[go: up one dir, main page]

WO2021187438A1 - Concentration method for raw material liquid - Google Patents

Concentration method for raw material liquid Download PDF

Info

Publication number
WO2021187438A1
WO2021187438A1 PCT/JP2021/010432 JP2021010432W WO2021187438A1 WO 2021187438 A1 WO2021187438 A1 WO 2021187438A1 JP 2021010432 W JP2021010432 W JP 2021010432W WO 2021187438 A1 WO2021187438 A1 WO 2021187438A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
solution
material liquid
forward osmosis
osmosis membrane
Prior art date
Application number
PCT/JP2021/010432
Other languages
French (fr)
Japanese (ja)
Inventor
友規 須賀
充 藤田
あずさ 山中
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2021187438A1 publication Critical patent/WO2021187438A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5222Polyetherketone, polyetheretherketone, or polyaryletherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B10/00Production of sugar juices

Definitions

  • the present invention relates to a raw material liquid concentration system for a food manufacturing process. More specifically, the present invention relates to a method for concentrating a raw material liquid, which concentrates the raw material liquid by separating a part of a solvent from the raw material liquid used for food applications by a forward osmosis method.
  • Patent Documents 1 and 2 describe a method for concentrating maple syrup by a reverse osmosis membrane method.
  • Patent Document 3 describes a method of concentrating a liquid food by a forward osmosis membrane method.
  • an object of the present invention is to solve the above problems. That is, an object of the present invention is to provide a concentration method capable of efficiently concentrating a raw material liquid by suppressing deterioration or decrease of components even if the raw material liquid has a high viscosity.
  • the present inventors control the linear velocity of the raw material solution or the inductive solution according to the viscosity of the raw material solution when moving the solvent from the raw material solution to the inductive solution.
  • the present invention has been made by finding that the separation of the solvent becomes more efficient and that such efficient separation can be stably performed for a long period of time.
  • the present invention includes the following aspects.
  • a raw material liquid containing a solvent and a solute and an inducing solution containing an inducing substance are brought into contact with each other via a normal osmotic membrane, and the solvent in the raw material liquid is moved into the inducing solution.
  • a method for concentrating a raw material solution which comprises a raw material solution concentrating step of obtaining a dilution induction solution and concentrating the raw material solution.
  • the forward osmosis membrane has a hollow thread shape and is in the form of a hollow thread.
  • the method for concentrating the raw material liquid includes a step of circulating the raw material liquid through the hollow portion of the hollow thread-shaped forward osmosis membrane and circulating the induction solution outside the hollow thread-shaped forward osmosis membrane.
  • the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is set to 0. 1 cm / s or more and 5.0 cm / s or less, Method of concentrating raw material liquid.
  • the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-shaped forward osmosis membrane is set to 0. 1 cm / s or more and 5.0 cm / s or less.
  • a raw material liquid containing a solvent and a solute and an inducing solution containing an inducing substance are brought into contact with each other via a normal osmotic membrane, and the solvent in the raw material liquid is moved into the inducing solution.
  • a method for concentrating a raw material solution which comprises a raw material solution concentrating step of obtaining a dilution induction solution and concentrating the raw material solution.
  • the forward osmosis membrane has a hollow thread shape and is in the form of a hollow thread.
  • the method for concentrating the raw material liquid includes a step of circulating the raw material liquid through the hollow portion of the hollow thread-shaped forward osmosis membrane and circulating the induction solution outside the hollow thread-shaped forward osmosis membrane.
  • the linear velocity of the induction solution flowing into the outside of the forward osmosis membrane is 0.1 cm / s or more and 10 cm / s or less.
  • the positive osmotic film is a polyether sulfone, a polysulfone, a polyketone, a polyether ether ketone, a polyphenylene ether, a polyvinylidene fluoride, a polyacrylonitrile, a polyimine, a polyimide, a polybenzoxazole, a polybenzoimidazole, and a sulfonated tetrafluoroethylene.
  • the method for concentrating a raw material solution according to any one of aspects 1 to 4, which is a film having a thin film layer containing at least one selected from the group consisting of and polyamide as a main component.
  • a method for concentrating a raw material liquid wherein the raw material liquid concentrating step is performed in two or more steps in series. In succession two steps of the raw material solution concentration step is carried out of the two or more stages of the raw material solution concentration step, the raw material liquid flow path cross-sectional area A d of the forward osmosis membrane used in the subsequent stage of the raw material solution concentration step, preceding the ratio a d / a u for feed liquid flow path cross-sectional area a u of the forward osmosis membrane is 0.2 to 10, The method for concentrating a raw material liquid according to any one of aspects 1 to 5.
  • the ratio of the raw material liquid flow path cross-sectional area A d, based on the starting material liquid flow path cross-sectional area A u of forward osmosis membrane used in the preceding stage of the raw material solution concentration step of forward osmosis membrane used in "embodiment 7" the subsequent raw material liquid concentration step The method for concentrating a raw material liquid according to aspect 6, wherein Ad / Au is 2 or more and 8 or less.
  • Ad / Au is 2 or more and 8 or less.
  • ⁇ Aspect 9 Further comprising an induction solution concentration step of removing the solvent from the dilution induction solution to obtain a regeneration induction solution. The concentrated induction solution obtained in the induction solution concentration step is used again as the induction solution.
  • ⁇ Aspect 10 >> A induction solution concentration step of removing the solvent from the induction solution to obtain a concentration induction solution. Further comprising a mixing step of mixing the concentration-inducing solution obtained in the induction solution concentration step with the dilution-inducing solution. The mixed solution obtained in the mixing step is used again as the induction solution.
  • ⁇ Aspect 11 The method for concentrating a raw material solution according to Aspect 9 or 10, wherein the induction solution concentration step is carried out by an evaporation means.
  • ⁇ Aspect 12 The forward osmosis membrane is formed by contacting the raw material solution with a diluted solution of the induction solution or the solvent whose osmotic pressure is adjusted to be lower than that of the raw material solution via the forward osmosis membrane.
  • Aspect 12 according to aspect 12, further comprising a second cleaning step of cleaning the forward osmosis membrane by bringing the solvent into contact with both sides of the forward osmosis membrane after the first cleaning step.
  • Method of concentrating raw material liquid A food product which is a concentrated solution of a solute containing sugar and a raw material liquid containing a liquid medium. The concentrate is Brix value is 50 or more and The absorbance at 450 nm in ultraviolet-visible spectroscopy is 0.1 or more and 1.0 or less. Grocery.
  • ⁇ Aspect 15 >> The food product according to Aspect 14, wherein the absorbance at 450 nm in the ultraviolet-visible spectroscopic analysis of the concentrated solution is 0.2 or more and 0.8 or less.
  • ⁇ Aspect 16 >> The food product according to aspect 14 or 15, wherein the raw material liquid is a maple liquid or a coconut liquid endosperm.
  • the linear velocity of the raw material liquid or the induction solution is controlled according to the viscosity of the raw material liquid, so that the components contained in the raw material liquid are efficiently increased. It can be concentrated to a high concentration and can be operated for a long period of time. Moreover, since the concentration by the forward osmosis membrane does not require heating, it is possible to significantly reduce the coloration, alteration, loss due to volatilization, etc. of the contained components due to heat when concentrating the liquid food.
  • FIG. 1 is a conceptual diagram for explaining an example of an embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 2 is a conceptual diagram for explaining another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 3 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 4 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 5 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 6 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 1 is a conceptual diagram for explaining an example of an embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 2 is a conceptual diagram for explaining another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 3 is a conceptual diagram for explaining still another example of the embodiment of the
  • FIG. 7 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 8 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 9 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 10 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 11 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 12 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 13 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 14 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 15 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 16 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • FIG. 17 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
  • the raw material liquid containing the solvent and the solute and the inducing solution containing the inducing substance are brought into contact with each other through a normal osmotic membrane, and the solvent in the raw material liquid is put into the inducing solution. It includes a raw material solution concentration step of moving to obtain a dilution-inducing solution and concentrating the raw material solution.
  • This raw material liquid concentrating step includes a step of circulating the raw material liquid through the hollow portion of the hollow filament-shaped forward osmosis membrane and circulating the inductive solution outside the hollow filament-shaped forward osmosis membrane.
  • the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is 0.1 cm / s or more and 5.0 cm / s or less.
  • the linear velocity of the induction solution flowing into the outside of the forward osmosis membrane is 0.1 cm / s or more and 10 cm / s or less.
  • the linear velocity control of the raw material solution and the linear velocity control of the inductive solution may be performed in an overlapping manner.
  • the viscosity of the solution gradually increases as the degree of concentration (concentration ratio) increases.
  • concentration ratio concentration ratio
  • the linear velocity of the raw material liquid flowing into the hollow portion of the forward osmosis membrane Is 0.1 cm / s or more and 5.0 cm / s or less, preferably 0.9 cm / s or more and 3.5 cm / s or less.
  • the water permeability is maintained at a high level.
  • the linear velocity of the raw material liquid by adjusting the linear velocity of the raw material liquid to the above range, the retention of the raw material liquid on the surface of the forward osmosis membrane (in the preferred embodiment of the present invention, the surface of the separation active layer on the support layer) is suppressed. It is inferred that. Further, if this linear velocity is 5.0 cm / s or less, the pressure loss when the raw material liquid passes through the hollow portion of the hollow thread-like forward osmosis membrane is reduced, and the pressure applied from the inside to the outside of the membrane is reduced. Can be done. Therefore, it is possible to suppress clogging and deterioration of the film, which facilitates long-term operation.
  • the linear velocity of the induction solution flowing into the outside of the forward osmosis membrane is preferably 0.1 cm / s or more and 10 cm / s or less, more preferably 1.0 cm / s or more and 5.0 cm / s or less, and further. It is preferably 1.5 cm / s or more and 4.0 cm / s or less.
  • the linear velocity of the inducing solution is set to 10 cm / s or less, the pressure loss when the inductive solution passes outside the hollow thread-like forward osmosis membrane is reduced, and the pressure applied from the outside to the inside of the membrane can be reduced. Therefore, destruction of the forward osmosis membrane (in a preferred embodiment of the present invention, separation of the support layer and the separation active layer on the support layer) can be suppressed, and long-term operation becomes easy.
  • the raw material liquid containing the solvent and the solute and the inducing solution containing the inducing substance are brought into contact with each other through a normal osmotic membrane, and the solvent in the raw material liquid is put into the inducing solution. It is preferably carried out using a raw material solution concentrating system having a normal osmotic membrane unit that is moved to obtain a dilution inducing solution and concentrates the raw material solution.
  • a raw material liquid concentrating system preferably used for carrying out the raw material liquid concentrating method of the present embodiment will be described.
  • the forward osmosis membrane is hollow filamentous and
  • the forward osmosis membrane unit has a function of allowing the raw material liquid to flow through the hollow portion of the hollow filament-like forward osmosis membrane and the inducing solution to flow outside the hollow filament-like forward osmosis membrane.
  • the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-shaped forward osmosis membrane is 20 cP or more and 600 cP or less
  • the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-shaped forward osmosis membrane is 0.1 cm / s or more. It has a function of 5.0 cm / s or less.
  • the raw material having a function of setting the linear velocity of the inducing solution flowing into the outside of the forward osmosis membrane to 0.1 cm / s or more and 10 cm / s or less in the forward osmosis membrane unit. It may be a liquid concentration system.
  • the forward osmosis membrane unit may have a function of controlling the linear velocity of the raw material solution and a function of controlling the linear velocity of the inductive solution in an overlapping manner.
  • the linear velocity of the raw material liquid is a value Y / A [] obtained by dividing the flow velocity Y [cm 3 / s] of the raw material liquid by the raw material liquid flow path cross-sectional area A [cm 2] of the forward osmosis membrane unit. It is defined as [cm / s].
  • the cross-sectional area of the raw material liquid flow path of the forward osmosis membrane unit is equal to the total cross-sectional area of the hollow portion of the hollow filamentous forward osmosis membrane contained in the unit.
  • the linear velocity of the inductive solution is defined as a value Z / B [cm / s] obtained by dividing the flow velocity Z [cm 3 / s] of the inductive solution by the cross-sectional area B [cm 2] of the inductive solution flow path of the forward osmosis membrane unit.
  • the inductive solution flow path cross-sectional area B of the forward osmosis membrane unit is equal to the value obtained by subtracting the total cross-sectional area of the hollow filamentous forward osmosis membrane contained in the unit from the cross-sectional area of the inner space of the housing of the unit. ..
  • a known device or a combination thereof may be appropriately selected and used.
  • a flow velocity measuring device and a means for feeding back the measurement result of the flow velocity measuring device to the flow rate adjustment of the liquid feed pump can be exemplified.
  • the means for feeding back the measurement result of the flow velocity measuring device to the flow rate adjustment of the liquid feed pump may be automatic control or manual control.
  • the forward osmosis membrane unit may be passed once, the raw material liquid concentrated to some extent may be circulated, and the forward osmosis membrane unit may be passed again to further concentrate. Further, such circulation may be repeated to pass the forward osmosis membrane unit three times or more to obtain a highly concentrated concentrated liquid.
  • the degree of concentration of the raw material liquid is low and the viscosity of the raw material liquid is less than 20 cP, it is not necessary to control the linear velocity of the raw material liquid.
  • the viscosity of the raw material liquid is less than 20 cP, highly efficient concentration is possible without controlling the linear velocity of the raw material liquid.
  • the advantageous effect of the present invention is exhibited by adjusting the viscosity of the raw material liquid to the above range. Will be done.
  • the advantageous effect of the present invention is also exhibited by setting the linear velocity of the induction solution flowing into the outer portion of the hollow thread-like forward osmosis membrane to 0.1 cm / s or more and 10 cm / s or less.
  • two or more forward osmosis membrane units may be arranged.
  • the two or more forward osmosis membrane units may be arranged in series or in parallel, or a set of two or more forward osmosis membrane units arranged in parallel may be arranged in series.
  • the processing amount can be increased while maintaining the concentration efficiency of the raw material liquid concentration system.
  • the concentration efficiency for each pass can be further increased.
  • the viscosity of the solution gradually increases as the degree of concentration progresses.
  • a plurality of forward osmosis membrane units are arranged in series, it becomes difficult for the solution to pass through the forward osmosis membrane unit on the downstream side, and efficient concentration cannot be performed, or the performance deteriorates due to long-term operation.
  • two or more forward osmosis membrane units are arranged in series in the raw material liquid concentration system of the present embodiment, they are arranged on the downstream side of the flow of the raw material liquid in the two adjacent forward osmosis membrane units.
  • All forward osmosis membrane unit raw liquid flow path cross-sectional area a d of the ratio a d / a u for raw liquid flow path cross-sectional area a u of forward osmosis membrane unit disposed upstream of the raw material liquid flow 0 It is preferably 2 or more and 10 or less, and preferably 1 time or more and 8 times or less.
  • the surface of the forward osmosis membrane in a preferred embodiment of the present invention, the support layer. It is presumed that the retention of the raw material solution on the surface of the above separation active layer) is suppressed, and therefore the osmotic pressure of the raw material solution is maintained low.
  • the “raw material liquid flow path cross-sectional area of the forward osmosis membrane unit” means the total cross-sectional area of the hollow portion of the hollow thread-like forward osmosis membrane contained in the forward osmosis membrane unit.
  • the ratio Ad / Au in the set of two forward osmosis membrane units adjacent to each other is in the above range. It is preferably inside.
  • a total of A 2 of the raw material liquid flow path cross-sectional area of the second forward osmosis membrane unit, the feed liquid passage of the first forward osmosis membrane unit The ratio A 2 / A 1 to the total cross-sectional area A 1 is 0.2 or more and 10 or less, and the total cross-sectional area of the raw material liquid flow path of the third forward osmosis membrane unit A 3 is the second forward osmosis. It is preferable that the ratio A 3 / A 2 to the total A 2 of the cross-sectional area of the raw material liquid flow path of the membrane unit is 0.2 or more and 10 or less.
  • the above ratio Ad / Au is, for example, Adjusting the cross-sectional area of the raw material liquid flow path of each forward osmosis membrane unit connected in series; Placing multiple forward osmosis membrane units connected in parallel on some or all of the forward osmosis membrane units connected in series; It can be adjusted to a desired value by such means.
  • the degree of concentration is low in the unit on the upstream side of the raw material liquid, and the viscosity of the raw material liquid flowing into the hollow portion of the hollow filament-like forward osmosis membrane is less than 20 cP.
  • the degree of concentration increases, and the viscosity of the raw material liquid may fall within the range of 20 cP or more and 600 cP or less. In such a case, it is not necessary to control the linear velocity of the raw material solution and the inductive solution in the upstream unit having a low viscosity of the raw material solution.
  • one or more raw material liquid feeding pumps may be arranged between the two or more forward osmosis membrane units arranged in series.
  • the raw material liquid feed pump By arranging the raw material liquid feed pump between the units, the pressure loss when the raw material liquid passes through the hollow portion of the hollow thread-like forward osmosis membrane is reduced, and the pressure applied from the inside to the outside of the membrane can be reduced. Therefore, clogging and deterioration of the film can be suppressed, and long-term operation becomes easier.
  • the raw material solution concentrating system of the present embodiment may further include an induction solution membrane unit that removes a solvent from the dilution induction solution to obtain a regeneration induction solution.
  • FIGS. 1 to 17 show schematic views for explaining an example of the raw material liquid concentration system of the present embodiment, which each has a forward osmosis concentration step and optionally an induction solution regeneration step.
  • a forward osmosis membrane unit A having a forward osmosis membrane o and performing a forward osmosis process is used.
  • the internal space of the forward osmosis membrane unit A is divided into two, a raw material liquid side space R and an induction solution side space D, by the forward osmosis membrane o.
  • the raw material liquid a which is the object to be concentrated, is introduced into the space R on the raw material liquid side of the forward osmosis membrane unit A.
  • the induction solution d is introduced into the induction solution side space D of the forward osmosis membrane unit A.
  • the raw material liquid a contains a solute and a solvent b.
  • the inducing solution d preferably contains an inducing substance and further contains a solvent b.
  • the osmotic pressure of the inductive solution d is set to be higher than that of the raw material solution a. Then, when the raw material solution a and the inductive solution d are brought into contact with each other via the forward osmosis membrane o, the solvent b in the raw material liquid a passes through the forward osmosis membrane o using the osmotic pressure difference between the two solutions as a driving force. To move to the induction solution d side. As a result, a concentrated liquid c, which is a concentrated raw material liquid, and a diluted induction solution e, which is a diluted induction solution, can be obtained.
  • the forward osmosis membrane unit A and the forward osmosis membrane unit B are connected in series in the forward osmosis concentration step.
  • the configurations of these two forward osmosis membrane units are the same as those of the forward osmosis membrane unit A in the raw material liquid concentration system of FIG. 1, respectively.
  • the raw material liquid a is introduced into the space R on the raw material liquid side of the forward osmosis membrane unit A.
  • the raw material liquid that has passed through the forward osmosis membrane unit A is introduced into the raw material liquid side space R of the forward osmosis membrane unit B, and is further passed through the forward osmosis membrane unit B to obtain a concentrated liquid c.
  • the inducing solution d is introduced into the induction solution side space D of the forward osmosis membrane unit B, passes through the forward osmosis membrane unit B to be diluted, and then introduced into the induction solution side space D of the forward osmosis membrane unit A. It passes through the osmotic membrane unit A and is further diluted to obtain a dilution induction solution e.
  • the forward osmosis membrane unit A and the forward osmosis membrane unit B are connected in series as in FIG.
  • the raw material liquid a is passed through the forward osmosis membrane unit A and the forward osmosis membrane unit B in this order to obtain the concentrated liquid c, which is the same as in FIG.
  • the induction solution d is introduced into the induction solution side space D of the forward osmosis membrane unit A and the induction solution side space D of the forward osmosis membrane unit B, respectively, and is introduced from the raw material solution a.
  • a dilution induction solution e diluted by embracing the solvent b is obtained from each of the forward osmosis membrane units A and B.
  • the forward osmosis membrane unit A and the forward osmosis membrane unit B are connected in series as in FIG.
  • the raw material solution a is passed through the forward osmosis membrane unit A and the forward osmosis membrane unit B in this order to obtain a concentrated solution c
  • the induction solution d is passed through the forward osmosis membrane unit B and the forward osmosis membrane unit A. It is the same as in FIG. 2 to pass in order to obtain the dilution induction solution e.
  • the raw material liquid feeding pump is arranged in the raw material liquid flow path between the forward osmosis membrane unit A and the forward osmosis membrane unit B connected in series.
  • the linear velocity of the raw material liquid passing through the forward osmosis membrane unit can be appropriately controlled by the raw material liquid feeding pump arranged in the raw material liquid flow path.
  • the forward osmosis membrane unit A and the forward osmosis membrane unit B are connected in series as in FIG. Passing in the order of B to obtain a concentrated solution c, and passing the inducing solution d through the forward osmosis membrane unit B and the forward osmosis membrane unit A, respectively, and diluting the inducing solution e from each of the two forward osmosis membrane units e.
  • the raw material liquid feeding pump is arranged in the raw material liquid flow path between the forward osmosis unit A and the forward osmosis membrane unit B connected in series.
  • the raw material liquid concentration system of FIG. 6 has a forward osmosis concentration step and an induction solution regeneration step.
  • the configuration and function of the forward osmosis membrane unit A are the same as those of the forward osmosis membrane unit A of the raw material solution concentration system of FIG.
  • the solution d is diluted to obtain a dilution induction solution e.
  • This dilution induction solution e is sent to the mixing mechanism.
  • the inductive solution regeneration step has an inductive solution concentrating unit and a mixing unit. In the induction solution concentration unit, a part of the solvent b is removed from the dilution induction solution e to obtain a concentration induction solution f.
  • a known concentration means such as an evaporation means may be used to remove the solvent from the dilution induction solution d.
  • the concentrated induction solution f obtained in the induction solution concentration unit is sent to the mixing unit.
  • the dilution induction solution e obtained in the forward osmosis membrane unit A in the above forward osmosis concentration step is also sent to the mixing unit.
  • the concentration-inducing solution f obtained in the induction solution concentration step and the dilution induction solution e obtained in the forward osmosis concentration step are mixed, and the concentration is adjusted as necessary to prepare the induction solution. Will be played.
  • the obtained regeneration-inducing solution may be used as the inducing solution d.
  • the mixing mechanism may be, for example, a buffer tank.
  • the raw material liquid concentration system of FIGS. 7 to 10 is a raw material liquid concentration system in which each of the forward osmosis concentration steps of FIGS. 2 to 5 is combined with the same induction solution regeneration step as shown in FIG.
  • the raw material liquid concentration system of FIG. 11 includes a forward osmosis concentration step and an induction solution regeneration step, and the forward osmosis concentration step includes a circulation mechanism.
  • the forward osmosis concentration step is the same as the forward osmosis concentration step of the raw material liquid concentration system of FIG. 6 except that the circulation mechanism is included, and the induction solution regeneration step is the raw material liquid concentration of FIG. It is the same as the induction solution regeneration step of the system.
  • the circulation mechanism has a function of reintroducing the concentrated liquid obtained in the forward osmosis membrane unit A into the space R on the raw material liquid side of the forward osmosis membrane unit A as a raw material liquid.
  • the number of times the raw material liquid is passed through the forward osmosis membrane unit A (that is, the number of times the concentrated liquid obtained in the forward osmosis membrane unit A is reintroduced as the raw material liquid in the forward osmosis membrane unit A) is arbitrary. Reintroduction a predetermined number of times gives a highly concentrated concentrate c.
  • the raw material liquid concentrating system of FIG. 12 is a raw material liquid concentrating system in which the raw material liquid concentrating system of FIG. 7 is combined with the same circulation mechanism as shown in FIG.
  • the raw material liquid concentration system of FIG. 13 includes a forward osmosis concentration step and an induction solution regeneration step.
  • the forward osmosis membrane unit A, the forward osmosis membrane unit B, and the forward osmosis membrane unit C are connected in series in the forward osmosis concentration step.
  • the configurations of these three forward osmosis membrane units are the same as those of the forward osmosis membrane unit A in the raw material liquid concentration system of FIG. 1, respectively.
  • the forward osmosis concentration step of the raw material liquid concentration system of FIG. 13 further has a circulation mechanism.
  • the raw material liquid a is introduced into the raw material liquid side space R of the forward osmosis membrane unit A and passed through the forward osmosis membrane unit A.
  • the raw material liquid that has passed through the forward osmosis membrane unit A is introduced into the space R on the raw material liquid side of the forward osmosis membrane unit B, and is passed through the forward osmosis membrane unit B.
  • the raw material liquid that has passed through the forward osmosis membrane unit B is introduced into the space R on the raw material liquid side of the forward osmosis membrane unit C, and is passed through the forward osmosis membrane unit C.
  • the raw material liquid that has passed through the forward osmosis membrane unit C is reintroduced as a raw material liquid into the space R on the raw material liquid side of the forward osmosis membrane unit A by the circulation mechanism.
  • the number of times the raw material liquid is passed through the forward osmosis membrane units A to C (that is, the number of times the concentrated liquid obtained by the forward osmosis membrane units A to C is reintroduced as the raw material liquid in the forward osmosis membrane units A to C) is arbitrary. be. Reintroduction a predetermined number of times gives a highly concentrated concentrate c.
  • the inducing solution d is introduced into the inducing solution side space D of the forward osmosis membrane unit C, passes through the forward osmosis membrane unit C to be diluted, and then introduced into the inducing solution side space D of the forward osmosis membrane unit B. It passes through the osmosis membrane unit B and is further diluted, introduced into the induction solution side space D of the forward osmosis membrane unit A, passes through the forward osmosis membrane unit A and is additionally diluted to obtain a dilution induction solution e. ..
  • the inductive solution regeneration step in the raw material liquid concentration system of FIG. 13 has the same function as the inductive solution regeneration step in the raw material liquid concentration system of FIG.
  • the raw material liquid concentrating system of FIG. 14 is a raw material liquid concentrating system in which a circulation mechanism is added to the raw material liquid concentrating system of FIG.
  • the raw material liquid concentration system of FIG. 15 includes a forward osmosis concentration step and an induction solution regeneration step.
  • the forward osmosis concentration step involves a circulation mechanism.
  • the concentrated liquid obtained by passing the raw material liquid a through the forward osmosis membrane unit A, the forward osmosis membrane unit B, and the forward osmosis membrane unit C in this order is reintroduced into the forward osmosis membrane unit A by a circulation mechanism.
  • a highly concentrated concentrated liquid c can be obtained by reintroduction and circulation a predetermined number of times.
  • the induction solution d is the induction solution side space D of the forward osmosis membrane unit A, the induction solution side space D of the forward osmosis membrane unit B, and the induction solution side of the forward osmosis membrane unit C.
  • a dilution-inducing solution e which is introduced into the space D and diluted by embracing the solvent b from the raw material solution a, is obtained from each of the forward osmosis membrane units A, B, and C.
  • the raw material liquid concentrating system of FIGS. 16 and 17 is a raw material liquid concentrating system in which the raw material liquid concentrating system of FIGS. 9 and 10 is combined with the same circulation mechanism as shown in FIG. 12, respectively.
  • the raw material liquid a and the induction solution d are countercurrent in the forward osmosis concentration step, but parallel flow may be used.
  • the forward osmosis treatment in the forward osmosis concentration step may be performed by a total amount filtration method or a cross-flow filtration method, but the cross-flow filtration method is preferable from the viewpoint of filtration flow velocity and suppression of membrane contamination.
  • the concentrated induction solution f obtained by the induction solution concentration unit in the induction solution regeneration step may be directly used as the induction solution d.
  • the concentration of the concentration-inducing solution f is controlled to be substantially the same as the concentration of the induction solution d.
  • the method for concentrating the raw material liquid of the present embodiment is as described above.
  • a raw material solution containing a solvent and a solute and an inducing solution containing an inducing substance are brought into contact with each other via a normal osmotic membrane, and the solvent in the raw material solution is moved into the inducing solution to obtain a dilution inducing solution.
  • a method for concentrating a raw material solution which comprises a step of concentrating the raw material solution while obtaining the raw material solution.
  • the forward osmosis membrane has a hollow thread shape and is in the form of a hollow thread.
  • the method for concentrating the raw material liquid includes a step of circulating the raw material liquid through the hollow portion of the hollow thread-shaped forward osmosis membrane and circulating the induction solution outside the hollow thread-shaped forward osmosis membrane.
  • the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is 20 cP or more and 600 cP or less
  • the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is set to 0. 1 cm / s or more and 5.0 cm / s or less, This is a method for concentrating the raw material liquid.
  • the linear velocity of the induction solution flowing into the outside of the forward osmosis membrane is 0.1 cm / s or more and 10 cm / s or less.
  • the linear velocity control of the raw material solution and the linear velocity control of the inductive solution may be performed in an overlapping manner.
  • the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-shaped forward osmosis membrane is 0.9 cm / It is preferably s or more and 3.5 cm / s or less.
  • the induction solution used in the method for concentrating the raw material solution of the present invention is preferably an inorganic salt solution containing a divalent cation;
  • the positive osmotic membrane consists of polyethersulfone, polysulfone, polyketone, polyetheretherketone, polyphenylene ether, polyvinylidene fluoride, polyacrylonitrile, polyimine, polyimide, polybenzoxazole, polybenzoimidazole, sulfonated tetrafluoroethylene, and polyamide. It is preferable that the film has a thin film layer containing at least one selected from the group as a main component.
  • the raw material liquid concentrating step may be performed in two or more steps in series.
  • the consecutive two-step starting solution concentration step is carried out of the two or more stages of the raw material solution concentration step, the raw material liquid flow path cross-sectional area A d of the forward osmosis membrane used in the subsequent stage of the raw material solution concentration step, the ratio a d / a u for feed liquid flow path cross-sectional area a u of the preceding forward osmosis membrane, preferably 0.2 to 10, more preferably 1 to 8.
  • one raw material liquid feeding pump is used to supply the raw material liquid concentrated in the raw material liquid concentrating step in the previous stage as the raw material liquid in the raw material liquid concentrating step in the subsequent stage.
  • the above may be used.
  • the concentrated liquid obtained by the method for concentrating the raw material liquid of the present invention is further concentrated by subjecting it to another additional concentrating method to obtain a final product. ..
  • the dilution inducing solution obtained in the raw material solution concentrating step may be regenerated into the inducing solution and reused.
  • the regeneration and reuse of the dilution induction solution specifically, for example, Perform an induction solution concentration step of removing the solvent from the dilution induction solution to obtain a regeneration induction solution, and use the concentration induction solution obtained in this induction solution concentration step as the induction solution;
  • the concentration-inducing solution obtained in the induction solution concentration step and the induction solution concentration step, in which the solvent is removed from the induction solution to obtain a concentration induction solution, and the dilution induction solution obtained in the raw material solution concentration step are mixed and mixed. Perform the step and use the mixed solution obtained in the mixing step as an inducing solution; And so on.
  • the induction solution concentration step in the above method can be performed by, for example, an evaporation means.
  • the description of the raw material liquid concentrating system described above can be used as it is, or after appropriate changes or replacements by those skilled in the art, as a description of each element of the raw material liquid concentrating method of the present embodiment.
  • the method for concentrating the raw material liquid of the present embodiment can be performed using, for example, the raw material liquid concentrating system of the present embodiment.
  • Another aspect of the present invention provides a method for concentrating a raw material solution, which comprises a step of cleaning the forward osmosis membrane. This embodiment is described in the method for concentrating the raw material liquid of the present embodiment.
  • the method for concentrating the raw material liquid of this embodiment may further include a second step of cleaning the forward osmosis membrane by bringing a solvent into contact with both sides of the forward osmosis membrane after the first step.
  • the raw material liquid and the diluted solution or solvent of the induction solution whose osmotic pressure is adjusted to be lower than that of the raw material liquid are passed through a forward osmosis membrane.
  • a diluted solution of the inducing solution whose osmotic pressure is adjusted to be lower than that of the raw material solution or the solvent itself is used, and when this and the raw material solution are brought into contact with each other through a forward osmosis membrane, the osmotic pressure becomes the raw material solution.
  • the solvent moves from the diluting solution or the solvent of the induction solution to the raw material solution by using the osmotic pressure difference as a driving force. That is, the forward osmosis membrane is efficiently washed by passing the solvent in the direction opposite to that during the concentration operation in the thickness direction of the forward osmosis membrane and washing out the deposits existing in the pores of the forward osmosis membrane, for example. It becomes possible to do.
  • the diluted solution or solvent of the inducing solution and the raw material solution to be brought into contact with the forward osmosis membrane may or may not be flowed independently. When both of these flow, it may be convection or convection.
  • the second cleaning step in the cleaning method of the raw material liquid concentration system of the present embodiment is a step of cleaning the forward osmosis membrane by bringing a solvent into contact with both sides of the forward osmosis membrane.
  • this second cleaning step the deposits that have been washed out from the pores of the forward osmosis membrane and adhered to the surface of the forward osmosis membrane or its vicinity can be washed away by the first cleaning step, for example. .. Therefore, this second cleaning step is preferably performed after the first cleaning step.
  • the solvent that comes into contact with the forward osmosis membrane may or may not flow independently on both sides. When both solvents on both sides of the forward osmosis membrane are allowed to flow, they may be countercurrent or convection.
  • the method for concentrating the raw material liquid of the present embodiment is Using the solvent itself instead of the raw material liquid, It is included in the step of operating the solvent and the inducing solution in contact with each other through the forward osmosis membrane, moving the solvent into the inducing solution, and measuring the permeation flow velocity thereof. According to the method for concentrating the raw material liquid of the present embodiment, the change in the performance of the forward osmosis membrane can be easily and surely confirmed by the inspection step of the forward osmosis membrane.
  • the forward osmosis membrane is periodically washed, and after the washing of the forward osmosis membrane, the forward osmosis membrane is washed.
  • the inspection of the present embodiment can be performed to confirm the degree of performance recovery of the forward osmosis membrane, and it can be easily determined whether or not the concentration operation can be continued.
  • the cleaning and inspection of the present embodiment are performed every time a certain period of time elapses after the start of operation, and the operation is terminated when the permeation flow velocity drops to, for example, 80% or less of the previous cleaning and inspection. Operation management such as is conceivable.
  • the raw material liquid is a fluid composed of a solvent-containing article containing a solute and a solvent.
  • the solvent-containing article constituting this raw material liquid may be a solution or an emulsion, and examples thereof include foods, cosmetics, pharmaceuticals, pharmaceutical raw materials, seawater, and accompanying water discharged from gas fields and oil fields. be able to.
  • the solvent-containing articles constituting the raw material liquid can be efficiently concentrated by controlling the linear velocity of the raw material liquid and the inductive solution according to the viscosity of the raw material liquid.
  • the raw material liquid can be concentrated without requiring heating of the raw material liquid. Therefore, when the system of the present invention is applied to the concentration of foods, it is possible to efficiently obtain concentrated foods in which the components in the raw material liquid are not deteriorated and the loss of aroma components is small.
  • the solvent-containing article constituting the raw material liquid applied to the present embodiment is preferably a food product. More preferably, as food products, for example, coffee extract, juice (eg, orange juice, tomato juice, etc.), fruit juice (eg, fruit juice such as apple, grape, orange, grapefruit, lemon, etc.), dairy products (eg, lactic acid bacteria). Beverages, raw milk, etc.), juice (for example, kelp juice, eel juice, etc.), tea extract (for example, green tea, medium-grade green tea), roasted green tea, refined green tea.
  • juice eg, orange juice, tomato juice, etc.
  • fruit juice eg, fruit juice such as apple, grape, orange, grapefruit, lemon, etc.
  • dairy products eg, lactic acid bacteria
  • juice for example, kelp juice, eel juice, etc.
  • tea extract for example, green tea, medium-grade green tea
  • roasted green tea refined green tea.
  • Covered tea extract such as sweet tea
  • seasonings eg, soy sauce, Worcester sauce, spice solution, etc.
  • perfume emulsions eg, vanilla essence, strawberry essence, etc.
  • Food oil emulsions eg emulsions such as rapeseed oil, sunflower oil, red flower oil, corn oil
  • sugar-containing sweeteners eg maple sap, honey, coconut liquid germ milk, sugar cane sugar solution, Rakan fruit juice, etc.
  • sugars in sweeteners include monosaccharides (eg, glucose, fructose, galactose, mannose, ribose, deoxyribose, etc.), disaccharides (eg, maltose, sucrose, lactose, etc.), sugar chains (eg, glucose, etc.).
  • monosaccharides eg, glucose, fructose, galactose, mannose, ribose, deoxyribose, etc.
  • disaccharides eg, maltose, sucrose, lactose, etc.
  • sugar chains eg, glucose, etc.
  • saccharide derivatives such as N-acetylglucosamine, N-acetylgalactosamine and N-acetylneuraminic acid can be mentioned.
  • the raw material liquid that is a food product applied to the present embodiment is preferably a raw material liquid containing a solute containing sugar and a liquid medium, and more preferably maple sap or coconut liquid endosperm.
  • the liquid medium contained in these raw material liquids dissolves or disperses solutes in the raw material liquids.
  • the liquid medium is water.
  • the raw material liquid may be a fluid, and in addition to the solution, for example, a mixture such as an emulsion is also included.
  • a high sugar content Bowel value
  • contains many components useful for maintaining and improving health and has light transmittance. High, concentrates can be obtained.
  • Maple sap is generally collected from maple trees during the period of the year when the sugar content is the highest and the temperature difference between day and night is large (for example, March to April in the Northern Hemisphere). Normally, sap contains only 2-4% by mass of sugar. Therefore, about 40 L of sap is required to make 1 L of syrup.
  • maple sap is used as the raw material sap and maple syrup is obtained as the concentrate.
  • the quality of maple syrup is graded according to unified standards in Canada and the United States. In general, the closer the sap is collected to the beginning of the season, the lighter the color of the sap, and the resulting maple syrup has a delicate taste and high light transmittance. Maple syrup with high light transmittance is called "extra light”. On the other hand, those with low light transmittance are called “dark”. The higher the light transmittance of maple syrup, the better the quality.
  • the sugar content (Brix value) of maple syrup is generally 66.5%, which is equivalent to that of granulated sugar, white sugar and the like.
  • maple syrup has a lower calorie content than, for example, white sugar honey, and tends to have a higher content of minerals such as calcium and potassium than other sweeteners.
  • Coconut liquid endosperm refers to translucent liquid endosperm contained in immature coconut fruit.
  • Coconut liquid endosperm is rich in minerals, has a mineral composition close to that of human body fluids, and has an osmotic pressure almost the same as that of the human body, so that it can be a natural nutrient-rich hydration material.
  • magnesium and potassium are known to be effective in eliminating swelling and activating metabolic enzymes. Even in coconut liquid endosperm, the higher the light transmittance, the more delicate the taste and the better the quality.
  • the Brix value of the concentrate ie, the value of sugar content measured by a Brix meter
  • the Brix value before concentration is about 1 to 5.
  • the concentration rate is about 10 to about 50 times. That is, a Brix value of 50 or more of the concentrated solution is an index of the concentrated solution having a high concentration rate.
  • the Brix value of the concentrated solution is preferably 50 or more or 60 or more from the viewpoint of obtaining a concentrated solution having a high concentration rate.
  • the upper limit of the Brix value of the concentrate is not particularly limited, but from the viewpoint of ease of production of the concentrate, it may be, for example, 75 or less or 70 or less.
  • the concentrate of the present disclosure has a high light transmittance even at a high concentration of Brix value of 50 or more. This high light transmittance is an index that the transmittance of the raw material liquid before concentration is well maintained.
  • the absorbance of the concentrate at 450 nm in UV-visible spectroscopy is preferable from the viewpoint that the concentrate contains many healthy components that are effective in eliminating swelling and activating metabolic enzymes. It may be 0.1 or more, more preferably 0.2 or more. Further, the absorbance is preferably 1.0 or less, and may be 0.8 or less, from the viewpoint of high quality of the concentrated liquid (particularly, the flavor is delicate).
  • the light transmittance of the concentrated liquid of the present disclosure is an index indicating that the transmittance and flavor before concentration (that is, in the raw material liquid) are well maintained. Such concentrates have not been known conventionally.
  • a food product that is a concentrate of a solute containing sugar and a raw material liquid containing a liquid medium.
  • the concentrate is Brix value is 50 or more and
  • the absorbance at 450 nm in ultraviolet-visible spectroscopy is 0.1 or more and 1.0 or less. Groceries are provided.
  • the solute refers to a substance selected from an inorganic compound and an organic compound, and is preferably dissolved in a solvent.
  • the solute may be liquid or solid.
  • the solvent is a liquid.
  • the solvent can be any inorganic or organic solvent, preferably dissolving the solute.
  • the solvent exists as a liquid in the raw material liquid.
  • the solvent is often water.
  • [Concentrated raw material liquid] In the concentrated raw material liquid, at least a part of the solvent is selectively separated and removed from the raw material liquid by passing the raw material liquid through a forward osmosis concentration step, and the components (solutes) in the raw material are maintained. can get.
  • the amount or ratio of the solvent separated from the raw material liquid can be arbitrarily controlled. According to the step of forward osmosis concentration in the present embodiment, it is possible to concentrate to near the saturation concentration of the raw material solution as long as the osmotic pressure of the concentrated raw material solution does not exceed the osmotic pressure of the induction solution.
  • the forward osmosis concentration step of the present embodiment is a forward osmosis process. Therefore, it is possible to obtain a high concentration ratio while maintaining a high level of raw material liquid components. Further, since an arbitrary concentration ratio can be obtained by changing the induction solution, there are various types of raw material liquids to which the raw material liquid concentration system of the present embodiment can be applied, and substantially any liquid can be concentrated. It is possible. Therefore, according to the present embodiment, a high-quality concentrated raw material liquid can be obtained with high efficiency even in the case of a raw material liquid to which the prior art has been impossible or difficult to apply.
  • this embodiment is suitable as a method for concentrating a raw material liquid for a food manufacturing process. As described above, when the method for concentrating the raw material liquid of the present embodiment is applied to the concentration of food or the raw material thereof, it is possible to concentrate the food while maintaining the quality of the food.
  • the method for concentrating the raw material liquid of the present embodiment is effective for obtaining a food product as a concentrated liquid using maple sap or coconut liquid endosperm as the raw material liquid.
  • the inducing solution is a solution containing an inducing substance.
  • the inductive solution is preferably a fluid that has a higher osmotic pressure than the raw material solution and does not significantly denature the forward osmotic membrane.
  • the inducer may be any substance that can give an osmotic pressure higher than that of the raw material solution when dissolved in a solvent, and a substance having high solubility in water is particularly preferable in terms of ease of osmotic pressure adjustment.
  • Examples of the inducer that can be used in this embodiment include salts, sugars, alcohols, and polymers.
  • the inducer may be one or more selected from the group consisting of salts, sugars, alcohols, and polymers.
  • the inorganic salt examples include sodium chloride, potassium chloride, magnesium chloride, calcium chloride, sodium sulfate, magnesium sulfate, sodium thiosulfate, sodium sulfite, ammonium chloride, ammonium sulfate, ammonium carbonate and the like;
  • sugars include general sugars such as sucrose, fructose, and glucose; and special sugars such as oligosaccharides and rare sugars;
  • the alcohol include monoalcohols such as methanol, ethanol, 1-propanol and 2-propanol; and glycols such as ethylene glycol and propylene glycol.
  • the polymer examples include polymers such as polyethylene oxide and polypropylene oxide, and copolymers thereof.
  • the inducer is preferably a salt, particularly an inorganic salt, in that it has a high osmotic pressure.
  • the concentration of the inducing substance in the inducing solution is set so that the osmotic pressure of the inducing solution is higher than the osmotic pressure of the raw material solution.
  • the osmotic pressure of the inductive solution may fluctuate within that range as long as it is higher than the osmotic pressure of the raw material solution. Examples of the method for determining the osmotic pressure difference between the two liquids include the following methods.
  • the solvent that may be contained in the inductive solution may be water, ethanol, or the like.
  • the solvent of the induction solution is preferably the same type as the solvent to be separated and removed from the raw material solution, and from this viewpoint, water is preferable.
  • the forward osmosis membrane is a membrane having a function of allowing a solvent to permeate but not a solute.
  • the forward osmosis membrane may be composed of a single layer, or may be a membrane having a support layer and a separation active layer on the support layer.
  • the shape of the forward osmosis membrane in this embodiment is a hollow thread. When a hollow thread-shaped forward osmosis membrane is used, the membrane area per unit volume is large, and high-concentration concentration can be efficiently performed.
  • the forward osmosis membrane is in the form of a hollow thread, it is easy to clean the forward osmosis membrane by allowing the raw material liquid to flow through the hollow portion of the hollow thread-like forward osmosis membrane and the inducing solution to flow outside the hollow thread-like forward osmosis membrane. Therefore, it is preferable.
  • a film having a thin film layer containing at least one selected from the group consisting of polybenzoimidazole, sulfonated tetrafluoroethylene, perfluorosulfonic acid polymer, and polyamide as a main component is preferable.
  • Polyamides can be formed by interfacial polymerization of polyfunctional acid halides and polyfunctional aromatic amines.
  • a polyfunctional aromatic acid halide is an aromatic acid halide compound having two or more acid halide groups in one molecule. Specifically, for example, trimesic acid halide, trimellitic acid halide, isophthalic acid halide, terephthalic acid halide, pyromellitic acid halide, benzophenone tetracarboxylic acid halide, biphenyldicarboxylic acid halide, naphthalenedicarboxylic acid halide, pyridinedicarboxylic acid halide, etc.
  • Examples thereof include benzenedisulfonic acid halide, which can be used alone or in admixture thereof.
  • the halide ion in these aromatic acid halide compounds include chloride ion, bromide ion, and iodide ion.
  • particularly trimesic acid chloride alone, a mixture of trimesic acid chloride and isophthalic acid chloride, or a mixture of trimesic acid chloride and terephthalic acid chloride is preferably used.
  • the polyfunctional aromatic amine is an aromatic amino compound having two or more amino groups in one molecule.
  • one or more selected from m-phenylenediamine and p-phenylenediamine are preferably used.
  • Interfacial polymerization of polyfunctional acid halides and polyfunctional aromatic amines can be carried out according to routine methods.
  • a perfluorosulfonic acid polymer generally refers to a polymer having a side chain having a sulfonic acid in a main chain skeleton in which a part or all of hydrogen is replaced with fluorine.
  • Perfluorosulfonic acid polymers are used, for example, in chemically stable cation exchange resins, salt electrolysis, polymer electrolyte fuel cells, water electrolysis or various sensors as ion selective permeable membranes, such as Nafion (registered). (Trademark) (DuPont), Aciplex (registered trademark) (Asahi Kasei Co., Ltd.), Flemion (registered trademark) (AGC Co., Ltd.), etc. Some are listed.
  • the chemical structure of the perfluorosulfonic acid polymer is not particularly limited, but is typically the following structural formula (1); ⁇ In formula (1), Y, - (CF 2 -CF (CF 3) -O-) m - (CF 2) it is a monovalent group represented by n -SO 3 H; x is 0 It is a number from .06 to 0.5; m is an integer from 0 to 2, and n is an integer from 1 to 6. ⁇ Can be mentioned. Incidentally, "(CF 2 -CF 2)" units and "(CF 2 -CF (OY))" sequence of units has been described for convenience block structure in formula (1), be a block It may be random, random, or a combination thereof.
  • a hollow thread-like forward osmosis membrane is used.
  • a composite hollow fiber having a separation active layer made of a polymer thin film on the inner surface of the hollow fiber-like porous support membrane is used.
  • the support film for example, it is preferable to use a film composed of a component selected from polyethersulfone, polysulfone, polyketone, polyether ether ketone, polyphenylene ether, polyvinylidene fluoride, polyacrylonitrile, and the like.
  • the separation active layer for example, it is preferable to use a layer composed of a component selected from polyimine, polyimide, polybenzoxazole, polybenzimidazole, sulfonated tetrafluoroethylene, perfluorosulfonic acid polymer, polyamide and the like. ..
  • the outer diameter of the hollow fiber membrane constituting the forward osmosis membrane is, for example, 300 ⁇ m or more and 5,000 ⁇ m or less, preferably 350 ⁇ m or more and 4,000 ⁇ m or less, and the inner diameter of the hollow fiber membrane is, for example, 200 ⁇ m or more and 4,000 ⁇ m or less. It is preferably 500 ⁇ m or more and 1,500 ⁇ m or less.
  • the inner diameter of the hollow fiber membrane is 200 ⁇ m or more, the pressure in the hollow fiber during the circulation operation becomes relatively small, and the contact area of the raw material component becomes small. Therefore, the solute contained in the raw material liquid is less likely to adhere to the film surface. Such an effect is more easily obtained when the inner diameter of the hollow fiber membrane is 500 ⁇ m or more.
  • the forward osmosis membrane it is preferable to use one in the form of a forward osmosis membrane module in which a thread bundle composed of a plurality of hollow filamentous forward osmosis membranes is preferably housed in a suitable housing.
  • the permeation flux of the forward osmosis membrane with respect to the solvent is preferably 1.0 L / (m 2 ⁇ h) or more. Although the reason is not clear, if the initial permeation flux is 1.0 L / (m 2 ⁇ h) or more, it becomes easy to prevent the solvent separation efficiency from being impaired.
  • the permeation flow rate is more preferably 3.0 L / (m 2 ⁇ hr) or more.
  • the permeated flux for the solvent in the present specification means the amount of the solvent passing through the forward osmosis membrane, which is allocated per unit area of the forward osmosis membrane and per unit time, and is defined by the following formula (1). ).
  • F L / (M ⁇ H) (1)
  • F is the permeated flux (L / (m 2 ⁇ hr)) for the solvent
  • L is the amount of permeated solvent (L)
  • M is the surface area (m 2 ) of the forward osmosis membrane.
  • H is the time (h).
  • the permeated flux when the solvent is water is commonly referred to as the "permeability”.
  • the temperature of the raw material liquid introduced into the space on the raw material liquid side of the forward osmosis membrane unit is preferably 3 ° C. or higher and 60 ° C. or lower, more preferably 5. It is °C or more and 50 °C or less.
  • the temperature of the raw material liquid is 3 ° C. or higher, it is easy to avoid slowing the permeation flow rate, and when the temperature is 60 ° C. or lower, it is easy to avoid denaturation of the components in the raw material liquid.
  • the temperature of the induction solution introduced into the space on the induction solution side of the forward osmosis membrane unit is preferably 5 ° C. or higher and 60 ° C. or lower, and more preferably 10 ° C. or higher and 50 ° C. or lower.
  • the temperature of the inducing solution is 5 ° C. or higher or 60 ° C. or lower, it becomes easy to avoid a large amount of the inducing substance moving from the inducing solution to the raw material solution through the forward osmosis membrane.
  • a heat source for heating the raw material liquid and the inductive solution for example, a heat exchanger can be used, or exhaust heat from an industrial process or the like can be used. It is preferable to use exhaust heat as a heat source because the amount of energy consumed can be reduced.
  • the induction solution regeneration step arbitrarily adopted includes, for example, the following two viewpoints.
  • the first aspect is an inductive solution regeneration step having the following steps: The induction solution regeneration step of removing the solvent from the dilution induction solution to obtain a regeneration induction solution which is a concentrate of the dilution induction solution; and the induction solution reuse step of reusing the obtained regeneration induction solution as an induction solution. ..
  • a second aspect is an inductive solution regeneration step having the following steps: The induction solution concentration step, in which the solvent is removed from the induction solution to obtain a concentration induction solution that is a concentrate of the induction solution; Mixing step of mixing the obtained concentration-inducing solution and dilution-inducing solution to obtain a mixture (regeneration-inducing solution); and reusing the obtained regeneration-inducing solution as an inducing solution, inducing solution reuse step.
  • Removal of the solvent from the dilution induction solution or induction solution in the induction solution regeneration step or the induction solution concentration step may be carried out by, for example, evaporation means.
  • evaporation means for example, a distillation process, a forward osmosis process, a membrane distillation process or the like can be used.
  • a dilution induction solution or an induction solution is adjusted to a predetermined temperature and then fed into a distillation tower to obtain a solvent from the top of the column, and the solvent is removed from the bottom of the column to concentrate the dilution induction.
  • a regeneration-inducing solution which is a solution, or a concentration-inducing solution, which is a concentrated induction solution from which a solvent has been removed.
  • the forward osmosis process is a process in which a dilution-inducing solution or an inducing solution is circulated in contact with the forward osmosis membrane so that the solvent contained in the dilution-inducing solution or the inducing solution is removed through the forward osmosis membrane. It is a process of obtaining a solvent and a regeneration-inducing solution or a concentration-inducing solution.
  • a membrane unit having a separation chamber divided into a liquid phase portion and a gas phase portion by a semipermeable membrane is used.
  • a dilution induction solution or an induction solution into the liquid phase portion of the membrane unit for membrane distillation and reducing the pressure in the gas phase portion
  • the solvent contained in the dilution induction solution or the induction solution can be removed from the liquid phase portion. It passes through the semitransparent film and moves to the gas phase part of reduced pressure. Thereby, the solvent can be removed from the dilution induction solution or the induction solution to obtain the regeneration induction solution or the concentration induction solution.
  • the induction solution regeneration step or the induction solution concentration step it is preferable to use a forward osmosis process using a forward osmosis membrane or a membrane distillation process using a semipermeable membrane because of the small equipment size, and a solvent from the dilution induction solution or the induction solution. It is more preferable to use a membrane distillation process using a semipermeable membrane in that the movement of the inducer to the substance can be suppressed.
  • the elements used in the membrane distillation process will be described below.
  • the shape of the semipermeable membrane used in the membrane distillation process examples include a hollow fiber membrane, a flat membrane, and a spiral membrane.
  • the flat membrane-like semipermeable membrane may be composed of, for example, a single layer, or may have a support layer and a separation active layer on the support layer.
  • the hollow thread-like semipermeable membrane may be, for example, a hollow thread composed of a single layer, a hollow thread-like support layer, an outer surface or an inner surface of the support layer, or both surfaces thereof. It may have the above separation active layer.
  • the material of the support layer and the separation active layer in the semipermeable membrane may be composed of any material selected from the materials exemplified above for the forward osmosis membrane in the forward osmosis concentration step, respectively.
  • the permeation flux of the semipermeable membrane with respect to the solvent is preferably 1 L / (m 2 ⁇ hr) or more and 200 L / (m 2 ⁇ hr) or less. If the permeated flux is 1 L / (m 2 x hr) or more, it becomes easy to avoid impairing the efficient separation of the solvent, and if it is 200 L / (m 2 x hr) or less, the derived solution is used.
  • This permeation flux is defined in the same way as the permeation flux for the solvent of the forward osmosis membrane in the forward osmosis concentration step.
  • the temperature of the dilution induction solution e or the induction solution is adjusted in the range of 20 ° C. or higher and 90 ° C. or lower before being introduced into the liquid phase portion.
  • this temperature is 20 ° C. or higher, it becomes easy to avoid impairing the efficiency of solvent separation by membrane distillation, and when it is 90 ° C. or lower, the inducing substance contained in the dilution inducing solution or the inducing solution stream is half. It becomes easy to suppress the amount of transfer to the solvent through the permeable membrane.
  • a heat source for heating the dilution induction solution or the induction solution for example, a heat exchanger can be used, or exhaust heat from an industrial process or the like can be used. It is preferable to use exhaust heat as a heat source because the amount of energy consumed can be reduced.
  • the gas phase portion of the membrane unit for membrane distillation used in the membrane distillation process is preferably depressurized to a predetermined pressure.
  • the pressure of the gas phase portion may be appropriately set according to the scale of the apparatus, the concentration of the induction solution, the production rate of the desired solvent, etc., but is preferably 0.1 kPa or more and 80 kPa or less, and is preferably 1 kPa or more. It is more preferably 50 kPa or less.
  • Examples of the decompression device for depressurizing the gas phase portion of the membrane unit for membrane distillation include a diaphragm vacuum pump, a dry pump, an oil rotary vacuum pump, an ejector, and an aspirator.
  • the solvent is separated from the dilution induction solution to become a regeneration induction solution which is a concentrated dilution induction solution, and is discharged from the membrane unit for membrane distillation.
  • the obtained regeneration-inducing solution can be reused as an inducing solution as it is or after adjusting the concentration as needed.
  • the solvent is separated from the inducing solution to become a concentrated inducing solution, which is a concentrated inducing solution, and is discharged from the membrane unit for membrane distillation.
  • the obtained concentration-inducing solution is mixed with the dilution-inducing solution to form a mixed solution, and then adjusted to a predetermined concentration as necessary to obtain a regeneration-inducing solution.
  • the obtained regeneration-inducing solution can be reused as it is as an inducing solution.
  • the induction solution regenerated by the induction solution regeneration step may be reused after adjusting the temperature using an appropriate cooling device.
  • the cooling device in the above for example, a chiller, a heat exchanger, or the like can be used.
  • the dilution induction solution or the solvent separated from the induction solution may be reused as needed.
  • a raw material liquid concentrating system having two or three forward osmosis membrane units connected in series is used, and the raw material liquid that has passed through the two or three forward osmosis membrane units is used.
  • the circulation concentration operation was performed by the method of returning to the first forward osmosis membrane unit again by the circulation mechanism. This circulation concentration operation was performed in the following two stages, and the linear velocity of the raw material solution and the induction solution was set for each stage.
  • First stage A step of diluting the stock solution with water and adjusting the solution viscosity to 1.0 cP as a raw material solution, and concentrating the solution to a solution viscosity of 20 cP by the above circulation concentration operation.
  • [Second stage] A step of using the solution having a solution viscosity of 20 cP obtained in the first step as a raw material solution and concentrating it to a predetermined solution viscosity by the same circulation concentration operation.
  • the linear velocities of the raw material solution and the inductive solution were calculated by the above formulas from the flow velocities of the raw material solution and the inductive solution measured using the flow sensor: type "FD-X” manufactured by KEYENCE CORPORATION, respectively.
  • Example 1 the raw material squeeze concentrating step was carried out using the raw material liquid concentrating system having the configuration shown in FIG. ⁇ Preparation of raw material liquid concentration system ⁇ ⁇ Preparation of a forward osmosis membrane unit having a forward osmosis membrane o> (1) Preparation of Hollow Fiber Support Membrane Module 20% by mass of polyether sulfone (PES: manufactured by BASF, trade name "Ultrason”) dissolved in N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.). Hollow fiber spinning stock solution was prepared.
  • PES polyether sulfone
  • a wet hollow fiber spinning machine equipped with a double spun was filled with the above-mentioned spinning stock solution and extruded into a coagulation tank filled with water to form hollow fibers by phase separation.
  • the obtained hollow fiber was wound on a winder.
  • the outer diameter of the obtained hollow fiber was 1,000 ⁇ m, the inner diameter was 700 ⁇ m, and the diameter of the fine pores on the inner surface was 0.05 ⁇ m.
  • This hollow fiber was used as a support film.
  • the 130 hollow fiber-shaped support membranes are filled in a cylindrical plastic housing having a diameter of 2 cm and a length of 10 cm, and both ends of the hollow fibers are fixed with an adhesive so as not to block the internal space, whereby the effective inner surface area of the membrane is 0.
  • a 023 m 2 hollow fiber support membrane module was prepared.
  • the core side (inside of the hollow fiber) of the hollow fiber support membrane module obtained above is filled with the first solution, allowed to stand for 30 minutes, then drained, and a thin liquid film of the first solution is formed inside the hollow fiber.
  • the core side pressure was set to normal pressure by the core side pressure adjusting device, and the shell side pressure was set to a reduced pressure of 10 kPa as an absolute pressure by the shell side pressure adjusting device.
  • the second solution is pumped to the core side at a flow rate of 1.5 L / min for 3 minutes to carry out interfacial polymerization. went.
  • the polymerization temperature was 25 ° C.
  • the hollow fiber membrane module was removed from the apparatus, and nitrogen at 50 ° C. was flowed to the core side for 30 minutes to volatilize and remove n-hexane. Further, by cleaning both the shell side and the core side with pure water, the forward osmosis membrane unit, which is a module of the hollow filament forward osmosis membrane o having a separation active layer made of polyamide on the inner surface of the hollow filamentous support membrane. was produced.
  • the cross-sectional area of the raw material liquid flow path (total cross-sectional area of the hollow portion of the hollow fiber) of the obtained forward osmosis membrane unit is 0.50 cm 2
  • the cross-sectional area of the inductive solution flow path in the inner space of the housing of the unit.
  • ⁇ Preparation of induction solution regeneration unit 23 parts by mass of hydrophobic silica (manufactured by Nippon Aerosil Co., Ltd., product name "AEROSIL-R972”) with an average primary particle size of 0.016 ⁇ m and a specific surface area of 110 m 2 / g, 31 parts by mass of dioctyl phthalate (DOP), and phthalic acid.
  • DBP dibutyl
  • Solef6010 polyvinylidene fluoride having a weight average molecular weight of 310,000 was added and mixed again with a Henschel mixer.
  • This mixture was pelletized by a twin-screw kneading extruder.
  • the obtained pellets were melt-kneaded at 240 ° C. with a twin-screw kneading extruder and extruded into hollow filaments to obtain hollow filaments.
  • a hollow yarn forming spun is attached to the extrusion port in the head at the tip of the extruder, and the kneaded melt is extruded from the ring hole for extrusion of the melt, and at the same time, inside the ring hole for extrusion of the melt.
  • Extrusion was performed in the form of a hollow thread by discharging nitrogen gas from a circular hole for discharging a hollow portion-forming fluid.
  • the hollow filament was introduced into a water bath (40 ° C.) at a free running distance of 20 cm and wound at a speed of 20 m / min.
  • the obtained hollow filaments were continuously picked up by a pair of first endless track type belt pickers at a speed of 20 m / min, and a first heating tank (0.8 m length) controlled to a space temperature of 40 ° C. was used. After passing through, the belt was picked up by a second track type belt picker at a speed of 40 m / min and stretched 2.0 times in the length direction. Then, after passing through a second heating tank (0.8 m long) in which the space temperature was controlled to 80 ° C., the mixture was cooled while being periodically bent on the water surface of the cooling water tank at 20 ° C.
  • the hollow filament after the above treatment was immersed in methylene chloride to extract and remove DOP and DBP, and then dried.
  • the treated hollow filament was immersed in a 50 mass% ethyl alcohol aqueous solution and then immersed in a 5 mass% sodium hydroxide aqueous solution at 40 ° C. for 1 hour to extract and remove silica. Then, it was washed with water and dried to obtain a hollow fiber membrane.
  • the outer diameter of the obtained hollow fiber was 1250 ⁇ m, the inner diameter was 700 ⁇ m, and the diameter of the fine pores on the inner surface was 0.1 ⁇ m. This hollow fiber was used as a porous membrane.
  • An inductive solution regeneration unit which is a module of a hollow fiber-like porous membrane having an inner surface area of 0.012 m 2, was prepared.
  • the permeation flux (permeability) of the water of this unit measured using pure water as the treatment liquid and 3.5 mass% saline as the induction solution was 20.02 L / (m 2 ⁇ hr). rice field.
  • Example 1 the raw material liquid was concentrated using the raw material liquid concentrating system having the configuration shown in FIG.
  • the two forward osmosis membrane units obtained above are arranged in series so that the raw material solution is introduced into the hollow portion of the hollow filamentous forward osmosis membrane contained in these units and the induction solution is introduced into the outer portion.
  • Connected the piping Connected the piping.
  • a circulation mechanism of the raw material liquid was arranged.
  • a membrane distillation apparatus was assembled in which the hollow portion of the hollow fiber contained in the unit was a liquid phase portion and the outer portion was a gas phase portion. Then, the two forward osmosis membrane units and the membrane distillation apparatus are connected by piping via a mixing mechanism, and the dilution induction solution discharged from the forward osmosis membrane unit is concentrated by the induction solution regeneration unit, and the mixing mechanism is used. After adjusting the concentration, it was configured so that it could be reused as an induction solution to be introduced into the forward osmosis membrane unit.
  • F L / (M ⁇ H) (1)
  • F is the amount of water permeation of the medium (L / (m 2 ⁇ hr))
  • L is the amount of the medium that has permeated the forward osmosis membrane (unit: L)
  • M is the surface area (unit: unit) of the forward osmosis membrane. : M 2 )
  • H is time (unit: hr). From the obtained value of the water permeation amount L, it was evaluated according to the following criteria.
  • B When the permeated flux is 1.0 or more and 3.0 or less
  • C When the permeated flux is 0.5 or more and less than 1.0
  • D Permeated flux Is less than 0.5
  • Viscosity analysis The viscosities of the raw material solution and the obtained concentrated solution were measured as the solution viscosity by a viscometer manufactured by Thermo Scientific (model name "HAAKE ViscoTester iQ").
  • the long-term operability of the raw material liquid concentration system was evaluated according to the following criteria.
  • the concentration of the raw material liquid that was circulated and concentrated reached a predetermined concentration
  • the operation was temporarily stopped, the system was washed and inspected, and the permeation flow velocity was measured. If the permeation flow velocity value obtained in the inspection exceeds 80% of the previous measurement value, the concentration operation is continued, and if it is 80% or less of the previous inspection value, the concentration operation is terminated at that point. ..
  • the cleaning and inspection of the raw material liquid concentration system were carried out as follows.
  • the water on the inductive solution side was changed to an aqueous solution containing 20% by mass of magnesium chloride and circulated for operation, and the amount of water permeation of the system after cleaning was measured. ..
  • the value of the obtained water permeation amount was more than 80% of the previous inspection value
  • the raw material solution and the induction solution were returned to the conditions before washing and circulated, and the concentration operation was continued.
  • the value of the hydraulic conductivity was 80% or less of the previous inspection value
  • the operation was terminated at that time, and the long-term operability was evaluated according to the following criteria based on the time from the start of the operation to the end of the operation. ..
  • Examples 2 to 5, 9 to 18, and 20 to 22, and Comparative Examples 1 to 5 the raw material solution concentration system having the configuration shown in FIG. 12 was used to determine the type of stock solution, the linear velocity and post-concentration viscosity of the raw material solution in the second stage of concentration, and the linear velocity of the induced solution.
  • the raw material solution was concentrated in two steps in the same manner as in Example 1, except that each of them was changed as shown in Table 3.
  • Comparative Example 5 when the viscosity of the concentrated raw material liquid circulated and introduced into the forward osmosis membrane unit exceeded 600 cP during the second stage concentration, it became difficult to transfer the solution. The operation was stopped.
  • Examples 6 to 8, 23, and 24 the concentration of the raw material solution (diluted maple sap, viscosity 1 cP) was concentrated in two steps in the same manner as in Example 1 except that the raw material solution concentration system having the configuration shown in FIG. 13 was used. went.
  • the raw material liquid concentration system of FIG. 13 has a three-stage forward osmosis membrane unit. The units at each of these stages are referred to as a forward osmosis membrane unit A, a forward osmosis membrane unit B, and a forward osmosis membrane unit C in order from the upstream side of the raw material liquid.
  • the ratios A 2 / A 1 and A 3 / are used as the forward osmosis membrane units A, B, and C by connecting the units shown in Table 1 below in parallel, respectively. The value of A 2 was adjusted.
  • Example 9 the raw material liquid (diluted maple sap, viscosity 1 cp) was concentrated using the raw material liquid concentration system having the configuration shown in FIG.
  • the raw material liquid concentrating system shown in FIG. 16 has the same configuration as the raw material liquid concentrating system of FIG. 12 used in Example 1 except that a liquid feeding pump is arranged between two forward osmosis membrane units connected in series. Has.
  • Example 19 the hollow filamentous support membrane module was prepared by the following procedure, and the raw material liquid was concentrated under the same conditions as in Example 1 except that the material of the hollow filamentous support membrane was polyketone.
  • a wet hollow fiber spinning machine equipped with a double spinner was filled with the above stock solution, the temperature was adjusted to 50 ° C., and the hollow fiber was extruded into a coagulation tank filled with water to form hollow fibers by phase separation.
  • the obtained hollow fiber was wound on a winder.
  • the outer diameter of the obtained hollow fiber was 1.0 mm, the inner diameter was 0.7 mm, the diameter of the fine pores on the inner surface was 0.15 ⁇ m, and the water permeability was 950 L / (m 2 ⁇ hr) / 100 kPa.
  • This hollow fiber was used as a support film.
  • the 130 hollow fiber-shaped support membranes are filled in a cylindrical plastic housing having a diameter of 2 cm and a length of 10 cm, and both ends are fixed with an adhesive so as not to block the internal space of the hollow fibers.
  • a 023 m 2 hollow fiber support membrane module was prepared.
  • Example 25 In Example 25, the raw material liquid concentrating system having the configuration shown in FIG. 12 is used, and the raw material liquid that has passed through the two forward osmosis membrane units is returned to the first forward osmosis membrane unit by the circulation mechanism. The raw material liquid was concentrated. This circulation concentration operation was performed in the following two stages, and the linear velocity of the raw material solution and the induction solution was set for each stage.
  • Second step Concentration from Brix value 40 (solution viscosity 20 cP) to Brix value 300 (solution viscosity 300 cP) Other than the above
  • the operating conditions of the above were set to be the same as those of the first embodiment.
  • ⁇ Evaluation> The measurement of the permeation flux (permeability) of the medium transferred from the raw material solution to the induction solution, the analysis of the viscosity, and the long-term operability were each evaluated in the same manner as in Example 1. The analysis of sugar content and absorbance and the sensory evaluation of flavor were performed as follows.
  • the concentrations of the raw material liquid and the obtained concentrated liquid were measured as Brix values by a sugar content meter "PAL-S” manufactured by Atago Co., Ltd. (Absorbance)
  • the obtained concentrate was filtered through an ultrafiltration filter (Amicon Ultra-0.5, PLGC Ultracell-10 Membrane, 10 kDa, UFC501008).
  • the obtained filtrate was filled in a two-sided transparent quartz cell with a screw cap for a spectrophotometer (manufactured by GL Sciences Co., Ltd., S15-UV-10, optical path length 10 mm, optical path width 10 mm).
  • Ultraviolet-visible spectroscopic analysis was performed with this filtrate as the sample side and the above-mentioned distilled water as the reference side, and the absorbance at a wavelength of 450 nm was examined.
  • the conditions for ultraviolet-visible spectroscopic analysis were as follows. Measuring device: JASCO V-770 manufactured by JASCO Corporation Measurement mode: Abs Measurement wavelength: 800-200 nm Data acquisition interval: 0.5 nm Light source: D2, WI Light source switching: 340 nm Correction: Baseline
  • the obtained concentrated liquid was diluted with pure water, and the concentrated liquid reduced liquid adjusted to the same concentration as the raw material liquid before concentration was used for the taste of five panelists, and the flavor was evaluated according to the following criteria.
  • Example 26 The same procedure as in Example 25 was carried out except that the raw material solution was coconut liquid endosperm and the reached Brix value in the second stage was 50.
  • Example 27 The Brix value reached in the second step was 60 and the others were carried out in the same manner as in Example 25 to obtain a concentrate.
  • distillation was carried out at 110 ° C. using an atmospheric distillation apparatus, and the product was concentrated to a Brix value of 70 to obtain a final product.
  • Example 28 It was carried out in the same manner as in Example 27 except that the reached Brix value in the second stage was set to 50.
  • the sample viscosity before distillation was 100 cP, and the sample viscosity after distillation was 300 cP.
  • Maple sap which is a raw material liquid, was concentrated to a Brix value of 20 by a forward osmosis method, and then further concentrated to a Brix value of 70 by a distillation method.
  • the forward osmosis method was carried out in the same manner as in the first step of Example 25, except that the reached Brix value was set as described above.
  • the distillation method was carried out at 110 ° C. using an atmospheric distillation apparatus.
  • the sample viscosity before distillation was 40 cP, and the sample viscosity after distillation was 300 cP.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Water Supply & Treatment (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

This concentration method for a raw material liquid includes a raw material concentration step for obtaining a dilution induction solution by bringing a raw material liquid containing a solvent and a solute and an induction solution containing an inducing substance into contact with a forward osmosis membrane, and causing the solvent in the raw material liquid to migrate into the induction solution and also for concentrating the raw material liquid. The forward osmosis membrane is a hollow-fiber membrane. The concentration method for the raw material liquid includes a step for causing the raw material liquid to flow through a hollow portion of the hollow-fiber forward osmosis membrane and causing the induction solution to flow through the outside of the hollow-fiber forward osmosis membrane. When the viscosity of the raw material liquid flowing into the hollow portion of the hollow-fiber forward osmosis membrane is from 20-600 cP, a linear velocity of the raw material liquid flowing into the hollow portion of the hollow-fiber forward osmosis membrane is 0.1-5.0 cm/s.

Description

原料液の濃縮方法Method of concentrating raw material liquid
 本発明は、食品製造プロセス用の原料液濃縮システムに関する。詳しくは、正浸透法により食品用途で使われる原料液から溶媒の一部を分離して原料液を濃縮する、原料液の濃縮方法に関する。 The present invention relates to a raw material liquid concentration system for a food manufacturing process. More specifically, the present invention relates to a method for concentrating a raw material liquid, which concentrates the raw material liquid by separating a part of a solvent from the raw material liquid used for food applications by a forward osmosis method.
 近年の消費者の健康指向により、天然から収穫され、抽出または濃縮された食料品に対して、消費者の関心が寄せられている。例えば、天然物由来の原料液を蒸発機に入れて水分を加熱蒸発させて得られる濃縮液を、甘味料として、各種料理、菓子類などへ添加することが行われている。しかし、原料液を高温で加熱すると、原料液に含まれる多くの成分が変質または消失するため、得られる濃縮液の香味成分の劣化が生じるという問題があった。
 そこで、加熱を必要とせずに原料液を濃縮できる方法として、一般的に、逆浸透膜法が行われている。例えば、特許文献1および2には、メープルシロップを逆浸透膜法で濃縮する方法が記載されている。
 一方、特許文献3には、液状の食品を、正浸透膜法で濃縮する方法が記載されている。
Consumer health consciousness in recent years has led to consumer interest in naturally harvested, extracted or concentrated food products. For example, a concentrated liquid obtained by putting a raw material liquid derived from a natural product into an evaporator and heating and evaporating water is added as a sweetener to various dishes, confectionery and the like. However, when the raw material liquid is heated at a high temperature, many components contained in the raw material liquid are altered or disappear, so that there is a problem that the flavor component of the obtained concentrated liquid is deteriorated.
Therefore, a reverse osmosis membrane method is generally used as a method for concentrating the raw material liquid without requiring heating. For example, Patent Documents 1 and 2 describe a method for concentrating maple syrup by a reverse osmosis membrane method.
On the other hand, Patent Document 3 describes a method of concentrating a liquid food by a forward osmosis membrane method.
特開2003-70448号公報Japanese Unexamined Patent Publication No. 2003-70448 米国特許第9622505号明細書U.S. Pat. No. 9622505 国際公開第2019/098390号International Publication No. 2019/098390
 しかし、逆浸透膜法では、原料液に、濃縮液の浸透圧よりも高い圧力をかける必要があるため、濃縮濃度に限界がある。さらに、逆浸透膜法では、高圧をかけるため、成分が膜に吸着され易く、繰り返し運転すると、膜性能が低下するという問題があった。また、例えば、メープルシロップ、蜂蜜などの糖液を始め、コーヒー抽出液、茶抽出液、出汁、香料乳化物、食品油乳化物などの液状食料品は、成分の濃縮により溶液の粘度が高くなる。そのため、濃縮に中空糸膜モジュールを用いた場合、その流路への原料液の通液が困難となり、効率よく濃縮できない、或いは、長期的に運転すると、性能が低下するという問題があった。
 本発明は、上記の問題点を解決することを課題とする。
 すなわち、本発明の目的は、原料液が高粘度であっても、成分の変質、減少などを抑え、効率よく原料液を濃縮することが可能な濃縮方法を提供することである。
However, in the reverse osmosis membrane method, it is necessary to apply a pressure higher than the osmotic pressure of the concentrated solution to the raw material solution, so that the concentrated concentration is limited. Further, in the reverse osmosis membrane method, since a high pressure is applied, the components are easily adsorbed on the membrane, and there is a problem that the membrane performance deteriorates after repeated operation. In addition, for example, liquid food products such as sugar liquids such as maple syrup and honey, coffee extracts, tea extracts, soup stocks, fragrance emulsions, and food oil emulsions have a higher viscosity due to the concentration of the components. .. Therefore, when the hollow fiber membrane module is used for concentration, there is a problem that it becomes difficult to pass the raw material liquid through the flow path, the concentration cannot be efficiently performed, or the performance deteriorates when the module is operated for a long period of time.
An object of the present invention is to solve the above problems.
That is, an object of the present invention is to provide a concentration method capable of efficiently concentrating a raw material liquid by suppressing deterioration or decrease of components even if the raw material liquid has a high viscosity.
 本発明者らは、正浸透法を用いる原料液の濃縮において、原料液から誘導溶液へ溶媒を移動させる際に、原料液の粘度に応じて原料液または誘導溶液の線速を制御することによって、溶媒の分離がより効率的になり、かつ、かかる効率的な分離を長期間安定に行えることを見出し、本発明をなすにいたった。
 本発明は、以下の態様を包含する。
In the concentration of the raw material solution using the forward osmosis method, the present inventors control the linear velocity of the raw material solution or the inductive solution according to the viscosity of the raw material solution when moving the solvent from the raw material solution to the inductive solution. The present invention has been made by finding that the separation of the solvent becomes more efficient and that such efficient separation can be stably performed for a long period of time.
The present invention includes the following aspects.
 《態様1》溶媒および溶質を含有する原料液と、誘導物質を含有する誘導溶液とを、正浸透膜を介して接触させ、前記原料液中の前記溶媒を前記誘導溶液中に移動させて、希釈誘導溶液を得るとともに、原料液を濃縮する、原料液濃縮工程を含む、原料液の濃縮方法であって、
 前記正浸透膜は、中空糸状であり、
 前記原料液の濃縮方法は、前記原料液を前記中空糸状の正浸透膜の中空部分に流通させ、前記誘導溶液を前記中空糸状の正浸透膜の外側に流通させる工程を有し、
 前記中空糸状の正浸透膜の前記中空部分に流入する原料液の粘度が20cP以上600cP以下であるときに、前記中空糸状の正浸透膜の前記中空部分に流入する原料液の線速を0.1cm/s以上5.0cm/s以下とする、
原料液の濃縮方法。
 《態様2》前記中空糸状の正浸透膜の中空部分に流入する原料液の粘度が20cP以上600cP以下であるときに、前記中空糸状の正浸透膜の前記中空部分に流入する原料液の線速を0.9cm/s以上3.5cm/s以下とする、態様1に記載の原料液の濃縮方法。
 《態様3》溶媒および溶質を含有する原料液と、誘導物質を含有する誘導溶液とを、正浸透膜を介して接触させ、前記原料液中の前記溶媒を前記誘導溶液中に移動させて、希釈誘導溶液を得るとともに、原料液を濃縮する、原料液濃縮工程を含む、原料液の濃縮方法であって、
 前記正浸透膜は、中空糸状であり、
 前記原料液の濃縮方法は、前記原料液を前記中空糸状の正浸透膜の中空部分に流通させ、前記誘導溶液を前記中空糸状の正浸透膜の外側に流通させる工程を有し、
 前記正浸透膜の外側に流入する前記誘導溶液の線速を0.1cm/s以上10cm/s以下とする、
原料液の濃縮方法。
 《態様4》前記誘導溶液が、2価のカチオンを含む無機塩溶液である、態様1~3のいずれか一項に記載の原料液の濃縮方法。
 《態様5》前記正浸透膜が、ポリエーテルスルホン、ポリスルホン、ポリケトン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミン、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、スルホン化テトラフルオロエチレン、およびポリアミドから成る群から選ばれる少なくとも1種を主成分とする薄膜層を有する膜である、態様1~4のいずれか一項に記載の原料液の濃縮方法。
 《態様6》前記原料液濃縮工程を、2段階以上直列的に行う、原料液の濃縮方法であって、
 前記2段階以上の原料液濃縮工程のうちの連続して行われる2段階の原料液濃縮工程において、後段の原料液濃縮工程に用いる正浸透膜の原料液流路断面積Aの、前段の正浸透膜の原料液流路断面積Aに対する比A/Aが、0.2以上10以下である、
態様1~5のいずれか一項に記載の原料液の濃縮方法。
 《態様7》前記後段の原料液濃縮工程に用いる正浸透膜の原料液流路断面積Aの、前記前段の原料液濃縮工程に用いる正浸透膜の原料液流路断面積Aに対する比A/Aが、2以上8以下である、態様6に記載の原料液の濃縮方法。
 《態様8》前記2段階以上直列的に行う原料液濃縮工程において、前段の原料液濃縮工程で濃縮された原料液を、後段の原料液濃縮工程の原料液として供給するために、原料液送液ポンプを1つ以上用いる、態様6または7に記載の原料液の濃縮方法。
 《態様9》前記希釈誘導溶液から前記溶媒を除去して再生誘導溶液を得る、誘導溶液濃縮工程をさらに有し、
 前記誘導溶液濃縮工程で得られた濃縮誘導溶液を、再び前記誘導溶液として使用する、
態様1~8のいずれか一項に記載の原料液の濃縮方法。
 《態様10》前記誘導溶液から前記溶媒を除去して濃縮誘導溶液を得る、誘導溶液濃縮工程と、
 前記誘導溶液濃縮工程で得られた前記濃縮誘導溶液と、前記希釈誘導溶液とを混合する、混合工程と
をさらに有し、
 前記混合工程で得られた混合溶液を、再び前記誘導溶液として使用する、
態様1~8のいずれか一項に記載の原料液の濃縮方法。
 《態様11》前記誘導溶液濃縮工程が、蒸発手段によって行われる、態様9または10に記載の原料液の濃縮方法。
 《態様12》前記原料液と、浸透圧が前記原料液よりも低く調整された前記誘導溶液の希釈液または前記溶媒とを、前記正浸透膜を介して接触させることにより、前記正浸透膜を洗浄する第1の洗浄工程を有する、態様1~11のいずれか一項に記載の原料液の濃縮方法。
 《態様13》前記第1の洗浄工程の後に、前記溶媒を、前記正浸透膜の両側に接触させることにより、前記正浸透膜を洗浄する第2の洗浄工程をさらに有する、態様12に記載の原料液の濃縮方法。
 《態様14》糖を含む溶質、および液状媒体を含む原料液の濃縮液である食料品であって、
 前記濃縮液は、
  Brix値が50以上であり、かつ、
  紫外可視分光分析における450nmでの吸光度が0.1以上1.0以下である、
食料品。
 《態様15》前記濃縮液についての紫外可視分光分析における450nmでの吸光度が0.2以上0.8以下である、態様14に記載の食料品。
 《態様16》
 前記原料液が、メープ液またはココナッツ液体胚乳である、態様14または15に記載の食料品。
<< Aspect 1 >> A raw material liquid containing a solvent and a solute and an inducing solution containing an inducing substance are brought into contact with each other via a normal osmotic membrane, and the solvent in the raw material liquid is moved into the inducing solution. A method for concentrating a raw material solution, which comprises a raw material solution concentrating step of obtaining a dilution induction solution and concentrating the raw material solution.
The forward osmosis membrane has a hollow thread shape and is in the form of a hollow thread.
The method for concentrating the raw material liquid includes a step of circulating the raw material liquid through the hollow portion of the hollow thread-shaped forward osmosis membrane and circulating the induction solution outside the hollow thread-shaped forward osmosis membrane.
When the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is 20 cP or more and 600 cP or less, the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is set to 0. 1 cm / s or more and 5.0 cm / s or less,
Method of concentrating raw material liquid.
<< Aspect 2 >> When the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is 20 cP or more and 600 cP or less, the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-shaped forward osmosis membrane. The method for concentrating the raw material liquid according to the first aspect, wherein the amount is 0.9 cm / s or more and 3.5 cm / s or less.
<< Aspect 3 >> A raw material liquid containing a solvent and a solute and an inducing solution containing an inducing substance are brought into contact with each other via a normal osmotic membrane, and the solvent in the raw material liquid is moved into the inducing solution. A method for concentrating a raw material solution, which comprises a raw material solution concentrating step of obtaining a dilution induction solution and concentrating the raw material solution.
The forward osmosis membrane has a hollow thread shape and is in the form of a hollow thread.
The method for concentrating the raw material liquid includes a step of circulating the raw material liquid through the hollow portion of the hollow thread-shaped forward osmosis membrane and circulating the induction solution outside the hollow thread-shaped forward osmosis membrane.
The linear velocity of the induction solution flowing into the outside of the forward osmosis membrane is 0.1 cm / s or more and 10 cm / s or less.
Method of concentrating raw material liquid.
<< Aspect 4 >> The method for concentrating a raw material solution according to any one of aspects 1 to 3, wherein the induction solution is an inorganic salt solution containing a divalent cation.
<< Aspect 5 >> The positive osmotic film is a polyether sulfone, a polysulfone, a polyketone, a polyether ether ketone, a polyphenylene ether, a polyvinylidene fluoride, a polyacrylonitrile, a polyimine, a polyimide, a polybenzoxazole, a polybenzoimidazole, and a sulfonated tetrafluoroethylene. The method for concentrating a raw material solution according to any one of aspects 1 to 4, which is a film having a thin film layer containing at least one selected from the group consisting of and polyamide as a main component.
<< Aspect 6 >> A method for concentrating a raw material liquid, wherein the raw material liquid concentrating step is performed in two or more steps in series.
In succession two steps of the raw material solution concentration step is carried out of the two or more stages of the raw material solution concentration step, the raw material liquid flow path cross-sectional area A d of the forward osmosis membrane used in the subsequent stage of the raw material solution concentration step, preceding the ratio a d / a u for feed liquid flow path cross-sectional area a u of the forward osmosis membrane is 0.2 to 10,
The method for concentrating a raw material liquid according to any one of aspects 1 to 5.
The ratio of the raw material liquid flow path cross-sectional area A d, based on the starting material liquid flow path cross-sectional area A u of forward osmosis membrane used in the preceding stage of the raw material solution concentration step of forward osmosis membrane used in "embodiment 7" the subsequent raw material liquid concentration step The method for concentrating a raw material liquid according to aspect 6, wherein Ad / Au is 2 or more and 8 or less.
<< Aspect 8 >> In the raw material liquid concentrating step performed in two or more steps in series, the raw material liquid is pumped in order to supply the raw material liquid concentrated in the raw material liquid concentrating step in the previous stage as the raw material liquid in the raw material liquid concentrating step in the subsequent stage. The method for concentrating a raw material liquid according to aspect 6 or 7, wherein one or more liquid pumps are used.
<< Aspect 9 >> Further comprising an induction solution concentration step of removing the solvent from the dilution induction solution to obtain a regeneration induction solution.
The concentrated induction solution obtained in the induction solution concentration step is used again as the induction solution.
The method for concentrating a raw material liquid according to any one of aspects 1 to 8.
<< Aspect 10 >> A induction solution concentration step of removing the solvent from the induction solution to obtain a concentration induction solution.
Further comprising a mixing step of mixing the concentration-inducing solution obtained in the induction solution concentration step with the dilution-inducing solution.
The mixed solution obtained in the mixing step is used again as the induction solution.
The method for concentrating a raw material liquid according to any one of aspects 1 to 8.
<< Aspect 11 >> The method for concentrating a raw material solution according to Aspect 9 or 10, wherein the induction solution concentration step is carried out by an evaporation means.
<< Aspect 12 >> The forward osmosis membrane is formed by contacting the raw material solution with a diluted solution of the induction solution or the solvent whose osmotic pressure is adjusted to be lower than that of the raw material solution via the forward osmosis membrane. The method for concentrating a raw material solution according to any one of aspects 1 to 11, which comprises a first washing step for washing.
13. Aspect 12 according to aspect 12, further comprising a second cleaning step of cleaning the forward osmosis membrane by bringing the solvent into contact with both sides of the forward osmosis membrane after the first cleaning step. Method of concentrating raw material liquid.
<< Aspect 14 >> A food product which is a concentrated solution of a solute containing sugar and a raw material liquid containing a liquid medium.
The concentrate is
Brix value is 50 or more and
The absorbance at 450 nm in ultraviolet-visible spectroscopy is 0.1 or more and 1.0 or less.
Grocery.
<< Aspect 15 >> The food product according to Aspect 14, wherein the absorbance at 450 nm in the ultraviolet-visible spectroscopic analysis of the concentrated solution is 0.2 or more and 0.8 or less.
<< Aspect 16 >>
The food product according to aspect 14 or 15, wherein the raw material liquid is a maple liquid or a coconut liquid endosperm.
 本発明の濃縮方法では、原料液を正浸透膜で濃縮する際に、原料液の粘度に応じて原料液または誘導溶液の線速を制御することにより、原料液に含まれる成分を効率よく高濃度にまで濃縮し、かつ長期的に運転することが可能となる。しかも正浸透膜による濃縮は、加熱を必要としないので、液状食品を濃縮するときの、含有成分の熱による着色、変質、揮発による損失などを大幅に低減することができる。 In the concentration method of the present invention, when the raw material liquid is concentrated with a forward osmosis membrane, the linear velocity of the raw material liquid or the induction solution is controlled according to the viscosity of the raw material liquid, so that the components contained in the raw material liquid are efficiently increased. It can be concentrated to a high concentration and can be operated for a long period of time. Moreover, since the concentration by the forward osmosis membrane does not require heating, it is possible to significantly reduce the coloration, alteration, loss due to volatilization, etc. of the contained components due to heat when concentrating the liquid food.
図1は、本発明の原料液濃縮システムの実施態様の一例を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining an example of an embodiment of the raw material liquid concentration system of the present invention. 図2は、本発明の原料液濃縮システムの実施態様の別の一例を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining another example of the embodiment of the raw material liquid concentration system of the present invention. 図3は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図4は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図5は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 5 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図6は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 6 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図7は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図8は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 8 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図9は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 9 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図10は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 10 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図11は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 11 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図12は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 12 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図13は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 13 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図14は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 14 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図15は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 15 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図16は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 16 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention. 図17は、本発明の原料液濃縮システムの実施態様のさらに別の一例を説明するための概念図である。FIG. 17 is a conceptual diagram for explaining still another example of the embodiment of the raw material liquid concentration system of the present invention.
 以下、本発明の実施形態(以下、本実施形態ともいう)について、非限定的な例を挙げて具体的に詳細に説明する。なお本開示の図面において、同一の符号が付された要素は、互いに同様の構成または機能を有するものであることが意図されている。 Hereinafter, an embodiment of the present invention (hereinafter, also referred to as the present embodiment) will be specifically described in detail with reference to non-limiting examples. In the drawings of the present disclosure, the elements with the same reference numerals are intended to have the same configuration or function as each other.
<原料液の濃縮方法>
 本実施形態の原料液の濃縮方法は、溶媒および溶質を含有する原料液と、誘導物質を含有する誘導溶液とを、正浸透膜を介して接触させ、原料液中の溶媒を誘導溶液中に移動させて、希釈誘導溶液を得るとともに、原料液を濃縮する、原料液濃縮工程を含む。この原料液濃縮工程は、原料液を、中空糸状の正浸透膜の中空部分に流通させ、誘導溶液を中空糸状の正浸透膜の外側に流通させる工程を有する。
 ここで、本実施形態の原料液の濃縮方法では、原料液濃縮工程において、中空糸状の正浸透膜の中空部分に流入する原料液の粘度が、20cP以上600cP以下であるときの、中空糸状の正浸透膜の中空部分に流入する原料液の線速を、0.1cm/s以上5.0cm/s以下とする。
 本実施形態の別の実施態様によると、原料液濃縮工程において、正浸透膜の外側に流入する誘導溶液の線速は、0.1cm/s以上10cm/s以下とする。
 原料液濃縮工程において、原料液の線速制御と、誘導溶液の線速制御とを、重畳的に行ってもよい。
<Method of concentrating raw material liquid>
In the method for concentrating the raw material liquid of the present embodiment, the raw material liquid containing the solvent and the solute and the inducing solution containing the inducing substance are brought into contact with each other through a normal osmotic membrane, and the solvent in the raw material liquid is put into the inducing solution. It includes a raw material solution concentration step of moving to obtain a dilution-inducing solution and concentrating the raw material solution. This raw material liquid concentrating step includes a step of circulating the raw material liquid through the hollow portion of the hollow filament-shaped forward osmosis membrane and circulating the inductive solution outside the hollow filament-shaped forward osmosis membrane.
Here, in the method for concentrating the raw material liquid of the present embodiment, in the raw material liquid concentrating step, when the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is 20 cP or more and 600 cP or less, the hollow thread-like The linear velocity of the raw material liquid flowing into the hollow portion of the forward osmosis membrane is 0.1 cm / s or more and 5.0 cm / s or less.
According to another embodiment of the present embodiment, in the raw material liquid concentration step, the linear velocity of the induction solution flowing into the outside of the forward osmosis membrane is 0.1 cm / s or more and 10 cm / s or less.
In the raw material liquid concentration step, the linear velocity control of the raw material solution and the linear velocity control of the inductive solution may be performed in an overlapping manner.
 原料液の濃縮過程において、濃縮の程度(濃縮倍率)が高くなるにつれて、溶液の粘度が徐々に高くなる。従来方法の場合、溶液の粘度が20cP以上になると、原料液の流路への通液が容易でなくなり、効率よく濃縮できない。また、このような状態で長期的に運転すると、濃縮性能が経時的に低下する。さらに、溶液の粘度が600cP以上になると、送液ポンプによる送液が困難となる。 In the process of concentrating the raw material liquid, the viscosity of the solution gradually increases as the degree of concentration (concentration ratio) increases. In the case of the conventional method, when the viscosity of the solution is 20 cP or more, it becomes difficult to pass the raw material liquid through the flow path, and it is not possible to concentrate efficiently. Further, if the product is operated for a long period of time in such a state, the concentration performance deteriorates with time. Further, when the viscosity of the solution is 600 cP or more, it becomes difficult to feed the liquid by the liquid feeding pump.
 本実施形態の原料液の濃縮方法では、中空糸状の正浸透膜の中空部分に流入する原料液の粘度が20cP以上600cP以下であるとき、正浸透膜の中空部分に流入する原料液の線速を、0.1cm/s以上5.0cm/s以下とし、好ましくは0.9cm/s以上3.5cm/s以下とする。
 理由は定かではないが、この線速を0.1cm/s以上とすると、原料液中の溶媒が正浸透膜を介して誘導溶液へ移動する際に、原料液の浸透圧が低く維持されるので、透水性能が高いレベルで維持される。おそらく、原料液の線速を上記の範囲に調整することにより、正浸透膜表面(本発明の好ましい実施態様では、支持層上の分離活性層の表面)における原料液の滞留が抑制されることによると推察される。
 また、この線速を5.0cm/s以下とすれば、中空糸状の正浸透膜の中空部分を原料液が通過する際の圧力損失が小さくなり、膜の内側から外側にかかる圧力を下げることができる。そのため、膜の詰り、劣化などを抑制することが可能となり、長期的に運転しやすくなる。
In the method for concentrating the raw material liquid of the present embodiment, when the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is 20 cP or more and 600 cP or less, the linear velocity of the raw material liquid flowing into the hollow portion of the forward osmosis membrane. Is 0.1 cm / s or more and 5.0 cm / s or less, preferably 0.9 cm / s or more and 3.5 cm / s or less.
Although the reason is not clear, when this linear velocity is 0.1 cm / s or more, the osmotic pressure of the raw material liquid is maintained low when the solvent in the raw material liquid moves to the induction solution through the forward osmosis membrane. Therefore, the water permeability is maintained at a high level. Presumably, by adjusting the linear velocity of the raw material liquid to the above range, the retention of the raw material liquid on the surface of the forward osmosis membrane (in the preferred embodiment of the present invention, the surface of the separation active layer on the support layer) is suppressed. It is inferred that.
Further, if this linear velocity is 5.0 cm / s or less, the pressure loss when the raw material liquid passes through the hollow portion of the hollow thread-like forward osmosis membrane is reduced, and the pressure applied from the inside to the outside of the membrane is reduced. Can be done. Therefore, it is possible to suppress clogging and deterioration of the film, which facilitates long-term operation.
 一方、正浸透膜の外側に流入する誘導溶液の線速については、好ましくは0.1cm/s以上10cm/s以下とし、より好ましくは1.0cm/s以上5.0cm/s以下とし、さらに好ましくは1.5cm/s以上4.0cm/s以下とする。理由は定かではないが、この線速を0.1cm/s以上とすると、原料液中の溶媒が正浸透膜を介して誘導溶液へ移動する際に、誘導溶液の浸透圧が高く維持されるので、透水性能が高いレベルで維持される。おそらく、誘導溶液の線速を上記の範囲に調整することにより、正浸透膜表面(本発明の好ましい実施態様では、支持層上の分離活性層の表面)における誘導溶液の滞留が抑制されることによると推察される。
 また、この線速を10cm/s以下とすれば、中空糸状の正浸透膜の外側を誘導溶液が通過する際の圧力損失が小さくなり、膜の外側から内側にかかる圧力を下げることができる。そのため、正浸透膜の破壊(本発明の好ましい実施態様では、支持層と、該支持層上の分離活性層との剥離)を抑制でき、長期的に運転しやすくなる。
On the other hand, the linear velocity of the induction solution flowing into the outside of the forward osmosis membrane is preferably 0.1 cm / s or more and 10 cm / s or less, more preferably 1.0 cm / s or more and 5.0 cm / s or less, and further. It is preferably 1.5 cm / s or more and 4.0 cm / s or less. Although the reason is not clear, when this linear velocity is 0.1 cm / s or more, the osmotic pressure of the inducing solution is maintained high when the solvent in the raw material liquid moves to the inducing solution through the forward osmosis membrane. Therefore, the water permeability is maintained at a high level. Presumably, by adjusting the linear velocity of the inducing solution to the above range, the retention of the inducing solution on the surface of the forward osmosis membrane (in the preferred embodiment of the present invention, the surface of the separation active layer on the support layer) is suppressed. It is inferred that.
Further, when this linear velocity is set to 10 cm / s or less, the pressure loss when the inductive solution passes outside the hollow thread-like forward osmosis membrane is reduced, and the pressure applied from the outside to the inside of the membrane can be reduced. Therefore, destruction of the forward osmosis membrane (in a preferred embodiment of the present invention, separation of the support layer and the separation active layer on the support layer) can be suppressed, and long-term operation becomes easy.
 本実施形態の原料液の濃縮方法は、溶媒および溶質を含有する原料液と、誘導物質を含有する誘導溶液とを、正浸透膜を介して接触させ、原料液中の溶媒を誘導溶液中に移動させて、希釈誘導溶液を得るとともに、原料液を濃縮する、正浸透膜ユニットを有する、原料液濃縮システムを用いて行われることが好ましい。
 以下、本実施形態の原料液の濃縮方法を実施するために好ましく用いられる原料液濃縮システムについて説明する。
In the method for concentrating the raw material liquid of the present embodiment, the raw material liquid containing the solvent and the solute and the inducing solution containing the inducing substance are brought into contact with each other through a normal osmotic membrane, and the solvent in the raw material liquid is put into the inducing solution. It is preferably carried out using a raw material solution concentrating system having a normal osmotic membrane unit that is moved to obtain a dilution inducing solution and concentrates the raw material solution.
Hereinafter, a raw material liquid concentrating system preferably used for carrying out the raw material liquid concentrating method of the present embodiment will be described.
《原料液濃縮システム》
 本実施形態の原料液の濃縮方法を実施するための原料液濃縮システムにおいて、
 正浸透膜は、中空糸状であり、
 正浸透膜ユニットは、原料液を、中空糸状の正浸透膜の中空部分に流通させ、誘導溶液を中空糸状の正浸透膜の外側に流通させる機能を有し、
 中空糸状の正浸透膜の中空部分に流入する原料液の粘度が20cP以上600cP以下であるときの、中空糸状の正浸透膜の中空部分に流入する原料液の線速を0.1cm/s以上5.0cm/s以下とする機能を有する。
<< Raw material liquid concentration system >>
In the raw material liquid concentration system for carrying out the raw material liquid concentration method of the present embodiment,
The forward osmosis membrane is hollow filamentous and
The forward osmosis membrane unit has a function of allowing the raw material liquid to flow through the hollow portion of the hollow filament-like forward osmosis membrane and the inducing solution to flow outside the hollow filament-like forward osmosis membrane.
When the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-shaped forward osmosis membrane is 20 cP or more and 600 cP or less, the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-shaped forward osmosis membrane is 0.1 cm / s or more. It has a function of 5.0 cm / s or less.
 この原料液濃縮システムの別の実施態様によると、正浸透膜ユニットにおいて、正浸透膜の外側に流入する誘導溶液の線速を0.1cm/s以上10cm/s以下とする機能を有する、原料液濃縮システムであってもよい。
 正浸透膜ユニットは、原料液の線速を制御する機能と、誘導溶液の線速を制御する機能とを、重畳的に有していてもよい。
According to another embodiment of this raw material liquid concentration system, the raw material having a function of setting the linear velocity of the inducing solution flowing into the outside of the forward osmosis membrane to 0.1 cm / s or more and 10 cm / s or less in the forward osmosis membrane unit. It may be a liquid concentration system.
The forward osmosis membrane unit may have a function of controlling the linear velocity of the raw material solution and a function of controlling the linear velocity of the inductive solution in an overlapping manner.
 本明細書において、原料液の線速とは、原料液の流速Y[cm/s]を、正浸透膜ユニットの原料液流路断面積A[cm]で除した値Y/A[cm/s]として定義される。ここで、正浸透膜ユニットの原料液流路断面積は、当該ユニットに含まれる中空糸状正浸透膜の中空部分の断面積の合計と等しい。
 誘導溶液の線速とは、誘導溶液の流速Z[cm/s]を、正浸透膜ユニットの誘導溶液流路断面積B[cm]で除した値Z/B[cm/s]として定義される。ここで、正浸透膜ユニットの誘導溶液流路断面積Bは、当該ユニットのハウジングの内側空間の断面積から、当該ユニットに含まれる中空糸状正浸透膜の断面積の合計を減じた値と等しい。
In the present specification, the linear velocity of the raw material liquid is a value Y / A [] obtained by dividing the flow velocity Y [cm 3 / s] of the raw material liquid by the raw material liquid flow path cross-sectional area A [cm 2] of the forward osmosis membrane unit. It is defined as [cm / s]. Here, the cross-sectional area of the raw material liquid flow path of the forward osmosis membrane unit is equal to the total cross-sectional area of the hollow portion of the hollow filamentous forward osmosis membrane contained in the unit.
The linear velocity of the inductive solution is defined as a value Z / B [cm / s] obtained by dividing the flow velocity Z [cm 3 / s] of the inductive solution by the cross-sectional area B [cm 2] of the inductive solution flow path of the forward osmosis membrane unit. Defined. Here, the inductive solution flow path cross-sectional area B of the forward osmosis membrane unit is equal to the value obtained by subtracting the total cross-sectional area of the hollow filamentous forward osmosis membrane contained in the unit from the cross-sectional area of the inner space of the housing of the unit. ..
 本実施形態の原料液濃縮システムにおいて、原料液または誘導溶液の線速を制御する機能としては、公知の装置、またはその組み合わせを適宜に選択して用いてよい。例えば、流速測定器、および該流速測定器の測定結果を送液ポンプの流量調整にフィードバックする手段が例示できる。流速測定器の測定結果を送液ポンプの流量調整にフィードバックする手段は、自動制御であってもよいし、手動制御であってもよい。 In the raw material liquid concentrating system of the present embodiment, as a function of controlling the linear velocity of the raw material liquid or the inductive solution, a known device or a combination thereof may be appropriately selected and used. For example, a flow velocity measuring device and a means for feeding back the measurement result of the flow velocity measuring device to the flow rate adjustment of the liquid feed pump can be exemplified. The means for feeding back the measurement result of the flow velocity measuring device to the flow rate adjustment of the liquid feed pump may be automatic control or manual control.
 原料液の濃縮では、正浸透膜ユニットを一旦通過させて、ある程度濃縮された原料液を循環させて、正浸透膜ユニットを再度通過させて、さらに濃縮する場合がある。また、このような循環を繰り返し、正浸透膜ユニットを3回以上通過させて、高度に濃縮された濃縮液を得る場合がある。このような場合、原料液の濃縮の程度が低く、原料液の粘度が20cP未満の場合には、原料液の線速を制御する必要はない。原料液の粘度が20cP未満の場合には、原料液の線速を制御しなくても、高い効率の濃縮が可能である。
 中空糸状の正浸透膜の中空部分に流入する原料液の粘度が20cP以上600cP以下の範囲に至ったとき、原料液の粘度を上記の範囲に調整することにより、本発明の有利な効果が発現されることになる。
 一方、中空糸状の正浸透膜の外側部分に流入する誘導溶液の線速を0.1cm/s以上10cm/s以下とすることによっても、本発明の有利な効果が発現される。
In the concentration of the raw material liquid, the forward osmosis membrane unit may be passed once, the raw material liquid concentrated to some extent may be circulated, and the forward osmosis membrane unit may be passed again to further concentrate. Further, such circulation may be repeated to pass the forward osmosis membrane unit three times or more to obtain a highly concentrated concentrated liquid. In such a case, when the degree of concentration of the raw material liquid is low and the viscosity of the raw material liquid is less than 20 cP, it is not necessary to control the linear velocity of the raw material liquid. When the viscosity of the raw material liquid is less than 20 cP, highly efficient concentration is possible without controlling the linear velocity of the raw material liquid.
When the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane reaches the range of 20 cP or more and 600 cP or less, the advantageous effect of the present invention is exhibited by adjusting the viscosity of the raw material liquid to the above range. Will be done.
On the other hand, the advantageous effect of the present invention is also exhibited by setting the linear velocity of the induction solution flowing into the outer portion of the hollow thread-like forward osmosis membrane to 0.1 cm / s or more and 10 cm / s or less.
 本実施形態の原料液濃縮システムでは、正浸透膜ユニットが2本以上配置されていてもよい。この場合、2本以上の正浸透膜ユニットは、直列もしくは並列に配置されていてよく、または、並列に配置した2本以上の正浸透膜ユニットの組を、直列に配置してもよい。
 2本以上の正浸透膜ユニットを並列に配置することにより、原料液濃縮システムの濃縮効率を維持したまま、処理量を増大することができる。
 2本以上の正浸透膜ユニットを直列に配置することにより、ワンパスごとの濃縮効率をより高くすることができる。
In the raw material liquid concentration system of the present embodiment, two or more forward osmosis membrane units may be arranged. In this case, the two or more forward osmosis membrane units may be arranged in series or in parallel, or a set of two or more forward osmosis membrane units arranged in parallel may be arranged in series.
By arranging two or more forward osmosis membrane units in parallel, the processing amount can be increased while maintaining the concentration efficiency of the raw material liquid concentration system.
By arranging two or more forward osmosis membrane units in series, the concentration efficiency for each pass can be further increased.
 しかしながら、原料液の濃縮過程においては、濃縮の程度が進むと、溶液の粘度が徐々に高くなる。その場合、複数の正浸透膜ユニットを直列に配置すると、下流側の正浸透膜ユニットにおいて、溶液の通液が困難となり、効率よい濃縮ができず、あるいは、長期運転による性能の低下を来たすことがある。これを避けるため、本実施形態の原料液濃縮システムにおいて、正浸透膜ユニットを2本以上直列に配置するとき、隣接する2本の正浸透膜ユニットにおいて、原料液の流れの下流側に配置された正浸透膜ユニットの原料液流路断面積Aの、原料液の流れの上流側に配置された正浸透膜ユニットの原料液流路断面積Aに対する比A/Aは、0.2以上10以下であることが好ましく、1倍以上8倍以下であることが好ましい。 However, in the process of concentrating the raw material liquid, the viscosity of the solution gradually increases as the degree of concentration progresses. In that case, if a plurality of forward osmosis membrane units are arranged in series, it becomes difficult for the solution to pass through the forward osmosis membrane unit on the downstream side, and efficient concentration cannot be performed, or the performance deteriorates due to long-term operation. There is. In order to avoid this, when two or more forward osmosis membrane units are arranged in series in the raw material liquid concentration system of the present embodiment, they are arranged on the downstream side of the flow of the raw material liquid in the two adjacent forward osmosis membrane units. All forward osmosis membrane unit raw liquid flow path cross-sectional area a d of the ratio a d / a u for raw liquid flow path cross-sectional area a u of forward osmosis membrane unit disposed upstream of the raw material liquid flow, 0 It is preferably 2 or more and 10 or less, and preferably 1 time or more and 8 times or less.
 理由は定かではないが、この比A/Aが0.2以上であると、膜のつまり、劣化などが抑制され、長期的に運転しやすくなる。おそらく、比A/Aを0.2以上とすることにより、中空糸状の正浸透膜の中空部分を原料液が通過する際の圧力損失が小さくなり、膜の内側から外側にかかる圧力が下がることによると推察される。また、この比A/Aが10以下であれば、透水性能が高く維持されやすくなる。おそらく、比A/Aを10以下とすることにより、原料液中の溶媒が正浸透膜を介して誘導溶液へ移動する際、正浸透膜表面(本発明の好ましい実施態様では、支持層上の分離活性層の表面)における原料液の滞留が抑制され、そのため原料液の浸透圧が低く維持されるためと推察される。 Although the reason is not clear, when this ratio Ad / Au is 0.2 or more, clogging of the film is suppressed, and long-term operation becomes easier. Presumably, by setting the ratio Ad / Au to 0.2 or more, the pressure loss when the raw material liquid passes through the hollow portion of the hollow thread-like forward osmosis membrane is reduced, and the pressure applied from the inside to the outside of the membrane is reduced. It is presumed that it is due to the decrease. Further, when this ratio Ad / Au is 10 or less, the water permeability is high and easily maintained. Presumably, by setting the ratio Ad / Au to 10 or less, when the solvent in the raw material liquid moves to the induction solution via the forward osmosis membrane, the surface of the forward osmosis membrane (in a preferred embodiment of the present invention, the support layer). It is presumed that the retention of the raw material solution on the surface of the above separation active layer) is suppressed, and therefore the osmotic pressure of the raw material solution is maintained low.
 「正浸透膜ユニットの原料液流路断面積」とは、当該正浸透膜ユニットに含まれる中空糸状の正浸透膜の、中空部分の断面積の合計を意味する。
 本実施形態の原料液濃縮システムにおいて、正浸透膜ユニットが3本以上直列に配置されている場合、互いに隣接する2つの正浸透膜ユニットの組における比A/Aがそれぞれ、上記の範囲内にあることが好ましい。例えば、3本の正浸透膜ユニットが直列に配置されている場合、2番目の正浸透膜ユニットの原料液流路断面積の合計Aの、1番目の正浸透膜ユニットの原料液流路断面積の合計Aに対する比A/Aが0.2以上10以下であり、かつ、3番目の正浸透膜ユニットの原料液流路断面積の合計Aの、2番目の正浸透膜ユニットの原料液流路断面積の合計Aに対する比A/Aが0.2以上10以下であることが好ましい。
The “raw material liquid flow path cross-sectional area of the forward osmosis membrane unit” means the total cross-sectional area of the hollow portion of the hollow thread-like forward osmosis membrane contained in the forward osmosis membrane unit.
In the raw material liquid concentration system of the present embodiment, when three or more forward osmosis membrane units are arranged in series, the ratio Ad / Au in the set of two forward osmosis membrane units adjacent to each other is in the above range. It is preferably inside. For example, if the three forward osmosis membrane units are arranged in series, a total of A 2 of the raw material liquid flow path cross-sectional area of the second forward osmosis membrane unit, the feed liquid passage of the first forward osmosis membrane unit The ratio A 2 / A 1 to the total cross-sectional area A 1 is 0.2 or more and 10 or less, and the total cross-sectional area of the raw material liquid flow path of the third forward osmosis membrane unit A 3 is the second forward osmosis. It is preferable that the ratio A 3 / A 2 to the total A 2 of the cross-sectional area of the raw material liquid flow path of the membrane unit is 0.2 or more and 10 or less.
 上記の比A/Aは、例えば、
  直列に接続される正浸透膜ユニットそれぞれの原料液流路断面積を調節すること;
  直列に接続される正浸透膜ユニットの一部または全部に、並列に接続された複数の正浸透膜ユニットを配置すること;
などによって、所望の値に調節することができる。
The above ratio Ad / Au is, for example,
Adjusting the cross-sectional area of the raw material liquid flow path of each forward osmosis membrane unit connected in series;
Placing multiple forward osmosis membrane units connected in parallel on some or all of the forward osmosis membrane units connected in series;
It can be adjusted to a desired value by such means.
 なお、複数の正浸透膜ユニットを直列に配置すると、原料液の上流側のユニットでは、濃縮の程度が低く、中空糸状の正浸透膜の中空部分に流入する原料液の粘度が20cP未満であるが、原料液の下流側のユニットでは、濃縮の程度が上がり、原料液の粘度が20cP以上600cP以下の範囲に入る場合がある。
 このような場合、原料液の粘度の低い上流側のユニットでは、原料液および誘導溶液の線速を制御する必要はない。原料液の粘度が20cP未満のユニットでは、原料液および誘導溶液の線速を制御しなくても、高い効率の濃縮が可能である。
 直列に配置された複数の正浸透膜ユニットのうちの、原料液流れの下流側において、中空糸状の正浸透膜の中空部分に流入する原料液の粘度が20cP以上600cP以下の範囲であるユニットにおいて、原料液および誘導溶液の粘度を上記の範囲に調整することにより、本発明の有利な効果が発現されることになる。
When a plurality of forward osmosis membrane units are arranged in series, the degree of concentration is low in the unit on the upstream side of the raw material liquid, and the viscosity of the raw material liquid flowing into the hollow portion of the hollow filament-like forward osmosis membrane is less than 20 cP. However, in the unit on the downstream side of the raw material liquid, the degree of concentration increases, and the viscosity of the raw material liquid may fall within the range of 20 cP or more and 600 cP or less.
In such a case, it is not necessary to control the linear velocity of the raw material solution and the inductive solution in the upstream unit having a low viscosity of the raw material solution. In a unit having a viscosity of the raw material solution of less than 20 cP, highly efficient concentration is possible without controlling the linear velocity of the raw material solution and the inductive solution.
Among a plurality of forward osmosis membrane units arranged in series, in a unit in which the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane on the downstream side of the raw material liquid flow is in the range of 20 cP or more and 600 cP or less. By adjusting the viscosities of the raw material solution and the inductive solution within the above ranges, the advantageous effects of the present invention will be exhibited.
 正浸透膜ユニットを2本以上直列に配置する場合、該直列に配置された2つ以上の正浸透膜ユニットの間に、1つ以上の原料液送液ポンプを配置してもよい。ユニット間に原料液送液ポンプを配置することで、中空糸状の正浸透膜の中空部分を原料液が通過する際の圧力損失が小さくなり、膜の内側から外側にかかる圧力を下げることができるので、膜のつまり、および劣化を抑制することができ、長期的に運転しやすくなる。 When two or more forward osmosis membrane units are arranged in series, one or more raw material liquid feeding pumps may be arranged between the two or more forward osmosis membrane units arranged in series. By arranging the raw material liquid feed pump between the units, the pressure loss when the raw material liquid passes through the hollow portion of the hollow thread-like forward osmosis membrane is reduced, and the pressure applied from the inside to the outside of the membrane can be reduced. Therefore, clogging and deterioration of the film can be suppressed, and long-term operation becomes easier.
 本実施形態の原料液濃縮システムは、希釈誘導溶液から溶媒を除去して再生誘導溶液を得る、誘導溶液膜ユニットをさらに有していてもよい。 The raw material solution concentrating system of the present embodiment may further include an induction solution membrane unit that removes a solvent from the dilution induction solution to obtain a regeneration induction solution.
 以下、図面を参照しつつ、本実施形態について、非限定的な具体例を挙げて説明する。
 図1~17に、それぞれ、正浸透濃縮工程、および任意的に誘導溶液再生工程を有する、本実施形態の原料液濃縮システムの一例を説明するための概略図を示した。
Hereinafter, the present embodiment will be described with reference to the drawings with reference to non-limiting specific examples.
FIGS. 1 to 17 show schematic views for explaining an example of the raw material liquid concentration system of the present embodiment, which each has a forward osmosis concentration step and optionally an induction solution regeneration step.
 図1の原料液濃縮システムの正浸透濃縮工程では、正浸透膜oを有し、正浸透プロセスを行う正浸透膜ユニットAを用いる。この正浸透膜ユニットAの内部空間は、正浸透膜oによって、原料液側空間Rおよび誘導溶液側空間Dの2つに分割されている。正浸透膜ユニットAの原料液側空間Rに、濃縮対象物である原料液aを導入する。一方、正浸透膜ユニットAの誘導溶液側空間Dには、誘導溶液dを導入する。
 原料液aは、溶質および溶媒bを含有する。誘導溶液dは、誘導物質を含有し、さらに溶媒bを含有することが好ましい。誘導溶液dの浸透圧は原料液aよりも高くなるように設定されている。
 そして、原料液aと、誘導溶液dとを、正浸透膜oを介して接触させると、両溶液の浸透圧差を駆動力として、原料液a中の溶媒bが、正浸透膜oを通過して誘導溶液d側に移動する。これにより、濃縮された原料液である濃縮液cと、希釈された誘導溶液である希釈誘導溶液eとが得られる。
In the forward osmosis concentration step of the raw material liquid concentration system of FIG. 1, a forward osmosis membrane unit A having a forward osmosis membrane o and performing a forward osmosis process is used. The internal space of the forward osmosis membrane unit A is divided into two, a raw material liquid side space R and an induction solution side space D, by the forward osmosis membrane o. The raw material liquid a, which is the object to be concentrated, is introduced into the space R on the raw material liquid side of the forward osmosis membrane unit A. On the other hand, the induction solution d is introduced into the induction solution side space D of the forward osmosis membrane unit A.
The raw material liquid a contains a solute and a solvent b. The inducing solution d preferably contains an inducing substance and further contains a solvent b. The osmotic pressure of the inductive solution d is set to be higher than that of the raw material solution a.
Then, when the raw material solution a and the inductive solution d are brought into contact with each other via the forward osmosis membrane o, the solvent b in the raw material liquid a passes through the forward osmosis membrane o using the osmotic pressure difference between the two solutions as a driving force. To move to the induction solution d side. As a result, a concentrated liquid c, which is a concentrated raw material liquid, and a diluted induction solution e, which is a diluted induction solution, can be obtained.
 図2の原料液濃縮システムでは、正浸透濃縮工程において、正浸透膜ユニットAと正浸透膜ユニットBとが直列に連結されている。これら2つの正浸透膜ユニットの構成は、それぞれ、図1の原料液濃縮システムにおける正浸透膜ユニットAと同じである。
 ここでは、先ず、正浸透膜ユニットAの原料液側空間Rに、原料液aを導入する。次いで、正浸透膜ユニットAを通過した原料液を、正浸透膜ユニットBの原料液側空間Rに導入させ、正浸透膜ユニットBをさらに通過させて濃縮された濃縮液cが得られる。
 誘導溶液dは、正浸透膜ユニットBの誘導溶液側空間Dに導入され、正浸透膜ユニットBを通過して希釈された後、正浸透膜ユニットAの誘導溶液側空間Dに導入され、正浸透膜ユニットAを通過してさらに希釈されて、希釈誘導溶液eが得られる。
In the raw material liquid concentration system of FIG. 2, the forward osmosis membrane unit A and the forward osmosis membrane unit B are connected in series in the forward osmosis concentration step. The configurations of these two forward osmosis membrane units are the same as those of the forward osmosis membrane unit A in the raw material liquid concentration system of FIG. 1, respectively.
Here, first, the raw material liquid a is introduced into the space R on the raw material liquid side of the forward osmosis membrane unit A. Next, the raw material liquid that has passed through the forward osmosis membrane unit A is introduced into the raw material liquid side space R of the forward osmosis membrane unit B, and is further passed through the forward osmosis membrane unit B to obtain a concentrated liquid c.
The inducing solution d is introduced into the induction solution side space D of the forward osmosis membrane unit B, passes through the forward osmosis membrane unit B to be diluted, and then introduced into the induction solution side space D of the forward osmosis membrane unit A. It passes through the osmotic membrane unit A and is further diluted to obtain a dilution induction solution e.
 図3の原料液濃縮システムでは、図2と同様に、正浸透膜ユニットAと正浸透膜ユニットBとが直列に連結されている。
 ここで、原料液aを、正浸透膜ユニットAおよび正浸透膜ユニットBの順に通過させて、濃縮液cを得ることは、図2と同じである。
 しかしながら、図3の原料液濃縮システムでは、誘導溶液dが、正浸透膜ユニットAの誘導溶液側空間D、および正浸透膜ユニットBの誘導溶液側空間Dにそれぞれ導入され、原料液aからの溶媒bを抱き込んで希釈された希釈誘導溶液eが、正浸透膜ユニットAおよびBのそれぞれから得られる。
In the raw material liquid concentration system of FIG. 3, the forward osmosis membrane unit A and the forward osmosis membrane unit B are connected in series as in FIG.
Here, the raw material liquid a is passed through the forward osmosis membrane unit A and the forward osmosis membrane unit B in this order to obtain the concentrated liquid c, which is the same as in FIG.
However, in the raw material solution concentrating system of FIG. 3, the induction solution d is introduced into the induction solution side space D of the forward osmosis membrane unit A and the induction solution side space D of the forward osmosis membrane unit B, respectively, and is introduced from the raw material solution a. A dilution induction solution e diluted by embracing the solvent b is obtained from each of the forward osmosis membrane units A and B.
 図4の原料液濃縮システムでは、図2と同様に、正浸透膜ユニットAと正浸透膜ユニットBとが直列に連結されている。
 ここで、原料液aを、正浸透膜ユニットAおよび正浸透膜ユニットBの順に通過させて、濃縮液cを得ること、および誘導溶液dを、正浸透膜ユニットBおよび正浸透膜ユニットAの順に通過させて、希釈誘導溶液eを得ることは、図2と同じである。
 しかしながら、図4の原料液濃縮システムでは、直列に接続された正浸透膜ユニットAと正浸透膜ユニットBとの間の原料液流路に、原料液送液ポンプが配置されている。
 図4の原料液濃縮システムでは、原料液流路に配置された原料液送液ポンプにより、正浸透膜ユニットを通過する原料液の線速を適宜に制御することができる。
In the raw material liquid concentration system of FIG. 4, the forward osmosis membrane unit A and the forward osmosis membrane unit B are connected in series as in FIG.
Here, the raw material solution a is passed through the forward osmosis membrane unit A and the forward osmosis membrane unit B in this order to obtain a concentrated solution c, and the induction solution d is passed through the forward osmosis membrane unit B and the forward osmosis membrane unit A. It is the same as in FIG. 2 to pass in order to obtain the dilution induction solution e.
However, in the raw material liquid concentrating system of FIG. 4, the raw material liquid feeding pump is arranged in the raw material liquid flow path between the forward osmosis membrane unit A and the forward osmosis membrane unit B connected in series.
In the raw material liquid concentrating system of FIG. 4, the linear velocity of the raw material liquid passing through the forward osmosis membrane unit can be appropriately controlled by the raw material liquid feeding pump arranged in the raw material liquid flow path.
 図5の原料液濃縮システムでは、図3と同様に、正浸透膜ユニットAと正浸透膜ユニットBとが直列に連結されており、原料液aを、正浸透膜ユニットAおよび正浸透膜ユニットBの順に通過させて、濃縮液cを得ること、および誘導溶液dを、正浸透膜ユニットBおよび正浸透膜ユニットAに、それぞれ通過させて、2つの正浸透膜ユニットからそれぞれ希釈誘導溶液eを得ることは、図3と同じである。
 しかしながら、図5の原料液濃縮システムでは、直列に接続された正浸透ユニットAと正浸透膜ユニットBとの間の原料液流路に、原料液送液ポンプが配置されている。
In the raw material solution concentration system of FIG. 5, the forward osmosis membrane unit A and the forward osmosis membrane unit B are connected in series as in FIG. Passing in the order of B to obtain a concentrated solution c, and passing the inducing solution d through the forward osmosis membrane unit B and the forward osmosis membrane unit A, respectively, and diluting the inducing solution e from each of the two forward osmosis membrane units e. To obtain is the same as in FIG.
However, in the raw material liquid concentrating system of FIG. 5, the raw material liquid feeding pump is arranged in the raw material liquid flow path between the forward osmosis unit A and the forward osmosis membrane unit B connected in series.
 図6の原料液濃縮システムは、正浸透濃縮工程と、誘導溶液再生工程とを有している。
 正浸透膜ユニットAの構成および機能は、図1の原料液濃縮システムの正浸透膜ユニットAと同様であり、正浸透濃縮工程において、原料液aは濃縮されて濃縮液cが得られ、誘導溶液dは希釈されて希釈誘導溶液eが得られる。この希釈誘導溶液eは、混合機構に送られる。
 誘導溶液再生工程は、誘導溶液濃縮ユニットおよび混合ユニットを有する。
 誘導溶液濃縮ユニットでは、希釈誘導溶液eから溶媒bの一部を除去して濃縮誘導溶液fを得る。誘導溶液再生ユニットでは、希釈誘導溶液dから溶媒を除去するために、公知の濃縮手段、例えば蒸発手段などを用いてよい。
 誘導溶液濃縮ユニットで得られた濃縮誘導溶液fは、混合ユニットに送られる。
 また、上記の正浸透濃縮工程の正浸透膜ユニットAで得られた希釈誘導溶液eも、混合ユニットに送られる。
 そして、混合機構において、誘導溶液濃縮工程で得られた濃縮誘導溶液fと、正浸透濃縮工程で得られた希釈誘導溶液eとが混合され、必要に応じて濃度が調整されて、誘導溶液が再生される。得られた再生誘導溶液は、誘導溶液dとして使用してよい。
混合機構は、例えばバッファタンクであってよい。
The raw material liquid concentration system of FIG. 6 has a forward osmosis concentration step and an induction solution regeneration step.
The configuration and function of the forward osmosis membrane unit A are the same as those of the forward osmosis membrane unit A of the raw material solution concentration system of FIG. The solution d is diluted to obtain a dilution induction solution e. This dilution induction solution e is sent to the mixing mechanism.
The inductive solution regeneration step has an inductive solution concentrating unit and a mixing unit.
In the induction solution concentration unit, a part of the solvent b is removed from the dilution induction solution e to obtain a concentration induction solution f. In the induction solution regeneration unit, a known concentration means such as an evaporation means may be used to remove the solvent from the dilution induction solution d.
The concentrated induction solution f obtained in the induction solution concentration unit is sent to the mixing unit.
Further, the dilution induction solution e obtained in the forward osmosis membrane unit A in the above forward osmosis concentration step is also sent to the mixing unit.
Then, in the mixing mechanism, the concentration-inducing solution f obtained in the induction solution concentration step and the dilution induction solution e obtained in the forward osmosis concentration step are mixed, and the concentration is adjusted as necessary to prepare the induction solution. Will be played. The obtained regeneration-inducing solution may be used as the inducing solution d.
The mixing mechanism may be, for example, a buffer tank.
 図7~図10の原料液濃縮システムは、それぞれ、図2~5の正浸透濃縮工程のそれぞれを、図6に示したのと同様の誘導溶液再生工程と組み合わせた原料液濃縮システムである。 The raw material liquid concentration system of FIGS. 7 to 10 is a raw material liquid concentration system in which each of the forward osmosis concentration steps of FIGS. 2 to 5 is combined with the same induction solution regeneration step as shown in FIG.
 図11の原料液濃縮システムは、正浸透濃縮工程と、誘導溶液再生工程とを有しており、正浸透濃縮工程には、循環機構が含まれる。
 図11の原料液濃縮システムにおいて、正浸透濃縮工程は、循環機構を含む他は図6の原料液濃縮システムの正浸透濃縮工程と同じであり、誘導溶液再生工程は、図6の原料液濃縮システムの誘導溶液再生工程と同じである。
 循環機構は、正浸透膜ユニットAで得られた濃縮液を、正浸透膜ユニットAの原料液側空間Rに、原料液として再導入させる機能を有している。この場合、原料液を正浸透膜ユニットAに通す回数(すなわち、正浸透膜ユニットAで得られた濃縮液を、正浸透膜ユニットAにおける原料液として再導入する回数)は任意である。所定の回数の再導入により、高度に濃縮された濃縮液cが得られる。
The raw material liquid concentration system of FIG. 11 includes a forward osmosis concentration step and an induction solution regeneration step, and the forward osmosis concentration step includes a circulation mechanism.
In the raw material liquid concentration system of FIG. 11, the forward osmosis concentration step is the same as the forward osmosis concentration step of the raw material liquid concentration system of FIG. 6 except that the circulation mechanism is included, and the induction solution regeneration step is the raw material liquid concentration of FIG. It is the same as the induction solution regeneration step of the system.
The circulation mechanism has a function of reintroducing the concentrated liquid obtained in the forward osmosis membrane unit A into the space R on the raw material liquid side of the forward osmosis membrane unit A as a raw material liquid. In this case, the number of times the raw material liquid is passed through the forward osmosis membrane unit A (that is, the number of times the concentrated liquid obtained in the forward osmosis membrane unit A is reintroduced as the raw material liquid in the forward osmosis membrane unit A) is arbitrary. Reintroduction a predetermined number of times gives a highly concentrated concentrate c.
 図12の原料液濃縮システムは、図7の原料液濃縮システムに、図11に示したのと同様の循環機構と組み合わせた原料液濃縮システムである。 The raw material liquid concentrating system of FIG. 12 is a raw material liquid concentrating system in which the raw material liquid concentrating system of FIG. 7 is combined with the same circulation mechanism as shown in FIG.
 図13の原料液濃縮システムは、正浸透濃縮工程と、誘導溶液再生工程とを有している。
 図13の原料液濃縮システムでは、正浸透濃縮工程において、正浸透膜ユニットAと、正浸透膜ユニットBと、正浸透膜ユニットCとが直列に連結されている。これら3つの正浸透膜ユニットの構成は、それぞれ、図1の原料液濃縮システムにおける正浸透膜ユニットAと同じである。図13の原料液濃縮システムの正浸透濃縮工程は、さらに、循環機構を有する。
The raw material liquid concentration system of FIG. 13 includes a forward osmosis concentration step and an induction solution regeneration step.
In the raw material liquid concentration system of FIG. 13, the forward osmosis membrane unit A, the forward osmosis membrane unit B, and the forward osmosis membrane unit C are connected in series in the forward osmosis concentration step. The configurations of these three forward osmosis membrane units are the same as those of the forward osmosis membrane unit A in the raw material liquid concentration system of FIG. 1, respectively. The forward osmosis concentration step of the raw material liquid concentration system of FIG. 13 further has a circulation mechanism.
 図13の原料液濃縮システムでは、先ず、正浸透膜ユニットAの原料液側空間Rに、原料液aを導入して、正浸透膜ユニットAを通過させる。次いで、正浸透膜ユニットAを通過した原料液を、正浸透膜ユニットBの原料液側空間Rに導入させ、正浸透膜ユニットBを通過させる。さらに、正浸透膜ユニットBを通過した原料液を、正浸透膜ユニットCの原料液側空間Rに導入させ、正浸透膜ユニットCを通過させる。
 正浸透膜ユニットCを通過した原料液は、循環機構により、正浸透膜ユニットAの原料液側空間Rに、原料液として再導入される。原料液を正浸透膜ユニットA~Cに通す回数(すなわち、正浸透膜ユニットA~Cで得られた濃縮液を、正浸透膜ユニットA~Cにおける原料液として再導入する回数)は任意である。所定の回数の再導入により、高度に濃縮された濃縮液cが得られる。
In the raw material liquid concentrating system of FIG. 13, first, the raw material liquid a is introduced into the raw material liquid side space R of the forward osmosis membrane unit A and passed through the forward osmosis membrane unit A. Next, the raw material liquid that has passed through the forward osmosis membrane unit A is introduced into the space R on the raw material liquid side of the forward osmosis membrane unit B, and is passed through the forward osmosis membrane unit B. Further, the raw material liquid that has passed through the forward osmosis membrane unit B is introduced into the space R on the raw material liquid side of the forward osmosis membrane unit C, and is passed through the forward osmosis membrane unit C.
The raw material liquid that has passed through the forward osmosis membrane unit C is reintroduced as a raw material liquid into the space R on the raw material liquid side of the forward osmosis membrane unit A by the circulation mechanism. The number of times the raw material liquid is passed through the forward osmosis membrane units A to C (that is, the number of times the concentrated liquid obtained by the forward osmosis membrane units A to C is reintroduced as the raw material liquid in the forward osmosis membrane units A to C) is arbitrary. be. Reintroduction a predetermined number of times gives a highly concentrated concentrate c.
 誘導溶液dは、正浸透膜ユニットCの誘導溶液側空間Dに導入され、正浸透膜ユニットCを通過して希釈された後、正浸透膜ユニットBの誘導溶液側空間Dに導入され、正浸透膜ユニットBを通過してさらに希釈され、正浸透膜ユニットAの誘導溶液側空間Dに導入され、正浸透膜ユニットAを通過して追加的に希釈されて、希釈誘導溶液eが得られる。 The inducing solution d is introduced into the inducing solution side space D of the forward osmosis membrane unit C, passes through the forward osmosis membrane unit C to be diluted, and then introduced into the inducing solution side space D of the forward osmosis membrane unit B. It passes through the osmosis membrane unit B and is further diluted, introduced into the induction solution side space D of the forward osmosis membrane unit A, passes through the forward osmosis membrane unit A and is additionally diluted to obtain a dilution induction solution e. ..
 図13の原料液濃縮システムにおける誘導溶液再生工程は、図6の原料液濃縮システムにおける誘導溶液再生工程と、同じ機能を有する。 The inductive solution regeneration step in the raw material liquid concentration system of FIG. 13 has the same function as the inductive solution regeneration step in the raw material liquid concentration system of FIG.
 図14の原料液濃縮システムは、図8の原料液濃縮システムに、循環機構を付加した原料液濃縮システムである。 The raw material liquid concentrating system of FIG. 14 is a raw material liquid concentrating system in which a circulation mechanism is added to the raw material liquid concentrating system of FIG.
 図15の原料液濃縮システムは、正浸透濃縮工程と、誘導溶液再生工程とを有している。正浸透濃縮工程は、循環機構を含む。
 ここで、原料液aを、正浸透膜ユニットA、正浸透膜ユニットB、および正浸透膜ユニットCの順に通過させて得られた濃縮液を、循環機構によって、正浸透膜ユニットAに再導入させ、所定の回数の再導入・循環によって、高度に濃縮された濃縮液cが得られることは、図13の原料液濃縮システムと同じである。
 しかしながら、図15の原料液濃縮システムでは、誘導溶液dが、正浸透膜ユニットAの誘導溶液側空間D、正浸透膜ユニットBの誘導溶液側空間D、および正浸透膜ユニットCの誘導溶液側空間Dにそれぞれ導入され、原料液aからの溶媒bを抱き込んで希釈された希釈誘導溶液eが、正浸透膜ユニットA、B、およびCそれぞれから得られる。
The raw material liquid concentration system of FIG. 15 includes a forward osmosis concentration step and an induction solution regeneration step. The forward osmosis concentration step involves a circulation mechanism.
Here, the concentrated liquid obtained by passing the raw material liquid a through the forward osmosis membrane unit A, the forward osmosis membrane unit B, and the forward osmosis membrane unit C in this order is reintroduced into the forward osmosis membrane unit A by a circulation mechanism. It is the same as the raw material liquid concentration system of FIG. 13 that a highly concentrated concentrated liquid c can be obtained by reintroduction and circulation a predetermined number of times.
However, in the raw material solution concentration system of FIG. 15, the induction solution d is the induction solution side space D of the forward osmosis membrane unit A, the induction solution side space D of the forward osmosis membrane unit B, and the induction solution side of the forward osmosis membrane unit C. A dilution-inducing solution e, which is introduced into the space D and diluted by embracing the solvent b from the raw material solution a, is obtained from each of the forward osmosis membrane units A, B, and C.
 図16および図17の原料液濃縮システムは、図9および図10の原料液濃縮システムに、それぞれ、図12に示したのと同様の循環機構と組み合わせた原料液濃縮システムである。 The raw material liquid concentrating system of FIGS. 16 and 17 is a raw material liquid concentrating system in which the raw material liquid concentrating system of FIGS. 9 and 10 is combined with the same circulation mechanism as shown in FIG. 12, respectively.
 上記図1~17の原料液濃縮システムでは、正浸透濃縮工程において、原料液aと誘導溶液dとを向流させているが、並流でもよい。
 また、正浸透濃縮工程における正浸透処理は、全量ろ過方式によってもクロスフローろ過方式によってもよいが、クロスフローろ過方式によることが、ろ過流速および膜汚染抑制の観点から好ましい。
In the raw material liquid concentration system shown in FIGS. 1 to 17, the raw material liquid a and the induction solution d are countercurrent in the forward osmosis concentration step, but parallel flow may be used.
Further, the forward osmosis treatment in the forward osmosis concentration step may be performed by a total amount filtration method or a cross-flow filtration method, but the cross-flow filtration method is preferable from the viewpoint of filtration flow velocity and suppression of membrane contamination.
 さらに、図6~17において、誘導溶液再生工程の誘導溶液濃縮ユニットで得られた濃縮誘導溶液fを、直接、誘導溶液dとして使用してもよい。この場合、濃縮誘導溶液fの濃度は、誘導溶液dの濃度とほぼ同じとなるように制御されることが好ましい。 Further, in FIGS. 6 to 17, the concentrated induction solution f obtained by the induction solution concentration unit in the induction solution regeneration step may be directly used as the induction solution d. In this case, it is preferable that the concentration of the concentration-inducing solution f is controlled to be substantially the same as the concentration of the induction solution d.
《原料液の濃縮方法》
