WO2021182614A1 - Positive electrode for secondary cells, method for manufacturing positive electrode for secondary cells, and secondary cell - Google Patents
Positive electrode for secondary cells, method for manufacturing positive electrode for secondary cells, and secondary cell Download PDFInfo
- Publication number
- WO2021182614A1 WO2021182614A1 PCT/JP2021/010083 JP2021010083W WO2021182614A1 WO 2021182614 A1 WO2021182614 A1 WO 2021182614A1 JP 2021010083 W JP2021010083 W JP 2021010083W WO 2021182614 A1 WO2021182614 A1 WO 2021182614A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- solution
- sponge
- secondary battery
- electrolyte
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims description 65
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 87
- 229920001021 polysulfide Polymers 0.000 claims abstract description 84
- 239000005077 polysulfide Substances 0.000 claims abstract description 82
- 150000008117 polysulfides Polymers 0.000 claims abstract description 82
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 59
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 57
- 239000011593 sulfur Substances 0.000 claims abstract description 57
- 239000000243 solution Substances 0.000 claims description 187
- 229910018091 Li 2 S Inorganic materials 0.000 claims description 146
- 239000000654 additive Substances 0.000 claims description 111
- 239000003792 electrolyte Substances 0.000 claims description 103
- 239000002904 solvent Substances 0.000 claims description 101
- 238000001035 drying Methods 0.000 claims description 99
- 230000000996 additive effect Effects 0.000 claims description 91
- 239000002041 carbon nanotube Substances 0.000 claims description 81
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 74
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 65
- 229910007354 Li2Sx Inorganic materials 0.000 abstract 1
- 229910013553 LiNO Inorganic materials 0.000 description 37
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 29
- 239000002131 composite material Substances 0.000 description 25
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 23
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 23
- 239000002243 precursor Substances 0.000 description 22
- 239000000843 powder Substances 0.000 description 21
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 18
- 229940021013 electrolyte solution Drugs 0.000 description 14
- 239000007774 positive electrode material Substances 0.000 description 14
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 239000002134 carbon nanofiber Substances 0.000 description 11
- 238000007599 discharging Methods 0.000 description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 11
- 238000001291 vacuum drying Methods 0.000 description 11
- 229910052744 lithium Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 9
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 239000011888 foil Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 6
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 6
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000002612 dispersion medium Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- 239000006260 foam Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002121 nanofiber Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 3
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 3
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- SUYRLXYYZQTJHF-VMBLUXKRSA-N dalfopristin Chemical compound O=C([C@@H]1N(C2=O)CC[C@H]1S(=O)(=O)CCN(CC)CC)O[C@H](C(C)C)[C@H](C)\C=C\C(=O)NC\C=C\C(\C)=C\[C@@H](O)CC(=O)CC1=NC2=CO1 SUYRLXYYZQTJHF-VMBLUXKRSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- -1 lithium transition metal Chemical class 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 3
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- JLQNHALFVCURHW-UHFFFAOYSA-N cyclooctasulfur Chemical compound S1SSSSSSS1 JLQNHALFVCURHW-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 2
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 239000002000 Electrolyte additive Substances 0.000 description 1
- 229910018077 Li 15 Si 4 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013188 LiBOB Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode for a secondary battery, a method for manufacturing a positive electrode for a secondary battery, and a secondary battery.
- a positive electrode using sulfur as a positive electrode active material is attracting attention.
- Sulfur has a theoretical capacity about 10 times higher than that of the positive electrode active material of the lithium transition metal composite oxide system, but has a problem of poor conductivity.
- sulfur when sulfur is used as the positive electrode active material, in order to obtain good secondary battery characteristics, it is necessary to use an excess amount of electrolyte solution that is about 10 times or more the sulfur content, and the energy density is high. There is a problem that the next battery cannot be obtained.
- the present inventors have higher self sponge-like structure of the CNT (carbon nanotube) having conductivity is used as the positive electrode current collector, the sulfur by holding the S 8 (octasulfur) to the sponge-like structure
- a positive electrode that can compensate for the low conductivity and can improve the energy density by not requiring a current collecting foil has been realized.
- this positive electrode it is necessary to use an excessive amount of electrolytic solution, and a secondary battery having a high energy density cannot be obtained.
- the Li 2 S x has a high solubility in the electrolyte solution.
- a method using a Li 2 S x a The dissolved Li 2 S x solution in the electrolyte (also referred to as a catholyte solution) have been studied, for also require an excessive amount of the electrolytic solution in this manner, the secondary battery The energy density cannot be increased. Therefore, in order to reduce the amount of electrolyte, Li 2 S x was is contained in the positive electrode current collector in the form of a solid positive electrode has been proposed (for example, Non-Patent Documents 1 and 2).
- Non-Patent Document 1 using the CNT form CNT is fixed to the carbide of polyacrylonitrile as a positive electrode current collector, it was added dropwise a Li 2 S 4 solution CNT form positive electrode produced by drying has been proposed ..
- Non-Patent Document 2 using the CNF film made from CNF (carbon nanofibers) as a positive electrode current collector, was added dropwise a Li 2 S 8 solution CNF membrane, a positive electrode was prepared by drying has been proposed ..
- the positive electrode of Non-Patent Document 1 has a positive electrode current collector having a thickness of 100 ⁇ m.
- the positive electrode of Non-Patent Document 2 has a positive electrode current collector having a thickness of 200 to 250 ⁇ m. Since each positive electrode described in Non-Patent Documents 1 and 2 has a thick positive electrode current collector and a small amount of sulfur per volume, it is not possible to increase the positive electrode capacitance density per volume, and the energy density of the secondary battery can be increased. Can't be raised.
- the present invention provides a method for manufacturing a positive electrode for a secondary battery and a positive electrode for the secondary battery, which has a high positive electrode capacity density per volume and can increase the energy density of the secondary battery, and a secondary battery having a high energy density.
- the purpose is to provide.
- the secondary battery according to the present invention is characterized in that the above-mentioned positive electrode, negative electrode and separator are provided in a container together with an electrolytic solution.
- the thickness of the sponge-like structure is less than 100 ⁇ m or 5 [mu] m, when representing the content of Li 2 S x spongy structure in sulfur per cathode volume, the amount of sulfur is 0.70 g / cm 3 or more 2.0 g / cm 3 or less, a thin since a sponge-like structure in a large amount of Li 2 S x are contained, the positive electrode capacity density is high per unit volume, the secondary battery It is possible to provide a method for manufacturing a positive electrode for a secondary battery and a positive electrode for the secondary battery thereof, which can increase the energy density, and a secondary battery having a high energy density.
- the positive electrode for a secondary battery (hereinafter referred to as a positive electrode) 10 is a self-supporting sponge-like structure 14 composed of CNTs (carbon nanotubes) 12 and having a thickness of 5 ⁇ m or more and less than 100 ⁇ m.
- the amount of sulfur is the mass of sulfur as an element contained in the unit volume of the electrode.
- the sponge-like structure 14 is a film having both porosity and independence, and is formed by entwining a plurality of CNTs 12 with each other.
- the sponge-like structure 14 holds the polysulfide 16 and an electrolytic solution described later.
- the sponge-like structure 14 functions as a positive electrode current collector for the positive electrode 10.
- the sponge-like structure 14 has a thickness of 5 ⁇ m or more and less than 100 ⁇ m. If the positive electrode current collector is too thick, the positive electrode capacitance density per positive electrode volume (also referred to as volume capacitance density) becomes small. When the positive electrode current collector is too thin, the amount that can hold Li 2 S x decreases, the positive electrode capacity density per cathode area (also referred to as the area capacity density) decreases.
- the thickness of the sponge-like structure 14 is particularly preferably 10 ⁇ m or more and 50 ⁇ m or less.
- the polysulfide 16 is supported on the CNT 12 of the sponge-like structure 14 in a solid state and is composited with the CNT 12.
- the polysulfide 16 may have a structure that covers the CNT 12 in an island shape, a structure that covers almost the entire surface of the CNT 12, a particle structure, or other predetermined structure.
- the polysulfide 16 functions as a positive electrode active material of the positive electrode 10.
- the amount of sulfur is 0.70 g / cm 3 or more and 2.0 g / cm 3 or less. If the content of the polysulfide 16 in the sponge-like structure 14 is too small, the volume volume density is lowered and the electrode performance cannot be improved. If the content of the polysulfide 16 in the sponge-like structure 14 is too large, the voids in the sponge-like structure 14 are filled, so that the electrolytic solution is insufficient and the diffusibility of lithium ions is lowered.
- the content of polysulfide 16 in the sponge-like structure 14 shall be 0.95 g / cm 3 or more and 1.6 g / cm 3 or less in terms of sulfur content. Is preferable.
- the length of CNT12 is preferably 1 ⁇ m or more.
- the length of the CNTs 12 is 1 ⁇ m or more, the plurality of CNTs 12 are entangled with each other, and the independence of the sponge-like structure 14 is ensured.
- the average diameter of CNT12 is preferably 20 nm or less.
- the average diameter of CNT12 is more preferably 15 nm or less, and particularly preferably 10 nm or less.
- the specific surface area of CNT12 is preferably 200 m 2 / g or more.
- the specific surface area of CNT 12 is more preferably 300 m 2 / g or more, and particularly preferably 400 m 2 / g or more.
- the specific surface area of CNT12 is preferably 1300 m 2 / g or less. If the specific surface area of the CNTs 12 is too large, the CNTs 12 may strongly aggregate with each other, making it difficult to combine with the polysulfide 16.
- the specific surface area of CNT12 is more preferably 800 m 2 / g or less.
- CNT12 preferably has an average number of layers of 1 or more and 10 or less. As the average number of layers of the CNTs 12 is smaller, the CNTs 12 become more flexible and the plurality of CNTs 12 are more likely to be entangled with each other, so that the independence of the sponge-like structure 14 is more reliably ensured. However, if the average number of layers of CNT 12 is too small, the CNT 12 becomes too flexible and entangled with each other, so that it becomes difficult to disperse the raw material powder of CNT 12 and form the sponge-like structure 14. Further, if the average number of layers of the CNT 12 is too small, the specific surface area of the CNT 12 becomes too large.
- the average number of layers of CNT12 is more preferably 1 or more and 8 or less, and particularly preferably 2 or more and 5 or less.
- the positive electrode 10 When the secondary battery is constructed using the positive electrode 10, the positive electrode 10 is provided so as to be in contact with the separator.
- the thickness of the positive electrode 10 may be reversibly changed by charging and discharging the secondary battery.
- the positive electrode 10 may be one in which the thickness decreases during charging and increases during discharging.
- Li 2 S x is reduced during discharge to produce Li 2 S (lithium sulfide), and Li 2 S x is oxidized during charging to produce S 8 (octasulfur).
- the positive electrode 10 includes the sponge-like structure 14 as the positive electrode current collector, it is not necessary to include a separate current collector foil.
- the positive electrode does not include the current collecting foil, the mass and volume of the positive electrode can be reduced, and the positive electrode capacity density (also referred to as mass capacity density) and volume capacity density per positive electrode mass can be increased. It is more preferable to install a plurality of metal comb-shaped electrodes or thin wires because sufficient conductivity can be secured while reducing the mass of the metal.
- the thickness of the positive electrode 10 is substantially the same as the thickness of the sponge-like structure 14.
- CNT12 can be synthesized by a CVD (chemical vapor deposition) method.
- CVD chemical vapor deposition
- Examples of the CVD method include Japanese Patent No. 5447365, Japanese Patent No. 5862559, DY Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda, Carbon 49 (6), 1972-1979 (2011). )., Z. Chen, DY Kim, K. Hasegawa, T. Osawa, and S. Noda, Carbon 80, 339-350 (2014).
- CNT12 may be synthesized by a floating catalyst CVD method or a substrate-supported catalyst CVD method.
- the sponge-like structure 14 is prepared by dispersing CNT 12 in a dispersion medium to prepare a dispersion liquid, and removing the dispersion medium from this dispersion liquid.
- a dispersion medium water, an organic solvent, or the like is used.
- the organic solvent is ethanol, 2-propanol and the like.
- the dispersion medium is removed from the dispersion, for example by filtering the dispersion using a filter.
- CNT 12 forms a network by van der Waals force and accumulates on the surface of the filter to form a sponge-like structure 14.
- the sponge-like structure 14 is separated from the filter and collected as a free-standing film.
- the sponge-like structure 14 is dried using a dryer before or after separation from the filter, if necessary. Instead of filtering the dispersion liquid with a filter and drying it, the dispersion liquid may be applied and dried.
- the thickness of the sponge-like structure 14 and the mass of CNTs per unit volume of the positive electrode 10 (hereinafter referred to as CNT volume density) can be adjusted by performing a treatment such as pressing.
- the positive electrode 10 supplies a solution containing polysulfide 16 (hereinafter referred to as a solution of Li 2 S x ) to the sponge-like structure 14, and Li 2 S x in the sponge-like structure 14. It is obtained by sequentially carrying out a supply step S1 for holding the solution of Li 2 S x and a drying step S2 for drying the sponge-like structure 14 holding the solution of Li 2 S x and carrying the polysulfide 16 on the CNT 12.
- a solution containing polysulfide 16 hereinafter referred to as a solution of Li 2 S x
- a drying step S2 for drying the sponge-like structure 14 holding the solution of Li 2 S x and carrying the polysulfide 16 on the CNT 12.
- supplying step S1 first, preparing a solution of Li 2 S x.
- the solution of Li 2 S x is prepared by dispersing the powder of S 8 and the powder of Li 2 S in a solvent.
- the solvent for example, DME (1,2-dimethoxyethane) is used.
- the drying step S2 it is preferable to dry by Li 2 S x solutions sponge-like structure 14 to -58 ° C. or higher 90 ° C. below the temperature was maintained.
- the drying temperature By setting the drying temperature to ⁇ 58 ° C. or higher and 90 ° C. or lower, an appropriate amount of solvent molecules remain in the sponge-like structure 14, and Li 2 S x in which the solvent molecules are coordinated is the sponge-like structure 14. Is held in. Solvent molecules coordinated Li 2 S x is considered to improve the electrode performance. If the drying temperature is too low, the removal of solvent molecules will be inadequate. The drying temperature is too high, Li 2 S x is a state having a stable crystal structure, it is considered to inhibit the reaction between sulfur and lithium, it is difficult to improve the electrode performance.
- the drying temperature is more preferably 0 ° C. or higher and 90 ° C. or lower, and particularly preferably 20 ° C. or higher and 50 ° C. or lower.
- the lower limit of the drying temperature (-58 ° C.) is an example on the premise that DME is used as a solvent, and is based on the melting point of DME.
- the lower limit of the drying temperature may be arbitrarily changed depending on the type of solvent.
- the drying time can be set arbitrarily, but is preferably 1 second or more and 24 hours or less, and more preferably 10 seconds or more and 10 hours or less.
- the drying time is set so that an appropriate amount of solvent molecules remain in the sponge-like structure 14.
- the mass ratio of the solvent molecules remaining in the sponge-like structure 14 can be arbitrarily set, but is preferably 5% by mass or more and 80% by mass or less, and more preferably 20% by mass or more and 80% by mass or less. ..
- the mass ratio of the solvent molecules is a value obtained by dividing the mass of the solvent molecules by the mass of the positive electrode 10.
- the mass of the positive electrode 10 is the sum of the mass of the sponge-like structure 14, the mass of the polysulfide 16, and the mass of the solvent molecule. If the mass ratio of the solvent molecules is too large, it becomes difficult to reduce the E / S ratio in the secondary battery described later. If the mass ratio of the solvent molecules is too small, it becomes difficult to improve the electrode performance.
- the mass ratio of the solvent molecules may be reduced as long as it can be obtained.
- the mass ratio of the solvent molecules can be adjusted by adjusting at least one of the drying temperature and the drying time.
- the drying step S2 performs the normal pressure drying or vacuum drying the sponge-like structure 14 which holds the solution of Li 2 S x.
- Normal pressure drying is performed at a pressure substantially equal to atmospheric pressure.
- Vacuum drying (also referred to as vacuum drying) is carried out, for example, at a vapor pressure of 28 kPa or less at 50 ° C. of the solvent, preferably a vapor pressure of 6.6 kPa or less at 20 ° C. of the solvent. Vacuum drying enables uniform drying without causing uneven drying.
- S 8 is likely to evaporate or sublimate under reduced environment due to the high vapor pressure, Li 2 S x has not evaporate in a very small pressure environment vapor pressure.
- the sponge-like structure 14 holding the solution of Li 2 S x By drying the sponge-like structure 14 holding the solution of Li 2 S x in a reduced pressure environment, the evaporation of Li 2 S x is suppressed, and the polysulfide 16 can be reliably supported on the CNT 12. Therefore, in the drying step S2, it is preferable that the sponge-like structure 14 which holds the solution of Li 2 S x vacuum dried.
- the pressure for vacuum drying is an example on the premise that DME is used as a solvent, and is based on the vapor pressure of the solvent. The pressure for vacuum drying may be arbitrarily changed depending on the type of solvent.
- the secondary battery according to the present embodiment can be manufactured by installing the positive electrode 10, the negative electrode, the separator, and the electrolytic solution in the container.
- the secondary battery includes a positive electrode 10, a negative electrode, a separator, an electrolytic solution, and a container, and the positive electrode 10, the negative electrode, and the separator may have a configuration provided in the container together with the electrolytic solution, particularly. Not limited.
- the secondary battery may be one in which the positive electrode 10 and the negative electrode expand or contract due to charging / discharging, for example.
- a secondary battery in which the positive electrode 10 and the negative electrode expand or contract due to charging / discharging will be described.
- the secondary battery 20 (20A, 20B) includes a positive electrode 10 (10A, 10B), a negative electrode 22 (22A, 22B), and a separator 24.
- the electrolytic solution and the container are not shown.
- the secondary battery 20 is provided with a positive electrode 10 on one surface of the separator 24 and a negative electrode 22 on the other surface of the separator 24.
- the secondary battery 20A at the time of charging includes a contracted positive electrode 10A provided via the separator 24 and an expanded negative electrode 22A.
- the secondary battery 20B at the time of discharge includes an expanded positive electrode 10B provided via a separator 24 and a contracted negative electrode 22B.
- the area of the surface of the positive electrode 10 in contact with the separator 24 does not substantially change, the thickness decreases during charging (10A), and the thickness increases during discharging (10B). Expands or contracts as it changes.
- the positive electrode active material is polysulfide 16 (not shown) before the first charge / discharge, becomes S 8 (16 A) in the charged state, and becomes Li 2 S (16 B) in the discharged state.
- the negative electrode 22 various negative electrodes used in general secondary batteries can be used.
- the negative electrode active material 26 of the negative electrode 22 is charged and discharged by inserting and removing lithium ions (Li + ) into the gaps of the crystal structure of, for example, a carbon material (graphite (C) or the like) or lithium titanate.
- An active material that charges and discharges by reacting with a substance, lithium such as silicon to form a compound, lithium metal, and the like can be used.
- a substance, lithium such as silicon to form a compound, lithium metal, and the like.
- the negative electrode active material 26 it is desirable to use an active material whose volume changes by reacting with lithium such as silicon.
- the separator 24 can be made of a microporous polymer film.
- the microporous polymer film include polyolefin-based, polyester-based, polyacrylonitrile-based, polyphenylene sulfide-based, polyimide-based or fluororesin-based micropore membranes and non-woven fabrics.
- the separator 24 may be composed of a self-supporting sponge-like structure of insulating fibers.
- the insulating fiber is a BNNT (boron nitride nanotube) or an organic nanofiber. Examples of the organic nanofibers include cellulose nanofibers and chitin nanofibers.
- the electrolytic solution a commonly used electrolytic solution such as a non-aqueous electrolytic solution, an ionic liquid, and a gel electrolytic solution can be used.
- the electrolytic solution is, for example, 1.0 mol / L LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) and 0. It can be prepared by dissolving 2 mol / L of LiNO 3 (lithium nitrate).
- the E / S ratio indicating the ratio of the amount of the electrolytic solution to the amount of sulfur can be adjusted.
- the smaller the E / S ratio the smaller the mass of the secondary battery 20, and the higher the energy density of the secondary battery 20 can be.
- the E / S ratio is preferably 8 or less, more preferably 5 or less.
- a metal can such as iron, stainless steel, or aluminum, which is generally used as a battery can, can be used. Further, a metal and polymer laminated sheet generally used for a laminated battery can also be used.
- the thickness of the sponge-like structure 14 is 5 ⁇ m or more and less than 100 ⁇ m.
- the amount of sulfur is 0.70 g / cm 3 or more and 2.0 g / cm 3 or less.
- the positive electrode 10 contains a large amount of polysulfide 16 in the thin sponge-like structure 14 and has a large amount of sulfur per volume, the positive electrode capacity density per volume (volume capacity density) is high, and the energy of the secondary battery is high.
- the density can be increased.
- the positive electrode 10 includes a sponge-like structure 14 having high conductivity as a positive electrode current collector and does not include a current collector foil, the mass and volume can be reduced, and the mass capacity density and volume capacity density can be increased. can.
- the positive electrode 10 can reduce the amount of the electrolytic solution used when forming the secondary battery 20, the mass and volume of the secondary battery 20 can be reduced, and the energy density of the secondary battery 20 can be increased. ..
- the present invention is not limited to the above embodiment, and can be appropriately modified within the scope of the gist of the present invention.
- Example Table 1 summarizes the positive electrode configurations and electrode performances of Examples 1 to 21 and Comparative Examples 1 to 3.
- Examples 1 to 21 are positive electrodes produced by using the above-mentioned method for producing a positive electrode 10.
- Comparative Example 1 is a positive electrode described in Non-Patent Document 1.
- a CNT foam in which CNTs are immobilized by thermal decomposition of polyacrylonitrile, that is, carbonization is used as a positive electrode current collector.
- the CNT form is described in Document [14] (C. Shen, et al., Electrochimica Acta. 248, 90 (2017).) Cited in Non-Patent Document 1.
- Comparative Examples 2 and 3 are positive electrodes described in Non-Patent Document 2.
- a CNF film composed of CNF (carbon nanofiber) is used as a positive electrode current collector.
- the sponge-like structure composed of CNTs, the CNT foam, and the CNF film are carbon matrices formed of a carbon material.
- the description "CNT” in Table 1 indicates the carbon material constituting the above carbon matrix, and includes not only CNT but also CNF.
- the film thickness (a) in Table 1 indicates the thickness of the positive electrode. Actually measured values were used in Examples 1 to 21.
- Comparative Example 1 the numerical value of the film thickness (100 ⁇ m) of the CNT foam described in Non-Patent Document 1 was used.
- Comparative Example 2 the numerical value of the minimum value (200 ⁇ m) of the film thickness of the CNF film described in Non-Patent Document 2 was used.
- Comparative Example 3 the numerical value of the maximum value (250 ⁇ m) of the film thickness of the CNF film described in Non-Patent Document 2 was used.
- the type of sulfur (b) indicates the type of polysulfide supported on the CNT.
- Li 2 S 6 was used in Example 5.
- Li 2 S 4 was used in Example 6.
- Li 2 S 8 was used in Comparative Example 1, Li 2 S 4 described in Non-Patent Document 1 is described.
- Comparative Examples 2 and 3 Li 2 S 8 described in Non-Patent Document 2 is described.
- Diameter (c) indicates the diameter of the positive electrode. Actually measured values were used in Examples 1 to 21. In Comparative Example 1, since it is not described in Non-Patent Document 1, it is displayed as "-". In Comparative Examples 2 and 3, the numerical value of the diameter (10 mm) described in Non-Patent Document 2 was used.
- CNT (d) indicates the mass of CNT contained in the positive electrode.
- Examples 1 to 21 the numerical values of 0.6 to 4.2 mg, which is the mass of CNTs used in the production of each positive electrode, are described.
- Comparative Example 1 since it is not described in Non-Patent Document 1, it is displayed as "-”.
- Comparative Examples 2 and 3 since it is not described in Non-Patent Document 2, it is displayed as "-".
- Sulfur (e) indicates the mass of sulfur contained in the positive electrode.
- Examples 1 to 21 numerical values of 1.1 to 8.4 mg, which is the mass of sulfur used in the production of each positive electrode, are described.
- Comparative Example 1 since it is not described in Non-Patent Document 1, it is displayed as "-”.
- Comparative Examples 2 and 3 since it is not described in Non-Patent Document 2, it is displayed as "-".
- the CNT surface density (f) indicates the mass of CNTs per positive electrode area.
- the numerical value (1.7 mg / cm 2 ) described in Non-Patent Document 2 was used.
- Comparative Example 3 the numerical value (2.2 mg / cm 2 ) described in Non-Patent Document 2 was used.
- the sulfur surface density (g) indicates the amount of sulfur per positive electrode area.
- the numerical value (6 mg / cm 2 ) described in Non-Patent Document 2 was used.
- the CNT volume density (h) was calculated by dividing the CNT surface density (f) by the film thickness (a).
- the sulfur loading mass (i) indicates the mass of sulfur per unit volume of the positive electrode, and was calculated by dividing the sulfur surface density (g) by the film thickness (a).
- the E / S ratio (j) is the volume of the residual solvent molecule obtained by dividing the mass of the solvent molecule remaining in the sponge-like structure 14 by the density of the solvent, and the mass of the additionally charged electrolytic solution as the density of the electrolytic solution.
- the volume of the additional electrolyte obtained by dividing by is totaled, and the total volume is divided by the amount of sulfur to calculate.
- Examples 1 to 21 it was set to 4.0 to 8.0.
- Comparative Example 1 the numerical value (4.4 ⁇ L / mg) described in Non-Patent Document 1 was used.
- Comparative Examples 2 and 3 it was calculated by dividing the amount of electrolytic solution (10 ⁇ L / cm 2 ) described in Non-Patent Document 2 by the amount of sulfur (6 mg / cm 2).
- the drying conditions are the same, the drying temperature is 45 ° C., the drying time is 60 minutes, and the drying time is normal. Drying under pressure (normal pressure drying) was performed. Other examples will be described with reference to Table 2 described later, but the drying conditions are different.
- the electrode performance will be described.
- the positive electrode of Examples 1 to 21 was housed in a container together with the negative electrode, the separator and the electrolytic solution to prepare a test cell.
- As the negative electrode a lithium foil having a thickness of 50 ⁇ m was used.
- the separator used was made of polypropylene.
- the electrolytic solution was prepared by dissolving 1.0 mol / L LiTFSI and 0.2 mol / L LiNO 3 in a mixed solution in which DOL and DME were mixed at a volume ratio of 1: 1.
- Each of the prepared test cells was subjected to a charge / discharge cycle test at a C rate (Capacity rate) of 0.1 C or 0.05 C, and the mass reference capacity (k) was measured.
- Charging and discharging of Examples 1 to 6, 8 to 13, 16 to 20 was carried out at a C rate of 0.1 C, and charging and discharging of Examples 7, 14, 15 and 21 were carried out at a C rate of 0.05 C.
- the area reference capacity (l) was calculated by multiplying the mass reference capacity (k) by the sum of the CNT surface density (f) and the sulfur surface density (g).
- the volume reference capacity (m) was calculated by dividing the area reference capacity (l) by the film thickness (a).
- the mass reference capacitance (k), the area reference capacitance (l), and the volume reference capacitance (m) were defined as the electrode performance.
- Table 1 shows the maximum value of the mass reference capacity (k) measured in the charge / discharge cycle test, and the area reference capacity (l) and the volume reference capacity (m) calculated based on the mass reference capacity (k). ing.
- the mass-based capacitance (k) of Comparative Example 1 is the sulfur areal density (g) based on the mass-based numerical value (680 mAh / g sulfur ) of sulfur obtained from the discharge profile (Fig. 5b) described in Non-Patent Document 1. , And the value obtained by dividing by the sum of the CNT areal density (f) and the sulfur areal density (g) was used.
- the mass reference capacity (k) of Comparative Example 2 is obtained by multiplying the mass reference value (900 mAh / g sulfur ) of sulfur described in Non-Patent Document 2 by the sulfur areal density (g) to obtain the CNT areal density (f). The value obtained by dividing by the sum of the sulfur areal densities (g) was used.
- the area reference capacity (l) and the volume reference capacity (m) of Comparative Examples 1 to 3 were calculated based on the mass reference capacity (k) as in the examples.
- Table 2 summarizes the relationship between the drying conditions, the DME residual ratio, and the mass reference capacity in the drying step S2 when producing the positive electrodes of Examples 9 to 13.
- Example 13 drying (vacuum drying) was performed at a drying time of 0.17 minutes (10 seconds) and a drying temperature of 20 ° C. (normal temperature) by reducing the pressure so that the pressure difference from the atmospheric pressure was ⁇ 0.1 MPa. rice field.
- Example 9 vacuum drying was performed at a drying time of 10 minutes and a drying temperature of 20 ° C.
- Example 12 vacuum drying was performed at a drying time of 60 minutes and a drying temperature of 20 ° C.
- Example 11 as described above, drying was performed at normal pressure (normal pressure drying) at a drying time of 60 minutes and a drying temperature of 45 ° C.
- atmospheric drying was carried out at a drying time of 60 minutes and a drying temperature of 90 ° C.
- Table 2 shows the mass reference capacities of the first cycle (1st cycle) and the second cycle (2nd cycle) measured in the charge / discharge cycle test.
- Example 9 From Table 2, it was confirmed that Examples 9, 11 to 13 having a drying temperature of 45 ° C. or lower had a larger DME residual ratio and mass reference capacity than Example 10 having a drying temperature of 90 ° C. Comparing Examples 10 and 11, it was confirmed that in Example 11 having a drying temperature of 45 ° C., the DME residual ratio and the mass reference capacity were larger than those in Example 10 having a drying temperature of 90 ° C. It can be seen that the lower the drying temperature, the higher the DME residual rate and the mass reference capacity tend to be obtained. It was confirmed that the highest DME residual ratio and mass reference capacity were obtained in Example 13 in which vacuum drying was performed at room temperature (20 ° C.) for a short time (10 seconds). Comparing Example 11 having a drying temperature of 45 ° C.
- Example 11 is more than Example 9 and 12 and 13 in terms of mass reference capacity in the first cycle.
- the mass reference capacity of the second cycle was about the same in Example 11 and Examples 9, 12 and 13. Comparing Examples 9, 12 and 13 in which vacuum drying was performed, in Example 13 having a drying time of 10 seconds, from Example 9 having a drying time of 10 minutes and Example 12 having a drying time of 60 minutes.
- the DME residual ratio and the mass reference capacity were large. It can be seen that the shorter the drying time, the higher the DME residual rate and the mass reference capacity tend to be obtained.
- Second Embodiment 2-1 Overall configuration
- the polysulfide 16 is contained in the sponge-like structure 14 composed of CNTs 12, but in the second embodiment, the polysulfides are contained in the sponge-like structure composed of CNTs.
- electrolytes and / or additives are further included.
- the polysulfide composite 36 is supported on the CNT 32 of the sponge-like structure 34 in a state of being dissolved in a solvent molecule remaining in the solid, semi-solid, or sponge-like structure 34, and is composited with the CNT 32. That is, the polysulfide, electrolyte and / or additive constituting the polysulfide composite 36 is supported on the CNT 32 of the sponge-like structure 34 and is composited with the CNT 32.
- the polysulfide composite 36 may have a structure that covers the CNT 32 in an island shape, a structure that covers almost the entire surface of the CNT 32, a particle structure, or other predetermined structure.
- the content of polysulfide in the sponge-like structure 34 is 0.70 g / cm 3 or more and 2.0 g / cm 3 or less, preferably 0.95 g / cm 3 or more 1 in terms of sulfur content, as in the first embodiment. .6 g / cm 3 or less.
- Examples of the electrolyte constituting the polysulfide complex 36 include LiTFSI, lithium bis (perfluoroethanesulfonyl) imide (LiBETI), LiClO 4 , LiBF 4 , LiPF 6 , lithium trifluoromethanesulfonate (Li triflate), and lithium bis (oxalate) borate. (LiBOB), lithium bis (fluorosulfonyl) imide (LiFSI), LiCF 3 BO 3 , Li bromide, Li iodide and the like. LiNO 3 described later as an additive can also be used as an electrolyte.
- the content of the electrolyte in the sponge-like structure 34 can be, for example, a desired electrolytic mass to be contained in the final secondary battery, but is not limited to this, and may be, for example, less than the desired electrolytic mass. ..
- Examples of the additive constituting the polysulfide complex 36 include LiNO 3 , ammonium bis (trifluorosulfonyl) imide (NH 4 TFSI), fluoroethylene carbonate (FEC) and the like.
- the electrolyte constituting the above-mentioned polysulfide complex 36 can also be used as an additive.
- the content of the additive in the sponge-like structure 34 can be, for example, a desired additive amount to be contained in the final secondary battery, but is not limited to this, and is, for example, less than the desired additive amount. May be.
- the electrolyte and / or the additive constituting the electrolytic solution of the secondary battery is previously supported on the sponge-like structure 34. Therefore, when manufacturing the secondary battery, it is possible to inject only the solvent of the electrolytic solution, or inject the electrolytic solution having a small concentration of the electrolyte and / or the additive. Since the electrolytic solution consisting only of the solvent and the electrolytic solution having a small concentration of the electrolyte and / or the additive have a low viscosity, it easily penetrates into the positive electrode 30, the negative electrode and the separator, and the amount of the electrolytic solution of the secondary battery can be reduced. The E / S ratio can be reduced.
- the Li 2 S x composite solution is prepared by dispersing the S 8 powder, the Li 2 S powder, the electrolyte powder, and the additive powder in a solvent.
- powder of the powder and Li 2 S of S 8 to the mixed solution of the additive and a mixed solution of the additive and the electrolyte was prepared, the prepared electrolyte by causing the powder additive and the electrolyte powder is dissolved in a solvent by dissolving with stirring by adding bets can be prepared Li 2 S x composite solution.
- a method of supplying the Li 2 S x composite solution to the sponge-like structure 34 a method of dropping the solution onto the sponge-like structure 34 or the like can be used as in the supply step S1 in the first embodiment.
- Li 2 S x as the solvent for the complex solution for example, DME, liquid mixture of the DOL and DME, 1,2-diethoxyethane (DEE), diethylene glycol dimethyl ether (G2), triethylene glycol dimethyl ether (G3), Tetraethylene glycol dimethyl ether (G4), hydrofluoro ether (HFE), N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMA), 1,3-dimethyl-2-imidazolidinone (DMI) , 1-Methylimidazole (Melm), ethylmethylsulfone, sulfolane (SL), dimethylsulfoxide (DMSO), acetonitrile (AN), tetrahydrofuran (THF), fluoroethylene carbonate (FEC) and the like can be used.
- DME liquid mixture of the DOL and DME
- DEE 1,2-diethoxyethane
- G2 diethylene glycol dimethyl
- Li 2 S x composite solution containing a polysulfide electrolyte and additives to the sponge-like structure 34 is not limited to this. It a Li 2 S x composite solution containing polysulfide and the electrolyte may be supplied to the sponge-like structure 34, to supply Li 2 S x composite solution containing a polysulfide and additives spongy structure 34 You may.
- Li 2 S x composite solution was supplied to the sponge-like structure 34, but in the second method, the solution containing the polysulfide (Li 2 S x ) (Li 2 S x solution) was used.
- the solution containing the electrolyte (solution of the electrolyte) and the solution containing the additive (solution of the additive) are supplied to the sponge-like structure 34, respectively.
- the solution of Li 2 S x is prepared by dispersing the powder of S 8 and the powder of Li 2 S in a solvent.
- the electrolyte solution is prepared by dissolving the electrolyte powder in a solvent.
- the additive solution is prepared by dissolving the additive powder in a solvent.
- the method of supplying the solution of Li 2 S x, the solution of the electrolyte, and the solution of the additive to the sponge-like structure 34 is the same as in the supply step S1 in the first embodiment, and the solution is dropped onto the sponge-like structure 34. A method or the like can be used.
- the solvent used for preparing each solution may be the same solvent or different solvents.
- the solvent of Li 2 S x for example, DME, liquid mixture of the DOL and DME, 1,2-diethoxyethane (DEE), diethylene glycol dimethyl ether (G2), triethylene glycol dimethyl ether (G3), tetraethylene Glycol dimethyl ether (G4), hydrofluoro ether (HFE), N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMA), 1,3-dimethyl-2-imidazolidinone (DMI), 1 -Methylimidazole (Melm), ethylmethylsulfone, sulfolane (SL), dimethyl sulfoxide (DMSO), acetonitrile (AN), tetrahydrofuran (THF), fluoroethylene carbonate (FEC) and the like can be used.
- DME liquid mixture of the DOL and DME
- DEE 1,2-diethoxyethane
- G2 diethylene glycol dimethyl
- the solvent of the electrolyte for example, in addition to the solvent of the above Li 2 S x, it may be an organic solvent such as an alcohol-based or carbonate-based (ethanol, ethylene carbonate, etc.).
- water can be used as the solvent in addition to the above-mentioned organic solvent.
- the solvent of the additive for example, the organic solvent of the above-mentioned electrolyte can be used.
- water can be used as a solvent in addition to the above-mentioned organic solvent.
- the order to supply each solution is not particularly limited. That is, the order of supplying each solution to the sponge-like structure 34 is Li 2 S x solution, additive solution, electrolyte solution, electrolyte solution, additive solution, Li 2 S x solution. solution sequentially, the solution of the electrolyte, a solution of Li 2 S x, the order of the solution of the additive, the solution of the additive, the solution of the electrolyte, the order of the solution of Li 2 S x, solution additives, Li 2 S x , The solution of the electrolyte may be in this order.
- the drying step between each supply step may be omitted as appropriate.
- a solution of Li 2 S x, the solution of the electrolyte, but the three solutions of a solution of the additive was fed to the sponge-like structure 34, three solutions of electrolyte solutions or additives out of solution Two kinds of solutions except the above may be supplied.
- the order in which the two solutions are supplied to the sponge-like structure 34 is not particularly limited. That is, the order for supplying the solution to the sponge-like structure 34, a solution of Li 2 S x, the order of the solution of additive, solution additives, the order of the solution of Li 2 S x, of Li 2 S x solution, the order of the solution of the electrolyte solution of the electrolyte, may be the order of the solution of Li 2 S x.
- the drying step between each supply step may be omitted as appropriate.
- the electrolyte solution and the additive may be supplied to the sponge-like structure 34 in an air environment.
- the number of processes performed in the argon (Ar) environment can be reduced, and the manufacturing cost and the burden on the environment can be suppressed.
- sponge and a solution of the solution and the additive of the electrolyte after drying is supplied to the sponge-like structure 34 in an air environment, in feed and drying to sponge-like structure 34 of a solution of Li 2 S x
- the manufacturing cost and the burden on the environment can be suppressed, and the positive electrode 30 can be efficiently manufactured.
- a solution containing polysulfide (Li 2 S x ) (a solution of Li 2 S x ) is supplied to the sponge-like structure 34, and the sponge-like structure 34 is contained.
- the positive electrode 30 is manufactured by carrying out a drying step of drying the third positive electrode precursor. Since each drying step in the third method is the same as the drying step S2 (see FIG. 3) of the first embodiment, the description thereof will be omitted.
- the solution of Li 2 S x is prepared by dispersing the powder of S 8 and the powder of Li 2 S in a solvent.
- the electrolyte and additive solutions are prepared by dissolving the electrolyte powder and the additive powder in a solvent.
- the method of supplying the solution of Li 2 S x, the solution of the electrolyte and the additive to the sponge-like structure 34 is a method of dropping the solution onto the sponge-like structure 34, similarly to the supply step S1 in the first embodiment. Can be used.
- the solvent used for preparing each solution may be the same solvent or different solvents.
- the solvent for the li 2 S x the as with the second method, for example, DME, liquid mixture of the DOL and DME, 1,2-diethoxyethane (DEE), diethylene glycol dimethyl ether (G2), tri Ethylene glycol dimethyl ether (G3), tetraethylene glycol dimethyl ether (G4), hydrofluoro ether (HFE), N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMA), 1,3-dimethyl-2 -Imidazoridinone (DMI), 1-methylimidazole (Melm), ethyl methyl sulfone, sulfolane (SL), dimethyl sulfoxide (DMSO), acetonitrile (AN), tetrahydrofuran (THF), fluoroethylene carbonate (FEC), etc.
- DME liquid mixture of the DOL and DME
- DEE 1,2-diethoxyethane
- G2 diethylene
- the solvent of the electrolyte and additives for example, in addition to the solvent of the above Li 2 S x, it may be an organic solvent such as an alcohol-based or carbonate-based (ethanol, ethylene carbonate, etc.).
- the order to supply the two solutions to a sponge-like structure 34 contains a polysulfide and Li 2 S x composite solution containing an electrolyte
- the order of the solution of additive, solution additives, polysulfide and the electrolyte order Li 2 S x composite solution, Li 2 S x composite solution containing polysulphide and additives
- the order of the solution of the electrolyte solution of the electrolyte as the order of Li 2 S x composite solution containing polysulphide and additives good.
- the drying step between each supply step may be omitted as appropriate.
- a solution of the electrolyte and the additive When the electrolyte and the additive are materials that do not react with water, a solution of the electrolyte and the additive, a solution of the electrolyte, and a solution of the additive may be supplied to the sponge-like structure 34 in an air environment.
- a solution of the electrolyte and the additive By supplying the electrolyte and additive solution, the electrolyte solution, and the additive solution to the sponge-like structure 34 in the air environment, the number of processes performed in the Ar environment can be reduced, and the manufacturing cost and the burden on the environment can be suppressed. Be done.
- a solution of the electrolyte and additives after drying is supplied to the sponge-like structure 34 in an air environment, sponge-like structure at the feed and drying steps to sponge-like structure 34 of a solution of Li 2 S x
- the manufacturing cost and the load on the environment can be suppressed, and the positive electrode 30 can be efficiently manufactured.
- the electrolyte and / or the additive constituting the electrolytic solution of the secondary battery is previously supported on the sponge-like structure 34. can do. Therefore, when manufacturing the secondary battery, it is possible to inject only the solvent of the electrolytic solution, or inject the electrolytic solution having a small concentration of the electrolyte and / or the additive. Since the electrolytic solution consisting only of the solvent and the electrolytic solution having a small concentration of the electrolyte and / or the additive have a low viscosity, it easily penetrates into the positive electrode 30, the negative electrode and the separator, and the amount of the electrolytic solution of the secondary battery can be reduced.
- the E / S ratio can be reduced. Therefore, according to the first to third methods according to the second embodiment, the amount of the electrolytic solution of the secondary battery is reduced to reduce the E / S ratio and mass of the secondary battery, and the secondary battery The energy density can be increased.
- a predetermined amount of the electrolyte and / or the additive can be previously supported on the sponge-like structure 34, so that the electrolytic mass and / or the addition to be contained in the electrolytic solution of the secondary battery.
- the electrolytic mass and / or the amount of the additive that can be supplied to the secondary battery is limited to the saturated solubility of the electrolyte and / or the additive in the solvent of the electrolytic solution, but the second embodiment. According to the first to third methods described above, a secondary battery containing an electrolyte and / or an additive having a saturation solubility or higher in the solvent of the electrolytic solution can be produced.
- the secondary battery according to the second embodiment can be manufactured by installing the positive electrode 30, the negative electrode, the separator, and the electrolytic solution in the container.
- the secondary battery according to the second embodiment includes a positive electrode 30, a negative electrode, a separator, an electrolytic solution, and a container, and has a configuration in which the positive electrode 30, the negative electrode, and the separator are provided in the container together with the electrolytic solution. It suffices if it exists, and is not particularly limited.
- the secondary battery 20 may be configured by using the positive electrode 30 according to the second embodiment instead of the positive electrode 10 according to the first embodiment.
- the electrolytic solution used in the secondary battery according to the second embodiment may be different from the electrolytic solution used in the secondary battery according to the first embodiment.
- an electrolytic solution prepared by dissolving 1.0 mol / L LiTFSI as an electrolyte and 0.2 mol / L LiNO 3 as an additive in a solvent is used, but in the second embodiment, for example.
- an electrolyte prepared by dissolving a smaller amount of the electrolyte and / or the additive than in the first embodiment in the solvent and containing a low concentration of the electrolyte and / or the additive You may.
- An electrolytic solution consisting only of a solvent or an electrolytic solution containing a low-concentration electrolyte and / or an additive has a low viscosity and easily penetrates into the positive electrode 30, the negative electrode and the separator, and reduces the amount of the electrolytic solution of the secondary battery.
- the E / S ratio can be reduced. Therefore, according to the secondary battery according to the second embodiment, the E / S ratio and mass of the secondary battery can be reduced and the energy density can be increased by reducing the amount of the electrolytic solution.
- the amount of the electrolytic solution and / or the amount of the additive that can be supplied is not limited to the saturated solubility of the electrolyte and / or the additive in the solvent of the electrolytic solution.
- the secondary battery according to the second embodiment can be supplied with an electrolyte and / or an additive having a saturation solubility or higher in the solvent of the electrolytic solution.
- the positive electrode 30 according to the second embodiment has Li 2 in a self-standing sponge-like structure 34 having a thickness of 5 ⁇ m or more and less than 100 ⁇ m composed of CNT 32, similarly to the positive electrode 10 according to the first embodiment.
- the positive electrode 30 contains a large amount of polysulfide in the thin sponge-like structure 34 and has a large amount of sulfur per volume, the positive electrode capacity density per volume (volume capacity density) is high, and the energy density of the secondary battery is high. Can be enhanced. Further, since the positive electrode 30 includes a sponge-like structure 34 having high conductivity as a positive electrode current collector and does not include a current collector foil, the mass and volume are reduced, and the mass capacity density and volume capacity density are increased. be able to. Further, since the positive electrode 30 can reduce the amount of the electrolytic solution used when forming the secondary battery, the mass and volume of the secondary battery can be reduced, and the energy density of the secondary battery can be increased.
- the positive electrode 30 according to the second embodiment is supported in advance in at least one of the electrolyte and the additive in the sponge-like structure 34 in addition to the polysulfide as the positive electrode active material. Therefore, when manufacturing the secondary battery, it is possible to inject only the solvent of the electrolytic solution, or to inject the electrolytic solution having a small concentration of the electrolyte and / or. Since the solvent of the electrolytic solution and the electrolytic solution having a low concentration of the electrolyte and / or are low in viscosity, they easily permeate into the positive electrode 30, the negative electrode and the separator, and the amount of the electrolytic solution of the secondary battery can be reduced. The ratio can be reduced. In the positive electrode 30 according to the second embodiment, the mass of the secondary battery is reduced and the energy density of the secondary battery is increased by reducing the amount of the electrolytic solution of the secondary battery to reduce the E / S ratio. Can be done.
- each solution A suitable solvent can be selected.
- water can be used as a solvent for the electrolyte and / or the additive, and the burden on the environment can be suppressed by not using an organic solvent.
- Li 2 with saturated solubility is high solvent of Li 2 S x in a solvent S x, uses a high saturation solubility in the electrolyte solvent in a solvent of the electrolyte, the saturation solubility of the additive in a solvent additive Higher solvents can be used.
- the process performed in the Ar environment can be reduced, so that the manufacturing cost and the burden on the environment can be suppressed. Be done.
- Example Table 3 summarizes the configurations of the positive electrodes and the electrode performance of Examples 22 to 28.
- (A) to (m) in Table 3 were measured or calculated by the same method as in the first embodiment.
- the charge / discharge cycle test of the test cell was performed at a C rate of 0.1 C.
- Table 4 summarizes the preparation conditions for the positive electrodes and test cells of Examples 22 to 28.
- the positive electrode of Example 22 was produced by using the method for producing a positive electrode 10 according to the first embodiment.
- the Li 2 S 8 solution was added dropwise to a sponge-like structure 14 in Ar environment, and vacuum dried in a drying time of 10 minutes.
- the Li 2 S 8 solution was prepared using DME as a solvent so as to contain 0.1 mg / ⁇ L of Li 2 S 8 equivalent to sulfur (S) as the positive electrode active material.
- S sulfur
- the positive electrode of Example 23 was produced by using the first method, which is an example of the method for producing the positive electrode 30 according to the second embodiment.
- the Li 2 S 8 complex solution was added dropwise to a sponge-like structure 34 in Ar environment, and dried in the same manner as in Example 22.
- the Li 2 S 8 composite solution uses DME as a solvent, Li 2 S 8 equivalent to 0.1 mg / ⁇ L sulfur (S) as the positive electrode active material, 0.4 M LiTFSI as the electrolyte, and 0.08 M as the additive. It was prepared to contain LiNO 3 of the above. M (molar) is synonymous with mol / L.
- the positive electrode of Example 23, a sponge-like structure 34, Li 2 S 8 of 4.64 mg, LiTFSI in 5.05mg, LiNO 3 of 0.24mg is supported, undried solvent 5.57mg has remained ..
- the positive electrode of Example 24 was produced by using the first method, which is an example of the method for producing the positive electrode 30 according to the second embodiment.
- the positive electrode of Example 25 was produced by using the second method, which is an example of the method for producing the positive electrode 30 according to the second embodiment.
- Example 25 was fed to the sponge-like structure 34 is divided Li 2 S 8, LiTFSI, a LiNO 3.
- a solution of Li 2 S 8 was added dropwise to the sponge-like structure 34 in an Ar environment, and the mixture was dried under reduced pressure with a drying time of 5 seconds to prepare a first positive electrode precursor.
- the LiTFSI solution was added dropwise to the first positive electrode precursor to prepare a second positive electrode precursor without drying.
- the LiNO 3 solution was added dropwise to the second positive electrode precursor, and the mixture was dried under reduced pressure with a drying time of 10 minutes.
- the solution of Li 2 S 8 was prepared using DME as a solvent so as to contain 0.1 mg / ⁇ L of Li 2 S 8 equivalent to sulfur (S) as the positive electrode active material.
- the LiTFSI solution was prepared so as to contain 0.1 g / mL LiTFSI using a mixed solution of DME and DOL mixed at a volume ratio of 1: 1 as a solvent.
- the LiNO 3 solution was prepared so as to contain 0.02 g / mL of LiNO 3 using a mixed solution of DME and DOL mixed at a volume ratio of 1: 1 as a solvent.
- the positive electrode of Example 25 a sponge-like structure 34, Li 2 S 8 of 4.19Mg, LiTFSI in 4.56 mg, LiNO 3 of 0.22mg is supported, undried solvent 1.24mg has remained ..
- the positive electrode of Example 26 was produced by using the second method, which is an example of the method for producing the positive electrode 30 according to the second embodiment.
- Example 26 first, a LiTFSI solution was dropped onto the sponge-like structure 34 in an air environment to prepare a first positive electrode precursor without drying.
- the LiNO 3 solution was added dropwise to the first positive electrode precursor in the air environment, and the mixture was dried under reduced pressure with a drying time of 10 minutes to prepare a second positive electrode precursor.
- a solution of Li 2 S 8 was added dropwise to the second positive electrode precursor in an Ar environment, and the mixture was dried under reduced pressure with a drying time of 10 minutes.
- the Li 2 S 8 solution, the LiTFSI solution, and the LiNO 3 solution were prepared under the same conditions as the respective solutions of Example 25.
- the positive electrode of Example 26 a sponge-like structure 34, Li 2 S 8 of 4.38Mg, LiTFSI in 4.77mg, LiNO 3 of 0.23mg is supported, undried solvent 4.11mg has remained .
- the positive electrode of Example 27 was produced by using the first method, which is an example of the method for producing the positive electrode 30 according to the second embodiment.
- the conditions for producing the positive electrode of Example 27 include Li 2 S 8 equivalent to 0.1 mg / ⁇ L of sulfur (S) as the positive electrode active material and 0.2 M LiNO 3 as the additive, using DME as the solvent. except prepared Li 2 S 8 complex solution that was used as were the same as the production conditions of the positive electrode of example 23. That is, in an Ar environment, the Li 2 S 8 composite solution was added dropwise to the sponge-like structure 34 and dried.
- the positive electrode of Example 28 was produced by using the second method, which is an example of the method for producing the positive electrode 30 according to the second embodiment.
- LiNO 3 and Li 2 S 8 were divided and supplied to the sponge-like structure 34.
- a LiNO 3 solution was added dropwise to the sponge-like structure 34 in an air environment, and the mixture was dried under reduced pressure with a drying time of 10 minutes to prepare a first positive electrode precursor.
- a solution of Li 2 S 8 was added dropwise to the first positive electrode precursor in an Ar environment, and the mixture was dried under reduced pressure with a drying time of 10 minutes.
- the Li 2 S 8 solution and the LiNO 3 solution were prepared under the same conditions as the Li 2 S 8 solution and the LiNO 3 solution of Example 26.
- test cells using the positive electrodes of Examples 22 to 28 will be described below.
- the positive electrode of Examples 22 to 28 was housed in a container together with the negative electrode, the separator and the electrolytic solution to prepare a test cell.
- the negative electrode a lithium foil having a thickness of 50 ⁇ m was used.
- the separator used was made of polypropylene.
- the solvent of the electrolytic solution a mixed solution in which DME and DOL were mixed at a volume ratio of 1: 1 was used.
- Example 22 had a large volume reference capacity and mass reference capacity.
- the LiTFSI concentration and the LiNO 3 concentration in the test cell are the positive electrodes of Example 22. Only the above solvent was injected as the electrolytic solution so as to be equivalent to the LiTFSI concentration and the LiNO 3 concentration of the electrolytic solution in the test cell. From Tables 3 and 4, it was confirmed that Examples 23 to 26 had a large volume reference capacity and mass reference capacity.
- LiNO 3 additive
- LiNO 3 additive
- LiNO 3 having a saturation solubility or higher in the solvent of the electrolytic solution in the secondary battery
- Li NO 3 is supported on the positive electrode of Example 27.
- the LiTFSI concentration was equivalent to the LiTFSI concentration (1 mol / L) of the electrolytic solution of Example 22, and the LiNO 3 concentration was the LiNO 3 concentration (0) of the electrolytic solution of Example 22.
- the concentration of LiNO 3 in the test cell was 1.04 mol / L due to the LiNO 3 supported on the positive electrode and the LiNO 3 contained in the electrolytic solution. rice field.
- the saturated solubility of LiNO 3 in DME is estimated to be about 1 mol / L (C. Burke et al., Proceedings of the National Academy of Sciences of the United States of America, 112, (2015) 9293. Etc. reference). Therefore, the test cell using the positive electrode of Example 27 is supplied with an additive (LiNO 3) having a saturation solubility or higher in the solvent of the electrolytic solution. From Tables 3 and 4, it was confirmed that Example 27 had a large volume reference capacity and mass reference capacity.
- the test cell using the positive electrode of Example 28 does not contain the electrolyte LiTFSI contained in the test cell using the positive electrode of Examples 22 to 27, and LiNO 3 supported on the positive electrode is made to function as an electrolyte. ing. In addition to Li 2 S 8 , Li NO 3 is supported on the positive electrode of Example 28.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Provided are: a positive electrode for secondary cells, that has high positive electrode capacity density per volume and can increase the energy density of secondary cells; a manufacturing method for said positive electrode for secondary cells; and a secondary cell having high energy density. A positive electrode 10 contains polysulfide 16 indicated by Li2Sx (x = 4, 6, 8) in a sulfur amount of 0.70 g/cm3 to 2.0 g/cm3, in a self-supporting sponge structure 14 comprising CNT 12 and having a thickness of at least 5 μm and less than 100 μm. The positive electrode 10 is manufactured by: causing the self-supporting sponge structure 14 comprising CNT 12 and having a thickness of at least 5 μm and less than 100 μm to contain polysulfide 16; and forming the CNT 12 and the polysulfide 16 into a complex. The secondary cell has a structure whereby the positive electrode 10, a negative electrode, and a separator are provided inside a container together with an electrolytic solution.
Description
本発明は、二次電池用正極、二次電池用正極の製造方法、二次電池に関する。
The present invention relates to a positive electrode for a secondary battery, a method for manufacturing a positive electrode for a secondary battery, and a secondary battery.
高容量の二次電池を実現するための正極として、硫黄を正極活物質として用いた正極が注目されている。硫黄は、リチウム遷移金属複合酸化物系の正極活物質の約10倍高い理論容量を有するが、導電性に乏しいという課題がある。また、硫黄を正極活物質として用いた場合、良好な二次電池の特性を得るために、硫黄の含有量の約10倍以上の過剰量の電解液を用いる必要があり、高エネルギー密度の二次電池が得られないという問題がある。本願発明者等は、高い導電性を有するCNT(カーボンナノチューブ)の自立したスポンジ状構造体を正極集電体として用い、このスポンジ状構造体にS8(八硫黄)を保持させることにより硫黄の導電性の低さを補うことができ、集電箔を必要としないことによりエネルギー密度を向上できる正極を実現した。しかしながら、この正極を用いても、過剰量の電解液を用いる必要があり、高エネルギー密度の二次電池が得られない。
As a positive electrode for realizing a high-capacity secondary battery, a positive electrode using sulfur as a positive electrode active material is attracting attention. Sulfur has a theoretical capacity about 10 times higher than that of the positive electrode active material of the lithium transition metal composite oxide system, but has a problem of poor conductivity. In addition, when sulfur is used as the positive electrode active material, in order to obtain good secondary battery characteristics, it is necessary to use an excess amount of electrolyte solution that is about 10 times or more the sulfur content, and the energy density is high. There is a problem that the next battery cannot be obtained. The present inventors have higher self sponge-like structure of the CNT (carbon nanotube) having conductivity is used as the positive electrode current collector, the sulfur by holding the S 8 (octasulfur) to the sponge-like structure A positive electrode that can compensate for the low conductivity and can improve the energy density by not requiring a current collecting foil has been realized. However, even if this positive electrode is used, it is necessary to use an excessive amount of electrolytic solution, and a secondary battery having a high energy density cannot be obtained.
一方、充電状態のS8と放電状態のLi2S(硫化リチウム)の反応中間体であるLi2Sx(x=4,6,8)で表されるリチウムポリスルフィド(多硫化リチウムともいい、以下、ポリスルフィドと称する)を正極材料として用いる研究も進められている。このLi2Sxは電解液に対し高い溶解性を有している。Li2Sxを電解液に溶解させたLi2Sx溶液(カソライト溶液ともいう)を用いる方法が研究されているが、この方法でも過剰量の電解液を必要とするため、二次電池のエネルギー密度を高めることができない。そこで、電解液の量を低減するために、Li2Sxを固体の状態で正極集電体に含有させた正極が提案されている(例えば、非特許文献1,2)。
On the other hand, lithium polysulfide (also referred to as lithium polysulfide) represented by Li 2 S x (x = 4, 6, 8), which is a reaction intermediate between S 8 in a charged state and Li 2 S (lithium sulfide) in a discharged state. Research is also underway to use (hereinafter referred to as polysulfide) as a positive electrode material. The Li 2 S x has a high solubility in the electrolyte solution. A method using a Li 2 S x a The dissolved Li 2 S x solution in the electrolyte (also referred to as a catholyte solution) have been studied, for also require an excessive amount of the electrolytic solution in this manner, the secondary battery The energy density cannot be increased. Therefore, in order to reduce the amount of electrolyte, Li 2 S x was is contained in the positive electrode current collector in the form of a solid positive electrode has been proposed (for example, Non-Patent Documents 1 and 2).
非特許文献1には、ポリアクリロニトリルの炭化物にCNTが固定されたCNTフォームを正極集電体として用い、CNTフォームにLi2S4溶液を滴下し、乾燥して作製した正極が提案されている。
Non-Patent Document 1, using the CNT form CNT is fixed to the carbide of polyacrylonitrile as a positive electrode current collector, it was added dropwise a Li 2 S 4 solution CNT form positive electrode produced by drying has been proposed ..
非特許文献2には、CNF(カーボンナノファイバー)から構成されたCNF膜を正極集電体として用い、CNF膜にLi2S8溶液を滴下し、乾燥して作製した正極が提案されている。
Non-Patent Document 2, using the CNF film made from CNF (carbon nanofibers) as a positive electrode current collector, was added dropwise a Li 2 S 8 solution CNF membrane, a positive electrode was prepared by drying has been proposed ..
非特許文献1の正極は、正極集電体の厚みが100μmとされている。非特許文献2の正極は、正極集電体の厚みが200~250μmとされている。非特許文献1,2に記載される各正極は、正極集電体が厚く、体積あたりの硫黄量が少ないので、体積あたりの正極容量密度を高めることができず、二次電池のエネルギー密度を高めることができない。
The positive electrode of Non-Patent Document 1 has a positive electrode current collector having a thickness of 100 μm. The positive electrode of Non-Patent Document 2 has a positive electrode current collector having a thickness of 200 to 250 μm. Since each positive electrode described in Non-Patent Documents 1 and 2 has a thick positive electrode current collector and a small amount of sulfur per volume, it is not possible to increase the positive electrode capacitance density per volume, and the energy density of the secondary battery can be increased. Can't be raised.
そこで本発明は、体積あたりの正極容量密度が高く、二次電池のエネルギー密度を高めることができる二次電池用正極及びその二次電池用正極の製造方法と、高エネルギー密度の二次電池を提供することを目的とする。
Therefore, the present invention provides a method for manufacturing a positive electrode for a secondary battery and a positive electrode for the secondary battery, which has a high positive electrode capacity density per volume and can increase the energy density of the secondary battery, and a secondary battery having a high energy density. The purpose is to provide.
本発明に係る二次電池用正極は、カーボンナノチューブから構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体中に、Li2Sx(x=4,6,8)で表されるポリスルフィドが、0.70g/cm3以上2.0g/cm3以下の硫黄量で含有されていることを特徴とする。
The positive electrode for a secondary battery according to the present invention, the sponge-like structure in which the self-supporting under constructed thickness 5μm or 100μm carbon nanotube is expressed by Li 2 S x (x = 4,6,8 ) It is characterized in that the polysulfide is contained in a sulfur amount of 0.70 g / cm 3 or more and 2.0 g / cm 3 or less.
本発明に係る二次電池用正極の製造方法は、カーボンナノチューブから構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体中にLi2Sx(x=4,6,8)で表されるポリスルフィドを含有させ、前記カーボンナノチューブと前記ポリスルフィドとを複合化することを特徴とする。
Table positive electrode manufacturing method for a secondary battery according to the present invention, the sponge-like structure in which the self-supporting under constructed thickness 5μm or 100μm carbon nanotube Li 2 S x (x = 4,6,8 ) It is characterized in that the carbon nanotube and the polysulfide are compounded by containing the polysulfide.
本発明に係る二次電池は、上記の正極、負極及びセパレータが、電解液とともに容器内に設けられていることを特徴とする。
The secondary battery according to the present invention is characterized in that the above-mentioned positive electrode, negative electrode and separator are provided in a container together with an electrolytic solution.
本発明によれば、スポンジ状構造体の厚みが5μm以上100μm未満であり、スポンジ状構造体中のLi2Sxの含有量を正極体積あたりの硫黄量で表したときの、当該硫黄量が0.70g/cm3以上2.0g/cm3以下であり、薄いスポンジ状構造体中に多量のLi2Sxが含有されているので、体積あたりの正極容量密度が高く、二次電池のエネルギー密度を高めることができる二次電池用正極及びその二次電池用正極の製造方法と、高エネルギー密度の二次電池を提供することができる。
According to the present invention, the thickness of the sponge-like structure is less than 100μm or 5 [mu] m, when representing the content of Li 2 S x spongy structure in sulfur per cathode volume, the amount of sulfur is 0.70 g / cm 3 or more 2.0 g / cm 3 or less, a thin since a sponge-like structure in a large amount of Li 2 S x are contained, the positive electrode capacity density is high per unit volume, the secondary battery It is possible to provide a method for manufacturing a positive electrode for a secondary battery and a positive electrode for the secondary battery thereof, which can increase the energy density, and a secondary battery having a high energy density.
以下、図面を参照して本実施形態について詳細に説明する。
Hereinafter, the present embodiment will be described in detail with reference to the drawings.
1.第1実施形態
1-1.全体構成
図1において、本実施形態に係る二次電池用正極(以下、正極と称する)10は、CNT(カーボンナノチューブ)12から構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体14中に、Li2Sx(x=4,6,8)で表されるポリスルフィド16が、0.70g/cm3以上2.0g/cm3以下の硫黄量で含有された構成を有する。硫黄量とは、電極単位体積あたりに含まれる元素としての硫黄の質量のことである。 1. 1. First Embodiment 1-1. Overall Configuration In FIG. 1, the positive electrode for a secondary battery (hereinafter referred to as a positive electrode) 10 according to the present embodiment is a self-supporting sponge-like structure 14 composed of CNTs (carbon nanotubes) 12 and having a thickness of 5 μm or more and less than 100 μm. during polysulfide 16 represented by Li 2 S x (x = 4,6,8 ) has a structure which is contained in the 0.70 g / cm 3 or more 2.0 g / cm 3 or less of sulfur content. The amount of sulfur is the mass of sulfur as an element contained in the unit volume of the electrode.
1-1.全体構成
図1において、本実施形態に係る二次電池用正極(以下、正極と称する)10は、CNT(カーボンナノチューブ)12から構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体14中に、Li2Sx(x=4,6,8)で表されるポリスルフィド16が、0.70g/cm3以上2.0g/cm3以下の硫黄量で含有された構成を有する。硫黄量とは、電極単位体積あたりに含まれる元素としての硫黄の質量のことである。 1. 1. First Embodiment 1-1. Overall Configuration In FIG. 1, the positive electrode for a secondary battery (hereinafter referred to as a positive electrode) 10 according to the present embodiment is a self-supporting sponge-
スポンジ状構造体14は、多孔性と自立性とを有する膜であり、複数のCNT12が互いに絡まり合うことにより形成される。スポンジ状構造体14は、ポリスルフィド16と後述する電解液とを保持する。スポンジ状構造体14は、正極10の正極集電体として機能する。
The sponge-like structure 14 is a film having both porosity and independence, and is formed by entwining a plurality of CNTs 12 with each other. The sponge-like structure 14 holds the polysulfide 16 and an electrolytic solution described later. The sponge-like structure 14 functions as a positive electrode current collector for the positive electrode 10.
スポンジ状構造体14は、厚みが5μm以上100μm未満である。正極集電体が厚すぎると、正極体積あたりの正極容量密度(体積容量密度ともいう)が小さくなる。正極集電体が薄すぎると、Li2Sxを保持できる量が少なくなるので、正極面積あたりの正極容量密度(面積容量密度ともいう)が小さくなる。スポンジ状構造体14の厚みは、10μm以上50μm以下であることが特に好ましい。
The sponge-like structure 14 has a thickness of 5 μm or more and less than 100 μm. If the positive electrode current collector is too thick, the positive electrode capacitance density per positive electrode volume (also referred to as volume capacitance density) becomes small. When the positive electrode current collector is too thin, the amount that can hold Li 2 S x decreases, the positive electrode capacity density per cathode area (also referred to as the area capacity density) decreases. The thickness of the sponge-like structure 14 is particularly preferably 10 μm or more and 50 μm or less.
ポリスルフィド16は、固体の状態でスポンジ状構造体14のCNT12に担持され、CNT12と複合化している。ポリスルフィド16は、CNT12をアイランド状に被覆するような構造、CNT12のほぼ全面を被覆するような構造、粒子状の構造、その他の所定の構造を取り得る。ポリスルフィド16は、正極10の正極活物質として機能する。
The polysulfide 16 is supported on the CNT 12 of the sponge-like structure 14 in a solid state and is composited with the CNT 12. The polysulfide 16 may have a structure that covers the CNT 12 in an island shape, a structure that covers almost the entire surface of the CNT 12, a particle structure, or other predetermined structure. The polysulfide 16 functions as a positive electrode active material of the positive electrode 10.
スポンジ状構造体14中のポリスルフィド16の含有量を、正極体積あたりの硫黄量で表したときに、当該硫黄量は、0.70g/cm3以上2.0g/cm3以下である。スポンジ状構造体14中のポリスルフィド16の含有量が少なすぎると、体積容量密度が低下し、電極性能を高めることができない。スポンジ状構造体14中のポリスルフィド16の含有量が多すぎると、スポンジ状構造体14の空隙が埋まることにより電解液が不足し、リチウムイオンの拡散性が低下してしまう。体積容量密度を高めつつ空隙の調整を容易にする観点から、スポンジ状構造体14中のポリスルフィド16の含有量は、硫黄量で0.95g/cm3以上1.6g/cm3以下であることが好ましい。
When the content of the polysulfide 16 in the sponge-like structure 14 is expressed by the amount of sulfur per positive electrode volume, the amount of sulfur is 0.70 g / cm 3 or more and 2.0 g / cm 3 or less. If the content of the polysulfide 16 in the sponge-like structure 14 is too small, the volume volume density is lowered and the electrode performance cannot be improved. If the content of the polysulfide 16 in the sponge-like structure 14 is too large, the voids in the sponge-like structure 14 are filled, so that the electrolytic solution is insufficient and the diffusibility of lithium ions is lowered. From the viewpoint of facilitating the adjustment of voids while increasing the volume volume density, the content of polysulfide 16 in the sponge-like structure 14 shall be 0.95 g / cm 3 or more and 1.6 g / cm 3 or less in terms of sulfur content. Is preferable.
CNT12は、長さが1μm以上であることが好ましい。CNT12の長さが1μm以上であることにより、複数のCNT12が互いに絡まり合って、スポンジ状構造体14としての自立性が確保される。
The length of CNT12 is preferably 1 μm or more. When the length of the CNTs 12 is 1 μm or more, the plurality of CNTs 12 are entangled with each other, and the independence of the sponge-like structure 14 is ensured.
CNT12は、平均直径が20nm以下であることが好ましい。CNT12の直径が小さいほど、スポンジ状構造体14としての柔軟性、自立性と導電性が向上する。CNT12の平均直径は、15nm以下であることがより好ましく、10nm以下であることが特に好ましい。
The average diameter of CNT12 is preferably 20 nm or less. The smaller the diameter of the CNT 12, the more flexible, self-supporting and conductive as the sponge-like structure 14. The average diameter of CNT12 is more preferably 15 nm or less, and particularly preferably 10 nm or less.
CNT12は、比表面積が200m2/g以上であることが好ましい。CNT12の比表面積が200m2/g以上であることにより、スポンジ状構造体14中のポリスルフィド16との界面が増え電気的接続が良好になり、スポンジ状構造体14中のポリスルフィド16の含有量を増やせるので、体積容量密度及び面積容量密度が向上する。CNT12の比表面積は、300m2/g以上であることがより好ましく、400m2/g以上であることが特に好ましい。また、CNT12の比表面積は、1300m2/g以下であることが好ましい。CNT12の比表面積が大きすぎると、CNT12が互いに強く凝集してポリスルフィド16との複合化が難しくなるおそれがある。CNT12の比表面積は、800m2/g以下であることがより好ましい。
The specific surface area of CNT12 is preferably 200 m 2 / g or more. When the specific surface area of the CNT 12 is 200 m 2 / g or more, the interface with the polysulfide 16 in the sponge-like structure 14 is increased and the electrical connection is improved, and the content of the polysulfide 16 in the sponge-like structure 14 is increased. Since it can be increased, the volume capacity density and the area capacity density are improved. The specific surface area of CNT12 is more preferably 300 m 2 / g or more, and particularly preferably 400 m 2 / g or more. The specific surface area of CNT12 is preferably 1300 m 2 / g or less. If the specific surface area of the CNTs 12 is too large, the CNTs 12 may strongly aggregate with each other, making it difficult to combine with the polysulfide 16. The specific surface area of CNT12 is more preferably 800 m 2 / g or less.
CNT12は、平均層数が1層以上10層以下であることが好ましい。CNT12の平均層数が少ないほど、当該CNT12が柔軟になり、複数のCNT12が互いに絡まり合いやすくなるので、スポンジ状構造体14としての自立性がより確実に確保される。しかしながら、CNT12の平均層数が小さすぎると、CNT12が柔軟になりすぎ互いの絡まり合いが強くなるため、CNT12の原料粉末を分散してスポンジ状構造体14を成形するのが難しくなる。また、CNT12の平均層数が小さすぎると、当該CNT12の比表面積が大きくなりすぎる。CNT12の平均層数は、1層以上8層以下であることがより好ましく、2層以上5層以下であることが特に好ましい。
CNT12 preferably has an average number of layers of 1 or more and 10 or less. As the average number of layers of the CNTs 12 is smaller, the CNTs 12 become more flexible and the plurality of CNTs 12 are more likely to be entangled with each other, so that the independence of the sponge-like structure 14 is more reliably ensured. However, if the average number of layers of CNT 12 is too small, the CNT 12 becomes too flexible and entangled with each other, so that it becomes difficult to disperse the raw material powder of CNT 12 and form the sponge-like structure 14. Further, if the average number of layers of the CNT 12 is too small, the specific surface area of the CNT 12 becomes too large. The average number of layers of CNT12 is more preferably 1 or more and 8 or less, and particularly preferably 2 or more and 5 or less.
正極10を用いて二次電池を構成するとき、正極10は、セパレータと接するように設けられる。正極10は、二次電池の充放電により、厚みが可逆的に変化しても良い。具体的には、正極10は、充電時に厚みが減少し、放電時に厚みが増加するものでも良い。正極10では、放電時にLi2Sxが還元されてLi2S(硫化リチウム)が生成され、充電時にLi2Sxが酸化されてS8(八硫黄)が生成される。
When the secondary battery is constructed using the positive electrode 10, the positive electrode 10 is provided so as to be in contact with the separator. The thickness of the positive electrode 10 may be reversibly changed by charging and discharging the secondary battery. Specifically, the positive electrode 10 may be one in which the thickness decreases during charging and increases during discharging. At the positive electrode 10, Li 2 S x is reduced during discharge to produce Li 2 S (lithium sulfide), and Li 2 S x is oxidized during charging to produce S 8 (octasulfur).
正極10は、正極集電体としてスポンジ状構造体14を備えているので、別途の集電箔を含まなくても良い。正極に集電箔を含まないと、正極の質量及び体積を小さくでき、正極質量あたりの正極容量密度(質量容量密度ともいう)及び体積容量密度を高めることができる。なお、金属のくし形電極ないし細線を複数設置すると、金属の質量を小さくしつつ導電性を十分に確保できて、一層好ましい。正極10に集電箔を含まない場合は、正極10の厚みは、スポンジ状構造体14の厚みとほぼ同じである。
Since the positive electrode 10 includes the sponge-like structure 14 as the positive electrode current collector, it is not necessary to include a separate current collector foil. When the positive electrode does not include the current collecting foil, the mass and volume of the positive electrode can be reduced, and the positive electrode capacity density (also referred to as mass capacity density) and volume capacity density per positive electrode mass can be increased. It is more preferable to install a plurality of metal comb-shaped electrodes or thin wires because sufficient conductivity can be secured while reducing the mass of the metal. When the positive electrode 10 does not include the current collecting foil, the thickness of the positive electrode 10 is substantially the same as the thickness of the sponge-like structure 14.
1-2.製造方法
本実施形態に係る正極10の製造方法について説明する。 1-2. Manufacturing Method A manufacturing method of thepositive electrode 10 according to the present embodiment will be described.
本実施形態に係る正極10の製造方法について説明する。 1-2. Manufacturing Method A manufacturing method of the
図2に示すように、正極10は、CNT12から構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体14中に、Li2Sx(x=4,6,8)で表されるポリスルフィド16を含有させ、CNT12とポリスルフィド16とを複合化することにより製造される。
As shown in FIG. 2, positive electrode 10, the self-standing in a sponge-like structure 14 is less than the configured thickness 5μm or 100μm from CNT 12, represented by Li 2 S x (x = 4,6,8 ) It is produced by containing polysulfide 16 and combining CNT 12 and polysulfide 16.
CNT12は、CVD(chemical vapor deposition)法により合成することができる。CVD法としては、例えば、特許第5447367号公報、特許第5862559号公報、D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda, Carbon 49(6), 1972-1979 (2011).、Z. Chen, D.Y. Kim, K. Hasegawa, T. Osawa, and S. Noda, Carbon 80, 339-350 (2014).等に記載されている流動層CVD法が挙げられる。CNT12は、浮遊触媒CVD法、基板担持触媒CVD法により合成しても良い。
CNT12 can be synthesized by a CVD (chemical vapor deposition) method. Examples of the CVD method include Japanese Patent No. 5447365, Japanese Patent No. 5862559, DY Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda, Carbon 49 (6), 1972-1979 (2011). )., Z. Chen, DY Kim, K. Hasegawa, T. Osawa, and S. Noda, Carbon 80, 339-350 (2014). CNT12 may be synthesized by a floating catalyst CVD method or a substrate-supported catalyst CVD method.
スポンジ状構造体14は、CNT12を分散媒に分散させて分散液を調製し、この分散液から分散媒を除去することにより作製する。分散媒としては、水や有機溶媒等が用いられる。有機溶媒は、エタノール、2-プロパノール等である。分散媒は、例えばフィルタを用いて分散液をろ過することにより、分散液から除去される。分散液から分散媒を除去する過程で、CNT12がファンデルワールス力によりネットワークを構成し、フィルタの表面に集積し、スポンジ状構造体14が形成される。スポンジ状構造体14は、フィルタから分離して自立膜として回収する。また、スポンジ状構造体14は、必要に応じて、フィルタからの分離前または分離後に乾燥機を用いて乾燥させる。なお、分散液をフィルタでろ過して乾燥させることに代えて、分散液を塗布して乾燥させても良い。スポンジ状構造体14の厚みと正極10の単位体積あたりのCNTの質量(以下、CNT体積密度と称する)は、例えばプレス等の処理を施すことによって調節することができる。
The sponge-like structure 14 is prepared by dispersing CNT 12 in a dispersion medium to prepare a dispersion liquid, and removing the dispersion medium from this dispersion liquid. As the dispersion medium, water, an organic solvent, or the like is used. The organic solvent is ethanol, 2-propanol and the like. The dispersion medium is removed from the dispersion, for example by filtering the dispersion using a filter. In the process of removing the dispersion medium from the dispersion liquid, CNT 12 forms a network by van der Waals force and accumulates on the surface of the filter to form a sponge-like structure 14. The sponge-like structure 14 is separated from the filter and collected as a free-standing film. Further, the sponge-like structure 14 is dried using a dryer before or after separation from the filter, if necessary. Instead of filtering the dispersion liquid with a filter and drying it, the dispersion liquid may be applied and dried. The thickness of the sponge-like structure 14 and the mass of CNTs per unit volume of the positive electrode 10 (hereinafter referred to as CNT volume density) can be adjusted by performing a treatment such as pressing.
CNT12とポリスルフィド16とを複合化して正極10を得るための具体的な方法について説明する。
A specific method for obtaining a positive electrode 10 by combining CNT 12 and polysulfide 16 will be described.
図3に示すように、正極10は、ポリスルフィド16を含有する溶液(以下、Li2Sxの溶液と称する)をスポンジ状構造体14に供給し、スポンジ状構造体14中にLi2Sxの溶液を保持させる供給工程S1と、Li2Sxの溶液を保持したスポンジ状構造体14を乾燥し、CNT12にポリスルフィド16を担持させる乾燥工程S2とを順に実施することにより得られる。
As shown in FIG. 3, the positive electrode 10 supplies a solution containing polysulfide 16 (hereinafter referred to as a solution of Li 2 S x ) to the sponge-like structure 14, and Li 2 S x in the sponge-like structure 14. It is obtained by sequentially carrying out a supply step S1 for holding the solution of Li 2 S x and a drying step S2 for drying the sponge-like structure 14 holding the solution of Li 2 S x and carrying the polysulfide 16 on the CNT 12.
供給工程S1では、まず、Li2Sxの溶液を準備する。Li2Sxの溶液は、S8の粉末とLi2Sの粉末とを溶媒に分散させることにより調製する。溶媒としては、例えばDME(1,2-ジメトキシエタン)が用いられる。S8の粉末とLi2Sの粉末とを溶媒に入れ、例えば45℃に加熱し、撹拌機を用いて攪拌することにより、Li2Sxが溶解したLi2Sxの溶液が得られる。次に、調製したLi2Sxの溶液をスポンジ状構造体14に供給する。Li2Sxの溶液をスポンジ状構造体14に供給する方法としては、Li2Sxの溶液をスポンジ状構造体14に滴下する方法、Li2Sxの溶液中にスポンジ状構造体14を浸漬する方法、スプレーコート法等を用いてLi2Sxの溶液をスポンジ状構造体14に塗布する方法等が挙げられる。
In supplying step S1, first, preparing a solution of Li 2 S x. The solution of Li 2 S x is prepared by dispersing the powder of S 8 and the powder of Li 2 S in a solvent. As the solvent, for example, DME (1,2-dimethoxyethane) is used. Put the powder of the powder and Li 2 S of S 8 in a solvent, for example, heated to 45 ° C., by stirring with a stirrer, a solution of Li 2 S x is dissolved Li 2 S x is obtained. Then, supplies the solution of the prepared Li 2 S x spongy structure 14. A solution of Li 2 S x as the method for supplying the sponge-like structure 14, a method of dropping a solution of Li 2 S x spongy structure 14, a sponge-like structure 14 in a solution of Li 2 S x a method of immersing method or the like of applying a solution of using a spray coating method or the like Li 2 S x spongy structure 14.
乾燥工程S2では、Li2Sxの溶液を保持したスポンジ状構造体14を-58℃以上90℃以下の温度で乾燥することが好ましい。乾燥温度を-58℃以上90℃以下とすることにより、スポンジ状構造体14中に適量の溶媒分子が残留し、溶媒分子が配位している状態のLi2Sxがスポンジ状構造体14に保持される。溶媒分子が配位したLi2Sxが電極性能を向上させると考えられる。乾燥温度が低すぎると、溶媒分子の除去が不十分となる。乾燥温度が高すぎると、Li2Sxが安定な結晶構造をもつ状態となり、硫黄とリチウムとの反応を阻害すると考えられるため、電極性能を高めることが困難となる。乾燥温度は、0℃以上90℃以下であることがより好ましく、20℃以上50℃以下であることが特に好ましい。なお、上記の乾燥温度の下限値(-58℃)は、溶媒としてDMEを用いることを前提とした一例であり、DMEの融点に基づく。乾燥温度の下限値は溶媒の種類に応じて任意に変更して良い。
In the drying step S2, it is preferable to dry by Li 2 S x solutions sponge-like structure 14 to -58 ° C. or higher 90 ° C. below the temperature was maintained. By setting the drying temperature to −58 ° C. or higher and 90 ° C. or lower, an appropriate amount of solvent molecules remain in the sponge-like structure 14, and Li 2 S x in which the solvent molecules are coordinated is the sponge-like structure 14. Is held in. Solvent molecules coordinated Li 2 S x is considered to improve the electrode performance. If the drying temperature is too low, the removal of solvent molecules will be inadequate. The drying temperature is too high, Li 2 S x is a state having a stable crystal structure, it is considered to inhibit the reaction between sulfur and lithium, it is difficult to improve the electrode performance. The drying temperature is more preferably 0 ° C. or higher and 90 ° C. or lower, and particularly preferably 20 ° C. or higher and 50 ° C. or lower. The lower limit of the drying temperature (-58 ° C.) is an example on the premise that DME is used as a solvent, and is based on the melting point of DME. The lower limit of the drying temperature may be arbitrarily changed depending on the type of solvent.
乾燥時間は、任意に設定できるが、1秒以上24時間以下であることが好ましく、10秒以上10時間以下であることがより好ましい。乾燥時間は、スポンジ状構造体14中に適量の溶媒分子が残留するように設定される。
The drying time can be set arbitrarily, but is preferably 1 second or more and 24 hours or less, and more preferably 10 seconds or more and 10 hours or less. The drying time is set so that an appropriate amount of solvent molecules remain in the sponge-like structure 14.
スポンジ状構造体14中に残留する溶媒分子の質量割合は、任意に設定できるが、5質量%以上80質量%以下であることが好ましく、20質量%以上80質量%以下であることがより好ましい。溶媒分子の質量割合は、溶媒分子の質量を正極10の質量で除した値である。正極10の質量は、スポンジ状構造体14の質量とポリスルフィド16の質量と溶媒分子の質量の合計である。溶媒分子の質量割合が大きすぎると、後述する二次電池におけるE/S比を低減させることが難しくなる。溶媒分子の質量割合が小さすぎると、電極性能を高めることが困難となる。スポンジ状構造体14中に溶媒分子が僅かでも存在していれば、溶媒分子が配位している状態のLi2Sxがスポンジ状構造体14に保持されるので、所望とする電極性能が得られる限りにおいて溶媒分子の質量割合を下げても良い。溶媒分子の質量割合は、乾燥温度と乾燥時間との少なくともいずれかを調整することにより、調整できる。
The mass ratio of the solvent molecules remaining in the sponge-like structure 14 can be arbitrarily set, but is preferably 5% by mass or more and 80% by mass or less, and more preferably 20% by mass or more and 80% by mass or less. .. The mass ratio of the solvent molecules is a value obtained by dividing the mass of the solvent molecules by the mass of the positive electrode 10. The mass of the positive electrode 10 is the sum of the mass of the sponge-like structure 14, the mass of the polysulfide 16, and the mass of the solvent molecule. If the mass ratio of the solvent molecules is too large, it becomes difficult to reduce the E / S ratio in the secondary battery described later. If the mass ratio of the solvent molecules is too small, it becomes difficult to improve the electrode performance. If the solvent molecule is present even slightly in the sponge-like structure 14, since Li 2 S x in a state where the solvent molecule is coordinated is held in a sponge-like structure 14, electrode performance to desired is The mass ratio of the solvent molecules may be reduced as long as it can be obtained. The mass ratio of the solvent molecules can be adjusted by adjusting at least one of the drying temperature and the drying time.
乾燥工程S2では、Li2Sxの溶液を保持したスポンジ状構造体14の常圧乾燥又は真空乾燥を行う。常圧乾燥は、大気圧とほぼ等しい圧力で行う。真空乾燥(減圧乾燥ともいう)は、例えば、溶媒の50℃における蒸気圧28kPa以下、好ましくは溶媒の20℃における蒸気圧6.6kPa以下の圧力で行う。真空乾燥は、乾燥ムラを生じることなく均一な乾燥が可能である。S8は蒸気圧が高いため減圧環境で蒸発ないし昇華しやすいが、Li2Sxは蒸気圧が非常に小さく減圧環境で蒸発しない。Li2Sxの溶液を保持したスポンジ状構造体14を減圧環境で乾燥することで、Li2Sxの蒸発が抑制され、CNT12にポリスルフィド16を確実に担持させることができる。このため、乾燥工程S2では、Li2Sxの溶液を保持したスポンジ状構造体14を真空乾燥することが好ましい。なお、上記の真空乾燥を行う圧力は、溶媒としてDMEを用いることを前提とした一例であり、溶媒の蒸気圧に基づく。真空乾燥を行う圧力は溶媒の種類に応じて任意に変更して良い。
In the drying step S2, performs the normal pressure drying or vacuum drying the sponge-like structure 14 which holds the solution of Li 2 S x. Normal pressure drying is performed at a pressure substantially equal to atmospheric pressure. Vacuum drying (also referred to as vacuum drying) is carried out, for example, at a vapor pressure of 28 kPa or less at 50 ° C. of the solvent, preferably a vapor pressure of 6.6 kPa or less at 20 ° C. of the solvent. Vacuum drying enables uniform drying without causing uneven drying. S 8 is likely to evaporate or sublimate under reduced environment due to the high vapor pressure, Li 2 S x has not evaporate in a very small pressure environment vapor pressure. By drying the sponge-like structure 14 holding the solution of Li 2 S x in a reduced pressure environment, the evaporation of Li 2 S x is suppressed, and the polysulfide 16 can be reliably supported on the CNT 12. Therefore, in the drying step S2, it is preferable that the sponge-like structure 14 which holds the solution of Li 2 S x vacuum dried. The pressure for vacuum drying is an example on the premise that DME is used as a solvent, and is based on the vapor pressure of the solvent. The pressure for vacuum drying may be arbitrarily changed depending on the type of solvent.
本実施形態に係る二次電池は、正極10、負極、セパレータ及び電解液を容器内に設置することで製造することができる。二次電池は、正極10、負極、セパレータ、電解液、及び容器を備えており、正極10と負極とセパレータとが、電解液とともに容器内に設けられた構成を有していれば良く、特に限定されない。二次電池は、例えば充放電により正極10と負極とが膨張又は収縮するものでも良い。以下、実施形態の一例として、充放電により正極10と負極とが膨張又は収縮する二次電池について説明する。
The secondary battery according to the present embodiment can be manufactured by installing the positive electrode 10, the negative electrode, the separator, and the electrolytic solution in the container. The secondary battery includes a positive electrode 10, a negative electrode, a separator, an electrolytic solution, and a container, and the positive electrode 10, the negative electrode, and the separator may have a configuration provided in the container together with the electrolytic solution, particularly. Not limited. The secondary battery may be one in which the positive electrode 10 and the negative electrode expand or contract due to charging / discharging, for example. Hereinafter, as an example of the embodiment, a secondary battery in which the positive electrode 10 and the negative electrode expand or contract due to charging / discharging will be described.
図4に示すように、二次電池20(20A,20B)は、正極10(10A,10B)と、負極22(22A,22B)と、セパレータ24とを備える。図4では、電解液及び容器の図示を省略している。二次電池20は、セパレータ24の一表面に正極10が設けられ、セパレータ24の他表面に負極22が設けられる。
As shown in FIG. 4, the secondary battery 20 (20A, 20B) includes a positive electrode 10 (10A, 10B), a negative electrode 22 (22A, 22B), and a separator 24. In FIG. 4, the electrolytic solution and the container are not shown. The secondary battery 20 is provided with a positive electrode 10 on one surface of the separator 24 and a negative electrode 22 on the other surface of the separator 24.
充電時の二次電池20Aは、セパレータ24を介して設けられた収縮した正極10Aと膨張した負極22Aとを含む。放電時の二次電池20Bは、セパレータ24を介して設けられた膨張した正極10Bと収縮した負極22Bとを含む。
The secondary battery 20A at the time of charging includes a contracted positive electrode 10A provided via the separator 24 and an expanded negative electrode 22A. The secondary battery 20B at the time of discharge includes an expanded positive electrode 10B provided via a separator 24 and a contracted negative electrode 22B.
正極10は、本実施形態では、セパレータ24と接する面の面積が実質的に変化せず、充電時(10A)に厚みが減少し、放電時(10B)に厚みが増加するものであり、厚みが変化することで膨張又は収縮する。正極活物質は、初回の充放電が行われる前はポリスルフィド16(図示なし)であり、充電状態ではS8(16A)となり、放電状態ではLi2S(16B)となる。
In the present embodiment, the area of the surface of the positive electrode 10 in contact with the separator 24 does not substantially change, the thickness decreases during charging (10A), and the thickness increases during discharging (10B). Expands or contracts as it changes. The positive electrode active material is polysulfide 16 (not shown) before the first charge / discharge, becomes S 8 (16 A) in the charged state, and becomes Li 2 S (16 B) in the discharged state.
負極22には、一般的な二次電池に用いられる各種負極を用いることができる。本実施形態では、充放電により厚みが可逆的に変化し、充電時(22A)に厚みが増加し、放電時(22B)に厚みが減少する負極が好適である。正極10と負極22とで膨張収縮が相殺され、二次電池20内の空間を有効活用できるからである。負極22の負極活物質26は、例えば、炭素材料(黒鉛(C)等)やチタン酸リチウム等の結晶構造の隙間にリチウムイオン(Li+)を挿入・脱離することにより充放電を行う活物質、シリコン等のリチウムと反応して化合物を形成することにより充放電を行う活物質、リチウム金属、等を用いることができる。充放電時に、負極22と正極10とで膨張収縮が相殺され、二次電池20としての厚みの変化が抑制される。したがって、負極活物質26としては、シリコン等のリチウムと反応して体積が変化する活物質を用いることが望ましい。可逆的な体積変化を可能とするために、CNT12の自立したスポンジ状構造体14の内部に負極活物質26を包含することが好ましい。例えば、負極活物質26としてシリコンを用いた場合、負極活物質26は、充電状態ではLi15Si4(26A)となり、放電状態ではSi(26B)となる。
As the negative electrode 22, various negative electrodes used in general secondary batteries can be used. In the present embodiment, a negative electrode in which the thickness changes reversibly by charging / discharging, the thickness increases during charging (22A), and the thickness decreases during discharging (22B) is preferable. This is because the expansion and contraction of the positive electrode 10 and the negative electrode 22 cancel each other out, and the space inside the secondary battery 20 can be effectively utilized. The negative electrode active material 26 of the negative electrode 22 is charged and discharged by inserting and removing lithium ions (Li + ) into the gaps of the crystal structure of, for example, a carbon material (graphite (C) or the like) or lithium titanate. An active material that charges and discharges by reacting with a substance, lithium such as silicon to form a compound, lithium metal, and the like can be used. During charging and discharging, the expansion and contraction of the negative electrode 22 and the positive electrode 10 cancel each other out, and the change in the thickness of the secondary battery 20 is suppressed. Therefore, as the negative electrode active material 26, it is desirable to use an active material whose volume changes by reacting with lithium such as silicon. In order to enable reversible volume change, it is preferable to include the negative electrode active material 26 inside the self-supporting sponge-like structure 14 of the CNT 12. For example, when silicon is used as the negative electrode active material 26, the negative electrode active material 26 becomes Li 15 Si 4 (26A) in the charged state and Si (26B) in the discharged state.
セパレータ24は、微多孔性高分子フィルムで構成することができる。微多孔性高分子フィルムとしては、ポリオレフィン系、ポリエステル系、ポリアクリロニトリル系、ポリフェニレンサルファイド系、ポリイミド系またはフッ素樹脂系の微孔膜や不織布が挙げられる。セパレータ24は、絶縁性繊維の自立したスポンジ状構造体から構成されるものでも良い。絶縁性繊維は、BNNT(窒化ホウ素ナノチューブ)または有機系ナノファイバーである。有機系ナノファイバーとしては、セルロースナノファイバー、キチンナノファイバー等が挙げられる。
The separator 24 can be made of a microporous polymer film. Examples of the microporous polymer film include polyolefin-based, polyester-based, polyacrylonitrile-based, polyphenylene sulfide-based, polyimide-based or fluororesin-based micropore membranes and non-woven fabrics. The separator 24 may be composed of a self-supporting sponge-like structure of insulating fibers. The insulating fiber is a BNNT (boron nitride nanotube) or an organic nanofiber. Examples of the organic nanofibers include cellulose nanofibers and chitin nanofibers.
電解液は、非水電解液、イオン液体及びゲル電解液等の一般的に用いられている電解液を用いることができる。電解液は、例えば、DOL(1,3-ジオキソラン)とDMEとを体積比1:1で混合した混合液に、1.0mol/LのLiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)及び0.2mol/LのLiNO3(硝酸リチウム)を溶解して調製することができる。電解液量を調整することにより、硫黄量に対する電解液量の比率を示すE/S比を調整することができる。E/S比が小さいほど、二次電池20の質量が小さくなり、二次電池20のエネルギー密度を高めることができる。E/S比は、8以下が好ましく、5以下がより好ましい。
As the electrolytic solution, a commonly used electrolytic solution such as a non-aqueous electrolytic solution, an ionic liquid, and a gel electrolytic solution can be used. The electrolytic solution is, for example, 1.0 mol / L LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) and 0. It can be prepared by dissolving 2 mol / L of LiNO 3 (lithium nitrate). By adjusting the amount of the electrolytic solution, the E / S ratio indicating the ratio of the amount of the electrolytic solution to the amount of sulfur can be adjusted. The smaller the E / S ratio, the smaller the mass of the secondary battery 20, and the higher the energy density of the secondary battery 20 can be. The E / S ratio is preferably 8 or less, more preferably 5 or less.
容器は、電池缶として一般的に用いられている鉄、ステンレススチール、アルミニウム等の金属缶を用いることができる。また、ラミネート電池に一般的に用いられている金属と高分子のラミネートシートを用いることもできる。
As the container, a metal can such as iron, stainless steel, or aluminum, which is generally used as a battery can, can be used. Further, a metal and polymer laminated sheet generally used for a laminated battery can also be used.
1-3.作用及び効果
本実施形態に係る正極10は、CNT12の自立したスポンジ状構造体14からなる正極集電体と、スポンジ状構造体14中に含有されたLi2Sx(x=4,6,8)で表されるポリスルフィド16からなる正極活物質とを備えている。スポンジ状構造体14の厚みは、5μm以上100μm未満である。スポンジ状構造体14中のポリスルフィド16の含有量を正極体積あたりの硫黄量で表したときに、当該硫黄量は、0.70g/cm3以上2.0g/cm3以下である。したがって、正極10は、薄いスポンジ状構造体14中に多量のポリスルフィド16を含有し、体積あたりの硫黄量が多いので、体積あたりの正極容量密度(体積容量密度)が高く、二次電池のエネルギー密度を高めることができる。 1-3. Actions and Effects Thepositive electrode 10 according to the present embodiment includes a positive electrode current collector composed of a self-supporting sponge-like structure 14 of CNT 12 and Li 2 S x (x = 4, 6,) contained in the sponge-like structure 14. It includes a positive electrode active material made of polysulfide 16 represented by 8). The thickness of the sponge-like structure 14 is 5 μm or more and less than 100 μm. When the content of the polysulfide 16 in the sponge-like structure 14 is expressed by the amount of sulfur per positive electrode volume, the amount of sulfur is 0.70 g / cm 3 or more and 2.0 g / cm 3 or less. Therefore, since the positive electrode 10 contains a large amount of polysulfide 16 in the thin sponge-like structure 14 and has a large amount of sulfur per volume, the positive electrode capacity density per volume (volume capacity density) is high, and the energy of the secondary battery is high. The density can be increased.
本実施形態に係る正極10は、CNT12の自立したスポンジ状構造体14からなる正極集電体と、スポンジ状構造体14中に含有されたLi2Sx(x=4,6,8)で表されるポリスルフィド16からなる正極活物質とを備えている。スポンジ状構造体14の厚みは、5μm以上100μm未満である。スポンジ状構造体14中のポリスルフィド16の含有量を正極体積あたりの硫黄量で表したときに、当該硫黄量は、0.70g/cm3以上2.0g/cm3以下である。したがって、正極10は、薄いスポンジ状構造体14中に多量のポリスルフィド16を含有し、体積あたりの硫黄量が多いので、体積あたりの正極容量密度(体積容量密度)が高く、二次電池のエネルギー密度を高めることができる。 1-3. Actions and Effects The
正極10は、高い導電性を有するスポンジ状構造体14を正極集電体として備えており、集電箔を含まないので、質量及び体積が小さくなり、質量容量密度及び体積容量密度を高めることができる。
Since the positive electrode 10 includes a sponge-like structure 14 having high conductivity as a positive electrode current collector and does not include a current collector foil, the mass and volume can be reduced, and the mass capacity density and volume capacity density can be increased. can.
正極10は、二次電池20を構成するときに使用する電解液の量を減らすことができるので、二次電池20の質量及び体積を小さくでき、二次電池20のエネルギー密度を高めることができる。
Since the positive electrode 10 can reduce the amount of the electrolytic solution used when forming the secondary battery 20, the mass and volume of the secondary battery 20 can be reduced, and the energy density of the secondary battery 20 can be increased. ..
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
The present invention is not limited to the above embodiment, and can be appropriately modified within the scope of the gist of the present invention.
1-4.実施例
表1は、実施例1~21及び比較例1~3の正極の構成と電極性能とをまとめたものである。 1-4. Example Table 1 summarizes the positive electrode configurations and electrode performances of Examples 1 to 21 and Comparative Examples 1 to 3.
表1は、実施例1~21及び比較例1~3の正極の構成と電極性能とをまとめたものである。 1-4. Example Table 1 summarizes the positive electrode configurations and electrode performances of Examples 1 to 21 and Comparative Examples 1 to 3.
正極の構成について説明する。実施例1~21は、上述した正極10の製造方法を用いて作製した正極である。比較例1は、非特許文献1に記載された正極である。比較例1の正極では、ポリアクリロニトリルの熱分解すなわち炭素化によってCNTを固定化したCNTフォームが正極集電体として用いられている。CNTフォームについては、非特許文献1の中で引用されている文献[14](C. Shen, et al., Electrochimica Acta. 248, 90 (2017).)に記載されている。比較例2,3は、非特許文献2に記載された正極である。比較例2,3の正極では、CNF(カーボンナノファイバー)から構成されたCNF膜が正極集電体として用いられている。なお、CNTから構成されたスポンジ状構造体、CNTフォーム、及びCNF膜は、炭素材料により形成された炭素マトリクスである。表1中の「CNT」という記載は、上記の炭素マトリクスを構成する炭素材料を示しており、CNTのみに限られずCNFを含む。
The configuration of the positive electrode will be explained. Examples 1 to 21 are positive electrodes produced by using the above-mentioned method for producing a positive electrode 10. Comparative Example 1 is a positive electrode described in Non-Patent Document 1. In the positive electrode of Comparative Example 1, a CNT foam in which CNTs are immobilized by thermal decomposition of polyacrylonitrile, that is, carbonization, is used as a positive electrode current collector. The CNT form is described in Document [14] (C. Shen, et al., Electrochimica Acta. 248, 90 (2017).) Cited in Non-Patent Document 1. Comparative Examples 2 and 3 are positive electrodes described in Non-Patent Document 2. In the positive electrodes of Comparative Examples 2 and 3, a CNF film composed of CNF (carbon nanofiber) is used as a positive electrode current collector. The sponge-like structure composed of CNTs, the CNT foam, and the CNF film are carbon matrices formed of a carbon material. The description "CNT" in Table 1 indicates the carbon material constituting the above carbon matrix, and includes not only CNT but also CNF.
表1中の、膜厚(a)は、正極の厚みを示す。実施例1~21では実測値を用いた。比較例1では、非特許文献1に記載されているCNTフォームの膜厚(100μm)の数値を用いた。比較例2では、非特許文献2に記載されているCNF膜の膜厚の最小値(200μm)の数値を用いた。比較例3では、非特許文献2に記載されているCNF膜の膜厚の最大値(250μm)の数値を用いた。
The film thickness (a) in Table 1 indicates the thickness of the positive electrode. Actually measured values were used in Examples 1 to 21. In Comparative Example 1, the numerical value of the film thickness (100 μm) of the CNT foam described in Non-Patent Document 1 was used. In Comparative Example 2, the numerical value of the minimum value (200 μm) of the film thickness of the CNF film described in Non-Patent Document 2 was used. In Comparative Example 3, the numerical value of the maximum value (250 μm) of the film thickness of the CNF film described in Non-Patent Document 2 was used.
硫黄の種類(b)は、CNTに担持されたポリスルフィドの種類を示す。実施例1~4,7~21ではLi2S6を用いた。実施例5ではLi2S4を用いた。実施例6ではLi2S8を用いた。比較例1では、非特許文献1に記載されているLi2S4を記載した。比較例2,3では、非特許文献2に記載されているLi2S8を記載した。
The type of sulfur (b) indicates the type of polysulfide supported on the CNT. In Examples 1 to 4, 7 to 21, Li 2 S 6 was used. In Example 5, Li 2 S 4 was used. In Example 6, Li 2 S 8 was used. In Comparative Example 1, Li 2 S 4 described in Non-Patent Document 1 is described. In Comparative Examples 2 and 3, Li 2 S 8 described in Non-Patent Document 2 is described.
直径(c)は、正極の直径を示す。実施例1~21では実測値を用いた。比較例1では、非特許文献1に記載されていないため、「-」と表示している。比較例2,3では、非特許文献2に記載されている直径(10mm)の数値を用いた。
Diameter (c) indicates the diameter of the positive electrode. Actually measured values were used in Examples 1 to 21. In Comparative Example 1, since it is not described in Non-Patent Document 1, it is displayed as "-". In Comparative Examples 2 and 3, the numerical value of the diameter (10 mm) described in Non-Patent Document 2 was used.
CNT(d)は、正極に含まれるCNTの質量を示す。実施例1~21では、それぞれの正極の製造に用いたCNTの質量である0.6~4.2mgの数値を記載した。比較例1では、非特許文献1に記載されていないため、「-」と表示している。比較例2,3では、非特許文献2に記載されていないため、「-」と表示している。
CNT (d) indicates the mass of CNT contained in the positive electrode. In Examples 1 to 21, the numerical values of 0.6 to 4.2 mg, which is the mass of CNTs used in the production of each positive electrode, are described. In Comparative Example 1, since it is not described in Non-Patent Document 1, it is displayed as "-". In Comparative Examples 2 and 3, since it is not described in Non-Patent Document 2, it is displayed as "-".
硫黄(e)は、正極に含まれる硫黄の質量を示す。実施例1~21では、それぞれの正極の製造に用いた硫黄の質量である1.1~8.4mgの数値を記載した。比較例1では、非特許文献1に記載されていないため、「-」と表示している。比較例2,3では、非特許文献2に記載されていないため、「-」と表示している。
Sulfur (e) indicates the mass of sulfur contained in the positive electrode. In Examples 1 to 21, numerical values of 1.1 to 8.4 mg, which is the mass of sulfur used in the production of each positive electrode, are described. In Comparative Example 1, since it is not described in Non-Patent Document 1, it is displayed as "-". In Comparative Examples 2 and 3, since it is not described in Non-Patent Document 2, it is displayed as "-".
CNT面密度(f)は、正極面積あたりのCNTの質量を示す。実施例1~21では、CNT(d)(CNTの質量)を、正極の面積で除して算出した。比較例1では、非特許文献1に記載されているCNTフォームの密度(125mg/cm3)に、膜厚(100μm)を乗じて算出した。比較例2では、非特許文献2に記載されている数値(1.7mg/cm2)を用いた。比較例3では、非特許文献2に記載されている数値(2.2mg/cm2)を用いた。
The CNT surface density (f) indicates the mass of CNTs per positive electrode area. In Examples 1 to 21, it was calculated by dividing CNT (d) (mass of CNT) by the area of the positive electrode. In Comparative Example 1, it was calculated by multiplying the density (125 mg / cm 3 ) of the CNT foam described in Non-Patent Document 1 by the film thickness (100 μm). In Comparative Example 2, the numerical value (1.7 mg / cm 2 ) described in Non-Patent Document 2 was used. In Comparative Example 3, the numerical value (2.2 mg / cm 2 ) described in Non-Patent Document 2 was used.
硫黄面密度(g)は、正極面積あたりの硫黄量を示す。実施例1~21では、硫黄(e)(硫黄の質量)を、正極の面積で除して算出した。比較例1では、CNT面密度(f)をCNTの質量割合で除した値に、硫黄の質量割合を乗じて算出した。比較例1において、硫黄の質量割合は非特許文献1に記載されている数値(84%)を用い、CNTの質量割合は硫黄の質量割合から算出した値(16%)を用いた。比較例2,3では、非特許文献2に記載されている数値(6mg/cm2)を用いた。
The sulfur surface density (g) indicates the amount of sulfur per positive electrode area. In Examples 1 to 21, it was calculated by dividing sulfur (e) (mass of sulfur) by the area of the positive electrode. In Comparative Example 1, it was calculated by multiplying the value obtained by dividing the CNT surface density (f) by the mass ratio of CNT by the mass ratio of sulfur. In Comparative Example 1, the mass ratio of sulfur used the numerical value (84%) described in Non-Patent Document 1, and the mass ratio of CNT used the value calculated from the mass ratio of sulfur (16%). In Comparative Examples 2 and 3, the numerical value (6 mg / cm 2 ) described in Non-Patent Document 2 was used.
CNT体積密度(h)は、CNT面密度(f)を膜厚(a)で除して算出した。
The CNT volume density (h) was calculated by dividing the CNT surface density (f) by the film thickness (a).
硫黄積載質量(i)は、正極の単位体積あたりの硫黄の質量を示し、硫黄面密度(g)を膜厚(a)で除して算出した。
The sulfur loading mass (i) indicates the mass of sulfur per unit volume of the positive electrode, and was calculated by dividing the sulfur surface density (g) by the film thickness (a).
E/S比(j)は、スポンジ状構造体14に残留する溶媒分子の質量を溶媒の密度で除して求めた残留溶媒分子の体積と、追加投入した電解液の質量を電解液の密度で除して求めた追加電解液の体積を合計し、合計体積を硫黄量で除して算出した。実施例1~21では、4.0~8.0とした。比較例1では、非特許文献1に記載されている数値(4.4μL/mg)を用いた。比較例2,3では、非特許文献2に記載されている電解液量(10μL/cm2)を硫黄量(6mg/cm2)で除して算出した。
The E / S ratio (j) is the volume of the residual solvent molecule obtained by dividing the mass of the solvent molecule remaining in the sponge-like structure 14 by the density of the solvent, and the mass of the additionally charged electrolytic solution as the density of the electrolytic solution. The volume of the additional electrolyte obtained by dividing by is totaled, and the total volume is divided by the amount of sulfur to calculate. In Examples 1 to 21, it was set to 4.0 to 8.0. In Comparative Example 1, the numerical value (4.4 μL / mg) described in Non-Patent Document 1 was used. In Comparative Examples 2 and 3, it was calculated by dividing the amount of electrolytic solution (10 μL / cm 2 ) described in Non-Patent Document 2 by the amount of sulfur (6 mg / cm 2).
表1には記載していないが、実施例1~8,11,14~20の各正極を製造する際の乾燥工程S2では、乾燥条件を揃え、乾燥温度45℃、乾燥時間60分、常圧で乾燥(常圧乾燥)を行った。その他の実施例については、後述する表2を用いて説明するが、乾燥条件が異なる。
Although not shown in Table 1, in the drying step S2 when manufacturing the positive electrodes of Examples 1 to 8, 11, 14 to 20, the drying conditions are the same, the drying temperature is 45 ° C., the drying time is 60 minutes, and the drying time is normal. Drying under pressure (normal pressure drying) was performed. Other examples will be described with reference to Table 2 described later, but the drying conditions are different.
電極性能について説明する。実施例1~21の正極を、負極、セパレータ及び電解液とともに容器に収容して、試験セルを作製した。負極は、厚さ50μmのリチウム箔を用いた。セパレータは、ポリプロピレン製のものを用いた。電解液は、DOLとDMEとを体積比1:1で混合した混合液に、1.0mol/LのLiTFSI及び0.2mol/LのLiNO3を溶解して調製した。作製した各試験セルについて、0.1C又は0.05CのCレート(Capacity rate)で充放電サイクル試験を行い、質量基準容量(k)を測定した。Cレートは、硫黄の質量に対し理論容量が発現すると仮定し、1C=1.675mA/mgと定義した。実施例1~6,8~13,16~20の充放電は0.1CのCレートで行い、実施例7,14,15,21の充放電は0.05CのCレートで行った。質量基準容量(k)にCNT面密度(f)と硫黄面密度(g)の和を乗じて面積基準容量(l)を算出した。面積基準容量(l)を膜厚(a)で除して体積基準容量(m)を算出した。質量基準容量(k)、面積基準容量(l)及び体積基準容量(m)を電極性能とした。表1には、充放電サイクル試験で測定された質量基準容量(k)の最大値と、この質量基準容量(k)に基づき算出した面積基準容量(l)及び体積基準容量(m)を示している。比較例1の質量基準容量(k)は、非特許文献1に記載されている放電プロファイル(Fig.5b)から求めた硫黄の質量基準の数値(680mAh/gsulfur)に硫黄面密度(g)を乗じ、CNT面密度(f)と硫黄面密度(g)の和で除した値を用いた。比較例2の質量基準容量(k)は、非特許文献2に記載されている硫黄の質量基準の数値(900mAh/gsulfur)に硫黄面密度(g)を乗じ、CNT面密度(f)と硫黄面密度(g)の和で除した値を用いた。比較例1~3の面積基準容量(l)及び体積基準容量(m)は、実施例と同様に、質量基準容量(k)に基づき算出した。
The electrode performance will be described. The positive electrode of Examples 1 to 21 was housed in a container together with the negative electrode, the separator and the electrolytic solution to prepare a test cell. As the negative electrode, a lithium foil having a thickness of 50 μm was used. The separator used was made of polypropylene. The electrolytic solution was prepared by dissolving 1.0 mol / L LiTFSI and 0.2 mol / L LiNO 3 in a mixed solution in which DOL and DME were mixed at a volume ratio of 1: 1. Each of the prepared test cells was subjected to a charge / discharge cycle test at a C rate (Capacity rate) of 0.1 C or 0.05 C, and the mass reference capacity (k) was measured. The C rate was defined as 1C = 1.675 mA / mg, assuming that the theoretical volume was expressed relative to the mass of sulfur. Charging and discharging of Examples 1 to 6, 8 to 13, 16 to 20 was carried out at a C rate of 0.1 C, and charging and discharging of Examples 7, 14, 15 and 21 were carried out at a C rate of 0.05 C. The area reference capacity (l) was calculated by multiplying the mass reference capacity (k) by the sum of the CNT surface density (f) and the sulfur surface density (g). The volume reference capacity (m) was calculated by dividing the area reference capacity (l) by the film thickness (a). The mass reference capacitance (k), the area reference capacitance (l), and the volume reference capacitance (m) were defined as the electrode performance. Table 1 shows the maximum value of the mass reference capacity (k) measured in the charge / discharge cycle test, and the area reference capacity (l) and the volume reference capacity (m) calculated based on the mass reference capacity (k). ing. The mass-based capacitance (k) of Comparative Example 1 is the sulfur areal density (g) based on the mass-based numerical value (680 mAh / g sulfur ) of sulfur obtained from the discharge profile (Fig. 5b) described in Non-Patent Document 1. , And the value obtained by dividing by the sum of the CNT areal density (f) and the sulfur areal density (g) was used. The mass reference capacity (k) of Comparative Example 2 is obtained by multiplying the mass reference value (900 mAh / g sulfur ) of sulfur described in Non-Patent Document 2 by the sulfur areal density (g) to obtain the CNT areal density (f). The value obtained by dividing by the sum of the sulfur areal densities (g) was used. The area reference capacity (l) and the volume reference capacity (m) of Comparative Examples 1 to 3 were calculated based on the mass reference capacity (k) as in the examples.
表1より、実施例1~21の正極と比較例1~3の正極とを比べると、膜厚が5~62μmである実施例1~21では、膜厚が100~250μmである比較例1~3よりも、硫黄積載質量(i)及び体積基準容量(m)が大きいことが確認できた。実施例1~21を比べると、膜厚が小さいほど、体積基準容量(m)が大きくなる一方で面積基準容量(l)が小さくなる傾向にあることが確認できた。
From Table 1, when the positive electrodes of Examples 1 to 21 and the positive electrodes of Comparative Examples 1 to 3 are compared, in Examples 1 to 21 having a film thickness of 5 to 62 μm, Comparative Example 1 having a film thickness of 100 to 250 μm. It was confirmed that the sulfur loading mass (i) and the volume reference capacity (m) were larger than those of 3 to 3. Comparing Examples 1 to 21, it was confirmed that the smaller the film thickness, the larger the volume reference capacity (m), but the smaller the area reference capacity (l).
表2は、実施例9~13の正極を製造する際の乾燥工程S2における乾燥条件、DME残留率、及び質量基準容量の関係をまとめたものである。
Table 2 summarizes the relationship between the drying conditions, the DME residual ratio, and the mass reference capacity in the drying step S2 when producing the positive electrodes of Examples 9 to 13.
実施例13では、乾燥時間0.17分(10秒)、乾燥温度20℃(常温)で、大気圧との差圧が-0.1MPaとなるように減圧して乾燥(真空乾燥)を行った。実施例9では、乾燥時間10分、乾燥温度20℃で、真空乾燥を行った。実施例12では、乾燥時間60分、乾燥温度20℃で、真空乾燥を行った。実施例11では、上述したように、乾燥時間60分、乾燥温度45℃で、常圧で乾燥(常圧乾燥)を行った。実施例10では、乾燥時間60分、乾燥温度90℃で、常圧乾燥を行った。表2には、スポンジ状構造体中に残留する溶媒分子の質量割合を「DME残留率」と表示している。また、表2には、充放電サイクル試験で測定された1サイクル目(1st cycle)と2サイクル目(2nd cycle)の質量基準容量を示している。
In Example 13, drying (vacuum drying) was performed at a drying time of 0.17 minutes (10 seconds) and a drying temperature of 20 ° C. (normal temperature) by reducing the pressure so that the pressure difference from the atmospheric pressure was −0.1 MPa. rice field. In Example 9, vacuum drying was performed at a drying time of 10 minutes and a drying temperature of 20 ° C. In Example 12, vacuum drying was performed at a drying time of 60 minutes and a drying temperature of 20 ° C. In Example 11, as described above, drying was performed at normal pressure (normal pressure drying) at a drying time of 60 minutes and a drying temperature of 45 ° C. In Example 10, atmospheric drying was carried out at a drying time of 60 minutes and a drying temperature of 90 ° C. In Table 2, the mass ratio of the solvent molecules remaining in the sponge-like structure is indicated as "DME residual ratio". Table 2 shows the mass reference capacities of the first cycle (1st cycle) and the second cycle (2nd cycle) measured in the charge / discharge cycle test.
表2より、乾燥温度が45℃以下の実施例9,11~13は、乾燥温度が90℃の実施例10よりも、DME残留率及び質量基準容量が大きいことが確認できた。実施例10,11を比べると、乾燥温度が45℃である実施例11では、乾燥温度が90℃である実施例10よりも、DME残留率及び質量基準容量が大きいことが確認できた。乾燥温度が低いほど、高いDME残留率及び質量基準容量が得られる傾向にあることがわかる。常温(20℃)で短時間(10秒)の真空乾燥を行った実施例13で最も高いDME残留率及び質量基準容量が得られることが確認できた。乾燥温度が45℃である実施例11と乾燥温度が20℃である実施例9,12,13とを比べると、1サイクル目の質量基準容量では実施例11が実施例9,12,13よりも低いが、2サイクル目の質量基準容量では実施例11と実施例9,12,13とが同程度であることが確認できた。真空乾燥を行った実施例9,12,13を比べると、乾燥時間が10秒である実施例13では、乾燥時間が10分である実施例9や乾燥時間が60分である実施例12よりも、DME残留率及び質量基準容量が大きいことが確認できた。乾燥時間が短いほど、高いDME残留率及び質量基準容量が得られる傾向にあることがわかる。
From Table 2, it was confirmed that Examples 9, 11 to 13 having a drying temperature of 45 ° C. or lower had a larger DME residual ratio and mass reference capacity than Example 10 having a drying temperature of 90 ° C. Comparing Examples 10 and 11, it was confirmed that in Example 11 having a drying temperature of 45 ° C., the DME residual ratio and the mass reference capacity were larger than those in Example 10 having a drying temperature of 90 ° C. It can be seen that the lower the drying temperature, the higher the DME residual rate and the mass reference capacity tend to be obtained. It was confirmed that the highest DME residual ratio and mass reference capacity were obtained in Example 13 in which vacuum drying was performed at room temperature (20 ° C.) for a short time (10 seconds). Comparing Example 11 having a drying temperature of 45 ° C. and Examples 9, 12 and 13 having a drying temperature of 20 ° C., Example 11 is more than Example 9 and 12 and 13 in terms of mass reference capacity in the first cycle. However, it was confirmed that the mass reference capacity of the second cycle was about the same in Example 11 and Examples 9, 12 and 13. Comparing Examples 9, 12 and 13 in which vacuum drying was performed, in Example 13 having a drying time of 10 seconds, from Example 9 having a drying time of 10 minutes and Example 12 having a drying time of 60 minutes. However, it was confirmed that the DME residual ratio and the mass reference capacity were large. It can be seen that the shorter the drying time, the higher the DME residual rate and the mass reference capacity tend to be obtained.
2.第2実施形態
2-1.全体構成
上記第1実施形態では、CNT12から構成されたスポンジ状構造体14中にポリスルフィド16が含有されているが、第2実施形態では、CNTから構成されたスポンジ状構造体中に、ポリスルフィドに加え、電解質及び/又は添加剤が更に含有されている。 2. Second Embodiment 2-1. Overall configuration In the first embodiment, thepolysulfide 16 is contained in the sponge-like structure 14 composed of CNTs 12, but in the second embodiment, the polysulfides are contained in the sponge-like structure composed of CNTs. In addition, electrolytes and / or additives are further included.
2-1.全体構成
上記第1実施形態では、CNT12から構成されたスポンジ状構造体14中にポリスルフィド16が含有されているが、第2実施形態では、CNTから構成されたスポンジ状構造体中に、ポリスルフィドに加え、電解質及び/又は添加剤が更に含有されている。 2. Second Embodiment 2-1. Overall configuration In the first embodiment, the
図5において、第2実施形態に係る二次電池用正極(以下、正極と称する)30は、CNT32から構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体34中に、Li2Sx(x=4,6,8)で表されるポリスルフィドと、電解質及び/又は添加剤とで構成されたポリスルフィド複合物36が含有されている。CNT32及びスポンジ状構造体34の構成は、第1実施形態のCNT12及びスポンジ状構造体14と同じ構成を有するため、説明を省略する。
In FIG. 5, the positive electrode for a secondary battery (hereinafter referred to as a positive electrode) 30 according to the second embodiment is a Li 2 S in a self-supporting sponge-like structure 34 having a thickness of 5 μm or more and less than 100 μm composed of CNT 32. It contains a polysulfide complex 36 composed of a polysulfide represented by x (x = 4, 6, 8) and an electrolyte and / or an additive. Since the configurations of the CNT 32 and the sponge-like structure 34 have the same configurations as the CNT 12 and the sponge-like structure 14 of the first embodiment, the description thereof will be omitted.
ポリスルフィド複合物36は、固体、半固体、またはスポンジ状構造体34に残留する溶媒分子に溶解した状態でスポンジ状構造体34のCNT32に担持され、CNT32と複合化している。つまり、ポリスルフィド複合物36を構成するポリスルフィド、電解質及び/又は添加剤は、スポンジ状構造体34のCNT32に担持され、CNT32と複合化している。ポリスルフィド複合物36は、CNT32をアイランド状に被覆するような構造、CNT32のほぼ全面を被覆するような構造、粒子状の構造、その他の所定の構造を取り得る。スポンジ状構造体34中のポリスルフィドの含有量は、上記第1実施形態と同様に、硫黄量で0.70g/cm3以上2.0g/cm3以下、好ましくは0.95g/cm3以上1.6g/cm3以下である。
The polysulfide composite 36 is supported on the CNT 32 of the sponge-like structure 34 in a state of being dissolved in a solvent molecule remaining in the solid, semi-solid, or sponge-like structure 34, and is composited with the CNT 32. That is, the polysulfide, electrolyte and / or additive constituting the polysulfide composite 36 is supported on the CNT 32 of the sponge-like structure 34 and is composited with the CNT 32. The polysulfide composite 36 may have a structure that covers the CNT 32 in an island shape, a structure that covers almost the entire surface of the CNT 32, a particle structure, or other predetermined structure. The content of polysulfide in the sponge-like structure 34 is 0.70 g / cm 3 or more and 2.0 g / cm 3 or less, preferably 0.95 g / cm 3 or more 1 in terms of sulfur content, as in the first embodiment. .6 g / cm 3 or less.
ポリスルフィド複合物36を構成する電解質としては、LiTFSI、リチウムビス(ペルフルオロエタンスルホニル)イミド(LiBETI)、LiClO4、LiBF4、LiPF6、リチウムトリフルオロメタンスルホネート(Liトリフレート)、リチウムビス(オキザレート)ボレート(LiBOB)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiCF3BO3、Li臭化物、Liヨウ化物などが挙げられる。添加剤として後述するLiNO3を電解質として用いることもできる。スポンジ状構造体34中の電解質の含有量は、例えば、最終的な二次電池として含有させる所望の電解質量とすることができるが、これに限られず、例えば上記所望の電解質量未満としても良い。
Examples of the electrolyte constituting the polysulfide complex 36 include LiTFSI, lithium bis (perfluoroethanesulfonyl) imide (LiBETI), LiClO 4 , LiBF 4 , LiPF 6 , lithium trifluoromethanesulfonate (Li triflate), and lithium bis (oxalate) borate. (LiBOB), lithium bis (fluorosulfonyl) imide (LiFSI), LiCF 3 BO 3 , Li bromide, Li iodide and the like. LiNO 3 described later as an additive can also be used as an electrolyte. The content of the electrolyte in the sponge-like structure 34 can be, for example, a desired electrolytic mass to be contained in the final secondary battery, but is not limited to this, and may be, for example, less than the desired electrolytic mass. ..
ポリスルフィド複合物36を構成する添加剤としては、LiNO3、アンモニウムビス(トリフルオロスルホニル)イミド(NH4TFSI)、炭酸フルオロエチレン(FEC)などが挙げられる。上記したポリスルフィド複合物36を構成する電解質を添加剤として用いることもできる。スポンジ状構造体34中の添加剤の含有量は、例えば、最終的な二次電池として含有させる所望の添加剤量とすることができるが、これに限られず、例えば上記所望の添加剤量未満としても良い。
Examples of the additive constituting the polysulfide complex 36 include LiNO 3 , ammonium bis (trifluorosulfonyl) imide (NH 4 TFSI), fluoroethylene carbonate (FEC) and the like. The electrolyte constituting the above-mentioned polysulfide complex 36 can also be used as an additive. The content of the additive in the sponge-like structure 34 can be, for example, a desired additive amount to be contained in the final secondary battery, but is not limited to this, and is, for example, less than the desired additive amount. May be.
第2実施形態の正極30は、正極活物質としてのポリスルフィドに加え、二次電池の電解液を構成する電解質及び/又は添加剤がスポンジ状構造体34に事前に担持されている。このため、二次電池を作製する際に、電解液の溶媒のみを注入したり、電解質及び/又は添加剤の濃度が小さい電解液を注入することができる。溶媒のみからなる電解液や電解質及び/又は添加剤の濃度が小さい電解液は粘度が小さいため、正極30、負極及びセパレータに浸み込み易く、二次電池の電解液の量を減らすことができE/S比を小さくすることができる。E/S比が小さいほど、二次電池の質量が小さくなり、二次電池のエネルギー密度を高めることができる。したがって、第2実施形態の正極30によれば、二次電池の電解液の量を減らすことで当該二次電池のE/S比及び質量を小さくし、二次電池のエネルギー密度を高めることができる。
In the positive electrode 30 of the second embodiment, in addition to the polysulfide as the positive electrode active material, the electrolyte and / or the additive constituting the electrolytic solution of the secondary battery is previously supported on the sponge-like structure 34. Therefore, when manufacturing the secondary battery, it is possible to inject only the solvent of the electrolytic solution, or inject the electrolytic solution having a small concentration of the electrolyte and / or the additive. Since the electrolytic solution consisting only of the solvent and the electrolytic solution having a small concentration of the electrolyte and / or the additive have a low viscosity, it easily penetrates into the positive electrode 30, the negative electrode and the separator, and the amount of the electrolytic solution of the secondary battery can be reduced. The E / S ratio can be reduced. The smaller the E / S ratio, the smaller the mass of the secondary battery, and the higher the energy density of the secondary battery can be. Therefore, according to the positive electrode 30 of the second embodiment, it is possible to reduce the E / S ratio and mass of the secondary battery by reducing the amount of the electrolytic solution of the secondary battery, and increase the energy density of the secondary battery. can.
2-2.製造方法
第2実施形態に係る正極30の製造方法について説明する。 2-2. Manufacturing Method The manufacturing method of thepositive electrode 30 according to the second embodiment will be described.
第2実施形態に係る正極30の製造方法について説明する。 2-2. Manufacturing Method The manufacturing method of the
正極30は、CNT32から構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体34中に、Li2Sx(x=4,6,8)で表されるポリスルフィドと、電解質及び/又は添加剤とを含有させ、CNT32、ポリスルフィド、電解質及び/又は添加剤を複合化することにより製造される。
The positive electrode 30, the self-standing in a sponge-like structure 34 is less than the configured thickness 5μm or 100μm from CNT32, and polysulfides represented by Li 2 S x (x = 4,6,8 ), the electrolyte and / or It is produced by containing an additive and combining CNT32, a polysulfide, an electrolyte and / or an additive.
以下に、CNT32、ポリスルフィド、電解質及び/又は添加剤を複合化する方法の一例を説明する。
An example of a method for combining CNT32, polysulfide, an electrolyte and / or an additive will be described below.
(第1の方法)
図6に示すように、ポリスルフィド(Li2Sx)と電解質と添加剤とを含有する溶液(以下、ポリスルフィド、電解質及び/又は添加剤を含有する溶液を「Li2Sx複合溶液」と称する)をスポンジ状構造体34に供給し、スポンジ状構造体34中にLi2Sx複合溶液を保持させる供給工程と、Li2Sx複合溶液を保持したスポンジ状構造体34を乾燥し、CNT32(図5参照)にポリスルフィドと電解質と添加剤とを担持させる乾燥工程とを順に実施することにより、正極30が得られる。第1の方法における乾燥工程は、上記第1実施形態の乾燥工程S2(図3参照)と同じであるため、説明を省略する。 (First method)
As shown in FIG. 6, referred polysulfides (Li 2 S x) with a solution containing an electrolyte and the additive (hereinafter, polysulfide, a solution containing electrolyte and / or additives and "Li 2 S x composite solution" ) was fed to the sponge-like structure 34, a supply step for holding the Li 2 S x composite solution into a sponge-like structure 34, a sponge-like structure 34 holding the Li 2 S x composite solution was dried, CNT32 The positive electrode 30 is obtained by sequentially carrying out a drying step of supporting the polysulfide, the electrolyte and the additive in (see FIG. 5). Since the drying step in the first method is the same as the drying step S2 (see FIG. 3) of the first embodiment, the description thereof will be omitted.
図6に示すように、ポリスルフィド(Li2Sx)と電解質と添加剤とを含有する溶液(以下、ポリスルフィド、電解質及び/又は添加剤を含有する溶液を「Li2Sx複合溶液」と称する)をスポンジ状構造体34に供給し、スポンジ状構造体34中にLi2Sx複合溶液を保持させる供給工程と、Li2Sx複合溶液を保持したスポンジ状構造体34を乾燥し、CNT32(図5参照)にポリスルフィドと電解質と添加剤とを担持させる乾燥工程とを順に実施することにより、正極30が得られる。第1の方法における乾燥工程は、上記第1実施形態の乾燥工程S2(図3参照)と同じであるため、説明を省略する。 (First method)
As shown in FIG. 6, referred polysulfides (Li 2 S x) with a solution containing an electrolyte and the additive (hereinafter, polysulfide, a solution containing electrolyte and / or additives and "Li 2 S x composite solution" ) was fed to the sponge-
第1の方法における供給工程において、Li2Sx複合溶液は、S8の粉末と、Li2Sの粉末と、電解質の粉末と、添加剤の粉末とを溶媒に分散させることにより調製する。例えば、電解質の粉末と添加剤の粉末とを溶媒に溶解させることにより電解質と添加剤の混合溶液を調製し、調製した電解質と添加剤の混合溶液に対しS8の粉末とLi2Sの粉末とを添加して攪拌して溶解することにより、Li2Sx複合溶液を調製することができる。Li2Sx複合溶液をスポンジ状構造体34に供給する方法は、上記第1実施形態における供給工程S1と同様に、溶液をスポンジ状構造体34に滴下する方法などを用いることができる。Li2Sx複合溶液の溶媒としては、例えば、DME、DOLとDMEとを混合した混合液、1,2-ジエトキシエタン(DEE)、ジエチレングリコールジメチルエーテル(G2)、トリエチレングリコールジメチルエーテル(G3)、テトラエチレングリコールジメチルエーテル(G4)、ハイドロフルオロエーテル(HFE)、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMA)、1,3-ジメチル-2-イミダゾリジノン(DMI)、1-メチルイミダゾール(Melm)、エチルメチルスルホン、スルホラン(SL)、ジメチルスルホキシド(DMSO)、アセトニトリル(AN)、テトラヒドロフラン(THF)、炭酸フルオロエチレン(FEC)などを用いることができる。
In the feeding step of the first method, the Li 2 S x composite solution is prepared by dispersing the S 8 powder, the Li 2 S powder, the electrolyte powder, and the additive powder in a solvent. For example, powder of the powder and Li 2 S of S 8 to the mixed solution of the additive and a mixed solution of the additive and the electrolyte was prepared, the prepared electrolyte by causing the powder additive and the electrolyte powder is dissolved in a solvent by dissolving with stirring by adding bets can be prepared Li 2 S x composite solution. As a method of supplying the Li 2 S x composite solution to the sponge-like structure 34, a method of dropping the solution onto the sponge-like structure 34 or the like can be used as in the supply step S1 in the first embodiment. Li 2 S x as the solvent for the complex solution, for example, DME, liquid mixture of the DOL and DME, 1,2-diethoxyethane (DEE), diethylene glycol dimethyl ether (G2), triethylene glycol dimethyl ether (G3), Tetraethylene glycol dimethyl ether (G4), hydrofluoro ether (HFE), N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMA), 1,3-dimethyl-2-imidazolidinone (DMI) , 1-Methylimidazole (Melm), ethylmethylsulfone, sulfolane (SL), dimethylsulfoxide (DMSO), acetonitrile (AN), tetrahydrofuran (THF), fluoroethylene carbonate (FEC) and the like can be used.
第1の方法における供給工程は、図6では、ポリスルフィドと電解質と添加剤とを含有するLi2Sx複合溶液をスポンジ状構造体34に供給したが、これに限られない。ポリスルフィドと電解質とを含有するLi2Sx複合溶液をスポンジ状構造体34に供給しても良いし、ポリスルフィドと添加剤とを含有するLi2Sx複合溶液をスポンジ状構造体34に供給しても良い。
Supplying step of the first method, in Figure 6, has been supplied Li 2 S x composite solution containing a polysulfide electrolyte and additives to the sponge-like structure 34 is not limited to this. It a Li 2 S x composite solution containing polysulfide and the electrolyte may be supplied to the sponge-like structure 34, to supply Li 2 S x composite solution containing a polysulfide and additives spongy structure 34 You may.
(第2の方法)
上記第1の方法では、Li2Sx複合溶液をスポンジ状構造体34に供給したが、第2の方法では、ポリスルフィド(Li2Sx)を含有する溶液(Li2Sxの溶液)と、電解質を含有する溶液(電解質の溶液)と、添加剤を含有する溶液(添加剤の溶液)とを、それぞれスポンジ状構造体34に供給する。 (Second method)
In the first method described above, the Li 2 S x composite solution was supplied to the sponge-like structure 34, but in the second method, the solution containing the polysulfide (Li 2 S x ) (Li 2 S x solution) was used. , The solution containing the electrolyte (solution of the electrolyte) and the solution containing the additive (solution of the additive) are supplied to the sponge-like structure 34, respectively.
上記第1の方法では、Li2Sx複合溶液をスポンジ状構造体34に供給したが、第2の方法では、ポリスルフィド(Li2Sx)を含有する溶液(Li2Sxの溶液)と、電解質を含有する溶液(電解質の溶液)と、添加剤を含有する溶液(添加剤の溶液)とを、それぞれスポンジ状構造体34に供給する。 (Second method)
In the first method described above, the Li 2 S x composite solution was supplied to the sponge-
第2の方法では、図7に示すように、まず、Li2Sxの溶液をスポンジ状構造体34に供給し、スポンジ状構造体34中にLi2Sxの溶液を保持させる供給工程と、当該スポンジ状構造体34を乾燥する乾燥工程とを実施し、第1正極前駆体を作製する。次に、電解質の溶液を第1正極前駆体に供給し、第1正極前駆体中に電解質の溶液を保持させる供給工程と、当該第1正極前駆体を乾燥する乾燥工程とを実施し、第2正極前駆体を作製する。次に、添加剤の溶液を第2正極前駆体に供給し、第2正極前駆体中に添加剤の溶液を保持させる供給工程と、当該第2正極前駆体を乾燥する乾燥工程とを実施することにより、正極30が製造される。第2の方法における各乾燥工程は、上記第1実施形態の乾燥工程S2(図3参照)と同じであるため、説明を省略する。
In the second method, as shown in FIG. 7, first, and then feeding the solution of Li 2 S x spongy structure 34, provided to hold the solution of Li 2 S x in sponge-like structure 34 step , A drying step of drying the sponge-like structure 34 is carried out to prepare a first positive electrode precursor. Next, a supply step of supplying the electrolyte solution to the first positive electrode precursor and holding the electrolyte solution in the first positive electrode precursor, and a drying step of drying the first positive electrode precursor are carried out. 2 Prepare a positive electrode precursor. Next, a supply step of supplying the solution of the additive to the second positive electrode precursor and holding the solution of the additive in the second positive electrode precursor, and a drying step of drying the second positive electrode precursor are carried out. As a result, the positive electrode 30 is manufactured. Since each drying step in the second method is the same as the drying step S2 (see FIG. 3) of the first embodiment, the description thereof will be omitted.
第2の方法における供給工程において、Li2Sxの溶液は、S8の粉末とLi2Sの粉末とを溶媒に分散させることにより調製する。電解質の溶液は、電解質の粉末を溶媒に溶解して調製する。添加剤の溶液は、添加剤の粉末を溶媒に溶解して調製する。Li2Sxの溶液、電解質の溶液、添加剤の溶液をスポンジ状構造体34に供給する方法は、上記第1実施形態における供給工程S1と同様に、溶液をスポンジ状構造体34に滴下する方法などを用いることができる。各溶液の調製に用いる溶媒は、同一の溶媒でも良いし、それぞれ異なる溶媒でも良い。第2の方法では、Li2Sxの溶液と電解質の溶液と添加剤の溶液とをそれぞれスポンジ状構造体34に供給するので、各溶液の調製に用いる溶媒として、ポリスルフィド、電解質、添加剤に対する溶解度が高い溶媒をそれぞれ独立に選択することができる。Li2Sxの溶媒としては、例えば、DME、DOLとDMEとを混合した混合液、1,2-ジエトキシエタン(DEE)、ジエチレングリコールジメチルエーテル(G2)、トリエチレングリコールジメチルエーテル(G3)、テトラエチレングリコールジメチルエーテル(G4)、ハイドロフルオロエーテル(HFE)、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMA)、1,3-ジメチル-2-イミダゾリジノン(DMI)、1-メチルイミダゾール(Melm)、エチルメチルスルホン、スルホラン(SL)、ジメチルスルホキシド(DMSO)、アセトニトリル(AN)、テトラヒドロフラン(THF)、炭酸フルオロエチレン(FEC)などを用いることができる。電解質の溶媒としては、例えば、上記のLi2Sxの溶媒に加え、アルコール系やカーボネート系などの有機溶媒(エタノール、エチレンカーボネートなど)を用いることができる。電解質が水分と反応しない材料の場合には、上記の有機溶媒の他に、水を溶媒として用いることができる。添加剤の溶媒としては、例えば、上記の電解質の有機溶媒などを用いることができる。添加剤が水分と反応しない材料の場合には、上記の有機溶媒の他に、水を溶媒として用いることができる。
In the feeding step of the second method, the solution of Li 2 S x is prepared by dispersing the powder of S 8 and the powder of Li 2 S in a solvent. The electrolyte solution is prepared by dissolving the electrolyte powder in a solvent. The additive solution is prepared by dissolving the additive powder in a solvent. The method of supplying the solution of Li 2 S x, the solution of the electrolyte, and the solution of the additive to the sponge-like structure 34 is the same as in the supply step S1 in the first embodiment, and the solution is dropped onto the sponge-like structure 34. A method or the like can be used. The solvent used for preparing each solution may be the same solvent or different solvents. In the second method, since the supply and solution of the solution and the electrolyte solution with additives of Li 2 S x spongy structure 34 respectively, as a solvent used for preparing each solution, polysulfide, electrolyte, for additives Solvents with high solubility can be selected independently. The solvent of Li 2 S x, for example, DME, liquid mixture of the DOL and DME, 1,2-diethoxyethane (DEE), diethylene glycol dimethyl ether (G2), triethylene glycol dimethyl ether (G3), tetraethylene Glycol dimethyl ether (G4), hydrofluoro ether (HFE), N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMA), 1,3-dimethyl-2-imidazolidinone (DMI), 1 -Methylimidazole (Melm), ethylmethylsulfone, sulfolane (SL), dimethyl sulfoxide (DMSO), acetonitrile (AN), tetrahydrofuran (THF), fluoroethylene carbonate (FEC) and the like can be used. As the solvent of the electrolyte, for example, in addition to the solvent of the above Li 2 S x, it may be an organic solvent such as an alcohol-based or carbonate-based (ethanol, ethylene carbonate, etc.). When the electrolyte is a material that does not react with water, water can be used as the solvent in addition to the above-mentioned organic solvent. As the solvent of the additive, for example, the organic solvent of the above-mentioned electrolyte can be used. When the additive is a material that does not react with water, water can be used as a solvent in addition to the above-mentioned organic solvent.
図7では、スポンジ状構造体34に対し、Li2Sxの溶液、電解質の溶液、添加剤の溶液をこの順に供給したが、各溶液を供給する順番は、特に限定されない。すなわち、スポンジ状構造体34に対し各溶液を供給する順番は、Li2Sxの溶液、添加剤の溶液、電解質の溶液の順、電解質の溶液、添加剤の溶液、Li2Sxの溶液の順、電解質の溶液、Li2Sxの溶液、添加剤の溶液の順、添加剤の溶液、電解質の溶液、Li2Sxの溶液の順、添加剤の溶液、Li2Sxの溶液、電解質の溶液の順としても良い。各供給工程の間の乾燥工程は適宜省略しても良い。
In Figure 7, to a sponge-like structure 34, a solution of Li 2 S x, the solution of the electrolyte, but a solution of the additive was fed in this order, the order to supply each solution is not particularly limited. That is, the order of supplying each solution to the sponge-like structure 34 is Li 2 S x solution, additive solution, electrolyte solution, electrolyte solution, additive solution, Li 2 S x solution. solution sequentially, the solution of the electrolyte, a solution of Li 2 S x, the order of the solution of the additive, the solution of the additive, the solution of the electrolyte, the order of the solution of Li 2 S x, solution additives, Li 2 S x , The solution of the electrolyte may be in this order. The drying step between each supply step may be omitted as appropriate.
図7では、Li2Sxの溶液、電解質の溶液、添加剤の溶液の3種の溶液をスポンジ状構造体34に供給したが、3種の溶液のうち電解質の溶液又は添加剤の溶液を除く2種の溶液を供給しても良い。2種の溶液をスポンジ状構造体34に供給する順番は、特に限定されない。すなわち、スポンジ状構造体34に対し各溶液を供給する順番は、Li2Sxの溶液、添加剤の溶液の順、添加剤の溶液、Li2Sxの溶液の順、Li2Sxの溶液、電解質の溶液の順、電解質の溶液、Li2Sxの溶液の順としても良い。各供給工程の間の乾燥工程は適宜省略しても良い。
In Figure 7, a solution of Li 2 S x, the solution of the electrolyte, but the three solutions of a solution of the additive was fed to the sponge-like structure 34, three solutions of electrolyte solutions or additives out of solution Two kinds of solutions except the above may be supplied. The order in which the two solutions are supplied to the sponge-like structure 34 is not particularly limited. That is, the order for supplying the solution to the sponge-like structure 34, a solution of Li 2 S x, the order of the solution of additive, solution additives, the order of the solution of Li 2 S x, of Li 2 S x solution, the order of the solution of the electrolyte solution of the electrolyte, may be the order of the solution of Li 2 S x. The drying step between each supply step may be omitted as appropriate.
電解質、添加剤が水分と反応しない材料の場合は、電解質の溶液、添加剤の溶液を、大気環境でスポンジ状構造体34に供給しても良い。電解質の溶液、添加剤の溶液を大気環境でスポンジ状構造体34に供給することにより、アルゴン(Ar)環境で行うプロセスを減らすことができ、製造コスト及び環境への負荷が抑えられる。例えば、電解質の溶液と添加剤の溶液とを大気環境でスポンジ状構造体34に供給して乾燥させた後に、Li2Sxの溶液のスポンジ状構造体34への供給及び乾燥工程でのスポンジ状構造体34の乾燥をAr環境で連続して行うことで、製造コスト及び環境への負荷が抑えられるとともに、正極30を効率的に製造できる。
When the electrolyte and the additive are materials that do not react with water, the electrolyte solution and the additive solution may be supplied to the sponge-like structure 34 in an air environment. By supplying the electrolyte solution and the additive solution to the sponge-like structure 34 in the air environment, the number of processes performed in the argon (Ar) environment can be reduced, and the manufacturing cost and the burden on the environment can be suppressed. For example, sponge and a solution of the solution and the additive of the electrolyte after drying is supplied to the sponge-like structure 34 in an air environment, in feed and drying to sponge-like structure 34 of a solution of Li 2 S x By continuously drying the shaped structure 34 in an Ar environment, the manufacturing cost and the burden on the environment can be suppressed, and the positive electrode 30 can be efficiently manufactured.
(第3の方法)
上記第1の方法では、ポリスルフィド、電解質及び/又は添加剤を含有するLi2Sx複合溶液をスポンジ状構造体34に供給し、上記第2の方法では、Li2Sxの溶液、電解質の溶液、添加剤の溶液をそれぞれスポンジ状構造体34に供給した。第3の方法では、ポリスルフィド、電解質、添加剤の組み合わせが異なる2種の溶液をそれぞれスポンジ状構造体34に供給する。 (Third method)
In the first method, polysulfide, Li 2 S x composite solution containing an electrolyte and / or additives fed to the sponge-like structure 34, in the second method, the Li 2 S x solution, the electrolyte A solution and a solution of the additive were supplied to the sponge-like structure 34, respectively. In the third method, two kinds of solutions having different combinations of polysulfide, electrolyte and additive are supplied to the sponge-like structure 34, respectively.
上記第1の方法では、ポリスルフィド、電解質及び/又は添加剤を含有するLi2Sx複合溶液をスポンジ状構造体34に供給し、上記第2の方法では、Li2Sxの溶液、電解質の溶液、添加剤の溶液をそれぞれスポンジ状構造体34に供給した。第3の方法では、ポリスルフィド、電解質、添加剤の組み合わせが異なる2種の溶液をそれぞれスポンジ状構造体34に供給する。 (Third method)
In the first method, polysulfide, Li 2 S x composite solution containing an electrolyte and / or additives fed to the sponge-
第3の方法では、図8に示すように、まず、ポリスルフィド(Li2Sx)を含有する溶液(Li2Sxの溶液)をスポンジ状構造体34に供給し、スポンジ状構造体34中にLi2Sxの溶液を保持させる供給工程と、当該スポンジ状構造体34を乾燥する乾燥工程とを実施し、第3正極前駆体を作製する。次に、電解質及び添加剤を含有する溶液(電解質及び添加剤の溶液)を第3正極前駆体に供給し、第3正極前駆体中に電解質及び添加剤の溶液を保持させる供給工程と、当該第3正極前駆体を乾燥する乾燥工程とを実施することにより、正極30が製造される。第3の方法における各乾燥工程は、上記第1実施形態の乾燥工程S2(図3参照)と同じであるため、説明を省略する。
In the third method, as shown in FIG. 8, first, a solution containing polysulfide (Li 2 S x ) (a solution of Li 2 S x ) is supplied to the sponge-like structure 34, and the sponge-like structure 34 is contained. a supply step for holding the solution of Li 2 S x in, carried out and drying step of drying the sponge-like structure 34, to produce a third positive electrode precursor. Next, a supply step of supplying a solution containing the electrolyte and the additive (solution of the electrolyte and the additive) to the third positive electrode precursor and holding the solution of the electrolyte and the additive in the third positive electrode precursor, and the relevant step. The positive electrode 30 is manufactured by carrying out a drying step of drying the third positive electrode precursor. Since each drying step in the third method is the same as the drying step S2 (see FIG. 3) of the first embodiment, the description thereof will be omitted.
第3の方法における供給工程において、Li2Sxの溶液は、S8の粉末とLi2Sの粉末とを溶媒に分散させることにより調製する。電解質及び添加剤の溶液は、電解質の粉末と添加剤の粉末とを溶媒に溶解して調製する。Li2Sxの溶液、電解質及び添加剤の溶液をスポンジ状構造体34に供給する方法は、上記第1実施形態における供給工程S1と同様に、溶液をスポンジ状構造体34に滴下する方法などを用いることができる。各溶液の調製に用いる溶媒は、同一の溶媒でも良いし、それぞれ異なる溶媒でも良い。第3の方法では、Li2Sxの溶液と電解質及び添加剤の溶液とをそれぞれスポンジ状構造体34に供給するので、各溶液の調製に用いる溶媒として、ポリスルフィド、電解質、添加剤に対する溶解度が高い溶媒をそれぞれ選択することができる。Li2Sxの溶媒としては、上記第2の方法と同様に、例えば、DME、DOLとDMEとを混合した混合液、1,2-ジエトキシエタン(DEE)、ジエチレングリコールジメチルエーテル(G2)、トリエチレングリコールジメチルエーテル(G3)、テトラエチレングリコールジメチルエーテル(G4)、ハイドロフルオロエーテル(HFE)、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMA)、1,3-ジメチル-2-イミダゾリジノン(DMI)、1-メチルイミダゾール(Melm)、エチルメチルスルホン、スルホラン(SL)、ジメチルスルホキシド(DMSO)、アセトニトリル(AN)、テトラヒドロフラン(THF)、炭酸フルオロエチレン(FEC)などを用いることができる。電解質及び添加剤の溶媒としては、例えば、上記のLi2Sxの溶媒に加え、アルコール系やカーボネート系などの有機溶媒(エタノール、エチレンカーボネートなど)を用いることができる。
In the feeding step of the third method, the solution of Li 2 S x is prepared by dispersing the powder of S 8 and the powder of Li 2 S in a solvent. The electrolyte and additive solutions are prepared by dissolving the electrolyte powder and the additive powder in a solvent. The method of supplying the solution of Li 2 S x, the solution of the electrolyte and the additive to the sponge-like structure 34 is a method of dropping the solution onto the sponge-like structure 34, similarly to the supply step S1 in the first embodiment. Can be used. The solvent used for preparing each solution may be the same solvent or different solvents. In the third method, since the supply and solution of the solution and the electrolyte and additives Li 2 S x spongy structure 34 respectively, as a solvent used for preparing each solution, polysulfide electrolyte, the solubility in an additive Higher solvents can be selected respectively. As the solvent for the li 2 S x, the as with the second method, for example, DME, liquid mixture of the DOL and DME, 1,2-diethoxyethane (DEE), diethylene glycol dimethyl ether (G2), tri Ethylene glycol dimethyl ether (G3), tetraethylene glycol dimethyl ether (G4), hydrofluoro ether (HFE), N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMA), 1,3-dimethyl-2 -Imidazoridinone (DMI), 1-methylimidazole (Melm), ethyl methyl sulfone, sulfolane (SL), dimethyl sulfoxide (DMSO), acetonitrile (AN), tetrahydrofuran (THF), fluoroethylene carbonate (FEC), etc. are used. be able to. As the solvent of the electrolyte and additives, for example, in addition to the solvent of the above Li 2 S x, it may be an organic solvent such as an alcohol-based or carbonate-based (ethanol, ethylene carbonate, etc.).
図8では、スポンジ状構造体34に対し、Li2Sxの溶液、電解質及び添加剤の溶液をこの順に供給したが、各溶液を供給する順番は、特に限定されない。スポンジ状構造体34に対し各溶液を供給する順番は、電解質及び添加剤の溶液、Li2Sxの溶液の順としても良い。電解質及び添加剤が水分と反応しない材料の場合には、上記の有機溶媒の他に、水を溶媒として用いることができる。各供給工程の間の乾燥工程は適宜省略しても良い。
In Figure 8, to a sponge-like structure 34, a solution of Li 2 S x, but the solution of the electrolyte and additives were fed in this order, the order to supply each solution is not particularly limited. Order supplies the solution to a sponge-like structure 34, a solution of electrolytes and additives, may be the order of the solution of Li 2 S x. When the electrolyte and the additive are materials that do not react with water, water can be used as the solvent in addition to the above-mentioned organic solvent. The drying step between each supply step may be omitted as appropriate.
図8では、Li2Sxの溶液と電解質及び添加剤の溶液との2種の溶液をそれぞれスポンジ状構造体34に供給したが、ポリスルフィド及び電解質を含有するLi2Sx複合溶液と添加剤の溶液との2種の溶液をそれぞれスポンジ状構造体34に供給しても良いし、ポリスルフィド及び添加剤を含有するLi2Sx複合溶液と電解質の溶液との2種の溶液をそれぞれスポンジ状構造体34に供給しても良い。2種の溶液を供給する順番は、特に限定されない。すなわち、スポンジ状構造体34に対し2種の溶液を供給する順番は、ポリスルフィド及び電解質を含有するLi2Sx複合溶液、添加剤の溶液の順、添加剤の溶液、ポリスルフィド及び電解質を含有するLi2Sx複合溶液の順、ポリスルフィド及び添加剤を含有するLi2Sx複合溶液、電解質の溶液の順、電解質の溶液、ポリスルフィド及び添加剤を含有するLi2Sx複合溶液の順としても良い。各供給工程の間の乾燥工程は適宜省略しても良い。
In FIG. 8, two kinds of solutions, a solution of Li 2 S x and a solution of an electrolyte and an additive, were supplied to the sponge-like structure 34, respectively, but the Li 2 S x composite solution and the additive containing polysulfide and the electrolyte were supplied. it solutions and the two solutions may be supplied to the sponge-like structure 34, respectively, containing a polysulfide and additives Li 2 S x composite solution and the two solutions spongy each of the solution of the electrolyte It may be supplied to the structure 34. The order in which the two solutions are supplied is not particularly limited. That is, the order to supply the two solutions to a sponge-like structure 34 contains a polysulfide and Li 2 S x composite solution containing an electrolyte, the order of the solution of additive, solution additives, polysulfide and the electrolyte order Li 2 S x composite solution, Li 2 S x composite solution containing polysulphide and additives, the order of the solution of the electrolyte solution of the electrolyte, as the order of Li 2 S x composite solution containing polysulphide and additives good. The drying step between each supply step may be omitted as appropriate.
電解質、添加剤が水分と反応しない材料の場合は、電解質及び添加剤の溶液、電解質の溶液、添加剤の溶液を、大気環境でスポンジ状構造体34に供給しても良い。電解質及び添加剤の溶液、電解質の溶液、添加剤の溶液を大気環境でスポンジ状構造体34に供給することにより、Ar環境で行うプロセスを減らすことができ、製造コスト及び環境への負荷が抑えられる。例えば、電解質及び添加剤の溶液を大気環境でスポンジ状構造体34に供給して乾燥させた後に、Li2Sxの溶液のスポンジ状構造体34への供給及び乾燥工程でのスポンジ状構造体34の乾燥をAr環境で連続して行うことで、製造コスト及び環境への負荷が抑えられるとともに、正極30を効率的に製造できる。
When the electrolyte and the additive are materials that do not react with water, a solution of the electrolyte and the additive, a solution of the electrolyte, and a solution of the additive may be supplied to the sponge-like structure 34 in an air environment. By supplying the electrolyte and additive solution, the electrolyte solution, and the additive solution to the sponge-like structure 34 in the air environment, the number of processes performed in the Ar environment can be reduced, and the manufacturing cost and the burden on the environment can be suppressed. Be done. For example, a solution of the electrolyte and additives after drying is supplied to the sponge-like structure 34 in an air environment, sponge-like structure at the feed and drying steps to sponge-like structure 34 of a solution of Li 2 S x By continuously drying 34 in an Ar environment, the manufacturing cost and the load on the environment can be suppressed, and the positive electrode 30 can be efficiently manufactured.
第2実施形態に係る上記第1~第3の方法は、正極活物質としてのポリスルフィドに加え、二次電池の電解液を構成する電解質及び/又は添加剤をスポンジ状構造体34に事前に担持することができる。このため、二次電池を作製する際に、電解液の溶媒のみを注入したり、電解質及び/又は添加剤の濃度が小さい電解液を注入することができる。溶媒のみからなる電解液や電解質及び/又は添加剤の濃度が小さい電解液は粘度が小さいため、正極30、負極及びセパレータに浸み込み易く、二次電池の電解液の量を減らすことができE/S比を小さくすることができる。したがって、第2実施形態に係る上記第1~第3の方法によれば、二次電池の電解液の量を減らして当該二次電池のE/S比及び質量を小さくし、二次電池のエネルギー密度を高めることができる。
In the first to third methods according to the second embodiment, in addition to the polysulfide as the positive electrode active material, the electrolyte and / or the additive constituting the electrolytic solution of the secondary battery is previously supported on the sponge-like structure 34. can do. Therefore, when manufacturing the secondary battery, it is possible to inject only the solvent of the electrolytic solution, or inject the electrolytic solution having a small concentration of the electrolyte and / or the additive. Since the electrolytic solution consisting only of the solvent and the electrolytic solution having a small concentration of the electrolyte and / or the additive have a low viscosity, it easily penetrates into the positive electrode 30, the negative electrode and the separator, and the amount of the electrolytic solution of the secondary battery can be reduced. The E / S ratio can be reduced. Therefore, according to the first to third methods according to the second embodiment, the amount of the electrolytic solution of the secondary battery is reduced to reduce the E / S ratio and mass of the secondary battery, and the secondary battery The energy density can be increased.
上記第1~第3の方法は、所定量の電解質及び/又は添加剤をスポンジ状構造体34に事前に担持することができるので、二次電池の電解液に含有させる電解質量及び/又は添加剤量を調整することで、最終的な電解質量及び/又は添加剤量を調整できる。第1実施形態の製造方法では、二次電池に供給可能な電解質量及び/又は添加剤量は、電解液の溶媒に対する電解質及び/又は添加剤の飽和溶解度に制限されるが、第2実施形態の上記第1~第3の方法よれば、電解液の溶媒に対する飽和溶解度以上の電解質及び/又は添加剤が含まれた二次電池を作製できる。
In the first to third methods, a predetermined amount of the electrolyte and / or the additive can be previously supported on the sponge-like structure 34, so that the electrolytic mass and / or the addition to be contained in the electrolytic solution of the secondary battery. By adjusting the amount, the final electrolytic mass and / or the amount of the additive can be adjusted. In the production method of the first embodiment, the electrolytic mass and / or the amount of the additive that can be supplied to the secondary battery is limited to the saturated solubility of the electrolyte and / or the additive in the solvent of the electrolytic solution, but the second embodiment. According to the first to third methods described above, a secondary battery containing an electrolyte and / or an additive having a saturation solubility or higher in the solvent of the electrolytic solution can be produced.
第2実施形態に係る二次電池は、正極30、負極、セパレータ及び電解液を容器内に設置することで製造することができる。第2実施形態に係る二次電池は、正極30、負極、セパレータ、電解液、及び容器を備えており、正極30と負極とセパレータとが、電解液とともに容器内に設けられた構成を有していれば良く、特に限定されない。例えば、上記第1実施形態に係る正極10の代わりに、第2実施形態に係る正極30を用いて、二次電池20(図4参照)を構成しても良い。
The secondary battery according to the second embodiment can be manufactured by installing the positive electrode 30, the negative electrode, the separator, and the electrolytic solution in the container. The secondary battery according to the second embodiment includes a positive electrode 30, a negative electrode, a separator, an electrolytic solution, and a container, and has a configuration in which the positive electrode 30, the negative electrode, and the separator are provided in the container together with the electrolytic solution. It suffices if it exists, and is not particularly limited. For example, the secondary battery 20 (see FIG. 4) may be configured by using the positive electrode 30 according to the second embodiment instead of the positive electrode 10 according to the first embodiment.
第2実施形態に係る二次電池で用いる電解液は、上記第1実施形態に係る二次電池で用いる電解液と異なるものでも良い。上記第1実施形態では、例えば、電解質として1.0mol/LのLiTFSI及び添加剤として0.2mol/LのLiNO3を溶媒に溶解して調製した電解液が用いられるが、第2実施形態では、溶媒のみからなる電解液や、上記第1実施形態よりも少量の電解質及び/又は添加剤を溶媒に溶解し、低濃度の電解質及び/又は添加剤が含まれるように調製した電解液を用いても良い。溶媒のみからなる電解液や低濃度の電解質及び/又は添加剤が含まれる電解液は、粘度が小さく、正極30、負極及びセパレータに浸み込み易く、二次電池の電解液の量を減らすことができE/S比を小さくすることができる。したがって、第2実施形態に係る二次電池によれば、電解液の量を減らすことで当該二次電池のE/S比及び質量を小さくし、エネルギー密度を高めることができる。
The electrolytic solution used in the secondary battery according to the second embodiment may be different from the electrolytic solution used in the secondary battery according to the first embodiment. In the first embodiment, for example, an electrolytic solution prepared by dissolving 1.0 mol / L LiTFSI as an electrolyte and 0.2 mol / L LiNO 3 as an additive in a solvent is used, but in the second embodiment, for example. , Or an electrolyte prepared by dissolving a smaller amount of the electrolyte and / or the additive than in the first embodiment in the solvent and containing a low concentration of the electrolyte and / or the additive. You may. An electrolytic solution consisting only of a solvent or an electrolytic solution containing a low-concentration electrolyte and / or an additive has a low viscosity and easily penetrates into the positive electrode 30, the negative electrode and the separator, and reduces the amount of the electrolytic solution of the secondary battery. The E / S ratio can be reduced. Therefore, according to the secondary battery according to the second embodiment, the E / S ratio and mass of the secondary battery can be reduced and the energy density can be increased by reducing the amount of the electrolytic solution.
第2実施形態に係る二次電池では、供給可能な電解質量及び/又は添加剤量が、電解液の溶媒に対する電解質及び/又は添加剤の飽和溶解度に制限されない。第2実施形態に係る二次電池には、電解液の溶媒に対する飽和溶解度以上の電解質及び/又は添加剤を供給できる。
In the secondary battery according to the second embodiment, the amount of the electrolytic solution and / or the amount of the additive that can be supplied is not limited to the saturated solubility of the electrolyte and / or the additive in the solvent of the electrolytic solution. The secondary battery according to the second embodiment can be supplied with an electrolyte and / or an additive having a saturation solubility or higher in the solvent of the electrolytic solution.
2-3.作用及び効果
第2実施形態に係る正極30は、上記第1実施形態に係る正極10と同様に、CNT32から構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体34中に、Li2Sx(x=4,6,8)で表されるポリスルフィドが、0.70g/cm3以上2.0g/cm3以下の硫黄量で含有されている。したがって、正極30は、上記第1実施形態に係る正極10と同様の効果を有する。すなわち、正極30は、薄いスポンジ状構造体34中に多量のポリスルフィドを含有し、体積あたりの硫黄量が多いので、体積あたりの正極容量密度(体積容量密度)が高く、二次電池のエネルギー密度を高めることができる。また、正極30は、高い導電性を有するスポンジ状構造体34を正極集電体として備えており、集電箔を含まないので、質量及び体積が小さくなり、質量容量密度及び体積容量密度を高めることができる。更に、正極30は、二次電池を構成するときに使用する電解液の量を減らすことができるので、二次電池の質量及び体積を小さくでき、二次電池のエネルギー密度を高めることができる。 2-3. Actions and Effects The positive electrode 30 according to the second embodiment has Li 2 in a self-standing sponge-like structure 34 having a thickness of 5 μm or more and less than 100 μm composed of CNT 32, similarly to the positive electrode 10 according to the first embodiment. The polysulfide represented by S x (x = 4, 6, 8) is contained in a sulfur amount of 0.70 g / cm 3 or more and 2.0 g / cm 3 or less. Therefore, the positive electrode 30 has the same effect as the positive electrode 10 according to the first embodiment. That is, since the positive electrode 30 contains a large amount of polysulfide in the thin sponge-like structure 34 and has a large amount of sulfur per volume, the positive electrode capacity density per volume (volume capacity density) is high, and the energy density of the secondary battery is high. Can be enhanced. Further, since the positive electrode 30 includes a sponge-like structure 34 having high conductivity as a positive electrode current collector and does not include a current collector foil, the mass and volume are reduced, and the mass capacity density and volume capacity density are increased. be able to. Further, since the positive electrode 30 can reduce the amount of the electrolytic solution used when forming the secondary battery, the mass and volume of the secondary battery can be reduced, and the energy density of the secondary battery can be increased.
第2実施形態に係る正極30は、上記第1実施形態に係る正極10と同様に、CNT32から構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体34中に、Li2Sx(x=4,6,8)で表されるポリスルフィドが、0.70g/cm3以上2.0g/cm3以下の硫黄量で含有されている。したがって、正極30は、上記第1実施形態に係る正極10と同様の効果を有する。すなわち、正極30は、薄いスポンジ状構造体34中に多量のポリスルフィドを含有し、体積あたりの硫黄量が多いので、体積あたりの正極容量密度(体積容量密度)が高く、二次電池のエネルギー密度を高めることができる。また、正極30は、高い導電性を有するスポンジ状構造体34を正極集電体として備えており、集電箔を含まないので、質量及び体積が小さくなり、質量容量密度及び体積容量密度を高めることができる。更に、正極30は、二次電池を構成するときに使用する電解液の量を減らすことができるので、二次電池の質量及び体積を小さくでき、二次電池のエネルギー密度を高めることができる。 2-3. Actions and Effects The positive electrode 30 according to the second embodiment has Li 2 in a self-standing sponge-
第2実施形態に係る正極30は、正極活物質としてのポリスルフィドに加え、電解質と添加剤との少なくともいずれかスポンジ状構造体34中に事前に担持されている。このため、二次電池を作製する際に、電解液の溶媒のみを注入したり、電解質及び/又の濃度が小さい電解液を注入することができる。電解液の溶媒や、電解質及び/又の濃度が小さい電解液は粘度が小さいため、正極30、負極及びセパレータに浸み込み易く、二次電池の電解液の量を減らすことができE/S比を小さくすることができる。第2実施形態に係る正極30では、二次電池の電解液の量を減らしてE/S比を小さくすることにより、二次電池の質量を小さくして、二次電池のエネルギー密度を高めることができる。
The positive electrode 30 according to the second embodiment is supported in advance in at least one of the electrolyte and the additive in the sponge-like structure 34 in addition to the polysulfide as the positive electrode active material. Therefore, when manufacturing the secondary battery, it is possible to inject only the solvent of the electrolytic solution, or to inject the electrolytic solution having a small concentration of the electrolyte and / or. Since the solvent of the electrolytic solution and the electrolytic solution having a low concentration of the electrolyte and / or are low in viscosity, they easily permeate into the positive electrode 30, the negative electrode and the separator, and the amount of the electrolytic solution of the secondary battery can be reduced. The ratio can be reduced. In the positive electrode 30 according to the second embodiment, the mass of the secondary battery is reduced and the energy density of the secondary battery is increased by reducing the amount of the electrolytic solution of the secondary battery to reduce the E / S ratio. Can be done.
第2の方法及び第3の方法で正極30を製造する場合は、Li2Sxの溶液と、電解質及び/又は添加剤の溶液とを、それぞれスポンジ状構造体34に供給するので、各溶液に適した溶媒を選択することができる。例えば、電解質及び/又は添加剤の溶媒として水を用いることができ、有機溶媒を使用しないことにより環境への負荷が抑えられる。また、Li2Sxの溶媒にはLi2Sxの飽和溶解度が高い溶媒を用い、電解質の溶媒には電解質の飽和溶解度が高い溶媒を用い、添加剤の溶媒には添加剤の飽和溶解度が高い溶媒を用いることができる。正極30を製造する際にはLi2Sx、電解質、添加剤のそれぞれの飽和溶解度の観点から溶媒を選択し、二次電池を構成する際には二次電池の特性を向上させる観点から溶媒を選択することにより、良好な二次電池の特性が得られる。
When producing the positive electrode 30 in the second method and the third method, the solution of Li 2 S x, with a solution of an electrolyte and / or additives, as each feeding a sponge-like structure 34, each solution A suitable solvent can be selected. For example, water can be used as a solvent for the electrolyte and / or the additive, and the burden on the environment can be suppressed by not using an organic solvent. Further, Li 2 with saturated solubility is high solvent of Li 2 S x in a solvent S x, uses a high saturation solubility in the electrolyte solvent in a solvent of the electrolyte, the saturation solubility of the additive in a solvent additive Higher solvents can be used. In producing the positive electrode 30 Li 2 S x, electrolyte, solvents selected from the viewpoint of the respective saturation solubility of the additive, a solvent from the viewpoint of improving the characteristics of the secondary battery when configuring the secondary battery By selecting, good secondary battery characteristics can be obtained.
第2の方法及び第3の方法では、電解質及び/又は添加剤の溶液の供給を大気環境で行うことにより、Ar環境で行うプロセスが減らすことができるので、製造コスト及び環境への負荷が抑えられる。電解質及び/又は添加剤の溶液の供給を大気環境で行った後に、Li2Sx複合溶液の供給及び乾燥工程をAr環境で連続して行うことで、正極30を効率的に製造できる。
In the second method and the third method, by supplying the solution of the electrolyte and / or the additive in the atmospheric environment, the process performed in the Ar environment can be reduced, so that the manufacturing cost and the burden on the environment can be suppressed. Be done. The supply of the solution of electrolyte and / or additives after performing in an air environment, the supply and drying of Li 2 S x composite solution by performing successively with Ar environment, it can provide a positive electrode 30 efficiently.
2-4.実施例
表3は、実施例22~28の正極の構成と電極性能とをまとめたものである。表3中の(a)~(m)は、第1実施形態と同様の方法で測定又は算出した。試験セルの充放電サイクル試験は、0.1CのCレートで行った。Cレートは、1C=1.672mA/mgと定義した。表4は、実施例22~28の正極及び試験セルの作製条件をまとめたものである。
2-4. Example Table 3 summarizes the configurations of the positive electrodes and the electrode performance of Examples 22 to 28. (A) to (m) in Table 3 were measured or calculated by the same method as in the first embodiment. The charge / discharge cycle test of the test cell was performed at a C rate of 0.1 C. The C rate was defined as 1C = 1.672 mA / mg. Table 4 summarizes the preparation conditions for the positive electrodes and test cells of Examples 22 to 28.
表3は、実施例22~28の正極の構成と電極性能とをまとめたものである。表3中の(a)~(m)は、第1実施形態と同様の方法で測定又は算出した。試験セルの充放電サイクル試験は、0.1CのCレートで行った。Cレートは、1C=1.672mA/mgと定義した。表4は、実施例22~28の正極及び試験セルの作製条件をまとめたものである。
2-4. Example Table 3 summarizes the configurations of the positive electrodes and the electrode performance of Examples 22 to 28. (A) to (m) in Table 3 were measured or calculated by the same method as in the first embodiment. The charge / discharge cycle test of the test cell was performed at a C rate of 0.1 C. The C rate was defined as 1C = 1.672 mA / mg. Table 4 summarizes the preparation conditions for the positive electrodes and test cells of Examples 22 to 28.
実施例22~28の正極の製造方法について以下に説明する。
The method for manufacturing the positive electrodes of Examples 22 to 28 will be described below.
実施例22の正極は、第1実施形態に係る正極10の製造方法を用いて作製した。実施例22では、Ar環境でLi2S8溶液をスポンジ状構造体14に滴下し、乾燥時間10分で減圧乾燥した。Li2S8溶液は、DMEを溶媒として用いて、正極活物質として0.1mg/μLの硫黄(S)相当のLi2S8が含まれるように調製した。実施例22の正極では、スポンジ状構造体14に、4.76mgのLi2S8が担持され、2.98mgの未乾燥の溶媒が残留した。
The positive electrode of Example 22 was produced by using the method for producing a positive electrode 10 according to the first embodiment. In Example 22, the Li 2 S 8 solution was added dropwise to a sponge-like structure 14 in Ar environment, and vacuum dried in a drying time of 10 minutes. The Li 2 S 8 solution was prepared using DME as a solvent so as to contain 0.1 mg / μL of Li 2 S 8 equivalent to sulfur (S) as the positive electrode active material. In the positive electrode of Example 22, 4.76 mg of Li 2 S 8 was supported on the sponge-like structure 14, and 2.98 mg of undried solvent remained.
実施例23の正極は、第2実施形態に係る正極30の製造方法の一例である第1の方法を用いて作製した。実施例23では、Ar環境でLi2S8複合溶液をスポンジ状構造体34に滴下し、実施例22と同様に乾燥した。Li2S8複合溶液は、DMEを溶媒として用いて、正極活物質として0.1mg/μLの硫黄(S)相当のLi2S8、電解質として0.4MのLiTFSI、添加剤として0.08MのLiNO3が含まれるように調製した。M(モーラー)はmol/Lと同義である。実施例23の正極では、スポンジ状構造体34に、4.64mgのLi2S8、5.05mgのLiTFSI、0.24mgのLiNO3が担持され、5.57mgの未乾燥の溶媒が残留した。
The positive electrode of Example 23 was produced by using the first method, which is an example of the method for producing the positive electrode 30 according to the second embodiment. In Example 23, the Li 2 S 8 complex solution was added dropwise to a sponge-like structure 34 in Ar environment, and dried in the same manner as in Example 22. The Li 2 S 8 composite solution uses DME as a solvent, Li 2 S 8 equivalent to 0.1 mg / μL sulfur (S) as the positive electrode active material, 0.4 M LiTFSI as the electrolyte, and 0.08 M as the additive. It was prepared to contain LiNO 3 of the above. M (molar) is synonymous with mol / L. The positive electrode of Example 23, a sponge-like structure 34, Li 2 S 8 of 4.64 mg, LiTFSI in 5.05mg, LiNO 3 of 0.24mg is supported, undried solvent 5.57mg has remained ..
実施例24の正極は、第2実施形態に係る正極30の製造方法の一例である第1の方法を用いて作製した。実施例24の正極の製造条件は、Li2S8複合溶液の溶媒としてDMEとDOLとを体積比1:1で混合した混合液を用いたこと以外は、実施例23の正極の製造条件と同じとした。実施例24の正極では、スポンジ状構造体34に、4.40mgのLi2S8、4.80mgのLiTFSI、0.23mgのLiNO3が担持され、5.54mgの未乾燥の溶媒が残留した。
The positive electrode of Example 24 was produced by using the first method, which is an example of the method for producing the positive electrode 30 according to the second embodiment. The positive electrode of the production conditions of Example 24, Li 2 S 8 composite volume ratio and DME and DOL as the solvent of the solution 1: Except for using the mixture was mixed solution in 1, and production conditions of the positive electrode of Example 23 It was the same. The positive electrode of Example 24, a sponge-like structure 34, Li 2 S 8 of 4.40Mg, LiTFSI in 4.80 mg, LiNO 3 of 0.23mg is supported, undried solvent 5.54mg has remained ..
実施例25の正極は、第2実施形態に係る正極30の製造方法の一例である第2の方法を用いて作製した。実施例25では、Li2S8、LiTFSI、LiNO3を分割してスポンジ状構造体34に供給した。実施例25では、まず、Ar環境でLi2S8の溶液をスポンジ状構造体34に滴下し、乾燥時間5秒で減圧乾燥し、第1正極前駆体を作製した。次に、LiTFSI溶液を第1正極前駆体に滴下し、乾燥せずに第2正極前駆体を作製した。次に、LiNO3溶液を第2正極前駆体に滴下し、乾燥時間10分で減圧乾燥した。Li2S8の溶液は、DMEを溶媒として用いて、正極活物質として0.1mg/μLの硫黄(S)相当のLi2S8が含まれるように調製した。LiTFSI溶液は、DMEとDOLとを体積比1:1で混合した混合液を溶媒として用いて、0.1g/mLのLiTFSIが含まれるように調製した。LiNO3溶液は、DMEとDOLとを体積比1:1で混合した混合液を溶媒として用いて、0.02g/mLのLiNO3が含まれるように調製した。実施例25の正極では、スポンジ状構造体34に、4.19mgのLi2S8、4.56mgのLiTFSI、0.22mgのLiNO3が担持され、1.24mgの未乾燥の溶媒が残留した。
The positive electrode of Example 25 was produced by using the second method, which is an example of the method for producing the positive electrode 30 according to the second embodiment. In Example 25, was fed to the sponge-like structure 34 is divided Li 2 S 8, LiTFSI, a LiNO 3. In Example 25, first, a solution of Li 2 S 8 was added dropwise to the sponge-like structure 34 in an Ar environment, and the mixture was dried under reduced pressure with a drying time of 5 seconds to prepare a first positive electrode precursor. Next, the LiTFSI solution was added dropwise to the first positive electrode precursor to prepare a second positive electrode precursor without drying. Next, the LiNO 3 solution was added dropwise to the second positive electrode precursor, and the mixture was dried under reduced pressure with a drying time of 10 minutes. The solution of Li 2 S 8 was prepared using DME as a solvent so as to contain 0.1 mg / μL of Li 2 S 8 equivalent to sulfur (S) as the positive electrode active material. The LiTFSI solution was prepared so as to contain 0.1 g / mL LiTFSI using a mixed solution of DME and DOL mixed at a volume ratio of 1: 1 as a solvent. The LiNO 3 solution was prepared so as to contain 0.02 g / mL of LiNO 3 using a mixed solution of DME and DOL mixed at a volume ratio of 1: 1 as a solvent. The positive electrode of Example 25, a sponge-like structure 34, Li 2 S 8 of 4.19Mg, LiTFSI in 4.56 mg, LiNO 3 of 0.22mg is supported, undried solvent 1.24mg has remained ..
実施例26の正極は、第2実施形態に係る正極30の製造方法の一例である第2の方法を用いて作製した。実施例26では、まず、大気環境でLiTFSI溶液をスポンジ状構造体34に滴下し、乾燥せずに第1正極前駆体を作製した。次に、大気環境のままでLiNO3溶液を第1正極前駆体に滴下し、乾燥時間10分で減圧乾燥し、第2正極前駆体を作製した。次に、Ar環境でLi2S8の溶液を第2正極前駆体に滴下し、乾燥時間10分で減圧乾燥した。Li2S8の溶液、LiTFSI溶液、LiNO3溶液は、実施例25の各溶液と同じ条件で調製した。実施例26の正極では、スポンジ状構造体34に、4.38mgのLi2S8、4.77mgのLiTFSI、0.23mgのLiNO3が担持され、4.11mgの未乾燥の溶媒が残留した。
The positive electrode of Example 26 was produced by using the second method, which is an example of the method for producing the positive electrode 30 according to the second embodiment. In Example 26, first, a LiTFSI solution was dropped onto the sponge-like structure 34 in an air environment to prepare a first positive electrode precursor without drying. Next, the LiNO 3 solution was added dropwise to the first positive electrode precursor in the air environment, and the mixture was dried under reduced pressure with a drying time of 10 minutes to prepare a second positive electrode precursor. Next, a solution of Li 2 S 8 was added dropwise to the second positive electrode precursor in an Ar environment, and the mixture was dried under reduced pressure with a drying time of 10 minutes. The Li 2 S 8 solution, the LiTFSI solution, and the LiNO 3 solution were prepared under the same conditions as the respective solutions of Example 25. The positive electrode of Example 26, a sponge-like structure 34, Li 2 S 8 of 4.38Mg, LiTFSI in 4.77mg, LiNO 3 of 0.23mg is supported, undried solvent 4.11mg has remained ..
実施例27の正極は、第2実施形態に係る正極30の製造方法の一例である第1の方法を用いて作製した。実施例27の正極の製造条件は、DMEを溶媒として用いて、正極活物質として0.1mg/μLの硫黄(S)相当のLi2S8、添加剤として0.2MのLiNO3が含まれるように調製したLi2S8複合溶液を使用したこと以外は、実施例23の正極の製造条件と同じとした。すなわち、Ar環境でLi2S8複合溶液をスポンジ状構造体34に滴下して乾燥した。実施例27の正極では、スポンジ状構造体34に、4.43mgのLi2S8、0.58mgのLiNO3が担持され、4.65mgの未乾燥の溶媒が残留した。
The positive electrode of Example 27 was produced by using the first method, which is an example of the method for producing the positive electrode 30 according to the second embodiment. The conditions for producing the positive electrode of Example 27 include Li 2 S 8 equivalent to 0.1 mg / μL of sulfur (S) as the positive electrode active material and 0.2 M LiNO 3 as the additive, using DME as the solvent. except prepared Li 2 S 8 complex solution that was used as were the same as the production conditions of the positive electrode of example 23. That is, in an Ar environment, the Li 2 S 8 composite solution was added dropwise to the sponge-like structure 34 and dried. The positive electrode of Example 27, a sponge-like structure 34, Li 2 S 8 of 4.43mg, LiNO 3 of 0.58mg is supported, undried solvent 4.65mg remained.
実施例28の正極は、第2実施形態に係る正極30の製造方法の一例である第2の方法を用いて作製した。実施例28では、LiNO3、Li2S8を分割してスポンジ状構造体34に供給した。実施例28では、まず、大気環境でLiNO3溶液をスポンジ状構造体34に滴下し、乾燥時間10分で減圧乾燥し、第1正極前駆体を作製した。次に、Ar環境でLi2S8の溶液を第1正極前駆体に滴下し、乾燥時間10分で減圧乾燥した。Li2S8の溶液、LiNO3溶液は、実施例26のLi2S8の溶液、LiNO3溶液と同じ条件で調製した。実施例28の正極では、スポンジ状構造体34に、4.33mgのLi2S8、0.68mgのLiNO3が担持され、4.03mgの未乾燥の溶媒が残留した。
The positive electrode of Example 28 was produced by using the second method, which is an example of the method for producing the positive electrode 30 according to the second embodiment. In Example 28, LiNO 3 and Li 2 S 8 were divided and supplied to the sponge-like structure 34. In Example 28, first, a LiNO 3 solution was added dropwise to the sponge-like structure 34 in an air environment, and the mixture was dried under reduced pressure with a drying time of 10 minutes to prepare a first positive electrode precursor. Next, a solution of Li 2 S 8 was added dropwise to the first positive electrode precursor in an Ar environment, and the mixture was dried under reduced pressure with a drying time of 10 minutes. The Li 2 S 8 solution and the LiNO 3 solution were prepared under the same conditions as the Li 2 S 8 solution and the LiNO 3 solution of Example 26. The positive electrode of Example 28, a sponge-like structure 34, Li 2 S 8 of 4.33mg, LiNO 3 of 0.68mg is supported, undried solvent 4.03mg remained.
実施例22~28の正極を用いた試験セルについて以下に説明する。
The test cells using the positive electrodes of Examples 22 to 28 will be described below.
実施例22~28の正極を、負極、セパレータ及び電解液とともに容器に収容して、試験セルを作製した。負極は、厚さ50μmのリチウム箔を用いた。セパレータは、ポリプロピレン製のものを用いた。電解液の溶媒は、DMEとDOLとを体積比1:1で混合した混合液を用いた。
The positive electrode of Examples 22 to 28 was housed in a container together with the negative electrode, the separator and the electrolytic solution to prepare a test cell. As the negative electrode, a lithium foil having a thickness of 50 μm was used. The separator used was made of polypropylene. As the solvent of the electrolytic solution, a mixed solution in which DME and DOL were mixed at a volume ratio of 1: 1 was used.
Li2S8が担持されている実施例22の正極を用いた試験セルには、電解質として1mol/LのLiTFSI及び添加剤として0.20mol/LのLiNO3を上記溶媒に溶解して調製した電解液を注入した(表4参照)。表3及び表4より、実施例22は、体積基準容量及び質量基準容量が大きいことが確認できた。
A test cell using the positive electrode of Example 22 in which Li 2 S 8 was carried was prepared by dissolving 1 mol / L LiTFSI as an electrolyte and 0.20 mol / L LiNO 3 as an additive in the above solvent. The electrolyte was injected (see Table 4). From Tables 3 and 4, it was confirmed that Example 22 had a large volume reference capacity and mass reference capacity.
Li2S8に加え、LiTFSI及びLiNO3が担持されている実施例23~26の正極を用いた試験セルには、当該試験セルにおけるLiTFSI濃度及びLiNO3濃度が、実施例22の正極を用いた試験セルにおける電解液のLiTFSI濃度及びLiNO3濃度と同等となるように、上記溶媒のみを電解液として注入した。表3及び表4より、実施例23~26は、体積基準容量及び質量基準容量が大きいことが確認できた。
For the test cell using the positive electrodes of Examples 23 to 26 in which LiTFSI and LiNO 3 are supported in addition to Li 2 S 8 , the LiTFSI concentration and the LiNO 3 concentration in the test cell are the positive electrodes of Example 22. Only the above solvent was injected as the electrolytic solution so as to be equivalent to the LiTFSI concentration and the LiNO 3 concentration of the electrolytic solution in the test cell. From Tables 3 and 4, it was confirmed that Examples 23 to 26 had a large volume reference capacity and mass reference capacity.
実施例27の正極を用いることにより、二次電池における電解液の溶媒に対する飽和溶解度以上のLiNO3(添加剤)を供給することができる。実施例27の正極には、Li2S8に加え、LiNO3が担持されている。実施例27の正極を用いた試験セルには、LiTFSI濃度が実施例22の電解液のLiTFSI濃度(1mol/L)と同等で、LiNO3濃度が実施例22の電解液のLiNO3濃度(0.20mol/L)より高い0.80mol/Lとなるように調製した電解液を注入した。この結果、実施例27の正極を用いた試験セルでは、正極に担持されているLiNO3と電解液に含まれるLiNO3とにより、当該試験セル内のLiNO3濃度が1.04mol/Lとなった。ここで、LiNO3のDMEに対する飽和溶解度は、約1mol/Lと推定される(C. Burke et al., Proceedings of the National Academy of Sciences of the United States of America, 112, (2015) 9293.等参照)。したがって、実施例27の正極を用いた試験セルには、電解液の溶媒に対する飽和溶解度以上の添加剤(LiNO3)が供給されている。表3及び表4より、実施例27は、体積基準容量及び質量基準容量が大きいことが確認できた。
By using the positive electrode of Example 27, LiNO 3 (additive) having a saturation solubility or higher in the solvent of the electrolytic solution in the secondary battery can be supplied. In addition to Li 2 S 8 , Li NO 3 is supported on the positive electrode of Example 27. In the test cell using the positive electrode of Example 27, the LiTFSI concentration was equivalent to the LiTFSI concentration (1 mol / L) of the electrolytic solution of Example 22, and the LiNO 3 concentration was the LiNO 3 concentration (0) of the electrolytic solution of Example 22. An electrolytic solution prepared to have a concentration of 0.80 mol / L, which is higher than .20 mol / L), was injected. As a result, in the test cell using the positive electrode of Example 27, the concentration of LiNO 3 in the test cell was 1.04 mol / L due to the LiNO 3 supported on the positive electrode and the LiNO 3 contained in the electrolytic solution. rice field. Here, the saturated solubility of LiNO 3 in DME is estimated to be about 1 mol / L (C. Burke et al., Proceedings of the National Academy of Sciences of the United States of America, 112, (2015) 9293. Etc. reference). Therefore, the test cell using the positive electrode of Example 27 is supplied with an additive (LiNO 3) having a saturation solubility or higher in the solvent of the electrolytic solution. From Tables 3 and 4, it was confirmed that Example 27 had a large volume reference capacity and mass reference capacity.
実施例28の正極を用いた試験セルでは、実施例22~27の正極を用いた試験セルに含まれる電解質LiTFSIが含まれておらず、正極に担持されているLiNO3を、電解質として機能させている。実施例28の正極には、Li2S8に加え、LiNO3が担持されている。実施例28の正極を用いた試験セルには、当該試験セルにおけるLiNO3濃度が0.53mol/Lとなるように、上記溶媒のみを電解液として注入した。表3及び表4より、実施例28は、体積基準容量及び質量基準容量が大きいことが確認できた。
The test cell using the positive electrode of Example 28 does not contain the electrolyte LiTFSI contained in the test cell using the positive electrode of Examples 22 to 27, and LiNO 3 supported on the positive electrode is made to function as an electrolyte. ing. In addition to Li 2 S 8 , Li NO 3 is supported on the positive electrode of Example 28. The test cell using the positive electrode of Example 28, LiNO 3 concentration in the test cell so that 0.53 mol / L, was injected only the solvent as an electrolyte. From Tables 3 and 4, it was confirmed that Example 28 had a large volume reference capacity and mass reference capacity.
10,30 正極(二次電池用正極)
12,32 カーボンナノチューブ(CNT)
14,34 スポンジ状構造体
16 ポリスルフィド(Li2Sx(x=4,6,8))
20 二次電池
22 負極
24 セパレータ
36 ポリスルフィド複合物 10,30 positive electrode (positive electrode for secondary battery)
12,32 Carbon nanotubes (CNT)
14,34 Sponge-like structure 16 Polysulfide (Li 2 S x (x = 4, 6, 8))
20Rechargeable battery 22 Negative electrode 24 Separator 36 Polysulfide composite
12,32 カーボンナノチューブ(CNT)
14,34 スポンジ状構造体
16 ポリスルフィド(Li2Sx(x=4,6,8))
20 二次電池
22 負極
24 セパレータ
36 ポリスルフィド複合物 10,30 positive electrode (positive electrode for secondary battery)
12,32 Carbon nanotubes (CNT)
14,34 Sponge-
20
Claims (14)
- カーボンナノチューブから構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体中に、Li2Sx(x=4,6,8)で表されるポリスルフィドが、0.70g/cm3以上2.0g/cm3以下の硫黄量で含有されている二次電池用正極。 A sponge-like structure in which the self-supporting under constructed thickness 5μm or 100μm from carbon nanotubes, polysulfides represented by Li 2 S x (x = 4,6,8 ) is, 0.70 g / cm 3 or more 2 A positive electrode for a secondary battery containing a sulfur content of 0.0 g / cm 3 or less.
- カーボンナノチューブから構成された厚さ5μm以上100μm未満の自立したスポンジ状構造体中にLi2Sx(x=4,6,8)で表されるポリスルフィドを含有させ、前記カーボンナノチューブと前記ポリスルフィドとを複合化する二次電池用正極の製造方法。 Contain a polysulfide represented spongy structure in which autonomous below configured thickness 5μm or 100μm from carbon nanotubes Li 2 S x (x = 4,6,8 ), the carbon nanotube and said polysulfide A method for manufacturing a positive electrode for a secondary battery.
- 前記ポリスルフィドを含有する溶液を前記スポンジ状構造体に供給し、前記スポンジ状構造体中に前記溶液を保持させる供給工程と、
前記溶液を保持した前記スポンジ状構造体を乾燥し、前記カーボンナノチューブに前記ポリスルフィドを担持させる乾燥工程とを有する請求項2に記載の二次電池用正極の製造方法。 A supply step of supplying the solution containing the polysulfide to the sponge-like structure and holding the solution in the sponge-like structure.
The method for producing a positive electrode for a secondary battery according to claim 2, further comprising a drying step of drying the sponge-like structure holding the solution and supporting the polysulfide on the carbon nanotubes. - 前記乾燥工程では、前記溶液を保持した前記スポンジ状構造体を-58℃以上90℃以下の温度で乾燥する請求項3に記載の二次電池用正極の製造方法。 The method for manufacturing a positive electrode for a secondary battery according to claim 3, wherein in the drying step, the sponge-like structure holding the solution is dried at a temperature of −58 ° C. or higher and 90 ° C. or lower.
- 前記乾燥工程では、前記溶液を保持した前記スポンジ状構造体を真空乾燥する請求項3または4に記載の二次電池用正極の製造方法。 The method for manufacturing a positive electrode for a secondary battery according to claim 3 or 4, wherein in the drying step, the sponge-like structure holding the solution is vacuum-dried.
- 前記スポンジ状構造体中の前記ポリスルフィドの硫黄量を0.70g/cm3以上2.0g/cm3以下とする請求項2~5のいずれか1項に記載の二次電池用正極の製造方法。 The method for producing a positive electrode for a secondary battery according to any one of claims 2 to 5, wherein the amount of sulfur in the polysulfide in the sponge-like structure is 0.70 g / cm 3 or more and 2.0 g / cm 3 or less. ..
- 前記スポンジ状構造体中に、前記ポリスルフィドに加え、電解質及び/又は添加剤が更に含有されている請求項1に記載の二次電池用正極。 The positive electrode for a secondary battery according to claim 1, wherein the sponge-like structure further contains an electrolyte and / or an additive in addition to the polysulfide.
- 前記スポンジ状構造体中に、前記ポリスルフィドに加え、電解質及び/又は添加剤を含有させ、前記カーボンナノチューブ、前記ポリスルフィド、前記電解質及び/又は前記添加剤を複合化する請求項2に記載の二次電池用正極の製造方法。 The secondary according to claim 2, wherein the sponge-like structure contains an electrolyte and / or an additive in addition to the polysulfide, and the carbon nanotube, the polysulfide, the electrolyte and / or the additive are combined. A method for manufacturing a positive electrode for a battery.
- 前記ポリスルフィド、前記電解質及び/又は前記添加剤を含有する溶液を、前記スポンジ状構造体に供給する請求項8に記載の二次電池用正極の製造方法。 The method for producing a positive electrode for a secondary battery according to claim 8, wherein a solution containing the polysulfide, the electrolyte and / or the additive is supplied to the sponge-like structure.
- 前記ポリスルフィドを含有する溶液、前記電解質を含有する溶液及び/又は前記添加剤を含有する溶液を、それぞれ前記スポンジ状構造体に供給する請求項8に記載の二次電池用正極の製造方法。 The method for producing a positive electrode for a secondary battery according to claim 8, wherein the solution containing the polysulfide, the solution containing the electrolyte, and / or the solution containing the additive are supplied to the sponge-like structure, respectively.
- 前記電解質を含有する溶液及び/又は前記添加剤を含有する溶液を、大気環境で前記スポンジ状構造体に供給する請求項10に記載の二次電池用正極の製造方法。 The method for producing a positive electrode for a secondary battery according to claim 10, wherein the solution containing the electrolyte and / or the solution containing the additive is supplied to the sponge-like structure in an atmospheric environment.
- 請求項1に記載の正極、負極及びセパレータが、電解液とともに容器内に設けられた二次電池。 A secondary battery in which the positive electrode, the negative electrode, and the separator according to claim 1 are provided in a container together with an electrolytic solution.
- 請求項7に記載の正極、負極及びセパレータが、電解液とともに容器内に設けられた二次電池。 A secondary battery in which the positive electrode, the negative electrode, and the separator according to claim 7 are provided in a container together with an electrolytic solution.
- 前記電解液の溶媒の飽和溶解度以上の前記電解質及び/又は前記添加剤を含む請求項13に記載の二次電池。 The secondary battery according to claim 13, which contains the electrolyte and / or the additive having a saturation solubility or higher of the solvent of the electrolytic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022507305A JPWO2021182614A1 (en) | 2020-03-13 | 2021-03-12 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-044411 | 2020-03-13 | ||
JP2020044411 | 2020-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021182614A1 true WO2021182614A1 (en) | 2021-09-16 |
Family
ID=77671839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/010083 WO2021182614A1 (en) | 2020-03-13 | 2021-03-12 | Positive electrode for secondary cells, method for manufacturing positive electrode for secondary cells, and secondary cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021182614A1 (en) |
WO (1) | WO2021182614A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017504155A (en) * | 2013-12-17 | 2017-02-02 | オキシス エナジー リミテッド | Lithium-sulfur battery |
JP2018113108A (en) * | 2017-01-06 | 2018-07-19 | 学校法人早稲田大学 | Secondary battery |
JP2020031045A (en) * | 2018-08-24 | 2020-02-27 | ツィンファ ユニバーシティ | Positive electrode, method for producing the same, and battery using the same |
JP2020507896A (en) * | 2017-02-09 | 2020-03-12 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Renewable polysulfide trapping layer enabling lithium-sulfur battery with high energy density and long cycle life and method of making same |
-
2021
- 2021-03-12 JP JP2022507305A patent/JPWO2021182614A1/ja active Pending
- 2021-03-12 WO PCT/JP2021/010083 patent/WO2021182614A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017504155A (en) * | 2013-12-17 | 2017-02-02 | オキシス エナジー リミテッド | Lithium-sulfur battery |
JP2018113108A (en) * | 2017-01-06 | 2018-07-19 | 学校法人早稲田大学 | Secondary battery |
JP2020507896A (en) * | 2017-02-09 | 2020-03-12 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Renewable polysulfide trapping layer enabling lithium-sulfur battery with high energy density and long cycle life and method of making same |
JP2020031045A (en) * | 2018-08-24 | 2020-02-27 | ツィンファ ユニバーシティ | Positive electrode, method for producing the same, and battery using the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021182614A1 (en) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI797054B (en) | Lithium ion battery and battery materials | |
US11843109B2 (en) | Method of preparing and application of carbon-selenium composites | |
TWI496333B (en) | Use of expanded graphite in lithium/sulphur batteries | |
US10164231B2 (en) | Separators for lithium-sulfur batteries | |
CN107591511B (en) | Composite membrane material for lithium battery, preparation method and application thereof | |
EP3168905A1 (en) | Carbon composites | |
JP7050348B2 (en) | Positive electrode active material manufacturing method and positive electrode active material | |
KR20180017975A (en) | Sulfur-carbon composite and lithium-sulfur battery including the same | |
EP3670449B1 (en) | Method for manufacture of sulfur-carbon composite | |
US20140255787A1 (en) | Active material for batteries | |
CN113939926B (en) | Method for manufacturing negative electrode | |
US11611066B2 (en) | Sulfur-carbon composite and method for preparing same | |
CN111263993B (en) | Sulfur-carbon composite material, preparation method thereof and lithium secondary battery comprising sulfur-carbon composite material | |
CN105960723A (en) | Carbon-coated lithium sulphide | |
KR102038943B1 (en) | Sulfur-Carbon Tube Composite Originated from Biomass and the Fabrication Method Thereof | |
WO2018127124A1 (en) | Synthesis of porous carbon microspheres and their application in lithium-sulfur batteries | |
WO2021182614A1 (en) | Positive electrode for secondary cells, method for manufacturing positive electrode for secondary cells, and secondary cell | |
US10529982B2 (en) | Preparation method for a positive electrode for lithium-sulphur electrochemical battery | |
JP2024507668A (en) | Honeycomb-shaped boron carbonitride nanomaterial plated with metal and its applications | |
KR20190060240A (en) | SULFUR-CARBON COMPOSITE COATED WITH MnO2 AND METHOD FOR MANUFACTURING THE SAME | |
KR20190089831A (en) | Sulfur-carbon composite and lithium-sulfur battery including the same | |
KR102829520B1 (en) | Surface-modified three-dimensional structure carbon material and method for manufacturing the same, and negative electrode current collector and negative electrode of lithium metal battery using surface-modified three-dimensional structure carbon material and method for manufacturing negative electrode of lithium metal battery | |
WO2024094416A1 (en) | Lithium hybrid anode for secondary electrochemical cells | |
US20190190003A1 (en) | Process for manufacturing a structure acting as a positive electrode and as a current collector for a lithium-sulfur electrochemical accumulator | |
KR20240108455A (en) | An electrode for a non-aqueous electrolyte secondary battery containing a current collector containing a porous metal and an organic sulfur-based active material, a non-aqueous electrolyte secondary battery containing the electrode, and an organic sulfur-based active material for the production of the electrode. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21768793 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022507305 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21768793 Country of ref document: EP Kind code of ref document: A1 |