WO2021190345A1 - 一种有机发光触控显示面板及显示装置 - Google Patents
一种有机发光触控显示面板及显示装置 Download PDFInfo
- Publication number
- WO2021190345A1 WO2021190345A1 PCT/CN2021/080901 CN2021080901W WO2021190345A1 WO 2021190345 A1 WO2021190345 A1 WO 2021190345A1 CN 2021080901 W CN2021080901 W CN 2021080901W WO 2021190345 A1 WO2021190345 A1 WO 2021190345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- touch
- layer
- organic light
- touch sensing
- sensing electrode
- Prior art date
Links
- 238000005538 encapsulation Methods 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 238000009413 insulation Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 132
- 238000010586 diagram Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 230000005484 gravity Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- -1 ITO Chemical class 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04164—Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0448—Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04102—Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04112—Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04166—Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/40—OLEDs integrated with touch screens
Definitions
- This application relates to the field of display technology, and in particular to an organic light-emitting touch display panel and a display device.
- Organic light-emitting displays are more and more widely used due to their fast response, light weight, wide viewing angle and low power consumption.
- organic light-emitting display can realize flexible display technology, providing mobile display devices with multiple application forms such as waterfall screens, surround screens, and folding screens. Therefore, flexible organic light-emitting displays have gradually become the mainstream direction of mobile display devices.
- the touch solution of organic light emitting display is mainly a mutual capacitive touch technology, that is, a touch module is arranged above the display module of the organic light emitting touch display panel, and the touch module includes first touch devices located in different layers and insulated from each other.
- the electrode and the second touch electrode, the first touch electrode and the second touch electrode are arranged along the thickness direction of the organic light emitting touch display panel.
- One of the first touch electrode and the second touch electrode receives a touch drive signal, and the other outputs a touch sensing signal, that is, the first touch electrode and the second touch electrode both have and touch Control related signals.
- both the first touch electrode and the second touch electrode will affect the display signal of the pixel in the display module, thereby affecting the normal display.
- the present application provides an organic light-emitting touch display panel and a display device to solve the above problems.
- an embodiment of the present application provides an organic light-emitting touch display panel, including a display layer arranged along the thickness direction of the organic light-emitting touch display panel, a touch layer, and a package arranged between the display layer and the touch layer Layer, and the touch control layer is arranged on the encapsulation layer.
- the display layer includes a plurality of display units, and the display unit includes a first electrode, a second electrode, and an organic light-emitting layer disposed between the first electrode and the second electrode.
- the touch layer includes a touch sensing layer arranged along the thickness direction of the organic light-emitting touch display panel, a first insulating layer, and a touch wiring layer.
- the first insulating layer is arranged between the touch sensing layer and the touch wiring layer
- the touch sensing layer includes a plurality of touch sensing electrodes insulated from each other, and the touch wiring layer includes a plurality of touch wirings, and the touch sensing electrode is electrically connected to at least one touch wiring.
- the touch wiring layer is disposed on a side of the first insulating layer close to the encapsulation layer.
- the touch sensing electrode has a metal mesh structure.
- the touch sensing electrode includes a metal part and a hollow part between the metal parts, and the projection of the metal part on the display layer is located between the display units.
- the outline of the touch sensing electrode is rectangular.
- part of the edge of the touch sensing electrode includes a convex portion and a concave portion; among the two adjacent touch sensing electrodes, the convex portion of one touch sensing electrode is disposed on the other touch sensing electrode. Inside the recess of the electrode.
- the shape of the convex portion is at least one of a rectangle, a triangle, and a trapezoid.
- the organic light-emitting touch display panel includes a bonding area, and the bonding area includes a plurality of bonding pads.
- the bonding pad is bonded to the integrated circuit chip; or the bonding pad is bonded to the flexible circuit board, and the integrated circuit chip is bonded on the flexible circuit board; the integrated circuit chip provides touch driving voltage for the touch sensing electrode.
- the plurality of touch sensing electrodes includes a first touch sensing electrode and a second touch sensing electrode. The distance between the first touch sensing electrode and the bonding area is greater than the distance between the second touch sensing electrode and the bonding area.
- the number of touch traces electrically connected to the first touch sensing electrode is greater than the number of touch traces electrically connected to the second touch sensing electrode.
- the time when the second touch sensing electrode receives the touch driving voltage is earlier than the time when the first touch sensing electrode receives the touch driving voltage.
- an embodiment of the present application further provides an organic light-emitting touch display device.
- the organic light-emitting touch display device includes the organic light-emitting touch display panel provided in the first aspect.
- the touch sensing electrodes are all arranged on the same layer, and the width of the touch trace is narrow, the touch trace in the touch layer The wire has a small influence on the signal on the electrode in the display layer, so the embodiment of the present application reduces the influence of the touch layer on the display effect.
- the touch sensing electrodes and the touch traces are located in different layers to prevent the touch traces from occupying the area of the touch sensing layer for touch sensing, so that the distance between adjacent touch electrodes in the touch sensing layer is reduced , Reduce the touch blind spot.
- FIG. 1 is a schematic diagram of an organic light-emitting touch display panel in the prior art
- FIG. 2 is a schematic diagram of another organic light-emitting touch display panel in the prior art
- FIG. 3 is a schematic diagram of another organic light-emitting touch display panel in the prior art
- FIG. 4 is a schematic diagram of an organic light-emitting touch display panel provided in an embodiment of the application.
- Figure 5 is a cross-sectional view along the LL' direction in Figure 4.
- FIG. 6 is a partial enlarged view of an organic light-emitting touch display panel provided in an embodiment of the application.
- FIG. 7 is a partial enlarged view of an organic light-emitting touch display panel provided in another embodiment of the application.
- FIG. 8 is a schematic diagram of touch sensing electrodes provided in an embodiment of the application.
- FIG. 9 is a schematic diagram of a touch sensing electrode provided in another embodiment of the application.
- FIG. 10 is a schematic diagram of touch sensing electrodes provided in still another embodiment of this application.
- FIG. 11 is a partial equivalent circuit diagram of a display panel provided in an embodiment of the application.
- FIG. 12 is a schematic diagram of an organic light-emitting touch display device provided in an embodiment of the application.
- FIG. 1 is a schematic diagram of an organic light-emitting touch display panel in the prior art
- FIG. 2 is a schematic diagram of another organic light-emitting touch display panel in the prior art
- FIG. 3 is a schematic diagram of another organic light-emitting touch display panel in the prior art. Schematic diagram of the control display panel.
- the main touch form of the organic light emitting display in the prior art is an external hanging type.
- FIG. 1 to FIG. 3 the main touch form of the organic light emitting display in the prior art is an external hanging type.
- an organic light-emitting touch display panel includes a display module and a touch module bonded together by a first optical adhesive layer 023, wherein the display module includes a switch array layer 011, The display layer 012 and the encapsulation layer 013; the touch module includes a first touch electrode layer 021 disposed on the substrate 023, a second touch electrode layer 022 disposed on the substrate 024, and used for bonding the two parts The combined second optical adhesive layer 025.
- the solution of the touch module plug-in shown in FIG. 2 is different from the solution shown in FIG. 1 only in that the touch module is different.
- the first touch electrode layer 021 and the second touch electrode layer 022 are respectively disposed on the base.
- the touch module only includes the touch electrode layer 020, and the preparation of the touch electrode layer 020 needs to be peeled off, and then the second optical adhesive layer 025 is bonded to the polarizer.
- the process is complicated and the cost is high.
- the first touch electrode layer 021 and the second touch electrode layer 022 or the touch electrode layer 020 usually adopt transparent metal oxide (such as ITO, Indium tin oxide). oxide) makes the transmittance poor, and usually transparent metal oxide needs to be fabricated on another substrate to make the thickness of the organic light-emitting touch display panel larger.
- FIG. 4 is a schematic diagram of an organic light-emitting touch display panel provided in an embodiment of the application
- FIG. 5 is a cross-sectional view along the LL' direction in FIG.
- the organic light-emitting touch display panel provided by the embodiment of the present application includes: a display layer 10, a touch layer 20, and an encapsulation layer 30.
- the encapsulation layer 30 is disposed on the display layer 10 and the touch Between the layers 20, the organic materials in the display layer 10 can be protected from external water and air; and the touch layer 20 is disposed on the encapsulation layer 30, and the encapsulation layer 30 provides flatness for the touch layer 20.
- the touch layer 20 can be directly fabricated on the packaging layer 30 using the same process as the functional film layer in the display layer.
- the process is simple, no additional equipment is required, cost saving, and high reliability.
- the organic light-emitting touch display panel further includes a switch array layer 40, wherein the switch array layer 40 includes transistors that control the display layer 10 to emit light, and the switch array layer 40 is disposed on the side of the display layer 10 away from the touch layer 20 .
- the switch array layer 40, the display layer 10, the encapsulation layer 30, and the touch layer 20 are arranged along the thickness direction of the organic light-emitting touch display panel.
- the organic light-emitting touch display panel provided by the embodiment of the present application may further include a polarizer 60 and a cover plate 70, wherein the polarizer 60 may be attached to the touch layer 20 and disposed on the touch The layer 20 is far away from the display layer 10, and the cover plate 70 is disposed on the side of the polarizer 60 far away from the display layer 10.
- the organic light-emitting touch display panel provided by the embodiments of the present application may also include other well-known structures such as a substrate, an insulating layer, and a light-shielding layer.
- the display layer 10 includes a plurality of display units 11.
- the display unit 11 includes a first electrode 111, a second electrode 112, and an organic light-emitting layer 113, wherein the organic light-emitting layer 113 is disposed on the first electrode 111.
- the first electrode 111 is disposed on the side of the display unit 11 close to the touch layer 20
- the second electrode 112 is disposed on the side of the display unit 11 close to the switch array layer 40 and is electrically connected to the transistor.
- the second electrode 112 excite the organic light emitting layer 113 to emit light.
- the touch layer 20 includes a touch sensing layer disposed along the thickness direction of the organic light-emitting touch display panel, a first insulating layer 23, and a touch wiring layer.
- the first insulating layer 23 is disposed on the touch sensing layer and the touch sensing layer. Between control routing layers. That is, the touch sensing layer and the touch wiring layer may be respectively located in two non-adjacent film layers arranged along the thickness direction of the organic light-emitting touch display panel.
- the first insulating layer 23 can be made of SiOx or SiNx, which is prepared by sputtering or other processes, and the thickness of the first insulating layer 23 is relatively thin.
- the touch sensing layer 20 is directly disposed on the encapsulation layer, and there is no need for pasting by optical glue or the like. Therefore, the touch method provided by the embodiments of the present application can reduce the thickness of the organic light-emitting touch display panel compared with the plug-in solution of the prior art.
- the touch sensing layer includes a plurality of touch sensing electrodes 21 insulated from each other, and each touch sensing electrode 21 can receive a touch driving signal and generate a touch sensing signal to realize a self-capacitive touch mode. Since the touch sensing electrodes 21 are all arranged on the same film layer, the number of film layers can be reduced and the display panel can be made lighter and thinner.
- the touch wiring layer includes a plurality of touch wirings 22, and the touch sensing electrode 21 is electrically connected to at least one touch wiring 22.
- the touch wiring 22 is used to provide touch control for the corresponding touch sensing electrode 21. Drive signals and receive touch sensing signals. More specifically, the touch sensing electrode 21 and the corresponding touch wire 22 are electrically connected through the via hole on the first insulating layer 23.
- the touch wiring 22 and the touch sensing electrode 21 may be prepared by processes such as exposure, development, and etching.
- the touch trace layer is disposed on the side of the first insulating layer 23 close to the encapsulation layer 20. Further, the touch trace 22 is disposed on the encapsulation layer 20. Specifically, the touch trace 22 can be deposited or exposed. , Development, etching and other processes are directly prepared on the encapsulation layer 30.
- the touch sensing electrodes 21 are all arranged on the same layer, and the width of the touch trace 22 is relatively narrow, the touch trace 22 in the touch layer 20 is opposite to the electrode in the display layer 10.
- the signal influence of is relatively small, so the embodiment of the present application reduces the influence of the touch layer 20 on the display effect.
- the touch wires 22 and the touch sensing electrodes 21 are arranged in different layers, so that the distance between adjacent touch electrodes in the touch sensing layer is reduced, and the blind spots of touch are reduced.
- the touch sensing layer is disposed on the side of the first insulating layer 23 away from the encapsulation layer 20, that is, the side away from the display layer 10, thus increasing the distance between the touch sensing electrode 21 and the electrodes in the display layer 10.
- the distance between it and the first electrode 111 is increased, the parasitic capacitance of the touch sensing electrode 21 is reduced, and the charging and discharging time of the touch sensing electrode 21 is shortened.
- Table 1 is a performance comparison table of the organic light-emitting touch display panel and the mutual-capacitive organic light-emitting touch display panel provided by the embodiments of the application.
- the mutual-capacitive type refers to the mutual-capacitive organic light-emitting touch display panel
- the self-capacitive type refers to the organic light-emitting touch display panel provided in the embodiments of the present application.
- the difference between the mutual-capacitive organic light-emitting touch display panel in the comparison table and the organic light-emitting touch display panel provided in the embodiments of the present application is only the difference in the touch layer, specifically, the mutual-capacitive organic light-emitting touch display panel
- the touch layer in the touch display panel includes driving electrodes and sensing electrodes that are insulated and crossed from each other.
- the mutual-capacitive and self-capacitive types in the comparison table use 34 rows * 39 columns of touch units in the 8-inch flexible organic light-emitting touch display panel.
- the size of the touch units is 4mm*4mm.
- the touch unit is a touch sensing electrode
- the mutual-capacitive type the touch unit is an area where the driving electrode and the sensing electrode intersect.
- the mutual-capacitive sensing area resistance refers to the resistance of a driving electrode or a sensing electrode
- the self-capacitive sensing area resistance refers to the resistance of a touch sensing electrode
- the mutual-capacitive sensing area capacitance refers to a driving The capacitance between an electrode or a sensing electrode and the first electrode.
- the self-capacitive sensing area capacitance refers to the capacitance between a touch sensing electrode and the first electrode
- the mutual capacitance wiring resistance refers to a driving electrode or The resistance of a touch trace connected to a sensing electrode.
- the self-capacitive trace resistance refers to the resistance of a touch trace connected to a touch sensing electrode; the mutual capacitance trace capacitance refers to a touch trace.
- the self-capacitive trace capacitance refers to the capacitance of a touch trace;
- the mutual-capacitive time constant refers to the time to charge a driving electrode to 95% of the target voltage.
- the self-capacitive time constant It refers to the time to charge a touch sensing electrode to 95% of the target voltage.
- the time constant of the organic light-emitting touch display panel provided by the embodiments of the present application is significantly reduced compared to the mutual capacitance type, and the reason for the reduction is mainly the reduction of the capacitance of the sensing area, that is, the touch sensing electrode and The reduction of the capacitance between the first electrodes.
- the touch sensing electrode 21 is a metal mesh structure, that is, the touch sensing electrode 21 is made of one or more layers of metal materials and has a mesh structure.
- 6 is a partial enlarged view of the organic light-emitting touch display panel provided in an embodiment of the application
- FIG. 7 is a partial enlarged view of the organic light-emitting touch display panel provided in another embodiment of the application, as shown in FIGS. 6 and
- the touch sensing electrode 21 of the metal mesh structure includes a metal part 211 and a hollow part 212 between the metal parts, and the projection of the metal part 211 on the display layer 10 is located between adjacent display units 11.
- the touch sensing electrode 21 is made of metal material, on the one hand, the touch sensing electrode 21 has excellent electrical conductivity and good touch performance; on the other hand, the touch sensing electrode 21 can ensure the touch performance under the premise of The design is a grid-like structure including the hollow portion 212, and the hollow portion 212 exposes the display unit 11, avoiding too much film layer to block the display unit 11, and improving the transmittance.
- the arrangement of the metal portion 211 should be set according to the arrangement of the display unit 11.
- the extending direction of the metal portion 211 of the touch sensing electrode 21 may be parallel or perpendicular to the contour of the touch sensing electrode 21.
- the touch trace 22 may be linear.
- the extending direction of the metal portion 211 of the touch sensing electrode 21 can also be at a non-vertical and non-parallel angle with the outline of the touch sensing electrode 21 (shown by the dashed line).
- the touch trace 22 Can be a polyline type.
- the projection of the touch wire 22 on the touch sensing layer coincides with a part of the metal portion 211.
- the outline of the touch sensing electrode 21 may be a rectangle, where the outline refers to the connection of the outermost points of the touch sensing electrode 21.
- the edge of each display unit 11 is neither parallel to the row direction nor parallel to the column direction. Therefore, at least part of the metal portion 211 of the touch sensing electrode 21 is neither parallel to the row direction nor parallel to the column direction.
- the metal portion 211 whose periphery is neither parallel to the row direction nor parallel to the column direction constitutes a certain sawtooth structure, and the line of the vertex closest to the periphery in the sawtooth structure is the outline described in the embodiment of this application.
- FIG. 8 is a schematic diagram of touch sensing electrodes provided in an embodiment of this application
- FIG. 9 is a schematic diagram of touch sensing electrodes provided in another embodiment of this application
- FIG. 10 is a schematic diagram of touch sensing electrodes provided in another embodiment of this application.
- FIGS. 8-10 are only schematically showing the shape of the touch sensing electrode 21 of the embodiment of the present application.
- the touch sensing electrode 21 It may be a grid structure. In order to clearly indicate the technical points to be protected by this embodiment, the grid structure is not shown here, but the above-mentioned embodiment can be combined with this embodiment. As shown in FIGS.
- part of the edge of the touch sensing electrode 21 includes a convex portion 213 and a concave portion 214, and among the two adjacent touch sensing electrodes 21, the convex portion 213 of one touch sensing electrode 21 is disposed on In the recess 214 of the other touch sensing electrode 21. Specifically, as shown in FIGS.
- the right edge convex portion 213 of the touch-sensing electrode 21a is arranged at In the concave portion 214 on the left edge of the touch sensing electrode 21b, the convex portion 213 of the left edge of the touch sensing electrode 21b is disposed in the concave portion 214 on the right edge of the touch sensing electrode 21a, and the convex portion 213 of the right edge of the touch sensing electrode 21b It is disposed in the concave portion 214 on the left edge of the touch sensing electrode 21c, and the convex portion 213 of the left edge of the touch sensing electrode 21c is disposed in the concave portion 214 on the right edge of the touch sensing electrode 21b.
- the capacitances corresponding to the multiple touch sensing electrodes 21 around the touch position will all change.
- the electrical signals of the multiple touch sensing electrodes 21 are weighted and the touch position is determined by the center of gravity algorithm. Touch location.
- the touch position changes by a small distance, for example, the finger used for touch moves slightly, the multiple touch sensing electrodes 21 at the initial touch position and the moved touch position may not be changed or its The respective electrical signals are basically unchanged, and the judgment may be inaccurate when using the center of gravity algorithm to re-determine the touch position.
- the touch sensing electrode 21 structure shown in FIGS. 8-10 when the touch position is slightly moved with one touch sensing electrode 21 as the initial point, the surrounding touch sensing electrodes can quickly change electrical signals.
- the shape of the convex portion 213 may be a triangle; as shown in FIG. 9, the shape of the convex portion 213 may be a rectangle; as shown in FIG. 10, the shape of the convex portion 213 may also be a trapezoid.
- FIGS. 8-10 illustrate that the left and right edges of the touch sensing electrode 21 include convex portions 213 and concave portions 214; in other implementations, the upper and lower edges of the touch sensing electrode 21 include convex portions 213 and the concave portion 214, and the convex portion 213 is disposed in the adjacent concave portion 214; in other implementations, the upper, lower, left, and right edges of the touch sensing electrode 21 may all include the convex portion 213 and the concave portion 214.
- the convex portion 213 and the concave portion 214 included in the edge of the touch sensing electrode 21 are different from the sawtooth structure in the foregoing embodiment.
- the sawtooth structure in the foregoing embodiment is due to the structure of the display unit 11.
- the arrangement method results in that the edges of the touch sensing electrodes 21 are not smooth and straight. Therefore, the size of the sawtooth structure is usually the size of the pixel area corresponding to one display unit 11.
- the length of the convex portion 213 and/or the concave portion 214 included in the edge of the touch-sensing electrode 21 is approximately equal to one third of the width of the touch-sensitive electrode 21, and the convex portion 213 is disposed in the adjacent concave portion 214.
- the center of gravity algorithm is used to determine the position of slight movement, which improves the detection accuracy of touch actions.
- the organic light-emitting touch display panel includes a bonding area AA, and the bonding area AA includes a plurality of bonding pads 50, wherein the bonding pads 50 are bonded to the integrated circuit chip; or The bonding pad 50 is bonded to the flexible circuit board, and the integrated circuit chip is bonded to the flexible circuit board.
- the integrated circuit chip provides touch driving voltage for the touch sensing electrode 21.
- the integrated circuit chip is electrically connected to the bonding pad 40 of the bonding area AA of the organic light-emitting touch display panel to provide the touch sensing electrode 21 with touch. Control driving voltage.
- the plurality of touch sensing electrodes 21 include a first touch sensing electrode and a second touch sensing electrode.
- the distance between the first touch sensing electrode and the bonding area AA is greater than the distance between the second touch sensing electrode and the bonding area AA. It can be understood that, among any two touch sensing electrodes 21 located in different rows, the touch sensing electrode 21 that is closer to the bonding area AA can be used as the second touch sensing electrode in the embodiment of the present application.
- the touch sensing electrode with a longer distance in the area AA can be used as the first touch sensing electrode in the embodiment of the present application.
- the plurality of touch sensing electrodes 21 are divided into at least two types. One type of touch sensing electrode 21 is closer to the bonding area AA, and is called the second touch sensing electrode; The type of touch sensing electrode 21 is farther away from the bonding area AA, and is referred to as the first touch sensing electrode.
- the touch sensing electrode 21 that is farther from the bonding area AA corresponds to the longer the length of the electrically connected touch trace 22, that is, the greater the resistance.
- the touch trace 22 is a touch sensing electrode 21.
- the touch driving voltage is transmitted, the greater the resistance of the touch trace 22 is, the more the voltage is divided, which causes the touch driving voltage of the corresponding touch sensing electrode 21 to be lower, which affects the touch accuracy and affects the touch trace 22
- the difference in resistance caused by the difference in length will affect the touch uniformity.
- the number of touch traces 22 electrically connected to the first touch sensing electrode is greater than the number of touch traces 22 electrically connected to the second touch sensing electrode.
- touch sensing electrode 21 receives the touch driving voltage attenuated too much.
- FIG. 11 is a partial equivalent circuit diagram of a display panel provided in an embodiment of this application. Please refer to FIG. 4 and FIG. 11.
- FIG. 11 is a partial equivalent circuit diagram of the corresponding positions of a row of touch sensing electrodes 21 in FIG. 4. The following description will be made with reference to FIGS. 4 and 11.
- the resistor R11, resistor R12, and resistor R13 connected in series in FIG. 11 are equivalent to the touch trace 22 connected to the touch sensing electrode 21 that is the farthest from the bonding area AA in FIG. 4 Equivalent resistance.
- the touch trace is equivalent to passing through and overlapping the positions of all touch sensing electrodes in a column. Therefore, the resistors R11, R12, and R13 are the positions of the touch sensing electrodes 21
- the capacitance C1 is the capacitance between the touch sensing electrode 21 which is the farthest from the bonding area AA and the first electrode 111 where it is located.
- FIG. 4 only schematically shows three lines of touch control.
- the sensing electrode 21, the capacitor C12 is the touch trace 22 connected to the touch sensing electrode 21 that is the furthest distance from the bonding area AA at the position of the second touch sensing electrode 21 and the second touch sensing electrode 21
- the capacitance C13 is the distance between the touch trace 22 connected to the touch sensing electrode 21 that is the farthest from the bonding area AA at the position of the second touch sensing electrode 21 and the third touch sensing electrode 21 Between the capacitance.
- the resistor R21 and the resistor R22 connected in series are equivalent to the equivalent of the touch trace 22 connected to the touch sensing electrode 21 with the middle distance from the bonding area AA in FIG. 4 at the position of the touch sensing electrode 21 passing by Resistor.
- Capacitor C2 is the capacitance between the touch sensing electrode 21 at the middle distance from the bonding area AA and the first electrode 111 where it is located, and C23 is connected to the touch sensing electrode 21 at the middle distance from the bonding area AA The capacitance between the touch trace 22 at the position of the third touch sensing electrode 21 and the third touch sensing electrode 21.
- the resistor R31 is equivalent to the equivalent resistance of the touch trace 22 connected to the touch sensing electrode 21 closest to the bonding area AA in FIG. 4, and the capacitor C3 is the touch sensor with the closest distance to the bonding area AA.
- any touch sensing electrode 21 connected to the touch sensing electrode 21 passes through other insulated touch sensing electrodes 21, there is a gap between the touch sensing wiring 22 and the insulated touch sensing electrode 21.
- a capacitor is formed, and the touch trace 22 electrically connected to the touch sensing electrode 21 can be regarded as a plurality of resistors connected in series.
- the touch trace 22 When first outputting the touch driving voltage to the touch sensing electrode 21 close to the bonding area AA, the touch trace that passes through its location and is insulated from it forms a capacitance with the touch sensing electrode 21, so the touch trace 22 will Electric signals are generated.
- the touch sensing electrode 21 on the rightmost side in FIG. 11 receives the touch driving voltage
- the two touch traces on the left side of the touch sensor generate electric signals due to the existence of capacitors R23 and R13, which is equivalent to Because of pre-charging, when the touch sensing electrodes corresponding to the two touch traces on the left are outputting the touch driving voltage, the charging speed can be increased. Since the longer the touch trace 22 is, the more the resistance divider of the touch trace 22 is, and the slower the charging will be.
- the length of the touch wire 22 that is, the distance between the touch sensing electrode 21 and the bonding area AA, the time for the touch sensing electrode 21 to receive the touch driving voltage is determined, which can significantly increase the charging speed.
- the distance between the touch sensing layer and the touch trace layer is about 0.3um, so the capacitance between the touch trace 22 and the touch sensing electrode insulated and overlapped with it, such as capacitor C12, capacitor C13,
- the capacitance value of the capacitor C23 reaches the order of 10pF, which can enhance the precharge effect.
- the present application also provides an organic light-emitting touch display device, including the organic light-emitting touch display panel provided in any one of the above embodiments.
- the organic light-emitting touch display device provided in the embodiments of the application may be a mobile phone, a tablet computer, a TV, etc. Any kind of.
- FIG. 12 is a schematic diagram of an organic light-emitting touch display device provided in an embodiment of the application. As shown in FIG. 12, the organic light-emitting touch display device provided in an embodiment of the application may be a flexible display device.
- the touch sensing electrodes are arranged on the same film layer, which can reduce the number of film layers and realize the lightness and thinness of the display panel; at the same time, the touch sensing electrodes and the touch traces are located in different locations.
- the film layer reduces the distance between adjacent touch electrodes in the touch sensing layer and reduces touch blind spots.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Position Input By Displaying (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
一种有机发光触控显示面板及有机发光触控显示装置,包括沿有机发光触控显示面板的厚度方向设置的显示层(10)、触控层(20)及设置在显示层(10)与触控层(20)之间的封装层(30),并且触控层(20)设置在封装层(30)上。显示层(10)包括多个显示单元(11),显示单元(11)包括第一电极(111)、第二电极(112)及设置在第一电极(111)与第二电极(112)之间有机发光层(113)。触控层(20)包括沿有机发光触控显示面板的厚度方向设置的触控感应层、第一绝缘层(23)及触控走线层,第一绝缘层(23)设置在触控感应层与触控走线层之间;触控感应层包括多个相互绝缘设置的触控感应电极(21),触控走线层包括多条触控走线(22),触控感应电极(21)与至少一条触控走线(22)电连接。该有机发光触控显示面板减小了触控层对显示层电压信号的影响,同时减少触控盲点,提升触控精准度。
Description
本申请要求于2020年03月27日提交中国专利局、申请号为202010230878.X、申请名称为“一种有机发光触控显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及显示技术领域,尤其涉及一种有机发光触控显示面板及显示装置。
有机发光显示由于响应快、质量轻、视角宽及功耗低等性能,其应用越来越广泛。其中,有机发光显示可以实现柔性显示屏技术,为移动显示设备提供了诸如瀑布屏、环绕屏、折叠屏等多种应用形态,因此柔性有机发光显示逐渐成为移动显示设备的主流方向。
当前,有机发光显示的触控方案主要为互容式触控技术,即在有机发光触控显示面板的显示模块上方设置触控模块,触控模块包括位于不同层且相互绝缘的第一触控电极和第二触控电极,第一触控电极与第二触控电极沿有机发光触控显示面板的厚度方向设置。第一触控电极与第二触控电极中的一者接收触控驱动信号,另一者输出触控感应信号,也就是说,第一触控电极与第二触控电极上均存在与触控相关的信号。并且由于第一触控电极与第二触控电极的面积均较大,则第一触控电极与第二触控电极沿有机发光触控显示面板的厚度方向的投影均覆盖显示模块中的像素,那么第一触控电极与第二触控电极均会对显示模块中像素的显示信号产生影响,从而影响正常的显示。
发明内容
本申请提供了一种有机发光触控显示面板及显示装置,以解决以上问题。
第一方面,本申请实施例提供一种有机发光触控显示面板,包括沿有机发光触控显示面板的厚度方向设置的显示层、触控层及设置在显示层与触控层之间的封装层,并且触控层设置在封装层上。显示层包括多个显示单元,显示单元包括第一电极、第二电极及设置在第一电极与第二电极之间有机发光层。触控层包括沿有机发光触控显示面板的厚度方向设置的触控感应层、第一绝缘层及触控走线层,第一绝缘层设置在触控感应层与触控走线层之间;触控感应层包括多个相互绝缘设置的触控感应电极,触控走线层包括多条触控走线,触控感应电极与至少一条触控走线电连接。
在第一方面的一种实现方式中,触控走线层设置在第一绝缘层靠近封装层的一侧。
在第一方面的一种实现方式中,触控感应电极为金属网格结构。
在第一方面的一种实现方式中,触控感应电极包括金属部和位于金属部之间的镂空部,金属部在显示层上的投影位于显示单元之间。
在第一方面的一种实现方式中,触控感应电极的轮廓为矩形。
在第一方面的一种实现方式中,触控感应电极的部分边缘包括凸部和凹部;相邻的两个触控感应电极中,一个触控感应电极的凸部设置在另一个触控感应电极的凹部内。
在第一方面的一种实现方式中,凸部的形状为矩形、三角形、梯形中的至少一者。
在第一方面的一种实现方式中,有机发光触控显示面板包括邦定区域,邦定区域包括多个邦定焊盘。邦定焊盘与集成电路芯片邦定;或者邦定焊盘与柔性电路板邦定,柔性电路板上邦定集成电路芯片;集成电路芯片为触控感应电极提供触控驱动电压。多个触控感应电极包括第一触控感应电极及第二触控感应电极,第一触控感应电极与邦定区域的距离大于第二触控感应电极与邦定区域的距离。
在第一方面的一种实现方式中,第一触控感应电极电连接的触控走线的数量大于第二触控感应电极电连接的触控走线的数量。
在第一方面的一种实现方式中,在一个触控周期,第二触控感应电极接收触控驱动电压的时间早于第一触控感应电极接收触控驱动电压的时间。
第二方面,本申请实施例还提供一种有机发光触控显示装置,有机发光触控显示装置包括如第一方面提供的有机发光触控显示面板。
本申请实施例提供的有机发光触控显示面板及有机发光触控显示装置中,由于触控感应电极均设置在同一层,而触控走线的宽度较窄,则触控层中触控走线对显示层中的电极上的信号影响较小,因此本申请实施例减小了触控层对显示效果的影响。同时触控感应电极与触控走线位于不同膜层,避免触控走线占用触控感应层用于触控感应的面积,使得触控感应层中相邻的触控电极之间的距离缩减,减少了触控盲点。
图1为现有技术中一种有机发光触控显示面板的示意图;
图2为现有技术中另一种有机发光触控显示面板的示意图;
图3为现有技术中再一种有机发光触控显示面板的示意图;
图4为本申请一个实施例中提供的有机发光触控显示面板的示意图;
图5为沿图4中LL’方向的剖面图;
图6为本申请一个实施例中提供的有机发光触控显示面板的局部放大图;
图7为本申请另一个实施例中提供的有机发光触控显示面板的局部放大图;
图8为本申请一个实施例中提供的触控感应电极的示意图;
图9为本申请另一个实施例中提供的触控感应电极的示意图;
图10为本申请再一个实施例中提供的触控感应电极的示意图;
图11为本申请一个实施例中提供的显示面板的部分等效电路图;
图12为本申请一个实施例中提供的有机发光触控显示装置的示意图。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图1为现有技术中一种有机发光触控显示面板的示意图,图2为现有技术中另一种有机发光触控显示面板的示意图,图3为现有技术中再一种有机发光触控显示面板的示意图。如图1-图3所示,现有技术中有机发光显示的主要触控形式为外挂式。如图1所示,现有技术的一种方案中,有机发光触控显示面板包括通过第一光学胶层023粘合在一起显示模块和触控模块,其中,显示模块包括开关阵列层011、显示层012及封装层013;触控模块包括,设置在基材023上的第一触控电极层021、设置在基材024上的第二触控电极层022,以及用于将两部分粘合在一起的第二光学胶层025。图2所示的触控模块外挂的方案与图1所示的方案的不同仅在于触控模块的不同,具体地,第一触控电极层021及第二触控电极层022分别设置在基材023的一侧。如图3所示,现有技术的一种方案中,触控模块仅包括触控电极层020,并且触控电极层020制备完成需要剥离,然后通过第二光学胶层025粘合到偏光片03上,工艺复杂且成本较高。并且图1-图3所示的有机发光触控显示面板中,第一触控电极层021及第二触控电极层022或触控电极层020通常采用透明金属氧化物(如ITO,Indium tin oxide)制备使得透过率较差,并且通常透明金属氧化物需要制作在另外的基材上使得有机发光触控显示面板的厚度较大。
请参考图4及图5,图4为本申请一个实施例中提供的有机发光触控显示面板的示意图,图5为沿图4中LL’方向的剖面图。如图4及图5所示,本申请实施例提供的有机发光触控显示面板,包括:显示层10、触控层20及封装层30,其中,封装层30设置在显示层10与触控层20之间,可以对显示层10中的有机材料等进行保护使其免受外界水、气影响;并且触控层20设置在封装层30上,封装层30为触控层20提供了平坦的承载面,并且触控层20直接制作在封装层30上可以采用与制备显示层中的功能膜层相同的工艺,流程简单、无需额外设备、节省成本、可靠性高。常规地,有机发光触控显示面板还包括开关阵列层40,其中,开关阵列层40中包括控制显示层10发光的晶体管,并且开关阵列层40设置在显示层10远离触控层20的一侧。就是说,开关阵列层40、显示层10、封装层30、触控层20沿有机发光触控显示面板的厚度方向设置。
另外,如图5所示,本申请实施例提供的有机发光触控显示面板还可以包括偏光片60及盖板70,其中,偏光片60可以贴附在触控层20上并设置在触控层20远离显示层10的一侧,盖板70设置在偏光片60远离显示层10的一侧。
需要说明的是,显示层10与封装层30之间、封装层与触控层20之间还可以包括其他膜层。此外,本申请实施例提供的有机发光触控显示面板还可以包括其他诸如基板、绝缘层、遮光层等较为公知的结构。
具体地,显示层10包括多个显示单元11,如图5所示,显示单元11包括第一电极111、第二电极112及有机发光层113,其中,有机发光层113设置在第一电极111与第二电极112之间。具体地,第一电极111设置在显示单元11靠近触控层20的一侧,第二电极112设置在显示单元11靠近开关阵列层40的一侧并与晶体管电连接, 其中,第一电极111与第二电极112激发有机发光层113发光。
具体地,触控层20包括沿有机发光触控显示面板的厚度方向设置的触控感应层、第一绝缘层23及触控走线层,第一绝缘层23设置在触控感应层与触控走线层之间。也就是说,触控感应层与触控走线层可以分别位于沿有机发光触控显示面板的厚度方向设置的不相邻的两个膜层中。其中,第一绝缘层23可以采用SiOx或SiNx,采用溅射等工艺制备,第一绝缘层23的厚度较薄。并且触控层20直接设置封装层上,无需通过光学胶等粘贴的方式。因此,本申请实施例提供的触控方式相对于现有技术的外挂式方案,可以减薄有机发光触控显示面板的厚度。触控感应层包括多个相互绝缘设置的触控感应电极21,各触控感应电极21可以接收触控驱动信号并产生触控感应信号,实现自容触控形式。由于触控感应电极21均设置在同一膜层,可以减少膜层的数量,实现显示面板的轻薄化。
另外,触控走线层包括多条触控走线22,触控感应电极21与至少一条触控走线22电连接,触控走线22用于为对应的触控感应电极21提供触控驱动信号并接收触控感应信号。更具体地,触控感应电极21与对应的触控走线22通过第一绝缘层23上的过孔实现电连接。具体地,触控走线22及触控感应电极21可以采用曝光、显影、刻蚀等工艺制备。并且,触控走线层设置在第一绝缘层23靠近封装层20的一侧,进一步地,触控走线22设置在封装层20上,具体地,触控走线22可以采用沉积、曝光、显影、刻蚀等工艺直接在封装层30上制备。
在本申请的实施例中,由于触控感应电极21均设置在同一层,且触控走线22的宽度较窄,则触控层20中触控走线22对显示层10中的电极上的信号影响较小,因此本申请实施例减小了触控层20对显示效果的影响。且触控走线22与触控感应电极21异层设置,使得触控感应层中相邻的触控电极之间的距离缩减,减少了触控盲点。
进一步地,触控感应层设置在第一绝缘层23远离封装层20的一侧,即远离显示层10的一侧,因此增加了触控感应电极21与显示层10中的电极之间的距离,尤其是增加了其与第一电极111之间的距离,减小了触控感应电极21的寄生电容,缩短了触控感应电极21的充放电时间。
表1为本申请实施例提供的有机发光触控显示面板与互容式有机发光触控显示面板的性能对照表。具体地,互容式是指互容式有机发光触控显示面板,自容式是指本申请实施例提供的有机发光触控显示面板。需要说明的是,该对照表中的互容式有机发光触控显示面板与本申请实施例提供的有机发光触控显示面板的区别仅在于触控层的不同,具体地,互容式有机发光触控显示面板中的触控层包括相互绝缘交叉的驱动电极和感应电极。此外,该对照表中互容式及自容式均在8寸柔性有机发光触控显示面板中采用了34行*39列触控单元,触控单元的尺寸均为4mm*4mm,其中,在自容式中触控单元为触控感应电极,在互容式中触控单元为驱动电极与感应电极交叉的区域。
表1
表1中,互容式的感应区电阻是指一个驱动电极或一个感应电极的电阻,自容式的感应区电阻是指一个触控感应电极的电阻;互容式感应区电容是指一个驱动电极或一个感应电极与第一电极之间的电容,自容式的感应区电容是指一个触控感应电极与第一电极之间的电容;互容式的走线电阻是指一个驱动电极或一个感应电极所连接的一条触控走线的电阻,自容式的走线电阻是指一个触控感应电极所连接的一条触控走线的电阻;互容式的走线电容是指一条触控走线的电容,自容式的走线电容是指一条触控走线的电容;互容式的时间常数是指将一个驱动电极充电到95%目的电压的时间,自容式的时间常数是指将一个触控感应电极充电到95%目的电压的时间。由表1可以看出,本申请实施例提供的有机发光触控显示面板的时间常数较互容式明显减小,而且减小的原因主要在于感应区电容的减小,即触控感应电极与第一电极之间电容的减小。
在本申请的一个实施例中,请继续参考图4,触控感应电极21为金属网格结构,即触控感应电极21由一层或多层金属材料制成,并且为网格结构。图6为本申请一个实施例中提供的有机发光触控显示面板的局部放大图,图7为本申请另一个实施例中提供的有机发光触控显示面板的局部放大图,如图6和图7所示,金属网格结构的触控感应电极21包括金属部211和位于金属部之间的镂空部212,金属部211在显示层10上的投影位于相邻的显示单元11之间。由于触控感应电极21采用金属材料制成,一方面,触控感应电极21具备优良的导电性能,触控性能较好;另一方面,触控感应电极21可以在保证触控性能的前提下设计为包括镂空部212的网格状结构,并且镂空部212暴露显示单元11,避免过多膜层遮挡显示单元11,提升透过率。
需要说明的是,为了实现镂空部212能够暴露显示单元11,且金属部211不遮挡显示单元11,则金属部211的设置方式应该依据显示单元11的排布方式而设置。如图6所示,触控感应电极21的金属部211的延伸方向可以与触控感应电极21的轮廓的平行或垂直,对应地,触控走线22可以为直线型。如图7所示,触控感应电极21的金属部211的延伸方向也可以与触控感应电极21的轮廓(虚线所示)成非垂直、非平行的角度,对应地,触控走线22可以为折线型。可选地,触控走线22在触控感应层上的投影与部分金属部211重合。
请参考图6和图7,在本申请的一个实施例中,触控感应电极21的轮廓可以为矩形,此处轮廓是指触控感应电极21最外围的点的连线。如图7所示,各显示单元11的边缘既不与行方向平行也不与列方向平行,因此触控感应电极21的至少部分金属部211既不与行方向平行也不与列方向平行,而外围不与行方向平行也不与列方向平行的金属部211构成了一定的锯齿结构,锯齿结构中最靠近外围的顶点的连线即为本申请实施例所叙述的轮廓。
图8为本申请一个实施例中提供的触控感应电极的示意图,图9为本申请另一个实施例中提供的触控感应电极的示意图,图10为本申请再一个实施例中提供的触控感 应电极的示意图,需要说明的是,图8-图10仅是示意性的给出了本申请实施例的触控感应电极21的形状,如上述实施例所描述的,触控感应电极21可以为网格结构,此处为了清晰地表明本实施例所要保护的的技术点,未示意出网格结构,但上述实施例可以与本实施例结合。如图8-图10所示,触控感应电极21的部分边缘包括凸部213和凹部214,并且相邻的两个触控感应电极21中,一个触控感应电极21的凸部213设置在另一个触控感应电极21的凹部214内。具体地,如图9-图10所示意地,依次相邻设置的触控感应电极21a、触控感应电极21b及触控感应电极21c中,触控感应电极21a的右边缘凸部213设置在触控感应电极21b的左边缘的凹部214内,触控感应电极21b的左边缘凸部213设置在触控感应电极21a的右边缘的凹部214内,触控感应电极21b的右边缘凸部213设置在触控感应电极21c的左边缘的凹部214内,触控感应电极21c的左边缘凸部213设置在触控感应电极21b的右边缘的凹部214内。
触控发生后,触控位置周围的多个触控感应电极21对应的电容均会发生变化,通常将这多个触控感应电极21的电信号加权运算后触控位置,即采用重心算法确定触控位置。而当触控位置发生较小距离的变化时,例如触控用的手指较为细微的移动,初始触控位置及移动后的触控位置的多个触控感应电极21可能基本未发生改变或者其各自的电信号基本未改变,采用重心算法重新确定触控位置时可能判断不准确。而采用图8-图10所示的触控感应电极21结构,当触控位置以一个触控感应电极21为初始点发生轻微移动时,周围的触控感应电极能较快的改变电信号,且电信号改变较多,因此利于采用重心算法判断轻微移动的位置,提高触控动作的探测精度。
如图8所示,凸部213的形状可以为三角形;如图9所示,凸部213的形状可以为矩形;如图10所示,凸部213的形状也可以为梯形。
需要说明的是,图8-图10示意出了触控感应电极21的左、右边缘包括凸部213和凹部214;在其他实现方式中,触控感应电极21的上、下边缘包括凸部213和凹部214,并且凸部213设置在相邻的凹部214内;在其他实现方式中,触控感应电极21的上、下、左、右边缘均可以包括凸部213和凹部214。
需要进一步说明的是,本实施例中,触控感应电极21的边缘包括的凸部213与凹部214与上述实施例中的锯齿结构有所区别,上述实施例中锯齿结构是由于显示单元11的排布方式导致触控感应电极21的边缘不是平滑直线,因此,锯齿结构的大小通常为一个显示单元11对应的像素区域的大小。而本申请实施例中触控感应电极21的边缘包括的凸部213和/或凹部214的长度约等于触控感应电极21宽度的三分之一,且凸部213设置在相邻的凹部214内,采用重心算法判断轻微移动的位置,提高触控动作的探测精度。
请继续参考图4,有机发光触控显示面板包括邦定区域AA,并且邦定区域AA包括多个邦定焊盘50,其中,邦定焊盘50与集成电路芯片邦定(bonding);或者邦定焊盘50与柔性电路板邦定,柔性电路板上邦定集成电路芯片。集成电路芯片为触控感应电极21提供触控驱动电压,具体地,集成电路芯片通过与有机发光触控显示面板的邦定区域AA的邦定焊盘40电连接为触控感应电极21提供触控驱动电压。
多个触控感应电极21包括第一触控感应电极及第二触控感应电极,第一触控感应电极与邦定区域AA的距离大于第二触控感应电极与邦定区域AA的距离。可以理解 为,任意两个位于不同行的触控感应电极21中,离邦定区域AA距离较近的触控感应电极21可以作为本申请实施例中的第二触控感应电极,离邦定区域AA距离较远的触控感应电极可以作为本申请实施例中的第一触控感应电极。也可以理解为,多个触控感应电极21分为至少两种类别,一种类别的触控感应电极21与邦定区域AA的距离较近,称为第二触控感应电极;另一种类别的触控感应电极21与邦定区域AA的距离较远,称为第一触控感应电极。
由图4可以看出,距离邦定区域AA越远的触控感应电极21对应电连接的触控走线22的长度越长,即电阻越大,当触控走线22为触控感应电极21传输触控驱动电压时,电阻越大的触控走线22分压越多,导致对应的触控感应电极21的触控驱动电压偏小,影响触控精度,并且会触控走线22长短不一导致的电阻不一会影响触控均一性。在本申请的一个实施例中,第一触控感应电极电连接的触控走线22的数量大于第二触控感应电极电连接的触控走线22的数量。通过增加与距离邦定区域AA较远的触控感应电极21电连接的触控走线22的数量,相当于并联了触控走线22,减小了电阻,避免距离邦定区域AA较远的触控感应电极21接收到触控驱动电压衰减过多。
在本申请的一个实施例中,一个触控周期内,第二触控感应电极接收触控驱动电压的时间早于第一触控感应电极接收触控驱动电压的时间。优选地,在一个驱动周期内,触控感应电极21接收触控驱动电压的顺序为,由最靠近邦定区域AA的一行触控感应电极21开始逐行向上。图11为本申请一个实施例中提供的显示面板的部分等效电路图,请参考图4及图11,图11为图4中一列触控感应电极21对应位置的部分等效电路图。以下结合图4及图11进行说明,图11中串联的电阻R11、电阻R12及电阻R13相当于图4中与邦定区域AA距离最远的触控感应电极21所连接的触控走线22等效的电阻,该触控走线相当于经过了一列中所有触控感应电极所在的位置并与之有交叠,因此,电阻R11、电阻R12及电阻R13是以触控感应电极21的位置为准划分的,则电容C1为与邦定区域AA距离最远的触控感应电极21与其所在位置处的第一电极111之间的电容,图4仅示意性的给出了3行触控感应电极21,电容C12为与邦定区域AA距离最远的触控感应电极21所连接的触控走线22在第二个触控感应电极21位置处与第二个触控感应电极21之间的电容,电容C13为与邦定区域AA距离最远的触控感应电极21所连接的触控走线22在第二个触控感应电极21位置处与第三个触控感应电极21之间的电容。对应地,串联的电阻R21及电阻R22相当于图4中与邦定区域AA距离居中的触控感应电极21所连接的触控走线22在所经过的触控感应电极21位置处的等效电阻,电容C2为与邦定区域AA距离居中的触控感应电极21与其所在位置处的第一电极111之间的电容电容,C23为与邦定区域AA距离居中的触控感应电极21所连接的触控走线22在第三个触控感应电极21位置处与第三个触控感应电极21之间的电容。对应地,电阻R31相当于图4中与邦定区域AA距离最近的触控感应电极21所连接的触控走线22的等效电阻,电容C3为与邦定区域AA距离最近的触控感应电极21与其所在位置处的第一电极111之间的电容。
可见,当任意触控感应电极21所连接的触控走线22经过其他与之绝缘的触控感应电极21时,该触控走线22与该与之绝缘的触控感应电极21之间在有电信号时形成电容,并且与触控感应电极21电连接的触控走线22可以看成多个串联的电阻。
当先对靠近邦定区域AA的触控感应电极21输出触控驱动电压时,经过其所在位置并与其绝缘的触控走线由于与触控感应电极21形成电容,因此该触控走线22会产生电信号,例如图11中最右侧的触控感应电极21接收触控驱动电压时,其左侧的两条触控走线因电容R23及R13的存在均产生了电信号,相当于进行了预充电,因此当给左侧的两条触控走线对应的触控感应电极输出触控驱动电压时,充电速度可以提升。由于触控走线22越长,触控走线22的电阻分压越多,充电则越慢,所以可以先进行较充分的预充电再进行充电。因此依照触控走线22的长度,即触控感应电极21距离邦定区域AA的距离确定触控感应电极21接收触控驱动电压的时间,可以明显提升充电速度。
此外,触控感应层与触控走线层之间的距离为0.3um左右,因此触控走线22和与之绝缘交叠的触控感应电极之间的电容,如电容C12、电容C13、电容C23的电容值达到10pF量级,可以增强预充电效果。
本申请还提供一种有机发光触控显示装置,包括上述任意一个实施例提供的有机发光触控显示面板,本申请实施例提供的有机发光触控显示装置可以是手机、平板电脑、电视等中的任意一种。图12为本申请一个实施例中提供的有机发光触控显示装置的示意图,如图12所示,本申请实施例提供的有机发光触控显示装置可以为柔性显示装置。
本申请实施例提供的有机发光触控显示装置中,触控感应电极设置在同一膜层,可以减少膜层的数量,实现显示面板的轻薄化;同时触控感应电极与触控走线位于不同膜层,使得触控感应层中相邻的触控电极之间的距离缩减,减少了触控盲点。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。
Claims (11)
- 一种有机发光触控显示面板,其特征在于,包括:显示层,所述显示层包括多个显示单元,所述显示单元包括第一电极、第二电极及有机发光层,所述有机发光层设置在所述第一电极与所述第二电极之间;触控层,所述触控层包括沿所述有机发光触控显示面板的厚度方向设置的触控感应层、第一绝缘层及触控走线层,所述第一绝缘层设置在所述触控感应层与所述触控走线层之间;所述触控感应层包括多个相互绝缘设置的触控感应电极,所述触控走线层包括多条触控走线,所述触控感应电极与至少一条所述触控走线电连接;封装层,所述封装层设置在所述显示层与所述触控层之间,且所述触控层设置在所述封装层上;其中,所述触控层与所述显示层沿所述有机发光触控显示面板的厚度方向设置。
- 根据权利要求1所述的有机发光触控显示面板,其特征在于,所述触控走线层设置在第一绝缘层靠近封装层的一侧。
- 根据权利要求1所述的有机发光触控显示面板,其特征在于,所述触控感应电极为金属网格结构。
- 根据权利要求3所述的有机发光触控显示面板,其特征在于,所述触控感应电极包括金属部和位于金属部之间的镂空部,所述金属部在所述显示层上的投影位于相邻的所述显示单元之间。
- 根据权利要求3所述的有机发光触控显示面板,其特征在于,所述触控感应电极的轮廓为矩形。
- 根据权利要求3所述的有机发光触控显示面板,其特征在于,所述触控感应电极的部分边缘包括凸部和凹部;相邻的两个所述触控感应电极中,一个所述触控感应电极的所述凸部设置在另一个所述触控感应电极的所述凹部内。
- 根据权利要求3所述的有机发光触控显示面板,其特征在于,所述凸部的形状为矩形、三角形、梯形中的至少一者。
- 根据权利要求1所述的有机发光触控显示面板,其特征在于,所述有机发光触控显示面板包括邦定区域,所述邦定区域包括多个邦定焊盘;所述邦定焊盘与集成电路芯片邦定,或者所述邦定焊盘与柔性电路板邦定,所述柔性电路板上邦定集成电路芯片;所述集成电路芯片为所述触控感应电极提供触控驱动电压;多个所述触控感应电极包括第一触控感应电极及第二触控感应电极,所述第一触控感应电极与所述邦定区域的距离大于所述第二触控感应电极与所述邦定区域的距离。
- 根据权利要求8所述的有机发光触控显示面板,其特征在于,所述第一触控感应电极电连接的所述触控走线的数量大于所述第二触控感应电极电连接的所述触控走线的数量。
- 根据权利要求8所述的有机发光触控显示面板,其特征在于,在一个触控周期,所述第二触控感应电极接收触控驱动电压的时间早于所述第一触控感应电极接收触控驱动电压的时间。
- 一种有机发光触控显示装置,其特征在于,包括如权利要求1-10任意一项所述的有机发光触控显示面板。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21776097.4A EP4099141A4 (en) | 2020-03-27 | 2021-03-16 | ORGANIC ELECTROLUMINESCENT TOUCH SCREEN AND DISPLAY DEVICE |
US17/907,260 US12201002B2 (en) | 2020-03-27 | 2021-03-16 | Organic light-emitting touch display panel and display apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010230878.X | 2020-03-27 | ||
CN202010230878.XA CN113448452B (zh) | 2020-03-27 | 2020-03-27 | 一种有机发光触控显示面板及显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021190345A1 true WO2021190345A1 (zh) | 2021-09-30 |
Family
ID=77807931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/080901 WO2021190345A1 (zh) | 2020-03-27 | 2021-03-16 | 一种有机发光触控显示面板及显示装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12201002B2 (zh) |
EP (1) | EP4099141A4 (zh) |
CN (1) | CN113448452B (zh) |
WO (1) | WO2021190345A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230092439A (ko) * | 2021-12-17 | 2023-06-26 | 엘지디스플레이 주식회사 | 터치 센서가 구비된 투명 표시 장치 |
CN114489377B (zh) * | 2021-12-31 | 2024-02-27 | 湖北长江新型显示产业创新中心有限公司 | 一种触控显示面板和触控显示装置 |
CN118819331A (zh) * | 2023-04-18 | 2024-10-22 | 华为技术有限公司 | 一种触控显示面板、触控显示装置及电子设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104965622A (zh) * | 2015-04-01 | 2015-10-07 | 上海天马微电子有限公司 | 阵列基板以及显示面板 |
US20170115818A1 (en) * | 2016-09-22 | 2017-04-27 | Shanghai Tianma Micro-electronics Co., Ltd. | Organic light-emitting display panel and fabrication method thereof |
CN107122077A (zh) * | 2017-05-02 | 2017-09-01 | 上海天马微电子有限公司 | 一种触控显示装置 |
CN107180852A (zh) * | 2017-05-18 | 2017-09-19 | 上海天马有机发光显示技术有限公司 | 一种触控显示面板及显示装置 |
CN108319397A (zh) * | 2018-02-12 | 2018-07-24 | 京东方科技集团股份有限公司 | 一种阵列基板、触控显示装置 |
CN108762571A (zh) * | 2018-05-31 | 2018-11-06 | 上海天马微电子有限公司 | 触控显示面板和触控显示装置 |
CN109634459A (zh) * | 2018-12-06 | 2019-04-16 | 上海天马有机发光显示技术有限公司 | 有机发光显示面板和显示装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9910530B2 (en) | 2015-02-27 | 2018-03-06 | Panasonic Liquid Crystal Display Co., Ltd. | Display panel with touch detection function |
CN104698700B (zh) * | 2015-04-01 | 2018-05-08 | 上海天马微电子有限公司 | 一种触控显示面板及显示装置 |
KR101609992B1 (ko) * | 2015-10-05 | 2016-04-06 | 주식회사 지2터치 | 터치 스크린 패널 |
CN106783909A (zh) * | 2015-11-19 | 2017-05-31 | 京东方科技集团股份有限公司 | 一种触摸屏、其制作方法及显示装置 |
CN105468202B (zh) * | 2016-01-29 | 2018-09-14 | 上海中航光电子有限公司 | 阵列基板、触控显示面板及触控显示装置 |
KR102542844B1 (ko) * | 2016-04-07 | 2023-06-12 | 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 | 표시 장치 및 이의 제조 방법 |
CN107861658B (zh) * | 2017-11-29 | 2021-05-14 | 上海中航光电子有限公司 | 显示面板和显示装置 |
KR102479079B1 (ko) | 2017-12-29 | 2022-12-19 | 엘지디스플레이 주식회사 | 터치표시장치, 터치구동회로 및 터치구동방법 |
KR20190110885A (ko) * | 2018-03-21 | 2019-10-01 | 삼성전자주식회사 | 터치 스크린 패널 및 이를 구비하는 터치 센싱 시스템 |
CN108469927B (zh) * | 2018-04-28 | 2021-02-09 | 上海天马微电子有限公司 | 触控显示面板及其驱动方法、触控显示装置 |
US10705636B2 (en) * | 2018-06-21 | 2020-07-07 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Display panel and display device |
CN109634470A (zh) | 2018-12-04 | 2019-04-16 | 武汉华星光电半导体显示技术有限公司 | 一种显示屏及电子装置 |
CN109933234A (zh) * | 2019-01-29 | 2019-06-25 | 昆山国显光电有限公司 | 触控显示面板及显示设备 |
CN109859648B (zh) * | 2019-03-29 | 2021-08-03 | 上海天马微电子有限公司 | 一种显示面板及显示装置 |
KR20220128506A (ko) * | 2021-03-11 | 2022-09-21 | 삼성디스플레이 주식회사 | 표시 장치 |
-
2020
- 2020-03-27 CN CN202010230878.XA patent/CN113448452B/zh active Active
-
2021
- 2021-03-16 US US17/907,260 patent/US12201002B2/en active Active
- 2021-03-16 WO PCT/CN2021/080901 patent/WO2021190345A1/zh unknown
- 2021-03-16 EP EP21776097.4A patent/EP4099141A4/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104965622A (zh) * | 2015-04-01 | 2015-10-07 | 上海天马微电子有限公司 | 阵列基板以及显示面板 |
US20170115818A1 (en) * | 2016-09-22 | 2017-04-27 | Shanghai Tianma Micro-electronics Co., Ltd. | Organic light-emitting display panel and fabrication method thereof |
CN107122077A (zh) * | 2017-05-02 | 2017-09-01 | 上海天马微电子有限公司 | 一种触控显示装置 |
CN107180852A (zh) * | 2017-05-18 | 2017-09-19 | 上海天马有机发光显示技术有限公司 | 一种触控显示面板及显示装置 |
CN108319397A (zh) * | 2018-02-12 | 2018-07-24 | 京东方科技集团股份有限公司 | 一种阵列基板、触控显示装置 |
CN108762571A (zh) * | 2018-05-31 | 2018-11-06 | 上海天马微电子有限公司 | 触控显示面板和触控显示装置 |
CN109634459A (zh) * | 2018-12-06 | 2019-04-16 | 上海天马有机发光显示技术有限公司 | 有机发光显示面板和显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113448452B (zh) | 2023-03-03 |
CN113448452A (zh) | 2021-09-28 |
EP4099141A4 (en) | 2023-07-26 |
US20230354669A1 (en) | 2023-11-02 |
US12201002B2 (en) | 2025-01-14 |
EP4099141A1 (en) | 2022-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12039128B2 (en) | Touch panel | |
KR200480701Y1 (ko) | 감지 전극들과 연결하기 위하여 금속 와이어를 사용한 인셀 터치 디스플레이 패널 시스템 | |
CN103176674B (zh) | 触控面板及触控显示面板 | |
JP6325085B2 (ja) | 表示パネル及び表示装置 | |
TWI510995B (zh) | 觸控裝置 | |
US9671638B2 (en) | High-accuracy in-cell touch panel structure of narrow border | |
WO2021190345A1 (zh) | 一种有机发光触控显示面板及显示装置 | |
JP2010039816A (ja) | 表示装置 | |
TWI452612B (zh) | 觸控面板及觸控顯示面板 | |
CN104182101B (zh) | 触控显示面板及触控显示装置 | |
TW201504871A (zh) | 觸控面板與觸控顯示面板 | |
CN115877974A (zh) | 触摸感测单元和显示装置 | |
CN110489003B (zh) | 显示设备 | |
CN114924664A (zh) | 触控基板及显示面板 | |
TW202318173A (zh) | 觸控裝置 | |
CN117897684A (zh) | 触控显示面板及触控显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21776097 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021776097 Country of ref document: EP Effective date: 20220902 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |