WO2021210539A1 - 発酵乳及びその製造方法、並びに脱リン酸乳 - Google Patents
発酵乳及びその製造方法、並びに脱リン酸乳 Download PDFInfo
- Publication number
- WO2021210539A1 WO2021210539A1 PCT/JP2021/015188 JP2021015188W WO2021210539A1 WO 2021210539 A1 WO2021210539 A1 WO 2021210539A1 JP 2021015188 W JP2021015188 W JP 2021015188W WO 2021210539 A1 WO2021210539 A1 WO 2021210539A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- milk
- fermented milk
- protein
- protein phosphatase
- casein
- Prior art date
Links
- 235000015140 cultured milk Nutrition 0.000 title claims abstract description 136
- 239000008267 milk Substances 0.000 title claims abstract description 110
- 210000004080 milk Anatomy 0.000 title claims abstract description 101
- 235000013336 milk Nutrition 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical class NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 claims abstract description 91
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 104
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 claims description 69
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 claims description 69
- 235000018102 proteins Nutrition 0.000 claims description 54
- 108090000623 proteins and genes Proteins 0.000 claims description 54
- 102000004169 proteins and genes Human genes 0.000 claims description 54
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 52
- 230000000694 effects Effects 0.000 claims description 41
- 235000020185 raw untreated milk Nutrition 0.000 claims description 37
- 102000004190 Enzymes Human genes 0.000 claims description 30
- 108090000790 Enzymes Proteins 0.000 claims description 30
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 28
- 150000001413 amino acids Chemical class 0.000 claims description 28
- 241000223259 Trichoderma Species 0.000 claims description 21
- 238000002360 preparation method Methods 0.000 claims description 14
- 235000013618 yogurt Nutrition 0.000 claims description 11
- 244000005700 microbiome Species 0.000 claims description 10
- 230000002255 enzymatic effect Effects 0.000 claims description 5
- 235000013365 dairy product Nutrition 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 55
- 108010076119 Caseins Proteins 0.000 description 51
- 238000005259 measurement Methods 0.000 description 51
- 102000011632 Caseins Human genes 0.000 description 50
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 44
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 44
- 238000000855 fermentation Methods 0.000 description 44
- 238000000926 separation method Methods 0.000 description 41
- 235000021240 caseins Nutrition 0.000 description 40
- 230000004151 fermentation Effects 0.000 description 40
- 239000005018 casein Substances 0.000 description 39
- 229920002444 Exopolysaccharide Polymers 0.000 description 28
- 229940088598 enzyme Drugs 0.000 description 26
- 238000007792 addition Methods 0.000 description 24
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 22
- 239000000203 mixture Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 20
- 239000000523 sample Substances 0.000 description 20
- 239000002994 raw material Substances 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- 239000007858 starting material Substances 0.000 description 17
- 241000894006 Bacteria Species 0.000 description 16
- 239000000872 buffer Substances 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 235000014655 lactic acid Nutrition 0.000 description 11
- 235000020183 skimmed milk Nutrition 0.000 description 11
- 239000004310 lactic acid Substances 0.000 description 10
- 238000009835 boiling Methods 0.000 description 9
- 150000004676 glycans Chemical class 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 229920001282 polysaccharide Polymers 0.000 description 9
- 239000005017 polysaccharide Substances 0.000 description 9
- 239000006228 supernatant Substances 0.000 description 9
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 7
- 238000001962 electrophoresis Methods 0.000 description 7
- -1 or frozen" Substances 0.000 description 7
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 241000283690 Bos taurus Species 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 241000990911 Trichoderma virens Gv29-8 Species 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- FHUOTRMCFQTSOA-UHFFFAOYSA-M potassium;acetic acid;acetate Chemical compound [K+].CC(O)=O.CC([O-])=O FHUOTRMCFQTSOA-UHFFFAOYSA-M 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 229910001424 calcium ion Inorganic materials 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 235000020200 pasteurised milk Nutrition 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 239000005862 Whey Substances 0.000 description 4
- 102000007544 Whey Proteins Human genes 0.000 description 4
- 108010046377 Whey Proteins Proteins 0.000 description 4
- 230000030609 dephosphorylation Effects 0.000 description 4
- 238000006209 dephosphorylation reaction Methods 0.000 description 4
- 235000003599 food sweetener Nutrition 0.000 description 4
- 230000000415 inactivating effect Effects 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 150000002772 monosaccharides Chemical class 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 239000003765 sweetening agent Substances 0.000 description 4
- 235000021247 β-casein Nutrition 0.000 description 4
- 235000021246 κ-casein Nutrition 0.000 description 4
- 241000194036 Lactococcus Species 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000008351 acetate buffer Substances 0.000 description 3
- 239000011609 ammonium molybdate Substances 0.000 description 3
- 235000018660 ammonium molybdate Nutrition 0.000 description 3
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 3
- 229940010552 ammonium molybdate Drugs 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 235000020191 long-life milk Nutrition 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 3
- 235000019796 monopotassium phosphate Nutrition 0.000 description 3
- 239000001814 pectin Substances 0.000 description 3
- 235000010987 pectin Nutrition 0.000 description 3
- 229920001277 pectin Polymers 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 3
- 230000035790 physiological processes and functions Effects 0.000 description 3
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 3
- 235000010378 sodium ascorbate Nutrition 0.000 description 3
- 229960005055 sodium ascorbate Drugs 0.000 description 3
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 3
- CSRCBLMBBOJYEX-UHFFFAOYSA-M sodium;2-morpholin-4-ylethanesulfonic acid;hydroxide Chemical compound [OH-].[Na+].OS(=O)(=O)CCN1CCOCC1 CSRCBLMBBOJYEX-UHFFFAOYSA-M 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 235000021249 α-casein Nutrition 0.000 description 3
- 241000186000 Bifidobacterium Species 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical class C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoryl-L-serine Natural products OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Chemical class 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 235000014121 butter Nutrition 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229950006137 dexfosfoserine Drugs 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 235000013861 fat-free Nutrition 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 235000015203 fruit juice Nutrition 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 235000020251 goat milk Nutrition 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000001965 potato dextrose agar Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- 239000000230 xanthan gum Substances 0.000 description 2
- 229940082509 xanthan gum Drugs 0.000 description 2
- 235000010493 xanthan gum Nutrition 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 108050000244 Alpha-s1 casein Proteins 0.000 description 1
- 102000009366 Alpha-s1 casein Human genes 0.000 description 1
- 108050001786 Alpha-s2 casein Proteins 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000186016 Bifidobacterium bifidum Species 0.000 description 1
- 241000186012 Bifidobacterium breve Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical class [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102000012045 Casein, beta Human genes 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical class [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical class [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical class [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 244000057717 Streptococcus lactis Species 0.000 description 1
- 235000014897 Streptococcus lactis Nutrition 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108060008539 Transglutaminase Proteins 0.000 description 1
- 241001149558 Trichoderma virens Species 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940040526 anhydrous sodium acetate Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940002008 bifidobacterium bifidum Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 235000015155 buttermilk Nutrition 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229940021722 caseins Drugs 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000010941 cobalt Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical class [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LFQRKUIOSYPVFY-UHFFFAOYSA-L dipotassium diacetate Chemical compound [K+].[K+].CC([O-])=O.CC([O-])=O LFQRKUIOSYPVFY-UHFFFAOYSA-L 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 235000020604 functional milk Nutrition 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 235000015243 ice cream Nutrition 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 235000020121 low-fat milk Nutrition 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 229910052748 manganese Chemical class 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- OQUKIQWCVTZJAF-UHFFFAOYSA-N phenol;sulfuric acid Chemical compound OS(O)(=O)=O.OC1=CC=CC=C1 OQUKIQWCVTZJAF-UHFFFAOYSA-N 0.000 description 1
- 108091005981 phosphorylated proteins Proteins 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000011591 potassium Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000013587 production medium Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 235000020254 sheep milk Nutrition 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 102000003601 transglutaminase Human genes 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 235000008939 whole milk Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/12—Fermented milk preparations; Treatment using microorganisms or enzymes
- A23C9/1203—Addition of, or treatment with, enzymes or microorganisms other than lactobacteriaceae
- A23C9/1216—Other enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/12—Fermented milk preparations; Treatment using microorganisms or enzymes
- A23C9/127—Fermented milk preparations; Treatment using microorganisms or enzymes using microorganisms of the genus lactobacteriaceae and other microorganisms or enzymes, e.g. kefir, koumiss
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/12—Fermented milk preparations; Treatment using microorganisms or enzymes
- A23C9/13—Fermented milk preparations; Treatment using microorganisms or enzymes using additives
- A23C9/1307—Milk products or derivatives; Fruit or vegetable juices; Sugars, sugar alcohols, sweeteners; Oligosaccharides; Organic acids or salts thereof or acidifying agents; Flavours, dyes or pigments; Inert or aerosol gases; Carbonation methods
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
- C12Y301/03002—Acid phosphatase (3.1.3.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/11—Protein-serine/threonine kinases (2.7.11)
- C12Y207/11001—Non-specific serine/threonine protein kinase (2.7.11.1), i.e. casein kinase or checkpoint kinase
Definitions
- the present invention relates to fermented milk, a method for producing the same, and dephosphorylated milk.
- Fermented milk is produced by fermenting raw milk with microorganisms such as lactic acid bacteria.
- microorganisms such as lactic acid bacteria.
- EPS extracellular polysaccharides
- the major protein in milk is casein, and when the pH drops due to fermentation, casein micelles aggregate to form a gel.
- Casein is mainly classified into four types, ⁇ S1 , ⁇ S2 , ⁇ , and ⁇ , and has phosphoric acid bound to 8, 11, 5, and 1 serine residues, respectively. It is known that the phosphoric acid modification in casein is involved in the hydrophobicity of the casein micelle surface and the hydrophobic core.
- An object of the present invention is to provide fermented milk of stable quality, a method for producing the same, and dephosphorylated milk.
- the present inventor focused on casein phosphoserine and studied diligently. As a result, dephosphorylated casein in which phosphoric acid was desorbed from the serine residue of casein was involved in the physical properties of fermented milk and contained a predetermined amount of the dephosphorylated casein. It was found that the fermented milk had suppressed water separation, increased viscosity and breaking stress, and increased production of extracellular polysaccharide (EPS). Further, by fermenting the raw milk in the presence of protein phosphatase or fermenting the raw milk obtained by enzymatically treating with protein phosphatase, the effects of suppressing water separation of the fermented milk and increasing the viscosity and breaking stress are recognized. In addition, they have found that the production of extracellular polysaccharide (EPS) is increased, and completed the present invention.
- EPS extracellular polysaccharide
- the present invention provides the following [1] to [6].
- the present invention also provides the following [7] to [13].
- a method for producing fermented milk which comprises any of the following steps.
- Protein phosphatase is a protein phosphatase derived from a microorganism belonging to the genus Trichoderma.
- a protein having protein phosphatase activity according to any one of the following (i) to (iii).
- Protein iii) A protein consisting of an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 2 and having protein phosphatase activity.
- the fermented milk of the present invention has a low water separation, a high viscosity and a firm structure. In addition, it contains a large amount of extracellular polysaccharide (EPS) and has excellent physiological functions. Further, according to the method for producing fermented milk of the present invention, it is possible to provide fermented milk having less water separation, a highly viscous and firm structure, and containing a large amount of extracellular polysaccharide (EPS). In addition, the dephosphorylated milk of the present invention changes the mouthfeel by increasing the hydrophobicity of the casein molecule. The same effect can be obtained in dairy products using dephosphorylated milk.
- fermented milk means fermented milk and lactic acid bacteria beverages defined in the Ordinance of the Ministry of Milk, etc. (Ministry Ordinance on Ingredient Standards of Milk and Milk Products, Ordinance No. 52 of the Ministry of Health and Welfare, 1951). Fermented milk is "milk or milk containing non-fat milk solids equal to or higher than this, fermented with lactic acid bacteria or yeast to make it paste-like or liquid, or frozen", and lactic acid bacteria beverages are "milk, etc.” Beverages (excluding fermented milk) that are processed or used as the main ingredient after being fermented with lactic acid bacteria or yeast.
- Hard yogurt and soft yogurt are classified as fermented milk classified as “paste-like", yogurt (drink yogurt) as fermented milk classified as “liquefied”, and “frozen”. Frozen yogurt can be mentioned as fermented milk.
- the fermented milk of the present invention is preferably hard yogurt or soft yogurt from the viewpoint that the effects of the present invention can be easily enjoyed.
- the fermented milk of the present invention contains 0.8 g / 100 g or more of dephosphorylated casein.
- Dephosphorylated casein is produced by dephosphorylation of casein serine phosphate in milk.
- the content of dephosphorylated casein in fermented milk is preferably 0.9 g / 100 g or more from the viewpoint of the effect of suppressing water separation of fermented milk, the effect of increasing viscosity and breaking stress, and the effect of increasing EPS production. , 1.0 g / 100 g or more, more preferably 1.5 g / 100 g or less, more preferably 1.4 g / 100 g or less, and 1.3 g / 100 g or less. Is more preferable.
- the ratio of dephosphorylated casein in casein is preferably 25 to 45%, more preferably 26 to 43%.
- the analysis of casein is carried out by subjecting each casein ( ⁇ -casein, ⁇ -casein and ⁇ casein) at known concentrations and a sample to polyacrylamide gel electrophoresis (SDS-PAGE) and coomassie brilliant blue staining (CBB staining). After that, a calibration line can be created by quantifying the band intensity using image analysis software, and the amount of casein in the sample can be calculated. Further, in the present specification, the analysis of dephosphorylated casein shall follow the method described below.
- Dephosphorylated casein can be quantified by electrophoresis. In this method, the amounts of phosphorylated casein and dephosphorylated casein are calculated from the electrophoresis results. This will be described with reference to FIG. The electrophoresis method is as described in Examples described later.
- FIG. 1 is a conceptual representation of an electrophoretogram of bovine milk.
- the phosphorylated casein has three regions of ⁇ -casein 1, ⁇ -casein 2 and ⁇ casein 3, and the amount of phosphorylated casein can be calculated by integrating these regions. Other phosphorylated casein is also present, but it can be ignored because it is in a trace amount.
- the total amount of ⁇ s-1 casein, ⁇ s-2 casein, ⁇ casein and ⁇ casein in the total amount of casein in bovine milk is about 97%.
- Dephosphorylated casein is present adjacent to the band of each casein. Dephosphorylated casein is in a smeared state after electrophoresis due to the varying degrees of dephosphoric acid. Since the concentrations of the phosphorylated casein band and the dephosphorylated casein region are different, they can be visually confirmed.
- the amount of dephosphorylated casein can be calculated by integrating the dephosphorylated casein regions 11, 21, and 31. The end of the dephosphorylated casein region 31 may be the end after visually confirming the boundary between the stained region and the unstained region.
- the order of the amount of phosphorylated casein is ⁇ -casein, ⁇ -casein, and ⁇ -casein.
- the degree of dephosphorylated casein can be measured for milks of different origins by the same method as described above.
- One or more specific caseins may be selected and measured so as to account for 90% or more of the total amount of casein.
- the integration end line B is set at a place where the area of the non-band region is visually 50%. , The area of the band area up to that point may be calculated.
- a graph of the migration pattern may be referred to.
- the integration start line and the integration end line may be set by the above method, and the concentration in the band region existing between them may be quantified.
- the concentration of the dephosphoric acid region can be quantified by the same method as described above.
- the fermented milk of the present invention preferably further contains free phosphoric acid.
- the content of free phosphoric acid in the fermented milk is preferably 15 mM or more, preferably 15 mM to 40 mM, from the viewpoint of the effect of suppressing water separation of the fermented milk, the effect of increasing the viscosity and breaking stress, and the effect of increasing the EPS production amount. It is more preferable that it is within the range.
- raw milk which is a raw material of fermented milk
- the raw milk may be fermented in the presence of protein phosphatase.
- the raw milk may be treated with protein phosphatase, and the dephosphorylated milk after the treatment may be fermented. That is, the method for producing fermented milk of the present invention is It has any of (a) a step of fermenting raw milk in the presence of protein phosphatase (b) a step of fermenting raw milk obtained by enzymatically treating with protein phosphatase.
- the raw material milk may contain casein, and a general milk-derived raw material is used.
- a general milk-derived raw material is used.
- the amount of casein contained in the raw material milk is not particularly limited, but is preferably 0.01 to 10 g / 100 g, more preferably 0.1 to 8 g / 100 g, and even more preferably 1 to 5 g / 100 g.
- the pH of the raw material milk is preferably pH 4.0 to 8.0, more preferably pH 4.7 to 7.5, and even more preferably pH 5.3 to 6.8. The same applies to the pH of the raw material milk to which other components other than the following raw material milk are added.
- the raw material milk may contain other components that can be blended before fermentation and other ingredients that can be blended after fermentation, as long as the effects of the present invention are not impaired.
- the other components include sweeteners (monosaccharides, oligosaccharides, sugar alcohols, synthetic sweeteners, etc.), stabilizers (gelatin, pectin, caraginan, xanthan gum, etc.), fruit juices, fruit meats, fragrances, and the like. ..
- Protein phosphatase is an enzyme that dephosphorylates phosphorylated proteins, and in the present specification, it is sufficient as long as it can desorb casein serine phosphate in raw milk. Protein phosphatase preferably desorbs the serine phosphate of casein in the feedstock during fermentation.
- the optimum (optimal) pH of protein phosphatase is preferably in the range of 4.0 to 7.5, more preferably 4.5 to 7.0, and even more preferably 5.0 to 6.0.
- protein phosphatase is gradually inactivated during the production of fermented milk and is inactivated in fermented milk. Specifically, it acts even under weak acidity of pH 5.0 to 6.0, and is preferably inactivated at pH less than 4.5. Phosphoric acid is gradually desorbed from casein during the fermentation process of the raw milk. It is considered that EPS is easily produced in the process in which free phosphoric acid increases in milk and lactic acid bacteria metabolize free phosphoric acid. It is preferable that the protein phosphatase is inactivated after the fermentation is completed, because it is easy to maintain the quality of the fermented milk in a stable manner.
- the optimum temperature of protein phosphatase is preferably in the range of 1 ° C to 60 ° C, and more preferably in the range of 10 ° C to 55 ° C.
- the protein phosphatase used in the present invention preferably has the above-mentioned optimum pH and temperature.
- the type and origin of the protein phosphatase are not limited, but are preferably derived from Trichoderma, Aspergillus, Sccharomyces, Bacillus, and Streptomyces. It is a phosphatase, more preferably a protein phosphatase derived from Trichoderma virens, and even more preferably a virtual protein derived from Trichoderma virens Gv29-8 (XP_013951069.1 hypothetical protein TRIVIDRAFT_87714).
- the virtual protein (XP_013951069.1 hypothetical protein TRIVIDRAFT_87714) has the following properties, whose protein phosphatase activity has been clarified by the present inventor.
- Metal ion requirement Ca 2+ , Mg 2+ , Mn 2+ , Co of 2.5 to 5.0 mM
- SEQ ID NO: 1 The nucleotide sequence of the DNA encoding the protein phosphatase (XP_013951069.1 hypothetical protein TRIVIDRAFT_87714) derived from trichoderma virence Gv29-8 activated by a divalent metal cation such as 2+ is shown in SEQ ID NO: 1 in the sequence listing.
- protein phosphatase is one in which a gene encoding this is expressed in a host such as Escherichia coli, or one in which the gene is modified and expressed by various gene manipulations and has protein phosphatase activity. May be good.
- the protein phosphatase is preferably any of the following proteins (i) to (iii).
- the number of amino acid deletions, substitutions or additions in the amino acid sequence in which one to several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 consists of the amino acid sequence shown in SEQ ID NO: 2. It is not limited as long as it exhibits an enzymatic activity equivalent to that of protein phosphatase, but 1 to 20 is preferable, 1 to 10 is more preferable, and 1 to 8 is further preferable.
- the sequence identity with the amino acid sequence shown in SEQ ID NO: 2 is 80% or more, preferably 85% or more, more preferably 90% or more, further preferably 95% or more, still more preferably 99% or more. ..
- the identity percentage of such sequences can be calculated using publicly available or commercially available software with an algorithm that compares the reference sequence as a query sequence.
- BLAST, FASTA, GENETYX manufactured by Genetics Co., Ltd.
- GENETYX manufactured by Genetics Co., Ltd.
- the protein phosphatase used in the present invention is useful as an enzyme agent for fermented milk because it stabilizes the quality of fermented milk and enhances its physiological function.
- the protein phosphatase may be present at the time of fermentation of the raw material milk, and the timing of adding the protein phosphatase is not particularly limited.
- the amount of protein phosphatase used in the step (a) may be a concentration capable of eliminating the serine phosphate of casein in the raw material milk. For example, it is preferably 0.1 to 25 U, more preferably 0.5 to 15 U, and even more preferably 1 to 10 U with respect to 1 mL of raw milk.
- 1U is 1/10 of the amount of 1U per 1 mL of 20 mM MES-NaOH buffer containing 10 mM Tris-HCl at pH 6.0 with respect to the substrate solution in which 20 mg of bovine milk casein is dissolved.
- the fermentation method in the step (a) conforms to a general method.
- a fermentation mix prepared by mixing and dissolving raw milk and other raw materials is homogenized, heat-sterilized, cooled, and then a microorganism (starter) and protein phosphatase are added to ferment. After cooling, it may be crushed and homogenized as needed.
- the fermentation temperature may be any temperature as long as it is the temperature at which the microorganism (starter) grows and the enzyme does not inactivate, and can be appropriately set according to the type, but is preferably 20 ° C. to 45 ° C., preferably 30 ° C. to 37 ° C. Is more preferable.
- the fermentation time is, for example, preferably 1 to 48 hours, 2 to 24 hours, more preferably 3 to 10 hours, still more preferably 3 to 6 hours, and particularly preferably 3 to 5 hours.
- the pH of the fermented milk is preferably 4.0 to 5.0.
- the raw milk (dephosphorylated milk) obtained by enzymatically treating with protein phosphatase to be fermented in the step (b) may be obtained by dephosphorylating the casein in the raw milk by protein phosphatase.
- the amount of protein phosphatase used in the step (b) may be a concentration capable of eliminating the serine phosphate of casein in the raw material milk. For example, it is preferably 0.1 to 25 U, more preferably 0.5 to 15 U, and even more preferably 1 to 10 U with respect to 1 part by mass of the raw material milk.
- the enzyme treatment of the raw material milk is preferably carried out at a reaction temperature of 1 ° C. to 60 ° C. for 0.1 hour to 24 hours.
- the reaction temperature is preferably 10 ° C. to 60 ° C., more preferably 30 ° C. to 55 ° C., and even more preferably 40 ° C. to 50 ° C.
- the reaction time is preferably 0.3 hours to 12 hours, more preferably 0.5 hours to 5 hours, and particularly preferably 1 hour to 4 hours.
- the pH of the feedstock may be adjusted prior to enzymatic treatment of the feedstock with protein phosphatase.
- the raw material milk may be fermented without inactivating the enzyme, or may be fermented after the treatment for inactivating the enzyme by heating or the like. It is preferable to ferment the raw milk without inactivating it. Dephosphorylation of casein gradually progresses even during fermentation.
- the heating conditions in the treatment for inactivating the enzyme heating at a high temperature for a short time is preferable, and for example, heating at 60 to 100 ° C. for 1 minute to 30 minutes is preferable.
- the enzyme may be inactivated in the sterilization step of the raw milk.
- the fermentation method in the step (b) is the same as that in the step (a), and is based on a general method. After cooling, microorganisms (starters) are added and fermented. After cooling, it may be crushed and homogenized as needed.
- the fermentation temperature can be appropriately set as in the step (a), but is preferably 20 ° C. to 45 ° C., more preferably 30 ° C. to 37 ° C.
- the fermentation time is, for example, preferably 1 to 48 hours, 2 to 24 hours, more preferably 3 to 10 hours, still more preferably 3 to 6 hours, and particularly preferably 3 to 5 hours.
- the pH of the fermented milk is preferably 4.0 to 5.0.
- fermented milk by the step (a) from the viewpoint of easy formation of uniform curls and excellent handleability and cost.
- casein in the raw milk is dephosphorylated, and dephosphorylated milk containing dephosphorylated casein is obtained.
- Dephosphorylation of casein increases the hydrophobicity of casein molecules, which changes the mouthfeel of milk.
- the content of dephosphorylated casein in the dephosphorylated milk of the present invention is preferably 0.8 g / 100 g or more from the viewpoint of improving the mouthfeel and obtaining fermented milk of stable quality, and is 0.
- the ratio of dephosphorylated casein in casein is preferably 45% to 65%, more preferably 48 to 63%.
- the dephosphoric acid milk preferably further contains free phosphoric acid, and the content of the free phosphoric acid in the dephosphoric acid milk is from the viewpoint of improving the mouthfeel, and stable quality fermented milk is obtained. From the viewpoint, it is preferably in the range of 1 mM to 100 mM, more preferably in the range of 5 mM to 50 mM, further preferably in the range of 10 mM to 40 mM, and preferably in the range of 12 mM to 30 mM. Even more preferable.
- a general starter such as lactic acid bacteria or yeast is used for fermentation of raw milk and fermentation of raw milk (dephosphorylated milk) which is enzymatically treated with protein phosphatase.
- lactic acid bacteria include bacteria of the genus Lactococcus (Lactococcus casei, lactobacillus acidofhilus, etc.), bacteria of the genus Lactococcus (Lactococcus lactis, etc.), bacteria of the genus Leuconostock (Bifidobacterium genus ococcus, etc. Bacteria of the genus Bifidobacterium (Bifidobacterium bifidum, Bifidobacterium breve, etc.) can be mentioned.
- yeast include yeasts of the genus Saccharomyces (Saccharomyces cerevisiae, etc.).
- the number of lactic acid bacteria or yeast contained in the starter (live bacteria) is, for example, 10 5 to 10 13 cfu / mL, preferably 10 6 to 10 12 cfu / mL, more preferably 10 7 to 10 11 cfu / mL, and further. It is preferably 10 8 to 10 10 cfu / mL.
- the amount of the starter used is not particularly limited and can be appropriately set according to the type thereof. For example, it is 0.01 to 10% by mass of raw milk and / or dephosphorylated milk, and 0.1 to 0.1 to 10% by mass is preferable, and 0.5 to 10% by mass is more preferable.
- the fermented milk of the present invention may contain other components that can be blended before fermentation and other components that can be blended after fermentation, as long as the effects of the present invention are not impaired.
- the other components include sweeteners (monosaccharides, oligosaccharides, sugar alcohols, synthetic sweeteners, etc.), stabilizers (gelatin, pectin, caraginan, xanthan gum, etc.), fruit juices, fruit meats, fragrances, and the like.
- the fermented milk of the present invention has low water separation, high viscosity, and firm hardness.
- the viscosity of the fermented milk is preferably 3,000 Pa ⁇ s or more when the fermented milk is treated for 30 seconds by the measuring method described later.
- the upper limit is not particularly limited, but is, for example, 10000 Pa ⁇ s.
- the hardness of the fermented milk is preferably 0.41N or more, more preferably 0.45N or more, and 0. It is more preferably 5N or more.
- the upper limit is not particularly limited, but is, for example, 1.0 N.
- the fermented milk of the present invention contains many extracellular polysaccharides (EPS).
- the amount of EPS in the fermented milk may be 40 ⁇ g or more, 60 ⁇ g or more, 80 ⁇ g or more, 110 ⁇ g or more, 180 ⁇ g or more per 1 g of fermented milk.
- the upper limit is not particularly limited, but is, for example, 300 ⁇ g.
- Trichoderma-Billence Gv29-8-derived protein phosphatase (hereinafter, "PPase") Trichoderma-bilens NBRC6355 strain was inoculated into potato dextrose agar medium (Eiken) and aerobic at 25 ° C. for 3 days. It was cultured. Colonies of producing bacteria grown on potato dextrose agar medium were cut out together with the agar medium into approximately 5 mm squares, 5.0% sucrose, 2.0% TUBERMINE FV (Rocket Japan), 0.3% calcium chloride, 0.
- PPase Trichoderma-Billence Gv29-8-derived protein phosphatase
- the cells were inoculated into a production medium (pH 4.0) composed of 1% magnesium sulfate and 0.001% dipotassium hydrogen phosphate, and cultured with shaking at 27 ° C. and 220 r / min for 4 days.
- a production medium pH 4.0
- Approximately 700 mL of the culture solution was added to Advantech No.
- Solid-liquid separation was performed by suction filtration using 2 filter paper (Advantech) and 3.0% KC-Flock (Nippon Paper Industries), and the obtained filtrate was concentrated to about 1/10 volume by UF (AHP, Asahi Kasei).
- PEG4000 Nacalai Tesque
- the mixture was centrifuged (HIMAC CENTRIFUGE CR20B2, HITACHI) for 20 minutes under the conditions of 8000 r / min and 4 ° C., and the supernatant was discarded.
- the obtained precipitate was dissolved in about 10 mL of 20 mM potassium acetate-potassium acetate buffer (pH 4.8), and the solution was kept warm at 50 ° C. for 1 hour, and then at 14800 r / min at 4 ° C. for 10 minutes. Centrifugation (LEGEND MICRO 21R, Thermo-Fisher Science) was performed, and the supernatant was recovered as a purified protein.
- the purified protein was identified, it was a virtual protein derived from Trichoderma billence Gv29-8 (XP_013951069.1 hypothetical protein TRIVIDRAFT_87714) from the amino acid sequence information. The function of this protein was unknown.
- Protein phosphatase activity was confirmed for the purified protein.
- PPase activity 0.2 g of bovine milk casein (Casein, Bobine Milk, Carbohydrate and Fatty Acid Free, manufactured by CALBIOCHEM) was weighed in a 20 mL beaker, and 2.0 mL of 0.1 M Tris-HCl buffer (pH 9. 0) and a small amount of distilled water were added and dissolved using a magnetic stirrer. Subsequently, 2.0 mL of 0.2 M MES-NaOH buffer (pH 6.0) and about 10 mL of distilled water were added, adjusted to pH 6.0 with 1.0-defined hydrochloric acid, and then set to 20 mL.
- bovine milk casein Casein, Bobine Milk, Carbohydrate and Fatty Acid Free, manufactured by CALBIOCHEM
- PPase activity at room temperature (23.5 ° C.), 37 ° C., 43 ° C., 50 ° C., and 60 ° C. was measured.
- the PPase sample is kept warm for 2 hours at each temperature of 4 ° C., 25 ° C., 37 ° C., 43 ° C., 50 ° C., and 60 ° C., centrifuged at 15000 r / min, 4 ° C., and then centrifuged. The residual activity of Qing was measured.
- d pH stability is 0.2M acetic acid-potassium acetate buffer (pH 3.6, 4.2, 4, 7, 5.6, 6.0), MES-NaOH buffer (pH 5.3, 6.0). , 6.8), Tris-HCl buffer (pH 7.5, 8.0, 9.0) diluted 10-fold and allowed to stand at 4 ° C. for 6 hours, after which each sample remained. The activity was measured.
- chloride salts of sodium, potassium, lithium, calcium, cobalt, and manganese and an aqueous solution of EDTA / 2 sodium are added in the reaction solution so as to be 2.5 mM, 5 mM, and 10 mM, and at that time. PPase activity was measured.
- PPase maintained an optimum temperature of 50 ° C. and an optimum pH of pH 5.42, and maintained a residual activity of 80% or more at 43 ° C. for 2 hours and pH 4.7 to 6.8 hours. Further, from FIG. 4, PPase was activated by divalent metal cations such as Ca 2+ , Mg 2+ , Mn 2+ , and Co 2+ of 2.5 to 5.0 mM.
- Example 1 (1) Preparation of fermented milk 2% skim milk (manufactured by Morinaga Milk Industry) was added to delicious milk (manufactured by Meiji), shaken well to dissolve, and sterilized in boiling water with stirring for 20 minutes. After sterilizing the raw milk at 43 ° C. for about 30 minutes, starter L812 (manufactured by Chr. Hansen) and PPase or 20 mM acetate-potassium acetate buffer (pH 5.2) shown in Table 1 are used to terminate the enzymatic activity. The mixture was added to a concentration of 0 to 10 U / mL-milk and fermented at 43 ° C. for 4.5 hours to obtain fermented milk. The PPase used was appropriately diluted with a 20 mM acetic acid-potassium acetate buffer (pH 5.2). The amount of casein in the fermented milk of Example 1 was 3.3 g / 100 g.
- Table 2 shows the measurement results of dephosphorylated casein. The measurement result of the free phosphoric acid concentration is shown in FIG.
- Example 2 (1) Preparation of dephosphorylated milk To delicious milk (manufactured by Meiji) whose pH was adjusted to 5.9 using 1N HCl, 300 U / mL PPase was added in the amount shown in Table 3 and at 43 ° C. for 4 hours. It was allowed to stand to obtain dephosphorylated milk. The amount of casein in the dephosphorylated milk of Example 2 was 2.5 g / 100 g.
- Example 3 Preparation of fermented milk Weigh 392 g of pasteurized milk (manufactured by Takanashi Milk Products Co., Ltd.) and 8 g of skim milk (manufactured by Morinaga Milk Products Co., Ltd.) into a 500 mL medium bottle, shake well to dissolve, and sterilize while stirring in boiling water for 20 minutes. .. The raw milk after sterilization was kept warm at 43 ° C. for about 30 minutes, and then starter L812 (manufactured by Chr. Hansen, the same applies hereinafter) was added at 0.01 g / mL, and the mixture was gently inverted and mixed about 10 times.
- starter L812 manufactured by Chr. Hansen, the same applies hereinafter
- Example 4 Preparation of fermented milk Weigh 392 g of pasteurized milk (manufactured by Takanashi Milk Products Co., Ltd.) and 8 g of skim milk (manufactured by Morinaga Milk Products Co., Ltd.) into a 500 mL medium bottle, shake well to dissolve, and heat sterilize in boiling water for 20 minutes. , 43 ° C. for about 30 minutes. 40 mg of Starter L812 was added thereto, and the mixture was gently mixed by inversion 10 times.
- the total sugar content was measured by the phenol-sulfuric acid method using the remaining 200 ⁇ L. By subtracting monosaccharides and disaccharides from the total sugar amount, the amount of exopolysaccharide of 3 sugars or more was calculated.
- Viscosity measurement The fermented milk sample was homogenized by vigorously shaking, and 13.5 g was dispensed into a disposable sample chamber (made of aluminum) for a viscometer (DV-I Prime, BROOK FIELD). The spindle was SC4-29, measured at 10 r / min, and the viscosity was read and recorded every 30 seconds. All operations were performed in an environment of 10 ° C.
- Breaking strength analysis A creep meter RE2-3305C (manufactured by Sanyo Electric Railway) was used as the apparatus, and the plunger was No. 3 was used. The measurement was performed by load cell 0.01, amplifier magnification 0.1, storage pitch 0.07 seconds, measurement distortion rate 60%, measurement speed 1 mm / sec, and automatic sample thickness measurement.
- Example 5 Preparation of fermented milk 147 g of pasteurized milk (manufactured by Takanashi Milk Products Co., Ltd.) and 3 g of skim milk (manufactured by Morinaga Milk Products Co., Ltd.) were weighed into five 250 mL medium bottles and shaken well to dissolve them. Then, it was sterilized by heating in boiling water for 20 minutes, and then kept warm at 43 ° C. for about 30 minutes. Various starters shown in Table 6 (all manufactured by Chr. Hansen) were added thereto, and the mixture was gently mixed by inversion 10 times.
- Table 6 all manufactured by Chr. Hansen
- Example 6 (1) Preparation of fermented milk Weigh 392 g of pasteurized milk (manufactured by Takanashi Milk Products Co., Ltd.) and 8 g of skim milk (manufactured by Morinaga Milk Products Co., Ltd.) into a 500 mL medium bottle, shake well to dissolve, and heat in boiling water for 20 minutes. After sterilization, it was kept warm at 43 ° C. for about 30 minutes. 40 mg of Starter L812 was added thereto, and the mixture was gently mixed by inversion 10 times.
- pasteurized milk manufactured by Takanashi Milk Products Co., Ltd.
- skim milk manufactured by Morinaga Milk Products Co., Ltd.
- Viscosity measurement The fermented milk sample was homogenized by vigorously shaking, and 13.5 g was dispensed into a disposable sample chamber (made of aluminum) for a viscometer (DV-I Prime, BROOK FIELD). The spindle was SC4-29, measured at 10 r / min, and the viscosity was read and recorded every 30 seconds. All operations were performed in an environment of 10 ° C.
- Breaking strength analysis A creep meter RE2-3305C (manufactured by Sanyo Electric Railway) was used as the apparatus, and the plunger was No. 3 was used. The measurement was performed by load cell 0.01, amplifier magnification 0.1, storage pitch 0.07 seconds, measurement distortion rate 60%, measurement speed 1 mm / sec, and automatic sample thickness measurement.
- Example 7 (enzyme treatment of raw milk) (1) Preparation of fermented milk Weigh 392 g of ultra-high temperature instant sterilized milk (made by Meiji) or low temperature sterilized milk (made by Takanashi Milk Products) and 8 g of skim milk (made by Morinaga Milk Products) into a 500 mL medium bottle and shake well. Dissolved. To this, 2 mL of purified PPase (700 U / mL, Final 23.3 U / mL-milk) or 20 mM acetic acid-K acetate buffer (pH 5.2) was added, and the mixture was mixed by inversion 5 times.
- purified PPase 700 U / mL, Final 23.3 U / mL-milk
- 20 mM acetic acid-K acetate buffer pH 5.2
- Example 8 (1) Preparation of fermented milk Weigh 392 g of ultra-high temperature instant pasteurized milk (made by Meiji) and 8 g of skim milk (made by Morinaga Dairy) into a 500 mL medium bottle, shake well to dissolve, and stir in boiling water for 20 minutes. While sterilized. After sterilizing the raw milk at 43 ° C. for about 30 minutes, 0.571 mL of purified PPase (350 U / mL, Final 1 U / mL-milk) or 20 mM acetic acid-potassium acetate buffer (pH 4.5) and starter L812 20 mg was added, and the mixture was gently overturned and mixed about 10 times.
- purified PPase 350 U / mL, Final 1 U / mL-milk
- 20 mM acetic acid-potassium acetate buffer pH 4.5
- Example 9 Adjust the fermentation time so that the pH after fermentation is adjusted to about 4.5
- Fermented milk was prepared in the same manner as in Example 8 except that the fermentation time of the added system was 3.5 hours.
- the pH of the fermented milk was measured with a pH meter (manufactured by Thermo Fisher, ORION 3 STAR).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Dairy Products (AREA)
Abstract
安定的な品質の発酵乳及びその製造方法、並びに脱リン酸乳の提供。 脱リン酸化カゼインを0.8g/100g以上含有する発酵乳。
Description
本発明は、発酵乳及びその製造方法、並びに脱リン酸乳に関する。
発酵乳は、原料の乳を乳酸菌等の微生物で発酵させることにより製造される。近年は、発酵時に乳酸菌が菌体外に産生する菌体外多糖(EPS)の生理機能が注目されている。
乳の主要なタンパク質はカゼインであり、発酵によりpHが低下すると、カゼインミセルは凝集し、ゲルを形成する。カゼインは主にαS1、αS2、β、κの4種類に分類され、それぞれ8個、11個、5個、1個のセリン残基に結合したリン酸を有している。このカゼインにおけるリン酸修飾は、カゼインミセル表面や疎水性コアの疎水度に関与することが知られている。
乳の主要なタンパク質はカゼインであり、発酵によりpHが低下すると、カゼインミセルは凝集し、ゲルを形成する。カゼインは主にαS1、αS2、β、κの4種類に分類され、それぞれ8個、11個、5個、1個のセリン残基に結合したリン酸を有している。このカゼインにおけるリン酸修飾は、カゼインミセル表面や疎水性コアの疎水度に関与することが知られている。
発酵乳の組織(物性)は経時的に変化し、そのなかでも保存中の離水(乳清の分離)は商品価値を下げる要因の一つである。そこで、これまでに、離水防止等を目的にペクチン等の安定剤や、乳タンパク質濃縮物等の機能性乳原料が利用されている。また、酵素の利用についても検討が行われ、例えば、トランスグルタミナーゼ等の凝乳活性を有する酵素、グルコースオキシダーゼ等を利用する方法が報告されている(例えば、特許文献1)。
しかしながら、カゼインのホスホセリンに作用する酵素を利用した乳及び発酵乳の製造については知られていない。
しかしながら、カゼインのホスホセリンに作用する酵素を利用した乳及び発酵乳の製造については知られていない。
本発明の課題は、安定的な品質の発酵乳及びその製造方法、並びに脱リン酸乳を提供することにある。
本発明者は、カゼインのホスホセリンに着目し、鋭意検討したところ、カゼインのセリン残基からリン酸が脱離した脱リン酸化カゼインが発酵乳の物性に関わり、当該脱リン酸化カゼインを所定量含む発酵乳は離水が抑制され、粘度及び破断応力の上昇が見られること、また、菌体外多糖(EPS)の産生量が増加していることを見出した。また、プロテインホスファターゼの存在下に原料乳を発酵させるか、或いはプロテインホスファターゼで酵素処理してなる原料乳を発酵させることにより、発酵乳の離水の抑制、粘度及び破断応力の上昇の効果が認められること、また、菌体外多糖(EPS)の産生が増加することを見出し、本発明を完成した。
すなわち、本発明は、以下の〔1〕~〔6〕を提供するものである。
〔1〕脱リン酸化カゼインを0.8g/100g以上含有する発酵乳。
〔2〕脱リン酸化カゼインの含有量が0.8~1.5g/100gである〔1〕記載の発酵乳。
〔3〕遊離のリン酸の含有量が15mM以上である〔1〕又は〔2〕記載の発酵乳。
〔4〕ヨーグルトである〔1〕~〔3〕のいずれかに記載の発酵乳。
〔5〕脱リン酸化カゼインを含有する脱リン酸乳。
〔6〕脱リン酸化カゼインの含有量が0.8g/100g以上である〔5〕記載の脱リン酸乳。
〔1〕脱リン酸化カゼインを0.8g/100g以上含有する発酵乳。
〔2〕脱リン酸化カゼインの含有量が0.8~1.5g/100gである〔1〕記載の発酵乳。
〔3〕遊離のリン酸の含有量が15mM以上である〔1〕又は〔2〕記載の発酵乳。
〔4〕ヨーグルトである〔1〕~〔3〕のいずれかに記載の発酵乳。
〔5〕脱リン酸化カゼインを含有する脱リン酸乳。
〔6〕脱リン酸化カゼインの含有量が0.8g/100g以上である〔5〕記載の脱リン酸乳。
また、本発明は、以下の〔7〕~〔13〕を提供するものである。
〔7〕以下のいずれかの工程を含む、発酵乳の製造方法。
(a)プロテインホスファターゼの存在下で、原料乳を発酵させる工程
(b)プロテインホスファターゼで酵素処理してなる原料乳を発酵させる工程
〔8〕プロテインホスファターゼが、トリコデルマ属に属する微生物由来のプロテインホスファターゼである〔7〕記載の発酵乳の製造方法。
〔9〕トリコデルマ属に属する微生物がトリコデルマ・ビレンスである〔8〕記載の発酵乳の製造方法。
〔10〕プロテインホスファターゼが、下記(i)~(iii)のいずれかである〔7〕~〔9〕のいずれか記載の発酵乳の製造方法。
(i)配列番号2で示されるアミノ酸配列からなるタンパク質
(ii)配列番号2で示されるアミノ酸配列において1~数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
(iii)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
〔11〕発酵乳がヨーグルトである〔7〕~〔10〕のいずれか記載の発酵乳の製造方法。
〔12〕プロテインホスファターゼを含有する発酵乳用酵素剤。
〔13〕下記(i)~(iii)のいずれかであるプロテインホスファターゼ活性を有するタンパク質。
(i)配列番号2で示されるアミノ酸配列からなるタンパク質
(ii)配列番号2で示されるアミノ酸配列において1~数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
(iii)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
〔7〕以下のいずれかの工程を含む、発酵乳の製造方法。
(a)プロテインホスファターゼの存在下で、原料乳を発酵させる工程
(b)プロテインホスファターゼで酵素処理してなる原料乳を発酵させる工程
〔8〕プロテインホスファターゼが、トリコデルマ属に属する微生物由来のプロテインホスファターゼである〔7〕記載の発酵乳の製造方法。
〔9〕トリコデルマ属に属する微生物がトリコデルマ・ビレンスである〔8〕記載の発酵乳の製造方法。
〔10〕プロテインホスファターゼが、下記(i)~(iii)のいずれかである〔7〕~〔9〕のいずれか記載の発酵乳の製造方法。
(i)配列番号2で示されるアミノ酸配列からなるタンパク質
(ii)配列番号2で示されるアミノ酸配列において1~数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
(iii)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
〔11〕発酵乳がヨーグルトである〔7〕~〔10〕のいずれか記載の発酵乳の製造方法。
〔12〕プロテインホスファターゼを含有する発酵乳用酵素剤。
〔13〕下記(i)~(iii)のいずれかであるプロテインホスファターゼ活性を有するタンパク質。
(i)配列番号2で示されるアミノ酸配列からなるタンパク質
(ii)配列番号2で示されるアミノ酸配列において1~数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
(iii)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
本発明の発酵乳は、離水が少なく、粘性が高くしっかりした組織を有する。また、多くの菌体外多糖(EPS)を含有し生理機能に優れるものである。
また、本発明の発酵乳の製造方法によれば、離水が少なく、粘性が高くしっかりした組織で、かつ多くの菌体外多糖(EPS)を含有する発酵乳を提供することができる。
また、本発明の脱リン酸乳は、カゼイン分子の疎水度が上昇することにより、口当たりを変化させる。当該効果は、脱リン酸乳を使用した乳製品でも同様に得られる。
また、本発明の発酵乳の製造方法によれば、離水が少なく、粘性が高くしっかりした組織で、かつ多くの菌体外多糖(EPS)を含有する発酵乳を提供することができる。
また、本発明の脱リン酸乳は、カゼイン分子の疎水度が上昇することにより、口当たりを変化させる。当該効果は、脱リン酸乳を使用した乳製品でも同様に得られる。
本明細書において、発酵乳は、乳等省令(乳及び乳製品の成分規格等に関する省令、昭和26年厚生省令第52号)において定義された発酵乳及び乳酸菌飲料を意味する。発酵乳は「乳又はこれと同等以上の無脂乳固形分を含む乳等を乳酸菌又は酵母で発酵させ、糊状又は液状にしたもの又はこれらを凍結したもの」、乳酸菌飲料は「乳等を乳酸菌又は酵母で発酵させたものを加工し、又は主要原料とした飲料(発酵乳を除く。)」と定義されている。
上記「糊状にしたもの」に分類される発酵乳としてハードヨーグルト、ソフトヨーグルト、「液状にしたもの」に分類される発酵乳として飲むヨーグルト(ドリンクヨーグルト)、「凍結したもの」に分類される発酵乳としてフローズンヨーグルトが挙げられる。本発明の発酵乳は、本発明の効果を享受し易い点から、ハードヨーグルト、ソフトヨーグルトが好ましい。
上記「糊状にしたもの」に分類される発酵乳としてハードヨーグルト、ソフトヨーグルト、「液状にしたもの」に分類される発酵乳として飲むヨーグルト(ドリンクヨーグルト)、「凍結したもの」に分類される発酵乳としてフローズンヨーグルトが挙げられる。本発明の発酵乳は、本発明の効果を享受し易い点から、ハードヨーグルト、ソフトヨーグルトが好ましい。
本発明の発酵乳は、脱リン酸化カゼインを0.8g/100g以上含有する。脱リン酸化カゼインは、乳中のカゼインのセリンリン酸が脱離して生成する。
発酵乳中の脱リン酸化カゼインの含有量は、発酵乳の離水抑制効果、粘度及び破断応力の上昇効果、並びにEPS産生量の増大効果の観点から、0.9g/100g以上であることが好ましく、1.0g/100g以上であることがより好ましく、また、1.5g/100g以下であることが好ましく、1.4g/100g以下であることがより好ましく、1.3g/100g以下であることが更に好ましい。
本発明の発酵乳において、カゼイン中の脱リン酸化カゼインの割合としては、好ましくは25~45%、より好ましくは26~43%である。
本明細書において、カゼインの分析は、既知濃度の各カゼイン(αカゼイン、βカゼイン及びκカゼイン)と試料をポリアクリルアミドゲル電気泳動(SDS-PAGE)に供し、クマシーブリリアントブルー染色(CBB染色)したのち、画像解析ソフトを使用してバンドの強度を数値化することで検量線を作成し、試料中のカゼイン量を算出することができる。
また、本明細書において、脱リン酸化カゼインの分析は、以下に記載の方法に従うものとする。
発酵乳中の脱リン酸化カゼインの含有量は、発酵乳の離水抑制効果、粘度及び破断応力の上昇効果、並びにEPS産生量の増大効果の観点から、0.9g/100g以上であることが好ましく、1.0g/100g以上であることがより好ましく、また、1.5g/100g以下であることが好ましく、1.4g/100g以下であることがより好ましく、1.3g/100g以下であることが更に好ましい。
本発明の発酵乳において、カゼイン中の脱リン酸化カゼインの割合としては、好ましくは25~45%、より好ましくは26~43%である。
本明細書において、カゼインの分析は、既知濃度の各カゼイン(αカゼイン、βカゼイン及びκカゼイン)と試料をポリアクリルアミドゲル電気泳動(SDS-PAGE)に供し、クマシーブリリアントブルー染色(CBB染色)したのち、画像解析ソフトを使用してバンドの強度を数値化することで検量線を作成し、試料中のカゼイン量を算出することができる。
また、本明細書において、脱リン酸化カゼインの分析は、以下に記載の方法に従うものとする。
脱リン酸化カゼインは電気泳動方法で定量することができる。この方法はリン酸化カゼインと脱リン酸化カゼイン量を電気泳動結果から算出する。図1を用いて説明する。なお、電気泳動方法は、後掲の実施例に記載のとおりである。
図1はウシ乳の電気泳動図を概念的に示したものである。リン酸化されているカゼインはαカゼイン1、βカゼイン2及びκカゼイン3の3領域があり、これらを積算することでリン酸化カゼイン量を算出することができる。それ以外のリン酸化カゼインも存在するが、微量であるため無視できる。なお、ウシの乳中の全カゼイン量に占めるαs-1カゼイン、αs-2カゼイン、βカゼイン及びκカゼインの総和は約97%である。
脱リン酸化カゼインは、各カゼインのバンドに隣接して存在する。脱リン酸化カゼインは、脱リン酸の程度がさまざまであることから、電気泳動後においてスメアな状態になる。リン酸化カゼインバンドと脱リン酸化カゼイン領域は、濃度が異なるため、目視で確認することができる。各脱リン酸化カゼイン領域11、21、31を積算することで、脱リン酸化カゼイン量を算出することができる。脱リン酸化カゼイン領域31の終端は、染色領域と非染色領域の境目を目視で確認し、終端とすればよい。
ウシ由来の乳を使用すると、リン酸化カゼイン量が多い順に、αカゼイン、βカゼイン及びκカゼインの順となる。由来が異なる乳についても上記と同様の方法で脱リン酸化カゼインの程度を測定することができる。全カゼイン量の90%以上を占めるよう、特定のカゼインを一以上選択して測定すればよい。
図1はウシ乳の電気泳動図を概念的に示したものである。リン酸化されているカゼインはαカゼイン1、βカゼイン2及びκカゼイン3の3領域があり、これらを積算することでリン酸化カゼイン量を算出することができる。それ以外のリン酸化カゼインも存在するが、微量であるため無視できる。なお、ウシの乳中の全カゼイン量に占めるαs-1カゼイン、αs-2カゼイン、βカゼイン及びκカゼインの総和は約97%である。
脱リン酸化カゼインは、各カゼインのバンドに隣接して存在する。脱リン酸化カゼインは、脱リン酸の程度がさまざまであることから、電気泳動後においてスメアな状態になる。リン酸化カゼインバンドと脱リン酸化カゼイン領域は、濃度が異なるため、目視で確認することができる。各脱リン酸化カゼイン領域11、21、31を積算することで、脱リン酸化カゼイン量を算出することができる。脱リン酸化カゼイン領域31の終端は、染色領域と非染色領域の境目を目視で確認し、終端とすればよい。
ウシ由来の乳を使用すると、リン酸化カゼイン量が多い順に、αカゼイン、βカゼイン及びκカゼインの順となる。由来が異なる乳についても上記と同様の方法で脱リン酸化カゼインの程度を測定することができる。全カゼイン量の90%以上を占めるよう、特定のカゼインを一以上選択して測定すればよい。
図1には良好なバンドの形を示したが、実際には各種条件を揃えてもバンドの形が歪むことが多い。このときのリン酸化カゼイン及び脱リン酸化カゼインを測定する方法を図2で説明する。
図2のバンド先端100(泳動開始側)とバンド先端の基端110の間に非バンド領域が存在する場合、非バンド領域の面積が目視で50%になるところに積算開始線Aを設定し、そこからバンド領域の面積を算出すればよい。積算開始線Aを設定するにあたり、泳動パターンをグラフ化したものを参考にしても良い。
図2のバンド先端200(泳動終了側)とバンド先端の基端210の間に非バンド領域が存在する場合、非バンド領域の面積が目視で50%になるところに積算終了線Bを設定し、そこまでのバンド領域の面積を算出すればよい。積算終了線Bを設定するにあたり、泳動パターンをグラフ化したものを参考にしても良い。
上記の方法で積算開始線と積算終了線を設定し、それらの間に存在するバンド領域における濃度を定量すればよい。
上記と同様の方法で脱リン酸領域の濃度を定量することができる。
図2のバンド先端100(泳動開始側)とバンド先端の基端110の間に非バンド領域が存在する場合、非バンド領域の面積が目視で50%になるところに積算開始線Aを設定し、そこからバンド領域の面積を算出すればよい。積算開始線Aを設定するにあたり、泳動パターンをグラフ化したものを参考にしても良い。
図2のバンド先端200(泳動終了側)とバンド先端の基端210の間に非バンド領域が存在する場合、非バンド領域の面積が目視で50%になるところに積算終了線Bを設定し、そこまでのバンド領域の面積を算出すればよい。積算終了線Bを設定するにあたり、泳動パターンをグラフ化したものを参考にしても良い。
上記の方法で積算開始線と積算終了線を設定し、それらの間に存在するバンド領域における濃度を定量すればよい。
上記と同様の方法で脱リン酸領域の濃度を定量することができる。
本発明の発酵乳は、さらに、遊離リン酸を含有することが好ましい。
発酵乳中の遊離リン酸の含有量は、発酵乳の離水抑制効果、粘度及び破断応力の上昇効果、並びにEPS産生量の増大効果の観点から、15mM以上であることが好ましく、15mM~40mMの範囲内にあることがより好ましい。
発酵乳中の遊離リン酸の含有量は、発酵乳の離水抑制効果、粘度及び破断応力の上昇効果、並びにEPS産生量の増大効果の観点から、15mM以上であることが好ましく、15mM~40mMの範囲内にあることがより好ましい。
脱リン酸化カゼインを発酵乳に含有させるには、例えば、プロテインホスファターゼの存在下に発酵乳の原料である原料乳を発酵させればよい。また、原料乳の発酵前に、原料乳をプロテインホスファターゼ処理し、当該処理後の脱リン酸乳を発酵させればよい。
すなわち、本発明の発酵乳の製造方法は、
(a)プロテインホスファターゼの存在下で、原料乳を発酵させる工程
(b)プロテインホスファターゼで酵素処理してなる原料乳を発酵させる工程
のいずれかの工程を有する。
すなわち、本発明の発酵乳の製造方法は、
(a)プロテインホスファターゼの存在下で、原料乳を発酵させる工程
(b)プロテインホスファターゼで酵素処理してなる原料乳を発酵させる工程
のいずれかの工程を有する。
原料乳は、カゼインを含有すればよく、一般的な乳由来の原料が用いられる。例えば、生乳、牛乳、特別牛乳、生山羊乳、殺菌山羊乳、生めん羊乳、成分調整牛乳、低脂肪牛乳、無脂肪牛乳、加工乳、クリーム、バター、バターオイル、チーズ、濃縮ホエイ、アイスクリーム類、濃縮乳、脱脂濃縮乳、無糖練乳、無糖脱脂練乳、加糖練乳、加糖脱脂練乳、全粉乳、脱脂粉乳、クリームパウダー、ホエイパウダー、たんぱく質濃縮ホエイパウダー、バターミルクパウダー等が挙げられる。
原料乳に含まれるカゼインの量は、特に限定されないが、0.01~10g/100gが好ましく、0.1~8g/100gがより好ましく、1~5g/100gがさらに好ましい。
原料乳に含まれるカゼインの量は、特に限定されないが、0.01~10g/100gが好ましく、0.1~8g/100gがより好ましく、1~5g/100gがさらに好ましい。
原料乳のpHは、pH4.0~8.0が好ましく、pH4.7~7.5がより好ましく、pH5.3~6.8がさらに好ましい。下記原料乳以外の他の成分を添加した原料乳のpHも同様である。
原料乳には、必要に応じて、本発明の効果を損なわない範囲において、発酵の前に配合し得る他の成分や、発酵の後に配合し得る他の成分を含有させてもよい。当該他の成分としては、例えば、甘味料(単糖、少糖、糖アルコール、合成甘味料等)、安定剤(ゼラチン、ペクチン、カラギナン、キサンタンガム等)、果汁、果肉、香料等が挙げられる。
プロテインホスファターゼは、リン酸化タンパク質を脱リン酸化する酵素であり、本明細書においては原料乳中のカゼインのセリンリン酸を脱離できるものであればよい。プロテインホスファターゼは発酵中に原料乳のカゼインのセリンリン酸を脱離することが好ましい。
プロテインホスファターゼの最適(至適)pHは4.0~7.5の範囲にあることが好ましく、4.5~7.0がより好ましく、5.0~6.0がさらに好ましい。
プロテインホスファターゼは発酵乳の製造中に徐々に失活し、発酵乳中では失活していることが好ましい。具体的には、pH5.0~6.0の弱酸性下でも作用し、pH4.5未満で失活することが好ましい。原料乳の発酵過程において、徐々にカゼインからリン酸が脱離することになる。遊離リン酸が乳中で増加し、乳酸菌が遊離リン酸を代謝する過程で、EPSが生成されやすくなると考えられる。発酵終了後にプロテインホスファターゼが失活していることで、発酵乳の品質を安定的に保ちやすくなり好ましい。
プロテインホスファターゼの最適温度は1℃~60℃の範囲にあることが好ましく、10℃~55℃の範囲にあることがより好ましい。
本発明で使用するプロテインホスファターゼは、上記の最適pH及び最適温度を有することが好ましい。プロテインホスファターゼの種類及び起源は問わないが、好ましくはトリコデルマ属(Trichoderma)、アスペルギルス属(Aspergillus)、サッカロマイセス属(Sccharomyces)、バチルス属(Bacillus)、ストレプトマイセス属(Streptomyces)に属する微生物由来のプロテインホスファターゼであり、より好ましくはトリコデルマ・ビレンス(Trichoderma virens)由来のプロテインホスファターゼであり、さらに好ましくはトリコデルマ・ビレンス Gv29-8由来の仮想タンパク質(XP_013951069.1 hypothetical protein TRIVIDRAFT_87714)である。当該仮想タンパク質(XP_013951069.1 hypothetical protein TRIVIDRAFT_87714)は、本発明者によってプロテインホスファターゼ活性が明らかにされ、下記の性質を有する。
(a)最適温度:50℃
(b)温度安定性:43℃、2時間で80%以上の残存活性
(c)最適pH:pH5.42
(d)pH安定性:pH4.7~6.8、6時間で80%以上の残存活性
(e)金属イオン要求性:2.5~5.0mMのCa2+、Mg2+、Mn2+、Co2+等の2価金属陽イオンで活性化する
トリコデルマ・ビレンス Gv29-8由来のプロテインホスファターゼ(XP_013951069.1 hypothetical protein TRIVIDRAFT_87714)をコードするDNAの塩基配列は配列表の配列番号1に示され、アミノ酸配列は配列表の配列番号2に示される。
プロテインホスファターゼは、野生型の他、これをコードする遺伝子を大腸菌等の宿主で発現させたものや当該遺伝子を各種遺伝子操作によって改変、発現させたものであってプロテインホスファターゼ活性を有するものであってもよい。
(a)最適温度:50℃
(b)温度安定性:43℃、2時間で80%以上の残存活性
(c)最適pH:pH5.42
(d)pH安定性:pH4.7~6.8、6時間で80%以上の残存活性
(e)金属イオン要求性:2.5~5.0mMのCa2+、Mg2+、Mn2+、Co2+等の2価金属陽イオンで活性化する
トリコデルマ・ビレンス Gv29-8由来のプロテインホスファターゼ(XP_013951069.1 hypothetical protein TRIVIDRAFT_87714)をコードするDNAの塩基配列は配列表の配列番号1に示され、アミノ酸配列は配列表の配列番号2に示される。
プロテインホスファターゼは、野生型の他、これをコードする遺伝子を大腸菌等の宿主で発現させたものや当該遺伝子を各種遺伝子操作によって改変、発現させたものであってプロテインホスファターゼ活性を有するものであってもよい。
プロテインホスファターゼは、好ましくは下記(i)~(iii)のいずれかのタンパク質である。
(i)配列番号2で示されるアミノ酸配列からなるタンパク質
(ii)配列番号2で示されるアミノ酸配列において1~数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
(iii)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
(i)配列番号2で示されるアミノ酸配列からなるタンパク質
(ii)配列番号2で示されるアミノ酸配列において1~数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
(iii)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
配列番号2で示されるアミノ酸配列において1~数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列における、アミノ酸の欠失、置換又は付加の数は、配列番号2で示されるアミノ酸配列からなるプロテインホスファターゼと同等の酵素活性を示すものであれば限定されないが、1~20個が好ましく、1~10個がさらに好ましく、1~8個がさらに好ましい。
また、配列番号2で示されるアミノ酸配列との配列同一性は、80%以上であり、85%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、99%以上がよりさらに好ましい。このような配列の同一性パーセンテージは、基準配列を照会配列として比較するアルゴリズムをもった公開又は市販されているソフトウエアを用いて計算することができる。例として、BLAST、FASTA又はGENETYX(ゼネティックス社製)等を用いることができる。
また、配列番号2で示されるアミノ酸配列との配列同一性は、80%以上であり、85%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、99%以上がよりさらに好ましい。このような配列の同一性パーセンテージは、基準配列を照会配列として比較するアルゴリズムをもった公開又は市販されているソフトウエアを用いて計算することができる。例として、BLAST、FASTA又はGENETYX(ゼネティックス社製)等を用いることができる。
本発明で用いられるプロテインホスファターゼは、発酵乳の品質を安定化させ、またその生理機能を増強することから、発酵乳用の酵素剤として有用である。
工程(a)では、プロテインホスファターゼは、原料乳の発酵時に存在していればよく、これを添加するタイミングは特に制限されない。
工程(a)でのプロテインホスファターゼの使用量は、原料乳中のカゼインのセリンリン酸を脱離できる濃度であればよい。例えば、原料乳1mLに対して0.1~25Uであることが好ましく、0.5~15Uであることがより好ましく、1~10Uであることが更に好ましい。ここで、本明細書において、1Uとは、10mMのTris-HClを含むpH6.0の20mM MES-NaOH緩衝液1mLあたり、20mgのウシミルクカゼインを溶解した基質液に対し、1/10量の酵素液を添加し、37℃で反応させ、等量の反応停止液を添加する条件において、1分間あたり1μmolのリン酸を遊離する酵素量をいう。
工程(a)でのプロテインホスファターゼの使用量は、原料乳中のカゼインのセリンリン酸を脱離できる濃度であればよい。例えば、原料乳1mLに対して0.1~25Uであることが好ましく、0.5~15Uであることがより好ましく、1~10Uであることが更に好ましい。ここで、本明細書において、1Uとは、10mMのTris-HClを含むpH6.0の20mM MES-NaOH緩衝液1mLあたり、20mgのウシミルクカゼインを溶解した基質液に対し、1/10量の酵素液を添加し、37℃で反応させ、等量の反応停止液を添加する条件において、1分間あたり1μmolのリン酸を遊離する酵素量をいう。
工程(a)での発酵方法は、一般的な方法に準じる。例えば、原料乳及びその他の原材料を混合、溶解して調製した発酵ミックスを均質化、加熱殺菌、冷却後、微生物(スターター)及びプロテインホスファターゼを添加し、発酵させる。冷却後は、必要に応じて破砕、均質化してもよい。
発酵温度は、微生物(スターター)が生育する温度かつ酵素が失活しない温度であればよく、その種類に応じて適宜設定することができるが、20℃~45℃が好ましく、30℃~37℃がより好ましい。
発酵時間は、例えば1~48時間、2~24時間が好ましく、3~10時間がより好ましく、3~6時間がさらに好ましく、3~5時間が特に好ましい。
発酵乳のpHは、4.0~5.0が好ましい。
発酵温度は、微生物(スターター)が生育する温度かつ酵素が失活しない温度であればよく、その種類に応じて適宜設定することができるが、20℃~45℃が好ましく、30℃~37℃がより好ましい。
発酵時間は、例えば1~48時間、2~24時間が好ましく、3~10時間がより好ましく、3~6時間がさらに好ましく、3~5時間が特に好ましい。
発酵乳のpHは、4.0~5.0が好ましい。
工程(b)で発酵に供するプロテインホスファターゼで酵素処理してなる原料乳(脱リン酸乳)は、プロテインホスファターゼにより原料乳中のカゼインが脱リン酸化されていればよい。予め原料乳をプロテインホスファターゼで酵素処理すると、より多くのカゼインを脱リン酸化することができ、また、カゼインの脱リン酸化度合を制御し易い。
工程(b)でのプロテインホスファターゼの使用量は、原料乳中のカゼインのセリンリン酸を脱離できる濃度であればよい。例えば、原料乳1質量部に対して0.1~25Uであることが好ましく、0.5~15Uであることがより好ましく、1~10Uであることが更に好ましい。
工程(b)でのプロテインホスファターゼの使用量は、原料乳中のカゼインのセリンリン酸を脱離できる濃度であればよい。例えば、原料乳1質量部に対して0.1~25Uであることが好ましく、0.5~15Uであることがより好ましく、1~10Uであることが更に好ましい。
原料乳の酵素処理は、1℃~60℃の反応温度にて、0.1時間~24時間反応を行うことが好ましい。反応温度は10℃~60℃であることが好ましく、30℃~55℃であることがより好ましく、40℃~50℃であることがさらに好ましい。反応時間は0.3時間~12時間であることが好ましく、0.5時間~5時間であることがより好ましく、1時間~4時間であることが特に好ましい。
原料乳をプロテインホスファターゼで酵素処理する前に、原料乳のpHを調整してもよい。
原料乳をプロテインホスファターゼで酵素処理する前に、原料乳のpHを調整してもよい。
酵素処理後は、酵素を失活させることなく原料乳を発酵させてもよく、或いは加熱等により酵素を失活させる処理を行った後に発酵させてもよい。好ましくは失活させることなく原料乳を発酵させることである。発酵時においても徐々にカゼインの脱リン酸化が進行する。
酵素を失活させる処理における加熱の条件は、高温短時間の加熱が好ましく、例えば、60~100℃で1分間~30分間加熱するのが好ましい。原料乳の殺菌工程前に酵素処理した後、原料乳の殺菌工程において酵素を失活させてもよい。
酵素を失活させる処理における加熱の条件は、高温短時間の加熱が好ましく、例えば、60~100℃で1分間~30分間加熱するのが好ましい。原料乳の殺菌工程前に酵素処理した後、原料乳の殺菌工程において酵素を失活させてもよい。
工程(b)での発酵方法は、工程(a)と同様、一般的な方法に準じ、例えば、プロテインホスファターゼで酵素処理してなる原料乳及びその他の原材料を含む発酵ミックスを均質化、加熱殺菌、冷却後、微生物(スターター)を添加し、発酵させる。また、冷却後は、必要に応じて破砕、均質化してもよい。
発酵温度は、工程(a)と同様、適宜設定することができるが、20℃~45℃が好ましく、30℃~37℃がより好ましい。
発酵時間は、例えば1~48時間、2~24時間が好ましく、3~10時間がより好ましく、3~6時間がさらに好ましく、3~5時間が特に好ましい。
発酵乳のpHは、4.0~5.0が好ましい。
発酵温度は、工程(a)と同様、適宜設定することができるが、20℃~45℃が好ましく、30℃~37℃がより好ましい。
発酵時間は、例えば1~48時間、2~24時間が好ましく、3~10時間がより好ましく、3~6時間がさらに好ましく、3~5時間が特に好ましい。
発酵乳のpHは、4.0~5.0が好ましい。
本発明では、均一なカードを形成し易く、また、ハンドリング性及びコスト面で優れる観点から、工程(a)により発酵乳を製造することが好ましい。
原料乳をプロテインホスファターゼ処理することによって、原料乳中のカゼインが脱リン酸化され、脱リン酸化カゼインを含有する脱リン酸乳が得られる。カゼインの脱リン酸化でカゼイン分子の疎水度が上昇することにより、乳の口当たりは変化する。この口当たりの変化を生かして、本発明の脱リン酸乳は、原料乳と同様に、発酵乳以外にも、様々な乳製品に使用することができる。
本発明の脱リン酸乳中の脱リン酸化カゼインの含有量は、口当たりを良好とする観点、安定的な品質の発酵乳を得る観点から、0.8g/100g以上であることが好ましく、0.9g/100g以上であることがより好ましく、1.0g/100g以上であることが更に好ましく、また、1.5g/100g以下であることが好ましく、1.4g/100g以下であることがより好ましい。
本発明の脱リン酸乳において、カゼイン中の脱リン酸化カゼインの割合としては、好ましくは45%~65%、より好ましくは48~63%である。
本発明の脱リン酸乳中の脱リン酸化カゼインの含有量は、口当たりを良好とする観点、安定的な品質の発酵乳を得る観点から、0.8g/100g以上であることが好ましく、0.9g/100g以上であることがより好ましく、1.0g/100g以上であることが更に好ましく、また、1.5g/100g以下であることが好ましく、1.4g/100g以下であることがより好ましい。
本発明の脱リン酸乳において、カゼイン中の脱リン酸化カゼインの割合としては、好ましくは45%~65%、より好ましくは48~63%である。
また、脱リン酸乳は、さらに、遊離リン酸を含有することが好ましく、脱リン酸乳中の遊離リン酸の含有量は、口当たりを良好とする観点、安定的な品質の発酵乳を得る観点から、1mM~100mMの範囲内にあることが好ましく5mM~50mMの範囲内にあることがより好ましく、10mM~40mMの範囲内にあることがさらに好ましく、12mM~30mMの範囲内にあることがよりさらに好ましい。
原料乳の発酵、及びプロテインホスファターゼで酵素処理してなる原料乳(脱リン酸乳)の発酵には、一般的な乳酸菌や酵母等のスターターが用いられる。
乳酸菌としては、例えば、ラクトバチルス属細菌(Lactobacillus casei、Lactobacillus acidophilus等)、ラクトコッカス属細菌(Lactococcus lactis等)、ロイコノストック属細菌(Leuconostoc mesenteroides等)、エンテロコッカス属細菌(Enterococcus faecalis等)、ビフィドバクテリウム属細菌(Bifidobacterium bifidum、Bifidobacterium breve等)が挙げられる。
酵母としては、例えば、サッカロミセス属(Saccharomyces cerevisiae等)の酵母が挙げられる。
乳酸菌としては、例えば、ラクトバチルス属細菌(Lactobacillus casei、Lactobacillus acidophilus等)、ラクトコッカス属細菌(Lactococcus lactis等)、ロイコノストック属細菌(Leuconostoc mesenteroides等)、エンテロコッカス属細菌(Enterococcus faecalis等)、ビフィドバクテリウム属細菌(Bifidobacterium bifidum、Bifidobacterium breve等)が挙げられる。
酵母としては、例えば、サッカロミセス属(Saccharomyces cerevisiae等)の酵母が挙げられる。
スターターに含まれる乳酸菌または酵母の菌数(生菌)は、例えば105~1013cfu/mL、好ましくは106~1012cfu/mL、より好ましくは107~1011cfu/mL、さらに好ましくは108~1010cfu/mLである。
スターターの使用量は、特に限定されず、その種類に応じて適宜設定することができるが、例えば、原料乳及び/又は脱リン酸乳の0.01~10質量%であり、0.1~10質量%が好ましく、0.5~10質量%がより好ましい。
本発明の発酵乳は、必要に応じて、本発明の効果を損なわない範囲において、発酵の前に配合し得る他の成分や、発酵の後に配合し得る他の成分を含有してもよい。当該他の成分としては、例えば、甘味料(単糖、少糖、糖アルコール、合成甘味料等)、安定剤(ゼラチン、ペクチン、カラギナン、キサンタンガム等)、果汁、果肉、香料等が挙げられる。
後掲の実施例に示すとおり、本発明の発酵乳は、離水が少なく、粘性が高くしっかりした固さを有する。
発酵乳の粘度は、後述する測定方法で発酵乳を30秒間処理したときの粘度が3,000Pa・s以上であることが好ましい。上限値は特に限定されないが、例えば、10000Pa・sである。
また、発酵乳の固さは、後掲の実施例に記載の破断強度解析の値として、破断荷重が0.41N以上であることが好ましく、0.45N以上であることがより好ましく、0.5N以上であることがさらに好ましい。上限値は特に限定されないが、例えば、1.0Nである。
発酵乳の粘度は、後述する測定方法で発酵乳を30秒間処理したときの粘度が3,000Pa・s以上であることが好ましい。上限値は特に限定されないが、例えば、10000Pa・sである。
また、発酵乳の固さは、後掲の実施例に記載の破断強度解析の値として、破断荷重が0.41N以上であることが好ましく、0.45N以上であることがより好ましく、0.5N以上であることがさらに好ましい。上限値は特に限定されないが、例えば、1.0Nである。
また、本発明の発酵乳は、多くの菌体外多糖(EPS)を含む。発酵乳中のEPS量は、発酵乳1gあたり、40μg以上、60μg以上、80μg以上、110μg以上、180μg以上であっても良い。上限値は特に限定されないが、例えば300μgである。
次に実施例を挙げて本発明をより詳細に説明するが、本発明は何らこれに限定されるものではない。
製造例1 トリコデルマ・ビレンス Gv29-8由来プロテインホスファターゼ(以下、「PPase」)の精製
トリコデルマ・ビレンス(Trichoderma virens)NBRC6355株をポテトデキストロース寒天培地(栄研)に接種し、25℃で3日間好気性培養した。ポテトデキストロース寒天培地上に生育した生産菌のコロニーを、約5mm角に寒天培地ごと切出し、5.0%スクロース、2.0%TUBERMINE FV(ロケット・ジャパン)、0.3%塩化カルシウム、0.1%硫酸マグネシウム、0.001%リン酸水素二カリウムから成る生産培地(pH4.0)へ植菌し、27℃、220r/minの条件で4日間旋回振とう培養した。
約700mLの培養液をアドバンテックNo.2ろ紙(アドバンテック)及び3.0%KC-フロック(日本製紙)を用いた吸引ろ過によって固液分離し、得られたろ液をUF(AHP、旭化成)によって約1/10量まで濃縮後した。次いでPEG4000(ナカライテクス)を終濃度15%となるように濃縮液へ添加し、溶解したのち、4℃にて一晩静置した。その後、8000r/min、4℃の条件で20分間遠心分離(HIMAC CENTRIFUGE CR20B2、HITACHI)し、上清を廃棄した。得られた沈殿を、約10mLの20mM 酢酸‐酢酸カリウム緩衝液(pH4.8)にて溶解し、その液を50℃にて1時間保温したのち、14800r/min、4℃の条件で10分間遠心分離(LEGEND MICRO 21R、サーモフィッシャーサイエンス)し、その上清を精製タンパク質として回収した。
トリコデルマ・ビレンス(Trichoderma virens)NBRC6355株をポテトデキストロース寒天培地(栄研)に接種し、25℃で3日間好気性培養した。ポテトデキストロース寒天培地上に生育した生産菌のコロニーを、約5mm角に寒天培地ごと切出し、5.0%スクロース、2.0%TUBERMINE FV(ロケット・ジャパン)、0.3%塩化カルシウム、0.1%硫酸マグネシウム、0.001%リン酸水素二カリウムから成る生産培地(pH4.0)へ植菌し、27℃、220r/minの条件で4日間旋回振とう培養した。
約700mLの培養液をアドバンテックNo.2ろ紙(アドバンテック)及び3.0%KC-フロック(日本製紙)を用いた吸引ろ過によって固液分離し、得られたろ液をUF(AHP、旭化成)によって約1/10量まで濃縮後した。次いでPEG4000(ナカライテクス)を終濃度15%となるように濃縮液へ添加し、溶解したのち、4℃にて一晩静置した。その後、8000r/min、4℃の条件で20分間遠心分離(HIMAC CENTRIFUGE CR20B2、HITACHI)し、上清を廃棄した。得られた沈殿を、約10mLの20mM 酢酸‐酢酸カリウム緩衝液(pH4.8)にて溶解し、その液を50℃にて1時間保温したのち、14800r/min、4℃の条件で10分間遠心分離(LEGEND MICRO 21R、サーモフィッシャーサイエンス)し、その上清を精製タンパク質として回収した。
精製したタンパク質を同定したところ、アミノ酸配列情報から、トリコデルマ・ビレンス Gv29-8由来の仮想タンパク質(XP_013951069.1 hypothetical protein TRIVIDRAFT_87714)であった。このタンパク質は機能未知であった。
精製タンパク質について、プロテインホスファターゼ(PPase)活性が確認された。
1)PPase活性測定
0.2gのウシミルクカゼイン(CALBIOCHEM製、Casein,Bovine Milk,Carbohydrate and Fatty Acid Free)を20mL容ビーカーに量り取り、2.0mLの0.1M Tris-HCl緩衝液(pH9.0)と少量の蒸留水を添加し、マグネチックスターラーを用いて溶解した。続いて、2.0mLの0.2M MES-NaOH緩衝液(pH6.0)と約10mLの蒸留水を添加し、1.0規定の塩酸を用いてpH6.0に調整したのち、20mLに定容した。これを基質液とした。1.5mL容エッペンドルフチューブに、基質液を450μL分注し、酵素サンプルを50μL加え、正確に20分間反応した。反応後、1Lあたり18.0g トリクロロ酢酸、18.0g 無水酢酸ナトリウム、19.8g 酢酸からなる反応停止液を500μL添加し、激しく撹拌し、15000r/min、4℃の条件で5分間遠心分離した。その上清の適宜希釈液200μLを、800μLの蒸留水へ添加し、次いで2M硫酸及び40g/Lモリブデン酸アンモニウム水溶液を30μL添加し、よく撹拌した。そこへ、0.1Mアスコルビン酸ナトリウム水溶液を50μL添加し、再度撹拌したのち、40℃で20分間保温した。その後、分光光度計(UV-1240、島津製作所製)を用いて880nmにおける吸光度を測定し、リン酸二水素カリウムを用いてあらかじめ作成した検量線によってリン酸濃度(μM)を算出した。活性値は、下記の式で算出した。
活性値(U/mL)=リン酸濃度(μM)×反応液量(L)/反応時間(分)/酵素量(mL)×希釈率
1)PPase活性測定
0.2gのウシミルクカゼイン(CALBIOCHEM製、Casein,Bovine Milk,Carbohydrate and Fatty Acid Free)を20mL容ビーカーに量り取り、2.0mLの0.1M Tris-HCl緩衝液(pH9.0)と少量の蒸留水を添加し、マグネチックスターラーを用いて溶解した。続いて、2.0mLの0.2M MES-NaOH緩衝液(pH6.0)と約10mLの蒸留水を添加し、1.0規定の塩酸を用いてpH6.0に調整したのち、20mLに定容した。これを基質液とした。1.5mL容エッペンドルフチューブに、基質液を450μL分注し、酵素サンプルを50μL加え、正確に20分間反応した。反応後、1Lあたり18.0g トリクロロ酢酸、18.0g 無水酢酸ナトリウム、19.8g 酢酸からなる反応停止液を500μL添加し、激しく撹拌し、15000r/min、4℃の条件で5分間遠心分離した。その上清の適宜希釈液200μLを、800μLの蒸留水へ添加し、次いで2M硫酸及び40g/Lモリブデン酸アンモニウム水溶液を30μL添加し、よく撹拌した。そこへ、0.1Mアスコルビン酸ナトリウム水溶液を50μL添加し、再度撹拌したのち、40℃で20分間保温した。その後、分光光度計(UV-1240、島津製作所製)を用いて880nmにおける吸光度を測定し、リン酸二水素カリウムを用いてあらかじめ作成した検量線によってリン酸濃度(μM)を算出した。活性値は、下記の式で算出した。
活性値(U/mL)=リン酸濃度(μM)×反応液量(L)/反応時間(分)/酵素量(mL)×希釈率
a 温度依存性は、室温(23.5℃)、37℃、43℃、50℃、60℃の各温度におけるPPase活性を測定した。
b 温度安定性は、4℃、25℃、37℃、43℃、50℃、60℃の各温度でPPaseサンプルを2時間保温し、15000r/min、4℃の条件で遠心分離し、その上清の残存活性を測定した。
c pH依存性は、カゼイン濃度を3倍にした基質液を、0.2M 酢酸-酢酸カリウム緩衝液(pH3.6、4.2、4,7、5.2、5.6)、MES-NaOH緩衝液(pH5.3、6.0、6.8)、Tris-HCl緩衝液(pH7.0、7.5、8.0、9.0)の各緩衝液にて3倍希釈し、4℃にて6時間静置したのち、各サンプルの残存活性を測定した。なお、基質を各緩衝液で希釈したのちのpHを測定し、その値を反応時のpHとした。
d pH安定性は、0.2M 酢酸-酢酸カリウム緩衝液(pH3.6、4.2、4,7、5.6、6.0)、MES-NaOH緩衝液(pH5.3、6.0、6.8)、Tris-HCl緩衝液(pH7.5、8.0、9.0)の各緩衝液にて10倍希釈し、4℃にて6時間静置したのち、各サンプルの残存活性を測定した。
e 金属イオン要求性は、ナトリウム、カリウム、リチウム、カルシウム、コバルト、マンガンの塩化物塩及びEDTA・2ナトリウム水溶液を、反応液内で2.5mM、5mM、10mMとなるように添加し、その時のPPase活性を測定した。
b 温度安定性は、4℃、25℃、37℃、43℃、50℃、60℃の各温度でPPaseサンプルを2時間保温し、15000r/min、4℃の条件で遠心分離し、その上清の残存活性を測定した。
c pH依存性は、カゼイン濃度を3倍にした基質液を、0.2M 酢酸-酢酸カリウム緩衝液(pH3.6、4.2、4,7、5.2、5.6)、MES-NaOH緩衝液(pH5.3、6.0、6.8)、Tris-HCl緩衝液(pH7.0、7.5、8.0、9.0)の各緩衝液にて3倍希釈し、4℃にて6時間静置したのち、各サンプルの残存活性を測定した。なお、基質を各緩衝液で希釈したのちのpHを測定し、その値を反応時のpHとした。
d pH安定性は、0.2M 酢酸-酢酸カリウム緩衝液(pH3.6、4.2、4,7、5.6、6.0)、MES-NaOH緩衝液(pH5.3、6.0、6.8)、Tris-HCl緩衝液(pH7.5、8.0、9.0)の各緩衝液にて10倍希釈し、4℃にて6時間静置したのち、各サンプルの残存活性を測定した。
e 金属イオン要求性は、ナトリウム、カリウム、リチウム、カルシウム、コバルト、マンガンの塩化物塩及びEDTA・2ナトリウム水溶液を、反応液内で2.5mM、5mM、10mMとなるように添加し、その時のPPase活性を測定した。
PPaseの温度依存性を図3aに、温度安定性を図3bに、pH依存性を図3cに、pH安定性を図3dに、金属イオン要求性を図4にそれぞれ示す。図3a~dより、PPaseは、最適温度は50℃、最適pHはpH5.42にあり、43℃ 2時間、及びpH4.7~6.8 6時間で80%以上の残存活性を維持した。
また、図4より、PPaseは、2.5~5.0mMのCa2+、Mg2+、Mn2+、Co2+等の2価金属陽イオンで活性化した。
また、図4より、PPaseは、2.5~5.0mMのCa2+、Mg2+、Mn2+、Co2+等の2価金属陽イオンで活性化した。
実施例1
(1)発酵乳の調製
おいしい牛乳(明治製)へ2%のスキムミルク(森永乳業製)を添加し、良く振り混ぜて溶解させ、沸騰水中で20分間撹拌しながら殺菌した。殺菌後の原料乳を43℃で約30分間保温したのち、スターターL812(Chr.Hansen社製)と表1に示したPPaseまたは20mM 酢酸-酢酸カリウム緩衝液(pH5.2)を酵素活性の終濃度が0~10U/mL-milkになるよう添加し、43℃にて4.5時間発酵させ、発酵乳を得た。
なお、PPaseは20mM酢酸-酢酸カリウム緩衝液(pH5.2)で適宜希釈したものを用いた。実施例1の発酵乳中のカゼイン量は3.3g/100gであった。
(1)発酵乳の調製
おいしい牛乳(明治製)へ2%のスキムミルク(森永乳業製)を添加し、良く振り混ぜて溶解させ、沸騰水中で20分間撹拌しながら殺菌した。殺菌後の原料乳を43℃で約30分間保温したのち、スターターL812(Chr.Hansen社製)と表1に示したPPaseまたは20mM 酢酸-酢酸カリウム緩衝液(pH5.2)を酵素活性の終濃度が0~10U/mL-milkになるよう添加し、43℃にて4.5時間発酵させ、発酵乳を得た。
なお、PPaseは20mM酢酸-酢酸カリウム緩衝液(pH5.2)で適宜希釈したものを用いた。実施例1の発酵乳中のカゼイン量は3.3g/100gであった。
(2)脱リン酸化カゼインの測定
発酵乳を蒸留水にて50倍希釈し、×2サンプルバッファーと等倍混合し、沸騰水中で5分間加熱し、測定サンプルとした。SuperSepTM Phos-tag(12.5%、富士フィルム和光純薬)へ、測定サンプル10μLをアプライし、25mMの定電流で泳動した。泳動後のゲルを染色・脱色したのち、画像処理ソフト(Image J)を用いて泳動パターンをグラフ化した。次いで、リン酸修飾の有無により変動する領域を設定し、各エリア面積を算出したのち、各酵素量における脱リン酸化カゼインの割合と脱リン酸化カゼイン量(絶対量)を算出した。
発酵乳を蒸留水にて50倍希釈し、×2サンプルバッファーと等倍混合し、沸騰水中で5分間加熱し、測定サンプルとした。SuperSepTM Phos-tag(12.5%、富士フィルム和光純薬)へ、測定サンプル10μLをアプライし、25mMの定電流で泳動した。泳動後のゲルを染色・脱色したのち、画像処理ソフト(Image J)を用いて泳動パターンをグラフ化した。次いで、リン酸修飾の有無により変動する領域を設定し、各エリア面積を算出したのち、各酵素量における脱リン酸化カゼインの割合と脱リン酸化カゼイン量(絶対量)を算出した。
(3)遊離リン酸濃度(mM)の測定
上記(1)で調製した発酵乳を激しく振り混ぜることでカードを均一化した。カードを均一化した発酵乳を1.5mL容エッペンチューブへ1mL分注し、15000r/min、4℃の条件で10分間遠心分離した。その上清の適宜希釈液200μLを、800μLの蒸留水へ添加し、次いで2M硫酸及び40g/Lモリブデン酸アンモニウム水溶液を30μL添加し、よく撹拌した。そこへ、0.1Mアスコルビン酸ナトリウム水溶液を50μL添加し、再度撹拌したのち、40℃で20分間保温した。その後、分光光度計(UV-1240、島津製作所製)を用いて880nmにおける吸光度を測定し、リン酸二水素カリウムを用いてあらかじめ作成した検量線によってリン酸濃度(mM)を算出した。
上記(1)で調製した発酵乳を激しく振り混ぜることでカードを均一化した。カードを均一化した発酵乳を1.5mL容エッペンチューブへ1mL分注し、15000r/min、4℃の条件で10分間遠心分離した。その上清の適宜希釈液200μLを、800μLの蒸留水へ添加し、次いで2M硫酸及び40g/Lモリブデン酸アンモニウム水溶液を30μL添加し、よく撹拌した。そこへ、0.1Mアスコルビン酸ナトリウム水溶液を50μL添加し、再度撹拌したのち、40℃で20分間保温した。その後、分光光度計(UV-1240、島津製作所製)を用いて880nmにおける吸光度を測定し、リン酸二水素カリウムを用いてあらかじめ作成した検量線によってリン酸濃度(mM)を算出した。
(4)結果
脱リン酸化カゼインの測定結果を表2に示す。遊離リン酸濃度の測定結果を図5に示した。
脱リン酸化カゼインの測定結果を表2に示す。遊離リン酸濃度の測定結果を図5に示した。
実施例2
(1)脱リン酸乳の調製
1N HClを用いてpH5.9に調整したおいしい牛乳(明治製)へ、300U/mLのPPaseを表3に示した量を添加し、43℃にて4時間静置し脱リン酸乳を得た。実施例2の脱リン酸乳中のカゼイン量は2.5g/100gであった。
(1)脱リン酸乳の調製
1N HClを用いてpH5.9に調整したおいしい牛乳(明治製)へ、300U/mLのPPaseを表3に示した量を添加し、43℃にて4時間静置し脱リン酸乳を得た。実施例2の脱リン酸乳中のカゼイン量は2.5g/100gであった。
(2)脱リン酸化カゼインの測定
PPaseを作用させた脱リン酸乳を用いた以外は、実施例1と同様の方法で脱リン酸化カゼインを測定した。
PPaseを作用させた脱リン酸乳を用いた以外は、実施例1と同様の方法で脱リン酸化カゼインを測定した。
(3)遊離リン酸濃度(mM)の測定
PPaseを作用させた脱リン酸乳を用いた以外は、実施例1と同様の方法で遊離リン酸濃度を測定した。
PPaseを作用させた脱リン酸乳を用いた以外は、実施例1と同様の方法で遊離リン酸濃度を測定した。
(4)結果
脱リン酸化カゼインの測定結果を表4に示す。遊離リン酸濃度の測定結果を図6に示した。
脱リン酸化カゼインの測定結果を表4に示す。遊離リン酸濃度の測定結果を図6に示した。
実施例3
(1)発酵乳の調製
500mL容メヂューム瓶へ低温殺菌牛乳(タカナシ乳業製)392gとスキムミルク(森永乳業製)8gを量り取り、良く振り混ぜて溶解させ、沸騰水中で20分間撹拌しながら殺菌した。殺菌後の原料乳を43℃で約30分間保温したのち、スターターL812(Chr.Hansen社製、以下同じ)を0.01g/mLになるように添加し、10回程度穏やかに転倒混和した。その後、表5のサンプルをあらかじめ添加した15mL容スクリューキャップチューブへ、スターターを添加した原料乳を10mLずつ分注し、フタをして2~3回穏やかに転倒混和したのち、43℃にて5時間発酵した。発酵後、4℃で一晩冷却して発酵乳を得た。発酵乳のpHをpHメーター(F72-S、HORIBA)で測定した。
(1)発酵乳の調製
500mL容メヂューム瓶へ低温殺菌牛乳(タカナシ乳業製)392gとスキムミルク(森永乳業製)8gを量り取り、良く振り混ぜて溶解させ、沸騰水中で20分間撹拌しながら殺菌した。殺菌後の原料乳を43℃で約30分間保温したのち、スターターL812(Chr.Hansen社製、以下同じ)を0.01g/mLになるように添加し、10回程度穏やかに転倒混和した。その後、表5のサンプルをあらかじめ添加した15mL容スクリューキャップチューブへ、スターターを添加した原料乳を10mLずつ分注し、フタをして2~3回穏やかに転倒混和したのち、43℃にて5時間発酵した。発酵後、4℃で一晩冷却して発酵乳を得た。発酵乳のpHをpHメーター(F72-S、HORIBA)で測定した。
(2)離水率の測定
上記(1)で調製した発酵乳サンプルを激しく振り混ぜることでカードを均一化し、約5mLを15mL容目盛り付きスクリューキャップチューブへ分注したのち、3000r/min(KOKUSAN製、H-19F MR)、8℃の条件で10分間遠心分離した。その後、サンプル全量と固形分の体積を読み取り、次式で離水率を算出した。
離水率(%)=100-((固形分体積/サンプル体積)×100)
上記(1)で調製した発酵乳サンプルを激しく振り混ぜることでカードを均一化し、約5mLを15mL容目盛り付きスクリューキャップチューブへ分注したのち、3000r/min(KOKUSAN製、H-19F MR)、8℃の条件で10分間遠心分離した。その後、サンプル全量と固形分の体積を読み取り、次式で離水率を算出した。
離水率(%)=100-((固形分体積/サンプル体積)×100)
(3)遊離リン酸濃度(mM)の測定
カードを均一化した発酵乳サンプルを1.5mL容エッペンチューブへ1mL分注し、15000r/min(TOMY製、微量高速冷却遠心機 MRX-150)、4℃の条件で10分間遠心分離した。その上清の適宜希釈液200μLを、800μLの蒸留水へ添加し、次いで2M硫酸及び40g/Lモリブデン酸アンモニウム水溶液を30μL添加し、よく撹拌した。そこへ、0.1Mアスコルビン酸ナトリウム水溶液を50μL添加し、再度撹拌したのち、40℃で20分間保温した。その後、分光光度計(UV-1240、島津製作所製)を用いて880nmにおける吸光度を測定し、リン酸二水素カリウムを用いてあらかじめ作成した検量線によってリン酸濃度(mM)を算出した。
カードを均一化した発酵乳サンプルを1.5mL容エッペンチューブへ1mL分注し、15000r/min(TOMY製、微量高速冷却遠心機 MRX-150)、4℃の条件で10分間遠心分離した。その上清の適宜希釈液200μLを、800μLの蒸留水へ添加し、次いで2M硫酸及び40g/Lモリブデン酸アンモニウム水溶液を30μL添加し、よく撹拌した。そこへ、0.1Mアスコルビン酸ナトリウム水溶液を50μL添加し、再度撹拌したのち、40℃で20分間保温した。その後、分光光度計(UV-1240、島津製作所製)を用いて880nmにおける吸光度を測定し、リン酸二水素カリウムを用いてあらかじめ作成した検量線によってリン酸濃度(mM)を算出した。
(4)結果
結果を図7に示す。図7より、PPaseを加えた発酵乳は無添加(Blank)と比べて離水率が低かった。他方、PPaseの反応生成物であるリン酸を含有するが脱リン酸化カゼインを含有しない発酵乳は離水抑制されなかった。
また、図7より、発酵時のPPaseの添加によって、無添加(Blank)と比べて離水抑制の効果が認められた。他方、PPaseの反応生成物であるリン酸を添加しても離水は抑制されなかった。
結果を図7に示す。図7より、PPaseを加えた発酵乳は無添加(Blank)と比べて離水率が低かった。他方、PPaseの反応生成物であるリン酸を含有するが脱リン酸化カゼインを含有しない発酵乳は離水抑制されなかった。
また、図7より、発酵時のPPaseの添加によって、無添加(Blank)と比べて離水抑制の効果が認められた。他方、PPaseの反応生成物であるリン酸を添加しても離水は抑制されなかった。
実施例4
(1)発酵乳の調製
500mL容メヂューム瓶へ低温殺菌牛乳(タカナシ乳業製)を392gとスキムミルク(森永乳業製)を8g量り取り、良く振り混ぜて溶解し、沸騰水中で20分間加熱殺菌したのち、43℃で約30分間保温した。そこへ、スターターL812を40mg添加し、穏やかに10回転倒混和した。その後、1.46mLの適宜希釈した精製PPase(1.0U/mL-milk又は3.0U/mL-milk)又は20mM酢酸-酢酸K緩衝液(pH5.2)をあらかじめ分注したジャム瓶へ原料乳を60gずつ量り入れ、5回転倒混和したのち、43℃で4.5時間発酵した。発酵後、4℃で一晩冷却して発酵乳を得た。発酵乳のpHをpHメーター(サーモフィッシャー製、ORION 3 STAR)で測定した。
(1)発酵乳の調製
500mL容メヂューム瓶へ低温殺菌牛乳(タカナシ乳業製)を392gとスキムミルク(森永乳業製)を8g量り取り、良く振り混ぜて溶解し、沸騰水中で20分間加熱殺菌したのち、43℃で約30分間保温した。そこへ、スターターL812を40mg添加し、穏やかに10回転倒混和した。その後、1.46mLの適宜希釈した精製PPase(1.0U/mL-milk又は3.0U/mL-milk)又は20mM酢酸-酢酸K緩衝液(pH5.2)をあらかじめ分注したジャム瓶へ原料乳を60gずつ量り入れ、5回転倒混和したのち、43℃で4.5時間発酵した。発酵後、4℃で一晩冷却して発酵乳を得た。発酵乳のpHをpHメーター(サーモフィッシャー製、ORION 3 STAR)で測定した。
(2)離水率の測定
実施例3と同様の方法で測定した。
実施例3と同様の方法で測定した。
(3)遊離リン酸濃度(mM)の測定
実施例3と同様の方法で測定した。
実施例3と同様の方法で測定した。
(4)EPS測定
発酵乳サンプルを0.4g秤量し、100%(w/v)TCA溶液を200μL添加して転倒混和し、15000r/min(TOMY製、微量高速冷却遠心機 MRX-150、以下同じ)、4℃の条件で10分間遠心分離した。その上清全量を新しいエッペンチューブへ回収し、アセトンを500μL添加し、4℃で一晩静置した。その後、15000r/min、4℃の条件で10分間遠心分離し、上清を廃棄したのち、沈殿したペレットを400μLのMilliQ水で溶解し、次いでアセトンを400μL添加して転倒混和し4℃で一晩静置した。その後、15000r/min、4℃の条件で10分間遠心分離し、上清を廃棄したのち、沈殿物を300μLのMilliQ水に溶解した。その溶解液を15000r/min、4℃の条件で10分間遠心分離し、上清を回収した。そのうち100μLを用いてHPLC(Waters)により単糖及び二糖量を測定した。さらに残りの200μLを用いてフェノール硫酸法によって全糖量を測定した。全糖量から単糖及び二糖を差し引くことで、3糖以上の菌体外多糖量を算出した。
発酵乳サンプルを0.4g秤量し、100%(w/v)TCA溶液を200μL添加して転倒混和し、15000r/min(TOMY製、微量高速冷却遠心機 MRX-150、以下同じ)、4℃の条件で10分間遠心分離した。その上清全量を新しいエッペンチューブへ回収し、アセトンを500μL添加し、4℃で一晩静置した。その後、15000r/min、4℃の条件で10分間遠心分離し、上清を廃棄したのち、沈殿したペレットを400μLのMilliQ水で溶解し、次いでアセトンを400μL添加して転倒混和し4℃で一晩静置した。その後、15000r/min、4℃の条件で10分間遠心分離し、上清を廃棄したのち、沈殿物を300μLのMilliQ水に溶解した。その溶解液を15000r/min、4℃の条件で10分間遠心分離し、上清を回収した。そのうち100μLを用いてHPLC(Waters)により単糖及び二糖量を測定した。さらに残りの200μLを用いてフェノール硫酸法によって全糖量を測定した。全糖量から単糖及び二糖を差し引くことで、3糖以上の菌体外多糖量を算出した。
(5)粘度測定
発酵乳サンプルを激しく振り混ぜることで均一化し、粘度計(DV-I Prime、BROOK FIERD)用使い捨てサンプルチャンバー(アルミ製)へ13.5g分注した。スピンドルはSC4-29を用い、10r/minにて測定し、30秒毎に粘度を読み取り、記録した。なお、すべての操作は10℃環境下で行った。
発酵乳サンプルを激しく振り混ぜることで均一化し、粘度計(DV-I Prime、BROOK FIERD)用使い捨てサンプルチャンバー(アルミ製)へ13.5g分注した。スピンドルはSC4-29を用い、10r/minにて測定し、30秒毎に粘度を読み取り、記録した。なお、すべての操作は10℃環境下で行った。
(6)破断強度解析
装置はクリープメーターRE2-33005C(山電製)を用い、プランジャーはNo.3を用いた。
測定は、ロードセル0.01、アンプ倍率0.1、格納ピッチ0.07秒、測定歪率60%、測定速度1mm/秒、サンプル厚さ自動測定で行った。
装置はクリープメーターRE2-33005C(山電製)を用い、プランジャーはNo.3を用いた。
測定は、ロードセル0.01、アンプ倍率0.1、格納ピッチ0.07秒、測定歪率60%、測定速度1mm/秒、サンプル厚さ自動測定で行った。
(7)結果
離水率、遊離リン酸濃度及び発酵後pHの測定結果を図8に、EPS濃度を図9に、粘度の測定結果を図10に、破断強度解析結果を図11にそれぞれ示す。
脱リン酸化カゼインを含有する発酵乳は、無添加(Blank)と比べて、離水率が低く(図8)、菌体外多糖(EPS)量は多かった(図9)。当該発酵乳の粘度は、無添加より1000cP以上高かった(図10)。また、当該発酵乳の破断応力は、無添加に比べて高く、破断後の応力の低下(=もろさ)が減少した(図11)。
離水率、遊離リン酸濃度及び発酵後pHの測定結果を図8に、EPS濃度を図9に、粘度の測定結果を図10に、破断強度解析結果を図11にそれぞれ示す。
脱リン酸化カゼインを含有する発酵乳は、無添加(Blank)と比べて、離水率が低く(図8)、菌体外多糖(EPS)量は多かった(図9)。当該発酵乳の粘度は、無添加より1000cP以上高かった(図10)。また、当該発酵乳の破断応力は、無添加に比べて高く、破断後の応力の低下(=もろさ)が減少した(図11)。
実施例5
(1)発酵乳の調製
250mL容メヂューム瓶5本へ低温殺菌牛乳(タカナシ乳業製)を147gとスキムミルク(森永乳業製)を3g量り取り、よく振り混ぜて溶解した。その後、沸騰水中で20分間加熱殺菌したのち、43℃で約30分間保温した。そこへ、表6に示した各種スターター(すべてChr.hansen社製)を添加し、穏やかに10回転倒混和した。その後、0.488mLの123U/mLの精製PPase(Final 1.0U/mL-milk)又は20mM酢酸-酢酸K緩衝液(pH5.2)をあらかじめ分注したジャム瓶へ原料乳を60gずつ量り入れ、5回転倒混和したのち、43℃で4.5時間発酵した。発酵後、4℃で一晩冷却して発酵乳を得た。
(1)発酵乳の調製
250mL容メヂューム瓶5本へ低温殺菌牛乳(タカナシ乳業製)を147gとスキムミルク(森永乳業製)を3g量り取り、よく振り混ぜて溶解した。その後、沸騰水中で20分間加熱殺菌したのち、43℃で約30分間保温した。そこへ、表6に示した各種スターター(すべてChr.hansen社製)を添加し、穏やかに10回転倒混和した。その後、0.488mLの123U/mLの精製PPase(Final 1.0U/mL-milk)又は20mM酢酸-酢酸K緩衝液(pH5.2)をあらかじめ分注したジャム瓶へ原料乳を60gずつ量り入れ、5回転倒混和したのち、43℃で4.5時間発酵した。発酵後、4℃で一晩冷却して発酵乳を得た。
(2)脱リン酸化カゼインの測定、(3)離水率の測定、(4)遊離リン酸濃度(mM)の測定、(5)EPS測定、(6)粘度測定、(7)破断強度解析
上記実施例4と同様の方法により測定した。
上記実施例4と同様の方法により測定した。
(8)結果
離水率、遊離リン酸濃度及び発酵後pHの測定結果を図12に、EPS濃度を図13に、粘度の測定結果を図14に、破断強度解析結果を図15にそれぞれ示す。
脱リン酸化カゼインを含有する発酵乳は、無添加(Blank)と比べて、離水率が低く(図12)、菌体外多糖(EPS)量は多かった(図13)。当該発酵乳の粘度は、無添加より1000~2000cP高かった(図14)。また、当該発酵乳の破断応力は、無添加に比べて高かった(図15)。
また、PPaseの添加により、無添加(Blank)と比べて、すべてのスターターで離水抑制、遊離リン酸量増加、pHの低下が見られた(図12)。菌体外多糖(EPS)量は、すべてのスターターで無添加より増加した(図13)。発酵乳の粘度測定の結果、粘度は1000~2000cP上昇した(図14)。また、発酵乳の破断強度解析を実施した結果、すべてのスターターで破断応力の上昇を確認した(図15)。
離水率、遊離リン酸濃度及び発酵後pHの測定結果を図12に、EPS濃度を図13に、粘度の測定結果を図14に、破断強度解析結果を図15にそれぞれ示す。
脱リン酸化カゼインを含有する発酵乳は、無添加(Blank)と比べて、離水率が低く(図12)、菌体外多糖(EPS)量は多かった(図13)。当該発酵乳の粘度は、無添加より1000~2000cP高かった(図14)。また、当該発酵乳の破断応力は、無添加に比べて高かった(図15)。
また、PPaseの添加により、無添加(Blank)と比べて、すべてのスターターで離水抑制、遊離リン酸量増加、pHの低下が見られた(図12)。菌体外多糖(EPS)量は、すべてのスターターで無添加より増加した(図13)。発酵乳の粘度測定の結果、粘度は1000~2000cP上昇した(図14)。また、発酵乳の破断強度解析を実施した結果、すべてのスターターで破断応力の上昇を確認した(図15)。
実施例6(1)発酵乳の調製
500mL容メヂューム瓶へ低温殺菌牛乳(タカナシ乳業製)を392gとスキムミルク(森永乳業製)を8g量り取り、良く振り混ぜて溶解し、沸騰水中で20分間加熱殺菌したのち、43℃で約30分間保温した。そこへ、スターターL812を40mg添加し、穏やかに10回転倒混和した。その後、1.46mLの適宜希釈した精製PPaseまたは20mM酢酸-酢酸K緩衝液(pH5.2)をあらかじめ分注したジャム瓶へ原料乳を60gずつ量り入れ、5回転倒混和したのち、43℃で4.5時間発酵した。発酵後、4℃で一晩冷却して発酵乳を得た。発酵乳のpHをpHメーター(サーモフィッシャー製、ORION 3 STAR)で測定した。
500mL容メヂューム瓶へ低温殺菌牛乳(タカナシ乳業製)を392gとスキムミルク(森永乳業製)を8g量り取り、良く振り混ぜて溶解し、沸騰水中で20分間加熱殺菌したのち、43℃で約30分間保温した。そこへ、スターターL812を40mg添加し、穏やかに10回転倒混和した。その後、1.46mLの適宜希釈した精製PPaseまたは20mM酢酸-酢酸K緩衝液(pH5.2)をあらかじめ分注したジャム瓶へ原料乳を60gずつ量り入れ、5回転倒混和したのち、43℃で4.5時間発酵した。発酵後、4℃で一晩冷却して発酵乳を得た。発酵乳のpHをpHメーター(サーモフィッシャー製、ORION 3 STAR)で測定した。
(2)離水率の測定、(3)遊離リン酸濃度(mM)の測定、(4)EPS測定
上記実施例4と同様の方法により測定した。
上記実施例4と同様の方法により測定した。
(5)粘度測定
発酵乳サンプルを激しく振り混ぜることで均一化し、粘度計(DV-I Prime、BROOK FIERD)用使い捨てサンプルチャンバー(アルミ製)へ13.5g分注した。スピンドルはSC4-29を用い、10r/minにて測定し、30秒毎に粘度を読み取り、記録した。なお、すべての操作は10℃環境下で行った。
発酵乳サンプルを激しく振り混ぜることで均一化し、粘度計(DV-I Prime、BROOK FIERD)用使い捨てサンプルチャンバー(アルミ製)へ13.5g分注した。スピンドルはSC4-29を用い、10r/minにて測定し、30秒毎に粘度を読み取り、記録した。なお、すべての操作は10℃環境下で行った。
(6)破断強度解析
装置はクリープメーターRE2-33005C(山電製)を用い、プランジャーはNo.3を用いた。測定は、ロードセル0.01、アンプ倍率0.1、格納ピッチ0.07秒、測定歪率60%、測定速度1mm/秒、サンプル厚さ自動測定で行った。
装置はクリープメーターRE2-33005C(山電製)を用い、プランジャーはNo.3を用いた。測定は、ロードセル0.01、アンプ倍率0.1、格納ピッチ0.07秒、測定歪率60%、測定速度1mm/秒、サンプル厚さ自動測定で行った。
(7)結果
離水率、遊離リン酸濃度及び発酵後pHの測定結果を図16に、EPS濃度を図17に、粘度の測定結果を図18に、破断強度解析結果を図19にそれぞれ示す。発酵乳に0.1~3.0U/mL-milkの範囲でPPaseを添加したところ、無添加(Blank)と比べて、離水抑制、遊離リン酸量増加、pHの低下が見られた(図16)。菌体外多糖(EPS)量は、1.0及び3.0U/mL-milkのPPase添加において、無添加より増加した(図17)。PPaseを添加した発酵乳の粘度を測定した結果、0.1~0.5U/mL-milkのPPase添加で、無添加より1000cP程度上昇し、1.0及び3.0U/mL-milkのPPase添加でさらに上昇した(図18)。また、PPaseを添加した発酵乳の破断強度解析を実施した結果、濃度依存性は見られなかったものの、無添加に比べて破断応力が増加した。また、0.5U/mL-milk以上のPPase添加では、破断後の応力の低下(=もろさ)が減少した(図19)。
離水率、遊離リン酸濃度及び発酵後pHの測定結果を図16に、EPS濃度を図17に、粘度の測定結果を図18に、破断強度解析結果を図19にそれぞれ示す。発酵乳に0.1~3.0U/mL-milkの範囲でPPaseを添加したところ、無添加(Blank)と比べて、離水抑制、遊離リン酸量増加、pHの低下が見られた(図16)。菌体外多糖(EPS)量は、1.0及び3.0U/mL-milkのPPase添加において、無添加より増加した(図17)。PPaseを添加した発酵乳の粘度を測定した結果、0.1~0.5U/mL-milkのPPase添加で、無添加より1000cP程度上昇し、1.0及び3.0U/mL-milkのPPase添加でさらに上昇した(図18)。また、PPaseを添加した発酵乳の破断強度解析を実施した結果、濃度依存性は見られなかったものの、無添加に比べて破断応力が増加した。また、0.5U/mL-milk以上のPPase添加では、破断後の応力の低下(=もろさ)が減少した(図19)。
実施例7(原料乳の酵素処理)
(1)発酵乳の調製
500mL容メヂューム瓶へ超高温瞬間殺菌牛乳(明治製 おいしい牛乳)または低温殺菌牛乳(タカナシ乳業製)を392gとスキムミルク(森永乳業製)を8g量り取り、良く振り混ぜて溶解した。そこへ、2mLの精製PPase(700U/mL、Final 23.3U/mL-milk)または20mM酢酸-酢酸K緩衝液(pH5.2)を添加し、5回転倒混和した。次いで、60gずつジャム瓶へ量り入れ、5回転倒混和したのち、37℃で3時間静置し、酵素処理乳を得た。各ジャム瓶を沸騰水中で20分間煮沸することでPPaseを失活させた。次いで、室温まで冷却後、各ジャム瓶にスターターL812を20mg添加し、穏やかに10回転倒混和し、43℃で4.5時間発酵させた。発酵後、4℃で一晩冷却して発酵乳を得た。発酵乳のpHをpHメーター(サーモフィッシャー製、ORION 3 STAR)で測定した。
(1)発酵乳の調製
500mL容メヂューム瓶へ超高温瞬間殺菌牛乳(明治製 おいしい牛乳)または低温殺菌牛乳(タカナシ乳業製)を392gとスキムミルク(森永乳業製)を8g量り取り、良く振り混ぜて溶解した。そこへ、2mLの精製PPase(700U/mL、Final 23.3U/mL-milk)または20mM酢酸-酢酸K緩衝液(pH5.2)を添加し、5回転倒混和した。次いで、60gずつジャム瓶へ量り入れ、5回転倒混和したのち、37℃で3時間静置し、酵素処理乳を得た。各ジャム瓶を沸騰水中で20分間煮沸することでPPaseを失活させた。次いで、室温まで冷却後、各ジャム瓶にスターターL812を20mg添加し、穏やかに10回転倒混和し、43℃で4.5時間発酵させた。発酵後、4℃で一晩冷却して発酵乳を得た。発酵乳のpHをpHメーター(サーモフィッシャー製、ORION 3 STAR)で測定した。
(2)離水率の測定、(3)遊離リン酸濃度(mM)の測定
上記実施例4と同様の方法により測定した。
上記実施例4と同様の方法により測定した。
(4)結果
離水率、遊離リン酸濃度及び発酵後pHの測定結果を図20に示す。PPase処理原料乳の発酵により、無添加(Blank)と比べて、離水抑制、遊離リン酸量増加、pHの低下が見られた(図20)。この結果は、乳に含まれるカゼインが脱リン酸化されていれば良く、発酵中または発酵乳中においてPPaseが活性状態で存在する必要は必ずしもないことが示唆された。
離水率、遊離リン酸濃度及び発酵後pHの測定結果を図20に示す。PPase処理原料乳の発酵により、無添加(Blank)と比べて、離水抑制、遊離リン酸量増加、pHの低下が見られた(図20)。この結果は、乳に含まれるカゼインが脱リン酸化されていれば良く、発酵中または発酵乳中においてPPaseが活性状態で存在する必要は必ずしもないことが示唆された。
実施例8
(1)発酵乳の調製
500mL容メヂューム瓶へ超高温瞬間殺菌牛乳(明治製 おいしい牛乳)392gとスキムミルク(森永乳業製)8gを量り取り、良く振り混ぜて溶解させ、沸騰水中で20分間撹拌しながら殺菌した。殺菌後の原料乳を43℃で約30分間保温したのち、0.571mLの精製PPase(350U/mL、Final 1U/mL-milk)または20mM酢酸-酢酸カリウム緩衝液(pH4.5)とスターターL812を20mg添加し、10回程度穏やかに転倒混和した。15mL容スクリューキャップチューブへ10gずつ8本分注し、フタをして2~3回穏やかに転倒混和したのち、43℃にて5時間発酵した。発酵後、4℃で一晩冷却して発酵乳を得た。発酵前、発酵開始から2.5時間、3時間、3.5時間、4時間、4.5時間のpHをpHメーター(サーモフィッシャー製、ORION 3 STAR)で測定した。
(1)発酵乳の調製
500mL容メヂューム瓶へ超高温瞬間殺菌牛乳(明治製 おいしい牛乳)392gとスキムミルク(森永乳業製)8gを量り取り、良く振り混ぜて溶解させ、沸騰水中で20分間撹拌しながら殺菌した。殺菌後の原料乳を43℃で約30分間保温したのち、0.571mLの精製PPase(350U/mL、Final 1U/mL-milk)または20mM酢酸-酢酸カリウム緩衝液(pH4.5)とスターターL812を20mg添加し、10回程度穏やかに転倒混和した。15mL容スクリューキャップチューブへ10gずつ8本分注し、フタをして2~3回穏やかに転倒混和したのち、43℃にて5時間発酵した。発酵後、4℃で一晩冷却して発酵乳を得た。発酵前、発酵開始から2.5時間、3時間、3.5時間、4時間、4.5時間のpHをpHメーター(サーモフィッシャー製、ORION 3 STAR)で測定した。
(2)結果
結果を図21に示す。酢酸-酢酸カリウム緩衝液を加えた無添加(Blank)に対して、PPaseを添加したものはpHの低下が早くなることを確認した。PPaseによりリン酸が増大したものと推測される。また、PPaseを添加したものは凝乳が早くなることも確認した。
結果を図21に示す。酢酸-酢酸カリウム緩衝液を加えた無添加(Blank)に対して、PPaseを添加したものはpHの低下が早くなることを確認した。PPaseによりリン酸が増大したものと推測される。また、PPaseを添加したものは凝乳が早くなることも確認した。
実施例9(発酵後のpHを約4.5に合わせるように発酵時間を調整)
(1)発酵乳の調製
15mL容スクリューキャップチューブのかわりにジャム瓶へ60g分注したこと、発酵後のpHを合わせるために、緩衝液を添加した系の発酵時間を4.75時間、PPaseを添加した系の発酵時間を3.5時間としたこと以外は実施例8と同様にして発酵乳を調製した。発酵乳のpHをpHメーター(サーモフィッシャー製、ORION 3 STAR)で測定した。
(1)発酵乳の調製
15mL容スクリューキャップチューブのかわりにジャム瓶へ60g分注したこと、発酵後のpHを合わせるために、緩衝液を添加した系の発酵時間を4.75時間、PPaseを添加した系の発酵時間を3.5時間としたこと以外は実施例8と同様にして発酵乳を調製した。発酵乳のpHをpHメーター(サーモフィッシャー製、ORION 3 STAR)で測定した。
(2)離水率の測定、(3)遊離リン酸濃度(mM)の測定
上記実施例4と同様の方法により測定した。
上記実施例4と同様の方法により測定した。
(4)結果
結果を図22に示す。発酵後のpHが約4.5と同じにもかかわらず、無添加(Blank)と比べて、発酵時のPPaseの添加によって離水抑制、遊離リン酸量増加が見られた。このことから、離水率の減少や遊離リン酸量増加は、発酵後のpHによる影響ではなく、PPaseの作用によって得られることが示唆された。
結果を図22に示す。発酵後のpHが約4.5と同じにもかかわらず、無添加(Blank)と比べて、発酵時のPPaseの添加によって離水抑制、遊離リン酸量増加が見られた。このことから、離水率の減少や遊離リン酸量増加は、発酵後のpHによる影響ではなく、PPaseの作用によって得られることが示唆された。
参考例(酵素処理乳における遊離リン酸濃度及びカルシウムイオン濃度)
(1)酵素処理乳の調製
超高温瞬間殺菌牛乳(明治製 おいしい牛乳 pH6.76)0.45mLまたは当該牛乳に1M塩酸を加えてpH5.48に調整した乳に、精製PPase0.05mL(700U/mL)を添加し、37℃で所定時間反応させたのち、18%トリクロロ酢酸を0.5mL添加し混合して反応を停止させ、酵素処理乳を得た。
(1)酵素処理乳の調製
超高温瞬間殺菌牛乳(明治製 おいしい牛乳 pH6.76)0.45mLまたは当該牛乳に1M塩酸を加えてpH5.48に調整した乳に、精製PPase0.05mL(700U/mL)を添加し、37℃で所定時間反応させたのち、18%トリクロロ酢酸を0.5mL添加し混合して反応を停止させ、酵素処理乳を得た。
(2)遊離リン酸濃度の測定
酵素処理前後の遊離リン酸濃度(mM)を、上記実施例3と同様の方法により測定した。
酵素処理前後の遊離リン酸濃度(mM)を、上記実施例3と同様の方法により測定した。
(3)カルシウムイオン濃度の測定 カルシウムイオンセンサー(堀場製作所製 LAQUA twin)に酵素処理前後の乳を無希釈で乗せ測定した。
(4)結果
結果を図23に示した。pH5.48に調整した乳は、pH6.76の乳よりもPPaseの反応性が高く、遊離リン酸濃度が一時的に上昇したが、一定値に収束した。pH6.76の乳は経時的に上昇し、一定値に収束した。PPaseを添加したいずれの乳においても遊離リン酸濃度は一定値に収束した。酵素反応に伴い、カルシウムイオン濃度も変化するため、乳中にリン酸カルシウムが生成しており、一定の濃度で平衡状態となっていることが示唆された。
結果を図23に示した。pH5.48に調整した乳は、pH6.76の乳よりもPPaseの反応性が高く、遊離リン酸濃度が一時的に上昇したが、一定値に収束した。pH6.76の乳は経時的に上昇し、一定値に収束した。PPaseを添加したいずれの乳においても遊離リン酸濃度は一定値に収束した。酵素反応に伴い、カルシウムイオン濃度も変化するため、乳中にリン酸カルシウムが生成しており、一定の濃度で平衡状態となっていることが示唆された。
Claims (16)
- 脱リン酸化カゼインを0.8g/100g以上含有する発酵乳。
- 脱リン酸化カゼインの含有量が0.8~1.5g/100gである請求項1記載の発酵乳。
- 遊離リン酸の含有量が15mM以上である請求項1又は2記載の発酵乳。
- ヨーグルトである請求項1~3のいずれか1項記載の発酵乳。
- 脱リン酸化カゼインを含有する脱リン酸乳。
- 脱リン酸化カゼインの含有量が0.8g/100g以上である請求項5記載の脱リン酸乳。
- 以下のいずれかの工程を含む、発酵乳の製造方法。
(a)プロテインホスファターゼの存在下で、原料乳を発酵させる工程
(b)プロテインホスファターゼで酵素処理してなる原料乳を発酵させる工程 - プロテインホスファターゼが、トリコデルマ属に属する微生物由来のプロテインホスファターゼである請求項7記載の発酵乳の製造方法。
- トリコデルマ属に属する微生物がトリコデルマ・ビレンスである請求項8記載の発酵乳の製造方法。
- プロテインホスファターゼが、下記(i)~(iii)のいずれかである請求項7~9のいずれか1項記載の発酵乳の製造方法。
(i)配列番号2で示されるアミノ酸配列からなるタンパク質
(ii)配列番号2で示されるアミノ酸配列において1~数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
(iii)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質 - 発酵乳がヨーグルトである請求項7~10のいずれか1項記載の発酵乳の製造方法。
- プロテインホスファターゼを含有する発酵乳用酵素剤。
- プロテインホスファターゼが、トリコデルマ属に属する微生物由来のプロテインホスファターゼである請求項12記載の発酵乳用酵素剤。
- トリコデルマ属に属する微生物がトリコデルマ・ビレンスである請求項13記載の発酵乳用酵素剤。
- プロテインホスファターゼが、下記(i)~(iii)のいずれかである請求項12~14のいずれか1項記載の発酵乳用酵素剤。
(i)配列番号2で示されるアミノ酸配列からなるタンパク質
(ii)配列番号2で示されるアミノ酸配列において1~数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
(iii)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質 - 下記(i)~(iii)のいずれかであるプロテインホスファターゼ活性を有するタンパク質。
(i)配列番号2で示されるアミノ酸配列からなるタンパク質
(ii)配列番号2で示されるアミノ酸配列において1~数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
(iii)配列番号2で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、プロテインホスファターゼ活性を有するタンパク質
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/995,940 US20230210122A1 (en) | 2020-04-13 | 2021-04-12 | Fermented milk, manufacturing method therefor, and dephosphorylated milk |
EP21787957.6A EP4136979A4 (en) | 2020-04-13 | 2021-04-12 | FERMENTED MILK, ITS MANUFACTURING PROCESS AND DEPHOSPHORYLATED MILK |
JP2022515374A JPWO2021210539A1 (ja) | 2020-04-13 | 2021-04-12 | |
CN202180027811.9A CN115397247A (zh) | 2020-04-13 | 2021-04-12 | 发酵乳及其制造方法、以及脱磷酸乳 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020071708 | 2020-04-13 | ||
JP2020-071708 | 2020-04-13 | ||
JP2020-071709 | 2020-04-13 | ||
JP2020071709 | 2020-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021210539A1 true WO2021210539A1 (ja) | 2021-10-21 |
Family
ID=78084799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/015188 WO2021210539A1 (ja) | 2020-04-13 | 2021-04-12 | 発酵乳及びその製造方法、並びに脱リン酸乳 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230210122A1 (ja) |
EP (1) | EP4136979A4 (ja) |
JP (1) | JPWO2021210539A1 (ja) |
CN (1) | CN115397247A (ja) |
WO (1) | WO2021210539A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS485913B1 (ja) * | 1964-09-13 | 1973-02-21 | ||
US6355297B1 (en) * | 1998-08-11 | 2002-03-12 | N.V. Nutricia | Protein component for dietetic food |
WO2015041194A1 (ja) | 2013-09-17 | 2015-03-26 | 株式会社明治 | 物性が改良された発酵乳の製造方法 |
CN105695542A (zh) * | 2016-03-11 | 2016-06-22 | 江南大学 | 一种制备部分脱磷酸化牛乳酪蛋白以模拟人乳酪蛋白磷酸化水平的方法 |
WO2017006926A1 (ja) * | 2015-07-06 | 2017-01-12 | 合同酒精株式会社 | 乳製品 |
JP2017184682A (ja) * | 2016-04-07 | 2017-10-12 | 森永乳業株式会社 | 発酵乳の製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5068118A (en) * | 1990-07-25 | 1991-11-26 | Kraft General Foods, Inc. | Method of making simulated cheese containing casein materials |
JP2002037796A (ja) * | 1994-08-11 | 2002-02-06 | Ezaki Glico Co Ltd | リン酸化糖とその製造方法 |
RU2092066C1 (ru) * | 1995-03-29 | 1997-10-10 | Всероссийский научно-исследовательский институт маслоделия и сыроделия | Способ получения препарата для ускорения созревания и улучшения качества мелких сычужных сыров |
GB0116509D0 (en) * | 2001-07-06 | 2001-08-29 | Hannah Res Inst The | Methods of extracting casein fractions from milk and caseinates and production of novel products |
DK2439267T3 (da) * | 2005-11-28 | 2019-11-11 | Dsm Ip Assets Bv | Enzympræparater, der giver en ren smag |
SG11201400553QA (en) * | 2011-09-15 | 2014-06-27 | Meiji Co Ltd | Low calorie yogurt and method for producing same |
WO2013133727A1 (en) * | 2012-03-09 | 2013-09-12 | Fanning Aaron Calvin | Uses of casein compositions |
-
2021
- 2021-04-12 WO PCT/JP2021/015188 patent/WO2021210539A1/ja unknown
- 2021-04-12 CN CN202180027811.9A patent/CN115397247A/zh active Pending
- 2021-04-12 US US17/995,940 patent/US20230210122A1/en active Pending
- 2021-04-12 JP JP2022515374A patent/JPWO2021210539A1/ja active Pending
- 2021-04-12 EP EP21787957.6A patent/EP4136979A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS485913B1 (ja) * | 1964-09-13 | 1973-02-21 | ||
US6355297B1 (en) * | 1998-08-11 | 2002-03-12 | N.V. Nutricia | Protein component for dietetic food |
WO2015041194A1 (ja) | 2013-09-17 | 2015-03-26 | 株式会社明治 | 物性が改良された発酵乳の製造方法 |
WO2017006926A1 (ja) * | 2015-07-06 | 2017-01-12 | 合同酒精株式会社 | 乳製品 |
CN105695542A (zh) * | 2016-03-11 | 2016-06-22 | 江南大学 | 一种制备部分脱磷酸化牛乳酪蛋白以模拟人乳酪蛋白磷酸化水平的方法 |
JP2017184682A (ja) * | 2016-04-07 | 2017-10-12 | 森永乳業株式会社 | 発酵乳の製造方法 |
Non-Patent Citations (3)
Title |
---|
DATABASE UniProtKB [online] 10 May 2017 (2017-05-10), XP055868030, Database accession no. A0A1T3CP59 * |
DATABASE UniProtKB [online] 22 February 2012 (2012-02-22), XP055868027, Database accession no. G9NAA9 * |
See also references of EP4136979A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021210539A1 (ja) | 2021-10-21 |
EP4136979A1 (en) | 2023-02-22 |
US20230210122A1 (en) | 2023-07-06 |
EP4136979A4 (en) | 2024-05-08 |
CN115397247A (zh) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018267948B2 (en) | Glycosylated beta-galactosidase compositions having improved transgalactosylating activity | |
JP6757810B2 (ja) | 風味が改善された発酵乳およびその製造方法 | |
EP2642861B1 (en) | Use of glycosidase in preparation of a milk product | |
US12215367B2 (en) | Lactase enzymes with improved properties | |
JP5627022B2 (ja) | 低脂肪又は無脂肪ヨーグルト及びその製造方法 | |
JPWO2010035825A1 (ja) | 改質乳の製造方法 | |
EP2393369B1 (en) | Method for producing an acidified milk product | |
EP2393370A2 (en) | Method for producing an acidified milk product | |
AU2022205242A1 (en) | Lactase enzymes with improved properties | |
CA2808817A1 (en) | Fermented milk having little lactose and method for producing same | |
EP2531039B1 (en) | Use of sialidase in dairy technology | |
JP2021072846A (ja) | 乳酸菌スターターの調製方法及び発酵乳の製造方法 | |
WO2021210539A1 (ja) | 発酵乳及びその製造方法、並びに脱リン酸乳 | |
US20210032615A1 (en) | Lactase enzymes with improved properties | |
JP2020048510A (ja) | 発酵乳の製造方法、発酵乳の製造時間を短縮させる方法、発酵乳の酸度を高める方法 | |
US20220304323A1 (en) | Production of lactase enzymes using altered regulation strains | |
RU2814542C2 (ru) | Ферменты лактазы с улучшенными свойствами при кислом pH | |
WO2024253180A1 (ja) | 菌体外多糖の製造方法、及びその利用 | |
Roy et al. | Enzymes in Milk, Cheese, and Associated Dairy Products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21787957 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022515374 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021787957 Country of ref document: EP Effective date: 20221114 |