WO2021210317A1 - 複合型積層化学架橋セパレータ - Google Patents
複合型積層化学架橋セパレータ Download PDFInfo
- Publication number
- WO2021210317A1 WO2021210317A1 PCT/JP2021/010231 JP2021010231W WO2021210317A1 WO 2021210317 A1 WO2021210317 A1 WO 2021210317A1 JP 2021010231 W JP2021010231 W JP 2021010231W WO 2021210317 A1 WO2021210317 A1 WO 2021210317A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- polyolefin
- storage device
- separator
- power storage
- Prior art date
Links
- 229920000098 polyolefin Polymers 0.000 claims abstract description 485
- 238000003860 storage Methods 0.000 claims abstract description 312
- 125000000524 functional group Chemical group 0.000 claims abstract description 181
- 239000000126 substance Substances 0.000 claims abstract description 45
- 238000006482 condensation reaction Methods 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims description 182
- -1 polyethylene Polymers 0.000 claims description 174
- 239000012982 microporous membrane Substances 0.000 claims description 137
- 229920005989 resin Polymers 0.000 claims description 136
- 239000011347 resin Substances 0.000 claims description 136
- 239000004698 Polyethylene Substances 0.000 claims description 118
- 229920000573 polyethylene Polymers 0.000 claims description 117
- 239000010954 inorganic particle Substances 0.000 claims description 114
- 238000000034 method Methods 0.000 claims description 110
- 150000001875 compounds Chemical class 0.000 claims description 73
- 239000008151 electrolyte solution Substances 0.000 claims description 73
- 229920001169 thermoplastic Polymers 0.000 claims description 48
- 239000012528 membrane Substances 0.000 claims description 47
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 39
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 37
- 229910052744 lithium Inorganic materials 0.000 claims description 37
- 238000005259 measurement Methods 0.000 claims description 34
- 229910052783 alkali metal Inorganic materials 0.000 claims description 28
- 239000000654 additive Substances 0.000 claims description 27
- 239000003792 electrolyte Substances 0.000 claims description 27
- 239000011230 binding agent Substances 0.000 claims description 26
- 230000004044 response Effects 0.000 claims description 26
- 239000003054 catalyst Substances 0.000 claims description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 25
- 125000001424 substituent group Chemical group 0.000 claims description 25
- 150000001340 alkali metals Chemical class 0.000 claims description 24
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 24
- 230000000996 additive effect Effects 0.000 claims description 23
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 22
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 22
- 239000000178 monomer Substances 0.000 claims description 19
- 229910052731 fluorine Inorganic materials 0.000 claims description 17
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 16
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 16
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 14
- 238000000354 decomposition reaction Methods 0.000 claims description 14
- 238000010534 nucleophilic substitution reaction Methods 0.000 claims description 14
- 125000004432 carbon atom Chemical group C* 0.000 claims description 13
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 13
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 12
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 11
- 229910052791 calcium Inorganic materials 0.000 claims description 11
- 239000011575 calcium Substances 0.000 claims description 11
- 125000001153 fluoro group Chemical group F* 0.000 claims description 11
- 238000005935 nucleophilic addition reaction Methods 0.000 claims description 11
- 238000007142 ring opening reaction Methods 0.000 claims description 11
- 125000005372 silanol group Chemical group 0.000 claims description 11
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 claims description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 10
- 238000009833 condensation Methods 0.000 claims description 10
- 230000005494 condensation Effects 0.000 claims description 10
- 230000009477 glass transition Effects 0.000 claims description 10
- 229910021645 metal ion Inorganic materials 0.000 claims description 10
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 9
- 230000018044 dehydration Effects 0.000 claims description 9
- 238000006297 dehydration reaction Methods 0.000 claims description 9
- 239000005995 Aluminium silicate Substances 0.000 claims description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 235000012211 aluminium silicate Nutrition 0.000 claims description 8
- 125000002947 alkylene group Chemical group 0.000 claims description 7
- 125000000732 arylene group Chemical group 0.000 claims description 7
- 239000007772 electrode material Substances 0.000 claims description 7
- 230000005484 gravity Effects 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000004594 Masterbatch (MB) Substances 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 238000007654 immersion Methods 0.000 claims description 6
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 claims description 6
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims description 5
- 125000000962 organic group Chemical group 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- 229910052582 BN Inorganic materials 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- 229910021536 Zeolite Inorganic materials 0.000 claims description 4
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 claims description 4
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 claims description 4
- 229910001588 amesite Inorganic materials 0.000 claims description 4
- 239000010425 asbestos Substances 0.000 claims description 4
- 239000000440 bentonite Substances 0.000 claims description 4
- 229910000278 bentonite Inorganic materials 0.000 claims description 4
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 4
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 239000003365 glass fiber Substances 0.000 claims description 4
- 229910052621 halloysite Inorganic materials 0.000 claims description 4
- 229910052622 kaolinite Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- 239000010445 mica Substances 0.000 claims description 4
- 229910052618 mica group Inorganic materials 0.000 claims description 4
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 4
- 238000006116 polymerization reaction Methods 0.000 claims description 4
- 229920000131 polyvinylidene Polymers 0.000 claims description 4
- 229910052903 pyrophyllite Inorganic materials 0.000 claims description 4
- 229910052895 riebeckite Inorganic materials 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 239000000454 talc Substances 0.000 claims description 4
- 229910052623 talc Inorganic materials 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 230000004308 accommodation Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 558
- 239000010408 film Substances 0.000 description 157
- 239000000463 material Substances 0.000 description 143
- 239000002585 base Substances 0.000 description 121
- 238000004132 cross linking Methods 0.000 description 83
- 239000002994 raw material Substances 0.000 description 61
- 239000013078 crystal Substances 0.000 description 56
- 239000004743 Polypropylene Substances 0.000 description 48
- 229920001155 polypropylene Polymers 0.000 description 48
- 239000000047 product Substances 0.000 description 44
- 238000004519 manufacturing process Methods 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 42
- 229910001416 lithium ion Inorganic materials 0.000 description 40
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 39
- 238000000576 coating method Methods 0.000 description 39
- 238000012360 testing method Methods 0.000 description 38
- 239000011248 coating agent Substances 0.000 description 37
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 36
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 32
- 229910000077 silane Inorganic materials 0.000 description 32
- 239000002904 solvent Substances 0.000 description 32
- 238000002844 melting Methods 0.000 description 29
- 230000008018 melting Effects 0.000 description 29
- 229920000642 polymer Polymers 0.000 description 29
- 208000028659 discharge Diseases 0.000 description 28
- 238000011156 evaluation Methods 0.000 description 25
- 239000000203 mixture Substances 0.000 description 25
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 24
- 239000007774 positive electrode material Substances 0.000 description 24
- 230000035699 permeability Effects 0.000 description 23
- 239000004014 plasticizer Substances 0.000 description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 21
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 21
- 238000004898 kneading Methods 0.000 description 20
- 238000000465 moulding Methods 0.000 description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 19
- 239000007788 liquid Substances 0.000 description 19
- 229920001684 low density polyethylene Polymers 0.000 description 19
- 239000004702 low-density polyethylene Substances 0.000 description 19
- 230000008569 process Effects 0.000 description 19
- 239000007787 solid Substances 0.000 description 19
- 229910052782 aluminium Inorganic materials 0.000 description 18
- 238000009826 distribution Methods 0.000 description 18
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 239000007773 negative electrode material Substances 0.000 description 18
- 239000007864 aqueous solution Substances 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 238000000605 extraction Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 16
- 239000000543 intermediate Substances 0.000 description 16
- 150000003254 radicals Chemical class 0.000 description 16
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 15
- 229920001519 homopolymer Polymers 0.000 description 15
- 150000002500 ions Chemical class 0.000 description 15
- 229920005672 polyolefin resin Polymers 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 229920001577 copolymer Polymers 0.000 description 14
- 238000010894 electron beam technology Methods 0.000 description 14
- 239000011572 manganese Substances 0.000 description 14
- 229910013870 LiPF 6 Inorganic materials 0.000 description 13
- 238000001816 cooling Methods 0.000 description 13
- 238000007599 discharging Methods 0.000 description 13
- 230000010220 ion permeability Effects 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000011247 coating layer Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 238000005755 formation reaction Methods 0.000 description 12
- 229940057995 liquid paraffin Drugs 0.000 description 12
- 230000004048 modification Effects 0.000 description 12
- 238000012986 modification Methods 0.000 description 12
- 239000002356 single layer Substances 0.000 description 12
- 229920001903 high density polyethylene Polymers 0.000 description 11
- 239000004700 high-density polyethylene Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 239000002002 slurry Substances 0.000 description 11
- 239000002033 PVDF binder Substances 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 239000000839 emulsion Substances 0.000 description 10
- 239000011888 foil Substances 0.000 description 10
- 238000010030 laminating Methods 0.000 description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 239000003963 antioxidant agent Substances 0.000 description 9
- 230000003078 antioxidant effect Effects 0.000 description 9
- 235000019000 fluorine Nutrition 0.000 description 9
- 229920000126 latex Polymers 0.000 description 9
- 239000004816 latex Substances 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 9
- 239000000155 melt Substances 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 9
- 239000012038 nucleophile Substances 0.000 description 9
- 239000011342 resin composition Substances 0.000 description 9
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical class [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 8
- 150000001450 anions Chemical class 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 8
- 239000011737 fluorine Substances 0.000 description 8
- 230000033001 locomotion Effects 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 230000001737 promoting effect Effects 0.000 description 8
- 230000003068 static effect Effects 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 7
- 125000005370 alkoxysilyl group Chemical group 0.000 description 7
- 238000005227 gel permeation chromatography Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 239000004711 α-olefin Substances 0.000 description 7
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 6
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 6
- 239000012752 auxiliary agent Substances 0.000 description 6
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 6
- 238000009739 binding Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 6
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 6
- 159000000002 lithium salts Chemical class 0.000 description 6
- 229920001179 medium density polyethylene Polymers 0.000 description 6
- 239000004701 medium-density polyethylene Substances 0.000 description 6
- 230000000269 nucleophilic effect Effects 0.000 description 6
- 150000002894 organic compounds Chemical class 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 239000000344 soap Substances 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 5
- 239000000010 aprotic solvent Substances 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 125000003700 epoxy group Chemical group 0.000 description 5
- 150000002170 ethers Chemical class 0.000 description 5
- 238000004880 explosion Methods 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000011256 inorganic filler Substances 0.000 description 5
- 229910003475 inorganic filler Inorganic materials 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 229920013716 polyethylene resin Polymers 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 5
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 5
- 150000003365 short chain fatty acid esters Chemical class 0.000 description 5
- 229920003048 styrene butadiene rubber Polymers 0.000 description 5
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- RFFLAFLAYFXFSW-RHQRLBAQSA-N 1,2-dichloro-3,4,5,6-tetradeuteriobenzene Chemical compound [2H]C1=C([2H])C([2H])=C(Cl)C(Cl)=C1[2H] RFFLAFLAYFXFSW-RHQRLBAQSA-N 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical class FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 241000446313 Lamella Species 0.000 description 4
- 239000005662 Paraffin oil Substances 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 238000007259 addition reaction Methods 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000001336 alkenes Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 4
- 235000013539 calcium stearate Nutrition 0.000 description 4
- 239000008116 calcium stearate Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 150000005678 chain carbonates Chemical class 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 4
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 238000007731 hot pressing Methods 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000004899 motility Effects 0.000 description 4
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 4
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000033116 oxidation-reduction process Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 125000004434 sulfur atom Chemical group 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 3
- OQAGVSWESNCJJT-UHFFFAOYSA-N Methyl 3-methylbutanoate Chemical compound COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 229910008284 Si—F Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- CHHOPPGAFVFXFS-UHFFFAOYSA-M [Li+].[O-]S(F)(=O)=O Chemical compound [Li+].[O-]S(F)(=O)=O CHHOPPGAFVFXFS-UHFFFAOYSA-M 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- JSLCOZYBKYHZNL-UHFFFAOYSA-N butylisobutyrate Chemical compound CCCCOC(=O)C(C)C JSLCOZYBKYHZNL-UHFFFAOYSA-N 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 150000005676 cyclic carbonates Chemical class 0.000 description 3
- 150000004292 cyclic ethers Chemical class 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 150000001993 dienes Chemical class 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 238000005315 distribution function Methods 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 230000008863 intramolecular interaction Effects 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- WDAXFOBOLVPGLV-UHFFFAOYSA-N isobutyric acid ethyl ester Natural products CCOC(=O)C(C)C WDAXFOBOLVPGLV-UHFFFAOYSA-N 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 150000002596 lactones Chemical class 0.000 description 3
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000006011 modification reaction Methods 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920001515 polyalkylene glycol Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- RGFNRWTWDWVHDD-UHFFFAOYSA-N sec-butyl ester of butyric acid Natural products CCCC(=O)OCC(C)C RGFNRWTWDWVHDD-UHFFFAOYSA-N 0.000 description 3
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 3
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- RXGUIWHIADMCFC-UHFFFAOYSA-N 2-Methylpropyl 2-methylpropionate Chemical compound CC(C)COC(=O)C(C)C RXGUIWHIADMCFC-UHFFFAOYSA-N 0.000 description 2
- KEBDNKNVCHQIJU-UHFFFAOYSA-N 2-Methylpropyl 3-methylbutanoate Chemical compound CC(C)COC(=O)CC(C)C KEBDNKNVCHQIJU-UHFFFAOYSA-N 0.000 description 2
- FZXRXKLUIMKDEL-UHFFFAOYSA-N 2-Methylpropyl propanoate Chemical compound CCC(=O)OCC(C)C FZXRXKLUIMKDEL-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- ZOIRKXLFEHOVER-UHFFFAOYSA-N Isopropyl 3-methylbutanoate Chemical compound CC(C)CC(=O)OC(C)C ZOIRKXLFEHOVER-UHFFFAOYSA-N 0.000 description 2
- FFOPEPMHKILNIT-UHFFFAOYSA-N Isopropyl butyrate Chemical compound CCCC(=O)OC(C)C FFOPEPMHKILNIT-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000002998 adhesive polymer Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 238000005537 brownian motion Methods 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 2
- RPRPDTXKGSIXMD-UHFFFAOYSA-N butyl hexanoate Chemical compound CCCCCC(=O)OCCCC RPRPDTXKGSIXMD-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000010382 chemical cross-linking Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- 229960002380 dibutyl phthalate Drugs 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 2
- PPXUHEORWJQRHJ-UHFFFAOYSA-N ethyl isovalerate Chemical compound CCOC(=O)CC(C)C PPXUHEORWJQRHJ-UHFFFAOYSA-N 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- JBFHTYHTHYHCDJ-UHFFFAOYSA-N gamma-caprolactone Chemical compound CCC1CCC(=O)O1 JBFHTYHTHYHCDJ-UHFFFAOYSA-N 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 125000003827 glycol group Chemical group 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229920006015 heat resistant resin Polymers 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000009878 intermolecular interaction Effects 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- GBPVMEKUJUKTBA-UHFFFAOYSA-N methyl 2,2,2-trifluoroethyl carbonate Chemical compound COC(=O)OCC(F)(F)F GBPVMEKUJUKTBA-UHFFFAOYSA-N 0.000 description 2
- NUKZAGXMHTUAFE-UHFFFAOYSA-N methyl hexanoate Chemical compound CCCCCC(=O)OC NUKZAGXMHTUAFE-UHFFFAOYSA-N 0.000 description 2
- BHIWKHZACMWKOJ-UHFFFAOYSA-N methyl isobutyrate Chemical compound COC(=O)C(C)C BHIWKHZACMWKOJ-UHFFFAOYSA-N 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229940094933 n-dodecane Drugs 0.000 description 2
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- 229940055577 oleyl alcohol Drugs 0.000 description 2
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 150000004291 polyenes Chemical class 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- OCAIYHCKLADPEG-UHFFFAOYSA-N propan-2-yl pentanoate Chemical compound CCCCC(=O)OC(C)C OCAIYHCKLADPEG-UHFFFAOYSA-N 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229940012831 stearyl alcohol Drugs 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229960002317 succinimide Drugs 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 125000000101 thioether group Chemical group 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 238000012982 x-ray structure analysis Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- DSMUTQTWFHVVGQ-JCYAYHJZSA-N (4s,5s)-4,5-difluoro-1,3-dioxolan-2-one Chemical compound F[C@@H]1OC(=O)O[C@H]1F DSMUTQTWFHVVGQ-JCYAYHJZSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- XJYDIOOQMIRSSY-UHFFFAOYSA-N 1,3,2-dioxathiepane 2-oxide Chemical compound O=S1OCCCCO1 XJYDIOOQMIRSSY-UHFFFAOYSA-N 0.000 description 1
- WDXYVJKNSMILOQ-UHFFFAOYSA-N 1,3,2-dioxathiolane 2-oxide Chemical compound O=S1OCCO1 WDXYVJKNSMILOQ-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- PPMCFKAXXHZLMX-UHFFFAOYSA-N 1,3-dioxocan-2-one Chemical compound O=C1OCCCCCO1 PPMCFKAXXHZLMX-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- 125000001989 1,3-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- HFZLSTDPRQSZCQ-UHFFFAOYSA-N 1-pyrrolidin-3-ylpyrrolidine Chemical compound C1CCCN1C1CNCC1 HFZLSTDPRQSZCQ-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 1
- VUBSWBZFMFQJBD-UHFFFAOYSA-N 2,2,3,3-tetrafluoropropyl acetate Chemical compound CC(=O)OCC(F)(F)C(F)F VUBSWBZFMFQJBD-UHFFFAOYSA-N 0.000 description 1
- PFJLHSIZFYNAHH-UHFFFAOYSA-N 2,2-difluoroethyl acetate Chemical compound CC(=O)OCC(F)F PFJLHSIZFYNAHH-UHFFFAOYSA-N 0.000 description 1
- QOARFWDBTJVWJG-UHFFFAOYSA-N 2,2-difluoroethyl methyl carbonate Chemical compound COC(=O)OCC(F)F QOARFWDBTJVWJG-UHFFFAOYSA-N 0.000 description 1
- VUAXHMVRKOTJKP-UHFFFAOYSA-M 2,2-dimethylbutanoate Chemical compound CCC(C)(C)C([O-])=O VUAXHMVRKOTJKP-UHFFFAOYSA-M 0.000 description 1
- RISJWFYSMKOETR-UHFFFAOYSA-N 2,4-dimethylpentanedinitrile Chemical compound N#CC(C)CC(C)C#N RISJWFYSMKOETR-UHFFFAOYSA-N 0.000 description 1
- IERAUDYEBKFNFZ-UHFFFAOYSA-N 2,6-dimethylheptanedinitrile Chemical compound N#CC(C)CCCC(C)C#N IERAUDYEBKFNFZ-UHFFFAOYSA-N 0.000 description 1
- RKRRPWLLULFKMZ-UHFFFAOYSA-N 2,7-dimethyloctanedinitrile Chemical compound N#CC(C)CCCCC(C)C#N RKRRPWLLULFKMZ-UHFFFAOYSA-N 0.000 description 1
- PITUYKHMRZYCFH-UHFFFAOYSA-N 2,8-dimethylnonanedinitrile Chemical compound N#CC(C)CCCCCC(C)C#N PITUYKHMRZYCFH-UHFFFAOYSA-N 0.000 description 1
- UHOPWFKONJYLCF-UHFFFAOYSA-N 2-(2-sulfanylethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)C2=C1 UHOPWFKONJYLCF-UHFFFAOYSA-N 0.000 description 1
- ZSDQQJHSRVEGTJ-UHFFFAOYSA-N 2-(6-amino-1h-indol-3-yl)acetonitrile Chemical compound NC1=CC=C2C(CC#N)=CNC2=C1 ZSDQQJHSRVEGTJ-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- ZKZHWAJZNZJAKV-UHFFFAOYSA-N 2-bromo-3-methylquinoline Chemical compound C1=CC=C2N=C(Br)C(C)=CC2=C1 ZKZHWAJZNZJAKV-UHFFFAOYSA-N 0.000 description 1
- YDYMCQUIFFVXAM-UHFFFAOYSA-N 2-butyloctanedinitrile Chemical compound CCCCC(C#N)CCCCCC#N YDYMCQUIFFVXAM-UHFFFAOYSA-N 0.000 description 1
- FZKPQHFEMFIDNR-UHFFFAOYSA-N 2-hydroxyethyl hydrogen sulfite Chemical compound OCCOS(O)=O FZKPQHFEMFIDNR-UHFFFAOYSA-N 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- WEOKHGKSYLOTPP-UHFFFAOYSA-N 2-methylbutanedinitrile Chemical compound N#CC(C)CC#N WEOKHGKSYLOTPP-UHFFFAOYSA-N 0.000 description 1
- FPPLREPCQJZDAQ-UHFFFAOYSA-N 2-methylpentanedinitrile Chemical compound N#CC(C)CCC#N FPPLREPCQJZDAQ-UHFFFAOYSA-N 0.000 description 1
- IFVLZKSUYNTRHJ-UHFFFAOYSA-N 2-methylpropyl 2,2-dimethylpropanoate Chemical compound CC(C)COC(=O)C(C)(C)C IFVLZKSUYNTRHJ-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 1
- QWAHAGZZJXFJNI-UHFFFAOYSA-N 2-propylhexanedinitrile Chemical compound CCCC(C#N)CCCC#N QWAHAGZZJXFJNI-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 1
- VTHRQKSLPFJQHN-UHFFFAOYSA-N 3-[2-(2-cyanoethoxy)ethoxy]propanenitrile Chemical compound N#CCCOCCOCCC#N VTHRQKSLPFJQHN-UHFFFAOYSA-N 0.000 description 1
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical compound COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 description 1
- CMJLMPKFQPJDKP-UHFFFAOYSA-N 3-methylthiolane 1,1-dioxide Chemical compound CC1CCS(=O)(=O)C1 CMJLMPKFQPJDKP-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- WTUCTMYLCMVYEX-UHFFFAOYSA-N 4,4,4-trifluorobutanoic acid Chemical compound OC(=O)CCC(F)(F)F WTUCTMYLCMVYEX-UHFFFAOYSA-N 0.000 description 1
- VUZHZBFVQSUQDP-UHFFFAOYSA-N 4,4,5,5-tetrafluoro-1,3-dioxolan-2-one Chemical compound FC1(F)OC(=O)OC1(F)F VUZHZBFVQSUQDP-UHFFFAOYSA-N 0.000 description 1
- CRJXZTRTJWAKMU-UHFFFAOYSA-N 4,4,5-trifluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1(F)F CRJXZTRTJWAKMU-UHFFFAOYSA-N 0.000 description 1
- YWBGDZJPAROAIO-UHFFFAOYSA-N 4,4,5-trifluoro-5-methyl-1,3-dioxolan-2-one Chemical compound CC1(F)OC(=O)OC1(F)F YWBGDZJPAROAIO-UHFFFAOYSA-N 0.000 description 1
- ZTTYKFSKZIRTDP-UHFFFAOYSA-N 4,4-difluoro-1,3-dioxolan-2-one Chemical compound FC1(F)COC(=O)O1 ZTTYKFSKZIRTDP-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 description 1
- AUXJVUDWWLIGRU-UHFFFAOYSA-N 4-propyl-1,3-dioxolan-2-one Chemical compound CCCC1COC(=O)O1 AUXJVUDWWLIGRU-UHFFFAOYSA-N 0.000 description 1
- KLLQVNFCMHPYGL-UHFFFAOYSA-N 5h-oxathiole 2,2-dioxide Chemical compound O=S1(=O)OCC=C1 KLLQVNFCMHPYGL-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 1
- AYWJSCLAAPJZEF-UHFFFAOYSA-N Butyl 3-methylbutanoate Chemical compound CCCCOC(=O)CC(C)C AYWJSCLAAPJZEF-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- OKJADYKTJJGKDX-UHFFFAOYSA-N Butyl pentanoate Chemical compound CCCCOC(=O)CCCC OKJADYKTJJGKDX-UHFFFAOYSA-N 0.000 description 1
- UHAAFJWANJYDIS-UHFFFAOYSA-N CCN=C=NCC Chemical compound CCN=C=NCC UHAAFJWANJYDIS-UHFFFAOYSA-N 0.000 description 1
- RAGZHFJXNOZIDB-UTCJRWHESA-N CN(/N=C\N=C)I Chemical compound CN(/N=C\N=C)I RAGZHFJXNOZIDB-UTCJRWHESA-N 0.000 description 1
- XMNGSPOWUCNRMO-UHFFFAOYSA-N CNC(ON(C(CC1)=O)C1=O)=O Chemical compound CNC(ON(C(CC1)=O)C1=O)=O XMNGSPOWUCNRMO-UHFFFAOYSA-N 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 229920006051 Capron® Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- RZTOWFMDBDPERY-UHFFFAOYSA-N Delta-Hexanolactone Chemical compound CC1CCCC(=O)O1 RZTOWFMDBDPERY-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- QGLBZNZGBLRJGS-UHFFFAOYSA-N Dihydro-3-methyl-2(3H)-furanone Chemical compound CC1CCOC1=O QGLBZNZGBLRJGS-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ICMAFTSLXCXHRK-UHFFFAOYSA-N Ethyl pentanoate Chemical compound CCCCC(=O)OCC ICMAFTSLXCXHRK-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- WVRPFQGZHKZCEB-UHFFFAOYSA-N Isopropyl 2-methylpropanoate Chemical compound CC(C)OC(=O)C(C)C WVRPFQGZHKZCEB-UHFFFAOYSA-N 0.000 description 1
- IJMWOMHMDSDKGK-UHFFFAOYSA-N Isopropyl propionate Chemical compound CCC(=O)OC(C)C IJMWOMHMDSDKGK-UHFFFAOYSA-N 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- LSJMDWFAADPNAX-UHFFFAOYSA-N Isovaleriansaeure-propylester Natural products CCCOC(=O)CC(C)C LSJMDWFAADPNAX-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910012820 LiCoO Inorganic materials 0.000 description 1
- 229910015965 LiNi0.8Mn0.1Co0.1O2 Inorganic materials 0.000 description 1
- 229910013210 LiNiMnCoO Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- MBDHLQKZIVIDEY-UHFFFAOYSA-N Olivin Natural products COc1cc(C=C(C)/C(=O)c2c(O)cc(O)cc2O)ccc1O MBDHLQKZIVIDEY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- RFFFKMOABOFIDF-UHFFFAOYSA-N Pentanenitrile Chemical compound CCCCC#N RFFFKMOABOFIDF-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- AZFUASHXSOTBNU-UHFFFAOYSA-N Propyl 2-methylpropanoate Chemical compound CCCOC(=O)C(C)C AZFUASHXSOTBNU-UHFFFAOYSA-N 0.000 description 1
- ROJKPKOYARNFNB-UHFFFAOYSA-N Propyl pentanoate Chemical compound CCCCC(=O)OCCC ROJKPKOYARNFNB-UHFFFAOYSA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- JJLKTTCRRLHVGL-UHFFFAOYSA-L [acetyloxy(dibutyl)stannyl] acetate Chemical compound CC([O-])=O.CC([O-])=O.CCCC[Sn+2]CCCC JJLKTTCRRLHVGL-UHFFFAOYSA-L 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000002339 acetoacetyl group Chemical group O=C([*])C([H])([H])C(=O)C([H])([H])[H] 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 230000004523 agglutinating effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 150000004703 alkoxides Chemical group 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- FCDMDSDHBVPGGE-UHFFFAOYSA-N butyl 2,2-dimethylpropanoate Chemical compound CCCCOC(=O)C(C)(C)C FCDMDSDHBVPGGE-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FWBMVXOCTXTBAD-UHFFFAOYSA-N butyl methyl carbonate Chemical compound CCCCOC(=O)OC FWBMVXOCTXTBAD-UHFFFAOYSA-N 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- LWLOKSXSAUHTJO-ZXZARUISSA-N cis-2,3-butylene carbonate Chemical compound C[C@H]1OC(=O)O[C@H]1C LWLOKSXSAUHTJO-ZXZARUISSA-N 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- DFJYZCUIKPGCSG-UHFFFAOYSA-N decanedinitrile Chemical compound N#CCCCCCCCCC#N DFJYZCUIKPGCSG-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- QLVWOKQMDLQXNN-UHFFFAOYSA-N dibutyl carbonate Chemical compound CCCCOC(=O)OCCCC QLVWOKQMDLQXNN-UHFFFAOYSA-N 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- AVQYXBDAZWIFTO-UHFFFAOYSA-N dodecanedinitrile Chemical compound N#CCCCCCCCCCCC#N AVQYXBDAZWIFTO-UHFFFAOYSA-N 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003256 environmental substance Substances 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- HHEIMYAXCOIQCJ-UHFFFAOYSA-N ethyl 2,2-dimethylpropanoate Chemical compound CCOC(=O)C(C)(C)C HHEIMYAXCOIQCJ-UHFFFAOYSA-N 0.000 description 1
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- LLEVMYXEJUDBTA-UHFFFAOYSA-N heptanedinitrile Chemical compound N#CCCCCCC#N LLEVMYXEJUDBTA-UHFFFAOYSA-N 0.000 description 1
- 125000004404 heteroalkyl group Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- HVKDCVWOBDEWMI-UHFFFAOYSA-N hydroxy(methoxy)silane Chemical compound CO[SiH2]O HVKDCVWOBDEWMI-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- UXUPPWPIGVTVQI-UHFFFAOYSA-N isobutyl hexanoate Chemical compound CCCCCC(=O)OCC(C)C UXUPPWPIGVTVQI-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- 229940024423 isopropyl isobutyrate Drugs 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- LDTVHHNIXCBROE-UHFFFAOYSA-N methyl 2,2,3,3-tetrafluoropropyl carbonate Chemical compound COC(=O)OCC(F)(F)C(F)F LDTVHHNIXCBROE-UHFFFAOYSA-N 0.000 description 1
- RCIJMMSZBQEWKW-UHFFFAOYSA-N methyl propan-2-yl carbonate Chemical compound COC(=O)OC(C)C RCIJMMSZBQEWKW-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical group CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- HNBDRPTVWVGKBR-UHFFFAOYSA-N n-pentanoic acid methyl ester Natural products CCCCC(=O)OC HNBDRPTVWVGKBR-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QXOYPGTWWXJFDI-UHFFFAOYSA-N nonanedinitrile Chemical compound N#CCCCCCCCC#N QXOYPGTWWXJFDI-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- BTNXBLUGMAMSSH-UHFFFAOYSA-N octanedinitrile Chemical compound N#CCCCCCCC#N BTNXBLUGMAMSSH-UHFFFAOYSA-N 0.000 description 1
- PIHTXGRVQBTVRE-KFYAXVMHSA-N olivin Chemical compound OC1=CC(O)=C2C(O)=C(C(=O)[C@H]([C@H]([C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)C3)O)C3=CC2=C1 PIHTXGRVQBTVRE-KFYAXVMHSA-N 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- FKCRAVPPBFWEJD-XVFCMESISA-N orotidine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1C(O)=O FKCRAVPPBFWEJD-XVFCMESISA-N 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 150000002924 oxiranes Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005371 permeation separation Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229960005235 piperonyl butoxide Drugs 0.000 description 1
- 229920003050 poly-cycloolefin Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- PMFKTHJAJBPRNM-UHFFFAOYSA-N propan-2-yl 2,2-dimethylpropanoate Chemical compound CC(C)OC(=O)C(C)(C)C PMFKTHJAJBPRNM-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- QMKUYPGVVVLYSR-UHFFFAOYSA-N propyl 2,2-dimethylpropanoate Chemical compound CCCOC(=O)C(C)(C)C QMKUYPGVVVLYSR-UHFFFAOYSA-N 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- HUAZGNHGCJGYNP-UHFFFAOYSA-N propyl butyrate Chemical compound CCCOC(=O)CCC HUAZGNHGCJGYNP-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- HTUIWRWYYVBCFT-UHFFFAOYSA-N propyl hexanoate Chemical compound CCCCCC(=O)OCCC HTUIWRWYYVBCFT-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000004666 short chain fatty acids Chemical class 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- MBDNRNMVTZADMQ-UHFFFAOYSA-N sulfolene Chemical compound O=S1(=O)CC=CC1 MBDNRNMVTZADMQ-UHFFFAOYSA-N 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- VXHFNALHLRWIIU-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)OC(=O)C(C)(C)C VXHFNALHLRWIIU-UHFFFAOYSA-N 0.000 description 1
- KVWOTUDBCFBGFJ-UHFFFAOYSA-N tert-butyl 2-methylpropanoate Chemical compound CC(C)C(=O)OC(C)(C)C KVWOTUDBCFBGFJ-UHFFFAOYSA-N 0.000 description 1
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 description 1
- TWBUVVYSQBFVGZ-UHFFFAOYSA-N tert-butyl butanoate Chemical compound CCCC(=O)OC(C)(C)C TWBUVVYSQBFVGZ-UHFFFAOYSA-N 0.000 description 1
- SCSLUABEVMLYEA-UHFFFAOYSA-N tert-butyl pentanoate Chemical compound CCCCC(=O)OC(C)(C)C SCSLUABEVMLYEA-UHFFFAOYSA-N 0.000 description 1
- JAELLLITIZHOGQ-UHFFFAOYSA-N tert-butyl propanoate Chemical compound CCC(=O)OC(C)(C)C JAELLLITIZHOGQ-UHFFFAOYSA-N 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- RBYFNZOIUUXJQD-UHFFFAOYSA-J tetralithium oxalate Chemical compound [Li+].[Li+].[Li+].[Li+].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O RBYFNZOIUUXJQD-UHFFFAOYSA-J 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- LWLOKSXSAUHTJO-IMJSIDKUSA-N trans-2,3-butylene carbonate Chemical compound C[C@@H]1OC(=O)O[C@H]1C LWLOKSXSAUHTJO-IMJSIDKUSA-N 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 125000005369 trialkoxysilyl group Chemical group 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical group CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- ISIQQQYKUPBYSL-UHFFFAOYSA-N undecanedinitrile Chemical compound N#CCCCCCCCCCC#N ISIQQQYKUPBYSL-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/10—Interconnection of layers at least one layer having inter-reactive properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/14—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
- H01G11/18—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/42—Acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/423—Polyamide resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
- B32B2250/242—All polymers belonging to those covered by group B32B27/32
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/10—Batteries
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
- C08L2312/08—Crosslinking by silane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to a microporous polyolefin membrane, a separator for a power storage device using the same, a power storage device, and the like.
- the microporous membrane is widely used as a separation or selective permeation separation membrane for various substances, a separating material, and the like, and examples of its use include a microfiltration membrane, a separator for a fuel cell, a separator for a condenser, or a functional material. Examples thereof include a base material of a functional membrane for filling the inside to exhibit a new function, a separator for a power storage device, and the like.
- the polyolefin microporous film is suitably used as a separator for a lithium ion battery widely used in notebook personal computers, mobile phones, digital cameras and the like.
- Patent Documents 1 to 8 describe a silane crosslinked structure formed by contact between a silane-modified polyolefin-containing separator and water.
- Patent Document 7 describes a crosslinked structure formed by ring-opening of norbornene by irradiation with ultraviolet rays, electron beams, or the like.
- Patent Document 8 describes that the insulating layer of the separator has a (meth) acrylic acid copolymer having a crosslinked structure, a styrene-butadiene rubber binder, and the like.
- the separator has been required to be inert to the electrochemical reaction or the peripheral members due to its nature as an insulating material.
- the negative electrode material of a lithium ion battery a technique for suppressing the decomposition of the electrolyte solution on the negative electrode surface by forming a solid electrolyte interface (SEI) by a chemical reaction at the time of initial charging has been established from the beginning of its development (Non-Patent Documents). 1). Further, even if a polyolefin resin is used for the separator, an oxidation reaction is induced on the surface of the positive electrode under a high voltage, and cases such as blackening of the separator and surface deterioration have been reported.
- Patent Documents 10 and 11 As a separator for a power storage device, it has also been proposed to form a polyolefin microporous film having a laminated structure by laminating a plurality of polyolefin resin layers (Patent Documents 10 and 11).
- Patent Document 13 discloses at least one side of a polyolefin porous film containing polypropylene for the purpose of providing a power storage device capable of suppressing the occurrence of warpage, having high liquid absorption of an electrolytic solution, and exhibiting good performance.
- Patent Document 14 describes a laminated porous film containing a polyolefin porous film containing two or more layers of polypropylene for the purpose of improving the heat resistance and cycle characteristics of the power storage device.
- Patent Document 15 is a separator for a power storage device containing a silane-modified polyolefin for the purpose of achieving both a shutdown function and high temperature fracture resistance and ensuring the safety, output and / or cycle stability of the power storage device. Described is a separator for a power storage device, which is characterized in that a silane cross-linking reaction of a silane-modified polyolefin is started when it comes into contact with an electrolytic solution.
- Patent Document 16 includes polyethylene and polypropylene for the purpose of excellent peel strength between the base material and the modified layer, battery winding property, thermal impact characteristics, low temperature cycle characteristics, and improving the balance of each performance. Described is a separator for a power storage device, which comprises a polyolefin multilayer microporous membrane and an active layer arranged on at least one surface of the porous membrane, and the active layer contains inorganic particles.
- the cross-linking methods described in Patent Documents 1 to 8 are all carried out in-process for separator film formation or in batch immediately after separator film formation. Therefore, after the formation of the crosslinked structure described in Patent Documents 1 to 8, the separator must be coated and slit, and the internal stress increases in the subsequent laminating / winding step with the electrode.
- the manufactured battery may be deformed. For example, when a crosslinked structure is formed by heating, the internal stress of the separator having the crosslinked structure may increase at room temperature or room temperature. Further, when a crosslinked structure is formed by irradiation with light such as ultraviolet rays or an electron beam, the irradiation of light becomes non-uniform, and the crosslinked structure may become non-homogeneous. It is considered that this is because the periphery of the crystal portion of the resin constituting the separator is easily crosslinked by the electron beam.
- Patent Document 9 describes a technique for improving the cycle characteristics of a lithium ion secondary battery by adding succinimides or the like to the electrolytic solution. However, the technique described in Patent Document 9 does not improve the cycle characteristics by specifying the structure of the separator.
- the conventional laminated polyolefin microporous membranes described in Patent Documents 10 and 11 have a problem in heat resistance, and a heat resistance test of a power storage device including the laminated polyolefin microporous membrane as a separator (for example, at a high temperature of 200 ° C. or higher). There is room for improvement in heat resistance in the hot box test).
- the laminated separation membrane including the multilayer structure described in Patent Document 12 only has a crosslinked structure of a polyolefin matrix, and there remains a problem regarding the uniformity of the crosslinked structure smaller than the size of the crosslinked matrix. There is room for improvement in the heat resistance of the device.
- Non-Patent Document 3 in recent years, high nickel NMC type positive electrodes have been attracting attention as one of the promising candidates for increasing the capacity of LIB batteries.
- the ratio of NMC changes from the conventional (1: 1: 1) to (4: 3: 3), (6: 2: 2), (8: 1: 1), etc.
- the positive electrode crystal structure becomes The heat resistance is lowered (for example, crystal decomposition / O 2 release at about 250 ° C.), and O 2 is easily released with thermal decomposition, which continuously leads to ignition and explosion of organic substances in the battery.
- a high nickel content such as NMC (622) or NMC (811) positive electrode
- decomposition starts from around 150 ° C to 160 ° C.
- separators for power storage devices described in Patent Documents 13 to 16 have room for further improvement in safety when a local short circuit occurs.
- an object of the present disclosure is to provide a more safe polyolefin microporous membrane, and a separator for a power storage device using the same, a power storage device assembly kit, a power storage device, and a power storage device.
- the present disclosure includes a polyolefin microporous membrane capable of improving the heat resistance of a power storage device, a separator for a power storage device using the same, a power storage device assembly kit, and a power storage.
- An object of the present invention is to provide a method for manufacturing a device and a power storage device.
- the present disclosure discloses a safer separator for a power storage device in which the possibility of thermal runaway due to a local shunt is reduced, and a power storage device assembly kit, a power storage device, and a power storage using the separator.
- the purpose is to provide a device.
- the polyolefin contained in at least one of the A layer and the B layer has one or more functional groups, and after being stored in the power storage device, (1) the functional groups undergo a condensation reaction with each other.
- Microporous film
- the polyolefin microporous film according to item 1 wherein the chemical substance is any one of an electrolyte, an electrolytic solution, an electrode active material, an additive, or a decomposition product thereof contained in the polyolefin microporous film.
- the A layer or the B layer is a layer that does not contain the functional group, and the ratio of the thickness of the layer containing the functional group to the thickness of the layer that does not contain the functional group is 0.08 to 6.
- the A layer or the B layer is a layer that does not contain the functional group, and the layer that does not contain the functional group contains polyethylene, and the crystallinity of the polyethylene is 60% to 99%.
- the polyolefin microporous membrane according to item 4 wherein the polyethylene crystallite size is 10 nm to 50 nm.
- the crosslinked structure is an amorphous crosslinked structure in which the amorphous portion of the polyolefin is crosslinked.
- the reaction via the covalent bond is the following reactions (I) to (IV): (I) Condensation reaction of multiple identical functional groups; (II) Reaction between a plurality of different functional groups; (III) Chain condensation reaction of functional group and electrolyte; and (IV) Reaction of functional group and additive;
- the reaction via the coordination bond is the following reaction (V): (V) A reaction in which a plurality of identical functional groups are crosslinked via a coordination bond with a metal ion;
- the polyolefin microporous membrane according to item 10 wherein the reaction (I) and / or (II) is catalytically promoted by a chemical substance inside the power storage device.
- the reaction (I) is a condensation reaction of a plurality of silanol groups.
- the reaction (IV) is a nucleophilic substitution reaction, a nucleophilic addition reaction or a ring-opening reaction between the compound Rx constituting the polyolefin microporous film and the compound Ry constituting the additive, and the compound Rx is functional.
- the above reaction (IV) is a nucleophilic substitution reaction.
- the functional group x of the compound Rx is at least one selected from the group consisting of -OH, -NH 2 , -NH-, -COOH and -SH, and the linking reaction unit y 1 of the compound Ry is CH 3 SO 2 -, CF 3 SO 2 -, ArSO 2 -, CH 3 SO 3 -, CF 3 SO 3 -, ArSO 3 -, and the following formula (y 1 -1) ⁇ (y 1 -6): ⁇ In the formula, X is a hydrogen atom or a monovalent substituent.
- X is a hydrogen atom or a monovalent substituent.
- X is a hydrogen atom or a monovalent substituent.
- X is a hydrogen atom or a monovalent substituent.
- X is a hydrogen atom or a monovalent substituent.
- X is a hydrogen atom or a monovalent substituent.
- the above reaction (IV) is a nucleophilic substitution reaction.
- the compound Ry has a chain unit y 2
- the chain unit y 2 is the following formula (y 2 -1) ⁇ (y 2 -6):
- ⁇ In the formula, m is an integer of 0 to 20, and n is an integer of 1 to 20.
- ⁇ ⁇ In the formula, n is an integer from 1 to 20.
- ⁇ ⁇ In the formula, n is an integer from 1 to 20.
- ⁇ ⁇ In the formula, n is an integer from 1 to 20.
- X is an alkylene group or an arylene group having 1 to 20 carbon atoms, and n is an integer of 1 to 20.
- X is an alkylene group or an arylene group having 1 to 20 carbon atoms
- n is an integer of 1 to 20.
- the above reaction (IV) is a nucleophilic addition reaction.
- the functional group x of the compound Rx is at least one selected from the group consisting of -OH, -NH 2 , -NH-, -COOH and -SH
- the linking reaction unit y 1 of the compound Ry is formula (Ay 1 -1) ⁇ (Ay 1 -6):
- R is a hydrogen atom or a monovalent organic group.
- the above reaction (IV) is a ring-opening reaction.
- the functional group x of the compound Rx is at least one selected from the group consisting of -OH, -NH 2 , -NH-, -COOH and -SH
- the linking reaction unit y 1 of the compound Ry is the following formula (ROy 1 -1): ⁇ In the formula, each of the plurality of Xs is a hydrogen atom or a monovalent substituent independently.
- a separator for a power storage device including at least one layer A containing polyolefin, a layer B containing polyolefin, and a layer C containing inorganic particles.
- the polyolefin contained in at least one of the A layer and the B layer has one or more functional groups, and the functional groups are crosslinked by a siloxane bond due to a condensation reaction between the functional groups in the power storage device.
- a separator for a power storage device that contains a functional group that forms a structure.
- the separator for a power storage device according to item 22 which is as follows. [24] The separator for a power storage device according to item 22 or 23, wherein the island structure contains an alkaline earth metal and the alkaline earth metal is calcium. [25] The separator for a power storage device according to item 22 or 23, wherein the alkali metal and / or alkaline earth metal is at least one selected from the group consisting of lithium, sodium, magnesium, potassium, and strontium.
- the inorganic particles are alumina, silica, titania, zirconia, magnesia, ceria, itria, zinc oxide, iron oxide, silicon nitride, titanium nitride, boron nitride, silicon carbide, aluminum hydroxide oxide, talc, kaolinite, dicite, and nacrite. , Halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite, asbestos, zeolite, kaolin, kaolin, and at least one selected from the group consisting of glass fibers, items 21-28.
- the separator for a power storage device according to any one of the above.
- thermoplastic polymer contained in the D layer contains (meth) acrylic acid ester or (meth) acrylic acid as a polymerization unit.
- separator for a power storage device according to item 30 or 31 wherein the D layer covers the surface of the C layer in an area ratio of 5% to 98%.
- the thermoplastic polymer contained in the D layer is at least one fluorine atom selected from the group consisting of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) and polyvinylidene fluoride-chlorotrifluoroethylene (PVDF-CTFE).
- the separator for a power storage device according to any one of items 30 to 32, which comprises a containing vinyl compound.
- the thermal response index when the separator for a power storage device after immersion in the electrolytic solution was heated to 150 ° C. at 2 ° C./min was fitted to the equation (1) using the least squares approximation method, the range of rate was 3.
- the separator for a power storage device according to any one of items 21 to 33, wherein 5 ⁇ rate ⁇ 150.
- the thermal response index when the separator for a power storage device after immersion in the electrolytic solution was heated to 150 ° C. at 2 ° C./min was fitted to the equation (1) using the least squares approximation method, the range of T 0 was 110.
- the separator for a power storage device according to any one of items 1 to 35, wherein the polyolefin having the functional group is not a masterbatch resin containing a dehydration condensation catalyst forming a crosslinked structure of the functional group.
- An exterior body containing a laminate or a wound body of (A) an electrode and a separator for a power storage device according to any one of items 20 to 36; and (B) storing a non-aqueous electrolytic solution.
- Container A power storage device assembly kit.
- NMC nickel-manganese-cobalt
- Olivin type lithium iron phosphate (LFP) -based positive electrode, lithium cobalt oxide (LCO) -based positive electrode, nickel-cobalt-aluminum (NCA) -based lithium-containing positive electrode, and lithium manganate (LMO) -based positive electrode are selected from the group.
- a polyolefin microporous film can be contained in a power storage device to improve the heat resistance of the power storage device, and the heat storage device separator, a power storage device assembly kit, and the like can be used.
- a power storage device and a method for manufacturing the power storage device can also be provided.
- a more safe separator for a power storage device which reduces the possibility of causing thermal runaway due to a local shunt, and a power storage device assembly kit and a power storage device using the separator, and a power storage device using the separator. And a power storage device can be provided.
- FIG. 1 is a schematic diagram for explaining a crystalline polymer having a higher-order structure divided into a lamellar (crystal part) of a crystal structure, an amorphous part, and an intermediate layer part between them.
- FIG. 2 is a schematic diagram for explaining the crystal growth of the polyolefin molecule.
- FIG. 3A is a schematic view showing the behavior when heat-shrinking the separator for a power storage device having the non-crosslinked polyolefin base material layer and the inorganic particle layer with both ends open.
- FIG. 3B is a schematic view showing the behavior when heat shrinkage is performed in a state where both ends of the separator for a power storage device having the non-crosslinked polyolefin base material layer and the inorganic particle layer are fixed.
- FIG. 4 is a schematic view showing the behavior of a separator for a power storage device having a non-crosslinked polyolefin base material layer and an inorganic particle layer when heat-shrinked with both ends open.
- FIG. 5A is a schematic view showing the behavior when heat-shrinking the separator for a power storage device having the crosslinked polyolefin base material layer and the inorganic particle layer with both ends open.
- FIG. 5B is a schematic view showing the behavior when heat shrinkage is performed in a state where both ends of the separator for a power storage device having the crosslinked polyolefin base material layer and the inorganic particle layer are fixed.
- FIG. 6 shows the behavior when a local short circuit occurs in a power storage device including a separator for a power storage device having a non-crosslinked polyolefin base material layer, a crosslinked polyolefin base material layer, an inorganic particle layer, and a thermoplastic polymer layer. It is a schematic diagram which shows. FIG.
- FIG. 7 shows the behavior when a local short circuit occurs in a power storage device including a separator for a power storage device having a crosslinked polyolefin base material layer, a non-crosslinked polyolefin base material layer, an inorganic particle layer, and a thermoplastic polymer layer. It is a schematic diagram which shows.
- FIG. 8 is a schematic view showing the behavior when a local short circuit occurs in a power storage device including a separator for a power storage device having a crosslinked polyolefin base material layer, an inorganic particle layer, and a thermoplastic polymer layer.
- FIG. 9 is a schematic view showing the behavior when a local short circuit occurs in a power storage device including a separator for a power storage device having a non-crosslinked polyolefin base material layer, a crosslinked polyolefin base material layer, and a thermoplastic polymer layer. ..
- FIG. 10 is a schematic view showing the behavior when a local short circuit occurs in a power storage device including a separator for a power storage device having a non-crosslinked polyolefin base material layer, a crosslinked polyolefin base material layer, and an inorganic particle layer.
- FIG. 11 is a schematic diagram of an island structure containing an alkali metal and / or an alkaline earth metal in TOF-SIMS measurement.
- the polyolefin microporous membrane can be used as a microfiltration membrane, a fuel cell separator, a condenser separator, a power storage device separator, an electrolysis membrane, or a constituent material thereof.
- a polyolefin microporous membrane When a polyolefin microporous membrane is used as a separator for a power storage device or a constituent material thereof, particularly as a separator for LIB or a constituent material thereof, the microporous membrane itself may be used as a separator, and at least one side of the microporous membrane. A separator provided with another layer or another film may be used as a separator.
- the microporous membrane used for the separator for a power storage device one having low electron conductivity, ionic conductivity, high resistance to an organic solvent, and a fine pore size is preferable.
- the polyolefin microporous film is used as a separator for a power storage device, it is preferable that 50% by mass or more and 100% by mass or less of the polyolefin microporous film is formed of polyolefin (PO), and the PO ratio is 60% by mass. It is more preferably% or more and 100% by mass or less, and further preferably 70% by mass or more and 100% by mass or less.
- the microporous membrane preferably contains polyethylene (PE) and / or polypropylene (PP) as PO from the viewpoint of heat rupture resistance and reduction of pore size.
- the polyolefin microporous film has a laminated structure of two or more layers including at least one layer A containing polyolefin and one layer B containing polyolefin, and at least one of the A layer and the B layer.
- the polyolefin contained in the above has one or more functional groups, and after the microporous film is stored in the power storage device, (1) the functional groups undergo a condensation reaction with each other, or (2) the functional groups. Reacts with the chemicals inside the power storage device, or (3) the functional groups react with other types of functional groups to form a crosslinked structure.
- it is also effective in preventing short circuits according to the positional relationship with the electrodes in the power storage device, so that the heat resistance of the power storage device can be improved.
- a microporous polyolefin membrane such as polyethylene (PE) provides an isolation layer between the positive and negative electrodes after crystal melting.
- PE polyethylene
- the shape retention after melting can be improved.
- the passing rate of the HotBox test can be significantly improved.
- the separator having such a configuration is thermally decomposed or O 2 gas, particularly like the NMC positive electrode, even when the exothermic decomposition of the positive electrode progresses or O 2 gas is present in the system. Even in the case of a positive electrode that is prone to generate heat, it can be designed so that it does not ignite and does not lead to an explosion. This is because the PE soaked between the electrode particles can nullify the ion conductivity.
- the entangled structure of the polyethylene resin in the molten state differs greatly depending on whether or not it has a crosslinked structure, and the resin having a crosslinked structure and the resin not having a crosslinked structure are almost entropically mixed with each other. Does not progress. Utilizing this phenomenon, a polyolefin microporous film such as PE having a crosslinked structure is directed to face the positive electrode and / or the negative electrode, and a multilayer (for example,) in which a polyolefin microporous film having no crosslinked structure is formed in the intermediate layer between the two.
- the separators of 2 layers, 3 layers or 4 layers or more) have a significantly high ability to secure the distance between electrodes at the time of melting, can suppress short circuits at high temperatures, and can obtain a good pass rate in the HotBox test. ..
- the polyolefin microporous film has a laminated structure of two or more layers including at least one layer A containing polyolefin and one layer B containing polyolefin.
- the polyolefin microporous membrane preferably has a two-layer structure or a three-layer structure, and has a one-kind two-layer structure, a two-kind two-layer structure, a kind three-layer structure, a two-kind three-layer structure, or a three-kind three-layer structure. Is more preferable, and it is further preferable to have a two-kind two-layer structure or a two-kind three-layer structure.
- the two-layer structure are "A layer-B layer”
- specific examples of the three-layer structure are "A layer-A layer-B layer”, “A layer-B layer-B layer”, and ". "B layer-A layer-B layer” or "A layer-B layer-A layer”.
- the further layer include a layer containing polyolefin, a layer containing a resin other than polyolefin, a layer containing inorganic particles or a heat-resistant resin, an adhesive layer containing an adhesive polymer, and the like.
- the porous layer does not soak into the electrodes facing the porous layer, it can contribute to the prevention of short circuits between the electrodes.
- the chemically crosslinked porous layer does not permeate into both poles, and as compared with the two-layer structure, short-circuit prevention at high temperature of the power storage device is prevented. Is even more effective.
- the surface layer can be positively impregnated into the electrode even if it is stored in the power storage device at a high temperature, so that the inside of the electrode layer is inside.
- it can also have the effect of preventing short circuits between the electrodes due to the chemical cross-linking property of the intermediate layer.
- one of the A layer and the B layer is preferably a layer that does not contain a functional group involved in any of the above reactions (1) to 3.
- the layer containing the functional groups with respect to the thickness of the layer not containing the functional groups.
- the thickness ratio of is preferably 0.08 to 6.50. From the same viewpoint, it is preferable that the layer A and the layer B which do not contain the functional group contain polyethylene.
- polyethylene (PE) alone preferably has a crystallinity of 60% to 99%, preferably 60% to 80%, from the viewpoint of the swelling state due to the electrolytic solution in the battery. Is more preferable, and 62% to 77% is further preferable.
- the electrolytic solution in which the PE simple substance layer is swollen can uniformly immerse (supply) the electrolytic solution in the cross-linking unit-containing layer, which is important for constructing a uniform cross-linking structure.
- the PE crystallite size is preferably 10 nm to 50 nm, more preferably 15 nm to 40 nm, further preferably 16 nm to 39 nm, and more preferably 20 nm to 38 nm. Especially preferable.
- the crystallite size of PE alone shall be adjusted within the above numerical range by, for example, controlling the PE form or the PE raw material input method in the manufacturing process of the microporous membrane, specifying the ratio of the PE raw material to the propropylene (PP) raw material, and the like. Can be done.
- the viscoelasticity as described above can be measured and observed by, for example, the following method.
- the solid viscoelasticity of the separator can be measured using a dynamic viscoelasticity measuring device, and the storage elastic modulus (E'), the loss elastic modulus (E''), and the film softening transition temperature can be calculated.
- the conditions for measuring solid viscoelasticity were as follows (i) to (iv).
- the static tensile load refers to the intermediate value between the maximum stress and the minimum stress in each periodic motion, and the sinusoidal load refers to the vibration stress centered on the static tensile load;
- the sinusoidal tension mode refers to measuring the vibration stress while performing periodic motion with a fixed amplitude of 0.1%, and in the sinusoidal tension mode, the difference between the static tension load and the sinusoidal load is 5%.
- the vibration stress is measured by varying the distance between gaps and the static tensile load so that it is within 0.1 N, and when the sinusoidal load becomes 0.1 N or less, the static tensile load is fixed at 0.1 N and vibration occurs. Measure the stress.
- the average value of the maximum value and the minimum value of E' is calculated as the average E'(E'ave), and the average value of the maximum value and the minimum value of E'' is the average E''(E'' ave ).
- each storage elastic modulus or each loss elastic modulus at ⁇ 50 ° C. to 250 ° C. were calculated in the dynamic viscoelasticity measurement data. More specifically, when no fracture (rapid decrease in elastic modulus) of the sample is observed at -50 ° C to 250 ° C, the maximum and minimum values of -50 ° C to 250 ° C are calculated and -50 ° C. The value at the temperature at which the sample was broken at about 250 ° C. was set as the minimum value.
- the membrane softening transition point temperature is the minimum temperature obtained by first-order differentiation of the sample gap distance curve in the dynamic viscoelasticity measurement data.
- the film breaking temperature is the temperature at which the sample breaks (rapid decrease in elastic modulus) is observed in the dynamic viscoelasticity measurement data, and the measurement limit temperature is from the viewpoint that the thermal decomposition reaction of the polyolefin resin proceeds. Therefore, it may be set as 250 ° C. However, since the phenomenon can be similarly understood by measurement at a temperature higher than 250 ° C., a microporous membrane or a separator for a power storage device having a membrane breaking temperature of 180 ° C. or higher can be implemented.
- the A layer and the B layer contain polyolefin, and are preferably composed of polyolefin.
- the form of the polyolefin of the A layer and the B layer may be a microporous polyolefin material, for example, a polyolefin-based fiber woven fabric (woven fabric), a polyolefin-based fiber non-woven fabric, or the like.
- the polyolefin for example, a homopolymer, a copolymer, or a multistage polymer obtained by using ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene or the like as a monomer. Etc., and these polymers may be used alone or in combination of two or more.
- the polyolefin is preferably at least one selected from the group consisting of polyethylene, polypropylene, and copolymers thereof from the viewpoint of the shutdown and meltdown characteristics of the separator.
- polyethylene examples include low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), high molecular weight polyethylene (HMWPE), and ultra high molecular weight polyethylene (HMWPE). UHMWPE) and the like.
- LDPE low density polyethylene
- LLDPE linear low density polyethylene
- MDPE medium density polyethylene
- HDPE high density polyethylene
- HMWPE high molecular weight polyethylene
- HMWPE ultra high molecular weight polyethylene
- UHMWPE ultra high molecular weight polyethylene
- ultra-high molecular weight polyethylene means polyethylene having a viscosity average molecular weight (Mv) of 100,000 or more.
- Mv viscosity average molecular weight
- UHMWPE ultra high molecular weight polyethylene
- HMWPE high molecular weight polyethylene
- high-density polyethylene means polyethylene having a density of 0.942 to 0.970 g / cm 3 .
- the density of polyethylene means a value measured according to the D) density gradient tube method described in JIS K7112 (1999).
- polypropylene examples include isotactic polypropylene, syndiotactic polypropylene, atactic polypropylene and the like.
- copolymer of ethylene and propylene examples include ethylene-propylene random copolymer and ethylene propylene rubber.
- the amount of polypropylene contained in the A layer is preferably 0% by mass or more and less than 3% by mass, more preferably 0% by mass or more and less than 1% by mass, and most preferably, based on the total mass of the resin components constituting the A layer.
- Layer A does not contain polypropylene. When the polypropylene contained in the layer A is less than 3% by mass, the mechanical strength and elongation of the polyolefin microporous film become better.
- the amount of polyethylene is preferably 90% by mass or more and 100% by mass or less, more preferably 97% by mass or more and 100, based on the total mass of the resin components constituting the A layer.
- the A layer is composed of polyethylene. The high proportion of polyethylene contained in the A layer improves the shutdown function of the polyolefin microporous membrane.
- the ratio of the thickness of the A layer to the total thickness (total thickness) of the polyolefin microporous film is 40% or more and 90% or less, preferably 50% or more and 90% or less, more preferably 55% or more and 85% or less, and further. It is preferably 60% or more and 80% or less.
- the ratio of the thickness of the layer A is 90% or less, the melting point of the polyolefin microporous film as a whole does not become too low, and the thermal shrinkage of the separator can be suppressed.
- the A layer has a lower polypropylene content than the B layer, it tends to have higher toughness and a lower melting point than the B layer. Therefore, when the thickness ratio of the A layer is 50% or more, the A layer serves as a base material for the polyolefin microporous film, and the mechanical strength and elongation of the polyolefin microporous film become better. , The shutdown function can be guaranteed.
- Layer B contains more polypropylene than layer A. That is, when the ratio of polypropylene contained in the A layer is PPA (mass%) and the ratio of polypropylene contained in the B layer is PPB (mass%), PPB> PPA.
- the lower limit of the amount of polypropylene contained in the B layer is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 4% by mass or more, based on the total mass of the resin components constituting the B layer. Even more preferably, it is 5% by mass or more, and most preferably 10% by mass or more.
- the upper limit of the amount of polypropylene contained in the B layer is preferably 30% by mass or less, more preferably 27% by mass or less, still more preferably 25% by mass or less, based on the total mass of the resin components constituting the B layer. Even more preferably, it is 20% by mass or less, and most preferably 18% by mass or less.
- the range of the amount of polypropylene contained in the B layer is, for example, 1% by mass or more and 30% by mass or less, 1% by mass or more and less than 30% by mass, preferably 5% by mass or more and less than 30% by mass, and more preferably 5% by mass. % Or more and 25% by mass or less, more preferably 10% by mass or more and 20% by mass or less.
- the A layer ensures the strength and elongation and the polypropylene contained in the B layer is within the above range, a constant tension is applied to the MD (mechanical direction of continuous molding of the microporous film) of the polyolefin microporous film.
- the heat press is performed in this state, the heat shrinkage in the TD (direction across the MD at an angle of 90 °) can be suppressed, so that the strain can be suppressed.
- polypropylene has a higher melting point than polyethylene, the presence of polypropylene in the B layer within the above range ensures the shutdown function of the separator and prevents the surface layer from melting during hot pressing to reduce the permeability. can do.
- the amount of polyethylene is preferably 60% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 95, based on the total mass of the resin components constituting the B layer. It is mass% or less, more preferably 75% by mass or more and 90% by mass or less, and most preferably, the B layer is composed of polypropylene and polyethylene.
- the viscosity average molecular weight of polyethylene contained in the A layer and the B layer is preferably 50,000 or more and 10 million or less, more preferably 100,000 or more and 5 million or less, still more preferably 120,000 or more and 3 million or less, and most preferably 15. More than 10,000 and less than 1 million.
- the molecular weight is 50,000 or more, a polyolefin microporous film having sufficient strength can be obtained, and when it is 10 million or less, the internal stress at the time of stretching does not become too large, so that excessive heat shrinkage can be suppressed. can.
- the molecular weight distribution (Mw / Mn) of polyethylene is preferably 20 or less, more preferably 17 or less, further preferably 14 or less, still more preferably 10 or less, most preferably 8 or less, and preferably 2 or more. It is more preferably 3 or more, still more preferably 4 or more.
- Mw / Mn The molecular weight distribution is 20 or less, it is possible to prevent a decrease in breaking strength due to a low molecular weight component and an increase in residual stress due to a high molecular weight component.
- the molecular weight distribution is 2 or more, an increase in residual stress can be suppressed.
- the A layer contains UHMWPE.
- the amount of UHMWPE is preferably 5% by mass or more, more preferably 10% by mass or more, preferably 70% by mass or less, still more preferably, with respect to the total mass of the polyolefin of the A layer. Is 60% by mass or less.
- the layer A contains UHMWPE, the elongation at break as a base material of the polyolefin microporous film having a laminated structure can be improved.
- Layer B may contain UHMPWE. When the B layer contains UHMPWE, the amount of UHMWPE is preferably less than 30% by mass, more preferably less than 20% by mass, still more preferably less than 10% by mass, based on the total mass of the polyolefin of the B layer.
- the ratio of UHMWPE to the total mass of polyolefin in the entire polyolefin microporous membrane is preferably less than 45% by mass, more preferably less than 35% by mass, and even more preferably less than 25% by mass.
- the B layer contains LDPE.
- the amount of LDPE is preferably 3% by mass or more, more preferably 5% by mass or more, based on the total mass of the polyolefin of the B layer. Since the B layer contains low LDPE, the shutdown temperature and the shutdown response time can be lowered. This effect becomes remarkable when the structure of the B layer-A layer-B layer in which heat is transferred to the B layer first is included.
- Layer A may contain LDPE.
- the amount of LDPE is preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, still more preferably, based on the total mass of the polyolefin of the A layer. Is 10% by mass or less.
- the layer A contains LDPE, it is possible to suppress a decrease in elongation at break and mechanical strength by setting the proportion of LDPE to 25% by mass or less. This effect becomes remarkable when the A layer contains a B layer-A layer-B layer structure that ensures mechanical strength as a base material.
- the ratio of LDPE to the total mass of polyolefin in the entire polyolefin microporous membrane is preferably 25% by mass or less, more preferably 18% by mass or less, and even more preferably 13% by mass or less.
- the ratio of LDPE to the total mass of polyolefin in the entire polyolefin microporous film is 25% by mass or less, excessive decrease in crystallinity is prevented, and thermal shrinkage due to shrinkage of the amorphous part below the melting point due to residual stress It is possible to suppress the problem of increase and decrease in permeability and cycle characteristics. This effect is remarkable when used as a separator for a laminated secondary battery, which requires a step of fusing a separator having an adhesive layer to an electrode by a hot press.
- the lower limit of the viscosity average molecular weight of polypropylene contained in the A layer and the B layer is preferably 50,000 or more, more preferably 100,000 or more, further preferably 150,000 or more, still more preferably 300,000 or more, and most preferably 35. More than 10,000.
- the upper limit of the viscosity average molecular weight of polypropylene contained in the A layer and the B layer is preferably 10 million or less, more preferably 5 million or less, still more preferably 1 million or less, and most preferably 800,000 or less.
- the range of the viscosity average molecular weight of polypropylene contained in the A layer and the B layer is 50,000 or more and 10 million or less, more preferably 100,000 or more and 5 million or less, and most preferably 150,000 or more and 1 million or less.
- the melt index of the microporous polyolefin membrane does not become too high, so that melting during hot pressing can be prevented. Further, it is possible to provide a polyolefin microporous film having excellent short-circuit resistance of a battery in a nail piercing test. The reason is not limited to the theory, but even if the battery is short-circuited due to the film rupture and the temperature of the battery rises, the fluidity of the melted separator due to the entanglement of the molecular chains is low, so that the insulating property is sharply lowered. It is thought that this is because it can be prevented.
- the excellent short-circuit resistance of the battery under such harsh conditions is advantageous in a field where higher safety is required, for example, a separator for an in-vehicle battery.
- the molecular weight distribution (Mw / Mn) of polypropylene is preferably 30 or less, more preferably 24 or less, and most preferably 12 or less. Since the molecular weight distribution of polypropylene is 30 or less, the low molecular weight polypropylene component is small, so that the miscibility with polyethylene is improved, and a polyolefin microporous film having higher heat resistance derived from polypropylene can be obtained. ..
- the polypropylene contained in the A layer and the B layer is preferably a homopolymer.
- the amount of homopolymer is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, and most preferably 100% by mass, based on the total mass of polypropylene in the entire polyolefin microporous membrane. (All).
- the homopolymer content is 90% by mass or more, further melting of the microporous membrane due to temperature rise at the time of short circuit can be suppressed. Further, since the homopolymer has high crystallinity, phase separation from the plasticizer tends to proceed easily, and a film having good porosity and high permeability tends to be obtained.
- the output and cycle characteristics can be positively affected. Furthermore, since homopolymers have few amorphous parts, it is possible to suppress an increase in thermal shrinkage due to shrinkage of the amorphous parts due to heat below the melting point or residual stress, and shrinkage of the amorphous parts. It is possible to suppress the problem that the permeability and the cycle characteristics are deteriorated. Although not limited to applications, this effect is remarkable in a separator for a laminated secondary battery, which requires a step of fusing a separator having an adhesive layer to an electrode by a hot press.
- the ratio of the thickness of the B layer to the total thickness of the polyolefin microporous membrane is preferably 10% or more and 50% or less, more preferably 15% or more and 45% or less, and further preferably 20% or more and 40% or less.
- the A and B layers are resins such as polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimideamide, polyaramid, nylon, polytetrafluoroethylene, and polyvinylidene fluoride. May be further included.
- the proportion of molecules having a molecular weight of 3 million or more in the gel permeation chromatography (GPC) measurement of a polyolefin microporous membrane is preferably 10% by mass or less, more preferably 9% by mass or less, still more preferably 8% by mass or less. Yes, preferably 3% by mass or more, more preferably 5% by mass or more.
- the proportion of molecules having a molecular weight of 30,000 or less in the gel permeation chromatography (GPC) measurement of a polyolefin microporous film is preferably 3% by mass or less, more preferably 2.8% by mass or less, and most preferably.
- the high molecular weight polyethylene component is 10% by mass or less, the viscosity of the polyolefin microporous membrane does not become too high, and the shutdown function can be ensured.
- the polyethylene component having a low molecular weight is 3.0% by mass or less, it is possible to prevent the polyolefin microporous membrane from being closed and the permeability from being lowered during hot pressing.
- the content of the inorganic particles in the B layer is preferably less than 5% by mass, more preferably less than 3% by mass, and most preferably does not contain the inorganic particles.
- the content of the inorganic particles is less than 5% by mass, swelling of the battery due to gas generation can be effectively suppressed. This effect becomes more remarkable in a laminated battery in which the exterior body is easily deformed.
- the inorganic particles are present in the B layer in an amount of 5% by mass or more, the mechanical safety is lowered due to the inorganic particles becoming the starting point of breakage and the elongation is lowered, and the cycle is caused by the disorder of the pore uniformity. It is not preferable because the characteristics are likely to be deteriorated.
- the inorganic particles are not particularly limited, and are, for example, oxide-based ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, itria, zinc oxide, iron oxide; silicon nitride, titanium nitride, boron nitride.
- oxide-based ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, itria, zinc oxide, iron oxide; silicon nitride, titanium nitride, boron nitride.
- Nitride ceramics such as silicon carbide, calcium carbonate, aluminum sulfate, barium sulfate, aluminum hydroxide, aluminum hydroxide oxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite.
- Mica amesite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, ceramics such as kaolin; and glass fiber. These may be used alone or in combination of two or more. Among these, from the viewpoint of electrochemical stability, at least one selected from the group consisting of silica, alumina, and barium sulfate is preferable as the inorganic particles.
- the condensation reaction between the functional groups of the polyolefin can be, for example, a reaction via a covalent bond of two or more functional groups A contained in the polyolefin.
- the reaction between the functional group of the polyolefin and another type of functional group can be, for example, a reaction via a covalent bond between the functional group A and the functional group B contained in the polyolefin.
- the reaction between the functional group of the polyolefin and the chemical substance inside the power storage device for example, the functional group A contained in the polyolefin is an electrolyte, an electrolytic solution, an electrode active material, an additive or them contained in the power storage device. It is possible to form a covalent bond or a coordination bond with any of the decomposition products of the above, or with any of the electrolytes, electrolytes, electrode active materials, additives or their decomposition products contained in the polyolefin microporous film as a base material. can.
- the polyolefin microporous membrane is stored before, during, or after storage in a power storage device. Is fine. Further, according to the reaction (2), a crosslinked structure is formed not only inside the polyolefin microporous membrane but also between the polyolefin microporous membrane and the electrode or between the polyolefin microporous membrane and the solid electrolyte interface (SEI). It is possible to improve the strength between a plurality of members of the power storage device.
- SEI solid electrolyte interface
- the crosslinked structure formed by any of the reactions (1) to (3) is preferably an amorphous crosslinked structure in which the amorphous part of the polyolefin is crosslinked. It is considered that the functional groups contained in the polyolefin constituting the A layer or the B layer are not incorporated into the crystalline portion of the polyolefin and are crosslinked in the non-crystalline portion. Therefore, the conventional crosslinked polyolefin in which the crystal portion and its surroundings are easily crosslinked. Compared with the microporous film, it is possible to suppress an increase in internal stress or deformation of the manufactured power storage device while achieving both a shutdown function and high temperature rupture resistance, and it is possible to improve hot box testability.
- the amorphous part of the polyolefin is more preferably crosslinked selectively, and even more preferably significantly more than the crystalline part.
- the degree of gelation of the polyolefin microporous membrane having an amorphous crosslinked structure such as a silane crosslinked structure is preferably 30% or more, more preferably 70% or more.
- a polyolefin resin typified by high-density polyethylene or the like is generally a crystalline polymer, and has a lamella (crystal part) or amorphous part having a crystal structure. It has a higher-order structure divided into a quality part and an intermediate layer part between them. In the crystalline portion and the intermediate layer portion between the crystalline portion and the amorphous portion, the mobility of the polymer chain is low and cannot be separated, but a relaxation phenomenon can be observed in the 0 to 120 ° C. region by solid viscoelasticity measurement.
- the motility of the polymer chain is very high, and it is observed in the range of ⁇ 150 to ⁇ 100 ° C. in the solid viscoelasticity measurement. This is deeply related to radical relaxation, radical transfer reaction, cross-linking reaction, etc., which will be described later.
- the polyolefin molecules constituting the crystal are not single, and as illustrated in FIG. 2, after a plurality of polymer chains form small lamellas, the lamellas aggregate to form crystals. Such a phenomenon is difficult to observe directly. In recent years, simulations have led to academic research and clarification.
- the crystal is a unit of the smallest crystal measured by X-ray structure analysis, and is a unit that can be calculated as a crystallite size. In this way, even in the crystal part (inside the lamella), it is predicted that there is a part having a slightly high motility in the crystal without being partially constrained.
- the reaction mechanism of electron beam cross-linking to a polymer (hereinafter abbreviated as EB cross-linking) is as follows.
- I Irradiation of electron beams of several tens of kGy to several hundreds of kGy,
- (ii) Transmission of electron beams to the reaction target (polymer) and generation of secondary electrons,
- (iii) In the polymer chain by secondary electrons Hydrogen abstraction reaction and radical generation,
- extraction of adjacent hydrogen by radical and movement of active points (v) cross-linking reaction or polyene formation by recombination between radicals.
- radicals generated in the crystal portion have poor motion, they exist for a long period of time, and impurities and the like cannot enter the crystal, so that the probability of reaction / quenching is low.
- Such radical species called Table Radical, survived for a long period of several months, and ESR measurements revealed their lifetime.
- the cross-linking reaction in the crystal is considered to be poor.
- the generated radicals have a slightly long life.
- Such radical species are called Persistent Radicals, and it is considered that the cross-linking reaction between molecular chains proceeds with high probability in a motile environment.
- the generated radical species have a short lifetime, and it is considered that not only the cross-linking reaction between molecular chains but also the polyene reaction in one molecular chain proceeds with high probability. ..
- the cross-linking reaction by EB cross-linking is localized inside or around the crystal.
- the functional group in the polyolefin resin is reacted with the chemical substance contained in the storage device or the polyolefin microporous film, or the chemical substance contained in the storage device or the polyolefin microporous film is used as a catalyst. It is preferable to use as.
- the polyolefin resin has a crystalline portion and an amorphous portion.
- the above-mentioned functional group does not exist inside the crystal due to steric hindrance and is localized in the amorphous part.
- Non-Patent Document 2 This is generally known, and units such as methyl groups, which are slightly contained in the polyethylene chain, may be incorporated into the crystal, but grafts which are bulkier than ethyl groups are not incorporated ( Non-Patent Document 2). Therefore, the cross-linking points due to the reaction different from the electron beam cross-linking are localized only in the amorphous part.
- the results show that the EB crosslinked membrane suppresses the fragmentation of the crystal portion as the strain amount increases, based on the membrane that has not been EB crosslinked or chemically crosslinked (previously). Do you get it. This is because the inside or the periphery of the crystal portion is selectively crosslinked. Along with this, Young's modulus and breaking strength were remarkably improved, and high mechanical strength could be exhibited. On the other hand, in the chemically cross-linked film, there is no difference in crystal subdivision before and after the cross-linking reaction, suggesting that the amorphous portion was selectively cross-linked. In addition, there was no change in mechanical strength before and after the crosslinking reaction. Next, the behavior of both crystals during melting was investigated by a fuse / meltdown characteristic test.
- the fuse temperature of the EB crosslinked film becomes remarkably high, and the meltdown temperature rises to 200 ° C. or higher.
- the fuse temperature of the chemically crosslinked film did not change before and after the crosslinking treatment, and the meltdown temperature rose to 200 ° C. or higher. From this, it is considered that, in the fuse characteristics generated by crystal melting, the EB crosslinked film was caused by an increase in the melting temperature and a decrease in the melting rate because the periphery of the crystal portion was crosslinked.
- the chemically crosslinked film does not change the fuse characteristics because the crystal portion does not have a crosslinked structure. Further, in a high temperature region of about 200 ° C., both have a crosslinked structure after crystal melting, so that the entire resin product can be stabilized in a gel state, and good meltdown characteristics can be obtained.
- the polyolefin microporous film contains a functional group-modified polyolefin or a functional group as a polyolefin having one or more functional groups from the viewpoints of forming a crosslinked structure, deterioration of oxidation-reduction resistance, and a dense and uniform porous structure. It is preferable to contain a polyolefin copolymerized with the monomer having the same.
- the functional group-modified polyolefin means a product to which a functional group is bonded after the polyolefin is produced.
- the functional group is one that can be attached to the polyolefin skeleton or can be introduced into a comonomer, preferably is involved in the selective cross-linking of the amorphous part of the polyolefin, for example, a carboxyl group, a hydroxy group, a carbonyl group.
- Polymerizable unsaturated hydrocarbon group isocyanate group, epoxy group, silanol group, hydrazide group, carbodiimide group, oxazoline group, acetoacetyl group, aziridine group, ester group, active ester group, carbonate group, azide group, chain or It can be at least one selected from the group consisting of a cyclic heteroatom-containing hydrocarbon group, an amino group, a sulfhydryl group, a metal chelating group, and a halogen-containing group.
- the polyolefin microporous membrane preferably contains both polyolefin having one or more functional groups and UHMWPE. ..
- the mass ratio of the polyolefin having one or two or more functional groups to UHMWPE is preferably used in the separator.
- the mass of the polyolefin having a functional group / the mass of the ultra-high molecular weight polyethylene) is 0.05 / 0.95 to 0.80 / 0.20.
- the crosslinked structure of the polyolefin contained in the A layer or the B layer contributes to heat resistance in, for example, a hot box test, and is preferably formed in the amorphous portion of the polyolefin.
- the crosslinked structure can be formed, for example, by a reaction via either a covalent bond, a hydrogen bond or a coordination bond.
- the reactions mediated by covalent bonds are the following reactions (I) to (IV): (I) Condensation reaction of a plurality of the same functional groups (II) Reaction between a plurality of different functional groups (III) Chain condensation reaction of a functional group and an electrolytic solution (IV) A group consisting of a chain condensation reaction of a functional group and an additive It is preferably at least one selected.
- the reaction via the coordination bond is the following reaction (V) :.
- V) A reaction in which a plurality of the same functional groups are crosslinked via a coordination bond with an eluted metal ion is preferable.
- reaction (I) A schematic scheme and specific examples of the reaction (I) are shown below, where A is the first functional group of the separator.
- R is an alkyl group or a heteroalkyl group having 1 to 20 carbon atoms which may have a substituent.
- the polyolefin is preferably silane graft-modified.
- the silane graft-modified polyolefin has a structure in which the main chain is polyolefin and the main chain has an alkoxysilyl as a graft.
- the alkoxide substituted with the alkoxysilyl include methoxide, ethoxide, butoxide and the like.
- R can be methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl and the like.
- the main chain and the graft are connected by a covalent bond, and examples thereof include structures such as alkyl, ether, glycol and ester.
- the ratio of silicon to carbon (Si / C) of the silane graft-modified polyolefin is preferably 0.2 to 1.8% in the step before the cross-linking treatment step, and is 0. More preferably, it is 5.5 to 1.7%.
- Preferred silane graft-modified polyolefins have a density of 0.90 to 0.96 g / cm 3 and a melt flow rate (MFR) at 190 ° C. of 0.2 to 5 g / min.
- the silane graft-modified polyolefin is not a masterbatch resin containing a dehydration condensation catalyst from the viewpoint of suppressing the generation of resin agglomerates in the separator manufacturing process and maintaining the silane crosslinkability until contact with the electrolytic solution. Is preferable.
- the dehydration condensation catalyst is also known to function as a catalyst for the siloxane bond formation reaction of the alkoxysilyl group-containing resin.
- a dehydration condensation catalyst for example, an organic metal-containing catalyst
- an organic metal-containing catalyst is pre-added to an alkoxysilyl group-containing resin or another kneaded resin during a continuous process of resin kneading using an extruder, and the compound is mastered. Called batch resin.
- Reaction (II) A schematic scheme and specific examples of the reaction (II) are shown below, where A is the first functional group and B is the second functional group of the separator.
- Reaction (I) and reaction (II) can be catalyzed, and can be catalyzed, for example, by a chemical substance inside a power storage device in which a separator is incorporated.
- the chemical substance can be, for example, any of an electrolyte, an electrolytic solution, an electrode active material, an additive, or a decomposition product thereof contained in a power storage device.
- Reaction (III) The schematic scheme and specific examples of the reaction (III) are shown below, where A is the first functional group of the separator and Sol is the electrolytic solution.
- reaction (IV) The schematic scheme of the reaction (IV) is shown below, where A is the first functional group of the separator, B is the second functional group to be incorporated if desired, and Ad is the additive.
- the reaction (IV) is a nucleophilic substitution reaction or a nucleophilic addition reaction between the compound Rx constituting the separator and the compound Ry constituting the additive (Add) from the viewpoint of forming a covalent bond represented by a dotted line in the above scheme. Alternatively, it is preferably a ring-opening reaction.
- the compound Rx may be a polyolefin contained in the separator, for example, polyethylene or polypropylene, and preferably, the polyolefin is a group consisting of, for example, -OH, -NH 2 , -NH-, -COOH and -SH due to the functional group x. Denatured by at least one selected from.
- a plurality of compounds Rx is because it is cross-linked via a compound Ry as an additive, Compound Ry preferably has two or more coupling reaction unit y 1.
- the plurality of linking reaction units y 1 may be any structure or group, and may be substituted or unsubstituted, as long as it can cause a nucleophilic substitution reaction, a nucleophilic addition reaction or a ring opening reaction with the functional group x of the compound Rx. , Heteroatoms or inorganics may be included and may be the same or different from each other. Further, when the compound Ry has a chain structure, the plurality of linking reaction units y 1 can be independently a terminal group, incorporated into a main chain, or a side chain or a pendant.
- the reaction (IV) is a nucleophilic substitution reaction
- the functional group x of the compound Rx is regarded as a nucleophilic group
- the linking reaction unit y 1 of the compound Ry is regarded as a leaving group, which will be described below.
- the functional group x and the linking reaction unit y 1 can both be leaving groups depending on the nucleophilicity.
- the functional group x of the compound Rx is preferably an oxygen-based nucleophile, a nitrogen-based nucleophile, or a sulfur-based nucleophile.
- the oxygen-based nucleophilic group include a hydroxyl group, an alkoxy group, an ether group, a carboxyl group and the like, and among them, -OH and -COOH are preferable.
- the nitrogen-based nucleophile include an ammonium group, a primary amino group, a secondary amino group and the like, and among them, -NH 2 and -NH- are preferable.
- the sulfur-based nucleophilic group include -SH, a thioether group and the like, and -SH is preferable.
- reaction (IV) is a nucleophilic substitution reaction, from the viewpoint of leaving groups, as ligation units y 1 compound Ry is, CH 3 SO 2 -, CH 3 CH 2 SO 2 - alkylsulphonyl such as group; an arylsulfonyl group (-ArSO 2 -); CF 3 SO 2 -, CCl 3 SO 2 - haloalkylsulfonyl group such as; CH 3 SO 3 - -, CH 3 CH 2 SO 3 - - alkylsulfonate group and the like; Arylsulfonate groups (ArSO 3 - -); haloalkyl sulfonate groups such as CF 3 SO 3 - -, CCl 3 SO 3 - -, and heterocyclic groups are preferred; and these may be used alone or in combination of two or more.
- the leaving group contains a nitrogen atom in the heterocyclic ring, the following formula (y 1 -1) ⁇ (y 1 -6): ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ The monovalent group represented by is preferable.
- X is a hydrogen atom or a monovalent substituent.
- the monovalent substituent include an alkyl group, a haloalkyl group, an alkoxyl group, a halogen atom and the like.
- the compound Ry has the following formula (y 2) as the chain unit y 2 in addition to the linking reaction unit y 1. -1) ⁇ (y 2 -6) : ⁇ In the formula, m is an integer of 0 to 20, and n is an integer of 1 to 20. ⁇ ⁇ In the formula, n is an integer from 1 to 20. ⁇ ⁇ In the formula, n is an integer from 1 to 20. ⁇ ⁇ In the formula, n is an integer from 1 to 20. ⁇ ⁇ In the formula, n is an integer from 1 to 20. ⁇ ⁇ In the formula, X is an alkylene group or an arylene group having 1 to 20 carbon atoms, and n is an integer of 1 to 20.
- X is an alkylene group or an arylene group having 1 to 20 carbon atoms
- n is an integer of 1 to 20.
- the compound Ry contains a plurality of chain units y 2 , they may be the same or different from each other, and their sequences may be block or random.
- n is an integer of 1 to 20, in view of crosslinked network, preferably 2 to 19 or 3 to 16.
- X is an alkylene group, or arylene group having 1 to 20 carbon atoms, from the viewpoint of the stability of the chain structure, preferably a methylene group, It is an ethylene group, an n-propylene group, an n-butylene group, an n-hexylene group, an n-heptylene group, an n-octylene group, an n-dodecylene group, a Occasionally-phenylene group, an m-phenylene group, or a p-phenylene group. ..
- reaction (IV) is a nucleophilic substitution reaction, showing the functional group x compounds Rx, a preferred combination of the ligation reaction unit y 1 and chain unit y 2 compounds Ry in Table 2-4.
- the functional group x of the polyolefin is -NH 2
- the linking reaction unit y 1 of the additive is a skeleton derived from succinimide
- the chain unit y 2 The reaction scheme when is-(OC 2 H 5 ) n- is shown below.
- the functional groups x of the polyolefin are -SH and -NH 2
- the linking reaction unit y 1 of the additive is a nitrogen-containing cyclic skeleton and a chain unit.
- the reaction scheme when y 2 is schreib-phenylene is shown below.
- the functional group x of the compound Rx and the ligation reaction unit y 1 of the compound Ry can cause an addition reaction.
- the functional group x of the compound Rx is preferably an oxygen-based nucleophile, a nitrogen-based nucleophile, or a sulfur-based nucleophile.
- the oxygen-based nucleophilic group include a hydroxyl group, an alkoxy group, an ether group, a carboxyl group and the like, and among them, -OH and -COOH are preferable.
- nitrogen-based nucleophile examples include an ammonium group, a primary amino group, a secondary amino group and the like, and among them, -NH 2 and -NH- are preferable.
- sulfur-based nucleophilic group examples include -SH, a thioether group and the like, and -SH is preferable.
- coupling reaction unit y 1 compound Ry from the viewpoint of easy availability of additional reactive or raw material, the following formula (Ay 1 -1) ⁇ (Ay 1 -6): ⁇ In the formula, R is a hydrogen atom or a monovalent organic group. ⁇ It is preferably at least one selected from the group consisting of the groups represented by.
- R is a hydrogen atom or a monovalent organic group, preferably a hydrogen atom, C 1 ⁇ 20 alkyl group, an alicyclic group, or aromatic group, more preferably Is a hydrogen atom, a methyl group, an ethyl group, a cyclohexyl group or a phenyl group.
- reaction (IV) is a nucleophilic addition reaction shows a preferred combination of the ligation reaction units y 1 compound Ry with the functional group x compounds Rx in Table 5 and 6.
- the reaction scheme when the functional group x of the separator is -OH and the linking reaction unit y 1 of the additive (compound Ry) is -NCO is shown below.
- the functional group x of the compound Rx and the linking reaction unit y 1 of the compound Ry can cause a ring-opening reaction, and the linking reaction unit can be obtained from the viewpoint of availability of raw materials. It is preferred that cyclic structure y 1 side is opened. From the same viewpoint, the linking reaction unit y 1 is more preferably an epoxy group, the compound Ry is further preferably having at least two epoxy groups, and even more preferably a diepoxy compound.
- reaction (IV) is a ring-opening reaction
- the functional group x of compound Rx may be at least one selected from the group consisting of -OH, -NH 2, -NH-, -COOH and -SH.
- / or compounds linked reaction unit y 1 of Ry is a compound represented by the following formula (ROy 1 -1): ⁇ In the formula, each of the plurality of Xs is a hydrogen atom or a monovalent substituent independently. ⁇ It is preferably at least two groups represented by.
- the plurality of X each independently, a hydrogen atom or a monovalent substituent, preferably a hydrogen atom, C 1 ⁇ 20 alkyl group, an alicyclic group, or aromatic It is a group, more preferably a hydrogen atom, a methyl group, an ethyl group, a cyclohexyl group or a phenyl group.
- a hydrogen atom or a monovalent substituent preferably a hydrogen atom, C 1 ⁇ 20 alkyl group, an alicyclic group, or aromatic It is a group, more preferably a hydrogen atom, a methyl group, an ethyl group, a cyclohexyl group or a phenyl group.
- Reaction (V) The schematic scheme of the reaction (V) and the example of the functional group A are shown below, where A is the first functional group of the separator and M n + is the metal ion.
- the metal ion M n + is preferably one eluted from the power storage device (hereinafter, also referred to as an eluted metal ion), and is composed of , for example, Zn 2+ , Mn 2+ , Co 3+ , Ni 2+ and Li +. It can be at least one selected from the group.
- the functional group A is -COO - illustrates the coordination bonds case following.
- hydrofluoric acid is, for example, any of an electrolyte, an electrolytic solution, an electrode active material, an additive, a decomposition product thereof, or a water absorbent contained in the power storage device, depending on the charge / discharge cycle of the power storage device. Can be derived from.
- the polyolefin microporous film may be prepared in addition to a polyolefin, a dehydration condensation catalyst, metal soaps such as calcium stearate or zinc stearate, an ultraviolet absorber, a light stabilizer, an antioxidant, an antifogging agent, a coloring pigment, and an inorganic substance. It may contain known additives such as fillers and inorganic particles.
- the polyolefin microporous membrane has a heat shrinkage rate of TD at 120 ° C. of 10% or more and 40% or less, preferably 15% or more and 35% or less, more preferably 15% or more and 35% or less, which is measured with a constant load applied to the MD. It is 20% or more and 30% or less.
- TD heat shrinkage rate of TD at 120 ° C.
- the separator is wound on the MD and is therefore subjected to a heat press while being restrained by the MD.
- the heat shrinkage of the TD measured as described above is 40% or less, it is possible to effectively suppress the occurrence of a short circuit during the adhesive press, and the heat shrinkage is 10% or more. Therefore, the deflection of the microporous polyolefin film or the defective battery molding can be effectively suppressed.
- the porosity of the polyolefin microporous membrane is preferably 20% or more, more preferably 30% or more, still more preferably 32% or more or 35% or more.
- the porosity of the microporous membrane is 20% or more, the followability to the rapid movement of lithium ions tends to be further improved.
- the porosity of the microporous membrane is preferably 90% or less, more preferably 80% or less, still more preferably 50% or less.
- the porosity of the microporous membrane is 90% or less, the membrane strength tends to be further improved and self-discharge tends to be further suppressed.
- the porosity of the microporous membrane can be measured by the method described in Examples.
- the air permeability of the polyolefin microporous membrane is preferably 1 second or longer, more preferably 50 seconds or longer, still more preferably 55 seconds or longer, still more preferably 70 seconds or longer, 90 seconds or more per 100 cm 3 of the membrane volume. More than a second, or more than 110 seconds. When the air permeability of the microporous membrane is 1 second or more, the balance between the film thickness, the porosity and the average pore size tends to be further improved.
- the air permeability of the microporous membrane is preferably 400 seconds or less, more preferably 300 seconds or less, and further preferably 270 seconds or less. When the air permeability of the microporous membrane is 400 seconds or less, the ion permeability tends to be further improved.
- the air permeability of the microporous membrane can be measured by the method described in Examples.
- the tensile strength of the polyolefin microporous membrane is preferably 1000 kgf / cm 2 or more, more preferably 1050 kgf / cm 2 or more, respectively, in both the MD and TD (direction orthogonal to MD, film width direction). More preferably, it is 1100 kgf / cm 2 or more.
- the tensile strength is 1000 kgf / cm 2 or more, the breakage at the time of turning the slit or the power storage device tends to be further suppressed, or the short circuit due to foreign matter or the like in the power storage device tends to be further suppressed.
- the tensile strength of the microporous membrane is preferably 5000 kgf / cm 2 or less, more preferably 4500 kgf / cm 2 or less, and even more preferably 4000 kgf / cm 2 or less.
- the tensile strength of the microporous membrane is 5000 kgf / cm 2 or less, the microporous membrane is relaxed at an early stage during the heating test, the shrinkage force is weakened, and as a result, the safety tends to be improved.
- the tensile elastic modulus of the polyolefin microporous membrane is preferably 120 N / cm or less, more preferably 100 N / cm or less, and further preferably 90 N / cm or less in both the MD and TD directions.
- a tensile elastic modulus of 120 N / cm or less indicates that the separator for a lithium ion secondary battery is not extremely oriented, and in a heating test or the like, for example, when a blocking agent such as polyethylene melts and shrinks, Polyethylene or the like causes stress relaxation at an early stage, which suppresses the shrinkage of the separator in the battery and tends to prevent short circuits between the electrodes. That is, the safety of the separator during heating can be further improved.
- Such a microporous membrane having a low tensile elastic modulus can be easily achieved by containing polyethylene having a weight average molecular weight of 500,000 or less in the polyolefin forming the microporous membrane.
- the lower limit of the tensile elastic modulus of the microporous membrane is not particularly limited, but is preferably 10 N / cm or more, more preferably 30 N / cm or more, and further preferably 50 N / cm or more.
- the ratio of the tensile elastic modulus in the MD and TD directions (tensile elastic modulus in the MD direction / tensile elastic modulus in the TD direction) of the microporous film made of polyolefin is preferably 0.2 to 3.0, and more preferably 0. It is 5 to 2.0, more preferably 0.8 to 1.2.
- the ratio of the tensile elastic modulus in the MD and TD directions of the microporous polyolefin membrane is within such a range, the shrinkage force in the MD direction and the TD direction is uniform when the occlusive agent such as polyethylene melts and shrinks. become.
- the shear stress applied to the electrode adjacent to the separator becomes uniform in the MD direction and the TD direction, and tends to prevent the laminate of the electrode and the separator from being broken. That is, the safety of the separator during heating can be further improved.
- the tensile elastic modulus of the microporous membrane can be appropriately adjusted by adjusting the degree of stretching and, if necessary, relaxing after stretching.
- the film thickness of the polyolefin microporous membrane is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, still more preferably 3.0 ⁇ m or more, 4.0 ⁇ m or more, or 5.5 ⁇ m or more.
- the film thickness of the microporous membrane is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 80 ⁇ m or less, 22 ⁇ m or less, or 19 ⁇ m or less.
- the film thickness of the microporous membrane is 500 ⁇ m or less, the ion permeability tends to be further improved.
- the film thickness of the microporous membrane can be measured by the method described in Examples.
- the film thickness of the polyolefin microporous film is preferably 25 ⁇ m or less, more preferably 22 ⁇ m or less or 20 ⁇ m or less, and further. It is preferably 18 ⁇ m or less, and particularly preferably 16 ⁇ m or less. In this case, when the film thickness of the microporous membrane is 25 ⁇ m or less, the permeability tends to be further improved. In this case, the lower limit of the film thickness of the microporous membrane may be 1.0 ⁇ m or more, 3.0 ⁇ m or more, 4.0 ⁇ m or more, or 5.5 ⁇ m or more.
- the separator for a power storage device needs to have insulating property and lithium ion permeability, it is generally formed of paper, polyolefin non-woven fabric, resin microporous film, or the like, which is an insulating material having a porous body structure.
- a polyolefin microporous membrane capable of deteriorating the oxidation-reduction resistance of the separator and constructing a dense and uniform porous structure is excellent as the separator base material or the separator itself.
- the polyolefin microporous membrane having the layer structure described above, or the polyolefin microporous membrane obtained by a method including various steps described above, can be used as a separator for a power storage device, particularly a lithium battery or a lithium ion secondary. It can be used as a battery separator.
- the separator for a power storage device includes at least one layer A containing polyolefin, a layer B containing polyolefin, and a layer C containing inorganic particles.
- the total thickness (total thickness) of the separator for a power storage device is preferably 2 ⁇ m or more, more preferably 4 ⁇ m or more, from the viewpoint of ensuring insulation.
- the total thickness of the separator for a power storage device is preferably 40 ⁇ m or less, more preferably 20 ⁇ m or less, from the viewpoint of increasing ion permeability and energy density of the power storage device.
- a polyolefin base material layer in which at least one layer A and one layer B are laminated is also simply referred to as a “polyolefin base material layer”.
- the number and stacking order of the A layer and the B layer are not limited, and the polyolefin base material layer may have a two-layer laminated structure including one A layer and one B layer, and one of the A layer and the B layer may be used. It may be a three-layer laminated structure including two layers and one layer of the other.
- the three-layer laminated structure may be, for example, a structure in which A layer-B layer-A layer are laminated in this order.
- the polyolefin base material layer is typically a microporous film containing polyolefin as a main component, and is preferably a polyolefin microporous film.
- Constaining as a main component means that the target component is contained in an amount of 50% by mass or more based on the total mass.
- the polyolefin contained in the polyolefin base material layer is, for example, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, based on the total mass of the resin components constituting the microporous film. , 99% by mass or more, or 100% by mass.
- the polyolefin contained in the A layer and the polyolefin contained in the B layer may be the same type of polyolefin having the same structure and properties, and may be the type and ratio of the monomer, the molecular weight, the glass transition temperature, the melting point, and the melting. It may be a different kind of polyolefin having at least one difference in structure and properties such as viscosity at the time.
- the polyolefin is not particularly limited, but is preferably a polyolefin containing an olefin having 3 to 10 carbon atoms as a monomer unit.
- Such polyolefins are selected, for example, from the group consisting of homopolymers of ethylene or propylene, and ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, and norbornene. Examples thereof include a copolymer formed from at least two olefin monomers, preferably polyethylene, polypropylene, and a combination thereof.
- low density polyethylene low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and ultra high molecular weight polyethylene (UHMWPE) are mentioned, and heat-fixed at a higher temperature without clogging the microporous.
- High-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE) are preferable from the viewpoint that (may be abbreviated as "HS").
- the low density polyethylene LDPE
- a density of less than 0.925 g / cm 3 and medium density polyethylene (MDPE)
- high density polyethylene HDPE
- UHMWPE ultra-high molecular weight polyethylene
- Mw weight average molecular weight
- polypropylene examples include isotactic polypropylene, syndiotactic polypropylene, and atactic polypropylene.
- copolymer of ethylene and propylene examples include ethylene-propylene random copolymer and ethylene-propylene rubber.
- the polyolefin contained in at least one of the A layer and the B layer is one kind or two or more kinds of functional groups, and the functional groups are condensed with each other in the power storage device to form a crosslinked structure by a siloxane bond (functional groups).
- a polyolefin having a “crosslinkable functional group” is included in the specification of the present application.
- the polyolefin base material layer has a three-layer laminated structure of A layer-B layer-A layer, either one of the A layer or the B layer contains a polyolefin having a crosslinkable functional group, and the other contains a crosslinkable functional group. It is preferable that the polyolefin is not contained.
- the polyolefin base material layer has a three-layer laminated structure of A layer-B layer-A layer
- the A layer located on the outside contains a polyolefin having a crosslinkable functional group
- the B layer located on the inside is crosslinkable. It is preferable that it does not contain a polyolefin having a functional group.
- the crosslinkable functional group is preferably grafted on the main chain of the polyolefin.
- the crosslinkable functional group is a crosslinkable silane group such as a trialkoxysilyl group (-Si (OR) 3 ) and / or a dialkoxysilyl group (-Si (OR) 2 ), in which R is, for example, Methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, or a combination thereof, preferably methyl, ethyl, n-propyl or a combination thereof.
- the crosslinkable silane group is more preferably a methoxysilyl group and an ethoxysilyl group, and more preferably a trimethoxysilane group (-Si (OMe) 3 ).
- the alkoxysilyl group is converted to a silanol group through a hydrolysis reaction with water to cause a condensation reaction, and a siloxane bond can be formed in the battery.
- the following formula shows an example of the cross-linking reaction when R is methyl.
- the rate of change from the T0 structure to the T1 structure, T2 structure or T3 structure is arbitrary.
- silane-modified polyolefin hereinafter, also referred to as "resin a"
- the main chain and the graft are covalently connected.
- the structure forming the covalent bond is not particularly limited, and examples thereof include alkyl, ether, glycol, and ester.
- the silanol unit is 0.03 to 1 in the resin a before the cross-linking reaction of the resin a is carried out. It is preferably contained in an amount of 0.0 mol%, that is, the silanol unit modification rate is 0.03 to 1.0 mol%.
- the silanol unit modification rate is more preferably 0.05 to 0.35 mol%, further preferably 0.07 to 0.32 mol%, particularly preferably 0.08 to 0.30 mol%, and most preferably 0. It is 12 to 0.28 mol%.
- the inventors of the present application have stated that the silane-modified unit is mainly present in the non-crystalline part of the separator, more preferably only in the non-crystalline part, the distance between the silane-modified units, and the thermal vibration motion at ⁇ 10 ° C. to 80 ° C. Focusing on the above, it was found that the resin a tends to have a molecular structure in which a cross-linking reaction can be easily constructed when the amount of silanol unit is modified. All of the above T0, T1, T2 and T3 structures can construct a coordination intermediate with Li ions, but Li ions are coordinated between Si atoms in the non-crystalline part, and coordination desorption and re-coordination are performed. Since it is considered that the coordination proceeds randomly, a more remarkable effect can be obtained by adjusting the amount of silanol unit modification of the resin a within the above range.
- the resin a is composed of 0.01 to 2.0 mol% of propylene (C 3 ) units, and is made of butene (C 4). ) by the unit 0.01-2.0 mol%, or are preferably modified by the sum 0.01-2.0 mol% of C 3 units and C 4 units.
- the number of carbon atoms shall take into consideration both the R group and the linking group in the above formula.
- C 3 units modification ratio of the resin a is more preferably 0.01 to 1.2 mol%, more preferably 0.01 to 0.75 mol%, 0.02 It is particularly preferably about 0.60 mol%, and most preferably 0.05 to 0.30 mol%.
- C 4 units modification ratio of the resin a is 0. 01 to 1.0 mol% is more preferable, 0.30 to 0.70 mol% is further preferable, and 0.48 to 0.65 mol% is particularly preferable.
- the heat at the time of the separator film formation (HS) process as the C 4 units modification ratio of the resin a, preferably 0.43 mol% or less, more preferably 0.40 mol% or less, 0.1 mol% The following is more preferable.
- the total modification rate of C 3 unit and C 4 unit of resin a is 1.5 mol% or less.
- 1.0 mol% or less is more preferable, 0.6 mol% or less is particularly preferable, and 0.3 mol% or less is most preferable.
- the number average molecular weight (Mn) of the resin a is preferably 10,000 to 20,000, more preferably 16,000 or less, and more preferably 15,000 or less. Is more preferable.
- the weight average molecular weight (Mw) of the resin a is preferably 45,000 to 200,000, more preferably 140,000 or less, and further preferably 129,000 or less. It is particularly preferably 100,000 or less, and most preferably 72,000 or less.
- the Mw / Mn of the resin a is preferably 3.0 to 12, more preferably 4.0 to 9.0, and even more preferably 4.1 to 8.0. ..
- the viscosity average molecular weight (Mv) of the resin a may be, for example, 20,000 to 150,000, and its density may be, for example, 0.90 to 0.97 g / cm 3 .
- the melt mass flow rate (MFR) at 190 ° C. may be, for example, 0.1 to 15 g / min.
- the polyethylene constituting the silane graft-modified polyethylene may be composed of one type of ethylene alone or may be composed of two or more types of ethylene. Two or more kinds of silane graft-modified polyethylenes composed of different ethylenes may be used in combination.
- the condensation reaction may occur spontaneously in the environment within the electricity storage device or may be triggered by an external stimulus.
- the external stimulus include heat and light, such as ultraviolet rays.
- the condensation reaction is promoted as a catalytic reaction under acidic conditions, alkaline conditions, and conditions in which a base having low nucleophilic performance is present.
- the siloxane bond formed by condensation has high thermodynamic stability. Since the binding energy of CC is 86 kcal ⁇ mol -1 and the binding energy of C—Si is 74 kcal ⁇ mol -1 , the binding energy of Si—O is 128 kcal ⁇ mol -1 , so siloxane. The thermodynamic stability of the bond is suggested (Non-Patent Documents 4 and 5).
- the presence of a constant concentration of hydrogen fluoride (HF) or H 2 SO 4 in the reaction system allows the condensation reaction of the silane-modified polyolefin in the polymer structure of the separator to the siloxane bond in high yield. It can be advanced to build a highly heat resistant structure on the separator.
- HF hydrogen fluoride
- the cross-linking point formed by the siloxane bond may be decomposed by the high concentration F anion. Since the binding energy of Si-F is as high as 160 kcalacl ⁇ mol -1 and the Si-F bond has high thermodynamic stability, the F anion is consumed in the equilibrium reaction until the concentration in the system falls below a certain level. It is considered to continue (Non-Patent Documents 4 and 5).
- the decomposition reaction of the cross-linking point by the F anion is presumed to be a cleavage reaction of the C—Si bond or the Si—OSi bond of the siloxane bond.
- the concentration of HF in the battery of the separator having high heat resistance promotes the cross-linking reaction to the siloxane bond by utilizing the fact that PF 6 is in equilibrium with PF 5 due to the Yanteller effect.
- PF 6 is in equilibrium with PF 5 due to the Yanteller effect.
- PF 5 and HF are present in equilibrium, the cross-linking reaction of the siloxane bond can be triggered for a long period of time and continuously, and the probability of the cross-linking reaction can be significantly improved.
- the amorphous structure of polyethylene is a highly entangled structure, and even if only a part of the crosslinked structure is formed, its entropy elasticity is remarkably increased.
- the polyolefin of the A layer and / or the B layer contains a polyolefin having a crosslinkable functional group as described above, which may lead to thermal runaway due to a local short circuit described later. It is possible to provide a more secure separator for a power storage device with reduced properties. The reason is not limited to the theory and the aspect of the drawing, but will be described below with reference to the drawing.
- FIG. 3A shows the behavior when the separator (10) for a power storage device having the non-crosslinked polyolefin base material layer (1a) and the inorganic particle layer (2) is heat-shrinked with both ends open. It is a schematic diagram which shows. In the state where both ends are open, the base material layer contracted by the stress due to heat shrinkage (4) lifts the inorganic particle layer, causing buckling fracture (5) of the inorganic particle layer, and is pulled by the protruding inorganic particle layer. The base material layer causes tensile failure (6).
- FIG. 4 shows a stepwise explanation of this behavior.
- both ends of the energy storage device separator (10) having the non-crosslinked polyolefin base material layer (1a) and the inorganic particle layer (2) are heat-shrinked in a fixed state.
- the state in which both ends are fixed imitates the state in which the separator for the power storage device is stored in the power storage device.
- the polyolefin base material layer is broken between the fixing jigs (20) due to the stress (4) due to heat shrinkage, and the gap expands as the heat shrinkage progresses.
- the inorganic particle layer is deformed so as to fall into the gaps between the polyolefin base material layers.
- FIG. 5A shows the behavior when the separator (10) for a power storage device having the crosslinked polyolefin base material layer (1b) and the inorganic particle layer (2) is heat-shrinked with both ends open.
- FIG. 5B shows the behavior when the separator (10) for a power storage device having the crosslinked polyolefin base material layer (1b) and the inorganic particle layer (2) is heat-shrinked with both ends open.
- FIG. 6 shows a separator (10) for a power storage device having a non-crosslinked polyolefin base material layer (1a), a crosslinked polyolefin base material layer (1b), an inorganic particle layer (2), and a thermoplastic polymer layer (3).
- It is a schematic diagram which shows the behavior when a local short circuit (7) occurs in the power storage device (100) provided with.
- Local short circuits in the case of lithium-ion secondary batteries, may be caused by lithium dendrites growing from the negative electrode active material layer by repeating charge / discharge cycles at low temperatures.
- FIG. 6 when pressure is applied to the power storage device after performing a low temperature charge / discharge cycle, a local short circuit (7) is likely to occur.
- the short-circuited portion When a local short circuit occurs, the short-circuited portion generates heat and the surrounding polyolefin base material layer tends to heat shrink.
- the non-crosslinked polyolefin base material layer is broken, a gap is formed around the local short circuit, and the cross-linked polyolefin base material layer is deformed so as to be drawn into the gap.
- the crosslinked polyolefin base material layer is less likely to break, and the inorganic particle layer is fixed to the positive electrode by the thermoplastic polymer layer, so that the inorganic particle layer is less likely to be deformed. Therefore, the stress (4) due to heat shrinkage is concentrated at the interface between the crosslinked polyolefin base material layer and the inorganic particle layer, and the local short circuit is cut, and as a result, thermal runaway is prevented.
- FIG. 7 shows a separator (10) for a power storage device having a crosslinked polyolefin base material layer (1b), a non-crosslinked polyolefin base material layer (1a), an inorganic particle layer (2), and a thermoplastic polymer layer (3).
- It is a schematic diagram which shows the behavior when a local short circuit (7) occurs in the power storage device (100) provided with.
- Local short circuits in the case of lithium-ion secondary batteries, may be caused by lithium dendrites growing from the negative electrode active material layer by repeating charge / discharge cycles at low temperatures. As shown in FIG. 7, when pressure is applied to the power storage device after performing a low temperature charge / discharge cycle, a local short circuit (7) is likely to occur.
- the short-circuited portion When a local short circuit occurs, the short-circuited portion generates heat and the surrounding polyolefin base material layer tends to heat shrink.
- the non-crosslinked polyolefin base material layer is broken, a gap is formed around the local short circuit, and the cross-linked polyolefin base material layer is deformed so as to be drawn into the gap.
- the crosslinked polyolefin base material layer is less likely to break, and the inorganic particle layer is fixed to the positive electrode by the thermoplastic polymer layer, so that the inorganic particle layer is less likely to be deformed.
- the stress (4) due to heat shrinkage is concentrated at the interface between the voids formed by the fracture of the non-crosslinked polyolefin base material layer and the inorganic particle layer, and the local short circuit is cut, and as a result, thermal runaway is prevented. ..
- FIG. 8 shows the behavior when a local short circuit (7) occurs by applying a low temperature charge / discharge cycle and pressure to the power storage device (100) in the same manner as in FIG. 6 except that the crosslinked polyolefin base material layer is not used. It is a schematic diagram which shows. Since the polyolefin substrate layer is non-crosslinked, as described with reference to FIGS. 3 and 2, the non-crosslinked polyolefin substrate layer (1a) is broken and voids are formed around the local short circuit. Therefore, the stress (4) due to heat shrinkage does not concentrate at the interface between the polyolefin base material layer and the inorganic particle layer, and the local short circuit is not easily cut.
- FIG. 9 is a schematic showing the behavior when a local short circuit (7) is generated by applying a low temperature charge / discharge cycle and pressure to the power storage device (100) in the same manner as in FIG. 6 except that it does not have an inorganic particle layer. It is a figure. Similar to FIG. 6, the non-crosslinked polyolefin base material layer (1a) is broken, a gap is formed around the local short circuit, and the crosslinked polyolefin base material layer (1b) is deformed so as to be drawn into the gap. However, since it does not have an inorganic particle layer, the stress (4) due to heat shrinkage is not concentrated, and the local short circuit is difficult to be cut.
- FIG. 10 is a schematic showing the behavior when a local short circuit (7) is generated by applying a low temperature charge / discharge cycle and pressure to the power storage device (100) in the same manner as in FIG. 6 except that it does not have a plastic polymer layer. It is a figure. Similar to FIG. 6, the non-crosslinked polyolefin base material layer (1a) is broken, a gap is formed around the local short circuit, and the crosslinked polyolefin base material layer (1b) is deformed so as to be drawn into the gap. Since it does not have a plastic polymer layer, the inorganic particle layer is also deformed and absorbs a part of the stress (4) due to heat shrinkage. However, stress is concentrated at the interface between the crosslinked polyolefin substrate layer and the inorganic particle layer, and a local short circuit is cut, resulting in prevention of thermal runaway.
- the polyolefin base material layer contains both a silane-modified polyolefin and a polyolefin other than the silane-modified polyolefin (hereinafter, also referred to as “silane-unmodified polyolefin”) in order to obtain oxidation-reduction-resistant deterioration and a dense and uniform porous structure. Is preferable.
- the silane-unmodified polyolefin to be combined with the silane-modified polyolefin (hereinafter, abbreviated as "resin a") is preferably a polyolefin having a viscosity average molecular weight (Mv) of 2,000,000 or more (hereinafter, "resin b").
- Polyolefin having an Mv of less than 2,000,000 (Abbreviated.), Polyolefin having an Mv of less than 2,000,000 (hereinafter, abbreviated as "resin c"), or a combination thereof.
- resin a is more preferably polyethylene having a viscosity average molecular weight (Mv) of 2,100,000 or more and 8,500,000 or less
- resin c is more preferably Mv of 300,000 or more. It is polyethylene of 1,600,000 or less.
- the number average molecular weight (Mn) of the resin b is preferably 200,000 to 1,400,000, more preferably 210,000 to 1,200,000, still more preferably. Is 250,000 to 1,000,000.
- the weight average molecular weight (Mw) of the resin b is preferably 1,760,000 to 8,800,000, more preferably 1,900,000 to 7,100,000, still more preferably 2,. It is from 1,000,000 to 6,200,000.
- the Mw / Mn of the resin b is preferably 3.0 to 12, more preferably 4.0 to 9.0, and even more preferably 6.0 to 8.8.
- the Mv of the resin b is preferably 2,000,000 to 10,000,000, more preferably 2,100,000 to 8,500,000, still more preferably 3,000,000 to 7. , 800,000, and even more preferably 3,300,000 to 6,500,000.
- the number average molecular weight (Mn) of the resin c is preferably 20,000 to 250,000, more preferably 30,000 to 200,000, still more preferably 32,000. It is ⁇ 150,000, more preferably 40,000 ⁇ 110,000.
- the weight average molecular weight (Mw) of the resin c is preferably 230,000 to 2,000,000, more preferably 280,000 to 1,600,000, still more preferably 320,000 to 1, It is 200,000, more preferably 400,000 to 1,000,000.
- the Mw / Mn of the resin c is preferably 3.0 to 12, more preferably 4.0 to 9.0, and even more preferably 6.0 to 8.8.
- the Mv of the resin c is preferably 250,000 to 2,500,000, more preferably 300,000 to 1,600,000, still more preferably 320,000 to 1,100,000. More preferably, it is 450,000 to 800,000.
- the content of the resin a in the A layer or the B layer is preferably 3% by mass to 70% by mass, more preferably 5 based on the total mass of the solid content of the polyolefin raw material. It is from mass% to 60% by mass, more preferably 10% by mass to 50% by mass.
- the total content of the silane-unmodified polyolefin in the A layer or the B layer is preferably 40 mass based on the total mass of the solid content of the polyolefin raw material in the A layer or the B layer from the viewpoint of high ion permeability and high safety. % To 95% by mass, more preferably 50% by mass to 90% by mass, still more preferably 60% by mass to 80% by mass.
- the content of the resin b in the polyolefin raw material is preferably 3% by mass to 70% by mass, more preferably 5% by mass to 60% by mass, based on the total mass of the solid content of the polyolefin raw material. , More preferably 5% by mass to 40% by mass.
- the content of the resin c in the polyolefin raw material is preferably 1% by mass to 90% by mass, more preferably 5% by mass to 60% by mass, based on the total mass of the solid content of the polyolefin raw material. , More preferably 5% by mass to 50% by mass.
- the mass ratio of the resin a to the resin b in the polyolefin raw material is preferably 0.07 to 12.00, more preferably 0.10 to 11 It is 0.00, more preferably 0.50 to 10.00.
- the mass ratio of the resin a to the resin c in the polyolefin raw material is preferably 0.07 to 12.00, more preferably 0.10 to 11 It is .00, more preferably 0.20 to 10.00.
- the mass ratio of the resin b to the resin c in the polyolefin raw material is preferably 0.06 to 7.00, more preferably 0.10 to 7 It is .00, more preferably 0.12 to 6.90.
- the film thickness of the polyolefin base material layer is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, and further preferably 3.0 ⁇ m or more. When the film thickness of the polyolefin base material layer is 1.0 ⁇ m or more, the film strength tends to be further improved.
- the film thickness of the polyolefin base material layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 30 ⁇ m or less. When the film thickness of the polyolefin base material layer is 100 ⁇ m or less, the ion permeability tends to be further improved.
- the one having a larger heat shrinkage rate in the single layer has a heat shrinkage rate of 150 ° C., preferably 10% or more, more preferably 15% or more, still more preferably 20% or more.
- the heat shrinkage rate at 150 ° C. is 10% or more, the stress applied at the time of heat shrinkage becomes large, so that it is easy to cut a local short circuit, and thermal runaway can be prevented more effectively.
- the separator for a power storage device further includes inorganic particles (hereinafter, also referred to as “inorganic particle layer” in the present specification).
- Inorganic particles include alumina, silica, titania, zirconia, magnesia, ceria, itria, zinc oxide, iron oxide, silicon nitride, titanium nitride, boron nitride, silicon carbide, aluminum hydroxide oxide, talc, kaolinite, dicite, nacrite, It is preferably at least one selected from the group consisting of halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite, asbestos, zeolite, kaolin, kaolin, and glass fiber.
- alumina examples include alumina such as ⁇ -alumina, ⁇ -alumina and ⁇ -alumina, and alumina hydrate such as boehmite.
- ⁇ -Alumina or boehmite is preferable because of its high stability to the electrolyte used in the lithium ion battery.
- the content of the inorganic particles contained in the inorganic particle layer is preferably 5% by mass to 99% by mass, more preferably 10% by mass to 99% by mass, still more preferably 50% by mass, based on the total mass of the inorganic particle layer. It is ⁇ 98% by mass, more preferably 90% by mass to 97% by mass.
- the content of the inorganic particles is 50% by mass or more, the elastic modulus of the separator can be increased, and a separator having higher heat resistance can be obtained.
- the content of the inorganic particles is 99% by mass or less, it is possible to prevent powder from falling from the separator.
- the inorganic particle layer is preferably an inorganic porous layer containing a resin binder in addition to the inorganic particles.
- a resin binder a resin material such as a styrene-butadiene resin, an acrylic acid ester resin, a methacrylic acid ester resin, or a fluororesin such as polyvinylidene fluoride can be used.
- the content of the resin binder contained in the inorganic particle layer is preferably 1% by mass to 50% by mass, more preferably 3% by mass to 10% by mass, based on the total mass of the inorganic particle layer.
- the resin binder is 1% by mass or more, it is possible to prevent powder from falling from the separator.
- the content of the inorganic particles is 50% by mass or less, the elastic modulus of the separator can be increased, and a separator having higher heat resistance can be obtained.
- the glass transition temperature (Tg) of the resin binder is preferably ⁇ 50 ° C. to 90 ° C., more preferably ⁇ 30 ° C. to ⁇ 10 ° C.
- Tg glass transition temperature
- the film thickness of the inorganic particle layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and further preferably 2.0 ⁇ m or more. When the film thickness of the inorganic particle layer is 0.5 ⁇ m or more, a separator having higher heat resistance can be obtained.
- the film thickness of the inorganic particle layer is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 6 ⁇ m or less. When the film thickness of the inorganic particle layer is 20 ⁇ m or less, the ion permeability tends to be further improved.
- the elastic modulus of the inorganic particle layer is preferably 0.05 GPa or more, more preferably 0.1 GPa or more.
- stress concentration is likely to occur at the interface between the inorganic particle layer and the polyolefin base material layer when a local short circuit is formed, and thermal runaway can be prevented more effectively.
- the elastic modulus of the inorganic particle layer is preferably 10 GPa or less, more preferably 5 GPa or less, and further preferably 2 GPa or less. When the elastic modulus of the inorganic particle layer is 10 GPa or less, the handleability of the separator is improved.
- the separator for a power storage device preferably further includes a D layer containing a thermoplastic polymer (hereinafter, also referred to as a “thermoplastic polymer layer” in the present specification).
- the thermoplastic polymer layer is preferably laminated on the surface of the inorganic particle layer that is not in contact with the polyolefin base material layer.
- thermoplastic polymer a polyolefin resin such as polyethylene, polypropylene, ⁇ -polyolefin; a fluoropolymer such as polyvinylidene fluoride and polytetrafluoroethylene or a copolymer containing these; and a conjugated diene such as butadiene and isoprene as a monomer unit.
- polyalkylene glycol units as monomer units and having one or two polyalkylene glycol units, or copolymers containing these, or hydrides thereof; ethylene propylene rubber, polyvinyl Rubbers such as alcohol and polyvinyl acetate; Polyalkylene glycol having no polymerizable functional group such as polyethylene glycol and polypropylene glycol; Resins such as polyphenylene ether, polyphenylene sulfide and polyester; The number of repetitions of the alkylene glycol unit is 3 Examples thereof include a copolymer having the above ethylenically unsaturated monomer as a copolymerization unit; and a combination thereof.
- thermoplastic polymer is preferably an acrylic polymer, more preferably a polymer containing a polymerization unit of (meth) acrylic acid ester or (meth) acrylic acid as a polymerization unit.
- thermoplastic polymer is selected from the group consisting of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) and polyvinylidene fluoride-chlorotrifluoroethylene (PVDF-CTFE) from the viewpoint of improving the safety of the power storage device. It is also preferable to contain at least one fluorine atom-containing vinyl compound.
- the glass transition temperature (Tg) of the thermoplastic polymer is preferably -50 ° C to 150 ° C.
- Tg glass transition temperature
- the area ratio of the thermoplastic polymer layer covering the surface of the inorganic particle layer is preferably 5% or more, more preferably 20% or more, still more preferably 50% or more.
- the area ratio of the thermoplastic polymer layer covering the surface of the inorganic particle layer is preferably 98% or less. As a result, it is possible to suppress the obturator foramen of the polyolefin base material layer and maintain high air permeability.
- the peel strength (180 ° peel strength) when the thermoplastic polymer layer is peeled from the inorganic particle layer at an angle of 180 ° is preferably 0.01 N / m or more, more preferably 0.5 N / m or more. be.
- the 180 ° peel strength of the thermoplastic polymer layer is 0.01 N / m or more, it is possible to obtain a separator for a power storage device which is excellent in adhesive strength, therefore suppresses deformation of the inorganic particle layer, and is excellent in safety.
- the 180 ° peel strength of the thermoplastic polymer layer is preferably 30 N / m or less, more preferably 10 N / m or less, from the viewpoint of handleability.
- the thickness of the thermoplastic polymer layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more.
- the thickness of the thermoplastic polymer layer is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, from the viewpoint of increasing ion permeability.
- the size of the island structure is preferably 9 ⁇ m 2 ⁇ 245 ⁇ m 2, more preferably 10 ⁇ m 2 ⁇ 230 ⁇ m 2, more preferably 11 ⁇ m 2 ⁇ 214 ⁇ m 2. It is more preferable that two or more island structures containing calcium are detected in the separator for a power storage device when TOF-SIMS measurement of a 100 ⁇ m square area is performed.
- the distance between the center of gravity points of the island structure is preferably 6 ⁇ m to 135 ⁇ m, more preferably 8 ⁇ m to 130 ⁇ m, and further preferably 10 ⁇ m to 125 ⁇ m.
- FIG. 11 is a schematic diagram of an island structure containing an alkali metal and / or an alkaline earth metal in TOF-SIMS measurement. As schematically shown in FIG. 11, the island structure (9) and the distance (d) between the island structures can be measured in a 100 ⁇ m square area. As a method of controlling the size of the island structure and the distance between the center of gravity points, adjustment can be mentioned by adjusting the number of revolutions of the extruder, the molecular weight of the polyolefin resin raw material, and the like.
- the siloxane-crosslinked separator may catalyze the open-binding reaction, which is the reverse reaction of the cross-linking reaction, in the presence of excess HF after cross-linking. Therefore, it is presumed that by continuously trapping HF with a non-uniformly distributed alkali metal and / or alkaline earth metal, the open bond reaction can be suppressed and the long-term stability of the crosslinked structure of the silane crosslinked separator can be improved. NS.
- the island structure preferably contains an alkaline earth metal, which is preferably calcium.
- an alkaline earth metal which is preferably calcium.
- the siloxane-crosslinked separator may catalyze the open-binding reaction, which is the reverse reaction of the cross-linking reaction, in the presence of excess HF after cross-linking. Therefore, it is presumed that by continuously trapping HF with non-uniformly distributed calcium, the open fixation reaction can be suppressed and the long-term stability of the crosslinked structure of the silane crosslinked separator can be improved.
- LiPF 6 is contained in the electrolyte, it is also conceivable that an excessive amount of F anions is generated due to variations in the amount of water or the like.
- the F anion can be trapped by providing an island structure containing calcium in the polyolefin base material layer, the stability of the siloxane bond can be similarly ensured, and the crosslinked structure of the separator can be maintained for a long period of time. ..
- the porosity of the separator for a power storage device is preferably 20% or more, more preferably 30% or more, still more preferably 40% or more. When the porosity of the separator is 20% or more, the followability to the rapid movement of ions tends to be further improved. On the other hand, the porosity of the separator is preferably 80% or less, more preferably 70% or less, still more preferably 60% or less. When the porosity of the separator is 80% or less, the film strength tends to be further improved and self-discharge tends to be further suppressed.
- the air permeability of the electric storage device separator has a volume 100 cm 3 per membrane, preferably 50 seconds or more, more preferably 60 seconds or more, still more preferably at least 70 seconds.
- the air permeability of the separator is 50 seconds or more, the balance between the film thickness, the porosity and the average pore diameter tends to be further improved.
- Air permeability of the separator, the volume 100 cm 3 per membrane preferably not more than 400 seconds, more preferably 300 seconds or less, more preferably 250 seconds or less, even more preferably at most 200 seconds.
- the air permeability of the separator is 400 seconds or less, the ion permeability tends to be further improved.
- the film thickness of the separator for a power storage device is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, and further preferably 3.0 ⁇ m or more. When the film thickness of the separator is 1.0 ⁇ m or more, the film strength tends to be further improved.
- the film thickness of the separator is preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, and further preferably 50 ⁇ m or less. When the film thickness of the separator is 100 ⁇ m or less, the ion permeability tends to be further improved.
- the 150 ° C. heat shrinkage rate of the separator for a power storage device and the 150 ° C. heat shrinkage rate in the electrolytic solution are preferably 50% or less, more preferably 30% or less, still more preferably 10% or less.
- the 150 ° C. heat shrinkage rate of the separator and the 150 ° C. heat shrinkage rate in the electrolytic solution are 50% or less, the battery safety when a local short circuit occurs can be further improved.
- the 150 ° C. heat shrinkage rate of the separator for a power storage device and the 150 ° C. heat shrinkage rate in the electrolytic solution are preferably 0.1% or more, more preferably 0.2% or more, still more preferably 0.3%. It is as follows. When the 150 ° C. heat shrinkage rate of the separator and the 150 ° C. heat shrinkage rate in the electrolytic solution are 0.1% or more, the balance between the porosity and the puncture strength tends to be further improved.
- thermal response index the area change rate of the separator due to thermal response
- thermal response index the thermal response index of the separator
- the molecular motion of a polymer is determined by the flexibility of the main chain (intramolecular interaction) and the intramolecular interaction.
- the latter plays an important role, and as the temperature of the polymer is raised, the intermolecular interaction weakens, the micro-Brownian motion and macro-Brownian motion become active, and changes occur in the crystalline and amorphous parts. .. Therefore, it can be considered that the activation energy for the transition of the polymer chain in the crystalline part to the lamellar structure and the non-orientation of the polymer chain in the amorphous part depends on the intermolecular interaction.
- the intramolecular interaction depends on the molecular weight of the polymer.
- the molecular weight distribution of a polymer differs depending on the manufacturing method, but it is often approximated by a distribution function such as a zimm type distribution or a wesslau type distribution (lognormal distribution). Therefore, it can be considered that the distribution of the activation energy for each molecular chain in the polymer also follows these distribution functions.
- a distribution function such as a zimm type distribution or a wesslau type distribution (lognormal distribution). Therefore, it can be considered that the distribution of the activation energy for each molecular chain in the polymer also follows these distribution functions.
- a cumulative distribution function for example, a sigmoid function.
- rate is a parameter related to the gradient of the thermal response index, that is, the intensity of deformation.
- the amount of deformation due to heating is the coefficient of determination of the inside.
- the rate value is preferably 3.5 or more, more preferably 4.0 or more, and further. It is preferably 4.5 or more. The larger the rate, the slower the thermal response, and it is possible to prevent the surrounding electrodes from being involved in the thermal response of the separator.
- the rate value is preferably 3.5 or more.
- the value of the rate is preferably 150 or less, more preferably 100 or less, and further preferably 50 ⁇ m or less. The smaller the rate, the faster the thermal response progresses, and the greater the stress applied to the lithium dendrite when a local short circuit occurs. From the viewpoint of improving battery safety when a local short circuit occurs, the rate value is preferably 150 or less.
- the value of T 0 is preferably 110 ⁇ T 0 ⁇ 150, more preferably 115 ⁇ T 0 ⁇ 140, and even more preferably 120 ⁇ T 0 ⁇ 135.
- the value of T 0 is related to the temperature at which the thermal response occurs.
- the range of max is preferably 0.1 ⁇ max ⁇ 30, more preferably 0.2 ⁇ max ⁇ 20, and even more preferably 0.5 ⁇ max ⁇ 10.
- the value of max is related to the convergence value of the thermal response index. When the max range is within the range, it is possible to prevent the occurrence of an internal short circuit due to the thermal response of the separator at the time of a local short circuit.
- the content ratio is adjusted according to the respective molecular weights. More preferably, by adjusting the common logarithm of the ratio of the basis weight conversion puncture strength of the polyolefin base material layer to the basis weight of the inorganic coating layer calculated by the following formula (2), the values of rate, T 0 , and max can be adjusted as described above. It is easy to keep it within the range.
- the ratio of the raw material a to the total mass of the polyolefin base material layer is 3% by mass to 70% by mass, and the ratio of the raw material b to the raw material c (resin b) contained in other than that.
- the mass / mass of the resin c) is preferably 0.06 to 7.00.
- the common logarithm described above is preferably 0.1 to 3.
- the method for producing a microporous membrane is as follows: (1) Sheet molding process; (2) Stretching process; (3) Porous body forming step; and (4) Heat treatment step; including.
- the method for producing the microporous film may optionally include a resin modification step or kneading step before the sheet forming step (1) and / or a winding / slitting step after the heat treatment step (3), but the energy storage device. From the viewpoint of maintaining the crosslinkability of the microporous film until it is stored in, it is preferable not to include a crosslink structure forming step or a contact step with a crosslink promoting catalyst.
- the crosslinked structure forming step is (1) a secondary step of subjecting a plurality of functional groups contained in the microporous membrane to a condensation reaction, and (2) reacting the functional groups contained in the microporous membrane with a chemical substance inside the power storage device. It includes a secondary step or (3) a secondary step of reacting a functional group contained in a microporous film with another functional group.
- the cross-linking promoting catalyst is a cross-linking reaction, for example, (I) a condensation reaction of a plurality of the same functional groups described above, (II) a reaction between a plurality of different functional groups, and (III) a chain condensation of a functional group and an electrolytic solution. It is an arbitrary catalyst capable of accelerating a reaction, (IV) a chain condensation reaction of a functional group and an additive, and the like.
- the polyolefin resin composition and the plasticizer used for the layer A are melt-kneaded to obtain the melt-kneaded product I
- the polyolefin resin composition and the plasticizer used for the layer B are melt-kneaded to obtain the melt-kneaded product II.
- a melt-kneading method for example, a polyolefin resin and other additives, if necessary, are put into a resin kneading device such as an extruder, a kneader, a lab plast mill, a kneading roll, or a Banbury mixer to heat and melt the resin components.
- Examples thereof include a method of introducing a pore-forming material at an arbitrary ratio and kneading. From the viewpoint of suppressing the generation of resin agglomerates in the manufacturing process and maintaining the crosslinkability of the microporous membrane until it is stored in the power storage device, the masterbatch resin containing the crosslink promoting catalyst is not added to the kneaded product. Is preferable.
- the polyolefin used in the kneading step or the sheet forming step is not limited to the olefin homopolymer, and may be a polyolefin obtained by copolymerizing a monomer having a functional group or a functional group-modified polyolefin.
- the functional group is a functional group capable of participating in the formation of a crosslinked structure, and may be, for example, functional groups A and / or B in the reactions (I) to (V) described above.
- the polyolefin raw material does not have a functional group capable of participating in the formation of a crosslinked structure, or if the molar fraction of such a functional group is less than a predetermined ratio, the polyolefin raw material is used as a resin.
- a functional group-modified polyolefin can be obtained by incorporating a functional group into the resin skeleton or increasing the molar fraction of the functional group by subjecting it to a modification step.
- the resin modification step can be carried out by a known method.
- the polyolefin raw material can be brought into contact with the reaction reagent by liquid spraying, gas spraying, dry mixing, dipping, coating or the like so that the functional groups A and / or B can be introduced into the polyolefin skeleton.
- the plasticizer is not particularly limited, and examples thereof include organic compounds capable of forming a uniform solution with polyolefin at a temperature below the boiling point. More specifically, decalin, xylene, dioctylphthalate, dibutylphthalate, stearyl alcohol, oleyl alcohol, decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane, paraffin oil and the like can be mentioned. Of these, paraffin oil and dioctyl phthalate are preferable.
- the plasticizer may be used alone or in combination of two or more.
- the proportion of the plasticizer is not particularly limited, but from the viewpoint of the porosity of the obtained microporous film, the polyolefin and the silane graft-modified polyolefin are preferably 20% by mass or more based on the total mass, if necessary, at the time of melt-kneading. From the viewpoint of the viscosity of 90% by mass or less, it is preferable.
- the sheet molding step is a step of extruding the obtained kneaded product or a mixture of polyolefin and a plasticizer, cooling and solidifying it, and molding it into a sheet to obtain a sheet.
- the melt-kneaded products I and II are co-molded into a sheet formed by laminating two kinds of two layers or two kinds of three layers to obtain a sheet-shaped molded body.
- a melt-kneaded product is co-extruded into a sheet shape via a T-die or the like, brought into contact with a heat conductor, and cooled to a temperature sufficiently lower than the crystallization temperature of the resin component.
- the melt-kneaded product I and the melt-kneaded product II are separately extruded from the T-die and brought into contact with a heat conductor to be cooled and molded.
- a method of laminating with three seed layers can be mentioned.
- Examples of the heat conductor used for cooling and solidification include metal, water, air, and a plasticizer.
- metal roll it is preferable to use a metal roll because of its high heat conduction efficiency.
- sandwiching it between the rolls further enhances the efficiency of heat conduction, and the sheet is oriented to increase the film strength and the surface smoothness of the sheet. It is more preferable because it tends to be.
- the die lip interval when the melt-kneaded product is co-extruded from the T die into a sheet is preferably 200 ⁇ m or more and 3,000 ⁇ m or less, and more preferably 500 ⁇ m or more and 2,500 ⁇ m or less.
- the die lip interval is 200 ⁇ m or more, the shavings and the like are reduced, the influence on the film quality such as streaks and defects is small, and the risk of film breakage in the subsequent stretching step can be reduced.
- the die lip interval is 3,000 ⁇ m or less, the cooling rate is high, cooling unevenness can be prevented, and the thickness stability of the sheet can be maintained.
- the mass ratio (polyolefin copolymerized with a monomer having a functional group or functional group-modified polyolefin / other polyolefin) is preferably 0.05 to 0.4 / 0.6 to 0.95. It is preferably 0.06 to 0.38 / 0.62 to 0.94.
- the sheet molding process is functional from the viewpoint of suppressing thermal runaway when the power storage device is destroyed and improving safety while having low temperature shutdown property of 150 ° C. or lower and film rupture resistance at high temperature of 180 to 220 ° C.
- the polyolefin obtained by copolymerizing the monomer having a group or the functional group-modified polyolefin is not a masterbatch resin containing a catalyst for promoting the cross-linking reaction of the functional group before the sheet molding step.
- the stretching step is a step of extracting a plasticizer or an inorganic material from the obtained sheet as needed, and further stretching the sheet in a direction of one axis or more.
- the sheet stretching method includes MD uniaxial stretching by a roll stretching machine, TD uniaxial stretching by a tenter, sequential biaxial stretching by a roll stretching machine and a tenter or a combination of a tenter and a tenter, and simultaneous biaxial tenter or simultaneous biaxial by inflation molding. Stretching and the like can be mentioned. From the viewpoint of obtaining a more uniform film, simultaneous biaxial stretching is preferable.
- the total surface magnification is preferably 8 times or more, more preferably 15 times or more, still more preferably 20 times or more, from the viewpoint of film thickness uniformity, tensile elongation, porosity, and average pore diameter balance. Or 30 times or more.
- the total surface magnification is 8 times or more, it tends to be easy to obtain a product having high strength and a good thickness distribution. Further, this surface magnification may be 250 times or less from the viewpoint of preventing breakage and the like.
- the porous body forming step is a step of extracting a plasticizer from the stretched product after the stretching step to make the stretched product porous.
- the method for extracting the plasticizer is not particularly limited, and examples thereof include a method of immersing the stretched product in an extraction solvent, a method of showering the stretched product with the extraction solvent, and the like.
- the extraction solvent is not particularly limited, but for example, a solvent that is poor with respect to polyolefin, is a good solvent with respect to a plasticizer or an inorganic material, and has a boiling point lower than the melting point of polyolefin is preferable.
- Such an extraction solvent is not particularly limited, but for example, hydrocarbons such as n-hexane or cyclohexane; halogenated hydrocarbons such as methylene chloride or 1,1,1-trichloroethane and fluorocarbons; ethanol or isopropanol and the like. Alcohols; ketones such as acetone or 2-butanone; alkaline water and the like.
- the extraction solvent may be used alone or in combination of two or more.
- the heat treatment step is a step of extracting a plasticizer from the sheet as needed after the stretching step and further performing heat treatment to obtain a microporous film.
- the heat treatment method is not particularly limited, and examples thereof include a heat fixing method in which stretching and relaxation operations are performed using a tenter or a roll stretching machine.
- the relaxation operation refers to a reduction operation performed at a predetermined temperature and relaxation rate in the mechanical direction (MD) and / or the width direction (TD) of the film.
- the relaxation rate is the value obtained by dividing the MD dimension of the membrane after the relaxation operation by the MD dimension of the membrane before the operation, or the value obtained by dividing the TD dimension after the relaxation operation by the TD dimension of the membrane before the operation, or MD and TD. When both are relaxed, it is the value obtained by multiplying the relaxation rate of MD and the relaxation rate of TD.
- the winding step is a step of slitting the obtained microporous membrane as necessary and winding it around a predetermined core.
- the surface treatment method include a corona discharge treatment method, a plasma treatment method, a mechanical roughening method, a solvent treatment method, an acid treatment method, and an ultraviolet oxidation method.
- the polyolefin microporous membrane obtained by the method for producing a polyolefin microporous membrane according to the first embodiment described above is used by itself as a separator for a power storage device, particularly as a separator for a lithium battery or a lithium ion secondary battery. Can be done.
- an additional layer may be formed on the microporous polyolefin membrane of the first embodiment.
- the further layer include a layer containing polyolefin, a layer containing a resin other than polyolefin, a layer containing inorganic particles or a heat-resistant resin, an adhesive layer containing an adhesive polymer, and the like.
- the method for producing the A layer and the B layer as the polyolefin base material layer is, for example, the following steps: (1) Sheet molding process; (2) Stretching process; (3) Porous body forming step; and (4) Heat treatment step; Can be included. If desired, the method for producing the polyolefin base material layer may further include a kneading step before the sheet molding step (1) and / or a winding / slitting step after the heat treatment step (3).
- Examples of the method of laminating the A layer and the B layer include a method of laminating the A layer and the B layer by coextrusion in the step (1), and a method of separately producing the A layer and the B layer and then laminating them. ..
- the kneading step is a step of kneading the raw material resin of the polyolefin base material layer with a plasticizer and / or an inorganic filler or the like, if desired, to obtain a kneaded product.
- the raw material resin for the polyolefin base material layer the above-mentioned polyolefin resin can be used. Kneading can be performed using a kneading machine. From the viewpoint of suppressing the generation of resin aggregates in the subsequent production process, it is preferable not to add the masterbatch resin containing the dehydration condensation catalyst to the kneaded product.
- plasticizer for example, an organic compound capable of forming a uniform solution with polyolefin at a temperature below the boiling point can be used. More specifically, decalin, xylene, dioctylphthalate, dibutylphthalate, stearyl alcohol, oleyl alcohol, decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane, paraffin oil and the like can be mentioned. Of these, paraffin oil and dioctyl phthalate are preferable. As the plasticizer, one type may be used alone, or two or more types may be used in combination.
- the ratio of the plasticizer to the total mass of the polyolefin resin used is preferably 20% by mass or more from the viewpoint of the porosity of the obtained microporous film, and preferably 90% by mass or less from the viewpoint of the viscosity at the time of melt-kneading.
- the sheet molding step is a step of extruding the obtained kneaded product or a mixture of a polyolefin resin raw material and an arbitrary plasticizer and / or an inorganic filler, cooling and solidifying, and molding into a sheet to obtain a sheet.
- the sheet molding method is not particularly limited, and examples thereof include a method of solidifying the melt that has been melt-kneaded and extruded by compression cooling.
- Examples of the cooling method include a method of directly contacting with a cooling medium such as cold air and cooling water, a method of contacting with a roll and / or a press machine cooled with a refrigerant, and the roll and / or a press machine cooled with a refrigerant.
- the contact method is preferable in that the film thickness controllability is excellent.
- the mass ratio of the silane-modified polyolefin to the silane-unmodified polyolefin in the sheet molding step is determined. It is preferably 0.05 / 0.95 to 0.4 / 0.6, and more preferably 0.06 / 0.94 to 0.38 / 0.62.
- the silane-unmodified polyolefin is preferably ultra high molecular weight polyethylene (UHMWPE).
- the stretching step is a step of stretching the obtained sheet in at least the uniaxial direction to obtain a stretched product.
- the plasticizer and / or inorganic filler may be extracted from the sheet prior to stretching.
- Sheet stretching methods include MD uniaxial stretching with a roll stretching machine, TD uniaxial stretching with a tenter, sequential biaxial stretching with a roll stretching machine and a tenter, or a combination of a tenter and a tenter, and simultaneous biaxial tenter or inflation molding. Biaxial stretching and the like can be mentioned. From the viewpoint of obtaining a more uniform film, simultaneous biaxial stretching is preferable.
- the surface magnification is preferably 8 times or more, more preferably 15 times or more, still more preferably 20 times or more or 30 times or more from the viewpoint of film thickness uniformity, tensile elongation, porosity and average pore size balance. More than double. When the surface magnification is 8 times or more, it tends to be easy to obtain a product having high strength and a good thickness distribution. The surface magnification may be 250 times or less from the viewpoint of preventing breakage.
- the porous body forming step is a step of extracting a plasticizer and / or an inorganic filler from the stretched product after the stretching step to make the stretched product porous and obtain a microporous film.
- the method for extracting the plasticizer include a method of immersing the stretched product in an extraction solvent, a method of showering the stretched product with the extraction solvent, and the like.
- the extraction solvent is not particularly limited, but for example, a solvent which is a poor solvent for polyolefin and a good solvent for plasticizers and / or inorganic fillers and whose boiling point is lower than the melting point of polyolefin is preferable. ..
- an extraction solvent examples include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,1,1-trichloroethane and fluorocarbons; alcohols such as ethanol and isopropanol; acetone. , 2-Ketones such as butanone; alkaline water and the like.
- hydrocarbons such as n-hexane and cyclohexane
- halogenated hydrocarbons such as methylene chloride, 1,1,1-trichloroethane and fluorocarbons
- alcohols such as ethanol and isopropanol
- acetone. 2-Ketones
- butanone alkaline water and the like.
- the heat treatment step is a step of heat-treating the microporous membrane after the stretching step. If necessary, the plasticizer may be further extracted from the microporous membrane before the heat treatment.
- the heat treatment method is not particularly limited, and examples thereof include a heat fixing method in which stretching and relaxation operations are performed using a tenter and / or a roll stretching machine.
- the relaxation operation refers to a reduction operation performed at a predetermined temperature and relaxation rate in the mechanical direction (MD) and / or the width direction (TD) of the film.
- the relaxation rate is the value obtained by dividing the MD dimension of the membrane after the relaxation operation by the MD dimension of the membrane before the operation, or the value obtained by dividing the TD dimension after the relaxation operation by the TD dimension of the membrane before the operation, or MD and TD. When both are relaxed, it is the value obtained by multiplying the relaxation rate of MD and the relaxation rate of TD.
- the winding / slitting step is a step of slitting the obtained microporous membrane as necessary and winding it to a predetermined core for handleability in the subsequent steps.
- the process for producing the polyolefin base layer preferably does not include a cross-linking treatment step. That is, it is preferable that the cross-linking treatment step is performed in the power storage device after incorporating the separator having the polyolefin base material layer into the power storage device.
- the cross-linking treatment step generally, the treatment target containing the silane-modified polyolefin is brought into contact with a mixture of an organic metal-containing catalyst and water, or immersed in a base solution or an acid solution, and a silane dehydration condensation reaction is carried out to carry out an oligosiloxane bond. Is the process of forming.
- a base solution is an alkaline solution having a pH exceeding 7, and containing, for example, alkali metals hydroxide, alkaline earth metals hydroxide, carbonates of alkali metals, phosphates of alkali metals, ammonia, and amine compounds.
- the acid solution means an acidic solution having a pH of less than 7 and containing an inorganic acid and / or an organic acid or the like.
- the ratio of the raw material a in the whole is 3% by mass to 70% by mass, and the ratio of the raw material b and the raw material c contained in other parts (mass of resin b / mass of resin c). ) Is preferably 0.06% by mass to 7.00% by mass.
- the microporous membrane obtained by a method including various steps described above can be used as a polyolefin base material layer of a separator for a power storage device. It is preferable to apply a surface treatment to the surface of the polyolefin base material layer because it becomes easy to apply the coating liquid thereafter and the adhesiveness between the base material layer and the coating layer is improved.
- the surface treatment method include a corona discharge treatment method, a plasma treatment method, a mechanical roughening method, a solvent treatment method, an acid treatment method, and an ultraviolet oxidation method.
- the inorganic particle layer can be formed by applying a coating liquid containing inorganic particles and an arbitrary resin binder or the like in a solvent to the polyolefin base material layer and removing the solvent.
- the solvent preferably contains water, a poor solvent such as a mixed solvent of water and a water-soluble organic medium (for example, methanol or ethanol).
- the coating method may be any method that can realize the desired coating pattern, coating film thickness, and coating area.
- die coating, curtain coating, impregnation coating, blade coating, rod coating, gravure coating and the like can be mentioned.
- the method of removing the solvent from the coating film after coating may be a method that does not adversely affect the polyolefin base material layer and the inorganic particle layer.
- a method of heating and drying at a temperature equal to or lower than the melting point of the base material while fixing the base material a method of drying under reduced pressure at a low temperature, and the like can be mentioned.
- the thermoplastic polymer layer can be formed by applying a coating liquid containing a thermoplastic polymer in a solvent to the inorganic particle layer.
- the coating liquid of the thermoplastic polymer layer may be directly applied onto the polyolefin base material layer.
- a thermoplastic polymer may be synthesized by emulsion polymerization, and the obtained emulsion may be used as it is as the coating liquid.
- the coating liquid preferably contains water, a poor solvent such as a mixed solvent of water and a water-soluble organic medium (for example, methanol or ethanol).
- the coating method may be any method that can realize the desired coating pattern, coating film thickness, and coating area.
- die coating, curtain coating, impregnation coating, blade coating, rod coating, gravure coating and the like can be mentioned.
- the method of removing the solvent from the coating film after coating may be a method that does not adversely affect the polyolefin base material layer, the inorganic particle layer, and the thermoplastic polymer layer.
- a method of heating and drying at a temperature equal to or lower than the melting point of the base material while fixing the base material a method of drying under reduced pressure at a low temperature, and the like can be mentioned.
- the power storage device of the present disclosure is a polyolefin microporous membrane of the present disclosure or a separator for a power storage device arranged between a positive electrode, a negative electrode, and a positive electrode and a negative electrode (hereinafter, collectively referred to as a “separator for a power storage device”, or simply a “separator”. Also referred to as), an electrolytic solution, and optionally an additive.
- the power storage device includes at least one power storage element in which a positive electrode, a negative electrode, and a separator for the power storage device are arranged between them.
- a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via the separator for a power storage device of the present disclosure to form a plurality of power storage elements.
- the power storage element is typically housed in the exterior body in a state of being impregnated with a non-aqueous electrolytic solution.
- the functional group-modified polyethylene or the functional group graft copolymerized polyethylene reacts with the chemical substance contained in the electrolytic solution or the additive to form a crosslinked structure.
- the manufactured power storage device has a crosslinked structure.
- the functional group-modified polyethylene or the functional group graft copolymerized polyethylene can be derived from, but not limited to, the polyolefin raw material of the microporous membrane, or from the polyolefin modified during the process of producing the microporous membrane. can.
- the power storage device of the present disclosure includes a lithium battery, a lithium secondary battery, a lithium ion secondary battery, a sodium secondary battery, a sodium ion secondary battery, a magnesium secondary battery, a magnesium ion secondary battery, and calcium.
- a lithium battery, a lithium secondary battery, a lithium ion secondary battery, a nickel hydrogen battery, or a lithium ion capacitor is preferable, and a lithium battery or a lithium ion secondary battery is more preferable.
- a lithium ion secondary battery is a storage battery using a lithium-containing positive electrode, a negative electrode, and an electrolytic solution containing an organic solvent containing a lithium salt such as LiPF 6.
- a known positive electrode for LIB can be used.
- ionized lithium reciprocates between the electrodes. Further, since it is necessary for the ionized lithium to move between the electrodes at a relatively high speed while suppressing contact between the electrodes, a separator is arranged between the electrodes.
- the positive electrode typically has a positive electrode current collector and positive electrode active material layers arranged on one or both sides thereof.
- the positive electrode active material layer contains the positive electrode active material and, if necessary, further contains a conductive auxiliary agent and / or a binder.
- the positive electrode current collector is composed of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
- the surface of the positive electrode current collector may be coated with carbon, and may be processed into a mesh shape.
- the positive electrode active material preferably contains a material capable of occluding and releasing lithium ions. More specifically, examples of the positive electrode active material include a positive electrode active material containing at least one transition metal element selected from the group consisting of Ni, Mn, and Co.
- the positive electrode may also be used, for example, nickel - manganese - cobalt (NMC) based lithium-containing positive electrode, olivine-type lithium iron phosphate (LFP) based positive electrode, lithium cobaltate (LCO) system It is preferably at least one selected from the group consisting of a positive electrode, a nickel-cobalt-aluminum (NCA) -based lithium-containing positive electrode, and a lithium manganate (LMO) -based positive electrode.
- NMC nickel-manganese-cobalt
- a nickel-manganese-cobalt (NMC) -based lithium composite oxide is preferable because it can occlude and release lithium ions in a reversible and stable manner and can achieve a high energy density.
- the molar ratio of the amount of nickel (Ni) to the total amount of nickel, manganese and cobalt is preferably 4 to 9, 5 to 9, 6 to 9, 5 to 8, or 6 to 8. Is.
- the positive electrode active material may be an olivine-type lithium iron phosphate (LFP) -based positive electrode.
- Olivin-type lithium iron phosphate has an olivine structure and is excellent in thermal stability, so it is often used at a relatively high temperature such as 60 ° C.
- a normal separator without a crosslinked structure is used at 60 ° C.
- the separator having the crosslinked structure of the present disclosure can suppress creep deformation, it can be used in combination with an olivine-type lithium iron phosphate (LFP) -based positive electrode in a temperature range in which there has been a problem in cycle characteristics. But it can be used.
- the positive electrode active material may be a lithium cobalt oxide (LCO) -based positive electrode.
- Lithium cobalt oxide (LCO) -based positive electrodes have a high oxidation potential, so the operating voltage of the battery can be increased.
- lithium cobalt oxide has a high hardness and tends to be prone to foreign matter contamination due to metal wear during the molding process. there were. If metal foreign matter is mixed in when assembling the battery, it may cause an internal short circuit. Since the separator having the crosslinked structure of the present disclosure is excellent in fuse / meltdown characteristics, the electrochemical reaction can be safely stopped even when an internal short circuit occurs.
- the positive electrode active material may be a nickel-cobalt-aluminum (NCA) -based lithium-containing positive electrode.
- NCA nickel-cobalt-aluminum
- a battery with excellent charge / discharge capacity can be produced at low cost, however, a small amount of water contained in the battery and Li ions eluted from the positive electrode. Reacted to produce a lithium compound, which tended to react with the electrolytic solution to easily generate gas. The generation of gas may cause battery swelling.
- the charge / discharge capacity may decrease due to the consumption of lithium ions eluted from the positive electrode.
- the separator having the crosslinked structure of the present disclosure has an island structure of alkali metal / alkaline earth metal, it is possible to control the HF concentration by reacting the alkali metal / alkaline earth metal in the island structure with HF. ..
- One of the reactions that occurs in a battery is a reaction in which water reacts with an electrolyte salt such as LiPF 6 to generate HF.
- an electrolyte salt such as LiPF 6
- the positive electrode active material may be a lithium manganate (LMO) -based positive electrode.
- LMO lithium manganate
- Lithium manganate has a spinel structure (cubic crystal), so its crystal structure is strong, and it is thermally stable and has excellent safety. Therefore, it is sometimes used at a relatively high temperature such as 60 ° C. However, it has a crosslinked structure. Since a normal separator having no temperature causes creep deformation (heat shrinkage) at 60 ° C., there is a problem in cycle characteristics.
- the separator having the crosslinked structure of the present disclosure can suppress creep deformation, it can be used in a temperature range where there has been a problem in cycle characteristics by using it in combination with a lithium manganate (LMO) -based positive electrode. Can be done.
- LMO lithium manganate
- olivine-type lithium iron phosphate has an olivine structure (oblique crystal), is thermally stable and has excellent safety, and does not contain expensive elements and is low in cost. It may be a system positive electrode.
- a lithium cobalt oxide (LCO) -based positive electrode may be used because the operating voltage is high and an excellent cycle life can be achieved.
- the positive electrode active material may be a nickel-cobalt-aluminum (NCA) -based lithium-containing positive electrode because it has a layered structure and has an excellent balance of volume density, cost, and thermal stability.
- the positive electrode active material may be a lithium manganate (LMO) -based positive electrode because it has a spinel structure (cubic crystal), has a strong crystal structure, is thermally stable, and is excellent in safety.
- Examples of the conductive auxiliary agent for the positive electrode active material layer include carbon black represented by graphite, acetylene black, and Ketjen black, and carbon fibers.
- the content of the conductive auxiliary agent is preferably 10 parts by mass or less, more preferably 1 to 5 parts by mass, per 100 parts by mass of the positive electrode active material.
- binder of the positive electrode active material layer examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid, styrene-butadiene rubber, and fluororubber.
- PVDF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- the binder content is preferably 6 parts by mass or less, more preferably 0.5 to 4 parts by mass, per 100 parts by mass of the positive electrode active material.
- the negative electrode typically has a negative electrode current collector and negative electrode active material layers arranged on one or both sides thereof.
- the negative electrode active material layer contains a negative electrode active material and, if necessary, further contains a conductive auxiliary agent and / or a binder.
- the negative electrode current collector is composed of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil. Further, the negative electrode current collector may have a carbon coat on its surface or may be processed into a mesh shape.
- the thickness of the negative electrode current collector is preferably 5 to 40 ⁇ m, more preferably 6 to 35 ⁇ m, and even more preferably 7 to 30 ⁇ m.
- the negative electrode active material preferably contains a material capable of occluding lithium ions at a potential lower than 0.4 V (vs. Li / Li +). More specifically, as the negative electrode active material, for example, amorphous carbon (hard carbon), graphite (artificial graphite, natural graphite), thermally decomposed carbon, coke, glassy carbon, calcined product of organic polymer compound, mesocarbon micro In addition to carbon materials such as beads, carbon fibers, activated carbon, carbon colloids, and carbon black, metallic lithium, metal oxides, metal nitrides, lithium alloys, tin alloys, Si materials, intermetallic compounds, organic compounds, and inorganic substances. Examples thereof include compounds, metal complexes, and organic polymer compounds.
- the negative electrode active material may be used alone or in combination of two or more. Examples of the above-mentioned Si material include silicon, Si alloy, Si oxide and the like.
- Examples of the conductive auxiliary agent for the negative electrode active material layer include carbon black represented by graphite, acetylene black, and Ketjen black, and carbon fiber.
- the content of the conductive auxiliary agent is preferably 20 parts by mass or less, more preferably 0.1 to 10 parts by mass, per 100 parts by mass of the negative electrode active material.
- binder of the negative electrode active material layer examples include carboxymethyl cellulose, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid, and fluororubber. Further, a diene-based rubber, for example, styrene-butadiene rubber and the like can also be mentioned.
- the binder content is preferably 10 parts by mass or less, more preferably 0.5 to 6 parts by mass, per 100 parts by mass of the negative electrode active material.
- the energy storage device separator As the energy storage device separator, the energy storage device separator of the present disclosure can be used.
- the electrolytic solution in the battery may contain water, and the water contained in the system after the battery is manufactured is the water contained in the electrolytic solution or the water brought into the member such as the electrode or the separator. May be good.
- the electrolytic solution can contain a non-aqueous solvent.
- the solvent contained in the non-aqueous solvent include alcohols such as methanol and ethanol; aprotic solvents and the like. Among them, the aprotic solvent is preferable as the non-aqueous solvent.
- aprotonic solvent examples include cyclic carbonates, fluoroethylene carbonates, lactones, organic compounds having a sulfur atom, chain fluorinated carbonates, cyclic ethers, mononitriles, alkoxy group-substituted nitriles, dinitriles, cyclic nitriles, and short chain fatty acids.
- examples thereof include esters, chain ethers, fluorinated ethers, ketones, compounds in which some or all of the H atoms of the aprotonic solvent are replaced with halogen atoms, and the like.
- Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, trans-2,3-butylene carbonate, cis-2,3-butylene carbonate, 1,2-pentylene carbonate, trans-2, Examples thereof include 3-pentylene carbonate, cis-2,3-pentylene carbonate, vinylene carbonate, 4,5-dimethylvinylene carbonate, vinylethylene carbonate and the like.
- fluoroethylene carbonate examples include 4-fluoro-1,3-dioxolane-2-one, 4,4-difluoro-1,3-dioxolane-2-one, and cis-4,5-difluoro-1,3-.
- Dioxolane-2-one, trans-4,5-difluoro-1,3-dioxolane-2-one, 4,4,5-trifluoro-1,3-dioxolane-2-one, 4,4,5,5 -Tetrafluoro-1,3-dioxolane-2-one, 4,4,5-trifluoro-5-methyl-1,3-dioxolane-2-one and the like can be mentioned.
- lactone examples include ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -caprolactone, and ⁇ -caprolactone.
- Examples of the organic compound having a sulfur atom include ethylene sulfite, propylene sulfite, butylene sulfite, pentensulfite, sulfolane, 3-sulfolene, 3-methylsulfolane, 1,3-propanesulton, and 1,4-butanesulton. , 1-Propene 1,3-Sulton, dimethyl sulfoxide, tetramethylene sulfoxide, ethylene glycol sulfite and the like.
- chain carbonate examples include ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, ethyl propyl carbonate and the like.
- cyclic ether examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,3-dioxane and the like.
- mononitrile examples include acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, acrylonitrile, and the like.
- alkoxy group-substituted nitrile examples include methoxyacetonitrile and 3-methoxypropionitrile.
- Examples of the dinitrile include malononitrile, succinonitrile, methylsuccinonitrile, glutaronitrile, 2-methylglutaronitrile, adiponitrile, 1,4-dicyanoheptan, 1,5-dicyanopentane, and 1,6-dicyanohexane.
- 1,7-Dicyanoheptane, 2,6-dicyanoheptane, 1,8-dicyanooctane, 2,7-dicyanooctane, 1,9-dicyanononane, 2,8-dicyanononane, 1,10-dicyanodecane, 1, 6-Dicyanodecane, 2,4-dimethylglutaronitrile, ethylene glycol bis (propionitrile) ether and the like can be mentioned.
- cyclic nitrile examples include benzonitrile and the like.
- Examples of short-chain fatty acid esters include methyl acetate, methyl propionate, methyl isobutyrate, methyl butyrate, methyl isovalerate, methyl valerate, methyl pivalate, methyl hydroangelica, methyl caproate, ethyl acetate, and propionic acid.
- Examples of the chain ether include dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme, tetraglyme and the like.
- Examples of the fluorinated ether include the general formula Rf aa- OR bb (in the formula, Rf aa is an alkyl group containing a fluorine atom, and R bb is an organic group which may contain a fluorine atom). Examples thereof include compounds represented by.
- Examples of the ketone include acetone, methyl ethyl ketone, methyl isobutyl ketone and the like.
- Examples of the compound in which a part or all of the H atom of the aprotic solvent is replaced with a halogen atom include a compound in which the halogen atom is fluorine.
- examples of the fluorinated product of the chain carbonate include methyl trifluoroethyl carbonate, trifluorodimethyl carbonate, trifluorodiethyl carbonate, trifluoroethyl methyl carbonate, methyl 2,2-difluoroethyl carbonate, and methyl 2,2.
- examples thereof include 2-trifluoroethyl carbonate and methyl 2,2,3,3-tetrafluoropropyl carbonate.
- R cc- OC (O) OR dd ⁇
- R cc and R dd are CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH (CH 3 ) 2 , and formula CH 2 Rf ee (in the formula, Rf ee is at least one. It is at least one selected from the group consisting of groups represented by (which is an alkyl group having 1 to 3 carbon atoms in which a hydrogen atom is substituted with a fluorine atom), and R cc and / or R dd is at least 1. Contains one hydrogen atom. ⁇ Can be represented by.
- Fluorines of short-chain fatty acid esters include, for example, fluorine represented by 2,2-difluoroethyl acetate, 2,2,2-trifluoroethyl acetic acid, and 2,2,3,3-tetrafluoropropyl acetate. Examples include short-chain fatty acid esters. Fluorinated short chain fatty acid esters have the following general formula: R ff- C (O) OR gg ⁇ In the formula, R ff is CH 3 , CH 2 CH 3 , CH 2 CH 2 CH 3 , CH (CH 3 ) 2 , CF 3 CF 2 H, CFH 2 , CF 2 H, CF 2 Rf hh , CFHRf hh.
- Rf ii is an alkyl group having 1 to 3 carbon atoms in which a hydrogen atom may be substituted with at least one fluorine atom
- Rf ii is at least one fluorine atom.
- R ff and / or R gg contains at least one fluorine atom and R ff is CF 2 H, then R gg is It is not CH 3 ⁇ .
- the non-aqueous electrolyte solution means an electrolyte solution containing an electrolyte in a non-aqueous solvent and having an amount of water of 1% by mass or less based on the total mass.
- the non-aqueous electrolyte solution preferably contains as little water as possible, but may contain a very small amount of water.
- the content of such water is preferably 300 mass ppm or less, more preferably 200 mass ppm or less, per total amount of the non-aqueous electrolyte solution.
- non-aqueous solvent examples include alcohols such as methanol and ethanol, and aprotic solvents, and aprotic solvents are preferable.
- aprotonic solvent examples include acetonitrile, mononitriles other than acetonitrile, alkoxy group-substituted nitriles, dinitriles, cyclic nitriles, chain carbonates, cyclic carbonates, fluorinated carbonates, fluoroethylene carbonates, short chain fatty acid esters, lactones, and ketones.
- examples thereof include organic compounds having a sulfur atom, chain ethers, cyclic ethers, fluorinated ethers, and compounds in which a part or all of these H atoms are replaced with halogen atoms.
- a lithium salt is preferable, and a fluorine-containing lithium salt that generates HF is more preferable from the viewpoint of promoting the silane cross-linking reaction.
- the fluorine-containing lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium fluorosulfonate (LiFSO 3 ), lithium bis (trifluoromethanesulfonyl) imide (LiN (SO 2 CF 3 ) 2 ), and lithium bis ( Fluorosulfonyl) imide (LiN (SO 2 F) 2 ), lithium borofluoride (LiBF 4 ), lithium bisoxalate volate (LiBC 4 O 8 ) and the like can be mentioned.
- hydrofluoric Hydrogen fluoride HF
- fluorine-containing organic substance derived from HF dissolve in the electrolytic solution and swell and diffuse into the amorphous portion in the polyolefin having a crosslinkable silane group to catalyze the silane crosslinking reaction.
- the non-aqueous electrolyte solution may contain, for example, an acid source such as an inorganic acid or an organic acid, or an alkaline source as a substance that catalyzes the silane cross-linking reaction.
- an acid source such as an inorganic acid or an organic acid
- an alkaline source as a substance that catalyzes the silane cross-linking reaction.
- the alkali source include alkali metals hydroxide, alkaline earth metals hydroxide, alkali metal carbonates, alkali metal phosphates, ammonia, amine compounds and the like.
- alkali metals hydroxide or alkaline earth metal hydroxides are preferable, alkali metals hydroxides are more preferable, and sodium hydroxide is further preferable, from the viewpoint of safety of the power storage device and silane crosslinkability.
- a known exterior body can be used, and for example, a battery can or a laminated film exterior body may be used.
- a battery can for example, a metal can made of steel, stainless steel, aluminum, a clad material, or the like can be used.
- the laminated film exterior is in a state in which two sheets are stacked with the heat-melted resin side facing inward, or bent so that the heat-melted resin side faces inward, and the end portion is sealed by a heat seal. Can be used as an exterior body.
- the positive electrode lead body (or the lead tab connected to the positive electrode terminal and the positive electrode terminal) is connected to the positive electrode current collector, and the negative electrode lead body (or the negative electrode terminal and the negative electrode terminal) are connected to the negative electrode current collector.
- Lead tab may be connected.
- the laminated film outer body may be sealed with the ends of the positive electrode lead body and the negative electrode lead body (or lead tabs connected to the positive electrode terminal and the negative electrode terminal respectively) pulled out to the outside of the outer body.
- a laminate film having a three-layer structure of a heat-melted resin / metal film / resin can be used as the laminate film exterior body.
- the metal film is preferably an aluminum foil, and the resin material on both sides is preferably a polyolefin-based resin.
- the additive is selected from the group consisting of, for example, dehydration condensation catalysts, metal soaps such as calcium stearate or zinc stearate, UV absorbers, light stabilizers, antistatic agents, antifogging agents and colored pigments. At least one is required.
- the separator of the present disclosure is a polyolefin microporous membrane having a two-layer structure, even in a power storage device in a high temperature (for example, 200 ° C. or higher) environment, at least one of the two layers is a chemically crosslinkable porous layer. It is possible to prevent short circuits between the electrodes without penetrating into the electrodes facing the electrodes.
- the separator is a polyolefin microporous membrane having a three-layer structure (both surface layers are chemically crosslinked porous layers), the chemically crosslinked porous layer does not permeate into both poles, and compared with the two-layer structure, It is even more effective in preventing short circuits at high temperatures.
- the separator is a polyolefin microporous film having a three-layer structure (the intermediate layer is a chemically crosslinkable porous layer), the surface layer can be positively impregnated into the electrode, so that electricity inside the electrode layer can be obtained. In addition to having the effect of stopping conduction, it can also have the effect of preventing short circuits between electrodes due to the chemical cross-linking property of the intermediate layer.
- the electrolytic solution in which the polyolefin simple substance layer such as PE is swollen can uniformly immerse (supply) the electrolytic solution in the cross-linking unit-containing layer, which is important for constructing a uniform cross-linking structure.
- the physically entangled structure of the PE simple substance layer having no crosslinked structure cannot be instantly relaxed even after crystal melting, and the entire entangled structure is viscoelasticly maintained.
- the compatibility between the chemically crosslinked porous layer and the other layers can be suppressed, which is good for suppressing short circuits between the electrodes.
- the PE microporous layer having a crosslinked structure is directed to face the positive electrode and the negative electrode, and the three-layer separator having a PE microporous layer having no crosslinked structure in the intermediate layer between the electrodes is formed between the electrodes at the time of melting.
- the ability to secure the distance is high, and a good pass rate can be obtained in the short circuit suppression at high temperature (that is, hot box testability).
- a lithium ion secondary battery is a storage battery using a lithium-containing positive electrode, a negative electrode, and an electrolytic solution containing an organic solvent containing a lithium salt such as LiPF 6.
- a positive electrode it is possible to use a known positive electrode LIB, pyrolysis or o 2 easily occurs positive electrode also can be used, a positive electrode comprising lithium cobalt oxide, lithium-cobalt composite oxide, a lithium composite metal oxide, A LAC-based positive electrode, an NMC-based positive electrode, or the like can be used.
- a carbon material such as graphite or graphite can be used.
- the electrolytic solution described above for the power storage device assembly kit may also be used for the lithium ion secondary battery.
- the molar ratio of the amount of Ni to the total amount of NMC in the positive electrode is preferably 4 to 9, 5 to 9, 6 to 9, 5 to 8, or 6 to 8.
- a separator is arranged between the electrodes.
- the present disclosure also provides a power storage device assembly kit that includes the power storage device separator described above.
- the power storage device assembly kit has the following two elements: An exterior body containing (A) a laminate or a wound body of an electrode and a separator for a power storage device described above; and (B) a container containing a non-aqueous electrolyte solution; To be equipped.
- the laminated body or wound body includes at least one power storage element in which a positive electrode, a negative electrode, and a separator for a power storage device are arranged between them.
- a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via the separator for a power storage device of the present disclosure to form a plurality of power storage elements.
- power storage device For details of each component, refer to the above "power storage device" column.
- the separator for the power storage device can be assembled by taking out the non-aqueous electrolyte solution from the container containing the non-aqueous electrolyte solution and injecting it into the exterior body.
- the mode of the container for storing the non-aqueous electrolyte is not limited as long as the non-aqueous electrolyte can be stored until the separator for the power storage device is assembled. After assembling the separator for the power storage device, the container containing the non-aqueous electrolyte solution may be discarded or reused for manufacturing another kit.
- the separator in the element (A) and the non-aqueous electrolytic solution in the element (B) are brought into contact with each other, and the electrolytic solution is brought into contact with the laminate or the wound body inside the exterior body. And / or by continuing the charge / discharge cycle of the assembled power storage device, a crosslinked structure can be formed in the separator to form a power storage device having both safety and output.
- the electrolyte or electrolyte when the electrolyte or electrolyte comes into contact with the electrodes and / or when charging or discharging the power storage device, it becomes part of a substance or cross-linking structure that catalyzes the cross-linking reaction.
- Substances having functional groups are present in the electrolytic solution, on the inner surface of the exterior or on the surface of the electrodes, and they dissolve in the electrolytic solution and uniformly swell and diffuse into the amorphous parts in the polyolefin to form a separator-containing laminate or a laminate containing a separator. It is conceivable to uniformly promote the cross-linking reaction of the wound body.
- the substance that catalyzes the cross-linking reaction may be in the form of an acid solution or a membrane, and if the electrolyte contains lithium hexafluorophosphate (LiPF 6 ), hydrogen fluoride (HF) or hydrogen fluoride (HF). It can be a fluorine-containing organic substance derived from.
- the substance having a functional group that becomes a part of the crosslinked structure can be, for example, the compound having the functional groups A and / or B described above, the electrolytic solution itself, various additives and the like.
- the non-aqueous electrolyte solution stored in the element (2) has a fluorine (F) -containing lithium salt such as LiPF 6 or LiN (SO 2 CF 3 ) 2 that generates HF as the electrolyte from the viewpoint of promoting the cross-linking reaction of the separator.
- F fluorine
- LiPF 6 LiPF 6
- LiN SO 2 CF 3
- LiSO 3 CF 3 and other electrolytes having unshared electron pairs are preferable, and LiBF 4 , LiBC 4 O 8 (LiBOB) and the like are also preferable.
- the power storage device assembly kit is an accessory (or element (C)) of a catalyst for promoting the cross-linking reaction, for example, a mixture of an organic metal-containing catalyst and water, an acid solution, and the like. It may be provided with another container for storing a base solution or the like.
- the method for producing a power storage device is as follows: (1) Condensing the functional groups with each other using a separator containing a polyolefin having one or more functional groups, or (1) It can include a cross-linking step of (2) reacting the functional group with a chemical substance inside the power storage device, or (3) reacting the functional group of the polyolefin with another type of functional group to form a cross-linked structure.
- the cross-linking step can be carried out in the same manner as the reaction for forming the cross-linked structure of the separator described above.
- the cross-linking step can be performed by utilizing the compound in the power storage device and the environment around the device, it does not require excessive conditions such as an electron beam and a high temperature of 100 ° C. or higher, and the temperature is 5 ° C. Mild conditions such as a temperature of ⁇ 90 ° C. and / or an ambient atmosphere can be adopted.
- the cross-linking step in the manufacturing process of the power storage device By performing the cross-linking step in the manufacturing process of the power storage device, it is possible to omit the formation of the cross-linked structure during or immediately after the film forming process of the separator, and the stress strain after manufacturing the power storage device can be relaxed or eliminated. And / or by imparting a crosslinked structure to the separator without using relatively high energy such as light irradiation or heating, it is possible to reduce crosslink unevenness, generation of unmelted resin agglomerates, burden on the environment, and the like. ..
- a crosslinked structure can be formed between the separator and the electrode or between the separator and the solid electrolyte interface (SEI) to improve the strength between the plurality of members of the power storage device.
- SEI solid electrolyte interface
- the method of manufacturing the power storage device of the present disclosure is, for example, the following step: (I) A preparatory step for preparing an exterior body containing a laminate or a wound body of an electrode and a separator for a power storage device of the present disclosure, and a non-aqueous electrolytic solution; (Ii) A liquid injection step of pouring a non-aqueous electrolyte solution into the exterior body; (Iii) A terminal connection step of connecting a lead terminal to an electrode inside the exterior or an electrode exposed from the exterior, if desired; (Iv) A charging / discharging step of charging / discharging at least one cycle, if desired, and a charging / discharging step. Can be included.
- Steps (i) to (iv) can be performed by a method known in the art, except that the separator for the power storage device of the present disclosure is used.
- the electrodes and the non-aqueous electrolytic solution described in the item of "storage device” can be used, and the positive electrode, the negative electrode, the electrolytic solution, the exterior body and the exterior body known in the present art are used.
- a charging / discharging device can also be used.
- step (ii) it is preferable to bring the separator and the non-aqueous electrolytic solution into contact with each other in the step (ii) to start the silane cross-linking reaction of the silane-modified polyolefin. It is preferable to carry out steps (iii) and (iv) from the viewpoint of reliably proceeding the silane cross-linking reaction of the separator. Without being bound by theory, it is considered that the charge / discharge cycle produces a substance that catalyzes the silane cross-linking reaction in the electrolytic solution or on the electrode surface, whereby the silane cross-linking reaction proceeds more efficiently.
- the power storage device assembly kit described above can be used.
- the manufacturing method of the power storage device is as follows; (I) The process of preparing the power storage device assembly kit described above, and (Ii) The elements (A) and (B) of the power storage device assembly kit are combined, and (1) the functional groups of the polyolefin contained in the separator are subjected to a condensation reaction, or (2) the functional groups are inside the power storage device. A step of reacting with a chemical substance or (3) reacting the functional group with another kind of functional group.
- a step of connecting a lead terminal to the electrode of the element (A), and (Iv) A step of charging / discharging at least one cycle, if desired, and including.
- the steps (i) to (iv) can be performed by a method known in the art except for using the separator for the power storage device of the present disclosure, and in the steps (i) to (iv). , Positive electrode, negative electrode, electrolytic solution, exterior body and charge / discharge device known in the present technology can be used.
- the separator for a power storage device When the separator for a power storage device is housed in the power storage device, a cross-linked structure is formed. Therefore, the separator undergoes a cross-linking reaction after the device is manufactured while being compatible with the conventional manufacturing process of the power storage device. The sex can be improved.
- the power storage device manufactured as described above, particularly the LIB includes a separator, its performance (for example, hot box testability) can be further improved.
- the evaluation methods for the separator described below include TOF-SIMS analysis and image processing, detection of silane-modified polyolefin contained in the separator, and weight average molecular weight. , Viscosity average molecular weight, melt mass flow rate, coating of polyolefin base material layer, film thickness of polyolefin base material layer, piercing strength, piercing strength converted to puncture, and pore ratio are measured from each separator to the coating film (inorganic particle layer).
- thermoplastic polymer layer was removed, the separator was immersed in a non-aqueous electrolytic solution for 1 week, and the separator was washed with methylene chloride before evaluation.
- the heat shrinkage rate of 150 ° C. the heat shrinkage rate of 150 ° C. in the electrolytic solution, film thickness, air permeability, powder removal property, FUSE temperature, and SHORT temperature
- each separator was immersed in a non-aqueous electrolytic solution for 1 week, and methylene chloride was used.
- the separator was washed with and then evaluated.
- a single-layer laminated non-aqueous secondary battery was prepared using each separator and evaluated.
- silane-modified polyolefin contained in separator When the silane-modified polyolefin contained in the separator is crosslinked, it may be difficult to measure the content of the silane-modified polyolefin directly from the separator because it is insoluble in the organic solvent or has insufficient solubility. be.
- silane-modified polyolefin contained in the separator may be detected by decomposing the siloxane bond into methoxysilanol using methyl orthogitate, which does not cause a side reaction, and then performing solution NMR measurement. , The GPC measurement can be performed.
- the pretreatment experiment can be carried out with reference to Japanese Patent No. 35298554 and Japanese Patent No. 3529858.
- 1 H or 13 C NMR identification of a silane-modified polyolefin as a raw material used for producing a separator can be utilized in a method for detecting a silane-modified polyolefin contained in a separator.
- An example of measurement method for 1 H and 13 C NMR are described below.
- the silane units modification amount of the silane-modified polyolefin it is possible to check the alkyl-modified amount of polyolefin, and in the separator, the silane-modified polyolefin
- the content can be identified (-CH 2- Si: 1 H, 0.69 ppm, t; 13 C, 6.11 ppm, s).
- a calibration curve was prepared by measuring standard polystyrene under the following conditions using ALC / GPC 150C type (trademark) manufactured by Waters. In addition, chromatograms were measured for each of the following polymers under the same conditions, and the weight average molecular weight and number average molecular weight of each polymer were calculated by the following methods based on the calibration curve.
- ⁇ Viscosity average molecular weight (Mv)> Based on ASTM-D4020, the ultimate viscosity [ ⁇ ] at 135 ° C. in a decalin solvent was determined.
- MFR Melt mass flow rate
- ⁇ Film thickness ( ⁇ m)> The film thickness of the separator for a power storage device was measured at a room temperature of 23 ⁇ 2 ° C. and a relative humidity of 60% using a microthickening instrument manufactured by Toyo Seiki Co., Ltd., KBM (trademark). Specifically, the film thicknesses at 5 points were measured at substantially equal intervals over the entire width in the TD direction, and the average value thereof was obtained.
- the film thickness of the polyolefin base material layer (“the film thickness of the base material layer” in the table) was measured by removing the coating film (inorganic particle layer and thermoplastic polymer layer) from the separator for a power storage device.
- the film thickness of the inorganic particle layer To determine the film thickness of the inorganic particle layer, remove the thermoplastic polymer layer from the separator for the power storage device, measure the film thickness (thickness of the polyolefin base material layer and the inorganic coating layer), and measure the film thickness of the polyolefin base material layer and the inorganic coating layer. It was calculated by further subtracting the film thickness of the polyolefin base material layer from the film thickness of the layer. The film thickness of the thermoplastic polymer layer was calculated by subtracting the film thicknesses of the polyolefin base material layer and the inorganic coating layer from the film thickness of the separator for a power storage device.
- the diffraction peaks derived from crystals are (110), (040), (130), (111) of ⁇ crystal (motorcycle crystal). ) And (13-1) / (041) planes, and the diffraction peaks derived from amorphous were separated into two. Diffraction peaks derived from separated crystals and amorphous were approximated by a gaussian function. The two amorphous peaks were fixed as follows and peak separation was performed.
- D (110) K ⁇ / ( ⁇ cos ⁇ ) D (110): Crystallite size (nm) K: 0.9 (constant) ⁇ : X-ray wavelength (nm) ⁇ : ( ⁇ 1 2- ⁇ 2 2 ) 0.5 ⁇ 1 : Full width at half maximum (rad) of the (hkl) peak calculated as a result of peak separation. ⁇ 2 : Full width at half maximum (rad) of the spread of the incident beam ⁇ : Bragg angle
- the resin agglomerates in the separator have an area of 100 ⁇ m in length ⁇ 100 ⁇ m in width or more and light when the separator obtained through the film forming steps of Examples and Comparative Examples described later is observed with a transmission optical microscope. Is defined as a non-transparent area. In the observation with a transmission optical microscope, the number of resin agglomerates per 1000 m 2 of separator area was measured.
- Negative Electrode 96.9% by mass of artificial graphite as a negative electrode active material, 1.4% by mass of ammonium salt of carboxymethyl cellulose as a binder and 1.7% by mass of styrene-butadiene copolymer latex are dispersed in purified water to prepare a slurry. Prepared. This slurry was applied to one side of a copper foil having a thickness of 12 ⁇ m as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression-molded with a roll press machine. At this time, the amount of the active material applied to the negative electrode was adjusted to 106 g / m 2 , and the bulk density of the active material was adjusted to 1.35 g / cm 3.
- the separator was cut into a circle with a diameter of 18 mm and the positive electrode and the negative electrode were cut out into a circle with a diameter of 16 mm.
- the container and the lid were insulated, and the container was in contact with the copper foil of the negative electrode and the lid was in contact with the aluminum foil of the positive electrode.
- the above c. The non-aqueous electrolytic solution obtained in the above was injected and sealed. After leaving it at room temperature for 1 day, the battery is charged to a battery voltage of 4.2 V at a current value of 3 mA (0.5 C) under an atmosphere of 25 ° C., and after reaching the battery voltage, the current value is throttled from 3 mA so as to maintain 4.2 V.
- the first charge after the battery was made was performed for a total of 6 hours by the method of starting. Subsequently, the battery was discharged to a battery voltage of 3.0 V at a current value of 3 mA (0.5 C).
- the obtained battery was charged and discharged for 1000 cycles in an atmosphere of 60 ° C. Charging is performed by charging the battery voltage to 4.2V with a current value of 6.0mA (1.0C), and after reaching 4.2V, the current value is started to be throttled from 6.0mA for a total of 3 hours. Charged. The discharge was performed at a current value of 6.0 mA (1.0 C) to a battery voltage of 3.0 V. The capacity retention rate was calculated from the discharge capacity at the 1000th cycle and the discharge capacity at the 1st cycle. When the capacity retention rate was high, it was evaluated as having good cycle characteristics.
- ⁇ Fuse / meltdown (F / MD) characteristics in the first embodiment> A positive electrode, a separator, and a negative electrode were cut out in a circular shape having a diameter of 200 mm, and the negative electrodes were superposed. An electrolyte-containing electrolytic solution was added to the obtained laminate, and the whole was dyed. The laminated body was sandwiched in the center by a circular aluminum heater having a diameter of 600 mm, and the aluminum heater was pressurized to 0.5 Mpa from above and below with a hydraulic jack. The resistance ( ⁇ ) between the electrodes is measured while heating the laminate with an aluminum heater at a heating rate of 2 ° C./min.
- the temperature at which the resistance between the electrodes of the fuse of the separator increased and the resistance exceeded 1000 ⁇ for the first time was defined as the fuse temperature (shutdown temperature). Further, further heating was continued, and the temperature at which the resistance dropped to 1000 ⁇ or less was defined as the meltdown temperature (film rupture temperature).
- a wire for measuring resistance was adhered to the back of the aluminum foil of the positive electrode produced by the item "a. Preparation of positive electrode” in the above “cycle test and heat resistance test” with a conductive silver paste. Further, a resistance measuring electric wire was adhered to the back of the copper foil of the negative electrode produced by the item "b. Preparation of negative electrode” in the above “cycle test and heat resistance test” with a conductive silver paste. Further, the electrolyte-containing electrolyte prepared by the item "c. Preparation of non-aqueous electrolyte" in the above “Cycle test and heat resistance test” was also used for the F / MD characteristic test.
- TOF-SIMS analysis and image processing A TOF-SIMS analysis was performed on the separator for a power storage device.
- the image data of the TOF-SIMS spectrum obtained as described above was image-processed according to the following procedure.
- (1) Create a filter that matches the beam shape (diameter 2 ⁇ m, pixel resolution 0.39 ⁇ m).
- the filter value is calculated using the function fspecial of the Image Processing Toolbox of MATLAB, a numerical calculation software manufactured by MathWorks. fspicial ("gaussian", [13 13], 1.68965)
- MathWorks. fspicial (gaussian", [13 13], 1.68965)
- Apply the created filter to the two-dimensional data (3)
- (4) Binarize with the average value + standard deviation x 3 as the threshold value.
- ⁇ 150 ° C heat shrinkage rate (%)> A sample piece obtained by collecting TD 100 mm ⁇ MD 100 mm from a separator for a power storage device was allowed to stand in an oven at 150 ° C. for 1 hour. At this time, the sample piece was sandwiched between two sheets of paper so that the warm air did not directly hit the sample piece. After taking out the sample piece from the oven and cooling it, the area of the sample piece was measured, and the heat shrinkage rate at 150 ° C. was calculated by the following formula.
- 150 ° C. heat shrinkage rate (%) ⁇ (10,000 (mm 2 ) -area of sample piece after heating (mm 2 )) / 10,000 (mm 2 ) ⁇ ⁇ 100
- LiPF 6 LiPF 6
- 1 mol / L lithium bis (fluorosulfonyl) imide LiN (SO 2 F) 2
- 20 mass ppm lithium fluorosulfonate LiFS O 3
- Raw piercing strength (gf) was obtained as the maximum piercing load.
- the value (gf / (g / m 2 )) obtained by converting the obtained puncture strength (gf) into a basis weight (in the table, the basis weight equivalent puncture strength) was also calculated.
- ⁇ Metsuke (g / m 2 )> A 10 cm ⁇ 10 cm square sample is cut from a separator for a power storage device from which the thermoplastic polymer layer has been removed, and the weights of the polyolefin base material layer and the inorganic coating layer are measured using an electronic balance AEL-200 manufactured by Shimadzu Corporation. bottom. The resulting weight 1 m 2 per polyolefin substrate layer by multiplying 100 and an inorganic coating layer having a basis weight (g / m 2) was calculated.
- Powder removal property (mass%) ⁇ (mass before rubbing (g) -mass after rubbing (g)) / mass before rubbing ⁇ x 100
- NMC nickel, manganese, cobalt composite oxide
- density 3.50 g / cm 3 positive electrode
- This slurry is applied to one side of a 20 ⁇ m-thick aluminum foil serving as a positive electrode current collector using a die coater, dried at 130 ° C. for 3 minutes, and then compression-molded using a roll press to obtain a positive electrode.
- the amount of the positive electrode active material coated was 109 g / m 2 .
- This slurry was applied to one side of a copper foil having a thickness of 12 ⁇ m to be a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression-molded with a roll press to prepare a negative electrode. At this time, the amount of the negative electrode active material coated was 52 g / m 2 .
- the positive electrode and the negative electrode are separated from each other so that the mixture-coated surfaces of the respective electrodes face each other (separator of Example or separator of Comparative Example). They were superposed on each other to form a laminated electrode body.
- This laminated electrode body was housed in a 100 mm ⁇ 60 mm aluminum laminate sheet outer body, and vacuum dried at 80 ° C. for 5 hours to remove water.
- a single-layer laminated type (pouch type) non-aqueous secondary battery was produced by injecting a non-aqueous electrolyte solution into the exterior body and then sealing the exterior body.
- This single-layer laminated non-aqueous secondary battery had a design capacity value of 3 Ah and a rated voltage value of 4.2 V.
- -Initial charging process Set the ambient temperature of the battery to 25 ° C, charge it with a constant current of 0.075A equivalent to 0.025C, reach 3.1V, and then use a constant voltage of 3.1V for 1.5 hours. It was charged. Subsequently, after resting for 3 hours, the battery was charged with a constant current of 0.15 A corresponding to 0.05 C to reach 4.2 V, and then charged with a constant voltage of 4.2 V for 1.5 hours. Then, the battery was discharged to 3.0 V with a constant current of 0.45 A corresponding to 0.15 C.
- -Cycle test of single-layer laminated non-aqueous secondary battery A cycle test was conducted on the battery that had been charged and discharged for the first time.
- the cycle test was started 3 hours after the ambient temperature of the battery was set to 25 ° C. First, it was charged with a constant current of 3A corresponding to 1C to reach 4.2V, then charged with a constant voltage of 4.2V, and charged for a total of 3 hours. Then, the battery was discharged to 3.0 V with a constant current of 3 A. This step of charging and discharging once each was defined as one cycle, and 100 cycles of charging and discharging were performed. The discharge capacity at the 100th cycle when the discharge capacity at the first cycle was 100% was determined as the capacity retention rate (%) after 100 cycles.
- ⁇ FUSE temperature, SHORT temperature (° C.) in the second embodiment> A positive electrode, a separator for a power storage device, and a negative electrode were cut out in a circular shape having a diameter of 200 mm and superposed to obtain a laminated body. A non-aqueous electrolytic solution was added to the obtained laminate, and the whole was permeated. The laminate was sandwiched in the center by a circular aluminum heater having a diameter of 600 mm, and the aluminum heater was pressurized to 0.5 MPa from above and below with a hydraulic jack. The resistance ( ⁇ ) between the electrodes was measured while heating the laminate with an aluminum heater at a heating rate of 2 ° C./min. The temperature when the resistance of the separator exceeded 1000 ⁇ for the first time was defined as the FUSE temperature. Further, the temperature at which the resistance drops to 1000 ⁇ or less after further heating was defined as the SHORT temperature.
- ⁇ Battery crush test> The laminated cell after the low temperature cycle test was set with a step of 1 mm between the sample table and the laminated cell, and both ends of the cell were gripped. A SUS round bar with a diameter of 15.8 mm crushes the cell with a force of 0.2 mm / s and 1.95 ton, and a crush test is performed until the voltage reaches from 4.1 V to 4.0 V. The time from 4.1V to 4.0V was measured. This test was performed on 100 cells and compared the number of cells in which the time it took for the voltage to reach 4.0V from 4.1V was 5 seconds or longer.
- a single-layer laminated non-aqueous secondary battery was produced by the methods (1) to (4) in the measurement of the cycle test capacity retention rate.
- the prepared single-layer laminated non-aqueous secondary battery was disassembled, the separator and electrode were peeled off, the negative electrode was photographed with a digital camera, and the area ratio of the negative electrode active material layer remaining on the copper foil (negative electrode current collector) ( %) was calculated.
- ⁇ Heat response index> A sample piece obtained by collecting TD 100 mm ⁇ MD 100 mm from a separator for a power storage device was allowed to stand in an oven at 150 ° C. for a predetermined time. At this time, the sample pieces were sandwiched between a plurality of papers so that the warm air did not directly hit the sample pieces. Furthermore, a heat label "10R-104" manufactured by IP Giken was also sandwiched between a plurality of papers so that the temperature reached by the separator could be known. The heating speed of the separator can be adjusted by adjusting the number of sheets to be sandwiched. The number of sheets of paper to be sandwiched was adjusted so that the heating rate of the separator was 2 ° C./min.
- Thermal response index (%) ⁇ (10,000 (mm 2 ) -area of sample piece after heating (mm 2 )) / 10,000 (mm 2 ) ⁇ ⁇ 100
- the experiment was repeated while changing the predetermined time from 5 seconds to 3 minutes in 5 second increments, and the thermal response index of each temperature was calculated.
- the raw material polyolefin used for the silane graft-modified polyolefin has a viscosity average molecular weight (Mv) of 100,000 or more and 1 million or less, a weight average molecular weight (Mw) of 30,000 or more and 920,000 or less, and a number average molecular weight of 10,000 or more and 15 It may be 10,000 or less, and may be propylene or a butene copolymer ⁇ -olefin.
- Organic peroxide (di-t-butyl peroxide) is added while melt-kneading the raw material polyethylene with an extruder to generate radicals in the ⁇ -olefin polymer chain, and then trimethoxyalkoxide-substituted vinylsilane is injected.
- An alkoxysilyl group is introduced into the ⁇ -olefin polymer by an addition reaction to form a silane graft structure.
- an appropriate amount of an antioxidant (pentaerythritol tetrakis [3- (3,5-di-tetra-butyl-4-hydroxyphenyl) propionate]) is added, and an ⁇ -olefin is added. Suppresses the chain reaction (gelation) inside.
- the obtained silane graft polyolefin molten resin is cooled in water, pelleted, and then dried by heating at 80 ° C. for 2 days to remove water or unreacted trimethoxyalkoxide-substituted vinylsilane.
- the residual concentration of unreacted trimethoxyalkoxide-substituted vinylsilane in the pellet is about 1000 to 1500 ppm.
- the silane graft-modified polyolefin obtained by the above production method is shown as "silane-modified polyethylene" in Tables 8 and 9.
- Modified PEs and copolymers having various functional groups other than silane-modified PEs were produced by the following methods. For each raw material, the molecular weight of the raw material used was adjusted so that MI was in the range of 0.5 to 10. The modified PE having a hydroxyl group was produced by saponifying and neutralizing the EVA copolymer. In modified resins such as amine-modified and oxazoline-modified, the terminal vinyl group of PE polymerized using a chromium catalyst is allowed to act on a tungsten-based catalyst under hydrogen peroxide conditions to convert the vinyl group into an epoxy group.
- the target reaction site was converted to the target functional group using an already known functional group conversion organic reaction to obtain various modified PEs.
- the modified PE having an epoxy group is melt-kneaded at 200 ° C. in an extruder, and primary or secondary amines are injected in a liquid to cause a reaction. Then, unreacted amines are removed from the pressure reducing valve, and the obtained amine-modified resin is extruded into a strand and cut into pellets.
- the modified PE obtained by the above production method is shown in Tables 8 to 15 as a kind of "modified PE or copolymer (B)".
- Example 1 >> ⁇ Preparation of two-layer polyolefin microporous membrane> A microporous polyolefin membrane having a two-kind, two-layer laminated structure was prepared by the following procedure.
- PE polyethylene microporous layer
- tetrakis- (methylene-3- (methylene-3-)) antioxidant with respect to 100 parts by mass of polyethylene of a homopolymer having a weight average molecular weight of 500,000. 3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate) methane was mixed to give a mixture.
- the feeder and pump are adjusted (that is, the polymer concentration is 30% by mass), kneaded under the conditions of 200 ° C. and 200 rpm, and co-extruded with two types and two layers installed at the tip of the extruder.
- the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.0 times (that is, 7 ⁇ 6 times), and a biaxial stretching temperature of 126 ° C.
- the stretched gel sheet was led to a dichloromethane tank and sufficiently immersed in dichloromethane to extract and remove liquid paraffin, and then dichloromethane was dried and removed to obtain a porous body.
- the porous body is guided to the TD tenter for heat fixation (HS), HS is performed at a heat fixation temperature of 129 ° C. and a draw ratio of 2.1 times, and then a relaxation operation is performed up to 1.9 times in the TD direction.
- HS heat fixation temperature
- a relaxation operation is performed up to 1.9 times in the TD direction.
- the end portion of the obtained polyolefin microporous membrane was cut and wound as a mother roll having a width of 1,100 mm and a length of 5,000 m.
- the microporous polyolefin membrane unwound from the mother roll was slit as necessary and used as a composite separator for evaluation, and the “layer facing the positive electrode” and “electrode” shown in Table 8 were used.
- the batteries were arranged so as to satisfy the conditions of "non-contact layer” and "layer facing the negative electrode”.
- Various evaluations were performed on the evaluation separator and the battery according to the above evaluation method, and the evaluation results are shown in Table 8.
- Examples 2 to 3 Examples are shown in Table 8, except that the conditions of polyethylene (PE) for forming the polyethylene microporous layer (PE), the layer composition conditions of the composite, the arrangement conditions in the battery, and the like are changed.
- the same operation as in No. 1 was carried out to obtain a polyolefin microporous membrane, a separator and a battery having a two-kind two-layer laminated structure shown in Table 8.
- the obtained separators and batteries were evaluated in various ways according to the above evaluation methods, and the evaluation results are also shown in Table 8.
- Example 4 >> ⁇ Preparation of three-layer polyolefin microporous membrane> A microporous polyolefin membrane having a two-kind, three-layer laminated structure was prepared by the following procedure.
- PE polyethylene microporous layer
- tetrakis- (methylene-3- (methylene-3-)) antioxidant with respect to 100 parts by mass of polyethylene of a homopolymer having a weight average molecular weight of 500,000. 3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate) methane was mixed to give a mixture.
- the feeder and pump are adjusted (that is, the polymer concentration is 30% by mass), kneaded under the conditions of 200 ° C. and 200 rpm, and co-extruded with two or three layers installed at the tip of the extruder. Extruded from the die to a thickness ratio CL / PE shown in Table 8.
- the melt-kneading conditions were a set temperature of 220 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 18 kg / h.
- the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.0 times (that is, 7 ⁇ 6 times), and a biaxial stretching temperature of 123 ° C.
- the stretched gel sheet was led to a dichloromethane tank and sufficiently immersed in dichloromethane to extract and remove liquid paraffin, and then dichloromethane was dried and removed to obtain a porous body.
- the porous body is guided to the TD tenter for heat fixation (HS), HS is performed at a heat fixation temperature of 125 ° C. and a draw ratio of 2.3 times, and then a relaxation operation is performed up to 1.8 times in the TD direction.
- a polyolefin microporous film having a two-kind three-layer laminated structure (CL layer-PE layer-CL layer) having the number of laminations, porosity, air permeability, total thickness, and thickness ratio shown in Table 8 was obtained. ..
- the end portion of the obtained polyolefin microporous membrane was cut and wound as a mother roll having a width of 1,100 mm and a length of 5,000 m.
- the microporous polyolefin membrane unwound from the mother roll was slit as necessary and used as a composite separator for evaluation, and the “layer facing the positive electrode” and “electrode” shown in Table 8 were used.
- the batteries were arranged so as to satisfy the conditions of "non-contact layer” and "layer facing the negative electrode”.
- Various evaluations were performed on the evaluation separator and the battery according to the above evaluation method, and the evaluation results are shown in Table 8.
- Example 21 a positive electrode (LAC positive electrode) containing a Li (Al, Co) O 2 layer was used as the positive electrode material instead of the positive electrode prepared in the above “a. Preparation of positive electrode”.
- LAC positive electrode Li (Al, Co) O 2 layer
- Example 22 a non-aqueous electrolyte solution prepared by adjusting LiPF 6 to a concentration of 5.0 mol / L with the same components as the non-aqueous electrolyte solution produced in the above “c. Preparation of non-aqueous electrolyte solution”. was used.
- the obtained polyolefin microporous membrane was used to irradiate a predetermined dose to perform electron beam cross-linking before assembling the battery.
- the obtained electron beam crosslinked microporous membrane and the battery were evaluated in various ways according to the above evaluation method.
- Comparative Examples 5 to 6 a monolayer microporous membrane was formed from a homopolymer polyethylene (PE) having a weight average molecular weight of 500,000 and used as a separator.
- a single-layer microporous film capable of forming a crosslinked structure was formed based on the resin composition shown in Table 15 and used as a separator. The evaluation results are shown in Table 15.
- Silane-modified polyethylene is obtained by a modification reaction with trimethoxyalkoxide-substituted vinylsilane using polyolefin having a viscosity average molecular weight of 120,000 as a raw material, and has a density of 0.95 g / cm 3 and at 190 ° C.
- silane graft-modified polyolefin As the raw material polyethylene for the silane-modified polyethylene (resin a), polyethylene having a viscosity average molecular weight (Mv) of 120,000 was used. An organic peroxide (di-t-butyl peroxide) was added while melting and kneading the raw material polyethylene with an extruder to generate radicals in the ⁇ -olefin polymer chain. Then, a trimethoxyalkoxide-substituted vinylsilane was injected into the melt-kneaded product to cause an addition reaction.
- Mv viscosity average molecular weight
- pentaerythrityl-tetrax- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant is ultra-high at 1000 mass ppm.
- 3000 mass ppm of calcium stearate was added and dry blended using a tumbler blender to obtain a raw material mixture of the A layer.
- the resin material for the B layer 30% by mass of the resin b and 70% by mass of the resin c were used. Furthermore, based on the total mass of the resin material, pentaerythrityl-tetrax- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant is ultra-high at 1000 mass ppm. To the mass of the molecular weight polyethylene (resin b), 3000 mass ppm of calcium stearate was added and dry blended using a tumbler blender to obtain a raw material mixture of the B layer.
- the obtained raw material mixture of the A layer and the B layer was fed to separate twin-screw extruders by a feeder under a nitrogen atmosphere, and liquid paraffin (kinematic viscosity at 37.78 ° C. 7.59 ⁇ 10-5 m 2 / s) was injected into each extruder cylinder by a plunger pump.
- the raw material mixture and the liquid paraffin were melt-kneaded in the extruder, and the feeder and the pump were adjusted so that the liquid paraffin was 70% by mass based on the total mass of the melt-kneaded product to be extruded.
- the melt-kneading conditions were a set temperature of 230 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 18 kg / h.
- the melt-kneaded product was co-extruded through a common T-die so as to have a three-layer structure of A layer-B layer-A layer.
- a gel sheet (sheet-like molded body) having an original film thickness of 1370 ⁇ m was obtained by extruding and casting on a cooling roll whose surface temperature was controlled to 25 ° C.
- the gel sheet was guided to a simultaneous biaxial tenter stretching machine and biaxially stretched to obtain a stretched product.
- the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.4 times (that is, 7 ⁇ 6.3 times), and a biaxial stretching temperature of 122 ° C.
- the stretched gel sheet was introduced into a dichloromethane tank and sufficiently immersed in dichloromethane to extract and remove liquid paraffin, and then dichloromethane was dried and removed to obtain a porous sheet.
- the porous sheet was guided to a TD tenter, heat-fixed (HS) at a heat-fixing temperature of 133 ° C.
- microporous membrane substrate The end portion of the microporous membrane base material was cut and wound as a mother roll having a width of 1,100 mm and a length of 5,000 m.
- the film thickness of the obtained microporous membrane substrate was 10 ⁇ m.
- Acrylic latex used as a resin binder for the inorganic particle layer was produced by the following method.
- a reaction vessel equipped with a stirrer, a reflux condenser, a dropping tank and a thermometer 70.4 parts by mass of ion-exchanged water and "Aqualon KH1025" as an emulsifier (registered trademark, 25% aqueous solution manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) 0.5 parts by mass and 0.5 parts by mass of "Adecaria Soap SR1025" (registered trademark, 25% aqueous solution manufactured by ADEKA Corporation) were added.
- the temperature inside the reaction vessel was raised to 80 ° C., and 7.5 parts by mass of a 2% aqueous solution of ammonium persulfate was added while maintaining the temperature of 80 ° C. to obtain an initial mixture.
- the emulsion was added dropwise from the dropping tank to the reaction vessel over 150 minutes.
- the emulsion contains 70 parts by mass of butyl acrylate, 29 parts by mass of methyl methacrylate, 1 part by mass of methacrylate, and "Aqualon KH1025" as an emulsifier (registered trademark, 25% aqueous solution manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
- the obtained acrylic latex had a number average particle size of 145 nm and a glass transition temperature of ⁇ 23 ° C.
- a particle-containing slurry was prepared. 2.0 parts by mass (in terms of solid content) of acrylic latex as the resin binder produced above was added to the dispersion having an adjusted particle size distribution to obtain an inorganic particle-containing slurry.
- the base material was continuously fed out from the mother roll of the microporous membrane base material, and the inorganic particle-containing slurry was coated on both sides of the base material with a gravure reverse coater.
- the coated base material was dried in a dryer at 60 ° C. to remove water, and a base material having an inorganic particle layer on both sides was obtained. This was wound up to obtain a mother roll of a base material having an inorganic particle layer.
- the aluminum hydroxide oxide contained in the inorganic particle layer was 95% by mass, and the thickness of the inorganic particle layer was 5 ⁇ m in total on both sides (about 2.5 ⁇ m on one side).
- thermoplastic polymer layer (D layer) The acrylic resin coating liquid was prepared as follows. In a reaction vessel equipped with a stirrer, a reflux condenser, a dropping tank and a thermometer, 70.4 parts by mass of ion-exchanged water and "Aqualon KH1025" (registered trademark, 25% aqueous solution manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) 0. 5 parts by mass and 0.5 parts by mass of "Adecaria Soap SR1025" (registered trademark, 25% aqueous solution manufactured by ADEKA Corporation) were added.
- Aqualon KH1025" registered trademark, 25% aqueous solution manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
- the temperature inside the reaction vessel was raised to 80 ° C., and 7.5 parts by mass of ammonium persulfate (2% aqueous solution) was added while maintaining the temperature of 80 ° C. 5 minutes after adding the aqueous ammonium persulfate solution, 15.9 parts by mass of methyl methacrylate, 74.5 parts by mass of n-butyl acrylate, 2 parts by mass of 2-ethylhexyl acrylate, 0.1 part by mass of acrylate, 0 parts of acrylate.
- ammonium persulfate 2% aqueous solution
- the mixture was mixed for 5 minutes to prepare an emulsion.
- the obtained emulsion was added dropwise from the dropping tank to the reaction vessel over 150 minutes. After the completion of dropping the emulsion, the temperature inside the reaction vessel was maintained at 80 ° C. for 90 minutes, and then cooled to room temperature.
- PVDF-HFP polyvinylidene fluoride-hexhexafluoropropylene
- the coating liquid of the acrylic resin or PVDF-HFP prepared above was applied to both sides of the mother roll of the base material having the inorganic particle layer using a gravure coater, and the thermoplastic polymer was coated with the thickness and the covering area ratio shown in Table 16. A layer was formed and slit as necessary to obtain a separator for a power storage device.
- Example 70 a positive electrode containing two LiCoO layers (LCO positive electrode) was used as the positive electrode material instead of the positive electrode prepared in the above “a. Preparation of positive electrode”.
- Example 2.71 when forming the inorganic particle layer in the above-mentioned "formation of the inorganic particle layer (C layer)", instead of acrylic latex as a resin binder, "Epocross K-2010E” (registered trademark, Nippon Shokubai Co., Ltd.) Company, glass transition temperature -50 ° C) was used.
- Example 2.72 when forming the inorganic particle layer in the above-mentioned "formation of the inorganic particle layer (C layer)", instead of acrylic latex as a resin binder, "JE-1056” (registered trademark, Seiko PMC Corporation) , Glass transition temperature 82 ° C.) was used.
- JE-1056 registered trademark, Seiko PMC Corporation
- Comparative Example 2.5 the obtained microporous polyolefin membrane was used, and an electron beam of 120 kGy was used using an EB irradiation device manufactured by Iwasaki Electric Co., Ltd., i-Compact EB TM, before assembling the battery. Was irradiated, and electron beam cross-linking was performed.
- the obtained electron beam crosslinked microporous membrane and the battery were evaluated in various ways according to the above evaluation method.
- Comparative Examples 2.6 and 2.7 in the production of the microporous polyolefin film, a catalyst for forming a tin-based siloxane bond was added to the object to be extruded during the extrusion step, and each was after separator molding. Humidification cross-linking and cross-linking in the liquid paraffin extraction step were carried out.
- the separator for a power storage device of the present disclosure can be used as a separator for a power storage device, and examples of the power storage device include a battery and a capacitor, preferably a lithium ion secondary battery.
- the lithium ion secondary battery can be mounted on a small electronic device such as a mobile phone or a notebook personal computer, and an electric vehicle such as an electric vehicle or an electric motorcycle.
- Non-crosslinked polyolefin substrate layer 1b Crosslinked polyolefin substrate layer 2 Inorganic particle layer 3 Thermoplastic polymer layer 4 Stress 5 Swivel fracture of inorganic particle layer 6 Tensile fracture of substrate layer 7 Local short circuit 9 Island structure 10 Separator 20 Fixed cure Tool 30 Positive electrode 40 Negative electrode 100 Storage device d Distance between island structures
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Cell Separators (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
[1]
ポリオレフィンを含むA層と、ポリオレフィンを含むB層とを少なくとも1層ずつ備える積層構造を有するポリオレフィン微多孔膜であって、
上記A層と上記B層の少なくとも一方に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、かつ
蓄電デバイスへの収納後に、(1)上記官能基同士が縮合反応するか、(2)上記官能基が上記蓄電デバイス内部の化学物質と反応するか、又は(3)上記官能基が他の種類の官能基と反応して、架橋構造が形成されることを特徴とするポリオレフィン微多孔膜。
[2]
上記化学物質が、上記ポリオレフィン微多孔膜に含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかである、項目1に記載のポリオレフィン微多孔膜。
[3]
上記A層又は上記B層は、上記官能基を含まない層であり、かつ上記官能基を含まない層の厚みに対して上記官能基を含む層の厚みの比が、0.08~6.50である、項目1又は2に記載のポリオレフィン微多孔膜。
[4]
上記A層又は上記B層は、上記官能基を含まない層であり、上記官能基を含まない層にはポリエチレンが含まれ、かつ上記ポリエチレンの結晶化度が、60%~99%である、項目1~3のいずれか1項に記載のポリオレフィン微多孔膜。
[5]
上記ポリエチレンの結晶子サイズが、10nm~50nmである、項目4に記載のポリオレフィン微多孔膜。
[6]
上記架橋構造が、上記ポリオレフィンの非晶部が架橋された非晶部架橋構造である、項目1~5のいずれか1項に記載のポリオレフィン微多孔膜。
[7]
上記非晶部が、選択的に架橋された、項目6に記載のポリオレフィン微多孔膜。
[8]
上記ポリオレフィンが、官能基変性ポリオレフィン、又は官能基を有する単量体を共重合されたポリオレフィンである、項目1~7のいずれか1項に記載のポリオレフィン微多孔膜。
[9]
上記架橋構造が、共有結合、水素結合又は配位結合のいずれかを介した反応により形成される、項目1~8のいずれか1項に記載のポリオレフィン微多孔膜。
[10]
上記共有結合を介した反応が、下記反応(I)~(IV):
(I)複数の同一官能基の縮合反応;
(II)複数の異種官能基間の反応;
(III)官能基と電解液の連鎖縮合反応;及び
(IV)官能基と添加剤の反応;
から成る群から選択される少なくとも1つである、項目9に記載のポリオレフィン微多孔膜。
[11]
上記配位結合を介した反応が、下記反応(V):
(V)複数の同一官能基が、金属イオンとの配位結合を介して架橋する反応;
である、項目10に記載のポリオレフィン微多孔膜。
[12]
上記反応(I)及び/又は(II)が、蓄電デバイス内部の化学物質により触媒的に促進される、項目10に記載のポリオレフィン微多孔膜。
[13]
上記反応(I)が、複数のシラノール基の縮合反応である、項目10に記載のポリオレフィン微多孔膜。
[14]
上記反応(IV)が、上記ポリオレフィン微多孔膜を構成する化合物Rxと上記添加剤を構成する化合物Ryとの求核置換反応、求核付加反応又は開環反応であり、上記化合物Rxは、官能基xを有し、かつ上記化合物Ryは、連結反応ユニットy1を有する、項目10に記載のポリオレフィン微多孔膜。
[15]
上記反応(IV)が求核置換反応であり、
上記化合物Rxの官能基xが、-OH、-NH2、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
上記化合物Ryの連結反応ユニットy1が、CH3SO2-、CF3SO2-、ArSO2-、CH3SO3-、CF3SO3-、ArSO3-、及び下記式(y1-1)~(y1-6):
で表される1価の基から成る群から選択される少なくとも2つである、項目14に記載のポリオレフィン微多孔膜。
[16]
上記反応(IV)が求核置換反応であり、
上記化合物Ryが、上記連結反応ユニットy1に加えて鎖状ユニットy2を有し、かつ
上記鎖状ユニットy2が、下記式(y2-1)~(y2-6):
で表される2価の基から成る群から選択される少なくとも1つである、項目14又は15に記載のポリオレフィン微多孔膜。
[17]
上記反応(IV)が求核付加反応であり、
上記化合物Rxの官能基xが、-OH、-NH2、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
上記化合物Ryの連結反応ユニットy1が、下記式(Ay1-1)~(Ay1-6):
[18]
上記反応(IV)が開環反応であり、
上記化合物Rxの官能基xが、-OH、-NH2、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
上記化合物Ryの連結反応ユニットy1が、下記式(ROy1-1):
で表される少なくとも2つの基である、項目14に記載のポリオレフィン微多孔膜。
[19]
下記反応(V)において、上記金属イオンが、Zn2+、Mn2+、Co3+、Ni2+及びLi+から成る群から選択される少なくとも1つである、項目11に記載のポリオレフィン微多孔膜。
[20]
項目1~19のいずれか1項に記載のポリオレフィン微多孔膜を含む蓄電デバイス用セパレータ。
[21]
ポリオレフィンを含むA層と、ポリオレフィンを含むB層と、無機粒子を含むC層とを、それぞれ少なくとも1層ずつ備える蓄電デバイス用セパレータであって、
上記A層とB層の少なくとも一方に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、上記官能基は、蓄電デバイス内で上記官能基同士が縮合反応してシロキサン結合による架橋構造を形成する官能基を含む、蓄電デバイス用セパレータ。
[22]
上記A層またはB層に対し100μm四方面積のTOF-SIMS測定を行ったとき、アルカリ金属及び/又はアルカリ土類金属を含む島構造が1つ以上検出され、かつ上記島構造の大きさが9μm2以上245μm2以下である領域を備える、項目21に記載の蓄電デバイス用セパレータ。
[23]
上記アルカリ金属及び/又はアルカリ土類金属を含む島構造が上記セパレータに2つ以上存在し、それぞれの上記島構造の重み付き重心位置間距離の最小値及び最大値のいずれもが、6μm以上135μm以下である、項目22に記載の蓄電デバイス用セパレータ。
[24]
上記島構造はアルカリ土類金属を含み、上記アルカリ土類金属がカルシウムである、項目22又は23に記載の蓄電デバイス用セパレータ。
[25]
上記アルカリ金属及び/又はアルカリ土類金属が、リチウム、ナトリウム、マグネシウム、カリウム、及びストロンチウムからなる群から選択される少なくとも一つである、項目22又は23に記載の蓄電デバイス用セパレータ。
[26]
上記C層が無機粒子および樹脂バインダを含む無機多孔質層である、項目21~24いずれか一項に記載の蓄電デバイス用セパレータ。
[27]
上記樹脂バインダのガラス転移温度(Tg)が-50℃~90℃である、項目26に記載の蓄電デバイス用セパレータ。
[28]
上記C層に含まれる無機粒子の含有量が、上記C層の全質量を基準として、5質量%~99質量%である、項目21~27のいずれか一項に記載の蓄電デバイス用セパレータ。
[29]
上記無機粒子が、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄、窒化ケイ素、窒化チタン、窒化ホウ素、シリコンカーバイド、水酸化酸化アルミニウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ藻土、ケイ砂、およびガラス繊維からなる群から選択される少なくとも一つである、項目21~28のいずれか一項に記載の蓄電デバイス用セパレータ。
[30]
上記C層の表面のうち、上記A層または上記B層に接していない面に、熱可塑性ポリマーを含むD層が積層されている、項目21~29のいずれか一項に記載の蓄電デバイス用セパレータ。
[31]
上記D層に含まれる熱可塑性ポリマーが、(メタ)アクリル酸エステル又は(メタ)アクリル酸を重合単位として含む、項目21~30のいずれか一項に記載の蓄電デバイス用セパレータ。
[32]
上記D層は、上記C層の表面を5%~98%の面積割合で被覆する、項目30又は31に記載の蓄電デバイス用セパレータ。
[33]
上記D層に含まれる熱可塑性ポリマーが、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVDF-HFP)、及びポリフッ化ビニリデン-クロロトリフルオロエチレン(PVDF-CTFE)から成る群から選択される少なくとも一つのフッ素原子含有ビニル化合物を含む、項目30~32のいずれか一項に記載の蓄電デバイス用セパレータ。
[34]
電解液浸漬後の上記蓄電デバイス用セパレータを2℃/minで150℃まで加熱した時の熱応答指数を、最小二乗近似法を用いて式(1)にフィッティングしたとき、rateの範囲が3.5≦rate≦150である、項目21~33のいずれか一項に記載の蓄電デバイス用セパレータ。
電解液浸漬後の上記蓄電デバイス用セパレータを2℃/minで150℃まで加熱した時の熱応答指数を、最小二乗近似法を用いて式(1)にフィッティングしたとき、T0の範囲が110≦T0≦150、maxの範囲が0.1≦max≦30である、項目21~34のいずれか一項に記載の蓄電デバイス用セパレータ。
[36]
上記官能基を有するポリオレフィンが、上記官能基の架橋構造を形成する脱水縮合触媒を含有するマスターバッチ樹脂ではない、項目1~35のいずれか一項に記載の蓄電デバイス用セパレータ。
[37]
(A)電極と、項目20~36のいずれか一項に記載の蓄電デバイス用セパレータとの積層体又は捲回体を収納している、外装体;及び
(B)非水電解液を収納している容器;
を備える、蓄電デバイス組立キット。
[38]
正極と、負極と、項目20~36のいずれか一項に記載の蓄電デバイス用セパレータと、非水電解液とを含む、蓄電デバイス。
[39]
正極、負極、項目20~36のいずれか一項に記載の蓄電デバイス用セパレータ、及び非水電解液を含む蓄電デバイスであって、上記正極は、ニッケル-マンガン-コバルト(NMC)系リチウム含有正極、オリビン型リン酸鉄リチウム(LFP)系正極、コバルト酸リチウム(LCO)系正極、ニッケル-コバルト-アルミ(NCA)系リチウム含有正極、及びマンガン酸リチウム(LMO)系正極からなる群から選択される少なくとも一つである、蓄電デバイス。
ポリオレフィン微多孔膜は、精密ろ過膜、燃料電池用セパレータ、コンデンサー用セパレータ、蓄電デバイス用セパレータ、電気分解膜又はそれらの構成材料等として利用可能である。
第一の実施形態において、ポリオレフィン微多孔膜は、ポリオレフィンを含むA層と、ポリオレフィンを含むB層とを少なくとも1層ずつ備える2層以上の積層構造を有し、A層とB層の少なくとも一方に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、かつ微多孔膜の蓄電デバイスへの収納後に、(1)上記官能基同士が縮合反応するか、(2)上記官能基が蓄電デバイス内部の化学物質と反応するか、又は(3)上記官能基が他の種類の官能基と反応して、架橋構造が形成される。
ポリオレフィン微多孔膜は、ポリオレフィンを含むA層と、ポリオレフィンを含むB層とを少なくとも1層ずつ備える2層以上の積層構造を有する。
上記のような粘弾性は、例えば以下の方法により測定・観察されることができる。
動的粘弾性測定装置を用いてセパレータの固体粘弾性測定を行い、貯蔵弾性率(E’)、損失弾性率(E’’)、及び膜軟化転移温度を算出可能である。なお、固体粘弾性測定の条件は下記(i)~(iv)のとおりであった。
(i)動的粘弾性測定を以下の条件:
・使用測定装置:RSA-G2(TAインスツルメンツ社製)
・サンプル膜厚:200μm~400μm(ただし、サンプル単体の膜厚が200μm未満の場合には、複数枚のサンプルを重ねて総厚が200μm~400μmの範囲内になるように動的粘弾性測定を行う。)
・測定温度範囲:-50℃~250℃
・昇温速度:10℃/min
・測定周波数:1Hz
・変形モード:正弦波引張モード(Linear tension)
・静的引張荷重の初期値:0.2N
・初期(25℃時)のギャップ間距離:10mm
・自動歪み調整(Auto strain adjustment):無効(Disabled)
で行う。
(ii)静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ正弦波荷重とは、静的引張荷重を中心とした振動応力を指す;
(iii)正弦波引張モードとは、固定振幅0.1%で周期運動を行いながら振動応力を測定することを指し、正弦波引張モードでは、静的引張荷重と正弦波荷重の差が5%以内となるようにギャップ間距離及び静的引張荷重を変動して振動応力を測定し、正弦波荷重が0.1N以下になった場合には静的引張荷重を0.1Nに固定して振動応力を測定する。
(iv)得られた正弦波荷重と振幅値の関係、及び下記式:
σ*=σ0・Exp[i(ωt+δ)]、
ε*=ε0・Exp(iωt)、
σ*=E*・ε*
E*=E’+iE’’
{式中、σ*:振動応力、ε*:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E*:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
振動応力:正弦波荷重/初期断面積
静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
正弦波荷重:測定された振動応力と静的引張荷重の差}
から、貯蔵弾性率(E’)及び損失弾性率(E’’)を算出する。また、E’の最大値と最小値の平均値を平均E’(E’ave)として算出し、そしてE’’の最大値と最小値の平均値を平均E’’(E’’ave)として算出する。
tanδ=E’’/E’
{式中、tanδは、損失正接を表し、E’は、貯蔵弾性率を表し、かつE’’は、損失弾性率を表す。}
に従って互換可能である。
説明の便宜上、限定されるものではないが、A層の両側(両面)にB層をそれぞれ1層ずつ有する二種三層構造の場合について、A層とB層の構成要素を以下に示す。
ポリオレフィン微多孔膜のゲル浸透クロマトグラフィー(GPC)測定の積分曲線における分子量300万以上の分子の割合は、好ましくは10質量%以下、より好ましくは9質量%以下、更に好ましくは8質量%以下であり、好ましくは3質量%以上、より好ましくは5質量%以上である。また、ポリオレフィン微多孔膜のゲル浸透クロマトグラフィー(GPC)測定の積分曲線における分子量3万以下の分子の割合は、好ましくは3質量%以下、より好ましくは2.8質量%以下であり、最も好ましくは2.5質量%以下であり、好ましくは0.5質量%以上、より好ましくは0.8質量%以上である。高分子量のポリエチレン成分が10質量%以下であると、ポリオレフィン微多孔膜の粘度が高くなりすぎず、シャットダウン機能を担保することができる。また、低分子量のポリエチレン成分が3.0質量%以下であると、熱プレス時にポリオレフィン微多孔膜が閉孔して透過性が低下することを抑制することができる。
B層中の無機粒子の含有率は、好ましくは5質量%未満、より好ましくは3質量%未満であり、無機粒子を含まないことが最も好ましい。無機粒子の含有量が5質量%未満であることにより、ガス発生による電池の膨れ等を効果的に抑制することができる。この効果は、外装体が変形を受け易いラミネート型電池においてより顕著になる。また、無機粒子がB層中に5質量%以上存在すると、無機粒子が破断の起点になって伸度の低下が起こることによる機械的安全性の低下や、孔の均一性が乱れることによるサイクル特性の低下が起こりやすくなるため好ましくない。
A層又はB層を構成するポリオレフィンに含まれる官能基は、ポリオレフィンの結晶部に取り込まれず、非晶部において架橋されると考えられるので、ポリオレフィン微多孔膜は、蓄電デバイスへ収納された後に、周囲の環境又は蓄電デバイス内部の化学物質を利用して、架橋構造を形成し、それにより内部応力の増加又は作製された蓄電デバイスの変形を抑制して、例えばホットボックス試験等における耐熱性を向上させることができる。
高密度ポリエチレン等に代表されるポリオレフィン樹脂は図1に示すように、一般に結晶性高分子であり、結晶構造のラメラ(結晶部)、非晶質部およびそれらの間の中間層部に分かれた高次構造を有する。結晶部、および結晶部と非晶部の間の中間層部においては、高分子鎖の運動性は低く、切り分けができないが、固体粘弾性測定では0~120℃領域に緩和現象が観測できる。他方、非晶部は高分子鎖の運動性が非常に高く、固体粘弾性測定では-150~-100℃領域に観測される。このことが後述するラジカルの緩和又はラジカルの移動反応、架橋反応などに深く関係する。
次に、高分子への電子線架橋(以後、EB架橋に省略)反応機構は以下のとおりである。(i)数十kGyから数百kGyの電子線の照射、(ii)反応対象物(高分子)への電子線の透過と二次電子発生、(iii)二次電子による高分子鎖中の水素の引き抜き反応とラジカル発生、(iv)ラジカルによる隣接水素の引き抜きと活性点の移動、(v)ラジカル同士の再結合による架橋反応またはポリエン形成。ここで、結晶部に発生したラジカルについては、運動が乏しいため、長期間に亘り存在し、かつ不純物等が結晶内へ進入できないため、反応・消光の確率が低い。このようなラジカル種は、Stable Radicalと呼ばれており、数ヶ月という長い期間で残存し、ESR測定によって、寿命を明らかにした。結果として、結晶内における架橋反応は乏しいと考えられる。しかし、結晶内部に僅かに存在する、拘束されていない分子鎖又は周辺の結晶-非晶中間層部では、発生したラジカルは、やや長寿命を有する。このようなラジカル種は、Persistent Radicalと呼ばれており、運動性のある環境下では、高い確率で分子鎖間の架橋反応が進行すると考えられる。一方、非結晶部は運動性が非常に高いため、発生したラジカル種は寿命が短く、分子鎖間の架橋反応だけではなく、一本の分子鎖内のポリエン反応も高確率で進行すると考えられる。
以上の様に、結晶レベルのミクロな視野においては、EB架橋による架橋反応は結晶内部又はその周辺が局在していると推測できる。
ポリオレフィン樹脂中の官能基と蓄電デバイス若しくはポリオレフィン微多孔膜中に含まれる化学物質とを反応させ、又は蓄電デバイス若しくはポリオレフィン微多孔膜中に含まれる化学物質を触媒として用いることが好ましい。
前述のように、ポリオレフィン樹脂には結晶部と非晶部が存在する。しかし、前述の官能基は、立体障害のため結晶内部には存在せず、非晶部に局在する。このことは、一般的に知られており、ポリエチレン鎖状に僅かに含まれるメチル基のようなユニットは結晶中に取り込まれることはあるが、エチル基より嵩高いグラフトは取り込まれることはない(非特許文献2)。このため、電子線架橋と異なる反応による架橋点は、非晶部のみに局在する。
電池内部の化学反応による架橋反応では、反応生成物のモルフォロジーが相違する。本開示に至るまでの研究では、架橋構造の解明及び構造変化に伴うに微多孔膜の物性変化を明らかにするために、以下の実験により現象解明に至った。
まず、引張破断試験による膜の機械的物性を調査した。また、引張破断試験を行うと同時に、放射光を用いたin-situ X線構造解析により、結晶構造変化について解析した。結果は図3に示すように、EB架橋または化学架橋(前)未実施の膜を基準にすると、EB架橋膜は、ひずみ量が大きくなるにつれ、結晶部の細分化が抑制されていることが分かった。これは結晶部内又は周辺が選択的に架橋されたためである。それに伴い、ヤング率と破断強度が著しく向上し、高い機械的強度を発現できた。一方、化学架橋膜は、架橋反応前後に、結晶の細分化に違いが見られないため、非結晶部が選択的に架橋されたことを示唆する。また、架橋反応前後に、機械的強度にも変化がなかった。
次に、ヒューズ/メルトダウン特性試験により、両者の結晶融解時の挙動を調べた。結果、EB架橋処理した膜は、ヒューズ温度が著しく高くなり、メルトダウン温度は200℃以上まで上昇する。一方、化学架橋膜は、架橋処理前後において、ヒューズ温度は変化が見られず、メルトダウン温度は200℃以上まで上昇したことが確認された。このことから、結晶融解によって発生するヒューズ特性において、EB架橋膜は、結晶部周辺が架橋したため、融解温度の上昇、融解速度の低下が原因であったと考えられる。一方、化学架橋膜は、結晶部に架橋構造がないため、ヒューズ特性へ変化を及ぼさないと断定した。また、200℃前後の高温領域では、両者とも結晶融解後、架橋構造を有するため、樹脂物全体がゲル状態で安定化でき、良いメルトダウン特性を得られる。
ポリオレフィン微多孔膜は、架橋構造の形成、耐酸化還元劣化及び緻密で均一な多孔質構造の観点から、1種又は2種以上の官能基を有するポリオレフィンとして、官能基変性ポリオレフィン、又は官能基を有する単量体を共重合されたポリオレフィンを含むことが好ましい。なお、本明細書では、官能基変性ポリオレフィンとは、ポリオレフィンの製造後に官能基を結合させた物をいう。官能基は、ポリオレフィン骨格に結合するか、又はコモノマーに導入可能なものであり、好ましくは、ポリオレフィン非晶部の選択的な架橋に関与するものであり、例えば、カルボキシル基、ヒドロキシ基、カルボニル基、重合性不飽和炭化水素基、イソシアネート基、エポキシ基、シラノール基、ヒドラジド基、カルボジイミド基、オキサゾリン基、アセトアセチル基、アジリジン基、エステル基、活性エステル基、カーボネート基、アジド基、鎖状又は環状ヘテロ原子含有炭化水素基、アミノ基、スルフヒドリル基、金属キレート基、及びハロゲン含有基から成る群から選択される少なくとも1つであることができる。
A層又はB層に含まれるポリオレフィンの架橋構造は、例えばホットボックス試験等における耐熱性に寄与し、好ましくはポリオレフィンの非晶部に形成される。架橋構造は、例えば、共有結合、水素結合又は配位結合のいずれかを介した反応により形成されることができる。中でも、共有結合を介した反応は、下記反応(I)~(IV):
(I)複数の同一官能基の縮合反応
(II)複数の異種官能基間の反応
(III)官能基と電解液の連鎖縮合反応
(IV)官能基と添加剤の連鎖縮合反応
から成る群から選択される少なくとも1つであることが好ましい。
また、配位結合を介した反応は、下記反応(V):
(V)複数の同一官能基が、溶出金属イオンとの配位結合を介して架橋する反応
であることが好ましい。
で表される1価の基が好ましい。
で表される2価の基から成る群から選択される少なくとも1つを有することが好ましい。また、化合物Ryに複数の鎖状ユニットy2が含まれる場合には、それらは、互いに同一でも異なっていてもよく、それらの配列はブロックでもランダムでもよい。
で表される少なくとも2つの基であることが好ましい。式(ROy1-1)において、複数のXは、それぞれ独立に、水素原子又は1価の置換基であり、好ましくは、水素原子、C1~20アルキル基、脂環式基、又は芳香族基であり、より好ましくは、水素原子、メチル基、エチル基、シクロヘキシル基又はフェニル基である。エポキシ開環反応について、化合物Rxの官能基xと化合物Ryの連結反応ユニットy1の好ましい組み合わせを下記表7に示す。
ポリオレフィン微多孔膜は、所望により、ポリオレフィンに加えて、脱水縮合触媒、ステアリン酸カルシウム又はステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料、無機フィラー、無機粒子等の公知の添加剤を含んでよい。
ポリオレフィン微多孔膜は、MDに一定の荷重を掛けた状態で測定される120℃でのTDの熱収縮率が10%以上40%以下であり、好ましくは15%以上35%以下、より好ましくは20%以上30%以下である。例えば、電極及びセパレータの積層体をMDに扁平状に捲回した捲回体を含むラミネート型電池では、セパレータがMDに捲回され、したがってMDに拘束された状態で熱プレスを受けることとなるため、上記のようにして測定されるTDの熱収縮が40%以下であることにより、接着プレス時に短絡が起こることを効果的に抑制することができ、また熱収縮が10%以上であることにより、ポリオレフィン微多孔膜のたわみ又は電池成型不良を効果的に抑制することができる。
蓄電デバイス用セパレータは、絶縁性とリチウムイオン透過性が必要なため、一般的には、多孔質体構造を有する絶縁材料である紙、ポリオレフィン不織布又は樹脂製微多孔膜などから形成される。特に、リチウムイオン電池においては、セパレータの耐酸化還元劣化及び緻密で均一な多孔質構造を構築できるポリオレフィン微多孔膜がセパレータ基材又はセパレータそのものとして優れている。
蓄電デバイス用セパレータは、ポリオレフィンを含むA層と、ポリオレフィンを含むB層と、無機粒子を含むC層とを、それぞれ少なくとも1層ずつ備える。蓄電デバイス用セパレータの全体の厚み(総厚)は、絶縁性を確保する観点から、好ましくは2μm以上、より好ましくは4μm以上である。蓄電デバイス用セパレータの総厚は、イオン透過性、及び蓄電デバイスのエネルギー密度を高める観点等から、好ましくは40μm以下、より好ましくは20μm以下である。
本願明細書において、A層及びB層がそれぞれ少なくとも1層ずつ積層されたポリオレフィン基材層を、単に「ポリオレフィン基材層」ともいう。A層及びB層の数及び積層順は限定されず、ポリオレフィン基材層は、A層及びB層を1層ずつ備える二層積層構造であってもよく、A層及びB層のうち一方を2層と他方を1層備える三層積層構造であってもよい。三層積層構造は、例えば、A層-B層-A層の順に積層された構造であってもよい。
蓄電デバイス用セパレータは、無機粒子を含む(以下、本願明細書において「無機粒子層」ともいう。)を更に備える。
蓄電デバイス用セパレータは、熱可塑性ポリマーを含むD層(以下、本願明細書において「熱可塑性ポリマー層」ともいう。)を更に備えることが好ましい。熱可塑性ポリマー層は、無機粒子層の表面のうち、ポリオレフィン基材層に接していない面に積層されていることが好ましい。
A層およびB層は、100μm四方面積でTOF-SIMS測定を行ったとき、アルカリ金属及び/又はアルカリ土類金属を含む島構造が少なくとも1つ以上検出されることが好ましい。島構造の大きさは、好ましくは9μm2~245μm2、より好ましくは10μm2~230μm2、更に好ましくは11μm2~214μm2である。蓄電デバイス用セパレータは、100μm四方面積のTOF-SIMS測定を行ったときに、カルシウムを含む島構造が2つ以上検出されることが更に好ましい。このとき、島構造の重心点間距離は、好ましくは6μm~135μm、より好ましくは8μm~130μm、更に好ましくは10μm~125μmである。図11は、TOF-SIMS測定における、アルカリ金属及び/又はアルカリ土類金属を含む島構造の模式図である。図11に模式的に示すように、100μm四方面積で島構造(9)及び島構造同士の距離(d)を測定することができる。島構造の大きさ、重心点間距離を制御する方法としては、押出機の回転数、ポリオレフィン樹脂原料の分子量等により調整することが挙げられる。
蓄電デバイス用セパレータの気孔率は、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上である。セパレータの気孔率が20%以上であることにより、イオンの急速な移動に対する追従性がより向上する傾向にある。一方、セパレータの気孔率は、好ましくは80%以下、より好ましくは70%以下、さらに好ましくは60%以下である。セパレータの気孔率が80%以下であることにより、膜強度がより向上し、自己放電がより抑制される傾向にある。
セパレータの製造方法として、基材としてポリオレフィン微多孔膜が単層膜(平膜)の場合について以下に説明するが、平膜以外の形態を除く意図ではない。微多孔膜の製造方法は、以下の工程:
(1)シート成形工程;
(2)延伸工程;
(3)多孔体形成工程;及び
(4)熱処理工程;
を含む。微多孔膜の製造方法は、所望により、シート成形工程(1)前の樹脂変性工程若しくは混錬工程、及び/又は熱処理工程(3)後の捲回・スリット工程を含んでよいが、蓄電デバイスに収納されるときまで微多孔膜の架橋性を維持するという観点から、架橋構造形成工程又は架橋促進触媒との接触工程を含まないことが好ましい。
捲回工程は、得られた微多孔膜を、必要に応じてスリットして、所定のコアへ捲回する工程である。
〈ポリオレフィン基材層の製造方法〉
ポリオレフィン基材層としてのA層及びB層の製造方法は、例えば、以下の工程:
(1)シート成形工程;
(2)延伸工程;
(3)多孔体形成工程;及び
(4)熱処理工程;
を含むことができる。ポリオレフィン基材層の製造方法は、所望により、シート成形工程(1)前に混錬工程、及び/又は熱処理工程(3)後に捲回・スリット工程を更に含んでもよい。A層及びB層を積層する方法は、工程(1)でA層及びB層を共押出により積層化する方法、並びに、A層及びB層をそれぞれ別々に製造したあと積層する方法が挙げられる。
ポリオレフィン基材層の製造工程において、シート成形工程で原料を押出機へ投入する際に、原料へ一定濃度のアルカリ金属及び/又はアルカリ土類金属化合物を混合することで、セパレータ中にアルカリ金属及び/又はアルカリ土類金属の島構造を形成することができる。しかしながら、分子量が大きく異なる原料を使用した場合は、原料間の溶解粘度差があるため、アルカリ金属及び/又はアルカリ土類金属化合物を樹脂原料へ均一分散させることが難しい。さらに、シラン変性ポリオレフィンを含む溶融混合の場合では、ヘテロ官能基を有するユニットがあるため、分散はさらに難しい。このような複雑な混合樹脂では、高い回転数で押出機によるせん断攪拌を行うことで、アルカリ金属及び/又はアルカリ土類金属化合物の分散の均一性が改善される一方、細かく島構造が隣接して分散されるため、電解液中のFアニオンを必要以上に消費するという問題点がある。また、高い回転数での押出機によるせん断攪拌は、ポリオレフィンの分子量劣化を引き起こすため、セパレータの機械的強度および開孔性を大幅に損なう。
上記で説明された各種の工程を含む方法により得られた微多孔膜は、蓄電デバイス用セパレータのポリオレフィン基材層として使用することができる。ポリオレフィン基材層の表面に表面処理を施しておくと、その後に塗工液を塗工し易くなると共に、基材層と塗工層との接着性が向上するため好ましい。表面処理の方法としては、例えば、コロナ放電処理法、プラズマ処理法、機械的粗面化法、溶剤処理法、酸処理法、及び紫外線酸化法等が挙げられる。
無機粒子層は、溶媒中に無機粒子及び任意の樹脂バインダ等を含む塗工液をポリオレフィン基材層に塗工し、溶媒を除去することにより形成することができる。溶媒としては、水、水と水溶性有機媒体(例えば、メタノール又はエタノール)との混合溶媒等の貧溶媒を含むことが好ましい。
熱可塑性ポリマー層は、溶媒中に熱可塑性ポリマーを含む塗工液を無機粒子層に塗工することにより形成することができる。無機粒子層を有しない蓄電デバイス用セパレータを製造する場合は、熱可塑性ポリマー層の塗工液をポリオレフィン基材層上に直接塗工してもよい。塗工液は、熱可塑性ポリマーを乳化重合によって合成し、得られたエマルジョンをそのまま塗工液として使用してもよい。塗工液は、水、水と水溶性有機媒体(例えば、メタノール又はエタノール)の混合溶媒等の貧溶媒を含むことが好ましい。
本開示の蓄電デバイスは、正極と、負極と、正負極間に配置された本開示のポリオレフィン微多孔膜又は蓄電デバイス用セパレータ(以下、総称して「蓄電デバイス用セパレータ」、又は単に「セパレータ」ともいう。)と、電解液と、所望により添加剤とを備える。蓄電デバイスは、正極、負極、及びこれらの間に蓄電デバイス用セパレータが配置された蓄電素子を少なくとも一つ備える。典型的には、複数の正極と複数の負極とが本開示の蓄電デバイス用セパレータを介して交互に積層され、複数の蓄電素子を形成している。蓄電素子は、典型的には、非水電解液に含浸された状態で外装体内に収容されている。
正極は、典型的には、正極集電体と、その片面又は両面に配置された正極活物質層とを有する。正極活物質層は、正極活物質を含有し、必要に応じて導電助剤及び/又はバインダを更に含有する。
負極は、典型的には、負極集電体と、その片面又は両面に配置された負極活物質層を有する。負極活物質層は、負極活物質を含有し、必要に応じて導電助剤及び/又はバインダを更に含有する。
蓄電デバイス用セパレータとしては、本開示の蓄電デバイス用セパレータを使用することができる。
電池中の電解液は、水分を含んでよく、そして電池作製後の系内に含まれる水分は、電解液に含有される水分、又は電極若しくはセパレータ等の部材に含まれた持ち込み水分であってもよい。電解液は、非水系溶媒を含むことができる。非水系溶媒に含まれる溶媒として、例えば、メタノール、エタノール等のアルコール類;非プロトン性溶媒等が挙げられる。中でも、非水系溶媒としては、非プロトン性溶媒が好ましい。
Rcc-O-C(O)O-Rdd
{式中、Rcc及びRddは、CH3、CH2CH3、CH2CH2CH3、CH(CH3)2、及び式CH2Rfee(式中、Rfeeは、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基である)で表される基から成る群より選択される少なくとも一つであり、そしてRcc及び/又はRddは、少なくとも1つのフッ素原子を含有する。}で表すことができる。
Rff-C(O)O-Rgg
{式中、Rffは、CH3、CH2CH3、CH2CH2CH3、CH(CH3)2、CF3CF2H、CFH2、CF2H、CF2Rfhh、CFHRfhh、及びCH2Rfiiから成る群より選択される少なくとも一つであり、Rggは、CH3、CH2CH3、CH2CH2CH3、CH(CH3)2、及びCH2Rfiiから成る群より選択される少なくとも一つであり、Rfhhは、少なくとも1つのフッ素原子で水素原子が置換されてよい炭素数1~3のアルキル基であり、Rfiiは、少なくとも1つのフッ素原子で水素原子が置換された炭素数1~3のアルキル基であり、そしてRff及び/又はRggは、少なくとも1つのフッ素原子を含有し、RffがCF2Hである場合、RggはCH3ではない}で表すことができる。
外装体は、既知の外装体を使用することができ、例えば、電池缶又はラミネートフィルム外装体を用いてよい。電池缶としては、例えば、スチール、ステンレス、アルミニウム、又はクラッド材等から成る金属缶を用いることができる。ラミネートフィルム外装体は、熱溶融樹脂側を内側に向けた状態で2枚重ねて、又は熱溶融樹脂側を内側に向けた状態となるように折り曲げて、端部をヒートシールにより封止した状態で外装体として用いることができる。ラミネートフィルム外装体を用いる場合、正極集電体に正極リード体(又は正極端子及び正極端子と接続するリードタブ)を接続し、負極集電体に負極リード体(又は負極端子及び負極端子と接続するリードタブ)を接続してよい。この場合、正極リード体及び負極リード体(又は正極端子及び負極端子のそれぞれに接続されたリードタブ)の端部が外装体の外部に引き出された状態でラミネートフィルム外装体を封止してよい。より具体的に、ラミネートフィルム外装体としては、例えば、熱溶融樹脂/金属フィルム/樹脂の3層構成から成るラミネートフィルムを用いることができる。金属フィルムとしては、好ましくはアルミニウム箔、両面の樹脂材料としては、好ましくはポリオレフィン系の樹脂である。
添加剤は、含まれる場合、例えば、脱水縮合触媒、ステアリン酸カルシウム又はステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤及び着色顔料からなる群から選択される少なくとも一つでよい。
本開示のセパレータが二層構造のポリオレフィン微多孔膜である場合には、高温(例えば200℃以上)環境下の蓄電デバイスにおいても、二層のうちの少なくとも一層の化学架橋性多孔質層が、それと対向する電極に染み込まず、電極同士の短絡を防止することができる。
リチウムイオン二次電池の充電・放電の時には、イオン化したリチウムが電極間を往復する。また、電極間の接触を抑制しながら、前記イオン化したリチウムが、電極間の移動を比較的高速に行う必要があるため、電極間にセパレータが配置される。
本開示は、上記で説明された蓄電デバイス用セパレータを含む蓄電デバイス組み立てキットもまた提供する。蓄電デバイス組み立てキットは以下の2つの要素:
(A)電極と上記で説明された蓄電デバイス用セパレータの積層体又は捲回体を収納している外装体;及び
(B)非水電解液を収納している容器;
を備える。
第一の実施形態において、蓄電デバイスの製造方法は、1種類又は2種類以上の官能基を有するポリオレフィンを含むセパレータを用いて、以下の工程:(1)官能基同士を縮合反応させるか、(2)官能基を蓄電デバイス内部の化学物質と反応させるか、又は(3)ポリオレフィンの官能基を他の種類の官能基と反応させて、架橋構造を形成する架橋工程を含むことができる。架橋工程は、上記で説明されたセパレータの架橋構造を形成する反応と同様に行われることができる。また、架橋工程は、蓄電デバイス内の化合物、デバイス周囲の環境を利用して行われることができるので、電子線、100℃以上の高温などの過度な条件を必要とすることがなく、5℃~90℃の温度及び/又は周囲雰囲気下などのマイルドな条件を採用することができる。
(i)電極と本開示の蓄電デバイス用セパレータとの積層体又は捲回体を収納している外装体、及び非水電解液を用意する準備工程と;
(ii)非水電解液を外装体内に注ぐ注液工程と;
(iii)所望により、外装体内の電極又は外装体から露出した電極にリード端子を接続する端子接続工程と;
(iv)所望により、少なくとも1サイクルの充放電を行う充放電工程と、
を含むことができる。工程(i)~(iv)は、本開示の蓄電デバイス用セパレータを使用することを除いて、本技術分野において既知の方法で行うことができる。工程(i)~(iv)においては、「蓄電デバイス」の項目で説明された電極及び非水電解液を使用することができ、本技術分野において既知の正極、負極、電解液、外装体及び充放電装置を使用することもできる。
(i)上記で説明された蓄電デバイス組み立てキットを用意する工程と、
(ii)蓄電デバイス組み立てキットの要素(A)と要素(B)を合せて、(1)セパレータに含まれるポリオレフィンの官能基同士を縮合反応させるか、(2)その官能基を蓄電デバイス内部の化学物質と反応させるか、又は(3)その官能基を他の種類の官能基と反応させる工程と、
(iii)所望により、要素(A)の電極にリード端子を接続する工程と、
(iv)所望により、少なくとも1サイクルの充放電を行う工程と、
を含む。工程(i)~(iv)は、本開示の蓄電デバイス用セパレータを使用することを除いて、本技術分野において既知の方法により行われることができ、また工程(i)~(iv)においては、本技術分野において既知の正極、負極、電解液、外装体及び充放電装置を使用することができる。
セパレータから塗工膜(無機粒子層及び熱可塑性ポリマー層)を有する場合、以降で説明するセパレータの評価方法について、TOF-SIMS分析及び画像処理、セパレータに含まれるシラン変性ポリオレフィンの検出、重量平均分子量、粘度平均分子量、メルトマスフローレイト、ポリオレフィン基材層の目付、ポリオレフィン基材層の膜厚、突刺強度、目付換算突刺強度及び気孔率の測定については、それぞれのセパレータから塗工膜(無機粒子層及び熱可塑性ポリマー層)を除去し、セパレータを非水電解液に1週間浸漬し、塩化メチレンを用いてセパレータを洗浄してから評価を行った。150℃熱収縮率、電解液中の150℃熱収縮率、膜厚、透気度、粉落ち性、FUSE温度、SHORT温度についてはそれぞれのセパレータを非水電解液に1週間浸漬し、塩化メチレンを用いてセパレータを洗浄してから評価を行った。電極残存率、電池のサイクル試験容量維持率、電池の圧壊試験についてはそれぞれのセパレータを用いて単層ラミネート型非水系二次電池を作成し評価を行った。
セパレータに含まれるシラン変性ポリオレフィンが架橋した状態では、有機溶剤に対して、不溶であるか、又は溶解度が不足するため、セパレータから直接的にシラン変性ポリオレフィンの含有を測定することが困難な場合がある。その場合、サンプルの前処理として、副反応が起こらないオルトギ酸メチルを用いて、シロキサン結合をメトキシシラノールへ分解した後、溶液NMR測定を行うことによって、セパレータに含まれるシラン変性ポリオレフィンを検出したり、そのGPC測定を行なったりすることができる。前処理の実験は、特許第3529854号公報及び特許第3529858号公報を参照して行われることができる。
試料をo-ジクロロベンゼン-d4に140℃で溶解し、プロトン共鳴周波数が600MHzの1H-NMRスペクトルを得る。1H-NMRの測定条件は、下記のとおりである。
装置:Bruker社製 AVANCE NEO 600
試料管直径:5mmφ
溶媒:o-ジクロロベンゼン-d4
測定温度:130℃
パルス角:30°
パルス待ち時間:1sec
積算回数:1000回以上
試料濃度:1 wt/vol%
試料をo-ジクロロベンゼン-d4に140℃で溶解し、13C-NMRスペクトルを得る。13C-NMRの測定条件は下記のとおりである。
装置:Bruker社製 AVANCE NEO 600
試料管直径:5mmφ
溶媒:o-ジクロロベンゼン-d4
測定温度:130℃
パルス角:30°
パルス待ち時間:5sec
積算回数:10000回以上
試料濃度:10 wt/vol%
Waters社製 ALC/GPC 150C型(商標)を用い、標準ポリスチレンを以下の条件で測定して較正曲線を作成した。また、下記各ポリマーについて同様の条件でクロマトグラムを測定し、較正曲線に基づいて、下記方法により各ポリマーの重量平均分子量と数平均分子量を算出した。
カラム :東ソー製 GMH6-HT(商標)2本+GMH6-HTL(商標)2本
移動相 :o-ジクロロベンゼン
検出器 :示差屈折計
流速 :1.0ml/min
カラム温度:140℃
試料濃度 :0.1wt%
(ポリエチレン及びポリプロピレンの重量平均分子量と数平均分子量)
得られた較正曲線における各分子量成分に、0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)又は0.64(ポリプロピレンのQファクター/ポリスチレンのQファクター=26.4/41.3)を乗じることにより、ポリエチレン換算又はポリプロピレン換算の分子量分布曲線を得て、重量平均分子量と数平均分子量を算出した。なお、クロマトグラムの性能上、分子量が100万以上の領域では、その分子量分布は正確に測定するのは困難である。
(樹脂組成物の重量平均分子量)
最も質量分率の大きいポリオレフィンのQファクター値を用い、その他はポリエチレンの場合と同様にして重量平均分子量を算出した。
ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求めた。ポリエチレンのMvを次式により算出した。
[η]=6.77×10-4Mv0.67
ポリプロピレンのMvを次式により算出した。
[η]=1.10×10-4Mv0.80
東洋精機製メルトマスフローレイト測定機(メルトインデックサF-F01)を用いて、190℃及び加重2.16kgの条件下、10分間で押出された樹脂物の重量をMFR値として定めた。
蓄電デバイス用セパレータの膜厚は、東洋精機製の微小測厚器、KBM(商標)用いて、室温23±2℃及び相対湿度60%で膜厚を測定した。具体的には、TD方向全幅に亘って、ほぼ等間隔に5点の膜厚を測定し、それらの平均値を得た。ポリオレフィン基材層の膜厚(表中、「基材層の膜厚」)は、蓄電デバイス用セパレータから塗工膜(無機粒子層及び熱可塑性ポリマー層)を除去して測定した。無機粒子層の膜厚は、蓄電デバイス用セパレータから熱可塑性ポリマー層を取除いて、膜厚(ポリオレフィン基材層および無機塗工層の膜厚)を測定し、ポリオレフィン基材層および無機塗工層の膜厚からさらにポリオレフィン基材層の膜厚を減算することで算出した。熱可塑性ポリマー層の膜厚は、蓄電デバイス用セパレータの膜厚からポリオレフィン基材層および無機塗工層の膜厚を減算することで算出した。
塗工膜を除去した蓄電デバイス用セパレータから10cm×10cm角の試料を切り取り、その体積(cm3)と質量(g)を求め、それらと密度(g/cm3)より、次式を用いて気孔率を計算した。なお、混合組成物の密度は、用いた原料の各々の密度と混合比より計算して求められる値を用いた。
気孔率(%)=(体積-質量/混合組成物の密度)/体積×100
JIS P-8117(2009年)に準拠し、東洋精器(株)製のガーレー式透気度
計、G-B2(商標)により試料の透気度を測定した。
リガク社製X線回折装置Ultima-IVを用いて、セパレータ中に含まれるポリオレフィン(例えば、PE、PPなど)のXRD測定を行った。Cu-Kα線を試料に入射し、リガク社製検出器D/tex Ultraにより回折光を検出した。試料-検出器間距離285mm、励起電圧40kV及び電流40mAの条件下でKRD測定を行った。光学系としては集中光学系を採用し、DS=1/2°、SS=解放及び縦スリット=10mmというスリット条件下で測定を行った。
ポリエチレンの場合
得られたXRDプロフィールの2θ=9.7°から2θ=29.0°までの範囲を斜方晶(110)面回折ピークと斜方晶(200)面回折ピークと非晶ピークの3つに分離し、(110)面回折ピークの半値全幅より、シェラーの式(下式)に従って、結晶子サイズを算出した。(110)面回折ピークと(200)面回折ピークはvoigt関数で近似し、非晶ピークはgauss関数で近似した。なお、非晶ピークのピーク位置は、2θ=19.6°、半値全幅は6.3°で固定し、結晶ピークのピーク位置と半値全幅は特に固定せずにピーク分離を行った。ピーク分離により算出された(110)面回折ピークの半値全幅より、シェラーの式(下式)に従って、結晶子サイズを算出した。結晶化度は、分離した結晶と非晶ピークの和を、結晶ピークの面積が割算したパーセント値として得られることができる。
得られたXRDプロフィールの2θ=6°から2θ=31°までの範囲で、結晶由来の回折ピークをα晶(単車晶)の(110)、(040)、(130)、(111)および(13-1)/(041)面の5つに分離し、非晶由来の回折ピークを2つに分離した。分離した結晶および非晶由来の回折ピークはgauss関数で近似した。なお、2つの非晶ピークはそれぞれ、次のように固定しピーク分離を行った。非晶ピーク1は2θ=14.9°、半値全幅4.7°で固定し、非晶ピーク2は2θ=19.18°、半値全幅7.0°で固定した。ピーク分離により得られた(110)面回折ピークの半値全幅より、シェラーの式(下式)に従って、結晶子サイズを算出した。結晶化度は、分離した結晶と非晶ピークの和を、結晶ピークの面積を割算したパーセント値として得ることができる。
D(110):結晶子サイズ(nm)
K:0.9 (定数)
λ:X線の波長(nm)
β:(β1 2-β2 2)0.5
β1:ピーク分離の結果算出された(hkl)ピークの半値全幅(rad)
β2:入射ビームの広がりの半値全幅(rad)
θ:ブラッグ角
セパレータ中樹脂凝集物は、後述される実施例と比較例の製膜工程を経て得られたセパレータを透過型光学顕微鏡で観察したときに、縦100μm×横100μm以上の面積を有し、かつ光が透過しない領域として定義されるものである。透過型光学顕微鏡による観察において、セパレータ面積1000m2当たりの樹脂凝集物の個数を測定した。
(電池の作製)
a.正極の作製
正極活物質としてリチウムニッケルマンガンコバルト複合酸化物LiNi0.8Mn0.1Co0.1O2を92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、及びバインダとしてポリフッ化ビニリデン(PVDF)3.2質量%をN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗布量は250g/m2、活物質嵩密度は3.00g/cm3になるように調整した。
負極活物質として人造グラファイト96.9質量%、及びバインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン-ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗布量は106g/m2、活物質嵩密度は1.35g/cm3になるように調整した。
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/Lとなるように溶解させて調製した。
セパレータを直径18mm、正極及び負極を直径16mmの円形に切り出し、正極と負極の活物質面が対向するよう、正極、セパレータ、負極の順に重ね、蓋付きステンレス金属製容器に収納した。容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミニウム箔と接していた。この容器内に、上記c.で得られた非水電解液を注入して密閉した。室温にて1日放置した後、25℃雰囲気下、3mA(0.5C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計6時間、電池作製後の最初の充電を行った。続いて、3mA(0.5C)の電流値で電池電圧3.0Vまで放電した。
得られた電池の充放電は、60℃雰囲気下で1000サイクル実施した。充電は6.0mA(1.0C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を6.0mAから絞り始めるという方法で、合計3時間充電した。放電は6.0mA(1.0C)の電流値で電池電圧3.0Vまで放電した。1000サイクル目の放電容量と1サイクル目の放電容量から、容量維持率を算出した。容量維持率が高い場合、良好なサイクル特性を有するものと評価した。
上記「d.電池組立」により得られた電池を、160℃の高温に設定されたホットボックスにおいて、それぞれ1時間保存し、保存中及び保存後に電池の状態を観察した。
直径200mmの円形状に正極、セパレータ及び負極を切出し、重ね合わせ、得られた積層体に電解質含有電解液を加え、全体に染渡した。直径600mmの円形状アルミヒーターで前記積層体を中心部に挟み、油圧ジャッキでアルミヒーターを上下から0.5Mpaに加圧した。昇温速度を2℃/minの速度で、アルミヒーターで前記積層体を加熱しながら、電極間の抵抗(Ω)を測定する。セパレータのヒューズともに電極間の抵抗が上昇し、抵抗が初めて1000Ωを超えた時の温度をヒューズ温度(シャットダウン温度)とした。また、さらに加熱を続け、抵抗が1000Ω以下に下がる時の温度をメルトダウン温度(破膜温度)とした。なお、上記「サイクル試験と耐熱試験」の項目「a.正極の作製」により作製された正極のアルミニウム箔の裏に、導電性銀ペーストで抵抗測定用電線を接着させた。また、上記「サイクル試験と耐熱試験」の項目「b.負極の作製」により作製された負極の銅箔の裏に、導電性銀ペーストで抵抗測定用電線を接着させた。さらに、上記「サイクル試験と耐熱試験」の項目「c.非水電解液の調製」により調製された電解質含有電解液をF/MD特性試験にも使用した。
蓄電デバイス用セパレータについて、TOF-SIMS分析を実施した。TOF-SIMS質量分析計としては、アルバック・ファイ社製のnano-TOF(TRIFTV)を用いた。分析条件は以下のとおりとし、カルシウムイオン(m/z=40の正イオンに相当)を検出した。
[イメージ測定条件]
一次イオン:ビスマス(Bi1 +)
加速電圧:30kV
イオン電流:約0.5nA(DCとして)
バンチング有
分析面積:100μm×100μm
分析時間:90分
検出イオン:正イオン(m/z=40)
中和:電子銃+Arモノマーイオン
真空度:約5.0×10-5Pa
[深さ方向の測定条件]
分析条件
一次イオン:ビスマス(Bi1 +)
加速電圧:30kV
イオン電流:約1.2nA(DCとして)
バンチング有
分析面積:100μm×100μm
分析時間:5フレーム/サイクル
検出イオン:正イオン(m/z=40)
中和:電子銃+Arモノマーイオン
真空度:約5.0×10-5Pa
スパッタ条件
スパッタイオン:GCIB(Ar2500 +)
加速電圧:20kV
イオン電流:約5nA
スパッタ面積:400μm×400μm
スパッタ時間:30秒/サイクル
中和:電子銃+Arモノマーイオン
(1)ビーム形状(直径2μm、画素分解能0.39μm)に合わせたフィルターを作成する。フィルター値は、Mathworks社製の数値演算ソフトウェアMATLABのImage Processing Toolboxの関数fspecialを使用して算出する。
fspecial(「gaussian」,[13 13],1.69865)
(2)作成したフィルターを2次元データに適用する。
(3)フィルター適用後の2次元データの平均値と標準偏差を計算する。
(4)平均値+標準偏差×3をしきい値として二値化する。ただし、正規分布の場合は、平均値+標準偏差×3の範囲に値の99.74%が収まるため、数値的には特異な部分を抽出すことを意図する。
(5)7ピクセル分の膨張収縮を行って近傍にある抽出領域を接続する。
(6)面積の小さな(50ピクセル以下)領域を除去する。
(7)残った各領域のパラメーターを計算する。
抽出面積(ピクセル)、単純重心位置(x0,y0)
領域中の最大値、領域の平均値、重み付き重心位置(xm,ym)
(8)各重み付き重心位置間の距離を計算する。
Mathworks社製の数値演算ソフトウェアMATLABのImage Processing Toolboxの関数regionpropsのWeightedCentroidオプションを使用して算出した。
regionprops(cc,I,‘WeightedCentroid’)
ここで、ccは、抽出した領域を示す変数であり、かつIは、フィルター適用後の2次元データを格納した変数である。
以上の処理によってカルシウムイオンの島構造を特定し、数、大きさ、重み付き重心位置間距離を算出した。
蓄電デバイス用セパレータからTD100mm×MD100mmを採取した試料片を150℃のオーブン中に1時間静置した。このとき、温風が試料片に直接あたらないよう、試料片を2枚の紙に挟んだ。試料片をオーブンから取り出し、冷却した後、試料片の面積を測定し、下記式にて、150℃熱収縮率を算出した。
150℃熱収縮率(%)={(10,000(mm2)-加熱後の試料片の面積(mm2))/10,000(mm2)}×100
5体積%のアセトニトリル、62.5体積%のエチルメチルカーボネート、30体積%のエチレンカーボネート、及び2.5体積%のビニレンカーボネートの混合溶液に、電解質として0.3mol/Lのヘキサフルオロリン酸リチウム(LiPF6)、1mol/Lのリチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)、及び20質量ppmのフルオロスルホン酸リチウム(LiFSO3)を加え、非水系電解液を調整した。
蓄電デバイス用セパレータからTD100mm×MD100mmを採取した試料片をアルミパックに入れ、試験片が完全に浸かるまで前記非水電解液を注液して1週間静置した。さらに150℃のオーブン中に1時間静置した。試料片をオーブンから取り出し、冷却した後、試料片の面積を測定し、下記式にて、電解液浸漬中の150℃熱収縮率を算出した。
150℃熱収縮率(%)={(10,000(mm2)-加熱後の試料片の面積(mm2))/10,000(mm2)}×100
カトーテック製のハンディー圧縮試験器「KES-G5(商標)」を用いて、開口部の直径11.3mmの試料ホルダーで塗工膜を除去した蓄電デバイス用セパレータを固定した。次に、固定された蓄電デバイス用セパレータの中央部に対して、針先端の曲率半径0.5mm、突刺速度2mm/secで、温度23℃、湿度40%の雰囲気下の突刺試験を行うことにより、最大突刺荷重として生の突刺強度(gf)を得た。得られた突刺強度(gf)を目付に換算した値(gf/(g/m2))(表中、目付換算突刺強度)も算出した。
10cm×10cm角の試料を、熱可塑性ポリマー層を除去した蓄電デバイス用セパレータから切り取り、(株)島津製作所製の電子天秤AEL-200を用いてポリオレフィン基材層および無機塗工層の重量を測定した。得られた重量を100倍することで1m2当りのポリオレフィン基材層および無機塗工層の目付け(g/m2)を算出した。次に、10cm×10cm角の試料を塗工層(無機塗工層および熱可塑性ポリマー層)を除去した蓄電デバイス用セパレータから切り取り、(株)島津製作所製の電子天秤AEL-200を用いて質量を測定した。得られた質量を100倍することにより、1m2当りのポリオレフィン基材層の目付(g/m2)(表中、基材層の目付)を算出した。1m2当りのポリオレフィン基材層および無機塗工層の目付(g/m2)から1m2当りのポリオレフィン基材層の目付(g/m2)を減算することにより、1m2当りの無機塗工層の目付(無機塗工層のポリオレフィン基材層基材に対する担持量、g/m2)を算出した。
蓄電デバイス用セパレータから10cm×10cm角の試料を切り取り、質量(g)を秤量した。一方の面を厚紙に貼りつけ固定した後、無機粒子層側に綿布で覆った直径5cm、900gの分銅を乗せ、これらを50rpmの回転数で10分間擦り合わせた。その後、再度正確に質量(g)を測定し、下記式にて粉落ち性を測定した。
粉落ち性(質量%)={(擦り合わせる前の質量(g)-擦り合わせた後の質量(g))/擦り合わせる前の質量}×100
(1)正極の作製
正極活物質としてニッケル、マンガン、コバルト複合酸化物(LiNiMnCoO2)(NMC)(Ni:Mn:Co=6:2:2(元素比)、密度3.50g/cm3)90.4質量%、導電助材としてグラファイト粉末(密度2.26g/cm3、数平均粒子径6.5μm)を1.6質量%、及びアセチレンブラック粉末(密度1.95g/cm3、数平均粒子径48nm)3.8質量%、並びに樹脂バインダとしてPVDF(密度1.75g/cm3)4.2質量%の比率で混合し、これらをNMP中に分散させてスラリーを調製した。このスラリーを、正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて塗工し、130℃において3分間乾燥した後、ロールプレス機を用いて圧縮成形することにより、正極を作製した。このとき、正極活物質塗工量は109g/m2であった。
負極活物質としてグラファイト粉末A(密度2.23g/cm3、数平均粒子径12.7μm)87.6質量%、グラファイト粉末B(密度2.27g/cm3、数平均粒子径6.5μm)9.7質量%、樹脂バインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%(固形分換算)(固形分濃度1.83質量%水溶液)、及びジエンゴム系ラテックス1.7質量%(固形分換算)(固形分濃度40質量%水溶液)を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗工し、120℃で3分間乾燥した後、ロールプレス機で圧縮成形することにより、負極を作製した。このとき、負極活物質塗工量は52g/m2であった。
5体積%のアセトニトリル、62.5体積%のエチルメチルカーボネート、30体積%のエチレンカーボネート、及び2.5体積%のビニレンカーボネートの混合溶液に、電解質として0.3mol/Lのヘキサフルオロリン酸リチウム(LiPF6)、1mol/Lのリチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)、及び20質量ppmのフルオロスルホン酸リチウム(LiFSO3)を加え、非水系電解液を調整した。
上述のようにして正極と負極とを、各極の合剤塗布面が対向するようにセパレータ(実施例のセパレータ又は比較例のセパレータ)を介して重ね合わせて積層電極体とした。この積層電極体を、100mm×60mmのアルミニウムラミネートシート外装体内に収容し、80℃で5時間真空乾燥を行って水分を除去した。非水系電解液を外装体内に注入した後、外装体を封止することにより、単層ラミネート型(パウチ型)非水系二次電池を作製した。この単層ラミネート型非水系二次電池は、設計容量値が3Ah、定格電圧値が4.2Vであった。
上述のようにして得られた単層ラミネート型非水系二次電池について、以下の手順に従って初回充電処理及びサイクル特性評価を行った。充放電はアスカ電子(株)製の充放電装置ACD-M01A(商品名)及びヤマト科学(株)製のプログラム恒温槽IN804(商品名)を用いて行った。1Cとは、満充電状態の電池を定電流で放電して1時間で放電終了となることが期待される電流値を意味する。具体的に、下記の手順では、1Cは、具体的には、4.2Vの満充電状態から定電流で3.0Vまで放電して1時間で放電終了となることが期待される電流値を意味する。
・初回充電処理
電池の周囲温度を25℃に設定し、0.025Cに相当する0.075Aの定電流で充電して3.1Vに到達した後、3.1Vの定電圧で1.5時間充電を行った。続いて3時間休止後、0.05Cに相当する0.15Aの定電流で電池を充電して4.2Vに到達した後、4.2Vの定電圧で1.5時間充電を行った。その後、0.15Cに相当する0.45Aの定電流で3.0Vまで電池を放電した。
・単層ラミネート型非水系二次電池のサイクル試験
初回充放電処理を行った電池について、サイクル試験を実施した。なお、サイクル試験は電池の周囲温度を25℃に設定した3時間後に開始した。まず、1Cに相当する3Aの定電流で充電して4.2Vに到達した後、4.2Vの定電圧で充電し、合計3時間充電を行った。その後、3Aの定電流で3.0Vまで電池を放電した。充電と放電とを各々1回ずつ行うこの工程を1サイクルとし、100サイクルの充放電を行った。1サイクル目の放電容量を100%としたときの100サイクル目の放電容量を100サイクル後容量維持率(%)として求めた。
直径200mmの円形状に正極、蓄電デバイス用セパレータ及び負極を切出し、重ね合わせて積層体を得た。得られた積層体に非水電解液を加え、全体に染み渡した。直径600mmの円形状アルミヒーターで上記積層体を中心部に挟み、油圧ジャッキでアルミヒーターを上下から0.5MPaに加圧した。昇温速度2℃/minで、アルミヒーターで上記積層体を加熱しながら、電極間の抵抗(Ω)を測定した。セパレータの抵抗が初めて1000Ωを超えた時の温度をFUSE温度とした。また、さらに加熱を続け、抵抗が1000Ω以下に下がる時の温度をSHORT温度とした。
低温サイクル試験後のラミネートセルを試料台との間に1mmの段差を設けた状態でセットし、セルの両端を把持した。直径15.8mmのSUS製丸棒で、セルを圧壊速度0.2mm/s、1.95tonの力で押し潰し、電圧が4.1Vから4.0Vに到達するまで圧壊試験を行い、電圧が4.1Vから4.0Vに到達するまでの時間を測定した。この試験を100個のセルに対して実施し、電圧が4.1Vから4.0Vに到達するまでの時間が5秒以上であったセルの数を比較した。
上記サイクル試験容量維持率の測定における(1)~(4)の方法で単層ラミネート型非水系二次電池を作製した。作製した単層ラミネート型非水系二次電池を解体し、セパレータと電極を引き剥がし、負極をデジタルカメラで撮影し、銅箔(負極集電体)上に残存した負極活物質層の面積割合(%)を算出した。
蓄電デバイス用セパレータからTD100mm×MD100mmを採取した試料片を150℃のオーブン中に所定の時間静置した。このとき、温風が試料片に直接あたらないよう、試料片を複数の紙に挟んだ。さらにセパレータの到達温度が分かるよう、複数の紙の間にアイピー技研製のヒートラベル「10R-104」も挟み込んだ。挟み込む紙の枚数を調整することで、セパレータの加熱速度を調整できる。セパレータの加熱速度が2℃/minになるよう挟み込む紙の枚数を調整した。試料片をオーブンから取り出し、冷却した後、試料片の面積を測定し、下記式にて、ヒートラベルの指示温度での熱応答指数を算出した。
熱応答指数(%)={(10,000(mm2)-加熱後の試料片の面積(mm2))/10,000(mm2)}×100
前記所定の時間を5秒から3分まで5秒刻みで変えながら実験を繰り返し、各温度の熱応答指数を計算した。
シラングラフト変性ポリオレフィンに用いる原料ポリオレフィンは粘度平均分子量(Mv)が10万以上かつ100万以下であり、重量平均分子量(Mw)が3万以上かつ92万以下、数平均分子量は1万以上かつ15万以下でよく、プロピレン又はブテン共重合αオレフィンでもよい。原料ポリエチレンを押出機で溶融混練しながら、有機過酸化物(ジ-t-ブチルパーオキサイド)を添加し、αオレフィンポリマー鎖内でラジカルを発生させた後、トリメトキシアルコキシド置換ビニルシランを注液し、付加反応により、αオレフィンポリマーへアルコキシシリル基を導入し、シラングラフト構造を形成させる。また、同時に系中のラジカル濃度を調整するために、酸化防止剤(ペンタエリトリトールテトラキス[3-(3,5-ジ-テトラ-ブチル-4-ヒドロキシフェニル)プロピオナート])を適量添加し、αオレフィン内の鎖状連鎖反応(ゲル化)を抑制する。得られたシラングラフトポリオレフィン溶融樹脂を水中で冷却し、ペレット加工を行った後、80℃で2日加熱乾燥し、水分又は未反応のトリメトキシアルコキシド置換ビニルシランを除く。なお、未反応のトリメトキシアルコキシド置換ビニルシランのペレット中の残留濃度は、1000~1500ppm程度である。
上記の製法により得られたシラングラフト変性ポリオレフィンを表8及び9において「シラン変性ポリエチレン」として示す。
シラン変性PE以外の各種官能基を有する変性PEおよび共重合体は以下の方法で製造した。
いずれの原料についても、MIが0.5~10の範囲内になるように使用する原料の分子量で調整した。水酸基を有する変性PEは、EVA共重合体をケン化、中和することで製造した。アミン変性、オキサゾリン変性などの変性樹脂は、クロム触媒を用いて重合したPEの末端ビニル基を過酸化水素条件下でタングステン系触媒に作用させ、ビニル基をエポキシ基へ変換する。以後は、既に公知の官能基変換有機反応を用いて、対象反応部位を目的官能基へ変換し、種々の変性PEを得た。例えば、アミン変性PEの場合は、エポキシ基を有する変性PEを押出機内で200℃で溶融混練しながら、1級又は2級アミン類を液体で注入し、反応をさせる。その後、減圧弁より未反応のアミン類を除き、得られたアミン変性樹脂をストランド状に押出し、ペレット状へカットする。
上記の製法により得られた変性PEを表8~15において「変性PE又は共重合体(B)」の一種として示す。
〈二層型ポリオレフィン微多孔膜の作製〉
二種二層積層構造のポリオレフィン微多孔膜を以下の手順で作製した。
表8に示されるように、ポリエチレン微多孔層(PE)を形成するためのポリエチレン(PE)の条件、複合化の層構成条件、電池内での配置条件などを変更したこと以外は、実施例1と同様の操作を行って、表8に示す二種二層積層構造を有するポリオレフィン微多孔膜、セパレータ及び電池を得た。得られたセパレータ及び電池について、上記評価方法に従って各種の評価を行って、評価結果も表8に示した。
〈三層型ポリオレフィン微多孔膜の作製〉
二種三層積層構造のポリオレフィン微多孔膜を以下の手順で作製した。
表9~15に示されるように、架橋構造が形成可能の微多孔層(CL)を形成するための樹脂組成条件、ポリエチレン微多孔層(PE)を形成するためのポリエチレン(PE)の条件、複合化の層構成条件、微多孔膜作製時の架橋の有無、電池内でのセパレータの配置条件、電池組み立て条件、電池組み立て後の架橋の有無などを変更したこと以外は、実施例4と同様の操作を行って、表9~15に示す二種三層積層構造を有するポリオレフィン微多孔膜、セパレータ及び電池を得た。得られたセパレータ及び電池について、上記評価方法に従って各種の評価を行って、評価結果も表9~15に示した。
比較例5では、重量平均分子量が500,000のホモポリマーのポリエチレン(PE)から単層微多孔膜を形成して、セパレータとして使用した。比較例6では、表15に示される樹脂組成に基づいて、架橋構造が形成可能の単層微多孔膜を形成して、セパレータとして使用した。評価結果を表15に示す。
* 「シラン変性ポリエチレン」は、粘度平均分子量120,000のポリオレフィンを原料として用いて、トリメトキシアルコキシド置換ビニルシランによる変性反応で得られる、密度が0.95g/cm3であり、かつ190℃でのメルトフローレート(MFR)が0.33g/分であるシラン変性ポリエチレンである。
「-COOH変性PE」、「-オキサゾリン変性PE」、「-オキサゾリン,-OH変性PE」、「-OH変性PE」、「-OH,-NH-変性PE」及び「-OH,アミン変性PE」は、いずれも上記[シラン変性PE以外の各種官能基を有する変性PEおよび共重合体の製法]により得られる変性PEである。
** (I)複数の同一官能基の縮合反応
(II)複数の異種官能基間の反応
(III)官能基と電解液の連鎖縮合反応
(IV)官能基と添加剤の反応
(V)複数の同一官能基が、溶出金属イオンとの配位結合を介して架橋する反応
*** EC:エチレンカーボネート
**** BS(PEG)5:両末端スクシンイミド、EOユニット繰り返し数5
ジイソシアネート:両末端イソシアネートをウレタン結合を介して、ヘキサンユニットと連結した化合物
ジエポキシ化合物:両末端エポキシド基とブタンユニットとを連結した化合物
〈シラングラフト変性ポリオレフィンの製造〉
シラン変性ポリエチレン(樹脂a)の原料ポリエチレンとして、粘度平均分子量(Mv)が120,000のポリエチレンを使用した。原料ポリエチレンを押出機で溶融混練しながら、有機過酸化物(ジ-t-ブチルパーオキサイド)を添加し、αオレフィンポリマー鎖内でラジカルを発生させた。その後、溶融混錬物へトリメトキシアルコキシド置換ビニルシランを注液して付加反応を起こした。付加反応により、αオレフィンポリマーへアルコキシシリル基を導入し、シラングラフト構造を形成させた。同時に系中のラジカル濃度を調整するために、酸化防止剤(ペンタエリトリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナート])を適量添加し、αオレフィン内の鎖状連鎖反応(ゲル化)を抑制した。得られたシラン変性ポリエチレン溶融樹脂を水中で冷却し、ペレット加工した。ペレットを80℃で2日加熱乾燥し、水分と未反応のトリメトキシアルコキシド置換ビニルシランとを除いた。なお、未反応のトリメトキシアルコキシド置換ビニルシランのペレット中の残留濃度は3000ppm以下であった。
A層の樹脂材料として、上記で得たシラン変性ポリエチレン(樹脂a)を30質量%と、粘度平均分子量が4,500,000のホモポリマーである超高分子量ポリエチレン(樹脂b)と30質量%と、粘度平均分子量が700,000のホモポリマーである超高分子量ポリエチレン(樹脂c)を40質量%使用した。さらに、樹脂材料の合計質量を基準として、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1000質量ppmと、超高分子量ポリエチレン(樹脂b)の質量に対して、ステアリン酸カルシウム3000質量ppmとを添加し、タンブラーブレンダーを用いてドライブレンドすることにより、A層の原料混合物を得た。
無機粒子層の樹脂バインダとして用いるアクリルラテックスを以下の方法で製造した。撹拌機、還流冷却器、滴下槽及び温度計を取り付けた反応容器に、イオン交換水70.4質量部と、乳化剤として「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)0.5質量部と、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)0.5質量部とを投入した。次いで、反応容器内部の温度を80℃に昇温し、80℃の温度を保ったまま、過硫酸アンモニウムの2%水溶液を7.5質量部添加し、初期混合物を得た。過硫酸アンモニウム水溶液を添加終了した5分後に、乳化液を滴下槽から反応容器に150分かけて滴下した。なお、上記乳化液は、ブチルアクリレート70質量部と、メタクリル酸メチル29質量部と、メタクリル酸1質量部と、乳化剤として「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)3質量部及び「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)3質量部と、過硫酸アンモニウムの2%水溶液7.5質量部と、イオン交換水52質量部との混合物を、ホモミキサーにより5分間混合させて調製した。乳化液の滴下終了後、反応容器内部の温度を80℃に保ったまま90分間維持し、その後室温まで冷却した。得られたエマルジョンを、25%の水酸化アンモニウム水溶液でpH=8.0に調整し、少量の水を加えて固形分40%のアクリルラテックスを得た。得られたアクリルラテックスは数平均粒子径145nm、ガラス転移温度-23℃であった。
アクリル樹脂の塗工液を、下記のように調製した。撹拌機、還流冷却器、滴下槽及び温度計を取りつけた反応容器に、イオン交換水70.4質量部と、「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)0.5質量部と、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)0.5質量部と、を投入した。反応容器内部温度を80℃に昇温し、80℃の温度を保ったまま、過硫酸アンモニウム(2%水溶液)を7.5質量部添加した。過硫酸アンモニウム水溶液を添加した5分後に、メタクリル酸メチル15.9質量部、アクリル酸n-ブチル74.5質量部、アクリル酸2-エチルヘキシル2質量部、メタクリル酸0.1質量部、アクリル酸0.1質量部、メタクリル酸2-ヒドロキシエチル2質量部、アクリルアミド5質量部、メタクリル酸グリシジル0.4質量部、トリメチロールプロパントリアクリレート(A-TMPT、新中村化学工業株式会社製)0.4質量部、「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)3質量部、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)3質量部、p-スチレンスルホン酸ナトリウム0.05質量部、過硫酸アンモニウム(2%水溶液)7.5質量部、γ-メタクリロキシプロピルトリメトキシシラン0.3質量部、及びイオン交換水52質量部の混合物を、ホモミキサーにより5分間混合させて、乳化液を作製した。得られた乳化液を、滴下槽から反応容器に150分かけて滴下した。乳化液の滴下終了後、反応容器内部温度を80℃に保ったまま90分間維持し、その後室温まで冷却した。得られたエマルジョンを、水酸化アンモニウム水溶液(25%水溶液)でpH=9.0に調整し、濃度40%のアクリル樹脂(アクリル系コポリマーラテックス)を得た。これを固形分で5重量%になるようにイオン交換水で希釈し塗工液を調製した。
表16~23に示すように、A層~D層の積層方式、材料及び厚み等を変更して蓄電デバイス用セパレータを製造した。評価結果を表16~23に示す。
表23に示すように、A層~D層の積層方式、材料及び厚み等を変更して蓄電デバイス用セパレータを製造した。評価結果を表23に示す。
1b 架橋ポリオレフィン基材層
2 無機粒子層
3 熱可塑性ポリマー層
4 応力
5 無機粒子層の座屈破壊
6 基材層の引張破壊
7 局所短絡
9 島構造
10 セパレータ
20 固定治具
30 正極
40 負極
100 蓄電デバイス
d 島構造同士の距離
Claims (39)
- ポリオレフィンを含むA層と、ポリオレフィンを含むB層とを少なくとも1層ずつ備える積層構造を有するポリオレフィン微多孔膜であって、
前記A層と前記B層の少なくとも一方に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、かつ
蓄電デバイスへの収納後に、(1)前記官能基同士が縮合反応するか、(2)前記官能基が前記蓄電デバイス内部の化学物質と反応するか、又は(3)前記官能基が他の種類の官能基と反応して、架橋構造が形成されることを特徴とするポリオレフィン微多孔膜。 - 前記化学物質が、前記ポリオレフィン微多孔膜に含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかである、請求項1に記載のポリオレフィン微多孔膜。
- 前記A層又は前記B層は、前記官能基を含まない層であり、かつ前記官能基を含まない層の厚みに対して前記官能基を含む層の厚みの比が、0.08~6.50である、請求項1又は2に記載のポリオレフィン微多孔膜。
- 前記A層又は前記B層は、前記官能基を含まない層であり、前記官能基を含まない層にはポリエチレンが含まれ、かつ前記ポリエチレンの結晶化度が、60%~99%である、請求項1~3のいずれか1項に記載のポリオレフィン微多孔膜。
- 前記ポリエチレンの結晶子サイズが、10nm~50nmである、請求項4に記載のポリオレフィン微多孔膜。
- 前記架橋構造が、前記ポリオレフィンの非晶部が架橋された非晶部架橋構造である、請求項1~5のいずれか1項に記載のポリオレフィン微多孔膜。
- 前記非晶部が、選択的に架橋された、請求項6に記載のポリオレフィン微多孔膜。
- 前記ポリオレフィンが、官能基変性ポリオレフィン、又は官能基を有する単量体を共重合されたポリオレフィンである、請求項1~7のいずれか1項に記載のポリオレフィン微多孔膜。
- 前記架橋構造が、共有結合、水素結合又は配位結合のいずれかを介した反応により形成される、請求項1~8のいずれか1項に記載のポリオレフィン微多孔膜。
- 前記共有結合を介した反応が、下記反応(I)~(IV):
(I)複数の同一官能基の縮合反応;
(II)複数の異種官能基間の反応;
(III)官能基と電解液の連鎖縮合反応;及び
(IV)官能基と添加剤の反応;
から成る群から選択される少なくとも1つである、請求項9に記載のポリオレフィン微多孔膜。 - 前記配位結合を介した反応が、下記反応(V):
(V)複数の同一官能基が、金属イオンとの配位結合を介して架橋する反応;
である、請求項10に記載のポリオレフィン微多孔膜。 - 前記反応(I)及び/又は(II)が、蓄電デバイス内部の化学物質により触媒的に促進される、請求項10に記載のポリオレフィン微多孔膜。
- 前記反応(I)が、複数のシラノール基の縮合反応である、請求項10に記載のポリオレフィン微多孔膜。
- 前記反応(IV)が、前記ポリオレフィン微多孔膜を構成する化合物Rxと前記添加剤を構成する化合物Ryとの求核置換反応、求核付加反応又は開環反応であり、前記化合物Rxは、官能基xを有し、かつ前記化合物Ryは、連結反応ユニットy1を有する、請求項10に記載のポリオレフィン微多孔膜。
- 前記反応(IV)が求核置換反応であり、
前記化合物Rxの官能基xが、-OH、-NH2、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
前記化合物Ryの連結反応ユニットy1が、CH3SO2-、CF3SO2-、ArSO2-、CH3SO3-、CF3SO3-、ArSO3-、及び下記式(y1-1)~(y1-6):
で表される1価の基から成る群から選択される少なくとも2つである、請求項14に記載のポリオレフィン微多孔膜。 - 前記反応(IV)が求核置換反応であり、
前記化合物Ryが、前記連結反応ユニットy1に加えて鎖状ユニットy2を有し、かつ
前記鎖状ユニットy2が、下記式(y2-1)~(y2-6):
で表される2価の基から成る群から選択される少なくとも1つである、請求項14又は15に記載のポリオレフィン微多孔膜。 - 下記反応(V)において、前記金属イオンが、Zn2+、Mn2+、Co3+、Ni2+及びLi+から成る群から選択される少なくとも1つである、請求項11に記載のポリオレフィン微多孔膜。
- 請求項1~19のいずれか1項に記載のポリオレフィン微多孔膜を含む蓄電デバイス用セパレータ。
- ポリオレフィンを含むA層と、ポリオレフィンを含むB層と、無機粒子を含むC層とを、それぞれ少なくとも1層ずつ備える蓄電デバイス用セパレータであって、
前記A層とB層の少なくとも一方に含まれるポリオレフィンが、1種又は2種以上の官能基を有し、前記官能基は、蓄電デバイス内で前記官能基同士が縮合反応してシロキサン結合による架橋構造を形成する官能基を含む、蓄電デバイス用セパレータ。 - 前記A層またはB層に対し100μm四方面積のTOF-SIMS測定を行ったとき、アルカリ金属及び/又はアルカリ土類金属を含む島構造が1つ以上検出され、かつ前記島構造の大きさが9μm2以上245μm2以下である領域を備える、請求項21に記載の蓄電デバイス用セパレータ。
- 前記アルカリ金属及び/又はアルカリ土類金属を含む島構造が前記セパレータに2つ以上存在し、それぞれの前記島構造の重み付き重心位置間距離の最小値及び最大値のいずれもが、6μm以上135μm以下である、請求項22に記載の蓄電デバイス用セパレータ。
- 前記島構造はアルカリ土類金属を含み、前記アルカリ土類金属がカルシウムである、請求項22又は23に記載の蓄電デバイス用セパレータ。
- 前記アルカリ金属及び/又はアルカリ土類金属が、リチウム、ナトリウム、マグネシウム、カリウム、及びストロンチウムからなる群から選択される少なくとも一つである、請求項22又は23に記載の蓄電デバイス用セパレータ。
- 前記C層が無機粒子および樹脂バインダを含む無機多孔質層である、請求項21~24いずれか一項に記載の蓄電デバイス用セパレータ。
- 前記樹脂バインダのガラス転移温度(Tg)が-50℃~90℃である、請求項26に記載の蓄電デバイス用セパレータ。
- 前記C層に含まれる無機粒子の含有量が、前記C層の全質量を基準として、5質量%~99質量%である、請求項21~27のいずれか一項に記載の蓄電デバイス用セパレータ。
- 前記無機粒子が、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄、窒化ケイ素、窒化チタン、窒化ホウ素、シリコンカーバイド、水酸化酸化アルミニウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ藻土、ケイ砂、およびガラス繊維からなる群から選択される少なくとも一つである、請求項21~28のいずれか一項に記載の蓄電デバイス用セパレータ。
- 前記C層の表面のうち、前記A層または前記B層に接していない面に、熱可塑性ポリマーを含むD層が積層されている、請求項21~29のいずれか一項に記載の蓄電デバイス用セパレータ。
- 前記D層に含まれる熱可塑性ポリマーが、(メタ)アクリル酸エステル又は(メタ)アクリル酸を重合単位として含む、請求項21~30のいずれか一項に記載の蓄電デバイス用セパレータ。
- 前記D層は、前記C層の表面を5%~98%の面積割合で被覆する、請求項30又は31に記載の蓄電デバイス用セパレータ。
- 前記D層に含まれる熱可塑性ポリマーが、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVDF-HFP)、及びポリフッ化ビニリデン-クロロトリフルオロエチレン(PVDF-CTFE)から成る群から選択される少なくとも一つのフッ素原子含有ビニル化合物を含む、請求項30~32のいずれか一項に記載の蓄電デバイス用セパレータ。
- 電解液浸漬後の前記蓄電デバイス用セパレータを2℃/minで150℃まで加熱した時の熱応答指数を、最小二乗近似法を用いて式(1)にフィッティングしたとき、T0の範囲が110≦T0≦150、maxの範囲が0.1≦max≦30である、請求項21~34のいずれか一項に記載の蓄電デバイス用セパレータ。
- 前記官能基を有するポリオレフィンが、前記官能基の架橋構造を形成する脱水縮合触媒を含有するマスターバッチ樹脂ではない、請求項1~35のいずれか一項に記載の蓄電デバイス用セパレータ。
- (A)電極と、請求項20~36のいずれか一項に記載の蓄電デバイス用セパレータとの積層体又は捲回体を収納している、外装体;及び
(B)非水電解液を収納している容器;
を備える、蓄電デバイス組立キット。 - 正極と、負極と、請求項20~36のいずれか一項に記載の蓄電デバイス用セパレータと、非水電解液とを含む、蓄電デバイス。
- 正極、負極、請求項20~36のいずれか一項に記載の蓄電デバイス用セパレータ、及び非水電解液を含む蓄電デバイスであって、前記正極は、ニッケル-マンガン-コバルト(NMC)系リチウム含有正極、オリビン型リン酸鉄リチウム(LFP)系正極、コバルト酸リチウム(LCO)系正極、ニッケル-コバルト-アルミ(NCA)系リチウム含有正極、及びマンガン酸リチウム(LMO)系正極からなる群から選択される少なくとも一つである、蓄電デバイス。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410632200.2A CN118507990A (zh) | 2020-04-13 | 2021-03-12 | 复合型层叠化学交联分隔件 |
EP21787942.8A EP4009436A4 (en) | 2020-04-13 | 2021-03-12 | COMPOSITE TYPE STACKED CHEMICAL CROSSLINKING SEPARATOR |
CN202180004810.2A CN114175385A (zh) | 2020-04-13 | 2021-03-12 | 复合型层叠化学交联分隔件 |
CN202410632203.6A CN118539089A (zh) | 2020-04-13 | 2021-03-12 | 复合型层叠化学交联分隔件 |
CN202410632205.5A CN118610700A (zh) | 2020-04-13 | 2021-03-12 | 复合型层叠化学交联分隔件 |
US17/631,616 US20220294080A1 (en) | 2020-04-13 | 2021-03-12 | Composite-Type Stacked Chemically-Crosslinked Separator |
KR1020227003498A KR20220033495A (ko) | 2020-04-13 | 2021-03-12 | 복합형 적층 화학 가교 세퍼레이터 |
EP24220984.9A EP4531188A2 (en) | 2020-04-13 | 2021-03-12 | Composite-type stacked chemically-crosslinked separator |
JP2021562892A JP7021403B1 (ja) | 2020-04-13 | 2021-03-12 | 複合型積層化学架橋セパレータ |
JP2022015758A JP7507804B2 (ja) | 2020-04-13 | 2022-02-03 | 複合型積層化学架橋セパレータ |
US18/908,414 US20250038360A1 (en) | 2020-04-13 | 2024-10-07 | Composite-Type Stacked Chemically-Crosslinked Separator |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020071808 | 2020-04-13 | ||
JP2020-071808 | 2020-04-13 | ||
JP2020-183261 | 2020-10-30 | ||
JP2020183261 | 2020-10-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/631,616 A-371-Of-International US20220294080A1 (en) | 2020-04-13 | 2021-03-12 | Composite-Type Stacked Chemically-Crosslinked Separator |
US18/908,414 Division US20250038360A1 (en) | 2020-04-13 | 2024-10-07 | Composite-Type Stacked Chemically-Crosslinked Separator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021210317A1 true WO2021210317A1 (ja) | 2021-10-21 |
Family
ID=78084758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/010231 WO2021210317A1 (ja) | 2020-04-13 | 2021-03-12 | 複合型積層化学架橋セパレータ |
Country Status (6)
Country | Link |
---|---|
US (2) | US20220294080A1 (ja) |
EP (2) | EP4531188A2 (ja) |
JP (2) | JP7021403B1 (ja) |
KR (1) | KR20220033495A (ja) |
CN (4) | CN118539089A (ja) |
WO (1) | WO2021210317A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4009437A4 (en) * | 2020-04-13 | 2023-06-28 | Asahi Kasei Kabushiki Kaisha | Composite single-layer chemically cross-linked separator |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7416522B2 (ja) * | 2019-03-19 | 2024-01-17 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
EP4115705A1 (en) * | 2020-03-02 | 2023-01-11 | TotalEnergies OneTech | Use of composite materials in the manufacture of electrical heating panels, process of production and electrical heating panels thereof |
WO2024190826A1 (ja) * | 2023-03-16 | 2024-09-19 | 旭化成株式会社 | 蓄電デバイス用セパレータ及び蓄電デバイス |
CN116231231B (zh) * | 2023-05-09 | 2023-08-01 | 合肥长阳新能源科技有限公司 | 一种层间交联共挤电池隔膜及其制备方法与电池 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS529858B2 (ja) | 1972-07-28 | 1977-03-18 | ||
JPS529854B2 (ja) | 1972-08-04 | 1977-03-18 | ||
KR20160131761A (ko) * | 2015-05-08 | 2016-11-16 | 주식회사 엘지화학 | 세퍼레이터 및 이를 포함하는 전기화학소자 |
JP2017203145A (ja) * | 2016-05-13 | 2017-11-16 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム及び電池用セパレータ |
CN110014711A (zh) | 2019-04-22 | 2019-07-16 | 深圳中兴新材技术股份有限公司 | 一种粘结性能改善的聚烯烃微孔膜及其制备方法和应用 |
WO2019151812A1 (ko) * | 2018-01-31 | 2019-08-08 | 주식회사 엘지화학 | 분리막, 상기 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법 |
KR20200026756A (ko) * | 2018-09-03 | 2020-03-11 | 주식회사 엘지화학 | 가교 폴리올레핀 분리막 및 이의 제조방법 |
KR20200032931A (ko) | 2018-09-19 | 2020-03-27 | 더블유스코프코리아 주식회사 | 분리막 및 그 제조방법 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3735150B2 (ja) | 1996-02-09 | 2006-01-18 | 日東電工株式会社 | 電池用セパレータおよびそれを用いた電池 |
WO1997044839A1 (en) | 1996-05-22 | 1997-11-27 | Kureha Chemical Industry Co., Ltd. | Porous film and separator for batteries comprising porous film |
JP3416016B2 (ja) | 1997-03-18 | 2003-06-16 | 富士通株式会社 | リチウム二次電池用イオン伝導体及びそれを用いたリチウム二次電池 |
JPH11144700A (ja) | 1997-11-06 | 1999-05-28 | Kureha Chem Ind Co Ltd | 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法 |
JPH11172036A (ja) | 1997-12-10 | 1999-06-29 | Kureha Chem Ind Co Ltd | 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法 |
JP2000319441A (ja) | 1999-05-12 | 2000-11-21 | Toray Ind Inc | 樹脂微多孔膜の製造方法 |
JP4583532B2 (ja) | 1999-12-15 | 2010-11-17 | 日東電工株式会社 | 多孔質膜 |
CA2418257A1 (fr) * | 2003-01-30 | 2004-07-30 | Hydro-Quebec | Composition electrolytique et electrolyte, generateurs les contenant et operant sans formation de dendrite lors du cyclage |
CN100346506C (zh) | 2003-04-09 | 2007-10-31 | 日东电工株式会社 | 电池隔板用的负载粘接剂的多孔膜及其利用 |
JP2006179279A (ja) * | 2004-12-22 | 2006-07-06 | Nitto Denko Corp | 電池用セパレータとこれを用いる電池の製造方法 |
JP2006289657A (ja) * | 2005-04-06 | 2006-10-26 | Asahi Kasei Chemicals Corp | 多層多孔膜 |
JP2007123254A (ja) * | 2005-09-29 | 2007-05-17 | Nitto Denko Corp | 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法 |
US8043859B2 (en) | 2007-03-07 | 2011-10-25 | Nekommercheskoe Uchrezhdenie “Nauchno-Issledovateljskiyj Institut Citokhimii I Molekulyarnoyj Farmakologii” | Quality control mixture for glycine tablets, a method for preparing the mixture and a method for identifying the mixture |
US20100221965A1 (en) | 2008-01-29 | 2010-09-02 | Hitachi Maxell, Ltd. | Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device |
KR101825986B1 (ko) * | 2009-03-19 | 2018-02-08 | 암테크 리서치 인터내셔널 엘엘씨 | 에너지 저장장치에서 사용하기 위한 자유지지 내열 미소공성 필름 |
KR101453785B1 (ko) * | 2012-10-05 | 2014-10-22 | 주식회사 엘지화학 | 세퍼레이터 및 이를 구비한 전기화학소자 |
US9331323B2 (en) | 2013-08-21 | 2016-05-03 | GM Global Technology Operations LLC | Cross-linked multilayer porous polymer membrane battery separators |
US20170237119A1 (en) * | 2014-03-12 | 2017-08-17 | The Regents Of The University Of Colorado, A Body Corporate | Li-ion electrolyte membrane facilitated by a self-healing polymer matrix, and associated battery |
KR101857156B1 (ko) * | 2014-10-31 | 2018-05-11 | 주식회사 엘지화학 | 가교 폴리올레핀 분리막 및 이의 제조방법 |
KR20180026790A (ko) * | 2015-07-31 | 2018-03-13 | 셀가드 엘엘씨 | 개선된 적층 다층 막, 분리기, 전지, 및 방법 |
JP6187650B2 (ja) | 2015-08-12 | 2017-08-30 | 宇部興産株式会社 | 積層多孔質フィルム、蓄電デバイス用セパレータおよび蓄電デバイス |
TWI620370B (zh) * | 2016-10-14 | 2018-04-01 | 行政院原子能委員會核能硏究所 | 全固態電池、固態電解質薄膜及製造方法 |
JP6367453B2 (ja) | 2016-12-20 | 2018-08-01 | 旭化成株式会社 | 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス |
KR102238827B1 (ko) * | 2018-07-26 | 2021-04-09 | 주식회사 엘지화학 | 가교 폴리올레핀 분리막의 제조방법 |
EP4220844A3 (en) * | 2018-10-11 | 2023-08-30 | Asahi Kasei Kabushiki Kaisha | Lithium ion battery using crosslinked separator |
KR102067717B1 (ko) * | 2018-12-20 | 2020-01-20 | 주식회사 엘지화학 | 가교 폴리올레핀 분리막 및 그의 제조방법 |
-
2021
- 2021-03-12 CN CN202410632203.6A patent/CN118539089A/zh active Pending
- 2021-03-12 CN CN202410632200.2A patent/CN118507990A/zh active Pending
- 2021-03-12 JP JP2021562892A patent/JP7021403B1/ja active Active
- 2021-03-12 WO PCT/JP2021/010231 patent/WO2021210317A1/ja unknown
- 2021-03-12 US US17/631,616 patent/US20220294080A1/en active Pending
- 2021-03-12 CN CN202410632205.5A patent/CN118610700A/zh active Pending
- 2021-03-12 EP EP24220984.9A patent/EP4531188A2/en active Pending
- 2021-03-12 KR KR1020227003498A patent/KR20220033495A/ko active Pending
- 2021-03-12 EP EP21787942.8A patent/EP4009436A4/en active Pending
- 2021-03-12 CN CN202180004810.2A patent/CN114175385A/zh active Pending
-
2022
- 2022-02-03 JP JP2022015758A patent/JP7507804B2/ja active Active
-
2024
- 2024-10-07 US US18/908,414 patent/US20250038360A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS529858B2 (ja) | 1972-07-28 | 1977-03-18 | ||
JPS529854B2 (ja) | 1972-08-04 | 1977-03-18 | ||
KR20160131761A (ko) * | 2015-05-08 | 2016-11-16 | 주식회사 엘지화학 | 세퍼레이터 및 이를 포함하는 전기화학소자 |
JP2017203145A (ja) * | 2016-05-13 | 2017-11-16 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム及び電池用セパレータ |
WO2019151812A1 (ko) * | 2018-01-31 | 2019-08-08 | 주식회사 엘지화학 | 분리막, 상기 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법 |
KR20200026756A (ko) * | 2018-09-03 | 2020-03-11 | 주식회사 엘지화학 | 가교 폴리올레핀 분리막 및 이의 제조방법 |
KR20200032931A (ko) | 2018-09-19 | 2020-03-27 | 더블유스코프코리아 주식회사 | 분리막 및 그 제조방법 |
CN110014711A (zh) | 2019-04-22 | 2019-07-16 | 深圳中兴新材技术股份有限公司 | 一种粘结性能改善的聚烯烃微孔膜及其制备方法和应用 |
Non-Patent Citations (4)
Title |
---|
"The Chemistry of Organic Silicon Compounds", vol. 2, 1998, WILEY |
PEKKA PYYKKOMICHIKO ATSUMI: "Molecular Single-Bond Covalent Radii for Elements 1-118", CHEM. EUR. J., vol. 15, 2009, pages 186 - 197 |
ROBIN WALSH: "Bond dissociation energy values in silicon-containing compounds and some of their implications", ACC. CHEM. RES., vol. 14, 1981, pages 246 - 252, XP055676307, DOI: 10.1021/ar00068a004 |
See also references of EP4009436A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4009437A4 (en) * | 2020-04-13 | 2023-06-28 | Asahi Kasei Kabushiki Kaisha | Composite single-layer chemically cross-linked separator |
EP4235899A3 (en) * | 2020-04-13 | 2024-04-10 | Asahi Kasei Kabushiki Kaisha | Composite single-layer chemically cross-linked separator |
Also Published As
Publication number | Publication date |
---|---|
CN118507990A (zh) | 2024-08-16 |
US20220294080A1 (en) | 2022-09-15 |
EP4009436A1 (en) | 2022-06-08 |
KR20220033495A (ko) | 2022-03-16 |
JP7507804B2 (ja) | 2024-06-28 |
CN114175385A (zh) | 2022-03-11 |
JP2022070897A (ja) | 2022-05-13 |
US20250038360A1 (en) | 2025-01-30 |
CN118539089A (zh) | 2024-08-23 |
JPWO2021210317A1 (ja) | 2021-10-21 |
JP7021403B1 (ja) | 2022-02-16 |
EP4009436A4 (en) | 2024-07-17 |
CN118610700A (zh) | 2024-09-06 |
EP4531188A2 (en) | 2025-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7021403B1 (ja) | 複合型積層化学架橋セパレータ | |
JP7035284B1 (ja) | 複合型単層化学架橋セパレータ | |
KR102384050B1 (ko) | 가교 세퍼레이터를 사용한 리튬 이온 전지 | |
WO2021141132A1 (ja) | 無機塗工層架橋セパレータ | |
KR102782932B1 (ko) | 복합형 단층 화학 가교 세퍼레이터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021562892 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21787942 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227003498 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021787942 Country of ref document: EP Effective date: 20220304 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |