度差略0°の方向となるように14枚積層した。その後、前述した実施例1-1と同じ方法により、150mm×150mm×2mm(厚さ)の繊維強化樹脂複合材の試験片を得た。当該試験片の炭素繊維の体積含有率Vfも48%であった。
14 fiber-reinforced resin composite sheets were laminated so that the carbon fiber bundles had an angle difference of approximately 0 °. Then, a test piece of a fiber-reinforced resin composite material having a size of 150 mm × 150 mm × 2 mm (thickness) was obtained by the same method as in Example 1-1 described above. The volume content Vf of the carbon fiber of the test piece was also 48%.
(比較例1-2)
比較例1-2では、繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfが25%になるように、難燃剤を添加したポリカーボネート樹脂を含む難燃性樹脂フィルムの両面に積層する炭素繊維の量を減少させたことを除き、その他は前述の実施例1-1と同じ方法により、厚さ30μmの繊維強化樹脂複合シートを得た。 (Comparative Example 1-2)
In Comparative Example 1-2, the carbon fibers laminated on both sides of the flame-retardant resin film containing the polycarbonate resin to which the flame-retardant was added so that the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 25%. A fiber-reinforced resin composite sheet having a thickness of 30 μm was obtained by the same method as in Example 1-1 described above except that the amount was reduced.
比較例1-2では、繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfが25%になるように、難燃剤を添加したポリカーボネート樹脂を含む難燃性樹脂フィルムの両面に積層する炭素繊維の量を減少させたことを除き、その他は前述の実施例1-1と同じ方法により、厚さ30μmの繊維強化樹脂複合シートを得た。 (Comparative Example 1-2)
In Comparative Example 1-2, the carbon fibers laminated on both sides of the flame-retardant resin film containing the polycarbonate resin to which the flame-retardant was added so that the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 25%. A fiber-reinforced resin composite sheet having a thickness of 30 μm was obtained by the same method as in Example 1-1 described above except that the amount was reduced.
得られた繊維強化樹脂複合シートを、開繊した炭素繊維が角度差0°の方向となるように74枚積層した。その後、前述した実施例1-1と同じ方法により、150mm×150mm×2mm(厚さ)の繊維強化樹脂複合材の試験片を得た。当該試験片の炭素繊維の体積含有率Vfも25%であった。
74 sheets of the obtained fiber-reinforced resin composite sheet were laminated so that the opened carbon fibers were oriented at an angle difference of 0 °. Then, a test piece of a fiber-reinforced resin composite material having a size of 150 mm × 150 mm × 2 mm (thickness) was obtained by the same method as in Example 1-1 described above. The volume content Vf of the carbon fiber of the test piece was also 25%.
(比較例1-3)
比較例1-3では、繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfが70%になるように、難燃剤を添加したポリカーボネート樹脂を含む難燃性樹脂フィルムの両面に積層する炭素繊維の量を増加させたことを除き、その他は前述の実施例1-1と同じ方法により、厚さ70μmの繊維強化樹脂複合シートを得た。 (Comparative Example 1-3)
In Comparative Example 1-3, the carbon fibers laminated on both sides of the flame-retardant resin film containing the polycarbonate resin to which the flame-retardant was added so that the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 70%. A fiber-reinforced resin composite sheet having a thickness of 70 μm was obtained by the same method as in Example 1-1 described above except that the amount was increased.
比較例1-3では、繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfが70%になるように、難燃剤を添加したポリカーボネート樹脂を含む難燃性樹脂フィルムの両面に積層する炭素繊維の量を増加させたことを除き、その他は前述の実施例1-1と同じ方法により、厚さ70μmの繊維強化樹脂複合シートを得た。 (Comparative Example 1-3)
In Comparative Example 1-3, the carbon fibers laminated on both sides of the flame-retardant resin film containing the polycarbonate resin to which the flame-retardant was added so that the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 70%. A fiber-reinforced resin composite sheet having a thickness of 70 μm was obtained by the same method as in Example 1-1 described above except that the amount was increased.
得られた繊維強化樹脂複合シートを用いて、前述した実施例1-1と同じ方法により150mm×150mm×2mm(厚さ)の繊維強化樹脂複合材の試験片を作製しようとしたが、繊維と樹脂との含浸性が悪く、当該試験片を成形することができなかった。
Using the obtained fiber-reinforced resin composite sheet, an attempt was made to prepare a test piece of a fiber-reinforced resin composite material having a size of 150 mm × 150 mm × 2 mm (thickness) by the same method as in Example 1-1 described above. The test piece could not be molded due to poor impregnation with the resin.
(比較例1-4)
比較例1-4では、繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfが25%になるように、ポリフェニレンサルファイド(PPS)樹脂からなる難燃性樹脂フィルムの両面に積層する炭素繊維の量を減少させたことを除き、その他は前述の実施例1-2と同じ方法により、厚さ35μmの繊維強化樹脂複合シートを得た。 (Comparative Example 1-4)
In Comparative Example 1-4, the amount of carbon fibers laminated on both sides of the flame-retardant resin film made of polyphenylene sulfide (PPS) resin so that the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet is 25%. A fiber-reinforced resin composite sheet having a thickness of 35 μm was obtained by the same method as in Example 1-2 described above, except that the amount was reduced.
比較例1-4では、繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfが25%になるように、ポリフェニレンサルファイド(PPS)樹脂からなる難燃性樹脂フィルムの両面に積層する炭素繊維の量を減少させたことを除き、その他は前述の実施例1-2と同じ方法により、厚さ35μmの繊維強化樹脂複合シートを得た。 (Comparative Example 1-4)
In Comparative Example 1-4, the amount of carbon fibers laminated on both sides of the flame-retardant resin film made of polyphenylene sulfide (PPS) resin so that the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet is 25%. A fiber-reinforced resin composite sheet having a thickness of 35 μm was obtained by the same method as in Example 1-2 described above, except that the amount was reduced.
得られた繊維強化樹脂複合シートを、開繊した炭素繊維が角度差0°の方向となるように64枚積層した。その後、前述した実施例1-2と同じ方法により、150mm×150mm×2mm(厚さ)の繊維強化樹脂複合材の試験片を得た。当該試験片の炭素繊維の体積含有率Vfも25%であった。
64 sheets of the obtained fiber-reinforced resin composite sheet were laminated so that the opened carbon fibers were oriented at an angle difference of 0 °. Then, a test piece of a fiber-reinforced resin composite material having a size of 150 mm × 150 mm × 2 mm (thickness) was obtained by the same method as in Example 1-2 described above. The volume content Vf of the carbon fiber of the test piece was also 25%.
(比較例1-5)
比較例1-5では、繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfが70%になるように、ポリフェニレンサルファイド(PPS)樹脂からなる難燃性樹脂フィルムの両面に積層する炭素繊維の量を増加させたことを除き、その他は前述の実施例1-2と同じ方法により、厚さ85μmの繊維強化樹脂複合シートを得た。 (Comparative Example 1-5)
In Comparative Example 1-5, the amount of carbon fibers laminated on both sides of the flame-retardant resin film made of polyphenylene sulfide (PPS) resin so that the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet is 70%. A fiber-reinforced resin composite sheet having a thickness of 85 μm was obtained by the same method as in Example 1-2 described above, except that the amount was increased.
比較例1-5では、繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfが70%になるように、ポリフェニレンサルファイド(PPS)樹脂からなる難燃性樹脂フィルムの両面に積層する炭素繊維の量を増加させたことを除き、その他は前述の実施例1-2と同じ方法により、厚さ85μmの繊維強化樹脂複合シートを得た。 (Comparative Example 1-5)
In Comparative Example 1-5, the amount of carbon fibers laminated on both sides of the flame-retardant resin film made of polyphenylene sulfide (PPS) resin so that the volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet is 70%. A fiber-reinforced resin composite sheet having a thickness of 85 μm was obtained by the same method as in Example 1-2 described above, except that the amount was increased.
得られた繊維強化樹脂複合シートを用いて、前述した実施例1-2と同じ方法により150mm×150mm×2mm(厚さ)の繊維強化樹脂複合材の試験片を作製しようとしたが、繊維と樹脂との含浸性が悪く、当該試験片を成形することができなかった。
Using the obtained fiber-reinforced resin composite sheet, an attempt was made to prepare a test piece of a fiber-reinforced resin composite material having a size of 150 mm × 150 mm × 2 mm (thickness) by the same method as in Example 1-2 described above. The test piece could not be molded due to poor impregnation with the resin.
なお、維強化樹脂複合シートおよび繊維強化樹脂複合材に対する強化繊維の体積含有率Vfは、燃焼法によって測定した。それぞれの熱可塑性樹脂組成物または熱可塑性樹脂自体のガラス転移温度Tgは、示唆走査熱量計(DSC)にて測定した温度である。
The volume content Vf of the reinforcing fiber with respect to the reinforced resin composite sheet and the fiber reinforced resin composite material was measured by the combustion method. The glass transition temperature Tg of each thermoplastic resin composition or the thermoplastic resin itself is a temperature measured by a differential scanning calorimeter (DSC).
<熱可塑性樹脂フィルムまたは樹脂マトリックスの難燃性評価>
実施例1-1~実施例1-4ならびに比較例1-2~比較例1-5で作製された樹脂フィルムと、比較例1-1で用いたポリアミド6樹脂マトリックスについて、ASTM D4804規格に準拠するUL94VTM燃焼試験にて、その燃焼性を判定した。具体的には、試験片(寸法:200±5mm×50±1mm×tmm)を円筒状に巻き、クランプに垂直に取付け、20mm炎による3秒間接炎を2回行い、その燃焼挙動により「VTM-0」、「VTM-1」、「VTM-2」または「Not」の判定を行った。なお、t=20~25μmに設定した。具体的な判定基準について、下記表1に示す。 <Evaluation of flame retardancy of thermoplastic resin film or resin matrix>
The resin films produced in Examples 1-1 to 1-4 and Comparative Examples 1-2 to 1-5 and thepolyamide 6 resin matrix used in Comparative Example 1-1 conform to the ASTM D4804 standard. The flammability was determined by the UL94 VTM combustion test. Specifically, a test piece (dimensions: 200 ± 5 mm × 50 ± 1 mm × tmm) is wound in a cylindrical shape, mounted vertically on a clamp, and indirect flame for 3 seconds with a 20 mm flame is performed twice. The determination of "-0", "VTM-1", "VTM-2" or "Not" was performed. The t = 20 to 25 μm was set. Specific criteria are shown in Table 1 below.
実施例1-1~実施例1-4ならびに比較例1-2~比較例1-5で作製された樹脂フィルムと、比較例1-1で用いたポリアミド6樹脂マトリックスについて、ASTM D4804規格に準拠するUL94VTM燃焼試験にて、その燃焼性を判定した。具体的には、試験片(寸法:200±5mm×50±1mm×tmm)を円筒状に巻き、クランプに垂直に取付け、20mm炎による3秒間接炎を2回行い、その燃焼挙動により「VTM-0」、「VTM-1」、「VTM-2」または「Not」の判定を行った。なお、t=20~25μmに設定した。具体的な判定基準について、下記表1に示す。 <Evaluation of flame retardancy of thermoplastic resin film or resin matrix>
The resin films produced in Examples 1-1 to 1-4 and Comparative Examples 1-2 to 1-5 and the
<繊維強化樹脂複合シートの難燃性評価>
実施例1-1~実施例1-4ならびに比較例1-1、比較例1-2および比較例1-4で作製した繊維強化樹脂複合シートの試験片について、ASTM D5048規格に準拠するUL94-5V燃焼試験にて、その燃焼性を判定した。具体的には、短冊状の試験片(寸法:125±5mm×13±0.5×tmm)をクランプに垂直に取付け、125mm炎による5秒間接炎を5回行った。さらに、平板試験片(寸法:150±5mm×150±5×tmm)を水平に保持し、下方から125mm炎の5秒間接炎を5回行った。これらの燃焼挙動により「5V-B」、「5V-A」または「Not」の判定を行った。なお、t=2mmに設定した。具体的な判定基準について、下記表2に示す。なお、比較例1-3および比較例1-5では、繊維強化樹脂複合シートの試験片は、繊維と樹脂との含浸性が悪かったため、試験を行うことができなかった。 <Evaluation of flame retardancy of fiber reinforced resin composite sheet>
UL94- conforming to the ASTM D5048 standard for the test pieces of the fiber-reinforced resin composite sheet produced in Examples 1-1 to 1-4 and Comparative Example 1-1, Comparative Example 1-2 and Comparative Example 1-4. Its flammability was determined in a 5V combustion test. Specifically, a strip-shaped test piece (dimensions: 125 ± 5 mm × 13 ± 0.5 × tmm) was vertically attached to the clamp, and a 5-second indirect flame with a 125 mm flame was performed 5 times. Further, the flat plate test piece (dimensions: 150 ± 5 mm × 150 ± 5 × tmm) was held horizontally, and a 5-second indirect flame of 125 mm flame was performed 5 times from below. Based on these combustion behaviors, "5V-B", "5VA" or "Not" was determined. In addition, t = 2 mm was set. Specific criteria are shown in Table 2 below. In Comparative Examples 1-3 and 1-5, the test piece of the fiber-reinforced resin composite sheet could not be tested because the impregnation property between the fiber and the resin was poor.
実施例1-1~実施例1-4ならびに比較例1-1、比較例1-2および比較例1-4で作製した繊維強化樹脂複合シートの試験片について、ASTM D5048規格に準拠するUL94-5V燃焼試験にて、その燃焼性を判定した。具体的には、短冊状の試験片(寸法:125±5mm×13±0.5×tmm)をクランプに垂直に取付け、125mm炎による5秒間接炎を5回行った。さらに、平板試験片(寸法:150±5mm×150±5×tmm)を水平に保持し、下方から125mm炎の5秒間接炎を5回行った。これらの燃焼挙動により「5V-B」、「5V-A」または「Not」の判定を行った。なお、t=2mmに設定した。具体的な判定基準について、下記表2に示す。なお、比較例1-3および比較例1-5では、繊維強化樹脂複合シートの試験片は、繊維と樹脂との含浸性が悪かったため、試験を行うことができなかった。 <Evaluation of flame retardancy of fiber reinforced resin composite sheet>
UL94- conforming to the ASTM D5048 standard for the test pieces of the fiber-reinforced resin composite sheet produced in Examples 1-1 to 1-4 and Comparative Example 1-1, Comparative Example 1-2 and Comparative Example 1-4. Its flammability was determined in a 5V combustion test. Specifically, a strip-shaped test piece (dimensions: 125 ± 5 mm × 13 ± 0.5 × tmm) was vertically attached to the clamp, and a 5-second indirect flame with a 125 mm flame was performed 5 times. Further, the flat plate test piece (dimensions: 150 ± 5 mm × 150 ± 5 × tmm) was held horizontally, and a 5-second indirect flame of 125 mm flame was performed 5 times from below. Based on these combustion behaviors, "5V-B", "5VA" or "Not" was determined. In addition, t = 2 mm was set. Specific criteria are shown in Table 2 below. In Comparative Examples 1-3 and 1-5, the test piece of the fiber-reinforced resin composite sheet could not be tested because the impregnation property between the fiber and the resin was poor.
<繊維強化樹脂複合材の試験片の引張強度(MPa)の評価>
実施例1-1~実施例1-4ならびに比較例1-1、比較例1-2および比較例1-4の繊維強化樹脂複合材の試験片について、JIS K 7165:2008に準じて引張強度を測定した。なお、比較例1-3および比較例1-5では、上述した通り、繊維強化樹脂複合材の試験片が成形できなかったため、試験を行うことができなかった。 <Evaluation of tensile strength (MPa) of test piece of fiber reinforced resin composite material>
Tensile strength of the test pieces of the fiber-reinforced resin composite material of Examples 1-1 to 1-4, Comparative Example 1-1, Comparative Example 1-2 and Comparative Example 1-4 according to JIS K 7165: 2008. Was measured. In Comparative Examples 1-3 and 1-5, as described above, the test piece of the fiber reinforced resin composite material could not be molded, so that the test could not be performed.
実施例1-1~実施例1-4ならびに比較例1-1、比較例1-2および比較例1-4の繊維強化樹脂複合材の試験片について、JIS K 7165:2008に準じて引張強度を測定した。なお、比較例1-3および比較例1-5では、上述した通り、繊維強化樹脂複合材の試験片が成形できなかったため、試験を行うことができなかった。 <Evaluation of tensile strength (MPa) of test piece of fiber reinforced resin composite material>
Tensile strength of the test pieces of the fiber-reinforced resin composite material of Examples 1-1 to 1-4, Comparative Example 1-1, Comparative Example 1-2 and Comparative Example 1-4 according to JIS K 7165: 2008. Was measured. In Comparative Examples 1-3 and 1-5, as described above, the test piece of the fiber reinforced resin composite material could not be molded, so that the test could not be performed.
実施例1-1~実施例1-4および比較例1-1~比較例1-5における熱可塑性樹脂フィルムまたは樹脂マトリックスおよび繊維強化樹脂複合シートの各特性および各評価結果を、以下の表3および表4にまとめて示す。
Table 3 below shows the characteristics and evaluation results of the thermoplastic resin film or resin matrix and the fiber-reinforced resin composite sheet in Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-5. And are summarized in Table 4.
上記表3の結果から明らかなように、実施例1-1~実施例1-4の樹脂フィルムおよびその繊維強化樹脂複合シートは、比較例1-1のポリアミド6樹脂マトリックスおよびその繊維強化樹脂複合シートと比較して、優れた難燃性を有していた。
As is clear from the results in Table 3 above, the resin films of Examples 1-1 to 1-4 and the fiber-reinforced resin composite sheet thereof are the polyamide 6 resin matrix of Comparative Example 1-1 and the fiber-reinforced resin composite thereof. It had excellent flame retardancy as compared with the sheet.
さらに、実施例1-1~実施例1-4の繊維強化樹脂複合シートは、炭素繊維束を開繊させずに樹脂マトリックスに含浸させて作製した比較例1-1の繊維強化樹脂複合シートと比べて、厚さを顕著に薄くして形成することができた。加えて、実施例1-2および実施例1-3の繊維強化樹脂複合材の試験片は、比較例1-1の繊維強化樹脂複合材の試験片と比較して、強化繊維の体積含有率Vfが小さい値となっているにもかかわらず、通常予測される結果とは逆に、高い引張強度を有していた。これは、実施例1-1~実施例1-4の繊維強化樹脂複合シートは、薄い繊維強化樹脂複合シートが何層も重なって構成されているため強化繊維と樹脂の分散性が良好であることから、厚い層で構成された比較例1-1における積層板に比べて、層間剥離が発生しにくく繊維本来の強度を発現したと想定される。このように、実施例1-1~実施例1-4の繊維強化樹脂複合シートは、中間材料として成形加工性に優れているとともに、当該シートから製造される繊維強化樹脂複合材の引張強度も優れていた。
Further, the fiber-reinforced resin composite sheets of Examples 1-1 to 1-4 are the same as the fiber-reinforced resin composite sheets of Comparative Example 1-1 produced by impregnating the resin matrix with the carbon fiber bundles without opening the fibers. In comparison, the thickness could be significantly reduced. In addition, the test pieces of the fiber-reinforced resin composite material of Examples 1-2 and 1-3 have a volume content of the reinforcing fibers as compared with the test pieces of the fiber-reinforced resin composite material of Comparative Example 1-1. Despite the small value of Vf, it had high tensile strength, contrary to the normally expected result. This is because the fiber-reinforced resin composite sheets of Examples 1-1 to 1-4 are composed of many layers of thin fiber-reinforced resin composite sheets, and therefore have good dispersibility between the reinforcing fibers and the resin. Therefore, it is presumed that, as compared with the laminated board in Comparative Example 1-1 composed of a thick layer, delamination is less likely to occur and the original strength of the fiber is exhibited. As described above, the fiber-reinforced resin composite sheets of Examples 1-1 to 1-4 are excellent in molding processability as an intermediate material, and also have the tensile strength of the fiber-reinforced resin composite material produced from the sheets. It was excellent.
さらに、上記表4の比較例1-2および比較例1-4の結果から分かるように、強化繊維の体積含有率Vfを25%まで小さくした場合、繊維強化樹脂複合材の引張強度が顕著に低下してしまった。また、上記表4の比較例1-3および比較例1-5の結果から分かるように、強化繊維の体積含有率Vfを70%まで大きくした場合、得られた繊維強化樹脂複合シートにおける繊維と樹脂との含浸性が悪くなり、その結果成形加工性が悪くなるため、繊維強化樹脂複合材を成形することができなかった。これらの結果から、強化繊維の体積含有率Vfが本実施形態の繊維強化樹脂複合シートに規定される特定の範囲内の値に調整されていなければ、良好な成形加工性と高温条件下における十分な引張強度とを両立する繊維強化樹脂複合シートを得ることができないことが分かる。
Further, as can be seen from the results of Comparative Examples 1-2 and 1-4 in Table 4 above, when the volume content Vf of the reinforcing fibers is reduced to 25%, the tensile strength of the fiber reinforced resin composite material becomes remarkable. It has dropped. Further, as can be seen from the results of Comparative Examples 1-3 and 1-5 in Table 4 above, when the volume content Vf of the reinforcing fibers is increased to 70%, the fibers in the obtained fiber-reinforced resin composite sheet are used. The fiber-reinforced resin composite material could not be molded because the impregnation property with the resin was deteriorated, and as a result, the molding processability was deteriorated. From these results, if the volume content Vf of the reinforcing fiber is not adjusted to a value within a specific range specified in the fiber reinforced resin composite sheet of the present embodiment, good molding processability and sufficient under high temperature conditions are sufficient. It can be seen that it is not possible to obtain a fiber-reinforced resin composite sheet that has both excellent tensile strength.
実施例1-1~実施例1-4で使用された樹脂フィルム(熱可塑性樹脂組成物または熱可塑性樹脂)のガラス転移温度Tgは、比較例1-1で使用されたポリアミド6樹脂マトリックスのガラス転移温度Tgよりも顕著に高い値である。そのため、実施例1-1~実施例1-4の繊維強化樹脂複合シートおよびそれから製造される繊維強化樹脂複合材は、耐熱性を有し、高温条件下においても良好な強度、例えば引張強度(または曲げ強度)を有することが想定される。さらに、以下の表5に示すガラス転移温度Tgが高く高燃焼性の参考例1~4の熱可塑性樹脂(ポリエーテルケトンケトン(PEKK)樹脂、ポリエーテルイミド(PEI)樹脂、ポリエーテルスルホン(PES)樹脂、および液晶ポリマー(LCP)樹脂)についても、本発明と同様の効果を発揮することが想定される。
The glass transition temperature Tg of the resin film (thermoplastic resin composition or thermoplastic resin) used in Examples 1-1 to 1-4 is the glass of the polyamide 6 resin matrix used in Comparative Example 1-1. It is a value significantly higher than the transition temperature Tg. Therefore, the fiber-reinforced resin composite sheet of Examples 1-1 to 1-4 and the fiber-reinforced resin composite material produced from the fiber-reinforced resin composite sheet have heat resistance and have good strength even under high temperature conditions, for example, tensile strength ( Or it is assumed to have bending strength). Further, the thermoplastic resins (polyetherketone-ketone (PEKK) resin, polyetherimide (PEI) resin, polyethersulfone (PES)) of Reference Examples 1 to 4 having a high glass transition temperature Tg and high flammability shown in Table 5 below. ) Resin and liquid crystal polymer (LCP) resin) are also expected to exert the same effects as those of the present invention.
さらに、繊維強化樹脂複合シートの難燃性評価の追加実験を行った。具体的には、繊維強化樹脂複合シートの構造と当該シートの難燃特性との関係について調べる追加実験を行った。まず、以下の方法によって、実施例2-1および実施例2-2ならびに比較例2-1および比較例2-2における繊維強化樹脂複合シートの試験片を作製した。
Furthermore, an additional experiment was conducted to evaluate the flame retardancy of the fiber reinforced resin composite sheet. Specifically, an additional experiment was conducted to investigate the relationship between the structure of the fiber-reinforced resin composite sheet and the flame-retardant properties of the sheet. First, test pieces of the fiber-reinforced resin composite sheet in Example 2-1 and Example 2-2 and Comparative Example 2-1 and Comparative Example 2-2 were prepared by the following methods.
(実施例2-1)
実施例2-1では、前述の実施例1-1と同じ方法により、難燃剤を添加したポリカーボネート樹脂を含む繊維強化樹脂複合シートを得た。繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは53%であり、繊維強化樹脂複合シートの厚さは40~50μmであった。次いで、得られた繊維強化樹脂複合シートから、13mm×125mm×40~50μm(厚さ)の繊維強化樹脂複合シートの試験片を切り出した。 (Example 2-1)
In Example 2-1 a fiber-reinforced resin composite sheet containing a polycarbonate resin to which a flame retardant was added was obtained by the same method as in Example 1-1 described above. The volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 53%, and the thickness of the fiber-reinforced resin composite sheet was 40 to 50 μm. Next, a test piece of a fiber-reinforced resin composite sheet having a size of 13 mm × 125 mm × 40 to 50 μm (thickness) was cut out from the obtained fiber-reinforced resin composite sheet.
実施例2-1では、前述の実施例1-1と同じ方法により、難燃剤を添加したポリカーボネート樹脂を含む繊維強化樹脂複合シートを得た。繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは53%であり、繊維強化樹脂複合シートの厚さは40~50μmであった。次いで、得られた繊維強化樹脂複合シートから、13mm×125mm×40~50μm(厚さ)の繊維強化樹脂複合シートの試験片を切り出した。 (Example 2-1)
In Example 2-1 a fiber-reinforced resin composite sheet containing a polycarbonate resin to which a flame retardant was added was obtained by the same method as in Example 1-1 described above. The volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 53%, and the thickness of the fiber-reinforced resin composite sheet was 40 to 50 μm. Next, a test piece of a fiber-reinforced resin composite sheet having a size of 13 mm × 125 mm × 40 to 50 μm (thickness) was cut out from the obtained fiber-reinforced resin composite sheet.
作製した繊維強化樹脂複合シートの試験片の断面を、レーザー顕微鏡(「VK-X160」、Keyence社製)を用いて観察した。図5に示すように、実施例2-1における繊維強化樹脂複合シートの試験片の断面図は、難燃剤を添加したポリカーボネート樹脂を含む難燃性樹脂フィルムの両面に、複数の炭素繊維が積層されている状態、具体的には複数の炭素繊維が各々の炭素繊維の略半分において当該フィルム表面から内部に含浸している状態となっていた。
The cross section of the test piece of the prepared fiber-reinforced resin composite sheet was observed using a laser microscope ("VK-X160", manufactured by Keyence Corporation). As shown in FIG. 5, in the cross-sectional view of the test piece of the fiber-reinforced resin composite sheet in Example 2-1, a plurality of carbon fibers are laminated on both sides of a flame-retardant resin film containing a polycarbonate resin to which a flame-retardant is added. In this state, specifically, a plurality of carbon fibers are impregnated from the surface of the film to the inside in about half of each carbon fiber.
(実施例2-2)
実施例2-2では、前述の実施例1-2と同じ方法により、ポリフェニレンサルファイド(PPS)樹脂を含む繊維強化樹脂複合シートを得た。繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは44.7%であり、繊維強化樹脂複合シートの厚さは50μmであった。次いで、得られた繊維強化樹脂複合シートから、13mm×125mm×50μm(厚さ)の繊維強化樹脂複合シートの試験片を切り出した。 (Example 2-2)
In Example 2-2, a fiber reinforced resin composite sheet containing a polyphenylene sulfide (PPS) resin was obtained by the same method as in Example 1-2 described above. The volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 44.7%, and the thickness of the fiber-reinforced resin composite sheet was 50 μm. Next, a test piece of a fiber-reinforced resin composite sheet having a size of 13 mm × 125 mm × 50 μm (thickness) was cut out from the obtained fiber-reinforced resin composite sheet.
実施例2-2では、前述の実施例1-2と同じ方法により、ポリフェニレンサルファイド(PPS)樹脂を含む繊維強化樹脂複合シートを得た。繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは44.7%であり、繊維強化樹脂複合シートの厚さは50μmであった。次いで、得られた繊維強化樹脂複合シートから、13mm×125mm×50μm(厚さ)の繊維強化樹脂複合シートの試験片を切り出した。 (Example 2-2)
In Example 2-2, a fiber reinforced resin composite sheet containing a polyphenylene sulfide (PPS) resin was obtained by the same method as in Example 1-2 described above. The volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 44.7%, and the thickness of the fiber-reinforced resin composite sheet was 50 μm. Next, a test piece of a fiber-reinforced resin composite sheet having a size of 13 mm × 125 mm × 50 μm (thickness) was cut out from the obtained fiber-reinforced resin composite sheet.
作製した繊維強化樹脂複合シートの試験片の断面を、実施例2-1と同じ方法で観察した。図5に示すように、実施例2-2における繊維強化樹脂複合シートの試験片の断面図は、ポリフェニレンサルファイド(PPS)樹脂からなる難燃性樹脂フィルムの両面に、複数の炭素繊維が積層されている状態、具体的には複数の炭素繊維が各々の炭素繊維の略半分において当該フィルム表面から内部に含浸している状態となっていた。
The cross section of the test piece of the prepared fiber reinforced resin composite sheet was observed by the same method as in Example 2-1. As shown in FIG. 5, in the cross-sectional view of the test piece of the fiber-reinforced resin composite sheet in Example 2-2, a plurality of carbon fibers are laminated on both sides of a flame-retardant resin film made of polyphenylene sulfide (PPS) resin. In this state, specifically, a plurality of carbon fibers were impregnated from the surface of the film to the inside in about half of each carbon fiber.
(比較例2-1)
比較例2-1では、まず、前述の実施例1-1と同じ方法により、難燃剤を添加したポリカーボネート樹脂を含む繊維強化樹脂複合シートを得た。さらに、当該シートを300℃に加熱した鉄板で挟みプレス機を用いて5kgf×60秒で加圧することによって、比較例2-1における難燃剤を添加したポリカーボネート樹脂を含む繊維強化樹脂複合シートを得た。繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは53%であり、繊維強化樹脂複合シートの厚さは38μmであった。次いで、得られた繊維強化樹脂複合シートから、13mm×125mm×38μm(厚さ)の繊維強化樹脂複合シートの試験片を切り出した。 (Comparative Example 2-1)
In Comparative Example 2-1 first, a fiber-reinforced resin composite sheet containing a polycarbonate resin to which a flame retardant was added was obtained by the same method as in Example 1-1 described above. Further, the sheet is sandwiched between iron plates heated to 300 ° C. and pressed by a press machine at 5 kgf × 60 seconds to obtain a fiber reinforced resin composite sheet containing the polycarbonate resin to which the flame retardant added in Comparative Example 2-1 is added. rice field. The volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 53%, and the thickness of the fiber-reinforced resin composite sheet was 38 μm. Next, a test piece of a fiber-reinforced resin composite sheet having a size of 13 mm × 125 mm × 38 μm (thickness) was cut out from the obtained fiber-reinforced resin composite sheet.
比較例2-1では、まず、前述の実施例1-1と同じ方法により、難燃剤を添加したポリカーボネート樹脂を含む繊維強化樹脂複合シートを得た。さらに、当該シートを300℃に加熱した鉄板で挟みプレス機を用いて5kgf×60秒で加圧することによって、比較例2-1における難燃剤を添加したポリカーボネート樹脂を含む繊維強化樹脂複合シートを得た。繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは53%であり、繊維強化樹脂複合シートの厚さは38μmであった。次いで、得られた繊維強化樹脂複合シートから、13mm×125mm×38μm(厚さ)の繊維強化樹脂複合シートの試験片を切り出した。 (Comparative Example 2-1)
In Comparative Example 2-1 first, a fiber-reinforced resin composite sheet containing a polycarbonate resin to which a flame retardant was added was obtained by the same method as in Example 1-1 described above. Further, the sheet is sandwiched between iron plates heated to 300 ° C. and pressed by a press machine at 5 kgf × 60 seconds to obtain a fiber reinforced resin composite sheet containing the polycarbonate resin to which the flame retardant added in Comparative Example 2-1 is added. rice field. The volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 53%, and the thickness of the fiber-reinforced resin composite sheet was 38 μm. Next, a test piece of a fiber-reinforced resin composite sheet having a size of 13 mm × 125 mm × 38 μm (thickness) was cut out from the obtained fiber-reinforced resin composite sheet.
作製した繊維強化樹脂複合シートの試験片の断面を、実施例2-1と同じ方法で観察した。図5に示すように、比較例2-1における繊維強化樹脂複合シートの試験片の断面図は、難燃剤を添加したポリカーボネート樹脂を含む難燃性樹脂フィルム内部に、複数の炭素繊維が完全に含浸している状態となっていた。
The cross section of the test piece of the prepared fiber reinforced resin composite sheet was observed by the same method as in Example 2-1. As shown in FIG. 5, the cross-sectional view of the test piece of the fiber-reinforced resin composite sheet in Comparative Example 2-1 shows that a plurality of carbon fibers are completely contained inside a flame-retardant resin film containing a polycarbonate resin to which a flame retardant is added. It was in a state of being impregnated.
(比較例2-2)
比較例2-2では、まず、前述の実施例1-2と同じ方法により、ポリフェニレンサルファイド(PPS)樹脂を含む繊維強化樹脂複合シートを得た。さらに、当該シートを330℃に加熱した鉄板で挟みプレス機を用いて5kgf×60秒で加圧することによって、比較例2-2におけるポリフェニレンサルファイド(PPS)樹脂を含む繊維強化樹脂複合シートを得た。繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは44.7%であり、繊維強化樹脂複合シートの厚さは42μmであった。次いで、得られた繊維強化樹脂複合シートから、13mm×125mm×42μm(厚さ)の繊維強化樹脂複合シートの試験片を切り出した。 (Comparative Example 2-2)
In Comparative Example 2-2, first, a fiber reinforced resin composite sheet containing a polyphenylene sulfide (PPS) resin was obtained by the same method as in Example 1-2 described above. Further, the sheet was sandwiched between iron plates heated to 330 ° C. and pressed at 5 kgf × 60 seconds using a press to obtain a fiber reinforced resin composite sheet containing the polyphenylene sulfide (PPS) resin in Comparative Example 2-2. .. The volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 44.7%, and the thickness of the fiber-reinforced resin composite sheet was 42 μm. Next, a test piece of a fiber-reinforced resin composite sheet having a size of 13 mm × 125 mm × 42 μm (thickness) was cut out from the obtained fiber-reinforced resin composite sheet.
比較例2-2では、まず、前述の実施例1-2と同じ方法により、ポリフェニレンサルファイド(PPS)樹脂を含む繊維強化樹脂複合シートを得た。さらに、当該シートを330℃に加熱した鉄板で挟みプレス機を用いて5kgf×60秒で加圧することによって、比較例2-2におけるポリフェニレンサルファイド(PPS)樹脂を含む繊維強化樹脂複合シートを得た。繊維強化樹脂複合シートに対する炭素繊維の体積含有率Vfは44.7%であり、繊維強化樹脂複合シートの厚さは42μmであった。次いで、得られた繊維強化樹脂複合シートから、13mm×125mm×42μm(厚さ)の繊維強化樹脂複合シートの試験片を切り出した。 (Comparative Example 2-2)
In Comparative Example 2-2, first, a fiber reinforced resin composite sheet containing a polyphenylene sulfide (PPS) resin was obtained by the same method as in Example 1-2 described above. Further, the sheet was sandwiched between iron plates heated to 330 ° C. and pressed at 5 kgf × 60 seconds using a press to obtain a fiber reinforced resin composite sheet containing the polyphenylene sulfide (PPS) resin in Comparative Example 2-2. .. The volume content Vf of the carbon fibers with respect to the fiber-reinforced resin composite sheet was 44.7%, and the thickness of the fiber-reinforced resin composite sheet was 42 μm. Next, a test piece of a fiber-reinforced resin composite sheet having a size of 13 mm × 125 mm × 42 μm (thickness) was cut out from the obtained fiber-reinforced resin composite sheet.
作製した繊維強化樹脂複合シートの試験片の断面を、実施例2-1と同じ方法で観察した。図5に示すように、比較例2-2における繊維強化樹脂複合シートの試験片の断面図は、ポリフェニレンサルファイド(PPS)樹脂からなる難燃性樹脂フィルム内部に、複数の炭素繊維が完全に含浸している状態となっていた。
The cross section of the test piece of the prepared fiber reinforced resin composite sheet was observed by the same method as in Example 2-1. As shown in FIG. 5, in the cross-sectional view of the test piece of the fiber reinforced resin composite sheet in Comparative Example 2-2, a plurality of carbon fibers are completely impregnated in the flame-retardant resin film made of polyphenylene sulfide (PPS) resin. It was in a state of being.
<繊維強化樹脂複合シートの難燃性追加試験>
実施例2-1および実施例2-2ならびに比較例2-1および比較例2-2で作製した繊維強化樹脂複合シートの試験片について、上述した方法とは別の方法で難燃性を判定した。試験方法として、まず、作製した繊維強化樹脂複合シートの試験片をクランプで吊るした。次に、準備したガスバーナーの炎が青色になるように調整した。その後、ガスバーナーの炎の先端から約1cm離れた場所にクランプで吊るされた繊維強化樹脂複合シートの試験片が位置するようにガスバーナーを動かした。このようにして、クランプで吊るされた繊維強化樹脂複合シートの試験片の下部から炎を当てて、その着火初期、具体的には着火1秒後の様子を観察した。 <Additional flame retardancy test of fiber reinforced resin composite sheet>
The flame retardancy of the test pieces of the fiber-reinforced resin composite sheet produced in Example 2-1 and Example 2-2 and Comparative Example 2-1 and Comparative Example 2-2 was determined by a method different from the above-mentioned method. bottom. As a test method, first, a test piece of the produced fiber-reinforced resin composite sheet was hung with a clamp. Next, the flame of the prepared gas burner was adjusted to be blue. Then, the gas burner was moved so that the test piece of the fiber reinforced resin composite sheet suspended by the clamp was positioned at a place about 1 cm away from the tip of the flame of the gas burner. In this way, a flame was applied from the lower part of the test piece of the fiber reinforced resin composite sheet suspended by the clamp, and the state at the initial stage of ignition, specifically, 1 second after ignition was observed.
実施例2-1および実施例2-2ならびに比較例2-1および比較例2-2で作製した繊維強化樹脂複合シートの試験片について、上述した方法とは別の方法で難燃性を判定した。試験方法として、まず、作製した繊維強化樹脂複合シートの試験片をクランプで吊るした。次に、準備したガスバーナーの炎が青色になるように調整した。その後、ガスバーナーの炎の先端から約1cm離れた場所にクランプで吊るされた繊維強化樹脂複合シートの試験片が位置するようにガスバーナーを動かした。このようにして、クランプで吊るされた繊維強化樹脂複合シートの試験片の下部から炎を当てて、その着火初期、具体的には着火1秒後の様子を観察した。 <Additional flame retardancy test of fiber reinforced resin composite sheet>
The flame retardancy of the test pieces of the fiber-reinforced resin composite sheet produced in Example 2-1 and Example 2-2 and Comparative Example 2-1 and Comparative Example 2-2 was determined by a method different from the above-mentioned method. bottom. As a test method, first, a test piece of the produced fiber-reinforced resin composite sheet was hung with a clamp. Next, the flame of the prepared gas burner was adjusted to be blue. Then, the gas burner was moved so that the test piece of the fiber reinforced resin composite sheet suspended by the clamp was positioned at a place about 1 cm away from the tip of the flame of the gas burner. In this way, a flame was applied from the lower part of the test piece of the fiber reinforced resin composite sheet suspended by the clamp, and the state at the initial stage of ignition, specifically, 1 second after ignition was observed.
図6は、各繊維強化樹脂複合シートの試験片の難燃性追加試験の結果を示す画像である。具体的には、図6は、それぞれの繊維強化樹脂複合シートの試験片における着火から1秒後の画像である。図6から分かる通り、炭素繊維が各々の炭素繊維の略半分において当該フィルム表面から内部に含浸している状態となっていた実施例2-1および実施例2-2の試験片は、樹脂フィルム内部に複数の炭素繊維が完全に含浸している状態となっていた比較例2-1および比較例2-2の試験片と比べて、炎が広がり難いという傾向が観察された。これは、実施例2-1および実施例2-2の試験片は、難燃性樹脂フィルム上に複数の不燃性の炭素繊維が完全に含浸されずに露出した状態で積層されており、炎の広がりが抑制されたためと考えられる。このように、本実施形態における繊維強化樹脂複合シートは、樹脂フィルムが難燃特性を有しているだけでなく、当該難燃性樹脂フィルム上に複数の強化繊維が積層されている構成を有するため、非常に優れた難燃性を有すると考えられる。
FIG. 6 is an image showing the result of a flame retardant additional test of a test piece of each fiber reinforced resin composite sheet. Specifically, FIG. 6 is an image of each fiber-reinforced resin composite sheet test piece 1 second after ignition. As can be seen from FIG. 6, the test pieces of Example 2-1 and Example 2-2 in which carbon fibers were impregnated from the surface of the film to the inside in approximately half of each carbon fiber were resin films. It was observed that the flame was less likely to spread as compared with the test pieces of Comparative Example 2-1 and Comparative Example 2-2 in which a plurality of carbon fibers were completely impregnated inside. This is because the test pieces of Example 2-1 and Example 2-2 are laminated on a flame-retardant resin film in an exposed state without being completely impregnated with a plurality of non-flammable carbon fibers. It is probable that the spread of the carbon fiber was suppressed. As described above, the fiber-reinforced resin composite sheet in the present embodiment has a structure in which not only the resin film has flame-retardant properties but also a plurality of reinforcing fibers are laminated on the flame-retardant resin film. Therefore, it is considered to have very excellent flame retardancy.
この出願は、2020年4月21日に出願された日本国特許出願特願2020-075392号を基礎とするものであり、その内容は、本願に含まれるものである。
This application is based on Japanese Patent Application No. 2020-075392 filed on April 21, 2020, the contents of which are included in the present application.
本発明を表現するために、前述において具体例等を参照しながら実施形態および実施例を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態および実施例を変更および/または改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
In order to express the present invention, the present invention has been appropriately and sufficiently described through the embodiments and examples with reference to specific examples and the like, but those skilled in the art can modify and / or modify the above-described embodiments and examples. Or it should be recognized that improvements can be made easily. Therefore, unless the modified or improved form implemented by a person skilled in the art is at a level that deviates from the scope of rights of the claims stated in the claims, the modified form or the improved form is the scope of rights of the claims. It is interpreted as being comprehensively included in.
本発明は、繊維強化樹脂複合シートに関する技術分野において、シートの難燃性、成形加工性および高温条件下における強度を改善することができ、スポーツやレジャー用部材、自動車や航空機等の産業用部材、電気機器または電子機器の筐体や部品等の材料として幅広く用いることができる。
INDUSTRIAL APPLICABILITY The present invention can improve the flame retardancy, moldability and strength of a sheet under high temperature conditions in the technical field related to a fiber reinforced resin composite sheet, and is an industrial member such as a sports or leisure member, an automobile or an aircraft. , Can be widely used as a material for housings and parts of electrical equipment or electronic equipment.
INDUSTRIAL APPLICABILITY The present invention can improve the flame retardancy, moldability and strength of a sheet under high temperature conditions in the technical field related to a fiber reinforced resin composite sheet, and is an industrial member such as a sports or leisure member, an automobile or an aircraft. , Can be widely used as a material for housings and parts of electrical equipment or electronic equipment.
Claims (9)
- ガラス転移温度Tgが90℃以上である熱可塑性樹脂組成物からなる難燃性樹脂フィルムと、前記難燃性樹脂フィルムに強化繊維束から開繊した複数の強化繊維が同一方向に配向した状態で積層された複数の強化繊維とを含む繊維強化樹脂複合シートであり、
ASTM D4804規格に準拠するUL94VTM燃焼試験において判定した前記難燃性樹脂フィルムの燃焼性分類がVTM-0であり、
前記強化繊維の体積含有率Vfは、30%以上65%以下であり、
前記繊維強化樹脂複合シートの厚さは、20μm以上100μm以下であり、
ASTM D5048規格に準拠するUL94-5V燃焼試験において判定した前記繊維強化樹脂複合シートの燃焼性分類が5V-Aまたは5V-Bである、繊維強化樹脂複合シート。 A flame-retardant resin film made of a thermoplastic resin composition having a glass transition temperature Tg of 90 ° C. or higher, and a plurality of reinforcing fibers opened from a reinforcing fiber bundle are oriented in the same direction on the flame-retardant resin film. A fiber-reinforced resin composite sheet containing a plurality of laminated reinforcing fibers.
The flammability classification of the flame-retardant resin film determined in the UL94 VTM combustion test conforming to the ASTM D4804 standard is VTM-0.
The volume content Vf of the reinforcing fiber is 30% or more and 65% or less.
The thickness of the fiber reinforced resin composite sheet is 20 μm or more and 100 μm or less.
A fiber-reinforced resin composite sheet in which the flammability classification of the fiber-reinforced resin composite sheet determined in the UL94-5V combustion test conforming to the ASTM D5048 standard is 5VA or 5V-B. - 前記強化繊維は、前記難燃性樹脂フィルムの両方の面に積層されている、請求項1に記載の繊維強化樹脂複合シート。 The fiber-reinforced resin composite sheet according to claim 1, wherein the reinforcing fibers are laminated on both surfaces of the flame-retardant resin film.
- 前記熱可塑性樹脂組成物は、ポリカーボネート樹脂と、ハロゲン系難燃剤、リン系難燃剤、シリコーン系難燃剤および無機系難燃剤から選択される1つ以上の難燃剤とを含む、請求項1または2に記載の繊維強化樹脂複合シート。 The thermoplastic resin composition includes a polycarbonate resin and one or more flame retardants selected from a halogen-based flame retardant, a phosphorus-based flame retardant, a silicone-based flame retardant, and an inorganic flame retardant, according to claim 1 or 2. The fiber-reinforced resin composite sheet described in.
- 前記熱可塑性樹脂組成物は、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂および液晶ポリマー樹脂から選択される1つ以上を含む、請求項1または2に記載の繊維強化樹脂複合シート。 The thermoplastic resin composition comprises one or more selected from a polyphenylene sulfide resin, a polyether ether ketone resin, a polyether ketone ketone resin, a polyetherimide resin, a polyether sulfone resin, and a liquid crystal polymer resin. Alternatively, the fiber-reinforced resin composite sheet according to 2.
- 前記強化繊維は、炭素繊維である、請求項1~4のいずれか1項に記載の繊維強化樹脂複合シート。 The fiber-reinforced resin composite sheet according to any one of claims 1 to 4, wherein the reinforcing fiber is a carbon fiber.
- 前記難燃性樹脂フィルムの厚さは、5μm以上50μm以下である、請求項1~5のいずれか1項に記載の繊維強化樹脂複合シート。 The fiber-reinforced resin composite sheet according to any one of claims 1 to 5, wherein the flame-retardant resin film has a thickness of 5 μm or more and 50 μm or less.
- 請求項1~6のいずれか1項に記載の繊維強化樹脂複合シートが、厚さ方向に複数積層された繊維強化複合材であり、
前記繊維強化複合材は、複数の前記繊維強化樹脂複合シートの前記強化繊維の繊維方向が二次元方向に角度差を有する状態で積層されている、繊維強化樹脂複合材。 The fiber-reinforced resin composite sheet according to any one of claims 1 to 6 is a fiber-reinforced composite material in which a plurality of fiber-reinforced resin composite sheets are laminated in the thickness direction.
The fiber-reinforced composite material is a fiber-reinforced resin composite material in which a plurality of fiber-reinforced resin composite sheets are laminated in a state in which the fiber directions of the reinforcing fibers have an angle difference in a two-dimensional direction. - 請求項1~6のいずれか1項に記載の繊維強化樹脂複合シートが、複数のチョップ材の形状で、厚さ方向に積層された繊維強化複合材であり、
前記チョップ材は、前記繊維強化樹脂複合シートが短辺の長さが2mm以上50mm以下で、かつ長辺の長さが2mm以上80mm以下の矩形を呈するように形成されており、
前記繊維強化複合材は、複数の前記チョップ材の前記強化繊維の繊維方向が二次元的にランダムになる状態で積層されている、繊維強化樹脂複合材。 The fiber-reinforced resin composite sheet according to any one of claims 1 to 6 is a fiber-reinforced composite material laminated in the thickness direction in the shape of a plurality of chop materials.
The chop material is formed so that the fiber-reinforced resin composite sheet exhibits a rectangular shape having a short side length of 2 mm or more and 50 mm or less and a long side length of 2 mm or more and 80 mm or less.
The fiber-reinforced composite material is a fiber-reinforced resin composite material in which a plurality of chop materials are laminated in a state in which the fiber directions of the reinforcing fibers are two-dimensionally random. - 請求項7または8に記載の繊維強化樹脂複合材を備える、樹脂成形品。 A resin molded product comprising the fiber-reinforced resin composite material according to claim 7 or 8.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180026677.0A CN115397641A (en) | 2020-04-21 | 2021-03-19 | Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and resin molded article provided with same |
JP2022516897A JPWO2021215162A1 (en) | 2020-04-21 | 2021-03-19 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-075392 | 2020-04-21 | ||
JP2020075392 | 2020-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021215162A1 true WO2021215162A1 (en) | 2021-10-28 |
Family
ID=78269387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/011452 WO2021215162A1 (en) | 2020-04-21 | 2021-03-19 | Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2021215162A1 (en) |
CN (1) | CN115397641A (en) |
WO (1) | WO2021215162A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022145155A1 (en) * | 2020-12-28 | 2022-07-07 | フクビ化学工業株式会社 | Fiber-reinforced resin sheet, fiber-reinforced composite material, and formed product |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007253573A (en) * | 2006-03-25 | 2007-10-04 | Teijin Techno Products Ltd | Hybrid composite material excellent in surface smoothness, and its molding method |
JP2011189747A (en) * | 2011-05-10 | 2011-09-29 | Toray Ind Inc | Method of manufacturing press molded article |
JP2014208457A (en) * | 2013-03-28 | 2014-11-06 | 福井県 | Laminated molded body |
WO2015152325A1 (en) * | 2014-04-02 | 2015-10-08 | 株式会社Ihi | Pre-preg sheet production device |
JP2016027956A (en) * | 2014-07-08 | 2016-02-25 | 福井県 | Pseudo isotropic reinforcing sheet material and manufacturing method thereof |
WO2016186100A1 (en) * | 2015-05-18 | 2016-11-24 | 三菱瓦斯化学株式会社 | Polycarbonate resin composition, and prepreg made from polycarbonate resin |
WO2019163633A1 (en) * | 2018-02-23 | 2019-08-29 | フクビ化学工業株式会社 | Cfrp sheet, frp-metal composite, and method for manufacturing same |
-
2021
- 2021-03-19 WO PCT/JP2021/011452 patent/WO2021215162A1/en active Application Filing
- 2021-03-19 CN CN202180026677.0A patent/CN115397641A/en active Pending
- 2021-03-19 JP JP2022516897A patent/JPWO2021215162A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007253573A (en) * | 2006-03-25 | 2007-10-04 | Teijin Techno Products Ltd | Hybrid composite material excellent in surface smoothness, and its molding method |
JP2011189747A (en) * | 2011-05-10 | 2011-09-29 | Toray Ind Inc | Method of manufacturing press molded article |
JP2014208457A (en) * | 2013-03-28 | 2014-11-06 | 福井県 | Laminated molded body |
WO2015152325A1 (en) * | 2014-04-02 | 2015-10-08 | 株式会社Ihi | Pre-preg sheet production device |
JP2016027956A (en) * | 2014-07-08 | 2016-02-25 | 福井県 | Pseudo isotropic reinforcing sheet material and manufacturing method thereof |
WO2016186100A1 (en) * | 2015-05-18 | 2016-11-24 | 三菱瓦斯化学株式会社 | Polycarbonate resin composition, and prepreg made from polycarbonate resin |
WO2019163633A1 (en) * | 2018-02-23 | 2019-08-29 | フクビ化学工業株式会社 | Cfrp sheet, frp-metal composite, and method for manufacturing same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022145155A1 (en) * | 2020-12-28 | 2022-07-07 | フクビ化学工業株式会社 | Fiber-reinforced resin sheet, fiber-reinforced composite material, and formed product |
Also Published As
Publication number | Publication date |
---|---|
CN115397641A (en) | 2022-11-25 |
JPWO2021215162A1 (en) | 2021-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5107191B2 (en) | Graphite composite film | |
JP6402716B2 (en) | Polyimide resin | |
JP6716551B2 (en) | Polycarbonate resin composition and polycarbonate resin prepreg | |
CN105793030B (en) | Fiber-reinforced resin layer stack | |
JP5703542B2 (en) | Carbon fiber reinforced resin sheet and roll wound body thereof | |
KR102784922B1 (en) | Discontinuous fiber reinforced composites | |
WO2018056433A1 (en) | Electronic device housing and method for producing same | |
KR102784929B1 (en) | Discontinuous fiber reinforced composites | |
JP2011006578A (en) | Fiber-resin composite sheet and frp molded product | |
JP2012192645A (en) | Method for manufacturing molded article | |
WO2021215162A1 (en) | Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same | |
JP6881429B2 (en) | Laminated body and its manufacturing method, and secondary sheet and secondary sheet manufacturing method | |
JP2003200534A (en) | Fluororesin laminate and method for manufacture thereof | |
WO2021106562A1 (en) | Thermal conductor and manufacturing method thereof | |
JP5323974B2 (en) | Graphite composite film and method for producing the same | |
WO2021106563A1 (en) | Sandwich structure and method for manufacturing same | |
JP6988594B2 (en) | Resin compositions, films and composites | |
US12270611B2 (en) | Sandwich structure and method for manufacturing same | |
JP6610326B2 (en) | the film | |
WO2021095656A1 (en) | Powder composition, film, and method for producing film | |
WO2023095786A1 (en) | Prepreg, preform, and fiber-reinforced resin molded article | |
JP7661700B2 (en) | Sandwich structure and method of manufacturing same | |
JP7661699B2 (en) | Thermal conductor and method for producing same | |
JP2024097657A (en) | Fiber reinforced resin composite sheet and method for producing fiber reinforced resin composite sheet | |
CN118076475A (en) | Porous body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21792402 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022516897 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21792402 Country of ref document: EP Kind code of ref document: A1 |