[go: up one dir, main page]

WO2021193637A1 - Fundamental frequency estimation device, active noise control device, fundamental frequency estimation method, and fundamental frequency estimation program - Google Patents

Fundamental frequency estimation device, active noise control device, fundamental frequency estimation method, and fundamental frequency estimation program Download PDF

Info

Publication number
WO2021193637A1
WO2021193637A1 PCT/JP2021/012001 JP2021012001W WO2021193637A1 WO 2021193637 A1 WO2021193637 A1 WO 2021193637A1 JP 2021012001 W JP2021012001 W JP 2021012001W WO 2021193637 A1 WO2021193637 A1 WO 2021193637A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
unit
peak
fundamental frequency
amplitude spectrum
Prior art date
Application number
PCT/JP2021/012001
Other languages
French (fr)
Japanese (ja)
Inventor
僚太 大川
Original Assignee
株式会社トランストロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トランストロン filed Critical 株式会社トランストロン
Publication of WO2021193637A1 publication Critical patent/WO2021193637A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/165Spectrum analysis; Fourier analysis using filters
    • G01R23/167Spectrum analysis; Fourier analysis using filters with digital filters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10GREPRESENTATION OF MUSIC; RECORDING MUSIC IN NOTATION FORM; ACCESSORIES FOR MUSIC OR MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR, e.g. SUPPORTS
    • G10G3/00Recording music in notation form, e.g. recording the mechanical operation of a musical instrument
    • G10G3/04Recording music in notation form, e.g. recording the mechanical operation of a musical instrument using electrical means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/90Pitch determination of speech signals

Definitions

  • the present invention relates to a fundamental frequency estimator, an active noise control device, a fundamental frequency estimation method, and a fundamental frequency estimation program.
  • Patent Document 1 describes a method of generating a note-based code representing music information, based on a step for estimating a fundamental frequency of an audio signal and obtaining a sequence of fundamental frequencies, and a sequence of the fundamental frequencies. It is disclosed to include steps to obtain a note-based chord.
  • Patent Document 1 Since the method described in Patent Document 1 uses a fast Fourier transform, a delay due to data buffering occurs. Further, if the fast Fourier transform is to be executed for each sample in order to suppress the delay, the amount of calculation becomes large. Therefore, if the method described in Patent Document 1 is applied to a small device such as an embedded device, processing may be delayed or may not be realized due to lack of processing resources.
  • the present invention has been made in view of such circumstances, and is a fundamental frequency estimation device capable of avoiding the delay associated with the high-speed Fourier transform and accurately calculating the fundamental frequency of the input sound with a small amount of calculation and a small amount of delay. , Active noise control devices, and methods for estimating fundamental frequencies.
  • the basic frequency estimation device is, for example, a device that sequentially estimates the basic frequency of an input signal, and includes a sound collecting unit that sequentially acquires the input signal and a sound collecting unit of the input signal.
  • a gradual DFT processing unit that calculates the amplitude spectrum of the input signal using a gradual formula that includes the previous value of the sample point each time a sample point is acquired, and a first unit that is the peak frequency of the amplitude spectrum.
  • An autocorrelation function calculation unit that calculates the autocorrelation function using a gradual expression including a value, a second peak extraction unit that extracts the second peak frequency that is the peak frequency of the autocorrelation function, and the second peak. It is characterized by including an output unit that outputs a frequency as a basic frequency of the input signal.
  • the first peak frequency (rough peak) is based on the amplitude spectrum of the input signal obtained by performing the progressive DFT (discrete Fourier transform) process on the collected input signal. Frequency) is extracted, processing is performed to emphasize the band in the vicinity of the peak frequency, the autocorrelation function is calculated, and the second peak frequency is extracted based on the autocorrelation function.
  • the fundamental frequency of the input sound can be accurately calculated with a small amount of calculation and a small amount of delay without using the fast Fourier transform.
  • the first peak extraction is provided with a basic frequency enhancement unit that multiplies the amplitude spectrum calculated by the gradual DFT processing unit and the amplitude spectrum obtained by compressing the amplitude spectrum to 1 / m (m is a natural number) in the frequency direction.
  • the unit may extract the peak frequency of the amplitude spectrum output from the basic frequency emphasis unit as the first peak frequency. Note that m is a natural number that depends on the wave tuning structure. This makes it possible to estimate the fundamental frequency more accurately.
  • the filter unit may perform a process of applying an inverse notch filter having the peak frequency of the amplitude spectrum as the center frequency. This makes it possible to emphasize a narrow band near the fundamental frequency with a simple configuration.
  • the second peak extraction unit may obtain a frequency having a maximum value in the frequency band including the maximum value of the autocorrelation function by parabolic fitting, and may use the frequency having the maximum value as the peak frequency of the autocorrelation function.
  • the peak frequency existing between the discrete frequency indexes can be accurately estimated by utilizing the fact that the vicinity of the peak of the autocorrelation function fits well to the quadratic function.
  • a time-series filter unit that performs time-series filtering processing by a recurrence formula may be provided.
  • the influence of outliers can be reduced by suppressing sudden changes in the estimated value.
  • the filter processing is performed by the recurrence formula, the processing amount is small and the processing delay can be suppressed.
  • the sound collecting unit may include a tuning component enhancing unit that full-wave rectifies the signal received, and the recurrence DFT processing unit may calculate the amplitude spectrum of the signal output from the tuning component enhancing unit. ..
  • the fundamental frequency component can be emphasized by utilizing the fact that the input signal contains a large number of fundamental frequency tuning components.
  • the active noise control device is, for example, the basic frequency estimation device according to any one of the above and the opposite phase to the basic frequency of the input signal. It is characterized by including an active noise control unit that generates a signal and a sound emitting unit that outputs a signal having the opposite phase. As a result, noise can be suppressed in real time with a small amount of calculation.
  • the method of estimating the basic frequency is, for example, a method of sequentially estimating the basic frequency of an input signal, the step of sequentially acquiring the input signal, and the above.
  • the step of calculating the autocorrelation function using the gradual equation including the above the step of extracting the second peak frequency which is the peak frequency of the autocorrelation function, and the second peak frequency as the basic frequency of the input signal. It is characterized by including a step to output. As a result, the fundamental frequency of the input sound can be accurately calculated with a small amount of calculation without using the fast Fourier transform.
  • a computer obtains a sound collecting unit that sequentially acquires the input signal and a sample point of the input signal. For each, a gradual DFT processing unit that calculates the amplitude spectrum of the input signal using a gradual formula that includes the previous value of the sample point, and a first peak frequency that is the peak frequency of the amplitude spectrum are extracted.
  • the autocorrelation function calculation unit that calculates the autocorrelation function using the above, the second peak extraction unit that extracts the second peak frequency that is the peak frequency of the autocorrelation function, and the second peak frequency of the input signal. It is characterized by functioning as an output unit that outputs as a basic frequency.
  • the delay associated with the fast Fourier transform can be avoided, and the fundamental frequency of the input sound can be accurately calculated with a small amount of calculation and a small amount of delay.
  • the graph shows the state of processing in the recurrence formula DFT processing unit 12, (a) is a graph showing an example of the input audio signal, and (b) is the discrete Fourier transform of the audio signal by the recurrence formula. It is a graph which shows the amplitude spectrum obtained by. It is a graph which shows the state of the processing in the fundamental frequency emphasis part 13, (a) is a graph which shows an example of the amplitude spectrum of the signal before processing by the fundamental frequency emphasis part 13, and (b) is the graph by the fundamental frequency emphasis part 13. It is a graph which shows the amplitude spectrum of the signal after processing.
  • FIG. 5 is a flowchart showing a flow in which a fundamental frequency of a signal is estimated by a fundamental frequency estimation device 1 and the active noise control device 2 reduces noise based on the fundamental frequency. It is a figure which shows the outline of the electric functional block of a general SAN.
  • the fundamental frequency estimation device is a device that estimates the fundamental frequency in real time by sequentially acquiring external sounds and analyzing them as input signals.
  • the active noise control device is a device that reduces noise by outputting a signal having the opposite phase of an external sound based on the fundamental frequency estimated by the fundamental frequency estimation device.
  • the fundamental frequency estimation device and the active noise control device can be applied to reduce so-called engine muffled noise, for example, in an automobile, but the application is not limited to this.
  • the fundamental frequency estimation device can be applied to, for example, a device that automatically transcribes in real time, a device that estimates pitch in real time, and a communication device for emphasizing voice tuning components and realizing hands-free communication.
  • FIG. 1 is a diagram showing an outline of an electrical functional block of a fundamental frequency estimation device 1 and an active noise control device 2 having the fundamental frequency estimation device 1.
  • the fundamental frequency estimation device 1 is used as a software resource at least by a computing device such as a CPU (Central Processing Unit) for executing information processing and a storage device such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • a computing device such as a CPU (Central Processing Unit) for executing information processing
  • a storage device such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • It has a function calculation unit 16, a second peak extraction unit 17, a time series filter unit 18, an output unit 19, and a storage unit 20.
  • the sound collecting unit 10 is a functional unit that sequentially acquires, for example, an external sound picked up by a microphone as an input signal.
  • the tuning component emphasizing unit 11 is a functional unit that full-wave rectifies the signal acquired by the sound collecting unit 10 and emphasizes the tuning component of the input signal. As a result, the fundamental frequency component can be emphasized by utilizing the fact that the input signal contains a large number of fundamental frequency tuning components.
  • the wave tuning component emphasizing unit 11 is not an essential configuration.
  • the recurrence formula DFT processing unit 12 is a functional unit that calculates the amplitude spectrum of the input signal by a discrete Fourier transform (DFT, Discrete Fourier Transform).
  • the recurrence formula DFT processing unit 12 calculates the amplitude spectrum of the input signal using the recurrence formula including the previous value of the sample point each time the sample point of the input signal is acquired.
  • the signal processed by the recurrence type DFT processing unit 12 is a signal that is full-wave rectified by the tuning component enhancing unit 11 when the tuning component enhancing unit 11 is provided, and the tuning component enhancing unit 11 is used. If not, it is a signal acquired by the sound collecting unit 10.
  • the recurrence formula DFT processing unit 12 uses the following recurrence formula (1) to perform a discrete Fourier transform of the past N samples (DFT length is N) at time t each time a new sample point xt is acquired. calculate.
  • the subscript integer k is the index of the frequency bin. ... (1)
  • the absolute value of the discrete Fourier transform is the amplitude spectrum, which represents the magnitude of each frequency component of the input signal. That is, each value of the amplitude spectrum is obtained by the following equation (3). ... (3)
  • FIG. 2 is a graph showing a state of processing in the recurrence formula DFT processing unit 12, (a) is a graph showing an example of an input audio signal, and (b) is a recurrence formula of the audio signal. It is a graph which shows the amplitude spectrum obtained by discrete Fourier transform by. As shown in FIG. 2B, by performing the recurrence DFT process, it becomes clear that the input audio signal has peaks in the vicinity of 300 Hz and in the 2nd and 3rd overtones thereof.
  • the discrete Fourier transform when the DFT length is N is defined by the following equation (4), but if calculated according to this definition, it will be discrete after waiting for N sample points to be acquired. It is necessary to perform Fourier transform, which causes a delay corresponding to the DFT length. Further, the larger the frequency resolution, the larger the delay, and it is difficult to estimate the fundamental frequency in real time. Further, since this calculation method requires a large amount of calculation, processing time is long and the delay is further increased. Therefore, when it is applied to an active noise control device, a time lag occurs between the generated sound and the external sound, and it is difficult to effectively reduce the noise. ... (4)
  • the delay due to waiting for the acquisition of N sample points is not generated and the processing amount is reduced. Can be done and delays can be minimized.
  • the fundamental frequency enhancement unit 13 is a functional unit that emphasizes the fundamental frequency component of the signal.
  • the fundamental frequency enhancement unit 13 uses the HPS method (Harmonic Product Spectrum method), for example, to obtain the fundamental frequency band with respect to the amplitude spectrum calculated by the progressive DFT processing unit 12. Adds an amount based on the harmonic content of the band to.
  • HPS method Harmonic Product Spectrum method
  • the fundamental frequency enhancement unit 13 compresses the original amplitude spectrum and the original amplitude spectrum by 1/2 in the frequency direction, as shown in the equation (5).
  • the fundamental frequency component is emphasized by multiplying it with the obtained amplitude spectrum. ... (5)
  • FIG. 3 is a graph showing the state of processing in the fundamental frequency enhancement unit 13, (a) is a graph showing an example of the amplitude spectrum of the signal before processing by the fundamental frequency enhancement unit 13, and (b) is a graph showing an example of the amplitude spectrum of the signal before processing by the fundamental frequency enhancement unit 13. It is a graph which shows the amplitude spectrum of the signal after processing by the emphasis section 13.
  • FIG. 3A peaks can be seen near 300 Hz, around 600 Hz, and around 900 Hz, respectively.
  • the peak near 300 Hz is emphasized more than the graph shown in FIG. 3 (a), and the peaks near 600 Hz and 900 Hz are smaller.
  • the fundamental frequency can be emphasized by using the harmonic component of the fundamental frequency. Therefore, in the processing of the fundamental frequency emphasizing unit 13 described in detail later, more accurately.
  • the fundamental frequency can be estimated.
  • the fundamental frequency enhancement unit 13 multiplied the original amplitude spectrum and the amplitude spectrum of the second harmonic overtone, but instead of or in addition to this, the original amplitude spectrum is multiplied by the harmonic overtone of the third harmonic overtone or more. You may perform the process of multiplying the amplitude spectrum of the component. That is, when m harmonics (m is a natural number) are present, the fundamental frequency enhancement unit 13 has an amplitude spectrum calculated by the recurrence formula DFT processing unit 12 and an amplitude obtained by compressing the amplitude spectrum to 1 / m in the frequency direction. Multiply the spectra.
  • the fundamental frequency emphasizing unit 13 may determine whether or not a harmonic component of the fundamental frequency is present, and perform a process of emphasizing the fundamental frequency component only when it is determined that the harmonic component is present. .. Thereby, the process of emphasizing the fundamental frequency component can be appropriately performed.
  • the first peak extraction unit 14 is a functional unit that estimates a rough fundamental frequency.
  • the first peak extraction unit 14 estimates the peak frequency from the amplitude spectrum output from the fundamental frequency enhancement unit 13 using the following equation (6).
  • k max is a frequency index that takes the maximum value of the amplitude spectrum. ... (6)
  • the first peak extraction unit 14 may calculate the approximate value of the fundamental frequency more accurately by performing a parabolic fitting process instead of the process of the equation (6).
  • the parabolic fitting process is a process of approximating the periphery of a peak with a quadratic function and calculating a more accurate peak position.
  • FIG. 4 is a diagram schematically showing a state of the parabolic fitting process in the first peak extraction unit 14.
  • the amplitude spectrum b of the frequency index that takes the maximum value of the amplitude spectrum and the amplitude spectra a and c before and after the amplitude spectrum are extracted, and a quadratic curve passing through these is extracted.
  • the frequency that complements and takes the maximum value is defined as the peak frequency of the amplitude spectrum. ... (7)
  • the peak frequencies existing between the discrete frequency indexes can be obtained more accurately.
  • the peak frequency extracted by the first peak extraction unit 14 (corresponding to the first peak frequency of the present invention) is a rough fundamental frequency of the input signal and is an approximate value of the fundamental frequency. 1 is different from the value output as the estimated value.
  • the fundamental frequency estimation device 1 estimates the fundamental frequency of the input signal more accurately by a process described later.
  • the first peak extraction unit 14 may perform a process of convolving the discrete Fourier transform result of the window function with respect to the amplitude spectrum before the peak extraction process such as parabolic fitting. As a result, the amplitude spectrum blurred by the rectangular window can be sharpened to some extent and corrected. However, this window function processing is not essential.
  • the filter unit 15 is a functional unit that emphasizes a specific narrow band. Specifically, the filter unit 15 performs a process of applying a filter that emphasizes the band including the peak frequency of the amplitude spectrum extracted by the first peak extraction unit 14.
  • the filter unit 15 calculates a process of applying an inverse notch filter having the peak frequency of the amplitude spectrum as the center frequency to the input signal to the filter unit 15 by using a gradual equation. Assuming that the bandwidth constant is r (0 ⁇ r ⁇ 1), the recurrence formula of the inverse notch filter is defined below. ... (8) ... (9)
  • x t is the input signal
  • y t is the output of the reverse notch filter
  • fs is the sampling frequency.
  • the constant r is a constant indicating that the closer to 1 the emphasis is on the frequency in a narrow range, and here, it is about 0.95 to 0.98.
  • FIG. 5 is a graph showing the state of the reverse notch filter processing in the filter unit 15
  • FIG. 5A is a graph showing an example of the amplitude spectrum of the signal before the reverse notch filter processing
  • FIG. 5B emphasizes 300 kHz. It is a graph which shows the amplitude spectrum of a signal after applying an inverse notch filter.
  • the peak is emphasized near the fundamental frequency of 300 Hz, and the peaks of other frequencies are suppressed.
  • the autocorrelation function is clean by roughly estimating the band including the fundamental frequency by the recurrence formula DFT processing unit 12 and the first peak extraction unit 14 and then emphasizing the band by the filter unit 15.
  • the cos wave shape is obtained, and the accuracy of peak extraction is improved (detailed later).
  • the process performed by the filter unit 15 may be a bandpass filter process.
  • the reverse notch filter processing can emphasize a narrow band more easily than the bandpass filter processing.
  • the autocorrelation function calculation unit 16 is a functional unit that calculates an autocorrelation function for the signal processed by the filter unit 15.
  • the autocorrelation function ACFt (i) of length M is defined by the following equation (10). ... (10)
  • FIG. 6 is a calculation example of the autocorrelation function.
  • the autocorrelation function ACFt (i) is the inner product when the signals are superposed with the i-samples shifted, and is an index showing the similarity between the two superposed signals. Therefore, the peak interval of the autocorrelation function ACFt coincides with the signal period.
  • the autocorrelation function calculation unit 16 calculates the autocorrelation function ACFt (i) by using the recurrence formula (11) including the previous value ACFt-1 (i) of the autocorrelation function. This makes it possible to efficiently calculate the autocorrelation function. ... (11)
  • FIG. 7 is a graph showing the state of calculation by the autocorrelation function calculation unit 16, and FIG. 7A is a graph showing an example of the autocorrelation function of the signal subjected to the inverse notch filter processing by the filter unit 15.
  • b) is a graph showing an example of the autocorrelation function of the signal not subjected to the inverse notch filter processing.
  • the autocorrelation function of the signal subjected to the inverse notch filter processing is smoother. By smoothing the autocorrelation function, it is less likely to detect an erroneous local maximum. In addition, the fit to the quadratic function is improved, and the accuracy of parabolic fitting in the second peak extraction unit 17, which will be described later, is improved. Further, since the DC component can be removed by the inverse notch filter processing, the distortion of the autocorrelation function can be suppressed.
  • the second peak extraction unit 17 is a functional unit that extracts the peak frequency of the autocorrelation function.
  • the second peak extraction unit 17 obtains the frequency having the maximum value by parabolic fitting in the frequency band including the maximum value of the autocorrelation function, and determines the frequency having the maximum value as the peak frequency of the autocorrelation function (second of the present invention). Extract as (corresponding to the peak frequency).
  • the maximum position of the autocorrelation function in the vicinity of the fundamental period is obtained by parabolic fitting, and this is defined as the period T of the fundamental frequency output by the fundamental frequency estimation device 1 as an estimated value. ... (13) ... (14)
  • the autocorrelation function is similar to the cos wave, and the vicinity of the peak of the autocorrelation function fits well to the quadratic function, so the peak position can be estimated more accurately by using parabolic fitting.
  • the peak frequency f 0 of the autocorrelation function obtained by the second peak extraction unit 17 is extracted every time a sample point is acquired, and is stored in the sequential storage unit 20 as an array of peak frequencies.
  • the fundamental frequency can be obtained stably, but only a rough value can be obtained.
  • the autocorrelation function processing can accurately obtain the fundamental frequency, but if an erroneous peak due to noise or overtone components is selected, there is a possibility that a numerical value significantly different from the actual fundamental frequency may be calculated.
  • the recurrence formula DFT processing unit 12 processes the signal using the fundamental frequency band roughly obtained by the discrete Fourier transform processing, and then the second peak extraction unit 17 obtains the autocorrelation function. Therefore, the fundamental frequency can be obtained accurately and stably.
  • the time-series filter unit 18 is a functional unit that corrects the peak frequency of the autocorrelation function based on the difference between the peak frequency of the autocorrelation function and the previous value.
  • the time-series filter unit 18 performs time-series filtering processing on the peak frequency of the autocorrelation function by the following recurrence formula (16) based on the arrangement of peak frequencies. ... (16)
  • FIG. 8 is a graph showing a state of processing in the time series filter unit 18.
  • the signals before the time-series filtering process (see the dotted line) and after the time-series filtering process (see the solid line) are displayed in an overlapping manner. In this way, even if the fundamental frequency is estimated incorrectly and an outlier appears in the estimation, it is possible to suppress a sudden change in the estimated value and reduce the influence of the outlier. Further, since the time-series filtering process is performed by the recurrence formula, the amount of processing is small and the processing delay can be suppressed.
  • the time series filter unit 18 is not essential. Further, the time-series filter unit 18 replaces the configuration for calculating the tanh function (double curve tangent function) of the difference from the previous value as described above, instead of the sign function (sign function), arctan function (inverse tangent function) or erf. Processing may be executed using a function (error function).
  • the time series filter unit 18 performs filtering processing by a recurrence formula that saturates the amount of change, but instead of this, a least squares method, robust regression, Kalman filter, median filter, or the like is used. It can also be used.
  • the output unit 19 outputs the peak frequency of the autocorrelation function as the fundamental frequency.
  • the output unit 19 transmits a fundamental frequency to the ANC processing unit 21, which will be described later. Further, the output unit 19 may display the value of the fundamental frequency on the screen of the connected user interface device (not shown).
  • the active noise control device 2 mainly includes an active noise control (ANC) processing unit 21 and a sound emitting unit 22 in addition to the fundamental frequency estimation device 1.
  • the fundamental frequency estimation device 1 constitutes a part of the active noise control device 2, but the fundamental frequency estimation device 1 and the active noise control device 2 have an ANC processing unit 21 and a sound emitting unit. 22 may be configured by different devices and may be connected to each other by wire or wirelessly.
  • the ANC processing unit 21 is a functional unit that generates a noise canceling sound to be emitted based on the fundamental frequency of the input signal estimated by the fundamental frequency estimation device 1.
  • the ANC processing unit 21 generates a signal having a phase opposite to that of the input signal.
  • low-pitched narrow-band noise (so-called muffled sound) is generated due to engine rotation.
  • the muffled noise is a noise close to a sine wave, and its frequency appears in the second-order component of engine rotation in the case of a 4-cylinder engine and in the third-order component of engine rotation in the case of a 6-cylinder engine.
  • the fundamental frequency of the muffled sound is 100 Hz (secondary component of engine rotation).
  • the overtone component is also generated.
  • FIG. 11 is a diagram illustrating an outline of a general SAN electrical functional block.
  • SAN acquired engine speed information from CAN (Control Area Network) 100, generated cos waves and sine waves corresponding to the engine speed, and performed adaptive processing so that the observation signal of the error microphone 101 became small.
  • the weights ⁇ 0 and ⁇ 1 are applied and output from the speaker 102.
  • it is necessary to acquire a reference signal such as the engine speed.
  • the reference signal cannot be acquired due to restrictions such as cost.
  • FIG. 9 is a diagram showing an outline of an electrical functional block when the fundamental frequency estimation device 1 and the SAN are combined in the ANC processing unit 21.
  • the ANC processing unit 21 acquires the fundamental frequency of noise from the fundamental frequency estimation device 1, generates cos waves and sine waves having a phase opposite to the fundamental frequency, and performs adaptive processing so that the observation signal of the error microphone 101 becomes smaller.
  • the applied weights ⁇ 0 and ⁇ 1 are applied and output from the speaker. Therefore, it is possible to configure the active noise control device 2 that can reduce the muffled noise in the automobile even if there is no reference signal. Twice
  • the sound emitting unit 22 is, for example, a functional unit that transmits a signal to a speaker and converts it into sound.
  • FIG. 10 is a flowchart showing a flow in which the fundamental frequency of a signal is sequentially estimated by the fundamental frequency estimation device 1 and the active noise control device 2 sequentially reduces noise based on the fundamental frequency. This process is continuously performed at predetermined time intervals while the input signal is input to the fundamental frequency estimation device 1.
  • step S11 when the sound signal is picked up by the microphone and the sound collecting unit 10 (step S11), the wave tuning component is emphasized by the wave tuning component enhancing unit 11 (step S12).
  • step S12 the signal in which the tuning component is emphasized is subjected to DFT processing by a recurrence formula expression (step S13).
  • step S13 a process of emphasizing the fundamental frequency is performed by HPS processing or the like by the fundamental frequency emphasizing unit 13 (step S14).
  • step S15 the peak frequency of the signal whose fundamental frequency has been emphasized is extracted (step S15).
  • step S16 After performing an inverse notch filter process that emphasizes the band including the fundamental frequency by the filter unit 15 (step S16), the autocorrelation function is calculated (step S17), and the peak frequency of the autocorrelation function is extracted (step S16). S18).
  • the extracted frequencies are sequentially stored in the storage unit 20.
  • step S19 time-series filtering is performed on the signal at the peak frequency of the autocorrelation function (step S19), and outliers are suppressed.
  • the value obtained in step S19 is the value of the fundamental frequency estimated by the fundamental frequency estimation device 1.
  • step S20 active noise control processing is performed based on the fundamental frequency obtained by the fundamental frequency estimation device 1, that is, a signal for reducing noise is generated by emitting sound having a phase opposite to the noise from the speaker.
  • step S21 active noise control processing is performed based on the fundamental frequency obtained by the fundamental frequency estimation device 1, that is, a signal for reducing noise is generated by emitting sound having a phase opposite to the noise from the speaker.
  • the autocorrelation function is obtained after processing the signal using the band of the fundamental frequency roughly obtained by the recurrence formula DFT processing, the fundamental frequency is accurately estimated with a small amount of calculation. can do.
  • the fundamental frequency can be obtained stably, only a rough value can be obtained.
  • the autocorrelation function processing can accurately obtain the fundamental frequency, but since the signal of the wrong peak overtone is emphasized due to the influence of noise and harmonic components, a numerical value that is significantly different from the actual fundamental frequency is calculated. There is a risk that it will end up.
  • the fundamental frequency can be obtained accurately and stably by processing the signal using the band of the fundamental frequency roughly obtained by the DFT process and then obtaining the autocorrelation function.
  • the DFT process and the autocorrelation function process using the recurrence formula are sequentially performed on the acquired signal to avoid the delay associated with the fast Fourier transform, and the amount of calculation and the delay. The amount can be reduced.
  • the amount of calculation when using the Fast Fourier Transform, there will be a delay due to data buffering. Further, although the amount of calculation is not large when the buffered data is collectively executed by the fast Fourier transform, the amount of calculation is large when the fast Fourier transform is executed for each sample. On the other hand, when the DFT process using the recurrence formula is performed, the amount of calculation can be small even if the process is executed for each sample.
  • the DFT and the autocorrelation function are calculated by the recurrence formula, and the method is executed every time a sample point is acquired, so that the processing delay can be suppressed.
  • the fundamental frequency of noise is estimated based on the recurrence formula calculation of the DFT and the autocorrelation function, active noise control is performed even in an embedded device that can perform only processing with a small processing load. Can be done.
  • the fundamental frequency estimation device 1 and the active noise control device 2 have a small amount of processing and can be configured in a small size, and are therefore suitable for mounting in an embedded device such as in an automobile. It can also be used for various purposes.
  • the fundamental frequency estimation device 1 can be applied to a howling detection and howling canceling device that sequentially obtains an amplitude spectrum, detects that a specific frequency is increasing, and suppresses divergence of that frequency.
  • the fundamental frequency estimation device 1 can be applied to an automatic transcription system that estimates the fundamental frequency of a sound and automatically reproduces a score, or a tuning system of an instrument that estimates and displays the fundamental frequency of the sound of an instrument.
  • the fundamental frequency estimation device 1 can be applied to a telephone device that selectively emphasizes only the voice tuning component by configuring a comb-shaped filter based on the estimated fundamental frequency.
  • the functional components of the fundamental frequency estimation device 1 and the active noise control device 2 may be further classified into more components according to the processing content, or one component executes processing of a plurality of components. You may.
  • the basic frequency estimation program may be stored in advance in a storage medium built in a device such as a computer, a storage unit in a microcomputer having a CPU, etc., and installed in the computer from there, or a semiconductor memory.
  • a memory card, an optical disk, a photomagnetic disk, a magnetic disk, or the like may be temporarily or permanently stored (stored) in a removable storage medium.
  • Fundamental frequency estimation device 2 Active noise control device 10: Sound collecting unit 11: Harmonizing component emphasis unit 12: Gradual DFT processing unit 13: Fundamental frequency enhancement unit 14: First peak extraction unit 15: Filter unit 16 : Autocorrelation function calculation unit 17: Second peak extraction unit 18: Time series filter unit 19: Output unit 20: Storage unit 21: ANC processing unit 22: Sound emission unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

The present invention avoids delays occurring along with a fast Fourier transform and accurately estimates a fundamental frequency with little computation and few delays. Input signals are sequentially acquired, and, each time a sample point in an input signal is acquired, a recurrence formula which includes the previous value of the sample point is used to calculate the amplitude spectrum of the input signal, and the peak frequency of the amplitude spectrum is extracted. Furthermore, each time a sample point is acquired, a bandwidth that includes the peak frequency of an amplitude spectrum is emphasized. Then a recurrence formula that includes the previous value of an autocorrelation function is used to calculate the autocorrelation function, and the peak frequency of the autocorrelation function is set as a fundamental frequency.

Description

基本周波数推定装置、アクティブノイズコントロール装置、基本周波数の推定方法及び基本周波数の推定プログラムFundamental frequency estimator, active noise control device, fundamental frequency estimation method and fundamental frequency estimation program
 本発明は、基本周波数推定装置、アクティブノイズコントロール装置、基本周波数の推定方法及び基本周波数の推定プログラムに関する。 The present invention relates to a fundamental frequency estimator, an active noise control device, a fundamental frequency estimation method, and a fundamental frequency estimation program.
 特許文献1には、音楽情報を表わす音符ベース・コードを生成する方法であって、音声信号の基本周波数を推定して基本周波数のシーケンスを得るためのステップと、当該基本周波数のシーケンスに基づいて音符ベース・コードを得るためのステップを含むことが開示されている。 Patent Document 1 describes a method of generating a note-based code representing music information, based on a step for estimating a fundamental frequency of an audio signal and obtaining a sequence of fundamental frequencies, and a sequence of the fundamental frequencies. It is disclosed to include steps to obtain a note-based chord.
特開2002-82668号公報JP-A-2002-82668
 特許文献1に記載の方法は、高速フーリエ変換を使用するため、データのバッファリングに伴う遅延が生じる。また、遅延を抑えるために、1サンプル毎に高速フーリエ変換を実行しようとすると、演算量が多くなる。したがって、特許文献1に記載の方法を組込機器など小型の装置に適用すると、処理の遅延が発生するか、もしくは処理リソース不足で実現できないおそれがある。 Since the method described in Patent Document 1 uses a fast Fourier transform, a delay due to data buffering occurs. Further, if the fast Fourier transform is to be executed for each sample in order to suppress the delay, the amount of calculation becomes large. Therefore, if the method described in Patent Document 1 is applied to a small device such as an embedded device, processing may be delayed or may not be realized due to lack of processing resources.
 本発明はこのような事情に鑑みてなされたもので、高速フーリエ変換に伴う遅延を回避し、入力音の基本周波数を少ない演算量かつ少ない遅延量で正確に計算することができる基本周波数推定装置、アクティブノイズコントロール装置、および基本周波数の推定方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a fundamental frequency estimation device capable of avoiding the delay associated with the high-speed Fourier transform and accurately calculating the fundamental frequency of the input sound with a small amount of calculation and a small amount of delay. , Active noise control devices, and methods for estimating fundamental frequencies.
 上記課題を解決するために、本発明に係る基本周波数推定装置は、例えば、入力信号の基本周波数を逐次推定する装置であって、前記入力信号を逐次取得する収音部と、前記入力信号のサンプル点が取得されるごとに、当該サンプル点の前回値を含む漸化式を用いて前記入力信号の振幅スペクトルを計算する漸化式DFT処理部と、前記振幅スペクトルのピーク周波数である第1ピーク周波数を抽出する第1ピーク抽出部と、前記振幅スペクトルの前記第1ピーク周波数を含む帯域を強調するフィルタをかけるフィルタ部と、前記フィルタ部により処理された信号に対し、自己相関関数の前回値を含む漸化式を用いて当該自己相関関数を計算する自己相関関数計算部と、前記自己相関関数のピーク周波数である第2ピーク周波数を抽出する第2ピーク抽出部と、前記第2ピーク周波数を前記入力信号の基本周波数として出力する出力部と、を備えることを特徴とする。 In order to solve the above problems, the basic frequency estimation device according to the present invention is, for example, a device that sequentially estimates the basic frequency of an input signal, and includes a sound collecting unit that sequentially acquires the input signal and a sound collecting unit of the input signal. A gradual DFT processing unit that calculates the amplitude spectrum of the input signal using a gradual formula that includes the previous value of the sample point each time a sample point is acquired, and a first unit that is the peak frequency of the amplitude spectrum. The previous time of the autocorrelation function for the first peak extraction unit that extracts the peak frequency, the filter unit that filters the band including the first peak frequency of the amplitude spectrum, and the signal processed by the filter unit. An autocorrelation function calculation unit that calculates the autocorrelation function using a gradual expression including a value, a second peak extraction unit that extracts the second peak frequency that is the peak frequency of the autocorrelation function, and the second peak. It is characterized by including an output unit that outputs a frequency as a basic frequency of the input signal.
 本発明に係る基本周波数推定装置によれば、収音した入力信号に漸化式DFT(離散フーリエ変換)処理を行って得られた入力信号の振幅スペクトルに基づいて第1ピーク周波数(大まかなピーク周波数)を抽出し、当該ピーク周波数の近傍の帯域を強調する加工を行った上で、自己相関関数を計算し、自己相関関数に基づいて第2ピーク周波数を抽出する。これにより、高速フーリエ変換を用いず、入力音の基本周波数を少ない演算量かつ少ない遅延量で正確に計算することができる。 According to the fundamental frequency estimation device according to the present invention, the first peak frequency (rough peak) is based on the amplitude spectrum of the input signal obtained by performing the progressive DFT (discrete Fourier transform) process on the collected input signal. Frequency) is extracted, processing is performed to emphasize the band in the vicinity of the peak frequency, the autocorrelation function is calculated, and the second peak frequency is extracted based on the autocorrelation function. As a result, the fundamental frequency of the input sound can be accurately calculated with a small amount of calculation and a small amount of delay without using the fast Fourier transform.
 前記漸化式DFT処理部により算出された振幅スペクトルと、当該振幅スペクトルを周波数方向に1/m(mは自然数)に圧縮した振幅スペクトルをかけ合わせる基本周波数強調部を備え、前記第1ピーク抽出部は、前記基本周波数強調部から出力された振幅スペクトルのピーク周波数を前記第1ピーク周波数として抽出してもよい。なお、mは調波構造に依存する自然数である。これにより、より正確に基本周波数を推定することができる。 The first peak extraction is provided with a basic frequency enhancement unit that multiplies the amplitude spectrum calculated by the gradual DFT processing unit and the amplitude spectrum obtained by compressing the amplitude spectrum to 1 / m (m is a natural number) in the frequency direction. The unit may extract the peak frequency of the amplitude spectrum output from the basic frequency emphasis unit as the first peak frequency. Note that m is a natural number that depends on the wave tuning structure. This makes it possible to estimate the fundamental frequency more accurately.
 前記フィルタ部は、前記振幅スペクトルのピーク周波数を中心周波数とする逆ノッチフィルタを掛ける処理を行ってもよい。これにより、簡素な構成で基本周波数付近の狭帯域の強調が可能である。 The filter unit may perform a process of applying an inverse notch filter having the peak frequency of the amplitude spectrum as the center frequency. This makes it possible to emphasize a narrow band near the fundamental frequency with a simple configuration.
 前記第2ピーク抽出部は、前記自己相関関数の最大値を含む周波数帯域において極大値をとる周波数をパラボラフィッティングにより求め、前記極大値をとる周波数を前記自己相関関数のピーク周波数としてもよい。これにより、自己相関関数のピーク近傍が二次関数によくあてはまることを利用して、離散的な周波数インデックスの間に存在するピーク周波数を精密に推定することができる。 The second peak extraction unit may obtain a frequency having a maximum value in the frequency band including the maximum value of the autocorrelation function by parabolic fitting, and may use the frequency having the maximum value as the peak frequency of the autocorrelation function. As a result, the peak frequency existing between the discrete frequency indexes can be accurately estimated by utilizing the fact that the vicinity of the peak of the autocorrelation function fits well to the quadratic function.
 前記第2ピーク抽出部が抽出した前記第2ピーク周波数の配列を逐次格納する記憶部と、前記記憶部に格納された前記第2ピーク周波数の配列に基づいて、前記第2ピーク周波数に対して漸化式による時系列フィルタリング処理を行う時系列フィルタ部と、を備えてもよい。これにより、推定値の急激な変化を抑えることで、外れ値の影響を小さくできる。また、漸化式によってフィルタ処理を行うため、処理量が小さく、処理遅延を抑えることができる。 Based on the storage unit that sequentially stores the array of the second peak frequencies extracted by the second peak extraction unit and the array of the second peak frequencies stored in the storage unit, with respect to the second peak frequency. A time-series filter unit that performs time-series filtering processing by a recurrence formula may be provided. As a result, the influence of outliers can be reduced by suppressing sudden changes in the estimated value. Further, since the filter processing is performed by the recurrence formula, the processing amount is small and the processing delay can be suppressed.
 前記収音部が受信した信号を全波整流する調波成分強調部を備え、前記漸化式DFT処理部は、前記調波成分強調部から出力された信号の振幅スペクトルを計算してもよい。これにより、入力信号に基本周波数の調波成分が多く含まれていることを利用して、基本周波数成分を強調することができる。 The sound collecting unit may include a tuning component enhancing unit that full-wave rectifies the signal received, and the recurrence DFT processing unit may calculate the amplitude spectrum of the signal output from the tuning component enhancing unit. .. As a result, the fundamental frequency component can be emphasized by utilizing the fact that the input signal contains a large number of fundamental frequency tuning components.
 上記課題を解決するために、本発明の別の観点に係るアクティブノイズコントロール装置は、例えば、上述のいずれかの一項に記載の基本周波数推定装置と、前記入力信号の基本周波数と逆位相の信号を生成するアクティブノイズコントロール部と、前記逆位相の信号を出力する放音部と、を備えたことを特徴とする。これにより、少ない演算量で騒音をリアルタイムに抑制することができる。 In order to solve the above problems, the active noise control device according to another aspect of the present invention is, for example, the basic frequency estimation device according to any one of the above and the opposite phase to the basic frequency of the input signal. It is characterized by including an active noise control unit that generates a signal and a sound emitting unit that outputs a signal having the opposite phase. As a result, noise can be suppressed in real time with a small amount of calculation.
 上記課題を解決するために、本発明の別の観点に係る基本周波数の推定方法は、例えば、入力信号の基本周波数を逐次推定する方法であって、前記入力信号を逐次取得するステップと、前記入力信号のサンプル点が取得されるごとに、当該サンプル点の前回値を含む漸化式を用いて前記入力信号の振幅スペクトルを計算するステップと、前記振幅スペクトルのピーク周波数である第1ピーク周波数を抽出するステップと、前記振幅スペクトルの前記第1ピーク周波数を含む帯域を強調するフィルタをかけるステップと、前記第1ピーク周波数を含む帯域が強調された信号に対して、自己相関関数の前回値を含む漸化式を用いて当該自己相関関数を計算するステップと、前記自己相関関数のピーク周波数である第2ピーク周波数を抽出するステップと、前記第2ピーク周波数を前記入力信号の基本周波数として出力するステップと、を含むことを特徴とする。これにより、高速フーリエ変換を用いず、入力音の基本周波数を少ない演算量で正確に計算することができる。 In order to solve the above problems, the method of estimating the basic frequency according to another aspect of the present invention is, for example, a method of sequentially estimating the basic frequency of an input signal, the step of sequentially acquiring the input signal, and the above. Each time a sample point of an input signal is acquired, a step of calculating the amplitude spectrum of the input signal using a gradual equation including the previous value of the sample point, and a first peak frequency which is the peak frequency of the amplitude spectrum. And the step of applying a filter that emphasizes the band including the first peak frequency of the amplitude spectrum, and the previous value of the autocorrelation function for the signal in which the band including the first peak frequency is emphasized. The step of calculating the autocorrelation function using the gradual equation including the above, the step of extracting the second peak frequency which is the peak frequency of the autocorrelation function, and the second peak frequency as the basic frequency of the input signal. It is characterized by including a step to output. As a result, the fundamental frequency of the input sound can be accurately calculated with a small amount of calculation without using the fast Fourier transform.
 上記課題を解決するために、本発明の別の観点に係る基本周波数の推定プログラムは、例えば、コンピュータを、前記入力信号を逐次取得する収音部と、前記入力信号のサンプル点が取得されるごとに、当該サンプル点の前回値を含む漸化式を用いて前記入力信号の振幅スペクトルを計算する漸化式DFT処理部と、前記振幅スペクトルのピーク周波数である第1ピーク周波数を抽出する第1ピーク抽出部と、前記振幅スペクトルの前記第1ピーク周波数を含む帯域を強調するフィルタをかけるフィルタ部と、前記フィルタ部により処理された信号に対し、自己相関関数の前回値を含む漸化式を用いて当該自己相関関数を計算する自己相関関数計算部と、前記自己相関関数のピーク周波数である第2ピーク周波数を抽出する第2ピーク抽出部と、前記第2ピーク周波数を前記入力信号の基本周波数として出力する出力部と、として機能させることを特徴とする。 In order to solve the above problems, in the basic frequency estimation program according to another aspect of the present invention, for example, a computer obtains a sound collecting unit that sequentially acquires the input signal and a sample point of the input signal. For each, a gradual DFT processing unit that calculates the amplitude spectrum of the input signal using a gradual formula that includes the previous value of the sample point, and a first peak frequency that is the peak frequency of the amplitude spectrum are extracted. A gradual expression that includes the previous value of the autocorrelation function for the signal processed by the 1-peak extraction unit, the filter unit that applies a filter that emphasizes the band including the first peak frequency of the amplitude spectrum, and the filter unit. The autocorrelation function calculation unit that calculates the autocorrelation function using the above, the second peak extraction unit that extracts the second peak frequency that is the peak frequency of the autocorrelation function, and the second peak frequency of the input signal. It is characterized by functioning as an output unit that outputs as a basic frequency.
 本発明によれば、高速フーリエ変換に伴う遅延を回避し、入力音の基本周波数を少ない演算量かつ少ない遅延量で正確に計算できる。 According to the present invention, the delay associated with the fast Fourier transform can be avoided, and the fundamental frequency of the input sound can be accurately calculated with a small amount of calculation and a small amount of delay.
基本周波数推定装置1及びこれを有するアクティブノイズコントロール装置2の電気的な機能ブロックの概略を示す図である。It is a figure which shows the outline of the electrical functional block of the fundamental frequency estimation device 1 and the active noise control device 2 which has this. 漸化式DFT処理部12における処理の様子を示すグラフであり、(a)は入力される音声信号の一例を示すグラフであり、(b)は、当該音声信号を漸化式により離散フーリエ変換して得られた振幅スペクトルを示すグラフである。The graph shows the state of processing in the recurrence formula DFT processing unit 12, (a) is a graph showing an example of the input audio signal, and (b) is the discrete Fourier transform of the audio signal by the recurrence formula. It is a graph which shows the amplitude spectrum obtained by. 基本周波数強調部13における処理の様子を示すグラフであり、(a)は基本周波数強調部13による処理前の信号の振幅スペクトルの一例を示すグラフであり、(b)は基本周波数強調部13による処理後の信号の振幅スペクトルを示すグラフである。It is a graph which shows the state of the processing in the fundamental frequency emphasis part 13, (a) is a graph which shows an example of the amplitude spectrum of the signal before processing by the fundamental frequency emphasis part 13, and (b) is the graph by the fundamental frequency emphasis part 13. It is a graph which shows the amplitude spectrum of the signal after processing. 第1ピーク抽出部14におけるパラボラフィッティング処理の様子を模式的に示す図である。It is a figure which shows typically the state of the parabolic fitting process in the 1st peak extraction part 14. フィルタ部15における逆ノッチフィルタ処理の様子を示すグラフであり、(a)は逆ノッチフィルタ処理前の信号の振幅スペクトルの一例を示すグラフであり、(b)は300kHzを強調する逆ノッチフィルタを適用した後の信号の振幅スペクトルを示すグラフである。It is a graph which shows the state of the reverse notch filter processing in the filter unit 15, (a) is a graph which shows an example of the amplitude spectrum of the signal before the reverse notch filter processing, (b) is the reverse notch filter which emphasizes 300kHz. It is a graph which shows the amplitude spectrum of the signal after application. 上記逆ノッチフィルタ処理の前後の様子を重畳的に示したグラフである。It is the graph which showed the state before and after the reverse notch filter processing superposed. 自己相関関数計算部16による計算の様子を示すグラフであり、(a)はフィルタ部15により逆ノッチフィルタ処理をされている信号の自己相関関数の一例を示すグラフであり、(b)は逆ノッチフィルタ処理をされていない信号の自己相関関数の一例を示すグラフである。The graph shows the state of calculation by the autocorrelation function calculation unit 16, (a) is a graph showing an example of the autocorrelation function of the signal subjected to the inverse notch filter processing by the filter unit 15, and (b) is the inverse. It is a graph which shows an example of the autocorrelation function of the signal which has not been notch-filtered. 時系列フィルタ部18における処理の様子を示すグラフである。It is a graph which shows the state of the processing in the time series filter unit 18. ANC処理部21において基本周波数推定装置1とSANとを組み合わせたときの電気的な機能ブロックの概略を示す図である。It is a figure which shows the outline of the electric functional block when the fundamental frequency estimation apparatus 1 and SAN are combined in ANC processing unit 21. 基本周波数推定装置1により信号の基本周波数を推定し、アクティブノイズコントロール装置2が当該基本周波数に基づいて騒音を低減する流れを示すフローチャートである。FIG. 5 is a flowchart showing a flow in which a fundamental frequency of a signal is estimated by a fundamental frequency estimation device 1 and the active noise control device 2 reduces noise based on the fundamental frequency. 一般的なSANの電気的な機能ブロックの概略を示す図である。It is a figure which shows the outline of the electric functional block of a general SAN.
 以下、本発明に係る基本周波数推定装置およびアクティブノイズコントロール装置の実施形態を、図面を参照して詳細に説明する。基本周波数推定装置は、外部音を逐次取得し、これを入力信号として解析することで、基本周波数をリアルタイムに推定する装置である。アクティブノイズコントロール装置は、基本周波数推定装置により推定された基本周波数に基づいて、外部音の逆位相の信号を出力することで、騒音を低減する装置である。 Hereinafter, embodiments of the fundamental frequency estimation device and the active noise control device according to the present invention will be described in detail with reference to the drawings. The fundamental frequency estimation device is a device that estimates the fundamental frequency in real time by sequentially acquiring external sounds and analyzing them as input signals. The active noise control device is a device that reduces noise by outputting a signal having the opposite phase of an external sound based on the fundamental frequency estimated by the fundamental frequency estimation device.
 基本周波数推定装置およびアクティブノイズコントロール装置は、例えば自動車内において、いわゆるエンジンこもり音の低減に適用することができるが、用途はこれに限られない。基本周波数推定装置は、例えばリアルタイムに自動で採譜する装置や、リアルタイムに音高を推定する装置や、音声調波成分を強調しハンズフリー通話を実現するための通話装置に適用することができる。 The fundamental frequency estimation device and the active noise control device can be applied to reduce so-called engine muffled noise, for example, in an automobile, but the application is not limited to this. The fundamental frequency estimation device can be applied to, for example, a device that automatically transcribes in real time, a device that estimates pitch in real time, and a communication device for emphasizing voice tuning components and realizing hands-free communication.
 図1は、基本周波数推定装置1及びこれを有するアクティブノイズコントロール装置2の電気的な機能ブロックの概略を示す図である。基本周波数推定装置1は、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置により、ソフトウェア資源として、少なくとも、収音部10と、調波成分強調部11と、漸化式DFT(Discrete Fourier Transform)処理部12と、基本周波数強調部13と、第1ピーク抽出部14と、フィルタ部15と、自己相関関数計算部16と、第2ピーク抽出部17と、時系列フィルタ部18と、出力部19と、記憶部20とを有する。 FIG. 1 is a diagram showing an outline of an electrical functional block of a fundamental frequency estimation device 1 and an active noise control device 2 having the fundamental frequency estimation device 1. The fundamental frequency estimation device 1 is used as a software resource at least by a computing device such as a CPU (Central Processing Unit) for executing information processing and a storage device such as a RAM (Random Access Memory) or a ROM (Read Only Memory). Self-correlation between the sound collecting unit 10, the tuning component emphasizing unit 11, the gradual DFT (Discrete Fourier Transform) processing unit 12, the fundamental frequency emphasizing unit 13, the first peak extraction unit 14, and the filter unit 15. It has a function calculation unit 16, a second peak extraction unit 17, a time series filter unit 18, an output unit 19, and a storage unit 20.
 収音部10は、例えばマイクロホンにより収音される外部音を入力信号として逐次取得する機能部である。 The sound collecting unit 10 is a functional unit that sequentially acquires, for example, an external sound picked up by a microphone as an input signal.
 調波成分強調部11は、収音部10が取得した信号を全波整流し、入力信号の調波成分を強調する機能部である。これにより、入力信号に基本周波数の調波成分が多く含まれていることを利用して、基本周波数成分を強調することができる。なお、調波成分強調部11は、必須の構成ではない。 The tuning component emphasizing unit 11 is a functional unit that full-wave rectifies the signal acquired by the sound collecting unit 10 and emphasizes the tuning component of the input signal. As a result, the fundamental frequency component can be emphasized by utilizing the fact that the input signal contains a large number of fundamental frequency tuning components. The wave tuning component emphasizing unit 11 is not an essential configuration.
 漸化式DFT処理部12は、入力信号の振幅スペクトルを離散フーリエ変換(DFT、Discriate Fourier Transform)により計算する機能部である。漸化式DFT処理部12は、入力信号のサンプル点が取得されるごとに、当該サンプル点の前回値を含む漸化式を用いて入力信号の振幅スペクトルを計算する。ここで、漸化式DFT処理部12が処理する信号は、調波成分強調部11を有する場合には調波成分強調部11で全波整流された信号であり、調波成分強調部11を有しない場合には収音部10が取得した信号である。 The recurrence formula DFT processing unit 12 is a functional unit that calculates the amplitude spectrum of the input signal by a discrete Fourier transform (DFT, Discrete Fourier Transform). The recurrence formula DFT processing unit 12 calculates the amplitude spectrum of the input signal using the recurrence formula including the previous value of the sample point each time the sample point of the input signal is acquired. Here, the signal processed by the recurrence type DFT processing unit 12 is a signal that is full-wave rectified by the tuning component enhancing unit 11 when the tuning component enhancing unit 11 is provided, and the tuning component enhancing unit 11 is used. If not, it is a signal acquired by the sound collecting unit 10.
 以下、漸化式DFT処理部12が行う処理について具体的に説明する。漸化式DFT処理部12は、以下の漸化式(1)を用いて、新しいサンプル点xtが取得されるごとに、時刻tにおける過去Nのサンプル(DFT長がN)の離散フーリエ変換を計算する。添え字の整数kは周波数ビンのインデックスである。
Figure JPOXMLDOC01-appb-M000001
・・・(1)
Hereinafter, the processing performed by the recurrence formula DFT processing unit 12 will be specifically described. The recurrence formula DFT processing unit 12 uses the following recurrence formula (1) to perform a discrete Fourier transform of the past N samples (DFT length is N) at time t each time a new sample point xt is acquired. calculate. The subscript integer k is the index of the frequency bin.
Figure JPOXMLDOC01-appb-M000001
... (1)
 なお、過去Nのサンプルの離散フーリエ変換は以下の式(2)のように表現される。ここで、x、xt-1、・・・xt-N+1は、時刻tにおける過去Nサンプルの系列である。
Figure JPOXMLDOC01-appb-M000002
・・・(2)
The discrete Fourier transform of the past N samples is expressed by the following equation (2). Here, x t , x t-1 , ... X t−N + 1 are a series of past N samples at time t.
Figure JPOXMLDOC01-appb-M000002
... (2)
 離散フーリエ変換の絶対値は振幅スペクトルであり、入力信号の各周波数成分の大きさを表す。すなわち、振幅スペクトルの各値は以下の式(3)で求められる。
Figure JPOXMLDOC01-appb-M000003
・・・(3)
The absolute value of the discrete Fourier transform is the amplitude spectrum, which represents the magnitude of each frequency component of the input signal. That is, each value of the amplitude spectrum is obtained by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
... (3)
 図2は、漸化式DFT処理部12における処理の様子を示すグラフであり、(a)は入力される音声信号の一例を示すグラフであり、(b)は、当該音声信号を漸化式により離散フーリエ変換して得られた振幅スペクトルを示すグラフである。図2(b)に示すように、漸化式DFT処理を行うことで、入力される音声信号は、300Hz付近ならびにその2倍音および3倍音等にピークを有することが明確になる。 FIG. 2 is a graph showing a state of processing in the recurrence formula DFT processing unit 12, (a) is a graph showing an example of an input audio signal, and (b) is a recurrence formula of the audio signal. It is a graph which shows the amplitude spectrum obtained by discrete Fourier transform by. As shown in FIG. 2B, by performing the recurrence DFT process, it becomes clear that the input audio signal has peaks in the vicinity of 300 Hz and in the 2nd and 3rd overtones thereof.
 なお、一般的に、DFT長がNのときの離散フーリエ変換は以下の式(4)で定義されるが、この定義通りに計算すると、N個のサンプル点が取得されるのを待って離散フーリエ変換をする必要があり、DFT長分の遅延が生じてしまう。また、周波数分解能を大きくするほど遅延が大きくなり、リアルタイムに基本周波数を推定することは困難である。さらに、この計算方法は計算量が多いため、処理時間がかかり、一層遅延が大きくなる。したがって、アクティブノイズコントロール装置に適用しようとすると、生成した音と外部音との間に時間的なずれが生じ、騒音を効果的に低減することが難しい。
Figure JPOXMLDOC01-appb-M000004
・・・(4)
In general, the discrete Fourier transform when the DFT length is N is defined by the following equation (4), but if calculated according to this definition, it will be discrete after waiting for N sample points to be acquired. It is necessary to perform Fourier transform, which causes a delay corresponding to the DFT length. Further, the larger the frequency resolution, the larger the delay, and it is difficult to estimate the fundamental frequency in real time. Further, since this calculation method requires a large amount of calculation, processing time is long and the delay is further increased. Therefore, when it is applied to an active noise control device, a time lag occurs between the generated sound and the external sound, and it is difficult to effectively reduce the noise.
Figure JPOXMLDOC01-appb-M000004
... (4)
 これに対し、本実施の形態のように、漸化式により前回値に基づいて離散フーリエ変換を行うことで、N個のサンプル点の取得待ちに伴う遅延を生じさせず、処理量を減らすることができ、遅延を最小限に抑えることができる。 On the other hand, as in the present embodiment, by performing the discrete Fourier transform based on the previous value by the recurrence formula, the delay due to waiting for the acquisition of N sample points is not generated and the processing amount is reduced. Can be done and delays can be minimized.
 図1の説明に戻る。基本周波数強調部13は、信号の基本周波数成分を強調する機能部である。基本周波数強調部13は、倍音が存在することが分かっている場合に、漸化式DFT処理部12により算出される振幅スペクトルに対し、例えばHPS法(Harmonic Product Spectrum法)により、基本周波数の帯域に、当該帯域の倍音成分に基づく量を加算する。 Return to the explanation in Fig. 1. The fundamental frequency enhancement unit 13 is a functional unit that emphasizes the fundamental frequency component of the signal. When it is known that harmonics are present, the fundamental frequency enhancement unit 13 uses the HPS method (Harmonic Product Spectrum method), for example, to obtain the fundamental frequency band with respect to the amplitude spectrum calculated by the progressive DFT processing unit 12. Adds an amount based on the harmonic content of the band to.
 例えば、基本周波数強調部13は、基本周波数とその2倍音が存在することが分かっている場合には、式(5)に示すように、元の振幅スペクトルと、周波数方向に1/2に圧縮した振幅スペクトルとをかけ合わせて、基本周波数成分を強調する。
Figure JPOXMLDOC01-appb-M000005
・・・(5)
For example, when it is known that the fundamental frequency and its second harmonics exist, the fundamental frequency enhancement unit 13 compresses the original amplitude spectrum and the original amplitude spectrum by 1/2 in the frequency direction, as shown in the equation (5). The fundamental frequency component is emphasized by multiplying it with the obtained amplitude spectrum.
Figure JPOXMLDOC01-appb-M000005
... (5)
 図3は、基本周波数強調部13における処理の様子を示すグラフであり、(a)は基本周波数強調部13による処理前の信号の振幅スペクトルの一例を示すグラフであり、(b)は基本周波数強調部13による処理後の信号の振幅スペクトルを示すグラフである。図3(a)では、300Hz付近、600Hz付近および900Hz付近にそれぞれピークが見てとれる。一方、図3(b)においては、300Hz付近のピークが、図3(a)に示すグラフよりも強調され、600Hz付近および900Hz付近のピークは小さくなっている。このように、基本周波数強調部13により処理を行うことで、基本周波数の倍音成分を用いて基本周波数を強調することができるため、後に詳述する基本周波数強調部13の処理において、より正確に基本周波数を推定することができる。 FIG. 3 is a graph showing the state of processing in the fundamental frequency enhancement unit 13, (a) is a graph showing an example of the amplitude spectrum of the signal before processing by the fundamental frequency enhancement unit 13, and (b) is a graph showing an example of the amplitude spectrum of the signal before processing by the fundamental frequency enhancement unit 13. It is a graph which shows the amplitude spectrum of the signal after processing by the emphasis section 13. In FIG. 3A, peaks can be seen near 300 Hz, around 600 Hz, and around 900 Hz, respectively. On the other hand, in FIG. 3 (b), the peak near 300 Hz is emphasized more than the graph shown in FIG. 3 (a), and the peaks near 600 Hz and 900 Hz are smaller. In this way, by performing the processing by the fundamental frequency emphasizing unit 13, the fundamental frequency can be emphasized by using the harmonic component of the fundamental frequency. Therefore, in the processing of the fundamental frequency emphasizing unit 13 described in detail later, more accurately. The fundamental frequency can be estimated.
 なお、式(4)では、基本周波数強調部13は、元の振幅スペクトルと2倍音の振幅スペクトルを掛け合わせたが、これに代えて、又は加えて、元の振幅スペクトルに3倍音以上の倍音成分の振幅スペクトルを乗算する処理を行ってもよい。つまり、m倍音(mは自然数)が存在するとき、基本周波数強調部13は、漸化式DFT処理部12により算出された振幅スペクトルと、当該振幅スペクトルを周波数方向に1/mに圧縮した振幅スペクトルをかけ合わせる。 In the equation (4), the fundamental frequency enhancement unit 13 multiplied the original amplitude spectrum and the amplitude spectrum of the second harmonic overtone, but instead of or in addition to this, the original amplitude spectrum is multiplied by the harmonic overtone of the third harmonic overtone or more. You may perform the process of multiplying the amplitude spectrum of the component. That is, when m harmonics (m is a natural number) are present, the fundamental frequency enhancement unit 13 has an amplitude spectrum calculated by the recurrence formula DFT processing unit 12 and an amplitude obtained by compressing the amplitude spectrum to 1 / m in the frequency direction. Multiply the spectra.
 また、基本周波数強調部13は、基本周波数の倍音成分が存在しているか否かを判定し、倍音成分が存在すると判定された場合にのみ基本周波数成分を強調する処理を行うようにしてもよい。これにより、基本周波数成分を強調する処理を適切に行うことができる。 Further, the fundamental frequency emphasizing unit 13 may determine whether or not a harmonic component of the fundamental frequency is present, and perform a process of emphasizing the fundamental frequency component only when it is determined that the harmonic component is present. .. Thereby, the process of emphasizing the fundamental frequency component can be appropriately performed.
 図1の説明に戻る。第1ピーク抽出部14は、大まかな基本周波数を推定する機能部である。第1ピーク抽出部14は、基本周波数強調部13から出力される振幅スペクトルから以下の式(6)を用いてピーク周波数を推定する。なお、kmaxは、振幅スペクトルの最大値を取る周波数インデックスである。
Figure JPOXMLDOC01-appb-M000006
・・・(6)
Returning to the description of FIG. The first peak extraction unit 14 is a functional unit that estimates a rough fundamental frequency. The first peak extraction unit 14 estimates the peak frequency from the amplitude spectrum output from the fundamental frequency enhancement unit 13 using the following equation (6). Note that k max is a frequency index that takes the maximum value of the amplitude spectrum.
Figure JPOXMLDOC01-appb-M000006
... (6)
 なお、第1ピーク抽出部14は、式(6)の処理に代えて、パラボラフィッティング処理を行うことで、より精密に基本周波数の概算値を計算してもよい。パラボラフィッティング処理とは、ピーク周辺を二次関数により近似し、より正確なピーク位置を計算する処理である。 Note that the first peak extraction unit 14 may calculate the approximate value of the fundamental frequency more accurately by performing a parabolic fitting process instead of the process of the equation (6). The parabolic fitting process is a process of approximating the periphery of a peak with a quadratic function and calculating a more accurate peak position.
 図4は、第1ピーク抽出部14におけるパラボラフィッティング処理の様子を模式的に示す図である。パラボラフィッティング処理では、以下の式(7)に示すように、振幅スペクトルの最大値を取る周波数インデックスの振幅スペクトルb、ならびにその前後の振幅スペクトルaおよびcを抽出し、これらを通る二次曲線を補完し、極大値をとる周波数を振幅スペクトルのピーク周波数とする。
Figure JPOXMLDOC01-appb-M000007
・・・(7)
FIG. 4 is a diagram schematically showing a state of the parabolic fitting process in the first peak extraction unit 14. In the parabolic fitting process, as shown in the following equation (7), the amplitude spectrum b of the frequency index that takes the maximum value of the amplitude spectrum and the amplitude spectra a and c before and after the amplitude spectrum are extracted, and a quadratic curve passing through these is extracted. The frequency that complements and takes the maximum value is defined as the peak frequency of the amplitude spectrum.
Figure JPOXMLDOC01-appb-M000007
... (7)
 パラボラフィッティング処理を用いることで、離散的な周波数インデックスの間に存在するピーク周波数をより正確に求めることができる。 By using the parabolic fitting process, the peak frequencies existing between the discrete frequency indexes can be obtained more accurately.
 なお、第1ピーク抽出部14により抽出されるピーク周波数(本発明の第1ピーク周波数の相当)は、入力信号の大まかな基本周波数であり、基本周波数の概算値であるが、基本周波数推定装置1が推定値として出力する値とは異なる。基本周波数推定装置1は、後述する処理により、入力信号の基本周波数をより正確に推定する。 The peak frequency extracted by the first peak extraction unit 14 (corresponding to the first peak frequency of the present invention) is a rough fundamental frequency of the input signal and is an approximate value of the fundamental frequency. 1 is different from the value output as the estimated value. The fundamental frequency estimation device 1 estimates the fundamental frequency of the input signal more accurately by a process described later.
 また、第1ピーク抽出部14は、パラボラフィッティング等のピーク抽出処理の前に、振幅スペクトルに対して窓関数の離散フーリエ変換結果を畳み込む処理を行ってもよい。これにより、矩形窓によってぼやけた振幅スペクトルをある程度鮮鋭化して補正することができる。ただし、この窓関数処理は必須ではない。 Further, the first peak extraction unit 14 may perform a process of convolving the discrete Fourier transform result of the window function with respect to the amplitude spectrum before the peak extraction process such as parabolic fitting. As a result, the amplitude spectrum blurred by the rectangular window can be sharpened to some extent and corrected. However, this window function processing is not essential.
 図1の説明に戻る。フィルタ部15は、特定の狭帯域を強調する機能部である。具体的には、フィルタ部15は、第1ピーク抽出部14で抽出された振幅スペクトルのピーク周波数を含む帯域を強調するフィルタをかける処理を行う。 Return to the explanation in Fig. 1. The filter unit 15 is a functional unit that emphasizes a specific narrow band. Specifically, the filter unit 15 performs a process of applying a filter that emphasizes the band including the peak frequency of the amplitude spectrum extracted by the first peak extraction unit 14.
 本実施形態においては、フィルタ部15は、フィルタ部15への入力信号に振幅スペクトルのピーク周波数を中心周波数とする逆ノッチフィルタを掛ける処理を、漸化式を用いて計算する。帯域幅に関する定数をr(0<r<1)とすると、逆ノッチフィルタの漸化式は以下で定義される。
Figure JPOXMLDOC01-appb-M000008
・・・(8)
Figure JPOXMLDOC01-appb-M000009
・・・(9)
In the present embodiment, the filter unit 15 calculates a process of applying an inverse notch filter having the peak frequency of the amplitude spectrum as the center frequency to the input signal to the filter unit 15 by using a gradual equation. Assuming that the bandwidth constant is r (0 <r <1), the recurrence formula of the inverse notch filter is defined below.
Figure JPOXMLDOC01-appb-M000008
... (8)
Figure JPOXMLDOC01-appb-M000009
... (9)
 ここで、xは入力信号、yは逆ノッチフィルタの出力、fsはサンプリング周波数である。定数rは、1に近いほど狭い範囲の周波数を強調することを表す定数であり、ここでは0.95~0.98程度である。当該処理により、簡素な構成で狭帯域の強調が可能である。 Here, x t is the input signal, y t is the output of the reverse notch filter, and fs is the sampling frequency. The constant r is a constant indicating that the closer to 1 the emphasis is on the frequency in a narrow range, and here, it is about 0.95 to 0.98. By this processing, it is possible to emphasize a narrow band with a simple configuration.
 図5は、フィルタ部15における逆ノッチフィルタ処理の様子を示すグラフであり、(a)は逆ノッチフィルタ処理前の信号の振幅スペクトルの一例を示すグラフであり、(b)は300kHzを強調する逆ノッチフィルタを適用した後の信号の振幅スペクトルを示すグラフである。図5においては、逆ノッチフィルタ処理により、基本周波数である300Hz付近ではピークが強調され、その他の周波数のピークは抑制されている。 FIG. 5 is a graph showing the state of the reverse notch filter processing in the filter unit 15, FIG. 5A is a graph showing an example of the amplitude spectrum of the signal before the reverse notch filter processing, and FIG. 5B emphasizes 300 kHz. It is a graph which shows the amplitude spectrum of a signal after applying an inverse notch filter. In FIG. 5, by the reverse notch filter processing, the peak is emphasized near the fundamental frequency of 300 Hz, and the peaks of other frequencies are suppressed.
 このように、漸化式DFT処理部12及び第1ピーク抽出部14により基本周波数の含まれる帯域を大まかに推定した上で、当該帯域をフィルタ部15により強調することで、自己相関関数がきれいなcos波形状になり、ピーク抽出の精度が向上する(後に詳述)。 In this way, the autocorrelation function is clean by roughly estimating the band including the fundamental frequency by the recurrence formula DFT processing unit 12 and the first peak extraction unit 14 and then emphasizing the band by the filter unit 15. The cos wave shape is obtained, and the accuracy of peak extraction is improved (detailed later).
 なお、フィルタ部15が行う処理は、バンドパスフィルタ処理であってもよい。ただし、逆ノッチフィルタ処理は、バンドパスフィルタ処理に比べて簡便に狭帯域を強調することができる。 The process performed by the filter unit 15 may be a bandpass filter process. However, the reverse notch filter processing can emphasize a narrow band more easily than the bandpass filter processing.
 図1の説明に戻る。自己相関関数計算部16は、フィルタ部15により処理された信号に対し、自己相関関数を計算する機能部である。 Return to the explanation in Fig. 1. The autocorrelation function calculation unit 16 is a functional unit that calculates an autocorrelation function for the signal processed by the filter unit 15.
 長さMの自己相関関数ACFt(i)は、以下の式(10)で定義される。
Figure JPOXMLDOC01-appb-M000010
・・・(10)
The autocorrelation function ACFt (i) of length M is defined by the following equation (10).
Figure JPOXMLDOC01-appb-M000010
... (10)
 図6は、自己相関関数の計算例である。自己相関関数ACFt(i)は、信号をiサンプルずらして重ね合わせたときの内積であり、重ね合わせた2つの信号の類似度を示す指標である。したがって、自己相関関数ACFtのピーク間隔は信号周期に一致する。 FIG. 6 is a calculation example of the autocorrelation function. The autocorrelation function ACFt (i) is the inner product when the signals are superposed with the i-samples shifted, and is an index showing the similarity between the two superposed signals. Therefore, the peak interval of the autocorrelation function ACFt coincides with the signal period.
 本実施の形態では、自己相関関数計算部16は、自己相関関数の前回値ACFt-1(i)を含む漸化式(11)を用いて、自己相関関数ACFt(i)を計算する。これにより、効率的に自己相関関数を計算することができる。
Figure JPOXMLDOC01-appb-M000011
・・・(11)
In the present embodiment, the autocorrelation function calculation unit 16 calculates the autocorrelation function ACFt (i) by using the recurrence formula (11) including the previous value ACFt-1 (i) of the autocorrelation function. This makes it possible to efficiently calculate the autocorrelation function.
Figure JPOXMLDOC01-appb-M000011
... (11)
 図7は、自己相関関数計算部16による計算の様子を示すグラフであり、(a)はフィルタ部15により逆ノッチフィルタ処理をされている信号の自己相関関数の一例を示すグラフであり、(b)は逆ノッチフィルタ処理をされていない信号の自己相関関数の一例を示すグラフである。 FIG. 7 is a graph showing the state of calculation by the autocorrelation function calculation unit 16, and FIG. 7A is a graph showing an example of the autocorrelation function of the signal subjected to the inverse notch filter processing by the filter unit 15. b) is a graph showing an example of the autocorrelation function of the signal not subjected to the inverse notch filter processing.
 逆ノッチフィルタ処理により目的周波数の帯域以外の信号が抑制されているため、逆ノッチフィルタ処理をされている信号の自己相関関数の方が滑らかである。自己相関関数を滑らかにすることで、誤った極大値を検出することが少なくなる。また、二次関数へのあてはまりが良くなり、後述する第2ピーク抽出部17におけるパラボラフィッティングの精度が向上する。また、逆ノッチフィルタ処理により直流成分が除去できるため、自己相関関数の歪みを抑えることができる。 Since the signal outside the band of the target frequency is suppressed by the inverse notch filter processing, the autocorrelation function of the signal subjected to the inverse notch filter processing is smoother. By smoothing the autocorrelation function, it is less likely to detect an erroneous local maximum. In addition, the fit to the quadratic function is improved, and the accuracy of parabolic fitting in the second peak extraction unit 17, which will be described later, is improved. Further, since the DC component can be removed by the inverse notch filter processing, the distortion of the autocorrelation function can be suppressed.
 図1の説明に戻る。第2ピーク抽出部17は、自己相関関数のピーク周波数を抽出する機能部である。第2ピーク抽出部17は、自己相関関数の最大値を含む周波数帯域において、極大値をとる周波数をパラボラフィッティングにより求め、当該極大値をとる周波数を自己相関関数のピーク周波数(本発明の第2ピーク周波数に相当)として抽出する。 Return to the explanation in Fig. 1. The second peak extraction unit 17 is a functional unit that extracts the peak frequency of the autocorrelation function. The second peak extraction unit 17 obtains the frequency having the maximum value by parabolic fitting in the frequency band including the maximum value of the autocorrelation function, and determines the frequency having the maximum value as the peak frequency of the autocorrelation function (second of the present invention). Extract as (corresponding to the peak frequency).
 第1ピーク抽出部14により振幅スペクトルから求めた大まかな基本周期は、式(12)の通りである。
Figure JPOXMLDOC01-appb-M000012
・・・(12)
The rough basic period obtained from the amplitude spectrum by the first peak extraction unit 14 is as shown in Eq. (12).
Figure JPOXMLDOC01-appb-M000012
... (12)
 当該基本周期近傍の自己相関関数の極大位置をパラボラフィッティングにより求め、これを、基本周波数推定装置1が推定値として出力する基本周波数の周期Tとする。
Figure JPOXMLDOC01-appb-M000013
・・・(13)
Figure JPOXMLDOC01-appb-M000014
・・・(14)
The maximum position of the autocorrelation function in the vicinity of the fundamental period is obtained by parabolic fitting, and this is defined as the period T of the fundamental frequency output by the fundamental frequency estimation device 1 as an estimated value.
Figure JPOXMLDOC01-appb-M000013
... (13)
Figure JPOXMLDOC01-appb-M000014
... (14)
 そして、周期Tから、ピーク周波数fの推定値が導かれる。
Figure JPOXMLDOC01-appb-M000015
・・・(15)
Then, an estimated value of the peak frequency f 0 is derived from the period T.
Figure JPOXMLDOC01-appb-M000015
... (15)
 このように、自己相関関数がcos波に類似し、自己相関関数のピーク近傍が二次関数によくあてはまるため、パラボラフィッティングを利用することでピーク位置をより精密に推定することができる。 In this way, the autocorrelation function is similar to the cos wave, and the vicinity of the peak of the autocorrelation function fits well to the quadratic function, so the peak position can be estimated more accurately by using parabolic fitting.
 第2ピーク抽出部17により求められた自己相関関数のピーク周波数fは、サンプル点が取得されるごとに抽出され、ピーク周波数の配列として逐次記憶部20に格納される。 The peak frequency f 0 of the autocorrelation function obtained by the second peak extraction unit 17 is extracted every time a sample point is acquired, and is stored in the sequential storage unit 20 as an array of peak frequencies.
 離散フーリエ変換処理は、基本周波数を安定的に求められる一方で、大雑把な値しか得ることができない。一方、自己相関関数処理は、基本周波数を正確に求めることができるが、ノイズや倍音成分による誤ったピークを選択した場合、実際の基本周波数と大きく異なる数値を算出してしまうおそれがある。本実施の形態では、漸化式DFT処理部12において離散フーリエ変換処理で大まかに求めた基本周波数の帯域を利用して信号を加工した上で、第2ピーク抽出部17で自己相関関数を求めることで、正確かつ安定的に基本周波数を求めることができる。 In the discrete Fourier transform process, the fundamental frequency can be obtained stably, but only a rough value can be obtained. On the other hand, the autocorrelation function processing can accurately obtain the fundamental frequency, but if an erroneous peak due to noise or overtone components is selected, there is a possibility that a numerical value significantly different from the actual fundamental frequency may be calculated. In the present embodiment, the recurrence formula DFT processing unit 12 processes the signal using the fundamental frequency band roughly obtained by the discrete Fourier transform processing, and then the second peak extraction unit 17 obtains the autocorrelation function. Therefore, the fundamental frequency can be obtained accurately and stably.
 時系列フィルタ部18は、自己相関関数のピーク周波数の前回値との差分に基づいて、自己相関関数のピーク周波数の補正を行う機能部である。時系列フィルタ部18は、ピーク周波数の配列に基づいて、以下の漸化式(16)により自己相関関数のピーク周波数に対して時系列フィルタリング処理を行う。
Figure JPOXMLDOC01-appb-M000016
・・・(16)
The time-series filter unit 18 is a functional unit that corrects the peak frequency of the autocorrelation function based on the difference between the peak frequency of the autocorrelation function and the previous value. The time-series filter unit 18 performs time-series filtering processing on the peak frequency of the autocorrelation function by the following recurrence formula (16) based on the arrangement of peak frequencies.
Figure JPOXMLDOC01-appb-M000016
... (16)
 式(16)によれば、小さい変化量は今回値にそのまま反映され、極端に大きい変化は上限を設けて反映される。図8は、時系列フィルタ部18における処理の様子を示すグラフである。図8では、時系列フィルタリング処理前(点線参照)と時系列フィルタリング処理後(実線参照)の信号が重畳的に表示されている。このように、仮に基本周波数の推定を誤り、推定に外れ値が出現してしまったとしても、推定値の急激な変化を抑え、外れ値の影響を小さくできる。また、漸化式によって時系列フィルタリング処理を行うため、処理量が小さく、処理遅延を抑えることができる。 According to equation (16), a small amount of change is reflected as it is in the current value, and an extremely large change is reflected by setting an upper limit. FIG. 8 is a graph showing a state of processing in the time series filter unit 18. In FIG. 8, the signals before the time-series filtering process (see the dotted line) and after the time-series filtering process (see the solid line) are displayed in an overlapping manner. In this way, even if the fundamental frequency is estimated incorrectly and an outlier appears in the estimation, it is possible to suppress a sudden change in the estimated value and reduce the influence of the outlier. Further, since the time-series filtering process is performed by the recurrence formula, the amount of processing is small and the processing delay can be suppressed.
 なお、時系列フィルタ部18は、必須ではない。また、時系列フィルタ部18は、上述のように前回値との差分のtanh関数(双曲線正接関数)を計算する構成に代えて、sign関数(符号関数)、arctan関数(逆正接関数)またはerf関数(誤差関数)を用いて処理を実行してもよい。 The time series filter unit 18 is not essential. Further, the time-series filter unit 18 replaces the configuration for calculating the tanh function (double curve tangent function) of the difference from the previous value as described above, instead of the sign function (sign function), arctan function (inverse tangent function) or erf. Processing may be executed using a function (error function).
 また、本実施形態においては、時系列フィルタ部18は、変化量を飽和させた漸化式によってフィルタリング処理を行ったが、これに代えて、最小二乗法、ロバスト回帰、カルマンフィルタ又はメディアンフィルタ等を用いることもできる。 Further, in the present embodiment, the time series filter unit 18 performs filtering processing by a recurrence formula that saturates the amount of change, but instead of this, a least squares method, robust regression, Kalman filter, median filter, or the like is used. It can also be used.
 図1の説明に戻る。出力部19は、自己相関関数のピーク周波数を基本周波数として出力する。出力部19は、後述するANC処理部21に基本周波数を送信する。また、出力部19は、接続されるユーザインターフェース装置(図示省略)の画面に基本周波数の値を表示してもよい。 Return to the explanation in Fig. 1. The output unit 19 outputs the peak frequency of the autocorrelation function as the fundamental frequency. The output unit 19 transmits a fundamental frequency to the ANC processing unit 21, which will be described later. Further, the output unit 19 may display the value of the fundamental frequency on the screen of the connected user interface device (not shown).
 次に、アクティブノイズコントロール装置2が有する機能部について説明する。図1に示すように、アクティブノイズコントロール装置2は、基本周波数推定装置1の他に、主として、アクティブノイズコントロール(ANC)処理部21と、放音部22とを備える。なお、本実施の形態では、基本周波数推定装置1はアクティブノイズコントロール装置2の一部を構成するものとしたが、基本周波数推定装置1とアクティブノイズコントロール装置2のANC処理部21および放音部22とがそれぞれ別の装置により構成され、互いに有線又は無線で接続されていてもよい。 Next, the functional unit of the active noise control device 2 will be described. As shown in FIG. 1, the active noise control device 2 mainly includes an active noise control (ANC) processing unit 21 and a sound emitting unit 22 in addition to the fundamental frequency estimation device 1. In the present embodiment, the fundamental frequency estimation device 1 constitutes a part of the active noise control device 2, but the fundamental frequency estimation device 1 and the active noise control device 2 have an ANC processing unit 21 and a sound emitting unit. 22 may be configured by different devices and may be connected to each other by wire or wirelessly.
 ANC処理部21は、基本周波数推定装置1で推定された入力信号の基本周波数に基づいて、放音するノイズキャンセル音を生成する機能部である。ANC処理部21は、入力信号と逆位相の信号を生成する。 The ANC processing unit 21 is a functional unit that generates a noise canceling sound to be emitted based on the fundamental frequency of the input signal estimated by the fundamental frequency estimation device 1. The ANC processing unit 21 generates a signal having a phase opposite to that of the input signal.
 例えば、車載装置においては、エンジンの回転に起因する低音の狭帯域騒音(いわゆるこもり音)が発生する。こもり音は正弦波に近い騒音であり、その周波数は、4気筒エンジンの場合はエンジン回転の2次の成分、6気筒エンジンの場合はエンジン回転の3次の成分に現れる。例えば、4気筒エンジンの回転数が3000rpmである場合、こもり音の基本周波数は100Hz(エンジン回転の2次成分)となる。また、その倍音成分も発生する。 For example, in an in-vehicle device, low-pitched narrow-band noise (so-called muffled sound) is generated due to engine rotation. The muffled noise is a noise close to a sine wave, and its frequency appears in the second-order component of engine rotation in the case of a 4-cylinder engine and in the third-order component of engine rotation in the case of a 6-cylinder engine. For example, when the rotation speed of a 4-cylinder engine is 3000 rpm, the fundamental frequency of the muffled sound is 100 Hz (secondary component of engine rotation). In addition, the overtone component is also generated.
 一般的に、こもり音は、SAN(Single Adaptive Notch filter)などを用いて減少させる。図11は、一般的なSANの電気的な機能ブロックの概略を示す図である。SANは、CAN(Control Area Network)100からエンジン回転数情報を取得し、エンジン回転数に対応するcos波およびsin波を生成し、誤差マイク101の観測信号が小さくなるように適応処理を施した重みω0およびω1をそれぞれかけてスピーカ102から出力する。このようなフィードフォワード型のANC処理を実行するためには、エンジン回転数等の参照信号を取得する必要がある。しかしながら、コスト等の制約により参照信号を取得できない場合がある。 Generally, the muffled sound is reduced by using SAN (Single Adaptive Notch filter) or the like. FIG. 11 is a diagram illustrating an outline of a general SAN electrical functional block. SAN acquired engine speed information from CAN (Control Area Network) 100, generated cos waves and sine waves corresponding to the engine speed, and performed adaptive processing so that the observation signal of the error microphone 101 became small. The weights ω0 and ω1 are applied and output from the speaker 102. In order to execute such feedforward type ANC processing, it is necessary to acquire a reference signal such as the engine speed. However, there are cases where the reference signal cannot be acquired due to restrictions such as cost.
 本実施の形態では、基本周波数推定装置1と、SANを組み合わせることで、CAN等の参照信号なしでこもり音を低減することができる。図9は、ANC処理部21において基本周波数推定装置1とSANとを組み合わせたときの電気的な機能ブロックの概略を示す図である。ANC処理部21は、基本周波数推定装置1から騒音の基本周波数を取得し、当該基本周波数と逆位相のcos波およびsin波を生成し、誤差マイク101の観測信号が小さくなるように適応処理を施した重みω0およびω1をそれぞれかけてスピーカから出力する。したがって、参照信号がなくても自動車内のこもり音を低減できるアクティブノイズコントロール装置2が構成できる。  In the present embodiment, by combining the fundamental frequency estimation device 1 and the SAN, the muffled sound can be reduced without a reference signal such as a CAN. FIG. 9 is a diagram showing an outline of an electrical functional block when the fundamental frequency estimation device 1 and the SAN are combined in the ANC processing unit 21. The ANC processing unit 21 acquires the fundamental frequency of noise from the fundamental frequency estimation device 1, generates cos waves and sine waves having a phase opposite to the fundamental frequency, and performs adaptive processing so that the observation signal of the error microphone 101 becomes smaller. The applied weights ω0 and ω1 are applied and output from the speaker. Therefore, it is possible to configure the active noise control device 2 that can reduce the muffled noise in the automobile even if there is no reference signal. Twice
 放音部22は、例えば信号をスピーカに伝達し、音に変換する機能部である。 The sound emitting unit 22 is, for example, a functional unit that transmits a signal to a speaker and converts it into sound.
 図10は、基本周波数推定装置1により信号の基本周波数を逐次推定し、アクティブノイズコントロール装置2が当該基本周波数に基づいて騒音を逐次低減する流れを示すフローチャートである。この処理は、入力信号が基本周波数推定装置1に入力される間、所定時間毎に連続して行われる。 FIG. 10 is a flowchart showing a flow in which the fundamental frequency of a signal is sequentially estimated by the fundamental frequency estimation device 1 and the active noise control device 2 sequentially reduces noise based on the fundamental frequency. This process is continuously performed at predetermined time intervals while the input signal is input to the fundamental frequency estimation device 1.
 まず、マイクロホンおよび収音部10により音声信号が収音されると(ステップS11)、調波成分強調部11により調波成分を強調する(ステップS12)。次に、調波成分が強調された信号に対し、漸化式表現によるDFT処理を行う(ステップS13)。次に、基本周波数強調部13によるHPS処理などにより基本周波数を強調する処理を行う(ステップS14)。次に、基本周波数の強調処理がなされた信号のピーク周波数を抽出する(ステップS15)。 First, when the sound signal is picked up by the microphone and the sound collecting unit 10 (step S11), the wave tuning component is emphasized by the wave tuning component enhancing unit 11 (step S12). Next, the signal in which the tuning component is emphasized is subjected to DFT processing by a recurrence formula expression (step S13). Next, a process of emphasizing the fundamental frequency is performed by HPS processing or the like by the fundamental frequency emphasizing unit 13 (step S14). Next, the peak frequency of the signal whose fundamental frequency has been emphasized is extracted (step S15).
 次に、フィルタ部15により基本周波数を含む帯域を強調する逆ノッチフィルタ処理を行った後(ステップS16)、自己相関関数を計算し(ステップS17)、自己相関関数のピーク周波数を抽出する(ステップS18)。抽出した周波数は、記憶部20に逐次記憶される。 Next, after performing an inverse notch filter process that emphasizes the band including the fundamental frequency by the filter unit 15 (step S16), the autocorrelation function is calculated (step S17), and the peak frequency of the autocorrelation function is extracted (step S16). S18). The extracted frequencies are sequentially stored in the storage unit 20.
 次に、記憶部20に記憶されたデータに基づいて、自己相関関数のピーク周波数に信号に時系列フィルタリング処理を行い(ステップS19)、外れ値を抑制する。ステップS19により得られた値が、基本周波数推定装置1により推定された基本周波数の値である。 Next, based on the data stored in the storage unit 20, time-series filtering is performed on the signal at the peak frequency of the autocorrelation function (step S19), and outliers are suppressed. The value obtained in step S19 is the value of the fundamental frequency estimated by the fundamental frequency estimation device 1.
 次に、基本周波数推定装置1により得られた基本周波数に基づいてアクティブノイズコントロール処理、すなわち、ノイズと逆位相の音をスピーカから放音することでノイズを低減するための信号を生成する(ステップS20)。次に、ステップS20で生成された信号をスピーカから放音することで、騒音とその逆位相の音が物理的に加算され、騒音が相殺される(ステップS21)。 Next, active noise control processing is performed based on the fundamental frequency obtained by the fundamental frequency estimation device 1, that is, a signal for reducing noise is generated by emitting sound having a phase opposite to the noise from the speaker (step). S20). Next, by emitting the signal generated in step S20 from the speaker, the noise and the sound having the opposite phase are physically added, and the noise is canceled (step S21).
 本実施の形態によれば、漸化式DFT処理でおおまかに求めた基本周波数の帯域を利用して信号を加工した上で、自己相関関数を求めるため、少ない演算量で正確に基本周波数を推定することができる。 According to the present embodiment, since the autocorrelation function is obtained after processing the signal using the band of the fundamental frequency roughly obtained by the recurrence formula DFT processing, the fundamental frequency is accurately estimated with a small amount of calculation. can do.
 DFT処理は、基本周波数を安定的に求められる一方で、大雑把な値しか得ることができない。一方、自己相関関数処理は、基本周波数を正確に求めることができるが、ノイズや倍音成分の影響で誤ったピーク倍音の信号が強調されるため、実際の基本周波数と大きく異なる数値を算出してしまうおそれがある。それに対し、DFT処理で大まかに求めた基本周波数の帯域を利用して信号を加工した上で、自己相関関数を求めることで、正確かつ安定して基本周波数を求めることができる。 In DFT processing, while the fundamental frequency can be obtained stably, only a rough value can be obtained. On the other hand, the autocorrelation function processing can accurately obtain the fundamental frequency, but since the signal of the wrong peak overtone is emphasized due to the influence of noise and harmonic components, a numerical value that is significantly different from the actual fundamental frequency is calculated. There is a risk that it will end up. On the other hand, the fundamental frequency can be obtained accurately and stably by processing the signal using the band of the fundamental frequency roughly obtained by the DFT process and then obtaining the autocorrelation function.
 また、本実施の形態によれば、取得した信号に対して漸化式を用いたDFT処理および自己相関関数処理を逐次的に行うことで、高速フーリエ変換に伴う遅延を避け、演算量と遅延量を少なくすることができる。 Further, according to the present embodiment, the DFT process and the autocorrelation function process using the recurrence formula are sequentially performed on the acquired signal to avoid the delay associated with the fast Fourier transform, and the amount of calculation and the delay. The amount can be reduced.
 例えば、高速フーリエ変換を使用する場合には、データのバッファリングに伴う遅延が生じてしまう。また、バッファしたデータをまとめて高速フーリエ変換を実行する場合の演算量は多くないが、1サンプル毎に高速フーリエ変換を実行すると演算量が多くなる。それに対し、漸化式を用いたDFT処理を行う場合には、1サンプル毎に処理を実行しても演算量が少なくて済む。 For example, when using the Fast Fourier Transform, there will be a delay due to data buffering. Further, although the amount of calculation is not large when the buffered data is collectively executed by the fast Fourier transform, the amount of calculation is large when the fast Fourier transform is executed for each sample. On the other hand, when the DFT process using the recurrence formula is performed, the amount of calculation can be small even if the process is executed for each sample.
 また、本実施の形態によれば、DFTおよび自己相関関数を漸化式により計算し、当該方法をサンプル点が取得されるごとに実行するため、処理遅延を抑えることができる。 Further, according to the present embodiment, the DFT and the autocorrelation function are calculated by the recurrence formula, and the method is executed every time a sample point is acquired, so that the processing delay can be suppressed.
 また、本実施の形態によれば、DFTおよび自己相関関数の漸化式計算に基づいて騒音の基本周波数を推定するため、処理負荷が小さい処理しか行えない組み込み機器においてもアクティブノイズコントロールを行うことができる。 Further, according to the present embodiment, since the fundamental frequency of noise is estimated based on the recurrence formula calculation of the DFT and the autocorrelation function, active noise control is performed even in an embedded device that can perform only processing with a small processing load. Can be done.
 なお、本実施の形態に係る基本周波数推定装置1およびアクティブノイズコントロール装置2は、処理量が少なく、小型に構成できるので、自動車内などの組み込み機器に実装するのに好適であるが、他の用途に用いることも可能である。例えば、基本周波数推定装置1は、振幅スペクトルを逐次的に求め、特定の周波数が増大していることを検知し、その周波数の発散を抑制するハウリング検知およびハウリングキャンセル装置に適用することができる。さらに、基本周波数推定装置1は、音の基本周波数を推定し、楽譜を自動再生する自動採譜システムや、楽器の音の基本周波数を推定して表示する楽器のチューニングシステムに適用することができる。そのほかにも、基本周波数推定装置1は、推定した基本周波数を元にくし形フィルタを構成することで、音声調波成分だけを選択的に強調する通話装置に適用することができる。 The fundamental frequency estimation device 1 and the active noise control device 2 according to the present embodiment have a small amount of processing and can be configured in a small size, and are therefore suitable for mounting in an embedded device such as in an automobile. It can also be used for various purposes. For example, the fundamental frequency estimation device 1 can be applied to a howling detection and howling canceling device that sequentially obtains an amplitude spectrum, detects that a specific frequency is increasing, and suppresses divergence of that frequency. Further, the fundamental frequency estimation device 1 can be applied to an automatic transcription system that estimates the fundamental frequency of a sound and automatically reproduces a score, or a tuning system of an instrument that estimates and displays the fundamental frequency of the sound of an instrument. In addition, the fundamental frequency estimation device 1 can be applied to a telephone device that selectively emphasizes only the voice tuning component by configuring a comb-shaped filter based on the estimated fundamental frequency.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。なお、基本周波数推定装置1及びアクティブノイズコントロール装置2の機能構成要素は、処理内容に応じてさらに多くの構成要素に分類されてもよいし、1つの構成要素が複数の構成要素の処理を実行してもよい。基本周波数の推定プログラムは、コンピュータ等の機器に内蔵されている記憶媒体や、CPUを有するマイクロコンピュータ内の記憶部等に予め記憶しておき、そこからコンピュータにインストールされてもよいし、半導体メモリ、メモリカード、光ディスク、光磁気ディスク、磁気ディスク等のリムーバブル記憶媒体に、一時的あるいは永続的に格納(記憶)しておいてもよい。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment and includes design changes and the like within a range not deviating from the gist of the present invention. .. The functional components of the fundamental frequency estimation device 1 and the active noise control device 2 may be further classified into more components according to the processing content, or one component executes processing of a plurality of components. You may. The basic frequency estimation program may be stored in advance in a storage medium built in a device such as a computer, a storage unit in a microcomputer having a CPU, etc., and installed in the computer from there, or a semiconductor memory. , A memory card, an optical disk, a photomagnetic disk, a magnetic disk, or the like may be temporarily or permanently stored (stored) in a removable storage medium.
1    :基本周波数推定装置
2    :アクティブノイズコントロール装置
10   :収音部
11   :調波成分強調部
12   :漸化式DFT処理部
13   :基本周波数強調部
14   :第1ピーク抽出部
15   :フィルタ部
16   :自己相関関数計算部
17   :第2ピーク抽出部
18   :時系列フィルタ部
19   :出力部
20   :記憶部
21   :ANC処理部
22   :放音部
1: Fundamental frequency estimation device 2: Active noise control device 10: Sound collecting unit 11: Harmonizing component emphasis unit 12: Gradual DFT processing unit 13: Fundamental frequency enhancement unit 14: First peak extraction unit 15: Filter unit 16 : Autocorrelation function calculation unit 17: Second peak extraction unit 18: Time series filter unit 19: Output unit 20: Storage unit 21: ANC processing unit 22: Sound emission unit

Claims (9)

  1.  入力信号の基本周波数を逐次推定する装置であって、
     前記入力信号を逐次取得する収音部と、
     前記入力信号のサンプル点が取得されるごとに、当該サンプル点の前回値を含む漸化式を用いて前記入力信号の振幅スペクトルを計算する漸化式DFT処理部と、
     前記振幅スペクトルのピーク周波数である第1ピーク周波数を抽出する第1ピーク抽出部と、
     前記振幅スペクトルの前記第1ピーク周波数を含む帯域を強調するフィルタをかけるフィルタ部と、
     前記フィルタ部により処理された信号に対し、自己相関関数の前回値を含む漸化式を用いて当該自己相関関数を計算する自己相関関数計算部と、
     前記自己相関関数のピーク周波数である第2ピーク周波数を抽出する第2ピーク抽出部と、
     前記第2ピーク周波数を前記入力信号の基本周波数として出力する出力部と、
     を備えることを特徴とする基本周波数推定装置。
    A device that sequentially estimates the fundamental frequency of an input signal.
    A sound collecting unit that sequentially acquires the input signal and
    A recurrence formula DFT processing unit that calculates the amplitude spectrum of the input signal using a recurrence formula including the previous value of the sample point each time a sample point of the input signal is acquired.
    A first peak extraction unit that extracts the first peak frequency, which is the peak frequency of the amplitude spectrum, and a first peak extraction unit.
    A filter unit that applies a filter that emphasizes the band including the first peak frequency of the amplitude spectrum, and
    An autocorrelation function calculation unit that calculates the autocorrelation function using a recurrence formula that includes the previous value of the autocorrelation function for the signal processed by the filter unit.
    A second peak extraction unit that extracts the second peak frequency, which is the peak frequency of the autocorrelation function,
    An output unit that outputs the second peak frequency as the fundamental frequency of the input signal, and
    A fundamental frequency estimator comprising.
  2.  前記漸化式DFT処理部により算出された振幅スペクトルと、当該振幅スペクトルを周波数方向に1/m(mは自然数)に圧縮した振幅スペクトルをかけ合わせる基本周波数強調部を備え、
     前記第1ピーク抽出部は、前記基本周波数強調部から出力された振幅スペクトルのピーク周波数を前記第1ピーク周波数として抽出する
     ことを特徴とする請求項1に記載の基本周波数推定装置。
    It is provided with a fundamental frequency enhancement unit that multiplies the amplitude spectrum calculated by the recurrence formula DFT processing unit and the amplitude spectrum obtained by compressing the amplitude spectrum to 1 / m (m is a natural number) in the frequency direction.
    The fundamental frequency estimation device according to claim 1, wherein the first peak extraction unit extracts the peak frequency of the amplitude spectrum output from the fundamental frequency enhancement unit as the first peak frequency.
  3.  前記フィルタ部は、前記振幅スペクトルのピーク周波数を中心周波数とする逆ノッチフィルタを掛ける処理を行う
     ことを特徴とする請求項1又は2に記載の基本周波数推定装置。
    The fundamental frequency estimation device according to claim 1 or 2, wherein the filter unit performs a process of applying an inverse notch filter having a peak frequency of the amplitude spectrum as a center frequency.
  4.  前記第2ピーク抽出部は、前記自己相関関数の最大値を含む周波数帯域において極大値をとる周波数をパラボラフィッティングにより求め、前記極大値をとる周波数を前記自己相関関数のピーク周波数とする
     ことを特徴とする請求項1から3のいずれか一項に記載の基本周波数推定装置。
    The second peak extraction unit is characterized in that the frequency having the maximum value in the frequency band including the maximum value of the autocorrelation function is obtained by parabolic fitting, and the frequency having the maximum value is set to the peak frequency of the autocorrelation function. The basic frequency estimation device according to any one of claims 1 to 3.
  5.  前記第2ピーク抽出部が抽出した前記第2ピーク周波数の配列を逐次格納する記憶部と、
     前記記憶部に格納された前記第2ピーク周波数の配列に基づいて、前記第2ピーク周波数に対して漸化式による時系列フィルタリング処理を行う時系列フィルタ部と、
     を備えたことを特徴とする請求項1から4のいずれか一項に記載の基本周波数推定装置。
    A storage unit that sequentially stores the array of the second peak frequencies extracted by the second peak extraction unit, and a storage unit.
    A time-series filter unit that performs a time-series filtering process by a recurrence formula on the second peak frequency based on the array of the second peak frequencies stored in the storage unit.
    The fundamental frequency estimation device according to any one of claims 1 to 4, wherein the basic frequency estimation device is provided.
  6.  前記収音部が受信した信号を全波整流する調波成分強調部を備え、
     前記漸化式DFT処理部は、前記調波成分強調部から出力された信号の振幅スペクトルを計算する
     ことを特徴とする請求項1から5のいずれか一項に記載の基本周波数推定装置。
    It is provided with a tuning component emphasizing unit that full-wave rectifies the signal received by the sound collecting unit.
    The fundamental frequency estimation device according to any one of claims 1 to 5, wherein the recurrence formula DFT processing unit calculates an amplitude spectrum of a signal output from the wave tuning component emphasis unit.
  7.  請求項1から6のいずれか一項に記載の基本周波数推定装置と、
     前記入力信号の基本周波数と逆位相の信号を生成するアクティブノイズコントロール部と、
     前記逆位相の信号を出力する放音部と、
     を備えたことを特徴とするアクティブノイズコントロール装置。
    The fundamental frequency estimation device according to any one of claims 1 to 6.
    An active noise control unit that generates a signal with a phase opposite to the fundamental frequency of the input signal,
    The sound emitting unit that outputs the signals of opposite phase and
    An active noise control device characterized by being equipped with.
  8.  入力信号の基本周波数を逐次推定する方法であって、
     前記入力信号を逐次取得するステップと、
     前記入力信号のサンプル点が取得されるごとに、当該サンプル点の前回値を含む漸化式を用いて前記入力信号の振幅スペクトルを計算するステップと、
     前記振幅スペクトルのピーク周波数である第1ピーク周波数を抽出するステップと、
     前記振幅スペクトルの前記第1ピーク周波数を含む帯域を強調するフィルタをかけるステップと、
     前記第1ピーク周波数を含む帯域が強調された信号に対して、自己相関関数の前回値を含む漸化式を用いて当該自己相関関数を計算するステップと、
     前記自己相関関数のピーク周波数である第2ピーク周波数を抽出するステップと、
     前記第2ピーク周波数を前記入力信号の基本周波数として出力するステップと、
     を含むことを特徴とする基本周波数の推定方法。
    It is a method of sequentially estimating the fundamental frequency of the input signal.
    The step of sequentially acquiring the input signal and
    Each time a sample point of the input signal is acquired, a step of calculating the amplitude spectrum of the input signal using a recurrence formula including the previous value of the sample point, and
    The step of extracting the first peak frequency, which is the peak frequency of the amplitude spectrum, and
    A step of filtering the band including the first peak frequency of the amplitude spectrum and
    For the signal in which the band including the first peak frequency is emphasized, the step of calculating the autocorrelation function using the recurrence formula including the previous value of the autocorrelation function, and
    The step of extracting the second peak frequency, which is the peak frequency of the autocorrelation function, and
    A step of outputting the second peak frequency as the fundamental frequency of the input signal, and
    A method for estimating a fundamental frequency, which comprises.
  9.  コンピュータを、
     前記入力信号を逐次取得する収音部と、
     前記入力信号のサンプル点が取得されるごとに、当該サンプル点の前回値を含む漸化式を用いて前記入力信号の振幅スペクトルを計算する漸化式DFT処理部と、
     前記振幅スペクトルのピーク周波数である第1ピーク周波数を抽出する第1ピーク抽出部と、
     前記振幅スペクトルの前記第1ピーク周波数を含む帯域を強調するフィルタをかけるフィルタ部と、
     前記フィルタ部により処理された信号に対し、自己相関関数の前回値を含む漸化式を用いて当該自己相関関数を計算する自己相関関数計算部と、
     前記自己相関関数のピーク周波数である第2ピーク周波数を抽出する第2ピーク抽出部と、
     前記第2ピーク周波数を前記入力信号の基本周波数として出力する出力部と、
     して機能させることを特徴とする基本周波数の推定プログラム。
    Computer,
    A sound collecting unit that sequentially acquires the input signal and
    A recurrence formula DFT processing unit that calculates the amplitude spectrum of the input signal using a recurrence formula including the previous value of the sample point each time a sample point of the input signal is acquired.
    A first peak extraction unit that extracts the first peak frequency, which is the peak frequency of the amplitude spectrum, and a first peak extraction unit.
    A filter unit that applies a filter that emphasizes the band including the first peak frequency of the amplitude spectrum, and
    An autocorrelation function calculation unit that calculates the autocorrelation function using a recurrence formula that includes the previous value of the autocorrelation function for the signal processed by the filter unit.
    A second peak extraction unit that extracts the second peak frequency, which is the peak frequency of the autocorrelation function,
    An output unit that outputs the second peak frequency as the fundamental frequency of the input signal, and
    A fundamental frequency estimation program characterized by functioning.
PCT/JP2021/012001 2020-03-27 2021-03-23 Fundamental frequency estimation device, active noise control device, fundamental frequency estimation method, and fundamental frequency estimation program WO2021193637A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020058076A JP7461192B2 (en) 2020-03-27 2020-03-27 Fundamental frequency estimation device, active noise control device, fundamental frequency estimation method, and fundamental frequency estimation program
JP2020-058076 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193637A1 true WO2021193637A1 (en) 2021-09-30

Family

ID=77892262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012001 WO2021193637A1 (en) 2020-03-27 2021-03-23 Fundamental frequency estimation device, active noise control device, fundamental frequency estimation method, and fundamental frequency estimation program

Country Status (2)

Country Link
JP (1) JP7461192B2 (en)
WO (1) WO2021193637A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187000A (en) * 1985-02-15 1986-08-20 シャープ株式会社 Voice pitch frequency extractor
JPH06110497A (en) * 1992-05-18 1994-04-22 Nec Corp Extracting device for fundamental frequency of speech
JP2000298475A (en) * 1999-03-30 2000-10-24 Yamaha Corp Device and method for deciding chord and recording medium
US20080091418A1 (en) * 2006-10-13 2008-04-17 Nokia Corporation Pitch lag estimation
JP2008281776A (en) * 2007-05-10 2008-11-20 Mitsubishi Electric Corp Melody extraction device and melody extraction method
JP2014219607A (en) * 2013-05-09 2014-11-20 ソニー株式会社 Music signal processing apparatus and method, and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960834B2 (en) * 2002-03-19 2007-08-15 松下電器産業株式会社 Speech enhancement device and speech enhancement method
CN100369111C (en) * 2002-10-31 2008-02-13 富士通株式会社 voice enhancement device
JP5055759B2 (en) * 2005-12-16 2012-10-24 沖電気工業株式会社 Band conversion signal generator and band extension device
CN101814291B (en) * 2009-02-20 2013-02-13 北京中星微电子有限公司 Method and device for improving signal-to-noise ratio of voice signals in time domain

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187000A (en) * 1985-02-15 1986-08-20 シャープ株式会社 Voice pitch frequency extractor
JPH06110497A (en) * 1992-05-18 1994-04-22 Nec Corp Extracting device for fundamental frequency of speech
JP2000298475A (en) * 1999-03-30 2000-10-24 Yamaha Corp Device and method for deciding chord and recording medium
US20080091418A1 (en) * 2006-10-13 2008-04-17 Nokia Corporation Pitch lag estimation
JP2008281776A (en) * 2007-05-10 2008-11-20 Mitsubishi Electric Corp Melody extraction device and melody extraction method
JP2014219607A (en) * 2013-05-09 2014-11-20 ソニー株式会社 Music signal processing apparatus and method, and program

Also Published As

Publication number Publication date
JP7461192B2 (en) 2024-04-03
JP2021157082A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US11031029B2 (en) Pitch detection algorithm based on multiband PWVT of teager energy operator
EP2249333B1 (en) Method and apparatus for estimating a fundamental frequency of a speech signal
JP5992427B2 (en) Method and apparatus for estimating a pattern related to pitch and / or fundamental frequency in a signal
JP5908472B2 (en) Method for analyzing signals and providing instantaneous frequency and short-time Fourier transform, and device for analyzing signals
US20240420709A1 (en) System and method for identifying and processing audio signals
JPH10503297A (en) Adaptive speech filter
WO2016006079A1 (en) Peak frequency detection device, method, and program
US11622208B2 (en) Apparatus and method for own voice suppression
CN107210029A (en) Method and apparatus for handling succession of signals to carry out polyphony note identification
US7957964B2 (en) Apparatus and methods for noise suppression in sound signals
WO2021193637A1 (en) Fundamental frequency estimation device, active noise control device, fundamental frequency estimation method, and fundamental frequency estimation program
JP7152112B2 (en) Signal processing device, signal processing method and signal processing program
JP2001318687A (en) Speech recognition device
Zeremdini et al. Multi-pitch estimation based on multi-scale product analysis, improved comb filter and dynamic programming
Sircar et al. Parametric modeling of speech by complex AM and FM signals
Zeremdini et al. Contribution to the Multipitch Estimation by Multi-scale Product Analysis
JP2006215228A (en) Speech signal analysis method and apparatus for performing the analysis method, speech recognition apparatus using the speech signal analysis apparatus, program for executing the analysis method, and storage medium thereof
Gallego et al. Linear Prediction Matrix segmentation for Matrix Pencil Method in backscattering signal scenarios
JP2880683B2 (en) Noise suppression device
JPH1062460A (en) Signal separation device
JP2006084659A (en) Audio signal analysis method, speech recognition method using the method, apparatus, program, and recording medium thereof
JP2003241777A (en) Musical sound formant extraction method, recording medium, and musical sound formant extraction device
JPS5876891A (en) Audio pitch extraction method
WO2006097886A1 (en) Noise power estimation
JP2006084665A (en) Audio signal analysis method, speech recognition method using the method, apparatus, program, and recording medium thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775674

Country of ref document: EP

Kind code of ref document: A1