 本実施形態の原料液の濃縮方法は、上述したとおり、
 溶媒および溶質を含有する原料液と、誘導物質を含有する誘導溶液とを、正浸透膜を介して接触させ、前記原料液中の前記溶媒を前記誘導溶液中に移動させて、希釈誘導溶液を得るとともに、原料液を濃縮する、原料液濃縮工程を含む、原料液の濃縮方法であって、
 前記正浸透膜は、中空糸状であり、
 前記原料液の濃縮方法は、前記原料液を、前記中空糸状の正浸透膜の中空部分に流通させ、前記誘導溶液を前記中空糸状の正浸透膜の外側に流通させる工程を有し、
 前記中空糸状の正浸透膜の前記中空部分に流入する原料液の粘度が20cP以上600cP以下であるときに、前記中空糸状の正浸透膜の前記中空部分に流入する原料液の線速を0.1cm/s以上5.0cm/s以下とする、
原料液の濃縮方法である。
 本実施形態の別の実施態様によると、原料液濃縮工程において、正浸透膜の外側に流入する誘導溶液の線速は、0.1cm/s以上10cm/s以下とする。
 原料液濃縮工程において、原料液の線速制御と、誘導溶液の線速制御とを、重畳的に行ってもよい。
<< Method of concentrating raw material liquid >>
The method for concentrating the raw material liquid of the present embodiment is as described above.
A raw material solution containing a solvent and a solute and an inducing solution containing an inducing substance are brought into contact with each other via a normal osmotic membrane, and the solvent in the raw material solution is moved into the inducing solution to obtain a dilution inducing solution. A method for concentrating a raw material solution, which comprises a step of concentrating the raw material solution while obtaining the raw material solution.
The forward osmosis membrane has a hollow thread shape and is in the form of a hollow thread.
The method for concentrating the raw material liquid includes a step of circulating the raw material liquid through the hollow portion of the hollow thread-shaped forward osmosis membrane and circulating the induction solution outside the hollow thread-shaped forward osmosis membrane.
When the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is 20 cP or more and 600 cP or less, the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is set to 0. 1 cm / s or more and 5.0 cm / s or less,
This is a method for concentrating the raw material liquid.
According to another embodiment of the present embodiment, in the raw material liquid concentration step, the linear velocity of the induction solution flowing into the outside of the forward osmosis membrane is 0.1 cm / s or more and 10 cm / s or less.
In the raw material liquid concentration step, the linear velocity control of the raw material solution and the linear velocity control of the inductive solution may be performed in an overlapping manner.
 中空糸状の正浸透膜の中空部分に流入する原料液の粘度が20cP以上600cP以下であるとき、前記中空糸状の正浸透膜の前記中空部分に流入する原料液の線速は、0.9cm/s以上3.5cm/s以下とすることが好ましい。 When the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is 20 cP or more and 600 cP or less, the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-shaped forward osmosis membrane is 0.9 cm / It is preferably s or more and 3.5 cm / s or less.
 本発明の原料液の濃縮方法に用いる誘導溶液は、2価のカチオンを含む無機塩溶液であることが好ましく;
 正浸透膜は、ポリエーテルスルホン、ポリスルホン、ポリケトン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミン、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、スルホン化テトラフルオロエチレン、およびポリアミドから成る群から選ばれる少なくとも1種を主成分とする薄膜層を有する膜であることが好ましい。
The induction solution used in the method for concentrating the raw material solution of the present invention is preferably an inorganic salt solution containing a divalent cation;
The positive osmotic membrane consists of polyethersulfone, polysulfone, polyketone, polyetheretherketone, polyphenylene ether, polyvinylidene fluoride, polyacrylonitrile, polyimine, polyimide, polybenzoxazole, polybenzoimidazole, sulfonated tetrafluoroethylene, and polyamide. It is preferable that the film has a thin film layer containing at least one selected from the group as a main component.
 本実施形態の原料液の濃縮方法において、原料液濃縮工程は、2段階以上直列的に行ってもよい。
 この場合、2段階以上の原料液濃縮工程のうちの連続して行われる2段階の原料液濃縮工程において、後段の原料液濃縮工程に用いる正浸透膜の原料液流路断面積Aの、前段の正浸透膜の原料液流路断面積Aに対する比A/Aが、0.2以上10以下であることが好ましく、1以上8以下であることがより好ましい。
In the method for concentrating the raw material liquid of the present embodiment, the raw material liquid concentrating step may be performed in two or more steps in series.
In this case, the consecutive two-step starting solution concentration step is carried out of the two or more stages of the raw material solution concentration step, the raw material liquid flow path cross-sectional area A d of the forward osmosis membrane used in the subsequent stage of the raw material solution concentration step, the ratio a d / a u for feed liquid flow path cross-sectional area a u of the preceding forward osmosis membrane, preferably 0.2 to 10, more preferably 1 to 8.
 2段階以上直列的に行う原料液濃縮工程において、前段の原料液濃縮工程で濃縮された原料液を、後段の原料液濃縮工程の原料液として供給するために、原料液送液ポンプを1つ以上用いてもよい。 In the raw material liquid concentrating step performed in two or more steps in series, one raw material liquid feeding pump is used to supply the raw material liquid concentrated in the raw material liquid concentrating step in the previous stage as the raw material liquid in the raw material liquid concentrating step in the subsequent stage. The above may be used.
 また、本発明の原料液の濃縮方法によって得られた濃縮液を、別の付加的な濃縮方法に供してさらに濃縮して、最終製品を得ることも、本実施形態の好ましい態様の一例である。 Further, it is also an example of a preferable embodiment of the present embodiment that the concentrated liquid obtained by the method for concentrating the raw material liquid of the present invention is further concentrated by subjecting it to another additional concentrating method to obtain a final product. ..
 本実施形態の原料液の濃縮方法では、原料液濃縮工程で得られた希釈誘導溶液を、誘導溶液に再生して再使用してもよい。
 希釈誘導溶液の再生および再利用として、具体的には、例えば、
  希釈誘導溶液から溶媒を除去して再生誘導溶液を得る、誘導溶液濃縮工程を実施し、この誘導溶液濃縮工程で得られた濃縮誘導溶液を、誘導溶液として使用すること;
  誘導溶液から溶媒を除去して濃縮誘導溶液を得る、誘導溶液濃縮工程、および
  誘導溶液濃縮工程で得られた濃縮誘導溶液と、原料液濃縮工程で得られた希釈誘導溶液とを混合する、混合工程
を行って、該混合工程で得られた混合溶液を、誘導溶液として使用すること;
などの方法を挙げることができる。
 上記の方法における誘導溶液濃縮工程は、例えば、蒸発手段によって行うことができる。
In the method for concentrating the raw material solution of the present embodiment, the dilution inducing solution obtained in the raw material solution concentrating step may be regenerated into the inducing solution and reused.
As the regeneration and reuse of the dilution induction solution, specifically, for example,
Perform an induction solution concentration step of removing the solvent from the dilution induction solution to obtain a regeneration induction solution, and use the concentration induction solution obtained in this induction solution concentration step as the induction solution;
The concentration-inducing solution obtained in the induction solution concentration step and the induction solution concentration step, in which the solvent is removed from the induction solution to obtain a concentration induction solution, and the dilution induction solution obtained in the raw material solution concentration step are mixed and mixed. Perform the step and use the mixed solution obtained in the mixing step as an inducing solution;
And so on.
The induction solution concentration step in the above method can be performed by, for example, an evaporation means.
 上記に記載した原料液濃縮システムについての説明は、そのまま、または当業者による適宜の変更または読み替えをしたうえで、本実施形態の原料液の濃縮方法の各要素の説明として援用できる。
 本実施形態の原料液の濃縮方法は、例えば、本実施形態の原料液濃縮システムを用いて行うことができる。
The description of the raw material liquid concentrating system described above can be used as it is, or after appropriate changes or replacements by those skilled in the art, as a description of each element of the raw material liquid concentrating method of the present embodiment.
The method for concentrating the raw material liquid of the present embodiment can be performed using, for example, the raw material liquid concentrating system of the present embodiment.
《正浸透膜の洗浄工程を含む、原料液の濃縮方法》
 本実施形態の原料液の濃縮方法を、長時間継続すると、正浸透膜が、沈着物の堆積などによって汚れ、透水量が低下することがある。特に、原料液が高濃度である場合に、正浸透膜の汚れが著しい傾向にある、そのため、正浸透膜を洗浄して、透水量を初期値に戻したうえで、再使用することが望まれる。
 本発明の別の観点では、正浸透膜の洗浄工程を含む、原料液の濃縮方法が提供される。
 この実施形態は、本実施形態の原料液の濃縮方法において、
 原料液と、浸透圧が前記原料液よりも低く調整された誘導溶液の希釈液または溶媒とを、正浸透膜を介して接触させることにより、正浸透膜を洗浄する第1の洗浄工程を、さらに有する方法である。
 この実施形態の原料液の濃縮方法は、第1の工程の後に、溶媒を正浸透膜の両側に接触させることにより、正浸透膜を洗浄する第2の工程をさらに有していてもよい。
<< Method of concentrating raw material liquid including cleaning process of forward osmosis membrane >>
If the method for concentrating the raw material liquid of the present embodiment is continued for a long time, the forward osmosis membrane may become dirty due to the accumulation of deposits and the amount of water permeation may decrease. In particular, when the raw material liquid has a high concentration, the forward osmosis membrane tends to be significantly contaminated. Therefore, it is desirable to wash the forward osmosis membrane to return the water permeability to the initial value and then reuse it. Is done.
Another aspect of the present invention provides a method for concentrating a raw material solution, which comprises a step of cleaning the forward osmosis membrane.
This embodiment is described in the method for concentrating the raw material liquid of the present embodiment.
The first cleaning step of cleaning the forward osmosis membrane by bringing the raw material solution and the diluted solution or solvent of the induction solution whose osmotic pressure is adjusted to be lower than that of the raw material solution into contact with each other through the forward osmosis membrane. It is a method to have further.
The method for concentrating the raw material liquid of this embodiment may further include a second step of cleaning the forward osmosis membrane by bringing a solvent into contact with both sides of the forward osmosis membrane after the first step.
〈第1の洗浄工程〉
 本実施形態の原料液濃縮システムの洗浄方法における第1の洗浄工程は、原料液と、浸透圧が前記原料液よりも低く調整された誘導溶液の希釈液または溶媒とを、正浸透膜を介して接触させることにより、正浸透膜を洗浄する工程である。
 誘導溶液の代わりに、浸透圧が原料液よりも低く調整された誘導溶液の希釈溶液または溶媒そのものを用い、これと原料液とを、正浸透膜を介して接触させると、浸透圧は原料液側の方が高くなるので、その浸透圧差を駆動力として、誘導溶液の希釈液または溶媒から、原料液へと溶媒が移動する。すなわち、正浸透膜の厚さ方向で、濃縮運転時とは逆の方向に溶媒を通過させ、例えば正浸透膜の細孔内に存在する沈着物を洗い出すことによって、正浸透膜を効率よく洗浄することが可能となる。
 正浸透膜に接触させる、誘導溶液の希釈液または溶媒、および原料液は、それぞれ独立に、流動させてもよいし、流動させなくてもよい。これらの双方を流動させるときには、向流であっても対流であってもよい。
<First cleaning process>
In the first cleaning step in the cleaning method of the raw material liquid concentration system of the present embodiment, the raw material liquid and the diluted solution or solvent of the induction solution whose osmotic pressure is adjusted to be lower than that of the raw material liquid are passed through a forward osmosis membrane. This is a step of cleaning the forward osmosis membrane by bringing them into contact with each other.
Instead of the inducing solution, a diluted solution of the inducing solution whose osmotic pressure is adjusted to be lower than that of the raw material solution or the solvent itself is used, and when this and the raw material solution are brought into contact with each other through a forward osmosis membrane, the osmotic pressure becomes the raw material solution. Since the value is higher on the side, the solvent moves from the diluting solution or the solvent of the induction solution to the raw material solution by using the osmotic pressure difference as a driving force. That is, the forward osmosis membrane is efficiently washed by passing the solvent in the direction opposite to that during the concentration operation in the thickness direction of the forward osmosis membrane and washing out the deposits existing in the pores of the forward osmosis membrane, for example. It becomes possible to do.
The diluted solution or solvent of the inducing solution and the raw material solution to be brought into contact with the forward osmosis membrane may or may not be flowed independently. When both of these flow, it may be convection or convection.
〈第2の洗浄工程〉
 本実施形態の原料液濃縮システムの洗浄方法における第2の洗浄工程は、溶媒を正浸透膜の両側に接触させることにより、正浸透膜を洗浄する工程である。
 この第2の洗浄工程では、第1の洗浄工程によって、例えば、正浸透膜の細孔中から洗い出され、正浸透膜の表面またはその近傍に付着している沈着物を、洗い流すことができる。したがって、この第2の洗浄工程は、第1の洗浄工程の後に行われることが好ましい。
 正浸透膜に接触させる溶媒は、両面それぞれ独立に、流動させてもよいし、流動させなくてもよい。正浸透膜の両側の溶媒を、双方とも流動させるときには、向流であっても対流であってもよい。
<Second cleaning process>
The second cleaning step in the cleaning method of the raw material liquid concentration system of the present embodiment is a step of cleaning the forward osmosis membrane by bringing a solvent into contact with both sides of the forward osmosis membrane.
In this second cleaning step, the deposits that have been washed out from the pores of the forward osmosis membrane and adhered to the surface of the forward osmosis membrane or its vicinity can be washed away by the first cleaning step, for example. .. Therefore, this second cleaning step is preferably performed after the first cleaning step.
The solvent that comes into contact with the forward osmosis membrane may or may not flow independently on both sides. When both solvents on both sides of the forward osmosis membrane are allowed to flow, they may be countercurrent or convection.
《正浸透膜の検査工程を含む、原料液の濃縮方法》
 本実施形態の原料液の濃縮方法では、正浸透膜の性能を確認するため、検査の工程を行うことができる。
 したがって、本発明の別の観点では、正浸透膜の検査工程を含む、原料液の濃縮方法が提供される。
 本実施形態の原料液の濃縮方法は、
  原料液の代わりに溶媒そのものを用い、
  溶媒と、誘導溶液とを、正浸透膜を介して接触させた状態で運転し、溶媒を誘導溶液中に移動させて、その透過流速を測定する工程で含む。
 本実施形態の原料液の濃縮方法によると、正浸透膜の検査工程により、正浸透膜の性能変化を、容易かつ確実に確認することができる。
<< Method of concentrating raw material liquid including inspection process of forward osmosis membrane >>
In the method for concentrating the raw material liquid of the present embodiment, an inspection step can be performed in order to confirm the performance of the forward osmosis membrane.
Therefore, another aspect of the present invention provides a method for concentrating a raw material solution, which comprises a step of inspecting a forward osmosis membrane.
The method for concentrating the raw material liquid of the present embodiment is
Using the solvent itself instead of the raw material liquid,
It is included in the step of operating the solvent and the inducing solution in contact with each other through the forward osmosis membrane, moving the solvent into the inducing solution, and measuring the permeation flow velocity thereof.
According to the method for concentrating the raw material liquid of the present embodiment, the change in the performance of the forward osmosis membrane can be easily and surely confirmed by the inspection step of the forward osmosis membrane.
 したがって、本実施形態の原料液の濃縮方法によって、原料液の濃縮を長期間継続して行う場合には、例えば、定期的に、正浸透膜の洗浄を行い、該正浸透膜の洗浄の後に、本実施形態の検査を行って、正浸透膜の性能回復の程度を確認し、濃縮運転の継続が可能か否かを、容易に判断することができる。
 例えば、運転開始後一定期間が経過するごとに、本実施形態の洗浄および検査を行い、透過流速が、前回の洗浄および検査のときの、例えば80%以下に低下した場合に、運転を終了するなどの運転管理が考えられる。
Therefore, when the raw material liquid is continuously concentrated for a long period of time by the method for concentrating the raw material liquid of the present embodiment, for example, the forward osmosis membrane is periodically washed, and after the washing of the forward osmosis membrane, the forward osmosis membrane is washed. , The inspection of the present embodiment can be performed to confirm the degree of performance recovery of the forward osmosis membrane, and it can be easily determined whether or not the concentration operation can be continued.
For example, the cleaning and inspection of the present embodiment are performed every time a certain period of time elapses after the start of operation, and the operation is terminated when the permeation flow velocity drops to, for example, 80% or less of the previous cleaning and inspection. Operation management such as is conceivable.
≪原料液の濃縮方法の各要素≫
 次に、本実施形態の原料液の濃縮方法を構成する各要素について詳説する。
[原料液]
 原料液とは、溶質および溶媒を含有する溶媒含有物品によって構成される流体である。この原料液を構成する溶媒含有物品は、溶液であっても乳化物であってもよく、例えば、食品、化粧品、医薬品、医薬品原料、海水、ガス田・油田から排出される随伴水などを挙げることができる。
 本実施形態のシステムによると、原料液の粘度に応じて原料液および誘導溶液の線速を制御することによって、原料液を構成する溶媒含有物品の濃縮を効率よく行うことができる。しかも、本実施形態のシステムでは、原料液を加熱することを要せずに、原料液を濃縮することが可能となる。
 したがって、本発明のシステムを食品の濃縮に適用すると、原料液中の成分の変質がなく、香気成分の損失が少ない濃縮食品を、効率よく得ることが可能となる。
≪Each element of the method of concentrating the raw material liquid≫
Next, each element constituting the method for concentrating the raw material liquid of the present embodiment will be described in detail.
[Raw material liquid]
The raw material liquid is a fluid composed of a solvent-containing article containing a solute and a solvent. The solvent-containing article constituting this raw material liquid may be a solution or an emulsion, and examples thereof include foods, cosmetics, pharmaceuticals, pharmaceutical raw materials, seawater, and accompanying water discharged from gas fields and oil fields. be able to.
According to the system of the present embodiment, the solvent-containing articles constituting the raw material liquid can be efficiently concentrated by controlling the linear velocity of the raw material liquid and the inductive solution according to the viscosity of the raw material liquid. Moreover, in the system of the present embodiment, the raw material liquid can be concentrated without requiring heating of the raw material liquid.
Therefore, when the system of the present invention is applied to the concentration of foods, it is possible to efficiently obtain concentrated foods in which the components in the raw material liquid are not deteriorated and the loss of aroma components is small.
 そのため、本実施形態に適用される原料液を構成する溶媒含有物品は、食料品であることが好ましい。食料品として、より好ましくは、例えば、コーヒー抽出液、ジュース(例えば、オレンジジュース、トマトジュースなど)、果汁(例えば、リンゴ、ブドウ、オレンジ、グレープフルーツ、レモンなどの果汁)、乳製品(例えば、乳酸菌飲料、生乳など)、出汁(例えば、昆布出汁、鰹出汁など)、茶抽出液(例えば、緑茶(green tea)、煎茶(medium-grade greentea)、ほうじ茶(roasted green tea)、玉露(refined green tea)、かぶせ茶(covered tea)、てん茶(sweet tea)などの抽出液)、調味料(例えば、醤油、ウスターソース、香辛料溶液など)、香料乳化物(例えば、バニラエッセンス、ストロベリーエッセンスなどの乳化物)、食品油乳化物(例えば、菜種油、ひまわり油、紅花油、コーン油などの乳化物)、糖を含む甘味料(例えば、メープル樹液、ハチミツ、ココナッツ液体胚乳、サトウキビ糖液、羅漢果搾汁など)などである。 Therefore, the solvent-containing article constituting the raw material liquid applied to the present embodiment is preferably a food product. More preferably, as food products, for example, coffee extract, juice (eg, orange juice, tomato juice, etc.), fruit juice (eg, fruit juice such as apple, grape, orange, grapefruit, lemon, etc.), dairy products (eg, lactic acid bacteria). Beverages, raw milk, etc.), juice (for example, kelp juice, eel juice, etc.), tea extract (for example, green tea, medium-grade green tea), roasted green tea, refined green tea. ), Covered tea, extract such as sweet tea), seasonings (eg, soy sauce, Worcester sauce, spice solution, etc.), perfume emulsions (eg, vanilla essence, strawberry essence, etc.) ), Food oil emulsions (eg emulsions such as rapeseed oil, sunflower oil, red flower oil, corn oil), sugar-containing sweeteners (eg maple sap, honey, coconut liquid germ milk, sugar cane sugar solution, Rakan fruit juice, etc.) ) And so on.
 甘味料中の糖としては、例えば、単糖類(例えば、グルコース、フルクトース、ガラクトース、マンノース、リボース、デオキシリボースなど)、二糖類(例えば、マルトース、スクロース、ラクトースなど)、糖鎖(例えば、グルコース、ガラクトース、マンノース、フコース、キシロース、グルクロン酸、イズロン酸などの他;N-アセチルグルコサミン、N-アセチルガラクトサミン、N-アセチルノイラミン酸などの、糖類誘導体などを挙げることができる。
 本実施形態に適用される、食料品である原料液は、好ましくは、糖を含む溶質、および液状媒体を含む原料液であり、より好ましくは、メープル樹液またはココナッツ液体胚乳である。
 これらの原料液に含まれる液体媒体は、原料液中の溶質を溶解または分散させている。典型的な態様において、液体媒体は水である。
 原料液は、流体であればよく、溶液の他、例えば、乳化物など合も含まれる。
 本実施形態の原料液の濃縮方法を、このような原料液に適用すると、糖度(Brix値)が高く、健康の維持および改善に有用な成分が多く含まれており、かつ、光の透過度が高い、濃縮物を得ることができる。
Examples of sugars in sweeteners include monosaccharides (eg, glucose, fructose, galactose, mannose, ribose, deoxyribose, etc.), disaccharides (eg, maltose, sucrose, lactose, etc.), sugar chains (eg, glucose, etc.). In addition to galactose, mannose, fucose, xylose, glucuronic acid, isulonic acid and the like; saccharide derivatives such as N-acetylglucosamine, N-acetylgalactosamine and N-acetylneuraminic acid can be mentioned.
The raw material liquid that is a food product applied to the present embodiment is preferably a raw material liquid containing a solute containing sugar and a liquid medium, and more preferably maple sap or coconut liquid endosperm.
The liquid medium contained in these raw material liquids dissolves or disperses solutes in the raw material liquids. In a typical embodiment, the liquid medium is water.
The raw material liquid may be a fluid, and in addition to the solution, for example, a mixture such as an emulsion is also included.
When the method for concentrating the raw material liquid of the present embodiment is applied to such a raw material liquid, it has a high sugar content (Brix value), contains many components useful for maintaining and improving health, and has light transmittance. High, concentrates can be obtained.
 メープル樹液は、一般に、1年のうち糖度が最も高く、昼と夜との温度差が大きい時期(北半球においては例えば3~4月)に、カエデの樹から採取される。通常、樹液には2~4質量%しか糖分が含まれていない。そのため、1Lのシロップを作るためには、約40Lの樹液が必要になる。 Maple sap is generally collected from maple trees during the period of the year when the sugar content is the highest and the temperature difference between day and night is large (for example, March to April in the Northern Hemisphere). Normally, sap contains only 2-4% by mass of sugar. Therefore, about 40 L of sap is required to make 1 L of syrup.
 一態様においては、原料液としてメープル樹液を用い、濃縮液としてメープルシロップを得る。
 メープルシロップの品質は、カナダおよび米国の統一基準により、グレード分けされている。一般的には、樹液の採取時期がシーズン初めに近いものほど樹液の色が薄く、得られるメープルシロップは、味が繊細であり、光の透過率が高い。光の透過率が高いメープルシロップは、「エクストラライト」と称される。一方、光の透過率が低いものは、「ダーク」と称される。メープルシロップは、光の透過率が高いものほど良質とされている。
 メープルシロップの糖度(Brix値)は、一般に66.5%であり、グラニュー糖、上白糖などと同等の値である。また、メープルシロップは、例えば、上白糖はちみつなどと比較してカロリーが低く、他の甘味料と比較して、カルシウム、カリウムなどのミネラルの含有量が多い傾向がある。
In one aspect, maple sap is used as the raw material sap and maple syrup is obtained as the concentrate.
The quality of maple syrup is graded according to unified standards in Canada and the United States. In general, the closer the sap is collected to the beginning of the season, the lighter the color of the sap, and the resulting maple syrup has a delicate taste and high light transmittance. Maple syrup with high light transmittance is called "extra light". On the other hand, those with low light transmittance are called "dark". The higher the light transmittance of maple syrup, the better the quality.
The sugar content (Brix value) of maple syrup is generally 66.5%, which is equivalent to that of granulated sugar, white sugar and the like. In addition, maple syrup has a lower calorie content than, for example, white sugar honey, and tends to have a higher content of minerals such as calcium and potassium than other sweeteners.
 ココナッツ液体胚乳とは、未成熟なココナッツ果実の中に含まれている半透明の液体胚乳のことをいう。ココナッツ液体胚乳は、ミネラルを豊富に含み、ミネラルの組成も人間の体液に近く、かつ、その浸透圧も人体とほぼ同じであることから、天然の栄養豊富な水分補給素材であり得る。
 ココナッツ液体胚乳の豊富に含むミネラルのうち、特にマグネシウムおよびカリウムは、むくみ解消、代謝酵素の活性化などに有効であることが知られている。
 ココナッツ液体胚乳においても、光の透過率が高いほど、味が繊細であり良質であるとされている。
Coconut liquid endosperm refers to translucent liquid endosperm contained in immature coconut fruit. Coconut liquid endosperm is rich in minerals, has a mineral composition close to that of human body fluids, and has an osmotic pressure almost the same as that of the human body, so that it can be a natural nutrient-rich hydration material.
Among the abundant minerals of coconut liquid endosperm, magnesium and potassium are known to be effective in eliminating swelling and activating metabolic enzymes.
Even in coconut liquid endosperm, the higher the light transmittance, the more delicate the taste and the better the quality.
 一態様において、濃縮液のBrix(ブリックス)値(すなわち、Brix計で測定される糖度の値)は、50以上である。濃縮前の(すなわち原料液の)Brix値は概ね1~5程度である。このような低糖度の原料液が、Brix値50の濃縮液に濃縮される場合の濃縮率は、約10~約50倍である。すなわち、濃縮液のBrix値が50以上であることは、高濃縮率の濃縮液であることの指標となる。濃縮液のBrix値は、高濃縮率の濃縮液を得る観点から、好ましくは、50以上または60以上である。濃縮液のBrix値の上限は特に限定されないが、濃縮液の製造容易性の観点から、例えば、75以下または70以下であってよい。
 一態様において、本開示の濃縮液は、Brix値50以上の高い濃縮率であっても、高い光透過率を有する。この高い光透過率は、濃縮前の原料液の透過度が良好に維持されていることの指標となる。
In one aspect, the Brix value of the concentrate (ie, the value of sugar content measured by a Brix meter) is 50 or greater. The Brix value before concentration (that is, the raw material liquid) is about 1 to 5. When such a raw material liquid having a low sugar content is concentrated in a concentrated liquid having a Brix value of 50, the concentration rate is about 10 to about 50 times. That is, a Brix value of 50 or more of the concentrated solution is an index of the concentrated solution having a high concentration rate. The Brix value of the concentrated solution is preferably 50 or more or 60 or more from the viewpoint of obtaining a concentrated solution having a high concentration rate. The upper limit of the Brix value of the concentrate is not particularly limited, but from the viewpoint of ease of production of the concentrate, it may be, for example, 75 or less or 70 or less.
In one aspect, the concentrate of the present disclosure has a high light transmittance even at a high concentration of Brix value of 50 or more. This high light transmittance is an index that the transmittance of the raw material liquid before concentration is well maintained.
 濃縮液の、紫外可視分光分析における450nmでの吸光度は、濃縮液に、むくみ解消、代謝酵素の活性化などに有効な、健康に良好な成分が多く含まれているとの観点から、好ましくは0.1以上であり、より好ましくは0.2以上であってよい。また、上記吸光度は、濃縮液が高品質である(特に風味が繊細である)との観点から、好ましくは1.0以下であり、0.8以下であってよい。本開示の濃縮液の光透過度は、濃縮前の(すなわち原料液中の)透過度および風味が良好に維持されたものであることを示す指標である。
 このような濃縮液は従来知られていない。
The absorbance of the concentrate at 450 nm in UV-visible spectroscopy is preferable from the viewpoint that the concentrate contains many healthy components that are effective in eliminating swelling and activating metabolic enzymes. It may be 0.1 or more, more preferably 0.2 or more. Further, the absorbance is preferably 1.0 or less, and may be 0.8 or less, from the viewpoint of high quality of the concentrated liquid (particularly, the flavor is delicate). The light transmittance of the concentrated liquid of the present disclosure is an index indicating that the transmittance and flavor before concentration (that is, in the raw material liquid) are well maintained.
Such concentrates have not been known conventionally.
 したがって、本発明の別の観点では、
  糖を含む溶質、および液状媒体を含む原料液の濃縮液である食料品であって、
  前記濃縮液は、
   Brix値が50以上であり、かつ、
   紫外可視分光分析における450nmでの吸光度が0.1以上1.0以下である、
食料品が提供される。
Therefore, from another point of view of the present invention,
A food product that is a concentrate of a solute containing sugar and a raw material liquid containing a liquid medium.
The concentrate is
Brix value is 50 or more and
The absorbance at 450 nm in ultraviolet-visible spectroscopy is 0.1 or more and 1.0 or less.
Groceries are provided.
[溶質]
 溶質とは、無機化合物および有機化合物から選択される物質をいい、好ましくは溶媒に溶解する。
 溶質は、液状であっても、固体状であってもよい。
[溶媒]
 溶媒は液体である。溶媒は、あらゆる無機溶媒または有機溶媒であることができ、好ましくは溶質を溶解する。溶媒は、原料液中で液体として存在する。この溶媒は、水である場合が多い。
[Solute]
The solute refers to a substance selected from an inorganic compound and an organic compound, and is preferably dissolved in a solvent.
The solute may be liquid or solid.
[solvent]
The solvent is a liquid. The solvent can be any inorganic or organic solvent, preferably dissolving the solute. The solvent exists as a liquid in the raw material liquid. The solvent is often water.
[濃縮原料液]
 濃縮原料液は、原料液が正浸透濃縮工程を経由することにより、原料液から、溶媒の少なくとも一部が選択的に分離除去され、かつ、原料中の成分(溶質)は維持されることにより得られる。本実施形態の原料液の濃縮方法では、原料液から分離される溶媒の量または割合を、任意に制御することができる。
 本実施形態における正浸透濃縮の工程によると、濃縮原料液の浸透圧が誘導溶液の浸透圧を超えない限り、原料液の飽和濃度付近まで濃縮することが可能である。
 本実施形態の正浸透濃縮工程は、正浸透プロセスである。したがって、原料液成分を高度に維持しつつ、高い濃縮倍率を得ることが可能である。また、誘導溶液を変更することにより、任意の濃縮倍率を得られることから、本実施形態の原料液濃縮システムが適用可能な原料液の種類は多様であり、実質的に、あらゆる液体の濃縮が可能である。したがって本実施形態によると、従来技術を適用することが不可能または困難であった原料液の場合でも、高品質の濃縮原料液を、高効率に得ることができる。
 特に、本実施形態は、食品製造プロセス用の原料液の濃縮方法として好適である。上記のとおり、本実施形態の原料液の濃縮方法を食品またはその原料の濃縮に適用すると、食品の品質を維持した状態で濃縮することが可能となる。
[Concentrated raw material liquid]
In the concentrated raw material liquid, at least a part of the solvent is selectively separated and removed from the raw material liquid by passing the raw material liquid through a forward osmosis concentration step, and the components (solutes) in the raw material are maintained. can get. In the method for concentrating the raw material liquid of the present embodiment, the amount or ratio of the solvent separated from the raw material liquid can be arbitrarily controlled.
According to the step of forward osmosis concentration in the present embodiment, it is possible to concentrate to near the saturation concentration of the raw material solution as long as the osmotic pressure of the concentrated raw material solution does not exceed the osmotic pressure of the induction solution.
The forward osmosis concentration step of the present embodiment is a forward osmosis process. Therefore, it is possible to obtain a high concentration ratio while maintaining a high level of raw material liquid components. Further, since an arbitrary concentration ratio can be obtained by changing the induction solution, there are various types of raw material liquids to which the raw material liquid concentration system of the present embodiment can be applied, and substantially any liquid can be concentrated. It is possible. Therefore, according to the present embodiment, a high-quality concentrated raw material liquid can be obtained with high efficiency even in the case of a raw material liquid to which the prior art has been impossible or difficult to apply.
In particular, this embodiment is suitable as a method for concentrating a raw material liquid for a food manufacturing process. As described above, when the method for concentrating the raw material liquid of the present embodiment is applied to the concentration of food or the raw material thereof, it is possible to concentrate the food while maintaining the quality of the food.
 本実施形態の原料液の濃縮方法が、メープル樹液またはココナッツ液体胚乳を原料液として、濃縮液である食料品を得るために有効であることは、上述した。 As described above, the method for concentrating the raw material liquid of the present embodiment is effective for obtaining a food product as a concentrated liquid using maple sap or coconut liquid endosperm as the raw material liquid.
[誘導溶液]
 誘導溶液は、誘導物質を含有する溶液である。誘導溶液は、原料液よりも高い浸透圧を持ち、かつ、正浸透膜を著しく変性させない流体であることが好ましい。
(誘導物質)
 誘導物質は、溶媒に溶解されたときに、原料液よりも高い浸透圧を与え得る物質であればよく、特に、水に対する溶解性が高い物質が、浸透圧調整の簡便さの点で好ましい。本実施形態で使用可能な誘導物質としては、例えば、塩、糖、アルコール、重合体などを挙げることができる。一態様において、誘導物質は、塩、糖、アルコール、および重合体からなる群から選択される1種以上であってよい。
 無機塩としては、例えば、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、チオ硫酸ナトリウム、亜硫酸ナトリウム、塩化アンモニウム、硫酸アンモニウム、炭酸アンモニウムなどを;
 糖としては、例えば、ショ糖,果糖,ブドウ糖などの一般的な糖;および、オリゴ糖,希少糖などの特殊な糖などを;
 アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノールなどのモノアルコール;および、エチレングルコール、プロピレングリコールなどのグリコールなどを挙げることができる。
 重合体としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシドなどの重合体、およびこれらの共重合体などを挙げることができる。
 上記の誘導物質のなかでも、誘導物質は、高い浸透圧を持つ点で、塩、特に無機塩であることが好ましい。
[Induction solution]
The inducing solution is a solution containing an inducing substance. The inductive solution is preferably a fluid that has a higher osmotic pressure than the raw material solution and does not significantly denature the forward osmotic membrane.
(Inducible substance)
The inducer may be any substance that can give an osmotic pressure higher than that of the raw material solution when dissolved in a solvent, and a substance having high solubility in water is particularly preferable in terms of ease of osmotic pressure adjustment. Examples of the inducer that can be used in this embodiment include salts, sugars, alcohols, and polymers. In one embodiment, the inducer may be one or more selected from the group consisting of salts, sugars, alcohols, and polymers.
Examples of the inorganic salt include sodium chloride, potassium chloride, magnesium chloride, calcium chloride, sodium sulfate, magnesium sulfate, sodium thiosulfate, sodium sulfite, ammonium chloride, ammonium sulfate, ammonium carbonate and the like;
Examples of sugars include general sugars such as sucrose, fructose, and glucose; and special sugars such as oligosaccharides and rare sugars;
Examples of the alcohol include monoalcohols such as methanol, ethanol, 1-propanol and 2-propanol; and glycols such as ethylene glycol and propylene glycol.
Examples of the polymer include polymers such as polyethylene oxide and polypropylene oxide, and copolymers thereof.
Among the above-mentioned inducers, the inducer is preferably a salt, particularly an inorganic salt, in that it has a high osmotic pressure.
 誘導溶液における誘導物質の濃度は、誘導溶液の浸透圧が原料液の浸透圧よりも高くなるように設定される。誘導溶液の浸透圧は、原料液の浸透圧よりも高ければ、その範囲内で変動しても構わない。
 二つの液体間の浸透圧差を判断する方法としては、例えば、以下の方法が挙げられる。
(1)二つの液体を混合後、二相分離する場合:二相分離後に、体積が増えた方の液体の浸透圧が高いと判断する方法、または、
(2)二つの液体を混合後、二相分離しない場合:正浸透膜を介して二つの液体を接触させ、一定時間の経過後に体積が大きくなった液体の浸透圧が高いと判断する方法。このときの一定時間とは、その浸透圧差に依存するが、一般的には数分から数時間の範囲である。
The concentration of the inducing substance in the inducing solution is set so that the osmotic pressure of the inducing solution is higher than the osmotic pressure of the raw material solution. The osmotic pressure of the inductive solution may fluctuate within that range as long as it is higher than the osmotic pressure of the raw material solution.
Examples of the method for determining the osmotic pressure difference between the two liquids include the following methods.
(1) When two liquids are mixed and then separated into two phases: A method of determining that the osmotic pressure of the liquid with the larger volume is higher after the two-phase separation, or
(2) When the two liquids are mixed and not separated into two phases: A method in which the two liquids are brought into contact with each other through a forward osmosis membrane, and the osmotic pressure of the liquid whose volume has increased after a certain period of time is judged to be high. The fixed time at this time depends on the osmotic pressure difference, but is generally in the range of several minutes to several hours.
(誘導溶液の溶媒)
 誘導溶液に含まれてよい溶媒は、水、エタノールなどであってよい。しかし、誘導溶液の溶媒は、原料液から分離除去すべき溶媒と同種であることが好ましく、この観点で好ましくは水である。
(Solvent of induction solution)
The solvent that may be contained in the inductive solution may be water, ethanol, or the like. However, the solvent of the induction solution is preferably the same type as the solvent to be separated and removed from the raw material solution, and from this viewpoint, water is preferable.
[正浸透膜]
 正浸透膜とは、溶媒は透過させるが、溶質は透過させない機能を有する膜である。
 正浸透膜は、単一の層から構成されるものであってもよいし、支持層とこの支持層上の分離活性層とを有する膜であってもよい。
 本実施形態における正浸透膜の形状は、中空糸状である。中空糸状の正浸透膜を用いると、単位体積当たりの膜面積が大きく、効率よく高濃度の濃縮が可能である。
 正浸透膜が中空糸状であるとき、原料液を中空糸状の正浸透膜の中空部分に流通させ、誘導溶液を中空糸状の正浸透膜の外側に流通させることが、正浸透膜の洗浄が容易となることから好ましい。
 中空糸状の正浸透膜としては、誘導物質の阻止率が高いことから、ポリエーテルスルホン、ポリスルホン、ポリケトン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミン、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、スルホン化テトラフルオロエチレン、パーフルオロスルホン酸重合体、およびポリアミドから成る群から選ばれる少なくとも1種を主成分とする薄膜層を有する膜であることが好ましい。
[Forward osmosis membrane]
The forward osmosis membrane is a membrane having a function of allowing a solvent to permeate but not a solute.
The forward osmosis membrane may be composed of a single layer, or may be a membrane having a support layer and a separation active layer on the support layer.
The shape of the forward osmosis membrane in this embodiment is a hollow thread. When a hollow thread-shaped forward osmosis membrane is used, the membrane area per unit volume is large, and high-concentration concentration can be efficiently performed.
When the forward osmosis membrane is in the form of a hollow thread, it is easy to clean the forward osmosis membrane by allowing the raw material liquid to flow through the hollow portion of the hollow thread-like forward osmosis membrane and the inducing solution to flow outside the hollow thread-like forward osmosis membrane. Therefore, it is preferable.
As a hollow filamentous positive osmotic film, since it has a high blocking rate of inducers, polyethersulfone, polysulfone, polyketone, polyether ether ketone, polyphenylene ether, polyvinylidene fluoride, polyacrylonitrile, polyimine, polyimide, polybenzoxazole, A film having a thin film layer containing at least one selected from the group consisting of polybenzoimidazole, sulfonated tetrafluoroethylene, perfluorosulfonic acid polymer, and polyamide as a main component is preferable.
 ポリアミドは、多官能性酸ハライドおよび多官能性芳香族アミンの界面重合により形成されることができる。
 多官能性芳香族酸ハライドとは、一分子中に2個以上の酸ハライド基を有する芳香族酸ハライド化合物である。具体的には、例えば、トリメシン酸ハライド、トリメリット酸ハライド、イソフタル酸ハライド、テレフタル酸ハライド、ピロメリット酸ハライド、ベンゾフェノンテトラカルボン酸ハライド、ビフェニルジカルボン酸ハライド、ナフタレンジカルボン酸ハライド、ピリジンジカルボン酸ハライド、ベンゼンジスルホン酸ハライドなどを挙げることができ、これらを単独で、またはこれらの混合物を用いることができる。これらの芳香族酸ハライド化合物におけるハロゲン化物イオンとしては、例えば、塩化物イオン、臭化物イオン、ヨウ化物イオンなどを挙げることができる。
 本実施形態においては、特にトリメシン酸クロリド単独、またはトリメシン酸クロリドとイソフタル酸クロリドとの混合物、若しくはトリメシン酸クロリドとテレフタル酸クロリドとの混合物が好ましく用いられる。
Polyamides can be formed by interfacial polymerization of polyfunctional acid halides and polyfunctional aromatic amines.
A polyfunctional aromatic acid halide is an aromatic acid halide compound having two or more acid halide groups in one molecule. Specifically, for example, trimesic acid halide, trimellitic acid halide, isophthalic acid halide, terephthalic acid halide, pyromellitic acid halide, benzophenone tetracarboxylic acid halide, biphenyldicarboxylic acid halide, naphthalenedicarboxylic acid halide, pyridinedicarboxylic acid halide, etc. Examples thereof include benzenedisulfonic acid halide, which can be used alone or in admixture thereof. Examples of the halide ion in these aromatic acid halide compounds include chloride ion, bromide ion, and iodide ion.
In the present embodiment, particularly trimesic acid chloride alone, a mixture of trimesic acid chloride and isophthalic acid chloride, or a mixture of trimesic acid chloride and terephthalic acid chloride is preferably used.
 多官能性芳香族アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミノ化合物である。具体的には、例えば、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルアミン、3,5-ジアミノ安息香酸、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、1,3,5-トリアミノベンゼン、1,5-ジアミノナフタレンなどを挙げることができ、これらを単独で、またはこれらの混合物を用いることができる。
 本実施形態においては、特に、m-フェニレンジアミンおよびp-フェニレンジアミンから選ばれる1種以上が好適に用いられる。
 多官能性酸ハライドおよび多官能性芳香族アミンの界面重合は、定法に従って実施することができる。
The polyfunctional aromatic amine is an aromatic amino compound having two or more amino groups in one molecule. Specifically, for example, m-phenylenediamine, p-phenylenediamine, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3 , 3'-diaminodiphenylamine, 3,5-diaminobenzoic acid, 4,4'-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 1,3,5-triamino Benzene, 1,5-diaminonaphthalene and the like can be mentioned, and these can be used alone or in combination thereof.
In this embodiment, in particular, one or more selected from m-phenylenediamine and p-phenylenediamine are preferably used.
Interfacial polymerization of polyfunctional acid halides and polyfunctional aromatic amines can be carried out according to routine methods.
 パーフルオロスルホン酸重合体は、一般に、水素の一部または全部がフッ素で置換された主鎖骨格に、スルホン酸を有する側鎖を持つ重合体をいう。パーフルオロスルホン酸重合体は、例えば、化学的に安定なカチオン交換樹脂、イオン選択透過膜として食塩電解、固体高分子型燃料電池、水電解または各種センサーに用いられており、例えば、ナフィオン(登録商標)(DuPont社製)、アシプレックス(登録商標)(旭化成(株)製)、フレミオン(登録商標)(AGC(株)製)などの商標のもと、膜または溶液の形態で市販されているものが挙げられる。 A perfluorosulfonic acid polymer generally refers to a polymer having a side chain having a sulfonic acid in a main chain skeleton in which a part or all of hydrogen is replaced with fluorine. Perfluorosulfonic acid polymers are used, for example, in chemically stable cation exchange resins, salt electrolysis, polymer electrolyte fuel cells, water electrolysis or various sensors as ion selective permeable membranes, such as Nafion (registered). (Trademark) (DuPont), Aciplex (registered trademark) (Asahi Kasei Co., Ltd.), Flemion (registered trademark) (AGC Co., Ltd.), etc. Some are listed.
 パーフルオロスルホン酸重合体の化学構造としては、特に制限されないが、代表的には下構造式(1);
Figure JPOXMLDOC01-appb-C000001
{式(1)中、Yは、-(CF-CF(CF)-O-)-(CF-SOHで表される1価の基であり;xは、0.06~0.5の数であり;mは、0~2の整数であり、そしてnは、1~6の整数である。}で表される構造が挙げられる。なお、「(CF-CF)」単位および「(CF-CF(OY))」単位の配列は、式(1)中では便宜上ブロック構造として記載しているが、ブロックであってもよく、ランダムであってもよく、またはこれらの組合せであってもよい。
The chemical structure of the perfluorosulfonic acid polymer is not particularly limited, but is typically the following structural formula (1);
Figure JPOXMLDOC01-appb-C000001
{In formula (1), Y, - (CF 2 -CF (CF 3) -O-) m - (CF 2) it is a monovalent group represented by n -SO 3 H; x is 0 It is a number from .06 to 0.5; m is an integer from 0 to 2, and n is an integer from 1 to 6. } Can be mentioned. Incidentally, "(CF 2 -CF 2)" units and "(CF 2 -CF (OY))" sequence of units has been described for convenience block structure in formula (1), be a block It may be random, random, or a combination thereof.
 本実施形態においては、中空糸状の正浸透膜が用いられる。本実施形態では、特に、中空糸状の多孔性支持膜の内表面に、重合体薄膜から成る分離活性層を有する、複合型中空糸を用いることが好ましい。
 支持膜としては、例えば、ポリエーテルスルホン、ポリスルホン、ポリケトン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフッ化ビニリデン、ポリアクリロニトリルなどから選択される成分によって構成される膜を用いることが好ましい。
 分離活性層としては、例えば、ポリイミン、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、スルホン化テトラフルオロエチレン、パーフルオロスルホン酸重合体、ポリアミドなどから選択される成分によって構成される層を用いることが好ましい。
In this embodiment, a hollow thread-like forward osmosis membrane is used. In the present embodiment, it is particularly preferable to use a composite hollow fiber having a separation active layer made of a polymer thin film on the inner surface of the hollow fiber-like porous support membrane.
As the support film, for example, it is preferable to use a film composed of a component selected from polyethersulfone, polysulfone, polyketone, polyether ether ketone, polyphenylene ether, polyvinylidene fluoride, polyacrylonitrile, and the like.
As the separation active layer, for example, it is preferable to use a layer composed of a component selected from polyimine, polyimide, polybenzoxazole, polybenzimidazole, sulfonated tetrafluoroethylene, perfluorosulfonic acid polymer, polyamide and the like. ..
 正浸透膜を構成する中空糸膜の外径は、例えば、300μm以上5,000μm以下、好ましくは350μm以上4,000μm以下であり、中空糸膜の内径は、例えば、200μm以上4,000μm以下、好ましくは500μm以上1,500μm以下である。この中空糸膜の内径が200μm以上であれば、循環運転時の中空糸における圧力が比較的小さくなり、かつ原料成分の接触面積が小さくなる。そのため、原料液に含まれる溶質の膜表面への固着が起こりにくくなる。このような効果は、中空糸膜の内径が500μm以上であると、さらに得られやすくなる。他方、中空糸膜の内径が4,000μm以下であれば、原料成分の接触面積が適度に大きいことがないので、溶媒の分離効率が損なわれにくくなる。
 正浸透膜は、複数の中空糸状正浸透膜から成る糸束が、好ましくは適当なハウジング内に収納されて構成される、正浸透膜モジュールの形態にあるものを使用することが好ましい。
The outer diameter of the hollow fiber membrane constituting the forward osmosis membrane is, for example, 300 μm or more and 5,000 μm or less, preferably 350 μm or more and 4,000 μm or less, and the inner diameter of the hollow fiber membrane is, for example, 200 μm or more and 4,000 μm or less. It is preferably 500 μm or more and 1,500 μm or less. When the inner diameter of the hollow fiber membrane is 200 μm or more, the pressure in the hollow fiber during the circulation operation becomes relatively small, and the contact area of the raw material component becomes small. Therefore, the solute contained in the raw material liquid is less likely to adhere to the film surface. Such an effect is more easily obtained when the inner diameter of the hollow fiber membrane is 500 μm or more. On the other hand, when the inner diameter of the hollow fiber membrane is 4,000 μm or less, the contact area of the raw material components is not appropriately large, so that the solvent separation efficiency is not easily impaired.
As the forward osmosis membrane, it is preferable to use one in the form of a forward osmosis membrane module in which a thread bundle composed of a plurality of hollow filamentous forward osmosis membranes is preferably housed in a suitable housing.
 正浸透膜の、溶媒についての透過流束は、1.0L/(m×h)以上であることが好ましい。理由は定かではないが、初期の透過流束が1.0L/(m×h)以上であれば、溶媒の分離効率が損なわれることを防止しやすくなる。透過流速は、より好ましくは3.0L/(m×hr)以上である。
 本明細書における溶媒についての透過流束とは、正浸透膜を通過する溶媒の量を、正浸透膜の単位面積当たり、および単位時間当たりに割り付けた量を意味しており、下記数式(1)により定義される。
  F=L/(M×H)   (1)
 ここで、Fは、溶媒についての透過流束(L/(m×hr))であり、Lは透過した溶媒の量(L)であり、Mは正浸透膜の表面積(m)であり、Hは時間(h)である。
 溶媒が水である場合の透過流束は、一般に「透水量」と呼ばれる。
The permeation flux of the forward osmosis membrane with respect to the solvent is preferably 1.0 L / (m 2 × h) or more. Although the reason is not clear, if the initial permeation flux is 1.0 L / (m 2 × h) or more, it becomes easy to prevent the solvent separation efficiency from being impaired. The permeation flow rate is more preferably 3.0 L / (m 2 × hr) or more.
The permeated flux for the solvent in the present specification means the amount of the solvent passing through the forward osmosis membrane, which is allocated per unit area of the forward osmosis membrane and per unit time, and is defined by the following formula (1). ).
F = L / (M × H) (1)
Here, F is the permeated flux (L / (m 2 × hr)) for the solvent, L is the amount of permeated solvent (L), and M is the surface area (m 2 ) of the forward osmosis membrane. Yes, H is the time (h).
The permeated flux when the solvent is water is commonly referred to as the "permeability".
[正浸透膜ユニットへの原料液および誘導溶液の導入]
 正浸透膜ユニットの原料液側空間には、濃縮対象物である原料液が導入され、誘導溶液側空間には誘導溶液が導入される。これらの流れの方向は、向流でも並流でもよい。
[Introduction of raw material solution and induction solution into the forward osmosis membrane unit]
The raw material liquid to be concentrated is introduced into the raw material liquid side space of the forward osmosis membrane unit, and the inductive solution is introduced into the inductive solution side space. The directions of these flows may be countercurrent or parallel.
[原料液および誘導溶液の温度]
 本実施形態の原料液の濃縮方法の正浸透濃縮工程において、正浸透膜ユニットの原料液側空間に導入される原料液の温度は、好ましくは3℃以上60℃以下であり、より好ましくは5℃以上50℃以下である。原料液の温度が3℃以上では、透過流速が遅くなることを回避しやすくなり、60℃以下では、原料液中の成分の変性を回避しやすくなる。
 正浸透膜ユニットの誘導溶液側空間に導入される誘導溶液の温度は、好ましくは5℃以上60℃以下であり、より好ましくは10℃以上50℃以下である。誘導溶液の温度が5℃以上または60℃以下のときは、正浸透膜を介して誘導溶液から原料液へ誘導物質が移動する量が多くなることを回避しやすくなる。
 原料液および誘導溶液を加熱するための熱源として、例えば熱交換器を用いることができ、または産業プロセスなどの排熱を用いることができる。熱源として排熱を利用すると、消費されるエネルギー量を削減することができるため、好ましい。
[Temperature of raw material solution and induction solution]
In the forward osmosis concentration step of the method for concentrating the raw material liquid of the present embodiment, the temperature of the raw material liquid introduced into the space on the raw material liquid side of the forward osmosis membrane unit is preferably 3 ° C. or higher and 60 ° C. or lower, more preferably 5. It is ℃ or more and 50 ℃ or less. When the temperature of the raw material liquid is 3 ° C. or higher, it is easy to avoid slowing the permeation flow rate, and when the temperature is 60 ° C. or lower, it is easy to avoid denaturation of the components in the raw material liquid.
The temperature of the induction solution introduced into the space on the induction solution side of the forward osmosis membrane unit is preferably 5 ° C. or higher and 60 ° C. or lower, and more preferably 10 ° C. or higher and 50 ° C. or lower. When the temperature of the inducing solution is 5 ° C. or higher or 60 ° C. or lower, it becomes easy to avoid a large amount of the inducing substance moving from the inducing solution to the raw material solution through the forward osmosis membrane.
As a heat source for heating the raw material liquid and the inductive solution, for example, a heat exchanger can be used, or exhaust heat from an industrial process or the like can be used. It is preferable to use exhaust heat as a heat source because the amount of energy consumed can be reduced.
[誘導溶液再生工程]
 本実施形態の原料液の濃縮方法において、任意に採用される誘導溶液再生工程は、例えば、以下の2つの観点を含む。
 第1の観点は、以下のステップを有する誘導溶液再生工程である:
  希釈誘導溶液から溶媒を除去して、希釈誘導溶液の濃縮物である再生誘導溶液を得る、誘導溶液再生ステップ;および
  得られた再生誘導溶液を、誘導溶液として再使用する、誘導溶液再使用ステップ。
 第2の観点は、以下のステップを有する誘導溶液再生工程である:
  誘導溶液から溶媒を除去して、誘導溶液の濃縮物である濃縮誘導溶液を得る、誘導溶液濃縮ステップ;
  得られた濃縮誘導溶液と希釈誘導溶液とを混合して混合物(再生誘導溶液)を得る、混合ステップ;および
  得られた再生誘導溶液を、誘導溶液として再使用する、誘導溶液再使用ステップ。
[Induced solution regeneration process]
In the method for concentrating the raw material liquid of the present embodiment, the induction solution regeneration step arbitrarily adopted includes, for example, the following two viewpoints.
The first aspect is an inductive solution regeneration step having the following steps:
The induction solution regeneration step of removing the solvent from the dilution induction solution to obtain a regeneration induction solution which is a concentrate of the dilution induction solution; and the induction solution reuse step of reusing the obtained regeneration induction solution as an induction solution. ..
A second aspect is an inductive solution regeneration step having the following steps:
The induction solution concentration step, in which the solvent is removed from the induction solution to obtain a concentration induction solution that is a concentrate of the induction solution;
Mixing step of mixing the obtained concentration-inducing solution and dilution-inducing solution to obtain a mixture (regeneration-inducing solution); and reusing the obtained regeneration-inducing solution as an inducing solution, inducing solution reuse step.
 誘導溶液再生ステップまたは誘導溶液濃縮ステップにおける、希釈誘導溶液または誘導溶液からの溶媒の除去は、例えば、蒸発手段によって行われてよい。蒸発手段としては、例えば、蒸留プロセス、正浸透プロセス、膜蒸留プロセスなどを用いることができる。
 蒸留プロセスとは、希釈誘導溶液または誘導溶液を所定の温度に調整した後、蒸留塔に送入し、塔頂部から溶媒を得るとともに、塔底部からは、溶媒が除去されて濃縮された希釈誘導溶液である再生誘導溶液、または溶媒が除去されて濃縮された誘導溶液である濃縮誘導溶液を得るプロセスである。
 正浸透プロセスとは、希釈誘導溶液または誘導溶液を、正浸透膜と接触するように流通させて、希釈誘導溶液または誘導溶液に含有される溶媒が、正浸透膜を通過して除去されるように構成することにより、溶媒と、再生誘導溶液または濃縮誘導溶液とを得るプロセスである。
 膜蒸留プロセスでは、半透膜によって液相部と気相部とに分割された分離室を有する膜ユニットを用いる。膜蒸留用の膜ユニットの液相部に、希釈誘導溶液または誘導溶液を導入し、気相部を減圧とすることにより、希釈誘導溶液または誘導溶液に含有されていた溶媒が、液相部から半透膜を通過して減圧の気相部に移動する。これによって希釈誘導溶液または誘導溶液から、溶媒を除去して、再生誘導溶液または濃縮誘導溶液を得ることができる。
Removal of the solvent from the dilution induction solution or induction solution in the induction solution regeneration step or the induction solution concentration step may be carried out by, for example, evaporation means. As the evaporation means, for example, a distillation process, a forward osmosis process, a membrane distillation process or the like can be used.
In the distillation process, a dilution induction solution or an induction solution is adjusted to a predetermined temperature and then fed into a distillation tower to obtain a solvent from the top of the column, and the solvent is removed from the bottom of the column to concentrate the dilution induction. It is a process of obtaining a regeneration-inducing solution, which is a solution, or a concentration-inducing solution, which is a concentrated induction solution from which a solvent has been removed.
The forward osmosis process is a process in which a dilution-inducing solution or an inducing solution is circulated in contact with the forward osmosis membrane so that the solvent contained in the dilution-inducing solution or the inducing solution is removed through the forward osmosis membrane. It is a process of obtaining a solvent and a regeneration-inducing solution or a concentration-inducing solution.
In the membrane distillation process, a membrane unit having a separation chamber divided into a liquid phase portion and a gas phase portion by a semipermeable membrane is used. By introducing a dilution induction solution or an induction solution into the liquid phase portion of the membrane unit for membrane distillation and reducing the pressure in the gas phase portion, the solvent contained in the dilution induction solution or the induction solution can be removed from the liquid phase portion. It passes through the semitransparent film and moves to the gas phase part of reduced pressure. Thereby, the solvent can be removed from the dilution induction solution or the induction solution to obtain the regeneration induction solution or the concentration induction solution.
 誘導溶液再生ステップまたは誘導溶液濃縮ステップでは、設備サイズが小さい点で、正浸透膜を用いる正浸透プロセス、または半透膜を用いる膜蒸留プロセスを用いることが好ましく、希釈誘導溶液または誘導溶液から溶媒への誘導物質の移動を抑制できる点で、半透膜を用いる膜蒸留プロセスを用いることがより好ましい。
 以下、膜蒸留プロセスに使用される要素について説明する。
In the induction solution regeneration step or the induction solution concentration step, it is preferable to use a forward osmosis process using a forward osmosis membrane or a membrane distillation process using a semipermeable membrane because of the small equipment size, and a solvent from the dilution induction solution or the induction solution. It is more preferable to use a membrane distillation process using a semipermeable membrane in that the movement of the inducer to the substance can be suppressed.
The elements used in the membrane distillation process will be described below.
[膜蒸留プロセスの半透膜]
 膜蒸留プロセスに用いる半透膜の形状としては、例えば、中空糸膜状、平膜状、スパイラル膜状などが挙げられる。
 平膜状の半透膜は、例えば、単一の層から構成されるものであってもよいし、支持層と、該支持層上の分離活性層とを有するものであってもよい。中空糸状の半透膜は、例えば、単一の層から構成される中空糸であってもよいし、中空糸状の支持層と、該支持層の外表面若しくは内表面、またはこれらの双方の面上の分離活性層とを有するものであってもよい。
 半透膜における支持層および分離活性層の素材は、それぞれ、正浸透濃縮工程における正浸透膜について、上記に例示した素材から選択される任意のものから構成されていてよい。
 半透膜の、溶媒についての透過流束は、1L/(m×hr)以上200L/(m×hr)以下であることが好ましい。この透過流束が1L/(m×hr)以上であれば、溶媒の効率的な分離が損なわれることを回避しやすくなり、200L/(m×hr)以下であれば、誘導溶液から半透膜を通過して溶媒へ移動する誘導物質の量が多くなることを回避しやすくなる。
 この透過流束は、正浸透濃縮工程における正浸透膜の、溶媒についての透過流束と同様に定義される。
[Semipermeable membrane of membrane distillation process]
Examples of the shape of the semipermeable membrane used in the membrane distillation process include a hollow fiber membrane, a flat membrane, and a spiral membrane.
The flat membrane-like semipermeable membrane may be composed of, for example, a single layer, or may have a support layer and a separation active layer on the support layer. The hollow thread-like semipermeable membrane may be, for example, a hollow thread composed of a single layer, a hollow thread-like support layer, an outer surface or an inner surface of the support layer, or both surfaces thereof. It may have the above separation active layer.
The material of the support layer and the separation active layer in the semipermeable membrane may be composed of any material selected from the materials exemplified above for the forward osmosis membrane in the forward osmosis concentration step, respectively.
The permeation flux of the semipermeable membrane with respect to the solvent is preferably 1 L / (m 2 × hr) or more and 200 L / (m 2 × hr) or less. If the permeated flux is 1 L / (m 2 x hr) or more, it becomes easy to avoid impairing the efficient separation of the solvent, and if it is 200 L / (m 2 x hr) or less, the derived solution is used. It becomes easy to avoid an increase in the amount of the inducer that passes through the semipermeable membrane and moves to the solvent.
This permeation flux is defined in the same way as the permeation flux for the solvent of the forward osmosis membrane in the forward osmosis concentration step.
[膜蒸留プロセスに導入される希釈誘導溶液または誘導溶液の温度]
 希釈誘導溶液eまたは誘導溶液は、液相部に導入される前に、20℃以上90℃以下の範囲に温度調整されていることが好ましい。この温度が20℃以上であれば、膜蒸留による溶媒の分離の効率が損なわれることを回避しやすくなり、90℃以下であれば、希釈誘導溶液または誘導溶液流に含まれる誘導物質が、半透膜を通過して溶媒へ移動する量を、抑制しやすくなる。
 希釈誘導溶液または誘導溶液を加熱するための熱源として、例えば熱交換器を用いることができ、または産業プロセスなどの排熱を用いることができる。熱源として排熱を利用すると、消費されるエネルギー量を削減することができるため、好ましい。
[Temperature of dilution induction solution or induction solution introduced into the membrane distillation process]
It is preferable that the temperature of the dilution induction solution e or the induction solution is adjusted in the range of 20 ° C. or higher and 90 ° C. or lower before being introduced into the liquid phase portion. When this temperature is 20 ° C. or higher, it becomes easy to avoid impairing the efficiency of solvent separation by membrane distillation, and when it is 90 ° C. or lower, the inducing substance contained in the dilution inducing solution or the inducing solution stream is half. It becomes easy to suppress the amount of transfer to the solvent through the permeable membrane.
As a heat source for heating the dilution induction solution or the induction solution, for example, a heat exchanger can be used, or exhaust heat from an industrial process or the like can be used. It is preferable to use exhaust heat as a heat source because the amount of energy consumed can be reduced.
[膜蒸留プロセスにおける気相部]
 膜蒸留プロセスに用いる膜蒸留用の膜ユニットの気相部は、所定の圧力に減圧されていることが好ましい。気相部の圧力は、装置のスケール、誘導溶液の濃度、所望の溶媒の生成速度などに応じて適宜に設定されてよいが、例えば、0.1kPa以上80kPa以下とすることが好ましく、1kPa以上50kPa以下とすることがより好ましい。
 膜蒸留用の膜ユニットの気相部を減圧するための減圧装置としては、例えば、ダイアフラム真空ポンプ、ドライポンプ、油回転真空ポンプ、エジェクタ、アスピレーターなどが挙げられる。
[Phase part in membrane distillation process]
The gas phase portion of the membrane unit for membrane distillation used in the membrane distillation process is preferably depressurized to a predetermined pressure. The pressure of the gas phase portion may be appropriately set according to the scale of the apparatus, the concentration of the induction solution, the production rate of the desired solvent, etc., but is preferably 0.1 kPa or more and 80 kPa or less, and is preferably 1 kPa or more. It is more preferably 50 kPa or less.
Examples of the decompression device for depressurizing the gas phase portion of the membrane unit for membrane distillation include a diaphragm vacuum pump, a dry pump, an oil rotary vacuum pump, an ejector, and an aspirator.
[誘導溶液再生工程で得られる製品]
 本実施形態の誘導溶液再生工程によると、希釈誘導溶液から溶媒が分離されて、濃縮された希釈誘導溶液である再生誘導溶液となって、膜蒸留用の膜ユニットから排出される。得られた再生誘導溶液は、そのまま、または必要に応じて濃度が調整されたうえで、誘導溶液として再使用することができる。
 また、第2の観点では、誘導溶液から溶媒が分離されて、濃縮された誘導溶液である濃縮誘導溶液となって、膜蒸留用の膜ユニットから排出される。得られた濃縮誘導溶液は、希釈誘導溶液と混合されて混合溶液となった後、必要に応じて所定の濃度に調整されて、再生誘導溶液となる。得られた再生誘導溶液は、そのまま、誘導溶液として再使用することができる。
 誘導溶液再生工程によって再生された誘導溶液は、適宜の冷却装置を用いて温度を調整したうえで、再使用してもよい。
 上記における冷却装置としては、例えば、チラー、熱交換器などを用いることができる。
 これらの誘導溶液再生工程において、希釈誘導溶液または誘導溶液から分離された溶媒は、必要に応じて再利用してよい。
[Products obtained in the induction solution regeneration process]
According to the induction solution regeneration step of the present embodiment, the solvent is separated from the dilution induction solution to become a regeneration induction solution which is a concentrated dilution induction solution, and is discharged from the membrane unit for membrane distillation. The obtained regeneration-inducing solution can be reused as an inducing solution as it is or after adjusting the concentration as needed.
Further, from the second viewpoint, the solvent is separated from the inducing solution to become a concentrated inducing solution, which is a concentrated inducing solution, and is discharged from the membrane unit for membrane distillation. The obtained concentration-inducing solution is mixed with the dilution-inducing solution to form a mixed solution, and then adjusted to a predetermined concentration as necessary to obtain a regeneration-inducing solution. The obtained regeneration-inducing solution can be reused as it is as an inducing solution.
The induction solution regenerated by the induction solution regeneration step may be reused after adjusting the temperature using an appropriate cooling device.
As the cooling device in the above, for example, a chiller, a heat exchanger, or the like can be used.
In these induction solution regeneration steps, the dilution induction solution or the solvent separated from the induction solution may be reused as needed.
 以下の実施例および比較例では、直列に接続された2本または3本の正浸透膜ユニットを有する原料液濃縮システムを用い、前記2本または3本の正浸透膜ユニットを通過した原料液を、循環機構によって再び最初の正浸透膜ユニットに戻す方式により、循環濃縮運転を行った。
 この循環濃縮運転は以下の2段階で行い、各段階について、原料液および誘導溶液の線速を設定した。
[第1段階]
 原液を水で希釈して、溶液粘度を1.0cPに調整した溶液を原料液とし、上記の循環濃縮運転によって、溶液粘度20cPまで濃縮する段階。
[第2段階]
 第1段階で得られた、溶液粘度20cPの溶液を原料液とし、同様の循環濃縮運転によって、所定の溶液粘度まで濃縮する段階。
In the following examples and comparative examples, a raw material liquid concentrating system having two or three forward osmosis membrane units connected in series is used, and the raw material liquid that has passed through the two or three forward osmosis membrane units is used. , The circulation concentration operation was performed by the method of returning to the first forward osmosis membrane unit again by the circulation mechanism.
This circulation concentration operation was performed in the following two stages, and the linear velocity of the raw material solution and the induction solution was set for each stage.
[First stage]
A step of diluting the stock solution with water and adjusting the solution viscosity to 1.0 cP as a raw material solution, and concentrating the solution to a solution viscosity of 20 cP by the above circulation concentration operation.
[Second stage]
A step of using the solution having a solution viscosity of 20 cP obtained in the first step as a raw material solution and concentrating it to a predetermined solution viscosity by the same circulation concentration operation.
 原料液および誘導溶液の線速度は、それぞれ、株式会社キーエンス製の流量センサー:形式「FD-X」を用いて測定した原料液および誘導溶液の流速から、上述の数式によって計算した。 The linear velocities of the raw material solution and the inductive solution were calculated by the above formulas from the flow velocities of the raw material solution and the inductive solution measured using the flow sensor: type "FD-X" manufactured by KEYENCE CORPORATION, respectively.
[実施例1]
 実施例1は、図12に示した構成の原料液濃縮システムを使用して、原料いぇきの濃縮工程を実施した。
≪原料液濃縮システムの作製≫
<正浸透膜oを有する正浸透膜ユニットの作製>
(1)中空糸状支持膜モジュールの作製
 ポリエーテルスルホン(PES:BASF社製、商品名「Ultrason」)をN-メチル-2-ピロリドン(和光純薬(株)製)に溶解して20質量%の中空糸紡糸原液を調製した。二重紡口を装備した湿式中空糸紡糸機に上記の紡糸原液を充填し、水を満たした凝固槽中に押し出し、相分離により中空糸を形成した。得られた中空糸は巻き取り機に巻き取った。得られた中空糸の外径は1,000μm、内径は700μm、内表面の微細孔の径は0.05μmであった。この中空糸を支持膜として用いた。
 上記中空糸状支持膜130本を、2cm径、10cm長の円筒状プラスチックハウジングに充填し、中空糸の両端部を、内部空間を閉塞しないように接着剤で固定することにより、有効膜内表面積0.023m2の中空糸支持膜モジュールを作製した。
[Example 1]
In Example 1, the raw material squeeze concentrating step was carried out using the raw material liquid concentrating system having the configuration shown in FIG.
≪Preparation of raw material liquid concentration system≫
<Preparation of a forward osmosis membrane unit having a forward osmosis membrane o>
(1) Preparation of Hollow Fiber Support Membrane Module 20% by mass of polyether sulfone (PES: manufactured by BASF, trade name "Ultrason") dissolved in N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.). Hollow fiber spinning stock solution was prepared. A wet hollow fiber spinning machine equipped with a double spun was filled with the above-mentioned spinning stock solution and extruded into a coagulation tank filled with water to form hollow fibers by phase separation. The obtained hollow fiber was wound on a winder. The outer diameter of the obtained hollow fiber was 1,000 μm, the inner diameter was 700 μm, and the diameter of the fine pores on the inner surface was 0.05 μm. This hollow fiber was used as a support film.
The 130 hollow fiber-shaped support membranes are filled in a cylindrical plastic housing having a diameter of 2 cm and a length of 10 cm, and both ends of the hollow fibers are fixed with an adhesive so as not to block the internal space, whereby the effective inner surface area of the membrane is 0. A 023 m 2 hollow fiber support membrane module was prepared.
 (2)正浸透膜ユニットの作製
 0.5L容器に、m-フェニレンジアミン10gおよびラウリル硫酸ナトリウム0.8gを入れ、さらに純水489.2gを加えて溶解し、界面重合に用いる第1溶液を0.5kg調製した。
 別の0.5L容器に、トリメシン酸クロリド0.8gを入れ、n-ヘキサン399.2gを加えて溶解し、界面重合に用いる第2溶液0.4kgを調製した。
 上記で得られた中空糸支持膜モジュールのコア側(中空糸の内側)に第1溶液を充填し、30分静置した後に液を抜いて、中空糸の内側に第1溶液の薄い液膜を形成した。
 次に、コア側圧力調整装置によりコア側圧力を常圧に設定し、シェル側圧力調整装置により、シェル側圧力を絶対圧として10kPaの減圧に設定した。この状態で30分静置した後、この圧力を維持したまま、第2溶液送液ポンプにより、第2溶液をコア側に1.5L/分の流量で3分送液して、界面重合を行った。重合温度は25℃とした。
 次いで、中空糸膜モジュールを装置から外して、コア側に50℃の窒素を30分流してn-ヘキサンを揮発させて除去した。さらに、シェル側およびコア側の双方を純水により洗浄することにより、中空糸状支持膜の内側表面に、ポリアミドから成る分離活性層を有する中空糸状正浸透膜oのモジュールである、正浸透膜ユニットを作製した。
 得られた正浸透膜ユニットの原料液流路断面積(中空糸の中空部分の断面積の合計)は、0.50cmであり、誘導溶液流路断面積(当該ユニットのハウジングの内側空間の断面積から、当該ユニットに含まれる中空糸状正浸透膜の断面積の合計を減じた値)は、1.79cmであった。
(2) Preparation of forward osmosis membrane unit 10 g of m-phenylenediamine and 0.8 g of sodium lauryl sulfate are placed in a 0.5 L container, and 489.2 g of pure water is further added and dissolved to prepare a first solution used for interfacial polymerization. 0.5 kg was prepared.
In another 0.5 L container, 0.8 g of trimesic acid chloride was placed, and 399.2 g of n-hexane was added and dissolved to prepare 0.4 kg of a second solution used for interfacial polymerization.
The core side (inside of the hollow fiber) of the hollow fiber support membrane module obtained above is filled with the first solution, allowed to stand for 30 minutes, then drained, and a thin liquid film of the first solution is formed inside the hollow fiber. Was formed.
Next, the core side pressure was set to normal pressure by the core side pressure adjusting device, and the shell side pressure was set to a reduced pressure of 10 kPa as an absolute pressure by the shell side pressure adjusting device. After allowing to stand for 30 minutes in this state, while maintaining this pressure, the second solution is pumped to the core side at a flow rate of 1.5 L / min for 3 minutes to carry out interfacial polymerization. went. The polymerization temperature was 25 ° C.
Next, the hollow fiber membrane module was removed from the apparatus, and nitrogen at 50 ° C. was flowed to the core side for 30 minutes to volatilize and remove n-hexane. Further, by cleaning both the shell side and the core side with pure water, the forward osmosis membrane unit, which is a module of the hollow filament forward osmosis membrane o having a separation active layer made of polyamide on the inner surface of the hollow filamentous support membrane. Was produced.
The cross-sectional area of the raw material liquid flow path (total cross-sectional area of the hollow portion of the hollow fiber) of the obtained forward osmosis membrane unit is 0.50 cm 2 , and the cross-sectional area of the inductive solution flow path (in the inner space of the housing of the unit). The value obtained by subtracting the total cross-sectional area of the hollow fiber forward osmosis membrane contained in the unit from the cross-sectional area) was 1.79 cm 2 .
<誘導溶液再生ユニットの作製>
 平均一次粒径0.016μm、比表面積110m2/gの疎水性シリカ(日本アエロジル(株)製、品名「AEROSIL-R972」)23質量部、フタル酸ジオクチル(DOP)31質量部、およびフタル酸ジブチル(DBP)6質量部をヘンシェルミキサーで混合した後、さらに重量平均分子量が310,000のポリフッ化ビニリデン(SOLVAY社製、品名「Solef6010」)40質量部を添加し、再度ヘンシェルミキサーで混合して混合物を得た。この混合物を2軸混練押し出し機によりペレット化した。
 得られたペレットを、2軸混練押出機により240℃にて溶融混練し、中空糸状に押出して中空糸状物を得た。このとき、押出機先端のヘッド内の押出口に、中空糸成形用紡口を装着し、溶融物押出用円環穴から混練溶融物を押し出し、同時に、溶融物押出用円環穴の内側にある中空部分形成流体吐出用の円形穴から窒素ガスを吐出させることにより、中空糸状に押出しを行った。
 中空糸状物は、空走距離20cmにて水浴(40℃)中に導入し、20m/分の速度で巻き取った。
<Preparation of induction solution regeneration unit>
23 parts by mass of hydrophobic silica (manufactured by Nippon Aerosil Co., Ltd., product name "AEROSIL-R972") with an average primary particle size of 0.016 μm and a specific surface area of 110 m 2 / g, 31 parts by mass of dioctyl phthalate (DOP), and phthalic acid. After mixing 6 parts by mass of dibutyl (DBP) with a Henschel mixer, 40 parts by mass of polyvinylidene fluoride (manufactured by SOLVAY, product name "Solef6010") having a weight average molecular weight of 310,000 was added and mixed again with a Henschel mixer. To obtain the mixture. This mixture was pelletized by a twin-screw kneading extruder.
The obtained pellets were melt-kneaded at 240 ° C. with a twin-screw kneading extruder and extruded into hollow filaments to obtain hollow filaments. At this time, a hollow yarn forming spun is attached to the extrusion port in the head at the tip of the extruder, and the kneaded melt is extruded from the ring hole for extrusion of the melt, and at the same time, inside the ring hole for extrusion of the melt. Extrusion was performed in the form of a hollow thread by discharging nitrogen gas from a circular hole for discharging a hollow portion-forming fluid.
The hollow filament was introduced into a water bath (40 ° C.) at a free running distance of 20 cm and wound at a speed of 20 m / min.
 得られた中空糸状物を、連続的に一対の第一の無限軌道式ベルト引取機で20m/分の速度で引き取り、空間温度40℃に制御した第一の加熱槽(0.8m長)を経由させた後に、第二の無限軌道式ベルト引き取り機で40m/分の速度で引き取り、長さ方向に2.0倍に延伸した。次いで、空間温度80℃に制御した第二の加熱槽(0.8m長)を経由させた後に、20℃の冷却水槽の水面にて周期的に折り曲げつつ冷却した。その後、第三の無限軌道式ベルト引取機で、30m/分の速度で引き取り、延伸された中空糸状物を、長さ方向に1.5倍まで収縮(緩和)させた後、周長約3mの綛(カセ)で巻き取った。冷却水槽の水面における周期的な折り曲げは、一対の周長が約0.20mであり、かつ4山の凹凸ロールを用い、170rpmの回転速度で中空糸状物を連続的に挟むことにより行った。 The obtained hollow filaments were continuously picked up by a pair of first endless track type belt pickers at a speed of 20 m / min, and a first heating tank (0.8 m length) controlled to a space temperature of 40 ° C. was used. After passing through, the belt was picked up by a second track type belt picker at a speed of 40 m / min and stretched 2.0 times in the length direction. Then, after passing through a second heating tank (0.8 m long) in which the space temperature was controlled to 80 ° C., the mixture was cooled while being periodically bent on the water surface of the cooling water tank at 20 ° C. After that, it was picked up at a speed of 30 m / min by a third endless track type belt picker, and the stretched hollow filament was contracted (relaxed) up to 1.5 times in the length direction, and then the circumference was about 3 m. It was wound up with a belt. Periodic bending on the water surface of the cooling water tank was performed by continuously sandwiching a hollow filament-like object at a rotation speed of 170 rpm using a pair of concave-convex rolls having a peripheral length of about 0.20 m and four ridges.
 上記処理後の中空糸状物を、塩化メチレン中に浸漬して、DOPおよびDBPを抽出除去した後、乾燥させた。次いで、処理後の中空糸状物を、50質量%エチルアルコール水溶液中に浸漬した後、5質量%水酸化ナトリウム水溶液中に40℃にて1時間浸漬して、シリカを抽出除去した。その後、水洗し、乾燥して、中空糸膜を得た。得られた中空糸の外径は1250μm、内径は700μm、内表面の微細孔の径は0.1μm、であった。この中空糸を多孔質膜として用いた。
 上記中空糸から成る多孔質膜70本を、2cm径、10cm長の円筒状プラスチックハウジングに充填し、両端部を、中空糸の中空部分が閉塞されないように、接着剤で固定することにより、有効膜内表面積0.012m2の中空糸状多孔質膜のモジュールである、誘導溶液再生ユニットを作製した。
 処理液として純水を用い、誘導溶液として3.5質量%食塩水を用いて測定したこのユニットの水についての透過流束(透水量)は、20.02L/(m2×hr)であった。
The hollow filament after the above treatment was immersed in methylene chloride to extract and remove DOP and DBP, and then dried. Next, the treated hollow filament was immersed in a 50 mass% ethyl alcohol aqueous solution and then immersed in a 5 mass% sodium hydroxide aqueous solution at 40 ° C. for 1 hour to extract and remove silica. Then, it was washed with water and dried to obtain a hollow fiber membrane. The outer diameter of the obtained hollow fiber was 1250 μm, the inner diameter was 700 μm, and the diameter of the fine pores on the inner surface was 0.1 μm. This hollow fiber was used as a porous membrane.
It is effective by filling 70 porous membranes made of the above hollow fibers into a cylindrical plastic housing having a diameter of 2 cm and a length of 10 cm, and fixing both ends with an adhesive so that the hollow portions of the hollow fibers are not blocked. An inductive solution regeneration unit, which is a module of a hollow fiber-like porous membrane having an inner surface area of 0.012 m 2, was prepared.
The permeation flux (permeability) of the water of this unit measured using pure water as the treatment liquid and 3.5 mass% saline as the induction solution was 20.02 L / (m 2 × hr). rice field.
〈原料液濃縮システムの構築〉
 実施例1では、図12に示した構成の原料液濃縮システムを使用して、原料液の濃縮を行った。
 上記で得られた正浸透膜ユニット2本を直列に配置し、これらのユニットに含まれる中空糸状正浸透膜の中空部分に原料液が、外側部分に誘導溶液が、それぞれ、導入されるように、配管を接続した。ここで、2本の正浸透膜ユニットを通過させて濃縮された原料液を、再び正浸透膜ユニットに導入するために、原料液の循環機構を配置した。
 一方、上記で得られた誘導溶液再生ユニット1本を用い、該ユニットに含まれる中空糸の中空部分を液相部、外側部分を気相部とする、膜蒸留装置を組み立てた。
 そして、2本の正浸透膜ユニットと、膜蒸留装置とを、混合機構を介して配管接続し、正浸透膜ユニットから排出された希釈誘導溶液を、誘導溶液再生ユニットで濃縮し、混合機構において濃度を調整したうえで、正浸透膜ユニットに導入される誘導溶液として再利用できるように構成した。
<Construction of raw material liquid concentration system>
In Example 1, the raw material liquid was concentrated using the raw material liquid concentrating system having the configuration shown in FIG.
The two forward osmosis membrane units obtained above are arranged in series so that the raw material solution is introduced into the hollow portion of the hollow filamentous forward osmosis membrane contained in these units and the induction solution is introduced into the outer portion. , Connected the piping. Here, in order to introduce the concentrated raw material liquid through the two forward osmosis membrane units into the forward osmosis membrane unit again, a circulation mechanism of the raw material liquid was arranged.
On the other hand, using one of the induction solution regeneration units obtained above, a membrane distillation apparatus was assembled in which the hollow portion of the hollow fiber contained in the unit was a liquid phase portion and the outer portion was a gas phase portion.
Then, the two forward osmosis membrane units and the membrane distillation apparatus are connected by piping via a mixing mechanism, and the dilution induction solution discharged from the forward osmosis membrane unit is concentrated by the induction solution regeneration unit, and the mixing mechanism is used. After adjusting the concentration, it was configured so that it could be reused as an induction solution to be introduced into the forward osmosis membrane unit.
 以上の構成のシステムにより、正浸透濃縮工程および誘導溶液姿勢工程を実施した。
 各工程の運転条件は、以下のとおりとした
With the system having the above configuration, the forward osmosis concentration step and the inductive solution attitude step were carried out.
The operating conditions for each process are as follows.
(1)正浸透濃縮工程
  原料液:メープル樹液を水で希釈して、粘度1.0cPに調整した溶液
  原料液の線速
    第1段階(1.0cPから20cPまでの濃縮):5.0cm/s
    第2段階(20cPから50cPまでの濃縮):0.9cm/s
  誘導溶液の種類:20重量%塩化マグネシウム水溶液
  誘導溶液の線速:2.0cP(第1段階および第2段階を通じて一定)
  処理温度:25℃
  ろ過方式:クロスフロー方式
(2)誘導溶液再生工程
  希釈誘導溶液流速:600ml/分
  気相部圧力:10kPa(絶対圧)
(1) Forward osmosis concentration step Raw material solution: A solution obtained by diluting maple sap with water to adjust the viscosity to 1.0 cP. Linear velocity of the raw material solution First stage (concentration from 1.0 cP to 20 cP): 5.0 cm / s
Second stage (concentration from 20 cP to 50 cP): 0.9 cm / s
Inducing solution type: 20 wt% magnesium chloride aqueous solution Linear velocity of inducing solution: 2.0 cP (constant throughout the first and second stages)
Processing temperature: 25 ° C
Filtration method: Cross flow method (2) Induction solution regeneration process Dilution induction solution flow velocity: 600 ml / min Gas phase pressure: 10 kPa (absolute pressure)
<評価>
(原料液から誘導溶液へ移動した媒体の透過流束(透水量)の測定)
 運転開始1分後、運転中に移動した原料液から正浸透膜を介して誘導溶液へ移動した媒体(水)の量(L)を、(株)エー・アンド・デイ製の電子天秤(形式名「GX-12K」)にて測定し、下記数式(1)にしたがって、透過流束(透水量)を計算した。
  F=L/(M×H)   (1)
 ここで、Fは媒体の透水量(L/(m2×hr))であり、Lは正浸透膜を透過した媒体の量(単位:L)であり、Mは正浸透膜の表面積(単位:m2)であり、Hは時間(単位:hr)である。
 得られた透水量Lの値から、以下の基準で評価した。
  A:透過流束が3.0を超えた場合
  B:透過流束が1.0以上3.0以下の場合
  C:透過流束が0.5以上1.0未満の場合
  D:透過流束が0.5未満の場合
<Evaluation>
(Measurement of permeation flux (permeability) of the medium transferred from the raw material solution to the induction solution)
One minute after the start of operation, the amount (L) of the medium (water) transferred from the raw material solution transferred during operation to the induction solution via the forward osmosis membrane is measured by an electronic balance (type) manufactured by A & D Co., Ltd. The measurement was carried out under the name "GX-12K"), and the permeation flux (water permeation amount) was calculated according to the following formula (1).
F = L / (M × H) (1)
Here, F is the amount of water permeation of the medium (L / (m 2 × hr)), L is the amount of the medium that has permeated the forward osmosis membrane (unit: L), and M is the surface area (unit: unit) of the forward osmosis membrane. : M 2 ), and H is time (unit: hr).
From the obtained value of the water permeation amount L, it was evaluated according to the following criteria.
A: When the permeated flux exceeds 3.0 B: When the permeated flux is 1.0 or more and 3.0 or less C: When the permeated flux is 0.5 or more and less than 1.0 D: Permeated flux Is less than 0.5
(粘度の分析)
 原料液、および得られた濃縮液の粘度を、Thermo Scientific社製の粘度計(形式名「HAAKE ViscoTester iQ」による溶液粘度として測定した。
(Viscosity analysis)
The viscosities of the raw material solution and the obtained concentrated solution were measured as the solution viscosity by a viscometer manufactured by Thermo Scientific (model name "HAAKE ViscoTester iQ").
(長期運転性)
 原料液濃縮システムの長期運転性を、以下の基準により評価した。
 なお、循環濃縮されている原料液の濃度が、所定の濃度に達したとき、運転を一旦停止し、システムの洗浄および検査を行って透過流速を測定した。検査で得られた透過流速値が、前回の測定値の80%を超えた場合、濃縮運転を継続し、前回の検査値の80%以下であった場合、その時点で濃縮運転は終了とした。
 原料液濃縮システムの洗浄および検査は、それぞれ、以下のように行った。
(Long-term drivability)
The long-term operability of the raw material liquid concentration system was evaluated according to the following criteria.
When the concentration of the raw material liquid that was circulated and concentrated reached a predetermined concentration, the operation was temporarily stopped, the system was washed and inspected, and the permeation flow velocity was measured. If the permeation flow velocity value obtained in the inspection exceeds 80% of the previous measurement value, the concentration operation is continued, and if it is 80% or less of the previous inspection value, the concentration operation is terminated at that point. ..
The cleaning and inspection of the raw material liquid concentration system were carried out as follows.
-洗浄-
 原料液の順環を継続できる最低量を残し、原料液を取り除いたうえで、原料液の循環を継続した。この状態で、誘導溶液の代わりに水を循環させ、30分間運転して、第1の洗浄工程を行った。
 次いで、誘導溶液の代わりの水の循環は継続したまま、原料液の代わりに水を循環させ、正浸透膜の両側に水が循環するように構成して、60分間運転して、第2の洗浄工程を行った。第2の洗浄工程の途中、正浸透膜の両側に循環させる水は、それぞれ、20分に1度ずつ新しい水に交換した。
 これら一連の作業によりより、正浸透膜の洗浄を行った。
-Washing-
The circulation of the raw material liquid was continued after removing the raw material liquid, leaving the minimum amount capable of continuing the normal circulation of the raw material liquid. In this state, water was circulated instead of the inductive solution and operated for 30 minutes to perform the first washing step.
Next, while the circulation of water instead of the inductive solution was continued, water was circulated instead of the raw material solution, and the water was configured to circulate on both sides of the forward osmosis membrane, and operated for 60 minutes. A cleaning step was performed. During the second washing step, the water circulated on both sides of the forward osmosis membrane was replaced with fresh water once every 20 minutes.
The forward osmosis membrane was washed by a series of these operations.
 -検査-
 洗浄後、原料液側の水の循環は維持したまま、誘導溶液側の水を、塩化マグネシウム20質量%を含有する水溶液に変更して循環させて運転し、洗浄後システムの透水量を測定した。
 得られた透水量の値が、前回の検査値の80%超であった場合、原料液および誘導溶液を洗浄前の条件に戻して循環させて、濃縮運転を継続した。 一方、透水量の値が、前回の検査値の80%以下であった場合、その時点で運転を終了し、運転開始からの運転終了までの時間により、長期運転性を以下の基準で評価した。  A:1,000時間問題なく運転できた。
  B:500時間以上1,000時間未満の範囲では、問題なく運転できた。
  C:100時間以上500時間未満の範囲では、問題なく運転できた。
  D:10時間以上100時間未満の範囲では、問題なく運転できた
  E:10時間の運転ができなかった
-test-
After cleaning, while maintaining the circulation of water on the raw material liquid side, the water on the inductive solution side was changed to an aqueous solution containing 20% by mass of magnesium chloride and circulated for operation, and the amount of water permeation of the system after cleaning was measured. ..
When the value of the obtained water permeation amount was more than 80% of the previous inspection value, the raw material solution and the induction solution were returned to the conditions before washing and circulated, and the concentration operation was continued. On the other hand, when the value of the hydraulic conductivity was 80% or less of the previous inspection value, the operation was terminated at that time, and the long-term operability was evaluated according to the following criteria based on the time from the start of the operation to the end of the operation. .. A: I was able to drive for 1,000 hours without any problems.
B: In the range of 500 hours or more and less than 1,000 hours, the operation was able to be performed without any problem.
C: In the range of 100 hours or more and less than 500 hours, the operation could be performed without any problem.
D: I was able to drive without problems in the range of 10 hours or more and less than 100 hours E: I could not drive for 10 hours
[実施例2~5、9~18、および20~22、並びに比較例1~5]
 これらの実施例では、図12に示した構成の原料液濃縮システムを使用して、原液の種類、濃縮の第2段階における原料液の線速および濃縮後の粘度、並びに誘導溶液の線速を、それぞれ、表3に記載のように変更した他は、実施例1と同様にして、原料液の濃縮を、2段階で行った。
 なお、比較例5では、第2段階の濃縮の際、正浸透膜ユニットに循環導入される濃縮原料液の粘度が600cPを超えた時点で、溶液の送液が困難となったため、その時点で運転を停止した。
[Examples 2 to 5, 9 to 18, and 20 to 22, and Comparative Examples 1 to 5]
In these examples, the raw material solution concentration system having the configuration shown in FIG. 12 was used to determine the type of stock solution, the linear velocity and post-concentration viscosity of the raw material solution in the second stage of concentration, and the linear velocity of the induced solution. The raw material solution was concentrated in two steps in the same manner as in Example 1, except that each of them was changed as shown in Table 3.
In Comparative Example 5, when the viscosity of the concentrated raw material liquid circulated and introduced into the forward osmosis membrane unit exceeded 600 cP during the second stage concentration, it became difficult to transfer the solution. The operation was stopped.
[実施例6~8、23、および24]
 これらの実施例では、図13に示した構成の原料液濃縮システムを使用した他は、実施例1と同様にして、原料液(メープル樹液の希釈液、粘度1cP)の濃縮を、2段階で行った。
 図13の原料液濃縮システムは、3段階の正浸透膜ユニットを有している。これら各段階のユニットを、原料液の上流側から順に、正浸透膜ユニットA、正浸透膜ユニットB、および正浸透膜ユニットCとする。
 これらの実施例では、正浸透膜ユニットA、B、およびCとして、それぞれ、下記表1に示した本数のユニットを並列に接続して使用することにより、比A/AおよびA/Aの値を調節した。
[Examples 6 to 8, 23, and 24]
In these examples, the concentration of the raw material solution (diluted maple sap, viscosity 1 cP) was concentrated in two steps in the same manner as in Example 1 except that the raw material solution concentration system having the configuration shown in FIG. 13 was used. went.
The raw material liquid concentration system of FIG. 13 has a three-stage forward osmosis membrane unit. The units at each of these stages are referred to as a forward osmosis membrane unit A, a forward osmosis membrane unit B, and a forward osmosis membrane unit C in order from the upstream side of the raw material liquid.
In these examples, the ratios A 2 / A 1 and A 3 / are used as the forward osmosis membrane units A, B, and C by connecting the units shown in Table 1 below in parallel, respectively. The value of A 2 was adjusted.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例9および10]
 実施例9では、図16に示した構成の原料液濃縮システムを使用して、原料液(メープル樹液の希釈液、粘度1cp)の濃縮を行った。
 図16に示した原料液濃縮システムは、直列に接続した2個の正浸透膜ユニットの間に送液ポンプを配置した他は、実施例1で使用した図12の原料液濃縮システムと同じ構成を有する。
[Examples 9 and 10]
In Example 9, the raw material liquid (diluted maple sap, viscosity 1 cp) was concentrated using the raw material liquid concentration system having the configuration shown in FIG.
The raw material liquid concentrating system shown in FIG. 16 has the same configuration as the raw material liquid concentrating system of FIG. 12 used in Example 1 except that a liquid feeding pump is arranged between two forward osmosis membrane units connected in series. Has.
[実施例19]
 実施例19では、中空糸状支持膜モジュールを以下の手順で作製し、中空糸状支持膜の素材をポリケトンとした以外は、実施例1と同一条件で、原料液の濃縮を実施した。
(中空糸状支持膜モジュールの作製)
 エチレンと一酸化炭素とが完全交互共重合した極限粘度3.4dl/gのポリケトンを、ポリマー濃度10.7質量%となるように、65質量%レゾルシン水溶液に添加し、80℃で2時間攪拌溶解し、脱泡を行うことで均一透明な原液を得た。
 二重紡口を装備した湿式中空糸紡糸機に上記の原液を充填し、50℃に調温したうえで、水を満たした凝固槽中に押し出し、相分離により中空糸を形成した。得られた中空糸は、巻き取り機に巻き取った。得られた中空糸の外径は1.0mm、内径は0.7mm、内表面の微細孔の径は0.15μm、透水量は950L/(m×hr)/100kPaであった。
 この中空糸を支持膜として用いた。上記中空糸状支持膜130本を、2cm径、10cm長の円筒状プラスチックハウジングに充填し、中空糸の内部空間を閉塞しないように、両端部を接着剤で固定することにより、有効膜内表面積0.023mの中空糸支持膜モジュールを作製した。
[Example 19]
In Example 19, the hollow filamentous support membrane module was prepared by the following procedure, and the raw material liquid was concentrated under the same conditions as in Example 1 except that the material of the hollow filamentous support membrane was polyketone.
(Manufacturing of hollow filamentous support membrane module)
A polyketone having an extreme viscosity of 3.4 dl / g, in which ethylene and carbon monoxide are completely alternately copolymerized, is added to a 65 mass% resorcin aqueous solution so that the polymer concentration is 10.7 mass%, and the mixture is stirred at 80 ° C. for 2 hours. It was dissolved and defoamed to obtain a uniform and transparent undiluted solution.
A wet hollow fiber spinning machine equipped with a double spinner was filled with the above stock solution, the temperature was adjusted to 50 ° C., and the hollow fiber was extruded into a coagulation tank filled with water to form hollow fibers by phase separation. The obtained hollow fiber was wound on a winder. The outer diameter of the obtained hollow fiber was 1.0 mm, the inner diameter was 0.7 mm, the diameter of the fine pores on the inner surface was 0.15 μm, and the water permeability was 950 L / (m 2 × hr) / 100 kPa.
This hollow fiber was used as a support film. The 130 hollow fiber-shaped support membranes are filled in a cylindrical plastic housing having a diameter of 2 cm and a length of 10 cm, and both ends are fixed with an adhesive so as not to block the internal space of the hollow fibers. A 023 m 2 hollow fiber support membrane module was prepared.
 評価結果を、下記の表2にまとめて示した。
Figure JPOXMLDOC01-appb-T000003
The evaluation results are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000003
[実施例25]
 実施例25は、図12に示した構成の原料液濃縮システムを使用して、2本の正浸透膜ユニットを通過した原料液を、循環機構によって再び最初の正浸透膜ユニットに戻す循環濃縮運転により、原料液の濃縮を行った。
 この循環濃縮運転は以下の2段階で行い、各段階について、原料液および誘導溶液の線速を設定した。
  第1段階:Brix値2(溶液粘度1cp)からBrix値40(溶液粘度20cP)までの濃縮
  第2段階:Brix値40(溶液粘度20cP)からBrix値300(溶液粘度300cP)までの濃縮
 上記以外の運転条件は、実施例1と同じに設定した。
<評価>
 原料液から誘導溶液へ移動した媒体の透過流束(透水量)の測定、粘度の分析、および長期運転性は、それぞれ、実施例1と同様にして評価した。
 糖度および吸光度の分析、ならびに風味の官能評価は、それぞれ、以下のように行った。
[Example 25]
In Example 25, the raw material liquid concentrating system having the configuration shown in FIG. 12 is used, and the raw material liquid that has passed through the two forward osmosis membrane units is returned to the first forward osmosis membrane unit by the circulation mechanism. The raw material liquid was concentrated.
This circulation concentration operation was performed in the following two stages, and the linear velocity of the raw material solution and the induction solution was set for each stage.
First step: Concentration from Brix value 2 (solution viscosity 1 cp) to Brix value 40 (solution viscosity 20 cP) Second step: Concentration from Brix value 40 (solution viscosity 20 cP) to Brix value 300 (solution viscosity 300 cP) Other than the above The operating conditions of the above were set to be the same as those of the first embodiment.
<Evaluation>
The measurement of the permeation flux (permeability) of the medium transferred from the raw material solution to the induction solution, the analysis of the viscosity, and the long-term operability were each evaluated in the same manner as in Example 1.
The analysis of sugar content and absorbance and the sensory evaluation of flavor were performed as follows.
(糖度の分析)
 原料液、および得られた濃縮液の濃度を、(株)アタゴ製の糖度計「PAL-S」によるBrix値として測定した。
(吸光度)
 得られた濃縮物を、限外ろ過フィルター(アミコンウルトラ-0.5、PLGCウルトラセル-10メンブレン、10kDa、UFC501008)によりろ過した。得られたろ液を、分光光度計用のスクリューキャップ付き二面透明石英セル(ジーエルサイエンス(株)製、S15-UV-10、光路長10mm、光路幅10mm)に充填した。
 このろ液を試料側とし、前述の蒸留水を参照側として、紫外可視分光分析を行い、波長450nmにおける吸光度を調べた。
 紫外可視分光分析の条件は、下記のとおりとした。
  測定装置:日本分光(株)製、JASCO V-770
  測定モード:Abs
  測定波長:800~200nm
  データ取込間隔:0.5nm
  光源:D2、WI
  光源切換:340nm
  補正:ベースライン
(Analysis of sugar content)
The concentrations of the raw material liquid and the obtained concentrated liquid were measured as Brix values by a sugar content meter "PAL-S" manufactured by Atago Co., Ltd.
(Absorbance)
The obtained concentrate was filtered through an ultrafiltration filter (Amicon Ultra-0.5, PLGC Ultracell-10 Membrane, 10 kDa, UFC501008). The obtained filtrate was filled in a two-sided transparent quartz cell with a screw cap for a spectrophotometer (manufactured by GL Sciences Co., Ltd., S15-UV-10, optical path length 10 mm, optical path width 10 mm).
Ultraviolet-visible spectroscopic analysis was performed with this filtrate as the sample side and the above-mentioned distilled water as the reference side, and the absorbance at a wavelength of 450 nm was examined.
The conditions for ultraviolet-visible spectroscopic analysis were as follows.
Measuring device: JASCO V-770 manufactured by JASCO Corporation
Measurement mode: Abs
Measurement wavelength: 800-200 nm
Data acquisition interval: 0.5 nm
Light source: D2, WI
Light source switching: 340 nm
Correction: Baseline
(風味の官能評価)
 得られた濃縮液を純水で希釈して、濃縮前の原料液と同じ濃度に調整した濃縮液還元液をパネラー5人の賞味に供し、以下の基準により風味を評価した。
  A:パネラー5人全員が原料本来の風味が強いと判断した。
  B:原料本来の風味が強いと判断したパネラーが1人以上4人以下であった。
  C:原料本来の風味が強いと判断したパネラーが1人もいなかった。
(Sensory evaluation of flavor)
The obtained concentrated liquid was diluted with pure water, and the concentrated liquid reduced liquid adjusted to the same concentration as the raw material liquid before concentration was used for the taste of five panelists, and the flavor was evaluated according to the following criteria.
A: All five panelists judged that the original flavor of the ingredients was strong.
B: The number of panelists who judged that the original flavor of the raw material was strong was 1 or more and 4 or less.
C: None of the panelists judged that the original flavor of the raw material was strong.
[実施例26]
 原料液をココナッツ液体胚乳とし、第2段階の到達Brix値を50とした他は、実施例25と同様に実施した。
[実施例27]
 第2段階の到達Brix値を60と他は、実施例25と同様に実施して濃縮物を得た。次に、常圧蒸留装置を用い、110℃にて蒸留を行い、Brix値70まで濃縮することにより、最終製品を得た。
[実施例28]
 第2段階の到達Brix値を50とした他は、実施例27と同様に実施した。
[Example 26]
The same procedure as in Example 25 was carried out except that the raw material solution was coconut liquid endosperm and the reached Brix value in the second stage was 50.
[Example 27]
The Brix value reached in the second step was 60 and the others were carried out in the same manner as in Example 25 to obtain a concentrate. Next, distillation was carried out at 110 ° C. using an atmospheric distillation apparatus, and the product was concentrated to a Brix value of 70 to obtain a final product.
[Example 28]
It was carried out in the same manner as in Example 27 except that the reached Brix value in the second stage was set to 50.
[比較例6]
 原料液であるメープル樹液を、蒸留法によって濃縮した。
 蒸留は、常圧蒸留装置を用い、110℃にて行った。
[比較例7]
 原料液であるメープル樹液を、逆浸透法によってBrix値20まで濃縮した後に、蒸留法によってBrix値70までさらに濃縮した。
 逆浸透法は、逆浸透膜として日東電工(株)製の品番「NTR-759HR」)を用い、2.0MPaの操作圧力にて実施した。
 蒸留法は、常圧蒸留装置を用い、110℃にて実施した。なお、蒸留前の試料粘度は100cPであり、蒸留後の試料粘度は300cPであった。
[比較例8]
 原料液であるメープル樹液を、正浸透法によってBrix値20まで濃縮した後に、蒸留法によってBrix値70までさらに濃縮した。
 正浸透法は、到達Brix値を上記のとおりとした他は、実施例25の第1段階と同様に実施した。
 蒸留法は、常圧蒸留装置を用い、110℃にて実施した。なお、蒸留前の試料粘度は40cPであり、蒸留後の試料粘度は300cPであった。
[Comparative Example 6]
Maple sap, which is a raw material liquid, was concentrated by a distillation method.
Distillation was carried out at 110 ° C. using an atmospheric distillation apparatus.
[Comparative Example 7]
Maple sap, which is a raw material liquid, was concentrated to a Brix value of 20 by a reverse osmosis method, and then further concentrated to a Brix value of 70 by a distillation method.
The reverse osmosis method was carried out using a product number "NTR-759HR" manufactured by Nitto Denko Corporation as a reverse osmosis membrane at an operating pressure of 2.0 MPa.
The distillation method was carried out at 110 ° C. using an atmospheric distillation apparatus. The sample viscosity before distillation was 100 cP, and the sample viscosity after distillation was 300 cP.
[Comparative Example 8]
Maple sap, which is a raw material liquid, was concentrated to a Brix value of 20 by a forward osmosis method, and then further concentrated to a Brix value of 70 by a distillation method.
The forward osmosis method was carried out in the same manner as in the first step of Example 25, except that the reached Brix value was set as described above.
The distillation method was carried out at 110 ° C. using an atmospheric distillation apparatus. The sample viscosity before distillation was 40 cP, and the sample viscosity after distillation was 300 cP.
 評価結果を、下記の表3にまとめて示した。 The evaluation results are summarized in Table 3 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (16)

  1.  溶媒および溶質を含有する原料液と、誘導物質を含有する誘導溶液とを、正浸透膜を介して接触させ、前記原料液中の前記溶媒を前記誘導溶液中に移動させて、希釈誘導溶液を得るとともに、原料液を濃縮する、原料液濃縮工程を含む、原料液の濃縮方法であって、
     前記正浸透膜は、中空糸状であり、
     前記原料液の濃縮方法は、前記原料液を前記中空糸状の正浸透膜の中空部分に流通させ、前記誘導溶液を前記中空糸状の正浸透膜の外側に流通させる工程を有し、
     前記中空糸状の正浸透膜の前記中空部分に流入する原料液の粘度が20cP以上600cP以下であるときに、前記中空糸状の正浸透膜の前記中空部分に流入する原料液の線速を0.1cm/s以上5.0cm/s以下とする、
    原料液の濃縮方法。
    A raw material solution containing a solvent and a solute and an inducing solution containing an inducing substance are brought into contact with each other via a normal osmotic membrane, and the solvent in the raw material solution is moved into the inducing solution to obtain a dilution inducing solution. A method for concentrating a raw material solution, which comprises a step of concentrating the raw material solution while obtaining the raw material solution.
    The forward osmosis membrane has a hollow thread shape and is in the form of a hollow thread.
    The method for concentrating the raw material liquid includes a step of circulating the raw material liquid through the hollow portion of the hollow thread-shaped forward osmosis membrane and circulating the induction solution outside the hollow thread-shaped forward osmosis membrane.
    When the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is 20 cP or more and 600 cP or less, the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is set to 0. 1 cm / s or more and 5.0 cm / s or less,
    Method of concentrating raw material liquid.
  2.  前記中空糸状の正浸透膜の中空部分に流入する原料液の粘度が20cP以上600cP以下であるときに、前記中空糸状の正浸透膜の前記中空部分に流入する原料液の線速を0.9cm/s以上3.5cm/s以下とする、請求項1に記載の原料液の濃縮方法。 When the viscosity of the raw material liquid flowing into the hollow portion of the hollow thread-like forward osmosis membrane is 20 cP or more and 600 cP or less, the linear velocity of the raw material liquid flowing into the hollow portion of the hollow thread-shaped forward osmosis membrane is 0.9 cm. The method for concentrating a raw material liquid according to claim 1, wherein the concentration is at least / s and 3.5 cm / s or less.
  3.  溶媒および溶質を含有する原料液と、誘導物質を含有する誘導溶液とを、正浸透膜を介して接触させ、前記原料液中の前記溶媒を前記誘導溶液中に移動させて、希釈誘導溶液を得るとともに、原料液を濃縮する、原料液濃縮工程を含む、原料液の濃縮方法であって、
     前記正浸透膜は、中空糸状であり、
     前記原料液の濃縮方法は、前記原料液を前記中空糸状の正浸透膜の中空部分に流通させ、前記誘導溶液を前記中空糸状の正浸透膜の外側に流通させる工程を有し、
     前記正浸透膜の外側に流入する前記誘導溶液の線速を0.1cm/s以上10cm/s以下とする、
    原料液の濃縮方法。
    A raw material solution containing a solvent and a solute and an inducing solution containing an inducing substance are brought into contact with each other via a normal osmotic membrane, and the solvent in the raw material solution is moved into the inducing solution to obtain a dilution inducing solution. A method for concentrating a raw material solution, which comprises a step of concentrating the raw material solution while obtaining the raw material solution.
    The forward osmosis membrane has a hollow thread shape and is in the form of a hollow thread.
    The method for concentrating the raw material liquid includes a step of circulating the raw material liquid through the hollow portion of the hollow thread-shaped forward osmosis membrane and circulating the induction solution outside the hollow thread-shaped forward osmosis membrane.
    The linear velocity of the induction solution flowing into the outside of the forward osmosis membrane is 0.1 cm / s or more and 10 cm / s or less.
    Method of concentrating raw material liquid.
  4.  前記誘導溶液が、2価のカチオンを含む無機塩溶液である、請求項1~3のいずれか一項に記載の原料液の濃縮方法。 The method for concentrating a raw material solution according to any one of claims 1 to 3, wherein the induction solution is an inorganic salt solution containing a divalent cation.
  5.  前記正浸透膜が、ポリエーテルスルホン、ポリスルホン、ポリケトン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミン、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、スルホン化テトラフルオロエチレン、およびポリアミドから成る群から選ばれる少なくとも1種を主成分とする薄膜層を有する膜である、請求項1~4のいずれか一項に記載の原料液の濃縮方法。 The positive osmotic membrane is from polyethersulfone, polysulfone, polyketone, polyether etherketone, polyphenylene ether, polyvinylidene fluoride, polyacrylonitrile, polyimine, polyimide, polybenzoxazole, polybenzoimidazole, sulfonated tetrafluoroethylene, and polyamide. The method for concentrating a raw material solution according to any one of claims 1 to 4, which is a film having a thin film layer containing at least one selected from the group as a main component.
  6.  前記原料液濃縮工程を、2段階以上直列的に行う、原料液の濃縮方法であって、
     前記2段階以上の原料液濃縮工程のうちの連続して行われる2段階の原料液濃縮工程において、後段の原料液濃縮工程に用いる正浸透膜の原料液流路断面積Aの、前段の正浸透膜の原料液流路断面積Aに対する比A/Aが、0.2以上10以下である、
    請求項1~5のいずれか一項に記載の原料液の濃縮方法。
    A method for concentrating a raw material liquid, wherein the raw material liquid concentrating step is performed in two or more steps in series.
    In succession two steps of the raw material solution concentration step is carried out of the two or more stages of the raw material solution concentration step, the raw material liquid flow path cross-sectional area A d of the forward osmosis membrane used in the subsequent stage of the raw material solution concentration step, preceding the ratio a d / a u for feed liquid flow path cross-sectional area a u of the forward osmosis membrane is 0.2 to 10,
    The method for concentrating a raw material liquid according to any one of claims 1 to 5.
  7.  前記後段の原料液濃縮工程に用いる正浸透膜の原料液流路断面積Aの、前記前段の原料液濃縮工程に用いる正浸透膜の原料液流路断面積Aに対する比A/Aが、2以上8以下である、請求項6に記載の原料液の濃縮方法。 Raw material liquid flow path cross-sectional area A d of the forward osmosis membrane used in the subsequent stage of the raw material solution concentration step, the ratio based on the starting material liquid flow path cross-sectional area A u of forward osmosis membrane used in the preceding stage of the raw material solution concentration step A d / A The method for concentrating a raw material liquid according to claim 6, wherein u is 2 or more and 8 or less.
  8.  前記2段階以上直列的に行う原料液濃縮工程において、前段の原料液濃縮工程で濃縮された原料液を、後段の原料液濃縮工程の原料液として供給するために、原料液送液ポンプを1つ以上用いる、請求項6または7に記載の原料液の濃縮方法。 In the raw material liquid concentrating step performed in two or more steps in series, in order to supply the raw material liquid concentrated in the raw material liquid concentrating step in the previous stage as the raw material liquid in the raw material liquid concentrating step in the subsequent stage, one raw material liquid feeding pump is used. The method for concentrating a raw material liquid according to claim 6 or 7, wherein one or more of them are used.
  9.  前記希釈誘導溶液から前記溶媒を除去して再生誘導溶液を得る、誘導溶液濃縮工程をさらに有し、
     前記誘導溶液濃縮工程で得られた濃縮誘導溶液を、再び前記誘導溶液として使用する、
    請求項1~8のいずれか一項に記載の原料液の濃縮方法。
    Further comprising an induction solution concentration step of removing the solvent from the dilution induction solution to obtain a regeneration induction solution.
    The concentrated induction solution obtained in the induction solution concentration step is used again as the induction solution.
    The method for concentrating a raw material liquid according to any one of claims 1 to 8.
  10.  前記誘導溶液から前記溶媒を除去して濃縮誘導溶液を得る、誘導溶液濃縮工程と、
     前記誘導溶液濃縮工程で得られた前記濃縮誘導溶液と、前記希釈誘導溶液とを混合する、混合工程と
    をさらに有し、
     前記混合工程で得られた混合溶液を、再び前記誘導溶液として使用する、
    請求項1~8のいずれか一項に記載の原料液の濃縮方法。
    Induction solution concentration step of removing the solvent from the induction solution to obtain a concentration induction solution, and
    Further comprising a mixing step of mixing the concentration-inducing solution obtained in the induction solution concentration step with the dilution-inducing solution.
    The mixed solution obtained in the mixing step is used again as the induction solution.
    The method for concentrating a raw material liquid according to any one of claims 1 to 8.
  11.  前記誘導溶液濃縮工程が、蒸発手段によって行われる、請求項9または10に記載の原料液の濃縮方法。 The method for concentrating a raw material solution according to claim 9 or 10, wherein the induction solution concentration step is performed by an evaporation means.
  12.  前記原料液と、浸透圧が前記原料液よりも低く調整された前記誘導溶液の希釈液または前記溶媒とを、前記正浸透膜を介して接触させることにより、前記正浸透膜を洗浄する第1の洗浄工程を有する、請求項1~11のいずれか一項に記載の原料液の濃縮方法。 The first method of cleaning the forward osmosis membrane by bringing the raw material solution and a diluted solution of the induction solution or the solvent whose osmotic pressure is adjusted to be lower than that of the raw material solution are brought into contact with each other via the forward osmosis membrane. The method for concentrating a raw material solution according to any one of claims 1 to 11, which comprises the cleaning step of.
  13.  前記第1の洗浄工程の後に、前記溶媒を、前記正浸透膜の両側に接触させることにより、前記正浸透膜を洗浄する第2の洗浄工程をさらに有する、請求項12に記載の原料液の濃縮方法。 The raw material solution according to claim 12, further comprising a second cleaning step of cleaning the forward osmosis membrane by bringing the solvent into contact with both sides of the forward osmosis membrane after the first cleaning step. Concentration method.
  14.  糖を含む溶質、および液状媒体を含む原料液の濃縮液である食料品であって、
     前記濃縮液は、
      Brix値が50以上であり、かつ、
      紫外可視分光分析における450nmでの吸光度が0.1以上1.0以下である、
    食料品。
    A food product that is a concentrate of a solute containing sugar and a raw material liquid containing a liquid medium.
    The concentrate is
    Brix value is 50 or more and
    The absorbance at 450 nm in ultraviolet-visible spectroscopy is 0.1 or more and 1.0 or less.
    Grocery.
  15.  前記濃縮液についての紫外可視分光分析における450nmでの吸光度が0.2以上0.8以下である、請求項14に記載の食料品。 The food product according to claim 14, wherein the absorbance at 450 nm in the ultraviolet-visible spectroscopic analysis of the concentrated solution is 0.2 or more and 0.8 or less.
  16.  前記原料液が、メープル樹液またはココナッツ液体胚乳である、請求項14または15に記載の食料品。 The food product according to claim 14 or 15, wherein the raw material liquid is maple sap or coconut liquid endosperm.
PCT/JP2021/010432 2020-03-19 2021-03-15 Concentration method for raw material liquid WO2021187438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-049979 2020-03-19
JP2020049979A JP2021146297A (en) 2020-03-19 2020-03-19 Raw material liquid concentration system and raw material liquid concentration method

Publications (1)

Publication Number Publication Date
WO2021187438A1 true WO2021187438A1 (en) 2021-09-23

Family

ID=77770874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010432 WO2021187438A1 (en) 2020-03-19 2021-03-15 Concentration method for raw material liquid

Country Status (2)

Country Link
JP (1) JP2021146297A (en)
WO (1) WO2021187438A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122564A1 (en) * 2022-12-07 2024-06-13 旭化成株式会社 Method for regenerating semipermeable membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070448A (en) * 2001-08-27 2003-03-11 Lb Maple Treat Inc Beverage containing maple sap
JP2016150308A (en) * 2015-02-17 2016-08-22 株式会社ササクラ Concentration apparatus and concentration method for oral or external application
WO2019098390A1 (en) * 2017-11-20 2019-05-23 旭化成株式会社 System for concentrating solvent-containing articles, and concentrate
JP2019528796A (en) * 2016-10-03 2019-10-17 ココ ファウンテン エルエルシー Concentrated coconut water that can be stored at room temperature and method for producing the same
JP2021052682A (en) * 2019-09-30 2021-04-08 旭化成株式会社 Concentrated liquid containing sugar, concentration system, and concentration method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003070448A (en) * 2001-08-27 2003-03-11 Lb Maple Treat Inc Beverage containing maple sap
JP2016150308A (en) * 2015-02-17 2016-08-22 株式会社ササクラ Concentration apparatus and concentration method for oral or external application
JP2019528796A (en) * 2016-10-03 2019-10-17 ココ ファウンテン エルエルシー Concentrated coconut water that can be stored at room temperature and method for producing the same
WO2019098390A1 (en) * 2017-11-20 2019-05-23 旭化成株式会社 System for concentrating solvent-containing articles, and concentrate
JP2021052682A (en) * 2019-09-30 2021-04-08 旭化成株式会社 Concentrated liquid containing sugar, concentration system, and concentration method

Also Published As

Publication number Publication date
JP2021146297A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
Cassano et al. Clarification of pomegranate juice (Punica granatum L.) by hollow fibre membranes: Analyses of membrane fouling and performance
WO2019098390A1 (en) System for concentrating solvent-containing articles, and concentrate
Ilame et al. Application of membrane separation in fruit and vegetable juice processing: a review
Cassano et al. A comprehensive review of membrane distillation and osmotic distillation in agro-food applications
Tasselli et al. Ultrafiltration of kiwifruit juice using modified poly (ether ether ketone) hollow fibre membranes
Shi et al. The extraction of tobacco protein from discarded tobacco leaf by hollow fiber membrane integrated process
JP7423236B2 (en) Raw material liquid concentration system and food manufacturing method
JPWO2020050282A1 (en) Raw material liquid flow concentration system
WO2021187438A1 (en) Concentration method for raw material liquid
Terefe et al. Forward osmosis: A novel membrane separation technology of relevance to food and related industries
JP7223599B2 (en) Raw material concentration system
WO2020241795A1 (en) Raw material solution concentration system
Estedlali et al. Investigating performance of fabricated electrospun polyethersulfone/Zeolite Y composite nanofibers in concentrate lemon juice by the osmotic membrane distillation process
Ganorkar et al. Reverse Osmosis for Fruit Juice Concentration—A Review
Cassano et al. Quality of Kiwifruit Juice Clarifed by Modifed Poly (Ether Ether Ketone) Hollow Fiber Membranes
JPS6138207B2 (en)
JP2004121608A (en) Hollow fiber membrane for dialysis liquid purification, and method for producing the same
Cassano et al. Membrane-based operations and integrated membrane systems in fruit juice processing
Cheryan Membrane concentration of liquid foods
Mounika et al. Recent Advances in Membrane Processing
Rehman et al. Applications of Membrane Contactors in Food Industry
Praneeth et al. Development of polyethersulfone and polyacrylonitrile hollow fiber membranes for clarification of surface water and fungal enzyme broth
Noraâ et al. Preparation and Characterization of Asymmetric Ultrafiltration Membrane for Lysozyme Separation: Effect of Polymer Concentration
JPH0398563A (en) Concentration of beverage liquid
Chio et al. A Study of Fouling in Egg-white Concentration by Ultrafiltration with Tubular Module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771355

Country of ref document: EP

Kind code of ref document: A1