[go: up one dir, main page]

WO2021204142A1 - 胆汁酸衍生物盐、其晶型结构及它们的制备方法和应用 - Google Patents

胆汁酸衍生物盐、其晶型结构及它们的制备方法和应用 Download PDF

Info

Publication number
WO2021204142A1
WO2021204142A1 PCT/CN2021/085785 CN2021085785W WO2021204142A1 WO 2021204142 A1 WO2021204142 A1 WO 2021204142A1 CN 2021085785 W CN2021085785 W CN 2021085785W WO 2021204142 A1 WO2021204142 A1 WO 2021204142A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
acid
salt
crystal form
acid derivative
Prior art date
Application number
PCT/CN2021/085785
Other languages
English (en)
French (fr)
Inventor
付国琴
Original Assignee
西安奥立泰医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安奥立泰医药科技有限公司 filed Critical 西安奥立泰医药科技有限公司
Priority to CN202180006768.8A priority Critical patent/CN114787175B/zh
Priority to CA3162945A priority patent/CA3162945A1/en
Priority to KR1020227018193A priority patent/KR20220088934A/ko
Priority to AU2021251935A priority patent/AU2021251935B2/en
Priority to JP2022530836A priority patent/JP2023504015A/ja
Priority to EP21783953.9A priority patent/EP4053143A4/en
Priority to US17/779,979 priority patent/US20230054001A1/en
Publication of WO2021204142A1 publication Critical patent/WO2021204142A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J43/003Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton not condensed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J51/00Normal steroids with unmodified cyclopenta(a)hydrophenanthrene skeleton not provided for in groups C07J1/00 - C07J43/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to the field of medicinal chemistry, in particular to a salt of a bile acid derivative, its crystal structure, and their preparation method and application.
  • Bile acids have a variety of physiological functions. They not only play an important role in the absorption, transport and distribution of fats and fat-soluble vitamins, but also act as a signal molecule to activate nuclear receptors and then regulate the metabolism of bile acids and cholesterol.
  • the hepato-intestinal circulation of bile acids is an important regulatory mechanism for regulating the rate of bile acid synthesis. Bile acids are synthesized from the liver into the gallbladder, secreted into the small intestine, reabsorbed in the ileum, and transported back to the liver through the portal vein circulation.
  • UDCA Ursodesoxycholic acid
  • FXR bile acid nuclear receptor
  • FXR receptor farnesoid X receptor
  • FXR farnesoid X receptor
  • FXR is a member of the nuclear receptor superfamily of hormones.
  • FXR is a bile acid receptor.
  • bile acid is an endogenous ligand of FXR under physiological conditions. They found that bile acid not only binds directly to FXR, but the interaction between the two can lead to synergistic activators and co-inhibitors. The recruitment of bile acid indicates the endogenous FXR ligand of bile acid, so FXR is also called bile acid receptor.
  • FXR can maintain the homeostasis of bile acid by regulating the expression of genes involved in bile acid metabolism.
  • FXR is a key regulator of cholesterol homeostasis, triglyceride synthesis, and lipogenesis (Crawley, Expert Opinion Ther. Patents (2010), 20(8): 1047-1057).
  • FXR-related diseases include treatment of liver disease, diabetes, vitamin D-related diseases, drug-induced side effects, and hepatitis.
  • CN201810930184.X discloses bile acid derivatives for the treatment of metabolic diseases.
  • Such compounds have a significant improvement effect on cholestasis and can promote Bile excretion, so it has a therapeutic effect on diseases related to bile excretion disorders; at the same time, it can also reduce the values of ALT, AST, and ALP accordingly, and also has a certain effect on repairing liver damage.
  • This type of compound can also reduce portal pressure, which is useful for portal veins.
  • Hypertension has a therapeutic effect, and according to the description of the specification, it can be known that the compound has superior pharmacodynamic activity.
  • the compound has a low melting point and is not suitable for heating or grinding, which brings great difficulties to formulation research, and has poor solubility, which is not conducive to storage and weighing, and brings many inconveniences to later development.
  • the technical problem to be solved by the present invention is to provide a salt of bile acid derivative, its crystal structure, and their preparation method and application.
  • the salt of bile acid derivative provided by the present invention has not only solubility and stability Good, and the effect is good.
  • the present invention provides a bile acid derivative salt, its crystal structure, and their preparation method and application.
  • the bile acid derivative salt provided by the present invention can be obtained by combining the compound of formula (I) It is obtained by reaction with acid. It is found through experiments that the present invention reacts the compound of formula (I) with a specific acid, so that the obtained salt has good solubility and stability, and also has FXR receptor agonistic activity, which can improve Cholestasis, reduces portal pressure, improves liver function, and can be used to prepare drugs for treating or relieving chronic liver disease, metabolic disease, or portal hypertension and related diseases.
  • Figure 1 is a differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) curve of Compound 1 prepared in Example 1;
  • Example 2 is an X-ray powder diffraction (XRPD) pattern of compound 1 hydrochloride crystalline form A prepared in Example 3;
  • DSC differential scanning calorimetry
  • FIG. 4 is a thermogravimetric analysis (TGA) curve of compound 1 hydrochloride crystalline form A prepared in Example 3;
  • Figure 7 is an X-ray powder diffraction (XRPD) pattern of Compound 1 mesylate salt crystal form C prepared in Example 10;
  • DSC differential scanning calorimetry
  • TGA thermogravimetric analysis
  • Figure 9 is a comparison diagram of the hydrochloride crystal form A and its XRPD spectrum after heat treatment
  • Figure 10 is a comparison diagram of the hydrochloride crystal form A and its XRPD spectrum after grinding.
  • the present invention provides a salt of a bile acid derivative, which is obtained by reacting a compound of formula (I) with an acid,
  • R 1 is hydrogen, substituted or unsubstituted C1-C12 alkyl or halogen
  • Each R 2 is independently selected from any one or more of substituted or unsubstituted C1-C12 alkyl, halogen, cyano, hydroxyl, nitro, sulfonic acid and carboxy;
  • n 0, 1, 2, 3 or 4;
  • Each R 3 is independently selected from one or more of substituted or unsubstituted C1-C12 alkyl, halogen, hydroxyl, and C6-C30 aryl;
  • n 0, 1, 2, 3, 4 or 5;
  • the acid is an inorganic acid or an organic acid
  • the inorganic acid is selected from hydrochloric acid
  • the organic acid is selected from methanesulfonic acid, oxalic acid, p-toluenesulfonic acid, L-tartaric acid, fumaric acid, maleic acid, preferably methanesulfonic acid, p-toluenesulfonic acid.
  • the R 1 is hydrogen, substituted or unsubstituted C2-C6 alkyl or halogen, preferably hydrogen, fluorine, chlorine, bromine, methyl, ethyl, n-propyl Base, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl or n-hexyl.
  • Each R 2 is independently selected from any one or more of substituted or unsubstituted C2-C6 alkyl, halogen, cyano, hydroxyl, nitro, sulfonic acid and carboxyl groups.
  • Each R 2 is independently selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, Hydroxyl, nitro, sulfonic and carboxyl groups.
  • Each R 3 is independently selected from one or more of substituted or unsubstituted C2-C6 alkyl, halogen, hydroxyl, and C6-C18 aryl.
  • each R 3 is independently selected Self is fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, hydroxyl, phenyl, Naphthyl, anthracenyl or phenanthryl.
  • the compound represented by formula (I) has the following formula (F-1), formula (F-2), formula (F-3), formula (F-4), formula (F-5), formula (F- 6), formula (F-7), formula (F-8), (F-9), formula (F-10), formula (F-11), formula (F-12), (F-13), Formula (F-14), Formula (F-15), Formula (F-16), (F-17), Formula (F-18), Formula (F-19), Formula (F-20), (F -21), formula (F-22), formula (F-23), formula (F-24), (F-25), formula (F-26), formula (F-27), formula (F-28 ), (F-29), formula (F-30), formula (F-31) or formula (F-32),
  • the salt of the bile acid derivative is of formula (F-1), formula (F-2), formula (F-3), formula (F-4), formula (F-5), formula ( F-6), formula (F-7), formula (F-8), (F-9), formula (F-10), formula (F-11), formula (F-12), (F-13 ), formula (F-14), formula (F-15), formula (F-16), (F-17), formula (F-18), formula (F-19), formula (F-20), (F-21), formula (F-22), formula (F-23), formula (F-24), (F-25), formula (F-26), formula (F-27), formula (F -28), (F-29), formula (F-30), formula (F-31) or formula (F-32) compound hydrochloric acid, methanesulfonic acid, oxalic acid, p-toluenesulfonic acid, L-tartaric acid, rich Maleic acid or maleate.
  • the present invention can change the charge distribution in the molecule and adjust the physical and chemical properties of the compound by combining the compound of formula (I) with a suitable salt through an ionic bond or a covalent bond. It is found through experiments that the salt of the compound provided by the present invention Not only the preparation process is simple, which is conducive to process amplification, but also the physical properties are better than the free alkali state, the melting point is improved, the solubility is improved, the purity is high, and the stability is significantly improved compared with the free alkali compound.
  • the present invention also provides a method for preparing the salt of the bile acid derivative, including:
  • the acid is an inorganic acid or an organic acid
  • the inorganic acid is selected from hydrochloric acid; the organic acid is selected from methanesulfonic acid, oxalic acid, p-toluenesulfonic acid, L-tartaric acid, fumaric acid, maleic acid, preferably methanesulfonic acid, p-toluenesulfonic acid;
  • the first solvent is methanol, ethanol, isopropanol, isobutanol, 2-butanone, tetrahydrofuran, dichloromethane, acetonitrile, methyl tert-butyl ether, acetone, ethyl acetate, methyl formate, acetic acid
  • isopropyl ester and n-hexane One or more of isopropyl ester and n-hexane.
  • the compound represented by formula (I), the first solvent and acid are mixed and reacted to obtain bile acid derivative salt; wherein, the compound represented by formula (I) and the hydrogen ion in the acid
  • the molar ratio is 1: (0.9 to 1.5), more preferably 1: (1.0 to 1.2).
  • the first solvent is one or more of methanol, ethanol, isopropanol, isobutanol, and dichloromethane.
  • the present invention in order to make the reaction proceed better, the present invention preferably carries out the preparation according to the following method:
  • step (3) Add a second solvent to the reaction solution obtained in step (2), and precipitate a solid after stirring, or a solid after concentration, or a solid after cooling;
  • the first solvent is one or more of methanol, ethanol, isopropanol, isobutanol and dichloromethane;
  • the second solvent is ethyl acetate, acetonitrile, dichloromethane, methyl tert-butyl ether At least one or more of acetone, methyl formate, isopropyl acetate, and tetrahydrofuran; and the second solvent and the first solvent have different polarities; the volume ratio of the first solvent and the second solvent is 1 :(1 ⁇ 7).
  • the concentration of the solution obtained by dissolving the compound represented by the formula (I) in the first solvent in the step (1) is 0.2 g/mL to 2 g/mL.
  • stirring or ultrasound may be used to facilitate the dissolution, and the dissolution temperature is 15°C-50°C.
  • the temperature at which the compound represented by formula (I) in step (1) is dissolved in the first solvent may be 15-20°C, or 20-45°C.
  • the present invention also provides a crystal form of the bile acid derivative salt represented by formula (S-1), named as crystal form A,
  • the X-ray powder diffraction pattern of the crystal form A contains diffraction peaks with 2 ⁇ angles of 9.58° ⁇ 0.2°, 13.79° ⁇ 0.2°, 16.81° ⁇ 0.2°, and 19.19° ⁇ 0.2°. More specifically, the X-ray powder diffraction pattern of the crystal form A includes 2 ⁇ angles of 6.68° ⁇ 0.2°, 9.58° ⁇ 0.2°, 11.37° ⁇ 0.2°, 13.30° ⁇ 0.2°, 13.79° ⁇ 0.2°, 16.81° ⁇ 0.2° and 19.19° ⁇ 0.2° diffraction peaks.
  • the X-ray powder diffraction pattern of the crystal form A includes 2 ⁇ angles of 6.68° ⁇ 0.2°, 9.58° ⁇ 0.2°, 10.08° ⁇ 0.2°, 10.41° ⁇ 0.2°, 11.37° ⁇ 0.2°, 11.72° ⁇ 0.2°, 13.30° ⁇ 0.2°, 13.79° ⁇ 0.2°, 14.78° ⁇ 0.2°, 15.71° ⁇ 0.2°, 15.96° ⁇ 0.2°, 16.81° ⁇ 0.2°, 17.89° ⁇ 0.2°, 19.19° ⁇ 0.2°, 20.02° ⁇ 0.2°, 20.71° ⁇ 0.2°, 21.75° ⁇ 0.2°, 23.66° ⁇ 0.2°, 24.61° ⁇ 0.2°, 25.65° ⁇ 0.2°, 26.38° ⁇ 0.2°, 26.59° ⁇ 0.2 ° and 28.96° ⁇ 0.2°; the differential scanning calorimetry curve of the crystal form A includes an endothermic peak at 176.5°C ⁇ 3°C.
  • the crystal form A has the following characteristics: (1) its X-ray powder diffraction pattern is substantially the same as that of FIG. 2, and/or (2) its differential scanning calorimetry curve is substantially the same as that of FIG. 3.
  • the crystal form of the salt of the bile acid derivative represented by the formula (S-1) of the present invention can be obtained according to the aforementioned preparation method of the bile acid derivative salt, wherein the first solvent can be methanol or isopropanol , The second solvent is ethyl acetate or methyl tert-butyl ether; in the reaction, when the first solvent is isopropanol and the second solvent is ethyl acetate, their volume ratio is 1: (1 ⁇ 5); or 1:(2 ⁇ 4); when the first solvent is methanol and the second solvent is methyl tert-butyl ether, their volume ratio is 1:(1 ⁇ 4); or 1:(2 ⁇ 3).
  • the present invention also provides a crystal form of the bile acid derivative salt represented by formula (S-9), named as crystal form B,
  • the X-ray powder diffraction pattern of the crystal form B contains diffraction peaks with 2 ⁇ angles of 4.52° ⁇ 0.2°, 5.20° ⁇ 0.2°, 13.34° ⁇ 0.2°, 13.58° ⁇ 0.2°, 14.88° ⁇ 0.2; More specifically, the X-ray powder diffraction pattern of the crystal form B includes 2 ⁇ angles of 4.52° ⁇ 0.2°, 5.20° ⁇ 0.2°, 7.12° ⁇ 0.2°, 9.05° ⁇ 0.2°, 13.34° ⁇ 0.2°, 13.58° ⁇ 0.2°, 14.88° ⁇ 0.2°, 15.71° ⁇ 0.2°, 17.48° ⁇ 0.2° and 18.15° ⁇ 0.2° diffraction peaks; more specifically, the X-ray powder diffraction pattern of Form B contains 2 ⁇ angles 4.52° ⁇ 0.2°, 5.20° ⁇ 0.2°, 7.12° ⁇ 0.2°, 9.05° ⁇ 0.2°, 10.15° ⁇ 0.2°, 10.72° ⁇ 0.2°, 13.34° ⁇ 0.2°, 13.58° ⁇ 0.2°, 14.26 ° ⁇ 0.2°, 14.88° ⁇ 0.2
  • the crystal form B has the following characteristics: (1) its X-ray powder diffraction pattern is substantially the same as that of FIG. 5, and/or (2) its differential scanning calorimetry curve and thermogravimetric analysis curve are similar to those of FIG. 6 Essentially the same.
  • the crystal form method of the bile acid derivative salt represented by the formula (S-9) of the present invention can be obtained according to the aforementioned preparation method of the bile acid derivative salt, wherein the first solvent may be isopropanol,
  • the volume ratio of isopropanol to the second solvent is 1: (6-10); or 1: (7-8); specifically, when the second solvent is ethyl acetate, in the reaction, isopropanol
  • the volume ratio with ethyl acetate is 1: (6-10); or 1: (7-8).
  • the present invention also provides a crystal form of the bile acid derivative salt represented by formula (S-9), named as crystal form C,
  • the X-ray powder diffraction pattern of the crystal form C includes diffraction peaks with 2 ⁇ angles of 6.47° ⁇ 0.2°, 12.04° ⁇ 0.2°, 12.53° ⁇ 0.2°, 13.15° ⁇ 0.2°, 14.76° ⁇ 0.2°, More specifically, the X-ray powder diffraction pattern of the crystal form C contains 2 ⁇ angles of 6.47° ⁇ 0.2°, 9.19° ⁇ 0.2°, 11.15° ⁇ 0.2°, 11.39° ⁇ 0.2°, 12.04° ⁇ 0.2°, 12.53° ⁇ 0.2°, 13.15° ⁇ 0.2°, 14.76° ⁇ 0.2°, 15.67° ⁇ 0.2°, 18.48° ⁇ 0.2°, 18.74° ⁇ 0.2° and 20.76° ⁇ 0.2° diffraction peaks; more specifically, The X-ray powder diffraction pattern of the crystal form C contains 2 ⁇ angles of 6.47° ⁇ 0.2°, 9.19° ⁇ 0.2°, 10.47° ⁇ 0.2°, 11.15° ⁇ 0.2°, 11.39° ⁇ 0.2°, 12.04° ⁇ 0.2 °, 12.53° ⁇ 0.2°,
  • the crystal form C has the following characteristics: (1) its X-ray powder diffraction pattern is substantially the same as that of FIG. 7, and/or (2) its differential scanning calorimetry curve and thermogravimetric analysis curve are similar to those of FIG. 8. Essentially the same.
  • the crystal form of the bile acid derivative salt represented by the formula (S-9) of the present invention can be obtained according to the aforementioned preparation method of the bile acid derivative salt, wherein the first solvent may be ethanol, and ethanol and The volume ratio of the second solvent is preferably 1: (2-5); or 1: (3-4).
  • the second solvent is ethyl acetate
  • the volume ratio of ethanol to ethyl acetate in the reaction is 1: (2 ⁇ 5); or 1:(3 ⁇ 4).
  • the present invention also provides an application of the bile acid derivative salt or solvate thereof or the crystalline bile acid derivative salt of the present invention in the preparation of a medicine for treating or alleviating FXR-related diseases; wherein
  • the FXR-related disease is selected from chronic liver disease, metabolic disease or portal hypertension.
  • the chronic liver disease includes primary cholestatic liver cirrhosis, primary sclerosing cholangitis, liver fibrosis-related diseases, drug-induced cholestasis, progressive familial intrahepatic cholestasis, cholestasis during pregnancy, alcoholic One or more of liver disease and non-alcoholic fatty liver disease; the portal hypertension is selected from liver fibrosis, liver cirrhosis, splenomegaly, or increased portal pressure caused by other causes; the metabolic disease includes Hypercholesterolemia, dyslipidemia, cholesterol stones and hypertriglyceridemia.
  • bile acid derivative as the active ingredient of the drug, or a salt of bile acid derivative and other pharmaceutical compounds at the same time, which are used to treat or alleviate the aforementioned chronic liver diseases and metabolic diseases. Or portal hypertension and other diseases.
  • the salt of the bile acid derivative of the present invention can be administered as a single active agent, or can be administered in combination with other therapeutic agents, including having the same or similar therapeutic activity and is determined to be Other compounds that are safe and effective;
  • the application of the present invention to treat, prevent or ameliorate diseases or conditions includes administering a safe and effective amount of a salt containing a bile acid derivative disclosed in the present invention in combination with one or more therapeutically active agents drug.
  • the combination drug contains one or two other therapeutic agents.
  • the present invention provides a method for activating FXR receptors, comprising administering an effective amount of the bile acid derivative salt disclosed in the present invention to an individual or sample in need.
  • the present invention provides a method for preventing, treating or alleviating FXR-related diseases, comprising administering to an individual in need a therapeutically effective amount of the salt and crystal form of the bile acid derivative disclosed in the present invention
  • the salt of the bile acid derivative or the pharmaceutical composition of the salt of the bile acid derivative disclosed in the present invention comprising administering to an individual in need a therapeutically effective amount of the salt and crystal form of the bile acid derivative disclosed in the present invention.
  • pharmaceutically acceptable means that the substance or composition must be chemically and/or toxicologically compatible with the other ingredients of the formulation and/or the mammal to be treated with it.
  • equivalent or its abbreviation “eq.” used in the present invention refers to the equivalent amount of other raw materials required based on the basic raw materials used in each step (1 equivalent) in accordance with the equivalent relationship of the chemical reaction.
  • the crystal form in the present invention can be considered to be characterized by graphical data "drawn" by a chart.
  • graphical data include, for example, powder X-ray diffraction patterns, Raman spectra, Fourier transform-infrared spectra, DSC curves, TGA curves, and solid-state NMR spectra.
  • the skilled person will understand that the graphical representation of this type of data may undergo small changes (such as peak relative intensity and peak position) due to factors such as changes in instrument response and changes in sample concentration and purity, which are well known to the skilled person. Nevertheless, the skilled person can compare the graphic data in the figure in this article with the graphic data generated for the unknown crystal form, and can confirm whether the two sets of graphic data represent the same crystal form.
  • DSC differential scanning calorimetry
  • TGA thermogravimetric analysis
  • XRPD X-ray powder diffraction
  • SSNMR solid-state nuclear magnetic resonance
  • FT-IRspectrum Fourier transform infrared spectroscopy
  • Raman spectrum Raman spectrum
  • SEM Scanning electron microscopy
  • PSA particle size analysis
  • peak refers to non-background noise that can be recognized by a person of ordinary skill in the art Resulting peaks or other special features.
  • effective peak refers to a peak that is at least the intermediate size (for example, height) of other peaks in the spectrum or data, or at least 1.5, 2 or 2.5 times the intermediate size of other peaks in the spectrum or data.
  • X-ray powder diffraction As is well known in the field of X-ray powder diffraction (XRPD), for any given crystal form, the device, humidity, temperature, powder crystal orientation and other parameters used to obtain the X-ray powder diffraction (XRPD) pattern are all It may cause some variability in the appearance, intensity and position of the peaks in the diffraction pattern. According to the condition of the instrument used in this experiment, the diffraction peak has an error tolerance of ⁇ 0.2°.
  • the X-ray powder diffraction pattern "substantially the same" as in FIG. 2 or FIG. 5 or FIG. 7 provided herein refers to an XRPD pattern that is considered by those skilled in the art to have the same XRPD pattern as that of FIG. 2 or FIG. 5 or FIG. 7 , Or more likely it can be slightly different.
  • Such an XRPD pattern may not necessarily show every peak of the diffraction pattern presented herein, and/or may show slight changes in the appearance, intensity, or displacement of the peaks due to differences in conditions involved in obtaining the data.
  • a person skilled in the art can determine whether a sample of a crystalline compound has the same crystal form or a different crystal form as the crystal form disclosed herein by comparing their XRPD patterns.
  • the given diffraction angle (expressed in °2 ⁇ ) derived from the XRPD pattern is at approximately the same position as the value presented herein.
  • the 2 ⁇ values in the X-ray powder diffraction pattern are all in degrees (°).
  • the melting peak height of the DSC curve depends on many factors related to sample preparation and test instrument conditions, while the peak position is relatively insensitive to experimental details. Therefore, in some embodiments, the crystalline compound of the present invention is characterized by a DSC chart with characteristic peak positions, which has substantially the same properties as the DSC chart provided in the drawings of the present invention. According to the conditions of the equipment used in this experiment and/or the preparation of the samples, there is an error tolerance of ⁇ 3°C, ⁇ 4°C or ⁇ 5°C for the melting peak.
  • the hydrochloride crystal form A of the present invention has an endothermic peak at 176.55°C, the enthalpy value is 56.32J/g, and the starting temperature is 170.20°C;
  • Form B of mesylate salt has an endothermic peak at 137.5°C, enthalpy value is 34.223J/g, and the starting temperature is 125.5°C;
  • Form C of mesylate salt has an endothermic peak at 186°C, The enthalpy value is 57.814J/g, and the starting temperature is 180.4°C.
  • thermogravimetric analysis is a technique for determining the relationship between the mass of a substance and the temperature under program-controlled temperature.
  • the quality change and temperature range displayed by the TGA curve depend on many factors such as sample preparation and instrumentation. There may be differences in the quality change of TGA between different instruments and different samples, and the weight loss rate may be ⁇ 5%, ⁇ 4%, ⁇ 3% Or ⁇ 2% error tolerance, so the weight loss rate within a certain temperature range measured by TGA cannot be regarded as absolute.
  • the hydrochloride salt crystal form A of the present invention has a weight loss of 2.088% in the temperature range before 170°C; the methanesulfonate salt crystal form B has a weight loss of about 0.66% before about 130°C; Form C of mesylate salt has a weight loss of about 0.53% before about 180°C.
  • X-ray powder diffraction, DSC curve, TGA curve, Raman spectrum and Fourier transform-infrared spectrum “substantially the same” means X-ray powder diffraction, DSC curve, TGA curve, Raman spectrum In the graph and the Fourier transform-infrared spectrum graph, at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 99% of the peaks are shown in the graph.
  • the "relative intensity" of the diffraction peaks in the X-ray powder diffraction pattern means that when the intensity of the first strong peak among all the diffraction peaks in the X-ray powder diffraction pattern (XRPD) is 100%, the intensity of the other peaks is the same as the first strong peak.
  • the ratio of the intensities of the peaks means that when the intensity of the first strong peak among all the diffraction peaks in the X-ray powder diffraction pattern (XRPD) is 100%, the intensity of the other peaks is the same as the first strong peak. The ratio of the intensities of the peaks.
  • the hydrochloride crystal form A of the compound represented by formula (I) of the present invention exists in a substantially pure crystalline form.
  • substantially pure refers to the chemical purity and the purity of the crystal form, more specifically, one crystal form is substantially free of another one or more crystal forms, that is, the purity of the crystal form is at least or at least 80%, or At least 85%, at least 90%, or at least 93%, or at least 95%, or at least 98%, or at least 99%, or at least 99.5%, or at least 99.6%, or at least 99.7%, or at least 99.8%, or at least 99.9%, or the crystalline form contains other crystalline forms, and the percentage of the other crystalline forms in the total volume or weight of the crystalline form is less than 20%, or less than 10%, or less than 5%, or less than 3 %, or less than 1%, or less than 0.5%, or less than 0.1%, or less than 0.01%.
  • the purity of the crystals of the present invention can be determined by, for example, known methods such as X-ray powder diffraction, thermogravimetric analysis, and the like.
  • the purity of the crystal or mixed crystal of the present invention need not be 100%, and may be not less than 80%, preferably not less than 90%, more preferably not less than 95%, and most preferably not less than 98%. The purity within this range is preferred to ensure quality.
  • the salt of a bile acid derivative provided by the present invention, its crystal structure, and their preparation method and application, the salt of a bile acid derivative provided by the present invention is obtained by reacting a compound of the structure of formula (I) with an acid,
  • the results show that the present invention reacts the compound of formula (I) with a specific acid, so that the obtained salt has good solubility and stability, and also has FXR receptor agonistic activity, which can improve cholestasis and reduce portal veins. Stress improves liver function, and can be used to prepare drugs for treating or relieving chronic liver disease, metabolic disease, portal hypertension and related diseases.
  • the structure of the compound was determined by nuclear magnetic resonance ( 1 H-NMR).
  • the 1 H-NMR shift ( ⁇ ) is given in units of parts per million (ppm).
  • the instrument used for 1 H-NMR analysis is a Bruker Advance400 equipped with a B-ACS 120 automatic sampling system.
  • the determination solvent is deuterated chloroform (CDCl 3 ), deuterated methanol (CD 3 OD) or deuterated dimethyl sulfoxide (DMSO-d 6 ) and other commonly used deuterated solvents.
  • An Agilent-6120 Quadrupole LC/MS mass spectrometer was used for the measurement of LC-MS.
  • the solid form of the obtained salt was analyzed by X-ray powder diffraction (XRPD).
  • the solid samples obtained in the experiment were analyzed by D8advance powder X-ray diffraction analyzer (Bruker) and D2phaser powder X-ray diffraction analyzer (Bruker).
  • the instrument is equipped with a LynxEye detector.
  • the D8advance powder X-ray diffraction analyzer (Bruker) test sample uses Cu K ⁇ radiation, the 2 ⁇ scanning angle is from 3° to 40°, and the scanning step size is 0.02°. When measuring the sample, the light tube voltage and light tube current were 40KV and 40mA, respectively.
  • the D2phaser powder X-ray diffraction analyzer uses Cu K ⁇ radiation to test the sample, and the tube voltage and tube current when measuring the sample are 30KV and 10mA, respectively.
  • the solid form of the obtained compound or salt is analyzed by polarizing microscope (PLM), and the instrument model used for PLM analysis is ECLIPSE LV100POL polarizing microscope (Nikon, Japan).
  • thermogravimetric analysis is used for the solid form of the obtained salt, and the model of the thermogravimetric analyzer is TGA Q500 or Discovery TGA 55 (TA, USA).
  • TGA Thermogravimetric analysis
  • the sample is placed in a balanced open aluminum sample pan, and the mass is automatically weighed in the TGA heating furnace. The sample is heated to the final temperature at a rate of 10°C/min.
  • DSC Differential scanning calorimetry
  • the instrument model of the differential scanning calorimetry is DSC Q200 or Discovery DSC 250 (TA, USA).
  • the solid form of the obtained salt is analyzed by dynamic moisture adsorption and desorption analysis (DVS), and the instrument model used for dynamic moisture adsorption and desorption analysis is IGA Sorp (Hidentity Isochema).
  • the sample measurement adopts the gradient mode, the humidity range of the test is 0% to 90%, and the humidity increment of each gradient is 10%.
  • reaction temperature is room temperature; room temperature is 20°C to 30°C.
  • HPLC refers to high performance liquid chromatography; the determination of HPLC uses Agilent 1200 high pressure liquid chromatograph (Zorbax Eclipse Plus C 18 150 ⁇ 4.6mm chromatographic column).
  • the crystalline form can be prepared by a variety of methods, including but not limited to, for example, crystallization or recrystallization from a suitable solvent mixture, sublimation, solid state conversion from another phase, crystallization and spraying from a supercritical fluid liquid, and the like.
  • the cooled crystallization mixture can be filtered under vacuum, and the separated solid product is washed with a suitable solvent (for example, a cold recrystallization solvent). After washing, the product can be dried under nitrogen purge to obtain the desired crystal form.
  • a suitable solvent for example, a cold recrystallization solvent
  • the product can be analyzed by suitable spectroscopic or analytical techniques, including but not limited to, for example, X-ray single crystal diffraction analysis, X-ray powder diffraction (XRPD) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) ), Fourier transform-infrared spectroscopy (FT-IR) analysis and Raman spectrum analysis, etc.
  • XRPD X-ray powder diffraction
  • DSC differential scanning calorimetry
  • TGA thermogravimetric analysis
  • FT-IR Fourier transform-infrared spectroscopy
  • Raman spectrum analysis etc.
  • the off-white solid compound 1 was prepared by the method described in Example 1 of patent CN201810930184.X.
  • the solid was analyzed by a polarizing microscope (PLM) and showed no birefringence.
  • the DSC-TGA spectrum is shown in Figure 1.
  • the onset temperatures of the two endothermic peaks of DSC are located at 41.6°C and 72.6°C, respectively.
  • TGA showed a weight loss of 6.2% before 100°C.
  • DVS shows that when the humidity is 10% to 90%, the moisture absorption is 1.933% to 7.0146%.
  • Compound 1 has a low melting point and is easy to absorb moisture, which is not conducive to formulations.
  • XRPD shows that the solid is in an amorphous state, and the melting point of the compound of Example 1 is relatively low, which is not conducive to formulation.
  • Example 1 Add the compound of Example 1 (1.0eq.) to 40-60 ⁇ L of MeOH at room temperature and stir to dissolve it, then add 1.5 ⁇ L of hydrochloric acid (1.0eq.) and stir, no solids are deposited, then 100 ⁇ L of ACN, no solids are deposited . After the reaction flask was capped, it was slowly volatilized at room temperature to obtain a solid, and the obtained solid sample was tested. XRPD shows that the solid has no obvious diffraction peaks and is in an amorphous form.
  • DSC detects that the crude amorphous solid of compound 1 hydrochloride prepared by this method has three initial endothermic peaks at about 84.3, 109.0, and 132.0°C; therefore, the solid melting point after salt formation is significantly higher than that of compound 1.
  • the 1 H-NMR detection result is basically the same as that of Example 2.
  • the 4 hydrogens on the pyridine ring have obvious chemical shifts, which proves that the hydrochloride salt is formed.
  • the compound 1 hydrochloride prepared by the above method was further tested.
  • the crystal form A has an endothermic peak at about 176.55°C, the enthalpy value is 56.32J/g, and the onset temperature (onset) is 170.20°C.
  • the melting point of the compound can be considered to be 170°C, which is compared with the compound 1 before salt formation. And the amorphous form of hydrochloride has been significantly improved.
  • the obtained hydrochloride solids may show different XRPD patterns, sometimes showing extra peaks, but show similar thermal properties on TGA and DSC. These differences in XRPD are caused by crystallinity and preferred orientation.
  • the obtained hydrochloride crystal form A solid may show different thermal properties on TGA and DSC, as long as it contains the main diffraction peaks of 9.58° ⁇ 0.2° and 13.79 in Table 2 above.
  • Example 1 At room temperature, 10.9 mg of the compound of Example 1 was added to 40-60 ⁇ L of MeOH and stirred to dissolve it, and then 1.665 mg of oxalic acid was added, and no solid was precipitated. Then 120-150 ⁇ L of EtOAc was added, and no solid was precipitated. The solvent was evaporated, and then the resulting solid sample was characterized. XRPD shows that the solid has only one obvious diffraction peak, which is basically amorphous.
  • the hydrogen spectrum contains the methyl signal of methanesulfonic acid, and the obvious chemical shift of the 4 hydrogens of the pyridine ring is observed, forming the methanesulfonate salt.
  • the 2 ⁇ angles in Table 3 are the main diffraction peaks of 4.52° ⁇ 0.2°, 5.20° ⁇ 0.2°, 13.34° ⁇ 0.2°, 13.58° ⁇ 0.2°, 14.88° ⁇ 0.2, or 4.52° ⁇ 0.2°, 5.20° ⁇ 0.2°, 7.12° ⁇ 0.2°, 9.05° ⁇ 0.2°, 13.34° ⁇ 0.2°, 13.58° ⁇ 0.2°, 14.88° ⁇ 0.2°, 15.71° ⁇ 0.2°, 17.48° ⁇ 0.2° and 18.15° ⁇ 0.2°
  • Example 11 Comparison of stability of compound 1 hydrochloride crystal form A and methanesulfonate crystal form
  • the DVS of compound 1 shows that the humidity is 10 ⁇ 90%, and the moisture absorption is 1.933% ⁇ 7.0146%.
  • the compound has strong hygroscopicity and is not conducive to storage.
  • After obtaining the salt solid form it is analyzed by dynamic moisture adsorption and desorption analysis (DVS) to compare with hydrochloride.
  • DVS dynamic moisture adsorption and desorption analysis
  • the crystal form A was heated in DSC to 100°C or kept at 80°C for 24h.
  • the XRPD test results of the obtained sample are shown in Figure 9.
  • the XRPD pattern shows that the main diffraction peaks of the obtained sample have not changed.
  • the melting point of the hydrochloride crystal form A is significantly higher than that of compound 1, and it can maintain a stable crystal form for both heating and grinding; the hydrochloride crystal form A has weaker hygroscopicity than methanesulfonate Salt crystal form C, and the mesylate crystal form C becomes amorphous after moisture absorption, while the hydrochloride crystal form A can still maintain the crystal form state. From the storage and processing aspects, the hydrochloride crystal form A is a solid The form is more suitable for further development.
  • E2-17 ⁇ was administered by subcutaneous injection in the neck, and the test compound was given by gavage at the same time for 7 days. After the last day of administration, the rats were fasted without water. The next day was tested and treated after 24 hours. The rats were anesthetized by intraperitoneal injection of 20% urethane (7ml/kg). After anesthesia, fix it on the mouse board, make a midline abdominal incision from the xiphoid process of the upper abdomen. The incision is 3 ⁇ 4cm, the common bile duct is separated, and the bile duct is inserted with PE-10 polyethylene catheter (inner diameter 0.28mm, outer diameter 0.61mm) Tube surgery.
  • PE-10 polyethylene catheter inner diameter 0.28mm, outer diameter 0.61mm
  • ALT, AST and ALP After collecting the bile, blood was collected from the inferior vena cava of the rat. The blood sample was allowed to stand for 2 hours at room temperature and centrifuged at 4000rpm ⁇ 15min. The serum was routinely separated to detect ALT, AST and ALP.
  • Test method (1) C57 mice and ob/ob mice were reared adaptively for 1 week. 1C57 mice were given LFD diet (normal mouse group), ob/ob mice were divided into two groups: 215 mice were given LFD diet (blank control group), and the rest were given AMLN diet (containing 40kcal% fat, 20kcal% fructose and 2%). Cholesterol), reared for 14 weeks.
  • LFD diet normal mouse group
  • ob/ob mice were divided into two groups: 215 mice were given LFD diet (blank control group), and the rest were given AMLN diet (containing 40kcal% fat, 20kcal% fructose and 2%). Cholesterol), reared for 14 weeks.
  • hydrochloride salt of Compound 1 significantly reduced diet-induced AMLN Lep ob / Lep ob mouse model of NASH NASH total score, the reduced diet-induced AMLN Lep ob / Lep ob mouse model of NASH lobular inflammation and hepatocyte ballooning It can inhibit the further development of the course of NASH, and can significantly reduce liver fibrosis in NASH mice.
  • Compound 1 hydrochloride can also significantly reduce the levels of ALT and AST in the serum of mice, showing the repair and protection of liver injury in NASH mice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Steroid Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种胆汁酸衍生物的盐、其晶型形式及它们的制备方法和应用,本发明提供的胆汁酸衍生物的盐,其晶型形式以及他们的组合物可改善胆汁淤积,降低门脉压力,改善肝功能,可用于制备治疗或缓解慢性肝病、代谢性疾病或门脉高压症及其相关疾病的药物。

Description

胆汁酸衍生物盐、其晶型结构及它们的制备方法和应用
本申请要求于2020年04月08日提交中国专利局、申请号为202010272501.0、发明名称为“胆汁酸衍生物盐、其晶型结构及它们的制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及药物化学领域,尤其涉及一种胆汁酸衍生物的盐、其晶型结构及它们的制备方法和应用。
背景技术
胆汁酸具有多种生理功能,不仅在脂肪和脂溶性维生素的吸收、转运和分配中发挥重要的作用,而且可作为一种信号分子激活核受体继而调节胆汁酸和胆固醇的代谢。胆汁酸的肝肠循环是调节胆汁酸合成速率的重要调节机制。胆汁酸从肝脏合成进入胆囊,分泌入小肠,在回肠重吸收再通过门静脉循环运回肝脏。
胆汁淤积症主要发生于妊娠中晚期、肝纤维化、肝硬化以及胆道阻塞等患者,临床表现为瘙痒、黄疸(Choleplania)、血清碱性磷酸酶(ALP)升高等。针对胆汁淤积的药物,目前临床最常用的是熊去氧胆酸(Ursodesoxycholic acid,UDCA),其为甾体化合物,系胆酸的类似物,有利胆作用,用于治疗胆固醇结石,预防药物性结石形成,但UDCA对胆汁酸核受体FXR激动作用较差,因而在治疗胆汁淤积的方面有局限性,部分胆汁淤积症的患者对UDCA不敏感。
经研究,FXR受体(法尼酯X受体),属于激素核受体超家族的一员。FXR是胆汁酸感受器,多个研究小组报道生理状态下胆汁酸是FXR内源性配体,他们发现胆汁酸不仅与FXR可以直接结合,而且两者的相互作用可以导致协同活化因子和辅助抑制因子的募集,这说明胆汁酸的内源性FXR配体,因此FXR又被称为胆汁酸受体。FXR作为胆汁酸的受体可以通过调控参与胆汁酸代谢基因的表达来维持胆汁酸的内环境稳定。FXR是胆固醇动态平衡、甘油三酯合成以及脂肪生成的关键调节者(Crawley,Expert Opinion Ther.Patents(2010),20(8):1047-1057)。FXR相关的疾病包括治疗肝脏疾病、糖尿病、维生素D-相关疾病、药物导致的副作用以及肝炎。
本申请的申请人于2018年08月15日提交的申请(CN201810930184.X)中公开了用于代谢性疾病治疗的胆汁酸衍生物类化合物,该类化合物对于胆汁淤积具有明显改善作用,可以促进胆汁排泄,因此对于胆汁排泄障碍相关疾病具有治疗作用;同时还可相应的降低ALT、AST、ALP的值,对于修复肝损伤也具有一定效果,该类化合物还可以降低门脉压力,对于门脉高压症具有治疗作用,且根据说明书的记载也可知,该化合物在药效活性方 面表现较优。但该化合物熔点较低不适于受热或研磨,为制剂研究带来较大困难,且溶解性欠佳,不利于贮存、称量,给后期的开发带来诸多不便。
因此,在保证该化合物药效的情况下,如何得到该化合物更好成药性的固体形式具有重要意义。
发明内容
有鉴于此,本发明所要解决的技术问题在于提供一种胆汁酸衍生物的盐、其晶型结构及它们的制备方法和应用,本发明提供的胆汁酸衍生物的盐不仅溶解性、稳定性好,且药效好。
与现有技术相比,本发明提供了一种胆汁酸衍生物盐、其晶型结构及它们的制备方法和应用,本发明提供的胆汁酸衍生物盐,通过将式(I)结构的化合物和酸反应得到,通过实验发现,本发明通过将式(I)结构的化合物和特定的酸反应,使得得到的盐具有好的溶解性和稳定性,且同样具有FXR受体激动活性,可改善胆汁淤积,降低门脉压力,改善肝功能,可用于制备治疗或缓解慢性肝病、代谢性疾病或门脉高压症及其相关疾病的药物。
附图说明
图1为实施例1制备的化合物1的差示扫描量热(DSC)和热重分析(TGA)曲线;
图2为实施例3制备的化合物1盐酸盐晶型A的X射线粉末衍射(XRPD)图谱;
图3为实施例3制备的化合物1盐酸盐晶型A的差示扫描量热(DSC)曲线;
图4为实施例3制备的化合物1盐酸盐晶型A的热重分析(TGA)曲线;
图5为实施例9制备的化合物1甲磺酸盐晶型B的X射线粉末衍射(XRPD)图谱;
图6为实施例9制备的化合物1甲磺酸盐晶型B的差示扫描量热(DSC)和热重分析(TGA)曲线;
图7为实施例10制备的化合物1甲磺酸盐晶型C的X射线粉末衍射(XRPD)图谱;
图8为实施例9制备的化合物1甲磺酸盐晶型C的差示扫描量热(DSC)和热重分析(TGA)曲线;
图9为盐酸盐晶型A及其经热处理后的XRPD图谱对比图;
图10为盐酸盐晶型A及其经研磨后的XRPD图谱对比图。
具体实施方式
本发明提供了一种胆汁酸衍生物的盐,通过将式(I)结构的化合物和酸反应得到,
Figure PCTCN2021085785-appb-000001
其中,R 1为氢、取代的或未被取代的C1~C12烷基或者卤素;
各R 2独立地选自取代的或未被取代的C1~C12烷基、卤素、氰基、羟基、硝基、磺酸基和羧基中的任意一种或多种;
m为0、1、2、3或4;
各R 3独立地选自取代的或未被取代的C1~C12烷基、卤素、羟基、C6~C30的芳基中的一种或多种;
n为0、1、2、3、4或5;
所述酸为无机酸或有机酸;
所述无机酸选自盐酸;
其中,结构式中的
Figure PCTCN2021085785-appb-000002
表示化合物的立体构型可以在纸面以上或纸面以下,
所述有机酸选自甲磺酸、草酸、对甲苯磺酸、L-酒石酸、富马酸、马来酸,优选甲磺酸,对甲苯磺酸。
本发明中,在一些实施方案中,所述R 1为氢、取代的或未被取代的C2~C6烷基或者卤素,优选为氢、氟、氯、溴、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基或正己基。
各R 2独立地选自取代的或未被取代的C2~C6烷基、卤素、氰基、羟基、硝基、磺酸基和羧基中的任意一种或多种,在一些实施方案中,各R 2独立地选自氟、氯、溴、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、羟基、硝基、磺酸基和羧基。
各R 3独立地选自取代的或未被取代的C2~C6烷基、卤素、羟基、C6~C18的芳基中的一种或多种,在一些实施方案中,各R 3独立地选自为氟、氯、溴、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、羟基、苯基、萘基、蒽基或菲基。
具体的,式(I)所示化合物具有为(F-1),式(F-2),式(F-3),式(F-4),式(F-5),式(F-6),式(F-7)、式(F-8),(F-9),式(F-10),式(F-11),式(F-12),(F-13),式(F-14),式(F-15),式(F-16),(F-17),式(F-18),式(F-19),式(F-20),(F-21), 式(F-22),式(F-23),式(F-24),(F-25),式(F-26),式(F-27),式(F-28),(F-29),式(F-30),式(F-31)或式(F-32),
Figure PCTCN2021085785-appb-000003
Figure PCTCN2021085785-appb-000004
Figure PCTCN2021085785-appb-000005
更具体的,所述胆汁酸衍生物的盐为式(F-1),式(F-2),式(F-3),式(F-4),式(F-5),式(F-6),式(F-7)、式(F-8),(F-9),式(F-10),式(F-11),式(F-12),(F-13),式(F-14),式(F-15),式(F-16),(F-17),式(F-18),式(F-19),式(F-20),(F-21),式(F-22),式(F-23),式(F-24),(F-25),式(F-26),式(F-27),式(F-28),(F-29),式(F-30),式(F-31)或式(F-32)化合物的盐酸,甲磺酸、草酸、对甲苯磺酸、L-酒石酸、富马酸或马来酸盐。
本发明通过将式(I)结构的化合物与合适的盐通过离子键或共价键相结合,可以改变 分子中的电荷分布,调整化合物的理化性质,通过实验发现,本发明提供的化合物的盐不仅制备过程简单、利于工艺放大,而且物理性状优于游离碱状态,熔点提高、溶解性提高,纯度高,稳定性较游离碱化合物有显著提高。
本发明还提供了一种胆汁酸衍生物的盐的制备方法,包括:
将式(I)所示的化合物、第一溶剂和酸混合反应,得到胆汁酸衍生物的盐
所述酸为无机酸或有机酸;
所述无机酸选自盐酸;所述有机酸选自甲磺酸、草酸、对甲苯磺酸、L-酒石酸、富马酸、马来酸,优选甲磺酸,对甲苯磺酸;
所述第一溶剂为甲醇、乙醇、异丙醇、异丁醇、2-丁酮、四氢呋喃、二氯甲烷、乙腈、甲基叔丁基醚、丙酮、、乙酸乙酯、甲酸甲酯、乙酸异丙酯和正己烷中的一种或几种。
按照本发明,本发明将式(I)所示的化合物、第一溶剂和酸混合反应,得到胆汁酸衍生物盐;其中,所述式(I)所示的化合物与酸中的氢离子的摩尔比为1:(0.9~1.5),更优选为1:(1.0~1.2)。在一些实施方案中,所述第一溶剂为甲醇、乙醇、异丙醇、异丁醇和二氯甲烷中的一种或几种。本发明中,为了使反应更好的进行,本发明优选按照以下方法进行制备:
(1)先将式(I)所示化合物溶解于第一溶剂中;
(2)然后向所得溶液中加入酸并充分混合反应,得到反应液;
(3)向步骤(2)所得反应液中加入第二溶剂,搅拌后析出固体,或浓缩后产生固体,或降温后析出固体;
所述第一溶剂为甲醇、乙醇、异丙醇、异丁醇和二氯甲烷中的一种或几种;所述第二溶剂为乙酸乙酯、乙腈、二氯甲烷、甲基叔丁基醚、丙酮、甲酸甲酯、乙酸异丙酯、四氢呋喃中的至少一种或几种;且所述第二溶剂与第一溶剂极性不同;所述第一溶剂和第二溶剂的体积比为1:(1~7)。更具体的,所述第一溶剂和第二溶剂的体积比的组合为:甲醇:二氯甲烷=1:(1~5)、甲醇:乙酸乙酯=1:(2~6)、甲醇:乙腈=1:(1~2)、甲醇:乙酸乙酯:乙腈=1:3:1、异丙醇:二氯甲烷:乙酸乙酯=1:1:6、异丙醇:乙酸乙酯=1:(2~6)、甲醇:乙腈:甲酸甲酯=1:1:4、乙醇:乙酸乙酯=1:(2~6)、乙醇:二氯甲烷:乙酸乙酯=1:1:6、异丙醇:甲基叔丁基醚=1:(1~6)或甲醇:甲基叔丁基醚=1:(1~6)。
更具体的,所述第一溶剂和第二溶剂的体积比为甲醇:二氯甲烷=1:(3~4)、甲醇:乙酸乙酯=1:(3~4)、甲醇:乙腈=1:(1~2)、甲醇:乙酸乙酯:乙腈=1:3:1、异丙醇:二氯甲烷:乙酸乙酯=1:1:6、异丙醇:乙酸乙酯=1:(2~4)、甲醇:乙腈:甲酸甲酯=1:1:4、乙醇:乙酸乙酯=1:(3~4)、乙醇:二氯甲烷:乙酸乙酯=1:1:6、异丙醇:甲基叔丁基醚=1:(2~4)或甲醇:甲基叔丁基醚=1:(2~6)。
式(I)所示化合物的酸加成盐的制备方法,所述步骤(1)中式(I)所示化合物溶于第 一溶剂中所得溶液的浓度为0.2g/mL~2g/mL。
为促进式(I)所示化合物溶解于第一溶剂中,可以搅拌或超声促溶,溶解温度为15℃~50℃。在一些更具体的实施方案中,步骤(1)中式(I)所示化合物溶解于第一溶剂中的温度可以是15~20℃,或者为20~45℃。
本发明还提供了一种式(S-1)所示的胆汁酸衍生物盐的晶型,命名为晶型A,
Figure PCTCN2021085785-appb-000006
所述晶型A的X射线粉末衍射图谱中包含2θ角为9.58°±0.2°、13.79°±0.2°、16.81°±0.2°、19.19°±0.2°的衍射峰。更具体的,所述晶型A的X射线粉末衍射图谱中包含2θ角为6.68°±0.2°、9.58°±0.2°、11.37°±0.2°、13.30°±0.2°、13.79°±0.2°、16.81°±0.2°和19.19°±0.2°的衍射峰。更具体的,所述晶型A的X射线粉末衍射图谱中包含2θ角为6.68°±0.2°、9.58°±0.2°、10.08°±0.2°、10.41°±0.2°、11.37°±0.2°、11.72°±0.2°、13.30°±0.2°、13.79°±0.2°、14.78°±0.2°、15.71°±0.2°、15.96°±0.2°、16.81°±0.2°、17.89°±0.2°、19.19°±0.2°、20.02°±0.2°、20.71°±0.2°、21.75°±0.2°、23.66°±0.2°、24.61°±0.2°、25.65°±0.2°、26.38°±0.2°、26.59°±0.2°和28.96°±0.2°的衍射峰;所述晶型A的差示扫描量热曲线包含176.5℃±3℃的吸热峰。
更具体的,所述晶型A具有以下特征:(1)其X射线粉末衍射图谱与图2实质上相同,和/或(2)其差示扫描量热曲线与图3实质上相同。本发明中,本发明式(S-1)所示胆汁酸衍生物的盐的晶型按照前述的胆汁酸衍生物盐的制备方法即可得到,其中,第一溶剂可以为甲醇或异丙醇,所述第二溶剂为乙酸乙酯或甲基叔丁基醚;所述反应中,第一溶剂为异丙醇与第二溶剂为乙酸乙酯时,它们的体积比为1:(1~5);或者为1:(2~4);第一溶剂为甲醇与第二溶剂为甲基叔丁基醚时,它们的体积比为1:(1~4);或者为1:(2~3)。
本发明还提供了一种式(S-9)所示的胆汁酸衍生物盐的晶型,命名为晶型B,
Figure PCTCN2021085785-appb-000007
其中,所述晶型B的X射线粉末衍射图谱中包含2θ角为4.52°±0.2°、5.20°±0.2°、13.34°±0.2°、13.58°±0.2°、14.88°±0.2的衍射峰;更具体的,所述晶型B的X射线粉末衍射图谱中包含2θ角为4.52°±0.2°、5.20°±0.2°、7.12°±0.2°、9.05°±0.2°、13.34°±0.2°、 13.58°±0.2°、14.88°±0.2°、15.71°±0.2°、17.48°±0.2°和18.15°±0.2°的衍射峰;更具体的,晶型B的X射线粉末衍射图谱中包含2θ角为4.52°±0.2°、5.20°±0.2°、7.12°±0.2°、9.05°±0.2°、10.15°±0.2°、10.72°±0.2°、13.34°±0.2°、13.58°±0.2°、14.26°±0.2°、14.88°±0.2°、15.15°±0.2°、15.71°±0.2°、17.48°±0.2°、18.15°±0.2°、19.72°±0.2°、20.19°±0.2°、20.35°±0.2°、21.22°±0.2°、22.74°±0.2°、23.44°±0.2°、23.99°±0.2°和32.03°±0.2°的衍射峰。
更具体的,所述晶型B具有以下特征:(1)其X射线粉末衍射图谱与图5实质上相同,和/或(2)其差示扫描量热曲线和热重分析曲线与图6实质上相同。
本发明中,本发明式(S-9)所示的胆汁酸衍生物盐的晶型方法按照前述的胆汁酸衍生物盐的制备方法即可得到,其中,第一溶剂可以为异丙醇,异丙醇与第二溶剂的体积比为1:(6~10);或者为1:(7~8);具体的,当所述第二溶剂为乙酸乙酯时,反应中,异丙醇与乙酸乙酯的体积比为1:(6~10);或者为1:(7~8)。
本发明还提供了一种式(S-9)所示的胆汁酸衍生物盐的晶型,命名为晶型C,
Figure PCTCN2021085785-appb-000008
其中,所述晶型C的X射线粉末衍射图谱包含2θ角为6.47°±0.2°、12.04°±0.2°、12.53°±0.2°、13.15°±0.2°、14.76°±0.2°的衍射峰,更具体的,所述晶型C的X射线粉末衍射图谱中包含2θ角为6.47°±0.2°、9.19°±0.2°、11.15°±0.2°、11.39°±0.2°、12.04°±0.2°、12.53°±0.2°、13.15°±0.2°、14.76°±0.2°、15.67°±0.2°、18.48°±0.2°、18.74°±0.2°和20.76°±0.2°的衍射峰;;更具体的,所述晶型C的X射线粉末衍射图谱中包含2θ角为6.47°±0.2°、9.19°±0.2°、10.47°±0.2°、11.15°±0.2°、11.39°±0.2°、12.04°±0.2°、12.53°±0.2°、13.15°±0.2°、14.76°±0.2°、15.67°±0.2°、16.06°±0.2°、17.49°±0.2°、17.85°±0.2°、18.13°±0.2°、18.48°±0.2°、18.74°±0.2°、19.19°±0.2°、19.92°±0.2°、20.76°±0.2°、21.02°±0.2°、21.91°±0.2°、23.07°±0.2°、23.90°±0.2°和24.88°±0.2°的衍射峰。
更具体的,所述晶型C具有以下特征:(1)其X射线粉末衍射图谱与图7实质上相同,和/或(2)其差示扫描量热曲线和热重分析曲线与图8实质上相同。
本发明中,本发明式(S-9)所示的胆汁酸衍生物盐的晶型按照前述的胆汁酸衍生物盐的制备方法即可得到,其中,第一溶剂可以为乙醇,且乙醇与第二溶剂的体积比优选为1:(2~5);或者为1:(3~4),当所述第二溶剂为乙酸乙酯时,反应中,乙醇与乙酸乙酯的体积比为1:(2~5);或者为1:(3~4)。
本发明还提供了一种本发明所述的胆汁酸衍生物盐或其溶剂化物或本发明所述的晶型胆汁酸衍生物盐在制备治疗或减轻FXR相关的疾病的药物中的应用;其中,所述FXR相关的疾病选自慢性肝病、代谢性疾病或门脉高压症。所述慢性肝病包括原发性胆汁淤积性 肝硬化、原发性硬化性胆管炎、肝纤维化相关疾病、药物导致的胆汁淤积、进行性家族性肝内胆汁淤积、妊娠期胆汁淤积、酒精性肝病和非酒精性脂肪性肝病中的一种或多种;所述门脉高压症选自肝纤维化、肝硬化、脾肿大或其它原因引起的门静脉压力升高;所述代谢性疾病包括高胆固醇血症、血脂异常、胆固醇结石和高甘油三酯血症。
本发明所述的药物中,既可以只有胆汁酸衍生物的盐一种药物活性成分,也可以同时包含胆汁酸衍生物的盐和其他药物化合物,用于治疗或减轻上述慢性肝病、代谢性疾病或门脉高压症等疾病。本发明提供的应用中,本发明胆汁酸衍生物的盐可以作为单独的活性试剂给药,或者可以与其它治疗剂联合给药,包括具有相同或相似治疗活性并且对于此类联合给药确定为安全且有效的其它化合物;本发明提供治疗、预防或改善疾病或病症的应用中,包括给予安全有效量的包含本发明公开的胆汁酸衍生物的盐与一种或多种治疗活性剂的联合药物。在一些实施方案中,联合药物包含一种或两种其他治疗剂。
还在另一方面,本发明提供一种用于激活FXR受体的方法,包括向有需要的个体或样本给予有效量的本发明公开的胆汁酸衍生物盐。
还在另一方面,本发明提供一种用于预防、治疗或减轻FXR相关的疾病的方法,包括向有需要的个体给予治疗有效量的本发明公开的胆汁酸衍生物的盐、晶型状态的胆汁酸衍生物的盐或本发明公开的包含胆汁酸衍生物的盐药物组合物。
定义和一般术语
除非另有说明,本发明所用在说明书和权利要求书中的术语具有下述定义。
除非另外说明,本发明所使用的所有科技术语具有与本发明所属领域技术人员的通常理解相同的含义。本发明涉及的所有专利和公开出版物通过引用方式整体并入本发明。术语“包含”,“包括”为开放式表达,即包括本发明所指明的内容,但并不排除其他方面的内容。
术语“药学上可接受的”是指物质或组合物必须与包含制剂的其它成分和/或用其治疗的哺乳动物化学上和/或毒理学上相容。
本发明所使用的术语“当量”数或其缩写“eq.”,是按照化学反应的当量关系,以每步中所用基本原料为基准(1当量),所需要的其他原材料的当量用量。
晶型在本发明中可认为由图表“描绘”的图形数据表征。这些数据包括,例如粉末X射线衍射图谱、拉曼光谱、傅立叶变换-红外光谱、DSC曲线、TGA曲线和固态NMR光谱。技术人员将理解,这类数据的图形表示可发生小的变化(例如峰相对强度和峰位置),原因是诸如仪器响应变化和样品浓度及纯度变化的因素,这对于技术人员是公知的。尽管如此,技术人员能够比较本文图中的图形数据和对未知晶型产生的图形数据,并可确认两组图形数据是否表征相同的晶型。
可用熟知的技术检测、鉴定、分类和定性多晶型物,这些技术例如但不限于:差示扫 描量热法(DSC)、热重分析法(TGA)、X射线粉末衍射法(XRPD)、单晶X射线衍射法、振动光谱法、溶液量热法、固态核磁共振法(SSNMR)、傅立叶变换红外光谱(FT-IRspectrum)法、拉曼光谱(Ramanspectrum)法、热载台光学显微术、扫描电镜术(SEM)、电子晶体学、以及定量分析、粒度分析(PSA)、表面区域分析、溶解度和溶出速度。除非另有说明,当文中提及光谱或以图形形式出现的数据(例如,XRPD、红外、拉曼和NMR谱)时,术语“峰”是指本领域的普通技术人员可识别的非背景噪音造成的峰或其它特殊特征。术语“有效峰”是指至少为光谱或数据中其它峰的中间大小(例如高度)或至少为光谱或数据中其它峰的中间大小的1.5、2或2.5倍的峰。
正如在X射线粉末衍射(XRPD)领域中所熟知的,对任何指定的晶型而言,获得X-射线粉末衍射(XRPD)图时所用装置、湿度、温度、粉末晶体的取向以及其它参数均可能引起衍射图中峰的外观、强度和位置的一些变异性。根据本试验所用仪器状况,衍射峰存在±0.2°的误差容限。
与本文提供的图2或图5或图7“实质上相同”的X-射线粉末衍射图是指本领域技术人员认为具有与图2或图5或图7的XRPD图的化合物相同的XRPD图,或更可能其可稍微不同。这样的XRPD图可不必要显示本文所呈现的衍射图的每个峰,和/或可显示由于在获得数据时涉及的条件差异而导致的所述峰的外观、强度或位移的轻微变化。本领域技术人员通过比较它们的XRPD图,能够确定结晶化合物的样品是否具有与本文公开的晶型相同的晶型或不同的晶型。类似地,本领域技术人员能够确定给出的得自XRPD图的衍射角(以°2θ表示)是否在与本文呈现的数值大致相同的位置。在本发明的上下文中,X-射线粉末衍射图中的2θ值均以度(°)为单位。
同样,正如差示扫描量热(DSC)领域中所熟知的,DSC曲线的熔化峰高取决于与样品制备和测试仪器条件等许多有关的因素,而峰位置对实验细节相对不敏感。因此,在一些实施方案中,本发明的结晶化合物的特征在于具有特征峰位置的DSC图,具有与本发明附图中提供的DSC图实质上相同的性质。根据本试验所用仪器状况和/或样品的制备情况,熔化峰存在±3℃、±4℃或±5℃的误差容限。在一些具体实施方案中,在一些具体实施方案中,本发明所述的盐酸盐晶型A在176.55℃处有一吸热峰,热焓值为56.32J/g,起始温度为170.20℃;甲磺酸盐晶型B,在137.5℃有一个吸热峰,热焓值为34.223J/g,起始温度为125.5℃;甲磺酸盐晶型C,在186℃有一个吸热峰,热焓值为57.814J/g,起始温度为180.4℃。
正如热重分析(TGA)领域中所熟知的,热重分析(TGA)是在程序控制温度下,测定物质的质量与温度关系的一种技术。TGA曲线显示的质量变化及温度范围取决于样品制备和仪器等许多因素,不同仪器以及不同样品之间,TGA的质量变化可能存在差别,失重率可能存在±5%、±4%、±3%或±2%的误差容限,因此所述的通过TGA测定的在一定温度范围 内的失重率不能视为绝对的。在一些具体实施方案中,本发明所述的盐酸盐晶型A在170℃之前温度范围内失重为2.088%;甲磺酸盐晶型B,在约130℃前有约0.66%的失重;甲磺酸盐晶型C,在约180℃前有约0.53%的失重。
X-射线粉末衍射、DSC曲线图、TGA曲线图、拉曼光谱图和傅立叶变换-红外光谱图“实质上相同”是指X-射线粉末衍射图、DSC曲线图、TGA曲线图、拉曼光谱图和傅立叶变换-红外光谱图中至少有50%,或至少60%,或至少70%,或至少80%,或至少90%,或至少95%,或至少99%的峰显示在图中。
X-射线粉末衍射图中的衍射峰的“相对强度”是指X-射线粉末衍射图(XRPD)的所有衍射峰中第一强峰的强度为100%时,其它峰的强度与第一强峰的强度的比值。
本发明所述的式(I)所示的化合物的盐酸盐晶型A以基本上纯净的结晶形态存在。
术语“基本上纯净的”是指化学纯度和晶型纯度,更具体地讲,一种晶型基本上不含另外一种或多种晶型,即晶型的纯度至少或至少80%,或至少85%,至少90%,或至少93%,或至少95%,或至少98%,或至少99%,或至少99.5%,或至少99.6%,或至少99.7%,或至少99.8%,或至少99.9%,或晶型中含有其它晶型,所述其它晶型在晶型的总体积或总重量中的百分比少于20%,或少于10%,或少于5%,或少于3%,或少于1%,或少于0.5%,或少于0.1%,或少于0.01%。
本发明的晶体的纯度可以通过,例如已知方法诸如X-射线粉末衍射学、热重分析等来测定。本发明的晶体或混合晶体的纯度不需要是100%,并且可以不低于80%,优选地不低于90%,更优选地不低于95%,并且最优选地不低于98%。优选在该范围内的纯度以保证质量。
本发明所用的术语“约”和“大约”通常是指在给定的值或范围的±10%以内,适当地在±5%以内,特别是在1%以内。或者,对于本领域普通技术人员而言,术语“约”和“大约”表示在平均值的可接受的标准误差范围内。
本发明提供的一种胆汁酸衍生物的盐、其晶型结构及它们的制备方法和应用,本发明提供的胆汁酸衍生物的盐,通过将式(I)结构的化合物和酸反应得到,结果表明,本发明通过将式(I)结构的化合物和特定的酸反应,使得得到的盐具有好的溶解性和稳定性,且同样具有FXR受体激动活性,可改善胆汁淤积,降低门脉压力,改善肝功能,可用于制备治疗或缓解慢性肝病、代谢性疾病或门脉高压症及其相关疾病的药物。
下面将结合本发明实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
化合物的结构是通过核磁共振( 1H-NMR)来确定的。 1H-NMR位移(δ)以百万分之一(ppm) 的单位给出。 1H-NMR分析采用的仪器是配备有B-ACS 120自动进样系统的Bruker Advance400。测定溶剂为氘代氯仿(CDCl 3)、氘代甲醇(CD 3OD)或者氘代二甲亚砜(DMSO-d 6)等常用的氘代溶剂。LC-MS的测定用Agilen-6120Quadrupole LC/MS质谱仪。
对所得到的盐的固体形式采用X射线粉末衍射(XRPD)进行分析。实验所得固体样品用D8advance粉末X射线衍射分析仪(Bruker)和D2phaser粉末X射线衍射分析仪(Bruker)进行分析。该仪器配备了LynxEye检测器。D8advance粉末X射线衍射分析仪(Bruker)测试样品使用Cu Kα辐射,2θ扫描角度从3°到40°,扫描步长为0.02°。测定样品时的光管电压和光管电流分别为40KV和40mA。D2phaser粉末X射线衍射分析仪(Bruker)测试样品使用Cu Kα辐射,测定样品时的光管电压和光管电流分别为30KV和10mA。
对所得到的化合物或盐的固体形式采用偏光显微镜分析(PLM),PLM分析采用的仪器型号为ECLIPSE LV100POL偏光显微镜(尼康,日本)。
对所得到的盐的固体形式采用热重分析(TGA),热重分析仪的型号为TGA Q500或Discovery TGA 55(TA,美国)。将样品置于已平衡的开口铝制样品盘中,质量在TGA加热炉内自动称量。样品以10℃/min的速率加热至最终温度。
对所得到的盐的固体形式采用差示扫描量热分析(DSC),差示扫描量热分析的仪器型号为DSC Q200或Discovery DSC 250(TA,美国)。样品经精确称重后置于DSC扎孔样品盘中,并记录下样品的准确质量。样品以10℃/min的升温速率加热至最终温度。
对所得到的盐的固体形式采用动态水分吸脱附分析(DVS)分析,动态水分吸脱附分析采用的仪器型号为IGA Sorp(Hidentity Isochema)。样品测量采用梯度模式,测试的湿度范围为0%至90%,每个梯度的湿度增量为10%。
实施例中无特殊说明,反应温度为室温;室温为20℃~30℃。
HPLC是指高效液相色谱;HPLC的测定使用安捷伦1200高压液相色谱仪(Zorbax Eclipse Plus C 18 150×4.6mm色谱柱)。
结晶型可通过多种方法制备,包括但不限于例如从适合的溶剂混合物中结晶或重结晶、升华、从另一相固态转化、从超临界流体液体结晶和喷雾等。
可在真空下过滤经冷却的结晶混合物,经分离的固体产物用适合溶剂(例如,冷的重结晶溶剂)洗涤。洗涤后,产物可在氮吹扫下干燥以得到所需的结晶型。产物可通过适合的光谱或分析技术分析,包括但不限于例如,X-射线单晶衍射分析、X-射线粉末衍射(XRPD)分析、差示扫描量热法(DSC)、热重分析(TGA)、傅立叶变换-红外光谱(FT-IR)分析和拉曼光谱(Raman spectrum)分析等。以保证化合物的结晶型已经形成。
下面简写词的使用贯穿本发明:
ACN 乙腈
DCM 二氯甲烷
EtOH 乙醇
EA,EtOH 乙酸乙酯
g 克
IPA 异丙醇
MTBE 甲基叔丁基醚
MeOH 甲醇
M,mol/L 摩尔每升,即1L溶液中所含溶质的物质的量;
mL,ml 毫升
mmol 毫摩尔;
v 体积
以下实施例中溶剂的比例,如无特殊说明,均为体积比。以下缩写
(一)制备实施例
实施例1:化合物1的合成
采用专利CN201810930184.X实施例1描述的方法制备得到类白色固体化合物1。该固体用偏光显微镜分析(PLM),无双折射现象,其DSC-TGA谱图如图1所示,DSC两个吸热峰起始温度分别位于41.6℃和72.6℃。TGA显示在100℃前失重6.2%。DVS显示在湿度10%~90%条件下,吸湿1.933%~7.0146%。化合物1熔点低,易吸湿,不利于制剂。XRPD显示该固体为无定型状态,且实施例1化合物熔点较低,不利于制剂。
实施例2 化合物1盐酸盐的制备
在室温下将实施例1化合物(1.0eq.)加入到40-60μL MeOH中搅拌将其溶解,然后加入1.5μL盐酸(,1.0eq.)搅拌,未析出固体,然后加入100μL ACN,未析出固体。反应瓶加盖后室温下缓慢挥发,得到固体,对所得固体样品进行检测。XRPD显示该固体没有明显衍射峰,为无定型形态。
UPLC-MS:(m/z):590.3610[M+H] +
1H-NMR(DMSO-d 6,400MHz,ppm):8.98(d,J=6.8Hz,2H),8.03(d,J=6.8Hz,2H),6.02(t,J=2.8Hz,1H),4.59(m,1H),4.47(m,1H),4.16(m,2H),3.50(brs,1H),3.14(m,1H),2.42(m,1H),2.16(m,1H),1.91(m,1H),1.81(m,2H),1.77(m,1H),1.76(m,1H),1.72(m,1H),1.70(m,1H),1.53(m,1H),1.50(m,1H),1.47(m,1H),1.45(m,1H),1.42(m,2H),1.39(m,1H),1.32(m,1H),1.30(m,1H),1.27(m,1H),1.19(m,1H),1.18(m,1H),1.17(m,1H),1.16(m,1H),1.14(m,1H),1.10(m,1H),0.99(m,1H),0.94(d,3H),0.89(m,1H),0.82(m,6H),0.60(s,3H);
13C-NMR(DMSO-d 6,400MHz,ppm):157.56、157.47、143.20、123.65、77.78、77.73、71.04、68.82、67.50、67.45、67.33、67.26、56.12、50.58、45.78、42.54、41.75、40.41、39.78、36.28、36.22、35.99、35.65、33.99、33.11、32.71、32.26、32.19、30.89、28.40、23.55、23.52、22.63、20.87、18.82、12.18、12.09;
P-NMR:(DMSO-d 6,162MHz,ppm):–6.07。
根据 1H-NMR结果,可看出吡啶环上的4个氢发生明显化学位移,提示吡啶环有电子转移,形成了盐酸盐。
DSC检测此方法制备得到的化合物1盐酸盐无定型固体粗品在约84.3,109.0,132.0℃有三个起始吸热峰;因此成盐后固体熔点较化合物1有明显提高。
TGA检测此方法制备得到的化合物1盐酸盐无定型固体粗品在约140℃有2.4%的失重。
实施例3:化合物1盐酸盐晶型A制备
将化合物1(1.0g)加入到2-3mL异丙醇中,在40-60℃条件下搅拌,待溶清后加入150μL盐酸(1.05eq.)。然后缓慢加入6-10mL EtOAc。搅拌后有固体析出,继续搅拌2-4h后缓慢降温,降至室温后继续搅拌1-2h,过滤,所得固体60-70℃干燥过夜。
(1) 1H-NMR检测结果与实施例2基本一致,吡啶环上的4个氢发生明显化学位移,证明形成了盐酸盐。对上述方法制备得到的化合物1盐酸盐进一步进行检测。
(2)岛津离子色谱系统,PDM-IC-001测定氯离子含量,结果显示样品中氯离子含量为5.6%,理论上,单盐酸盐中氯离子含量为5.8%,因此结果表明本方法制备得到了实施例2化合物1盐酸盐,且化合物1与盐酸的化学计量比为1:1。
(3)X-射线粉末衍射:将所得固体进行XRPD检测,得到的谱图见附图2,图2中具有明显的衍射峰,表明该固体为晶型状态,认定其为化合物1的盐酸盐晶型A,其具体数据结果如下表2所示,衍射峰位置可存在±0.2°的误差容限。
表2 晶型A的X-射线粉末衍射分析结果
Figure PCTCN2021085785-appb-000009
Figure PCTCN2021085785-appb-000010
(4)DSC检测实施例3制备得到的化合物1盐酸盐晶型A,得到DSC曲线谱图见附图3。
晶型A在约176.55℃处有一吸热峰,热焓值为56.32J/g,起始温度(onset)为170.20℃,可认为化合物的熔点为170℃,相较于成盐之前的化合物1和盐酸盐无定型均有明显提高。
(5)TGA检测实施例3制备得到的化合物1盐酸盐晶型A,得到TGA曲线谱图见附图4。
显示该样品在大约170℃前,有2.088%的失重,表明样品不含结晶水。
结晶方法的一些等效条件替换,得到的盐酸盐固体可能会显示出有差异的XRPD图谱,有时会显示出额外的峰,但是在TGA和DSC上显示出相似的热学性能。这些在XRPD上的差异是由结晶度和择优取向等原因引起的。当晶型溶残含量不同时,得到的盐酸盐晶型A固体可能会在TGA和DSC上显示出有差异的热学性能,只要包含上表2中的主要衍射峰9.58°±0.2°、13.79°±0.2°、16.81°±0.2°、19.19°±0.2°,或者包含主要衍射峰6.68°±0.2°、9.58°±0.2°、11.37°±0.2°、13.30°±0.2°、13.79°±0.2°、16.81°±0.2°和19.19°±0.2°,或者包含主要衍射峰6.68°±0.2°、9.58°±0.2°、11.37°±0.2°、11.72°±0.2°、13.30°±0.2°、13.79°±0.2°、14.78°±0.2°、15.96°±0.2°、16.81°±0.2°、17.89°±0.2°、19.19°±0.2°、20.02°±0.2°、20.71°±0.2°、21.75°±0.2°、24.61°±0.2°和28.96°±0.2°就认为获得的是盐酸盐晶型A。
将化合物与合适的酸通过离子键或共价键相结合,可以改变分子中的电荷分布,调整活性分子的理化性质,并且成盐后更利于获得多样化的固体形式。按照本实施例的制备方法获得的盐酸盐晶型A,根据DSC曲线可以发现,晶型A较实施例2制备的盐酸盐无定型的熔点有显著的提高。
实施例4:草酸盐的制备
室温条件下,将10.9mg的实施例1化合物加入到40-60μL MeOH中搅拌将其溶解,然后加入1.665mg草酸,未析出固体。然后加入120-150μL EtOAc,未析出固体。挥干溶剂,然后对其所得固体样品进行表征。XRPD显示该固体只有1个明显衍射峰,基本为无定型形态。
换用异丙醇/乙酸乙酯(v/v)=1:3,乙醇/乙酸乙酯(v/v)=1:3,均未得到含晶型的产品。
实施例5:L-酒石酸盐的制备
室温条件下,将10.9mg的实施例1化合物加入到120-150μL IPA/DCM(v/v=2:1)溶液中,40-50℃加热中搅拌将其溶解,然后加入L-酒石酸(2.8mg,1.0eq.),未析出固体。然后加入300-400μL EtOAc,未析出固体。XRPD显示该固体为无定型形态。
换用异丙醇/甲基叔丁基醚(v/v)=1:3,乙醇/乙酸乙酯(v/v)=1:3,甲醇/乙酸异丙酯(v/v)=1:4均未得到含晶型的产品。
实施例6:对甲苯磺酸盐制备
室温条件下,将10.4mg的实施例1化合物加入到50-60μL异丙醇中,40-50℃加热中 搅拌将其溶解,然后加入对甲苯磺酸一水合物(3.4mg,1.0eq.),未析出固体。然后加入150-200μL EtOAc,有粘稠状样品出现,未析出固体。蒸干溶剂后得到固体, 1H-NMR(DMSO-d 6,400MHz)可检测到对甲苯磺酸的苯环氢信号以及化合物1的吡啶环氢信号的位移,可以说明成盐。
实施例7:富马酸盐制备
室温条件下,将10.8mg的实施例1化合物加入到50-60μL异丙醇中,40-50℃加热中搅拌将其溶解,然后加入对富马酸(2.0mg,1.0eq.),未析出固体。然后加入150-200μL EtOAc,有粘稠状样品出现,未析出固体。XRPD显示该固体为无定型形态。
换用异丙醇/二氯甲烷(v/v)=1:4,乙醇/丙酮(v/v)=1:6,甲醇/乙酸异丙酯(v/v)=1:4均未得到含晶型的产品。
实施例8:马来酸盐制备
室温条件下,将10.2mg的实施例1化合物加入到50-60μL异丙醇中,40-50℃加热中搅拌将其溶解,然后加入对马来酸(2.0mg,1.0eq.),未析出固体。然后加入120-150μL 2-丁酮,有粘稠状样品出现,未析出固体。
实施例9:甲磺酸盐制备方法一
室温条件下,将100.9mg(0.17mmol)的实施例1化合物加入到100-120μL异丙醇中搅拌将其溶解,然后加入11μL甲磺酸(0.17mmol,1.0eq.),加入乙酸乙酯700-800μL后有粘稠状样品出现,搅拌2-3天后得到固体,在40-50℃条件下加入100-150μL乙醇将溶液澄清,搅拌2-4小时得到固体。X-射线单晶衍射(XRPD)检测显示该固体为晶型形式,认定其为化合物1的甲磺酸盐晶型B。
(1) 1H-NMR(DMSO-d 6,400MHz,ppm):8.89(d,J=6Hz,2H),7.88(d,J=6Hz,2H),5.95(m,1H),4.52-4.62(m,1H),4.42-4.50(m,1H),4.13-4.18(m,2H),3.50(brs,1H),3.14(m,1H),2.38(m,1H),2.34(s,3H),2.16(m,1H),1.92(m,1H),1.81(m,2H),1.77(m,1H),1.76(m,1H),1.72(m,1H),1.71(m,1H),1.51(m,1H),1.50(m,1H),1.47(m,1H),1.45(m,1H),1.42(m,2H),1.39(m,1H),1.32(m,1H),1.30(m,1H),1.27(m,1H),1.19(m,1H),1.18(m,1H),1.17(m,1H),1.16(m,1H),1.14(m,1H),1.10(m,1H),0.99(m,1H),0.94(d,3H),0.90(m,1H),0.84(m,6H),0.61(s,3H)。
氢谱中包含甲磺酸的甲基信号,且观察到吡啶环4个氢的明显化学位移,形成了甲磺酸盐。
(2)化合物1甲磺酸盐晶型B的XRPD谱图见附图5。XRPD谱图中具有明显的衍射峰,表明该固体为晶型状态,本实施例制备得到的甲磺酸盐晶型B,其具体数据结果如下表3所示,峰位置可存在±0.2°的误差容限。
表3 晶型B的X-射线粉末衍射分析结果
Figure PCTCN2021085785-appb-000011
Figure PCTCN2021085785-appb-000012
(3)TGA检测实施例9制备得到的甲磺酸盐晶型B,在约130℃前有约0.66%的失重,表明样品不含结晶水。
(4)DSC检测实施例9制备得到的甲磺酸盐晶型B,在137.5℃有一个吸热峰,热焓值为34.223J/g,起始温度为125.5℃,可认为该晶型的熔点在约125.5℃。TGA和DSC的复合谱图见附图6。
晶型溶残含量不同,得到的甲磺酸盐固体可能会在TGA和DSC上显示出有差异的热学性能,或者显示出有差异的XRPD图谱,有时会显示出额外的峰,但是只要包含上表3中的2θ角为4.52°±0.2°、5.20°±0.2°、13.34°±0.2°、13.58°±0.2°、14.88°±0.2的主要衍射峰,或者4.52°±0.2°、5.20°±0.2°、7.12°±0.2°、9.05°±0.2°、13.34°±0.2°、13.58°±0.2°、14.88°±0.2°、15.71°±0.2°、17.48°±0.2°和18.15°±0.2°的主要衍射峰,或者包含2θ角为4.52°±0.2°、5.20°±0.2°、7.12°±0.2°、9.05°±0.2°、10.15°±0.2°、10.72°±0.2°、13.34°±0.2°、13.58°±0.2°、14.26°±0.2°、14.88°±0.2°、15.15°±0.2°、15.71°±0.2°、17.48°±0.2°、18.15°±0.2°、19.72°±0.2°、20.19°±0.2°、20.35°±0.2°、21.22°±0.2°、22.74°±0.2°、23.44°±0.2°、23.99°±0.2°和32.03°±0.2°的主要衍射峰就认为获得的是甲磺酸盐晶型B。
实施例10:甲磺酸盐制备方法二
室温条件下,将30.5mg(0.0517mmol)的实施例1化合物加入到100-120μL乙醇中搅拌将其溶解,然后加入3.35μL甲磺酸(0.0517mmol,1.0eq.),在40-50℃条件下加入300-400μL乙酸乙酯后有粘稠状样品出现,搅拌30-60min后有固体产生。X-射线单晶衍射(XRPD)检测显示该固体为晶型形式,本实施例制备得到的晶型即甲磺酸盐晶型C。
(1) 1H-NMR(DMSO-d 6,400MHz,ppm):与实施例9一致。
(2)制备实施例10得到的甲磺酸盐晶型C的XRPD谱图见附图7。
XRPD谱图中具有明显的衍射峰,表明该固体为晶型状态,认定其为化合物1的甲磺酸盐晶型C,其具体数据结果如下表4所示,峰位置可存在±0.2°的误差容限。
表4 晶型C的X-射线粉末衍射分析结果
Figure PCTCN2021085785-appb-000013
Figure PCTCN2021085785-appb-000014
(3)TGA检测实施例10制备得到的甲磺酸盐晶型C,在约180℃前有约0.53%的失重,表明样品不含结晶水。
(4)DSC检测实施例10制备得到的甲磺酸盐晶型C,在186℃有一个吸热峰,热焓值为57.814J/g,起始温度为180.4℃,可认为该晶型的熔点在约180℃。TGA和DSC的复合谱图见附图8。甲磺酸盐晶型B晶型和C晶型的TGA和DSC数据表明,晶型C相对于晶型B具有更好的热稳定性。
晶型溶残含量不同,得到的甲磺酸盐固体可能会在TGA和DSC上显示出有差异的热学性能,或者显示出有差异的XRPD图谱,有时会显示出额外的峰,但是只要包含上表4中2θ角为6.47°±0.2°、12.04°±0.2°、12.53°±0.2°、13.15°±0.2°、 14.76°±0.2°的主要衍射峰;或者包含2θ角为6.47°±0.2°、9.19°±0.2°、11.15°±0.2°、11.39°±0.2°、12.04°±0.2°、12.53°±0.2°、13.15°±0.2°、14.76°±0.2°、15.67°±0.2°、18.48°±0.2°、18.74°±0.2°和20.76°±0.2°的主要衍射峰,或者6.47°±0.2°、9.19°±0.2°、10.47°±0.2°、11.15°±0.2°、11.39°±0.2°、12.04°±0.2°、12.53°±0.2°、13.15°±0.2°、14.76°±0.2°、15.67°±0.2°、16.06°±0.2°、17.49°±0.2°、17.85°±0.2°、18.13°±0.2°、18.48°±0.2°、18.74°±0.2°、19.19°±0.2°、19.92°±0.2°、20.76°±0.2°、21.02°±0.2°、21.91°±0.2°、23.07°±0.2°、23.90°±0.2°和24.88°±0.2°的主要衍射峰就认为获得的是甲磺酸盐晶型C。
实施例11:化合物1盐酸盐晶型A与甲磺酸盐晶型的稳定性对比
化合物1的DVS显示在湿度10~90%,吸湿1.933%~7.0146%,该化合物引湿性强不利于保存,得到盐固体形式之后采用动态水分吸脱附分析(DVS)进行分析,对比盐酸盐晶型A和甲磺酸盐晶型C的吸湿性,结果见表5。
表5:化合物1盐酸盐晶型A和甲磺酸盐晶型C的DVS分析结果
Figure PCTCN2021085785-appb-000015
根据上表可知:(1)盐酸盐晶型A整体引湿性小于甲磺酸盐晶型C,(2)盐酸盐晶型A的引湿性在相对湿度低于75%时较小,(3)吸湿后的盐酸盐晶型A仍可以保持晶型状态;盐酸盐晶型A的吸湿性弱于甲磺酸盐晶型C,盐酸盐晶型A吸湿后稳定性优于甲磺酸盐晶型C。
实施例12:化合物盐酸盐晶型A对于热处理和研磨的稳定性
将晶型A在DSC中程序升温至100℃加热或在80℃保持24h,得到的样品XRPD检测结果如图9所示,XRPD图谱显示所得样品主要衍射峰皆没有发生变化。
将一定量的盐酸盐晶型A加入到研钵中并在室温下研磨5分钟,得到的样品XRPD检测结果如图10所示,XRPD图谱显示所得样品主要衍射峰皆没有发生变化。
综上实施例12和13的研究结果,盐酸盐晶型A较化合物1熔点显著升高,且对于升温和研磨均可以保持稳定晶型;盐酸盐晶型A的吸湿性弱于甲磺酸盐晶型C,并且吸湿后甲磺酸盐晶型C变为无定型,而盐酸盐晶型A仍可保持晶型状态,从储存和加工方面考虑,盐酸盐晶型A的固体形式更适于进一步开发。
(二)效果实施例
效果实施例1:化合物1及实施例3制备得到的盐酸盐对17α-乙炔基雌二醇(E2-17α)诱导大鼠胆汁淤积作用
实验方法:E2-17α颈部皮下注射给药,造模7天同时灌胃给予受试化合物,最后一天给药后,大鼠禁食不禁水,次日实验,24h后处理。20%乌拉坦(7ml/kg)腹腔注射麻醉大鼠。麻醉后固定于鼠板上,自上腹部剑突部位向下作腹正中切口,切口3~4cm,分离胆总管,用PE-10聚乙烯导管(内径0.28mm,外径0.61mm)进行胆管插管手术。术中用暖灯、空调将体重维持在37℃~38℃之间防止低温胆汁流速变化。插管完成后,缝合皮肤,防止腹腔水分蒸发,胆管插管的另一端引出,流到固定好的0.2mL收集管中,每15min采集1次连续收集8次。
实验前精密称取并记录胆汁收集管重量记B 1,实验收集完胆汁后称取胆汁与收集管总重记A 2,相减计算出管内胆汁重量,按照1g/mL换算成体积。每组大鼠胆汁分泌量以均数±标准差(Mean土S.D)表示。
胆汁流速计算(μL/kg/min)=(A 2-B 1)×1000000/体重
收集完胆汁,大鼠下腔静脉采血,血样室温静置2h,离心4000rpm×15min,常规分离血清检测ALT、AST、ALP,剩余血清分装收集并放入–20℃冷冻保存待后检测。
实验结果表明化合物1盐酸盐在促进胆汁排泄效果方面优于化合物1,与E2-17α组相比化合物1和化合物1盐酸盐促进胆汁排泄作用强度显著增加。化合物1及其盐酸盐的胆汁排出量在给药后120分钟后,仍高于模型组(E 2-17α组)。化合物1及其盐酸盐对于胆汁排泄障碍相关疾病具有治疗作用。
效果实施例2:化合物1的盐酸盐对AMLN饮食诱导的ob/ob小鼠NASH药效作用
试验方法:(1)C57小鼠和ob/ob小鼠,适应性饲养1周。①C57小鼠给予LFD饮食(正常小鼠组),ob/ob小鼠分为两组:②15只给予LFD饮食(空白对照组)、剩余给予AMLN饮食(含40kcal%脂肪,20kcal%果糖和2%胆固醇),饲养14周。(2)抽样检测病理:C57+LFD饮食组(n=3),ob/ob+AMLN饮食组(n=3),根据NAFLD活动度积分评价肝脏病变,推测模型构建程度;ob/ob+AMLN饮食组小鼠检测空腹血糖(FBG);眼眶采血,分离取血清,检测血清中ALT和胰岛素(INS)(3)根据HOMA-IR=INS(μU/mL)×FBG(mM)/22.5计算胰岛素抵抗程度(HOMA-IR)。
实验结果表明化合物1盐酸盐能显著降低AMLN饮食诱导的Lep ob/Lep ob小鼠NASH模型NASH总评分,降低AMLN饮食诱导的Lep ob/Lep ob小鼠NASH模型小叶内炎症和肝细胞气球样变,抑制NASH病程进一步发展,且能明显降低NASH小鼠肝纤维化。化合物1盐酸盐还能明显降低小鼠血清中ALT,AST水平,表现出对NASH小鼠肝损伤的修复和保护作用。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本 技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (15)

  1. 一种胆汁酸衍生物的盐,通过将式(I)结构的化合物和酸反应得到;或胆汁酸衍生物的盐的溶剂化物,
    Figure PCTCN2021085785-appb-100001
    其中,R 1为氢、取代的或未被取代的C1~C12烷基或者卤素;
    各R 2独立地选自取代的或未被取代的C1~C12烷基、卤素、氰基、羟基、硝基、磺酸基和羧基中的任意一种或多种;
    m为0、1、2、3或4;
    各R 3独立地选自取代的或未被取代的C1~C12烷基、卤素、羟基、C6~C30的芳基中的一种或多种;
    n为0、1、2、3、4或5;
    所述酸为无机酸或有机酸;
    所述无机酸选自盐酸;
    所述有机酸选自甲磺酸、草酸、对甲苯磺酸、L-酒石酸、富马酸或马来酸盐。
  2. 根据权利要求1所述的胆汁酸衍生物的盐,其特征在于,所述R 1为氢、取代的或未被取代的C2~C6烷基或者卤素,或者R 1为氢、氟、氯、溴、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基或正己基。
  3. 根据权利要求1所述的胆汁酸衍生物的盐,其特征在于,各R 2独立地选自取代的或未被取代的C2~C6烷基、卤素、氰基、羟基、硝基、磺酸基和羧基中的任意一种或多种,或者各R 2独立地为氟、氯、溴、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、羟基、硝基、磺酸基和羧基。
  4. 根据权利要求1所述的胆汁酸衍生物的盐,其特征在于,各R 3独立地选自取代的或未被取代的C2~C6烷基、卤素、羟基、C6~C18的芳基中的一种或多种,或者各R 3独立地为氟、氯、溴、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、正己基、羟基、苯基、萘基、蒽基或菲基。
  5. 根据权利要求1所述的胆汁酸衍生物的盐,其特征在于,所述式(I)所示化合物 为式(F-1),式(F-2),式(F-3),式(F-4),式(F-5),式(F-6),式(F-7)、式(F-8),(F-9),式(F-10),式(F-11),式(F-12),(F-13),式(F-14),式(F-15),式(F-16),(F-17),式(F-18),式(F-19),式(F-20),(F-21),式(F-22),式(F-23),式(F-24),(F-25),式(F-26),式(F-27),式(F-28),(F-29),式(F-30),式(F-31)或式(F-32),
    Figure PCTCN2021085785-appb-100002
    Figure PCTCN2021085785-appb-100003
    Figure PCTCN2021085785-appb-100004
  6. 根据权利要求1所述的胆汁酸衍生物的盐,其特征在于,所述胆汁酸衍生物的盐为式(F-1),式(F-2),式(F-3),式(F-4),式(F-5),式(F-6),式(F-7)、式(F-8),(F-9),式(F-10),式(F-11),式(F-12),(F-13),式(F-14),式(F-15),式(F-16),(F-17),式(F-18),式(F-19),式(F-20),(F-21),式(F-22),式(F-23),式(F-24),(F-25),式(F-26),式(F-27),式(F-28),(F-29),式(F-30),式(F-31)或式(F-32)的盐酸、甲磺酸、草酸、对甲苯磺酸、L-酒石酸、富马酸或马来酸盐。
  7. 一种胆汁酸衍生物的盐的制备方法,包括:
    将式(I)所示的化合物、第一溶剂和酸混合反应,得到胆汁酸衍生物的盐;
    Figure PCTCN2021085785-appb-100005
    其中,R 1为氢、取代的或未被取代的C1~C12烷基或者卤素;
    各R 2独立地选自取代的或未被取代的C1~C12烷基、卤素、羟基、硝基、磺酸基和羧基中的任意一种或多种;
    m为0、1、2、3或4;
    各R 3独立地选自取代的或未被取代的C1~C12烷基、卤素、羟基、C6~C30的芳基中的一种或多种;
    n为0、1、2、3、4或5;
    所述酸为无机酸或有机酸;
    所述无机酸选自盐酸;
    所述有机酸选自甲磺酸、草酸、对甲苯磺酸、L-酒石酸、富马酸或马来酸盐;
    所述第一溶剂为甲醇、乙醇、异丙醇、异丁醇、2-丁酮、四氢呋喃、二氯甲烷、乙腈、甲基叔丁基醚、丙酮、乙酸乙酯、甲酸甲酯、乙酸异丙酯或正己烷中的一种或几种。
  8. 根据权利要求7所述的制备方法,其特征在于,将式(I)所示的化合物、反应溶剂和酸混合反应,反应完毕后,加入第二溶剂,得到胆汁酸衍生物的盐;
    其中,所述第二溶剂为乙酸乙酯、乙腈、二氯甲烷、甲基叔丁基醚、丙酮、甲酸甲酯、乙酸异丙酯或四氢呋喃中的一种或几种,且所述第二溶剂与第一溶剂极性不同;
    所述第一溶剂与第二溶剂的体积比为1:(1~7)。
  9. 一种式(S-1)所示胆汁酸衍生物的盐的晶型,命名为晶型A,
    Figure PCTCN2021085785-appb-100006
    所述晶型A的X射线粉末衍射图谱中包含2θ角为9.58°±0.2°、13.79°±0.2°、16.81°±0.2°、19.19°±0.2°的衍射峰;
    或者所述晶型A的X射线粉末衍射图谱包含2θ角为6.68°±0.2°、9.58°±0.2°、11.37°±0.2°、13.30°±0.2°、13.79°±0.2°、16.81°±0.2°和19.19°±0.2°的衍射峰;
    或者所述晶型A的差示扫描量热曲线包含176.5℃±3℃的吸热峰;
    或者其X射线粉末衍射图谱与图2实质上相同;
    或者其差示扫描量热曲线与图3实质上相同。
  10. 一种式(S-9)所示胆汁酸衍生物的盐的晶型,为晶型B,
    Figure PCTCN2021085785-appb-100007
    所述晶型B的X射线粉末衍射图谱中包含2θ角为4.52°±0.2°、5.20°±0.2°、13.34°±0.2°、13.58°±0.2°、14.88°±0.2的衍射峰;
    或者,所述晶型B的X射线粉末衍射图谱包含2θ角为4.52°±0.2°、5.20°±0.2°、7.12°±0.2°、9.05°±0.2°、13.34°±0.2°、13.58°±0.2°、14.88°±0.2°、15.71°±0.2°、17.48°±0.2°和18.15°±0.2°的衍射峰;
    或者,晶型B的X射线粉末衍射图谱与图5实质上相同;
    或者,晶型B的差示扫描量热曲线和热重分析曲线与图6实质上相同。
  11. 一种式(S-9)所示胆汁酸衍生物的盐的晶型,为晶型C,
    Figure PCTCN2021085785-appb-100008
    所述晶型C的X射线粉末衍射图谱包含2θ角为6.47°±0.2°、12.04°±0.2°、12.53°±0.2°、13.15°±0.2°、14.76°±0.2°的衍射峰;
    或者,所述晶型C的X射线粉末衍射图谱包含2θ角为6.47°±0.2°、9.19°±0.2°、11.15°±0.2°、11.39°±0.2°、12.04°±0.2°、12.53°±0.2°、13.15°±0.2°、14.76°±0.2°、15.67°±0.2°、18.48°±0.2°、18.74°±0.2°和20.76°±0.2°衍射峰;
    或者,晶型C的X射线粉末衍射图谱与图7实质上相同;
    或者,晶型C其差示扫描量热曲线和热重分析曲线与图8实质上相同。
  12. 一种药物组合物,包括:权利要求1~6任意一项所述的胆汁酸衍生物的盐或其溶剂化物和/或权利要求9~11任意一项所述的晶型胆汁酸衍生物盐以及药学上可接受的辅料。
  13. 一种权利要求1~6任意一项所述的胆汁酸衍生物的盐或其溶剂化物或权利要求9~11任意一项所述的晶型胆汁酸衍生物的盐在制备预防、治疗或减轻FXR相关的疾病的药 物中的应用。
  14. 根据权利要求13所述的应用,其特征在于,所述FXR相关的疾病选自慢性肝病、代谢性疾病或门脉高压症。
  15. 根据权利要求14所述的应用,其特征在于,所述慢性肝病包括原发性胆汁淤积性肝硬化、原发性硬化性胆管炎、肝纤维化相关疾病、药物导致的胆汁淤积、进行性家族性肝内胆汁淤积、妊娠期胆汁淤积、酒精性肝病和非酒精性脂肪性肝病中的一种或多种;所述门脉高压症选自肝纤维化、肝硬化、脾肿大或其它原因引起的门静脉压力升高;所述代谢性疾病包括高胆固醇血症、血脂异常、胆固醇结石和高甘油三酯血症。
PCT/CN2021/085785 2020-04-08 2021-04-07 胆汁酸衍生物盐、其晶型结构及它们的制备方法和应用 WO2021204142A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202180006768.8A CN114787175B (zh) 2020-04-08 2021-04-07 胆汁酸衍生物盐、其晶型结构及它们的制备方法和应用
CA3162945A CA3162945A1 (en) 2020-04-08 2021-04-07 Bile acid derivative salt, crystal structure thereof, preparation method therefor and use thereof
KR1020227018193A KR20220088934A (ko) 2020-04-08 2021-04-07 담즙산 유도체 염, 그의 결정 구조, 그의 제조 방법 및 그의 용도
AU2021251935A AU2021251935B2 (en) 2020-04-08 2021-04-07 Bile acid derivative salt, crystal structure thereof, preparation method therefor and use thereof
JP2022530836A JP2023504015A (ja) 2020-04-08 2021-04-07 胆汁酸誘導体塩、その結晶形構造及びそれらの製造方法と使用
EP21783953.9A EP4053143A4 (en) 2020-04-08 2021-04-07 BILE ACID DERIVATIVE SALT, CRYSTAL STRUCTURE THEREOF, PREPARATION METHOD AND USE THEREOF
US17/779,979 US20230054001A1 (en) 2020-04-08 2021-04-07 Bile acid derivative salt, crystal structure thereof, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010272501.0A CN113493485A (zh) 2020-04-08 2020-04-08 胆汁酸衍生物盐、其晶型结构及它们的制备方法和应用
CN202010272501.0 2020-04-08

Publications (1)

Publication Number Publication Date
WO2021204142A1 true WO2021204142A1 (zh) 2021-10-14

Family

ID=77994770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085785 WO2021204142A1 (zh) 2020-04-08 2021-04-07 胆汁酸衍生物盐、其晶型结构及它们的制备方法和应用

Country Status (8)

Country Link
US (1) US20230054001A1 (zh)
EP (1) EP4053143A4 (zh)
JP (1) JP2023504015A (zh)
KR (1) KR20220088934A (zh)
CN (2) CN113493485A (zh)
AU (1) AU2021251935B2 (zh)
CA (1) CA3162945A1 (zh)
WO (1) WO2021204142A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104672290A (zh) * 2015-01-05 2015-06-03 北京普禄德医药科技有限公司 一种用于预防或治疗fxr-介导的疾病的药物及其制备方法和用途
WO2016045480A1 (zh) * 2014-09-28 2016-03-31 上海源力生物技术有限公司 一种奥贝胆酸的制备方法
WO2016086115A1 (en) * 2014-11-26 2016-06-02 Enanta Pharmaceuticals, Inc. Tetrazole derivatives of bile acids as fxr/tgr5 agonists and methods of use thereof
WO2016173524A1 (zh) * 2015-04-29 2016-11-03 正大天晴药业集团股份有限公司 鹅去氧胆酸衍生物
WO2019119832A1 (zh) * 2017-12-19 2019-06-27 西安奥立泰医药科技有限公司 用于代谢性疾病治疗的化合物及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045480A1 (zh) * 2014-09-28 2016-03-31 上海源力生物技术有限公司 一种奥贝胆酸的制备方法
WO2016086115A1 (en) * 2014-11-26 2016-06-02 Enanta Pharmaceuticals, Inc. Tetrazole derivatives of bile acids as fxr/tgr5 agonists and methods of use thereof
CN104672290A (zh) * 2015-01-05 2015-06-03 北京普禄德医药科技有限公司 一种用于预防或治疗fxr-介导的疾病的药物及其制备方法和用途
WO2016173524A1 (zh) * 2015-04-29 2016-11-03 正大天晴药业集团股份有限公司 鹅去氧胆酸衍生物
WO2019119832A1 (zh) * 2017-12-19 2019-06-27 西安奥立泰医药科技有限公司 用于代谢性疾病治疗的化合物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CRAWLEYEXPERT OPINION THER, PATENTS, vol. 20, no. 8, 2010, pages 1047 - 1057
See also references of EP4053143A4

Also Published As

Publication number Publication date
AU2021251935B2 (en) 2023-05-18
JP2023504015A (ja) 2023-02-01
EP4053143A4 (en) 2024-02-21
CN113493485A (zh) 2021-10-12
KR20220088934A (ko) 2022-06-28
EP4053143A1 (en) 2022-09-07
US20230054001A1 (en) 2023-02-23
CN114787175B (zh) 2024-08-02
AU2021251935A1 (en) 2022-06-16
CN114787175A (zh) 2022-07-22
CA3162945A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
TWI232868B (en) 9alpha-chloro-6alpha-fluoro-17alpha-hydroxy-16-methyl-17beta-methoxycarbonyl-androst-1,4-dienes esterified in position 17alpha by a cyclic acyl group, pharmaceutical compositions having anti-flammatory activity comprising the same, process for
WO2021244323A1 (zh) 一种乌帕替尼的晶型及其制备方法和用途
WO2016095702A1 (zh) 灯盏乙素苷元晶型及其制备方法
WO2018103726A1 (zh) 一种溴结构域蛋白抑制剂药物的晶型及其制备方法和用途
WO2022258060A1 (zh) 一种lanifibranor的晶型及其制备方法
WO2015176591A1 (zh) 贝曲西班盐及其制备方法和用途
WO2017025045A1 (zh) 3-(6-(1-(2,2-二氟苯并[d][1,3]间二氧杂环戊烯-5-基)环丙烷甲酰氨基)-3-甲基吡啶-2-基)苯甲酸的新晶型及其制备方法
WO2021204142A1 (zh) 胆汁酸衍生物盐、其晶型结构及它们的制备方法和应用
WO2019210511A1 (zh) 一种s1p1受体激动剂的加成盐及其晶型和药物组合物
WO2018086608A1 (zh) 一种GnRH受体拮抗剂的结晶形式及其制备方法
WO2022166767A1 (zh) Ha抑制剂化合物的盐及晶型
WO2023193563A1 (zh) 一种噻吩并吡啶化合物的晶型a、制备方法及其药物组合物
CN112778290B (zh) 一种s1p1受体激动剂的加成盐及其晶型和药物组合物
WO2018024236A1 (zh) 一种jak1选择性抑制剂的新晶型及其制备方法和用途
WO2019019130A1 (zh) 含恩替诺特的化合物,其化合物晶型及其制备方法和药物组合物
WO2022194073A1 (zh) 一种1,2,4-三嗪-3,5-二酮类化合物的盐型、晶型及其制备方法
CN110218209B (zh) 一种依匹哌唑月桂酸酯的晶型a、其制备方法及应用
WO2022206968A1 (zh) 一种GnRH受体拮抗剂的结晶形式及其制备方法
WO2015096119A1 (zh) 氯卡色林盐及其晶体、其制备方法和用途
WO2019015640A1 (zh) 一种氮杂环酰胺衍生物的盐、其晶型及其制备方法和用途
WO2022194160A1 (zh) 非索替尼固体形式及其制备方法
WO2024169896A1 (zh) 一种苯并氮杂芳环衍生物的盐、晶型及其在医药上的应用
WO2016155631A1 (zh) 托吡司他的新晶型及其制备方法
WO2011027988A2 (en) Novel polymorphic form of prasugrel-hydrogen sulfate
WO2019086008A1 (zh) 一种苯并三氮唑衍生物的晶型及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530836

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3162945

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227018193

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021783953

Country of ref document: EP

Effective date: 20220526

ENP Entry into the national phase

Ref document number: 2021251935

Country of ref document: AU

Date of ref document: 20210407

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE