WO2021177359A1 - Ammonia decomposition method and fuel cell using same - Google Patents
Ammonia decomposition method and fuel cell using same Download PDFInfo
- Publication number
- WO2021177359A1 WO2021177359A1 PCT/JP2021/008228 JP2021008228W WO2021177359A1 WO 2021177359 A1 WO2021177359 A1 WO 2021177359A1 JP 2021008228 W JP2021008228 W JP 2021008228W WO 2021177359 A1 WO2021177359 A1 WO 2021177359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ammonia
- formula
- fuel cell
- base
- complex
- Prior art date
Links
- 0 CCC1C=C(C)C=C2C=*([C@@](CCCC3)[C@]3*3=C[C@]4C(O*)=C(C)C=C(*)C4)*3(*)OC12 Chemical compound CCC1C=C(C)C=C2C=*([C@@](CCCC3)[C@]3*3=C[C@]4C(O*)=C(C)C=C(*)C4)*3(*)OC12 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/02—Preparation of nitrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C251/00—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C251/02—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
- C07C251/24—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F13/00—Compounds containing elements of Groups 7 or 17 of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/22—Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a method for decomposing ammonia and a fuel cell by utilizing the method.
- Non-Patent Document 1 Ammonia is a desirable candidate as an energy carrier for a sustainable society, and has multiple advantages such as ease of handling, high energy density, and carbon neutrality (Non-Patent Document 1).
- Non-Patent Documents 2 to 4 As the fuel cell using ammonia as a fuel, for example, there are reports of an ammonia fuel cell using an electrolyte in which potassium hydroxide is melted, a fuel cell using ammonia as a fuel for an alkaline fuel cell, and the like (Non-Patent Documents 5 to 5). 9).
- the problem with the above-mentioned reported example is that it uses ruthenium, which is a transition metal complex. From the viewpoint of utilizing ammonia as an energy carrier, catalytic oxidation of ammonia to nitrogen by a base metal that can supply a large amount of catalyst. A metal complex capable of realizing the reaction has been desired. Further, in the above-mentioned reported example of the fuel cell, in the anode catalyst of the fuel cell, a fuel using ammonia as a fuel using a solid catalyst in which a single metal such as platinum or manganese or an alloy is fixed to carbon, alumina, an inorganic substance or the like. The battery was disclosed, and there was a problem that a high temperature and a large overvoltage were required.
- the present invention has been made to solve the above-mentioned problems, and mainly avoids the use of noble metals, decomposes ammonia by using a complex of a base metal, and extracts nitrogen molecules, electrons, and protons.
- the purpose Further, from the viewpoint of utilization of the ammonia decomposition method using the salen manganese complex, the molecular salen manganese complex according to the present invention is used at the anode of the fuel cell without using the conventional solid catalyst or metal particle catalyst.
- the purpose is to embody the power generation of fuel cells that use ammonia as fuel under mild conditions.
- the present inventors focused on the salene manganese complex used for organic synthesis such as asymmetric epoxidation reaction, and oxidatively decomposed ammonia in the presence of a base. It was found that nitrogen, protons and electrons can be obtained well, and from the viewpoint of utilization of the ammonia decomposition method using the salen manganese complex, the oxidative decomposition method of ammonia using the salen manganese complex is used in the anode catalyst layer of the fuel cell. We have also found that it functions as a catalyst for the above, and have completed the present invention.
- the method for decomposing ammonia of the present invention is a method for decomposing ammonia by oxidatively decomposing ammonia in the presence of a salene manganese complex and a base to obtain nitrogen, protons and electrons.
- Equation (1b) or Equation (1c) In the formula, R 1 and R 2 represent C1-C4 alkyl groups which may be the same or different, and X is a monovalent anion, axial ligand or halogen atom). It is a complex.
- ammonia can be oxidatively decomposed in the presence of a salene manganese complex that is not a noble metal complex and a base to obtain nitrogen, protons and electrons, and ammonia can be decomposed at low cost. Allows mass decomposition of ammonia. Further, the present invention provides power generation of a fuel cell using ammonia as a fuel under mild conditions using the method for decomposing ammonia.
- Fuel cell 101 Cathode side gas diffusion layer 102 Anode side gas diffusion layer 103 Anode catalyst layer 105 Cathode catalyst layer 107 Electrolyte film 109 Separator
- the catalyst used in the method for decomposing ammonia of the present embodiment is of formula (1a), formula (1b) or formula (1c).
- R 1 and R 2 represent C1 to C4 alkyl groups which may be the same or different, and X represents a monovalent anion or halogen atom).
- Specific examples of the C1 to C4 alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group and the like. -Butyl groups are preferred.
- Examples of the monovalent anion include hexafluorophosphate ion, hexachloroantimonate ion, trifluoromethanesulfonate ion, tetrafluoroborate ion, phosphate ion, sulfonate ion, and hydroxydone.
- Examples of the halogen atom include chloride, bromide and iodide.
- the complex of formula (1a) and the complex of formula (1b) have an enantiomeric relationship.
- the complex of the formula (1c) has the same configuration as the formula (1a) in the cases of (R) and (R) because the configuration of the carbon atom represented by * is (R) or (S). , (R) and (S) are meso-form complexes, and (S) and (S) are the same as in formula (1b), and even if they are single as described above. It may be a mixture thereof.
- the preferred salene manganese complex is the formula (1A) or the formula (1B).
- formula (4A) or formula (4B) (In the formula, Z is a monovalent anion, axial ligand or halogen atom.
- Z is hexachloroantimonate ion, hexafluorophosphate ion, chloride, bromide, iodide, hydroxide, phosphate ion, Examples thereof include sulfonate ion and trifluoromethanesulfonate ion, of which hexafluorophosphate ion is preferable.
- It is a complex represented by.
- the base plays a role of trapping the protons generated when ammonia is oxidatively decomposed.
- the base is not particularly limited as long as it plays such a role, but for example, a pyridine derivative is preferable.
- the pyridine derivative include pyridine and pyridine having at least one substituent from the 2-position to the 6-position.
- the substituent is not particularly limited, and examples thereof include an alkyl group, a dialkylamino group, an alkoxy group, an aryl group, and a halogen atom.
- alkyl group including the alkyl group in the dialkylamino group
- alkoxy group examples include the same as those already exemplified.
- pyridine derivative examples include pyridine, 2,6-lutidine, 2,4,6-cholidine, 4-dimethylaminopyridine (DMAP), and the like, of which 2,4,6-cholidine is preferable.
- DMAP 4-dimethylaminopyridine
- ammonia is produced by the reaction of an ammonium salt with a base in the system, the base is also used in this reaction.
- ammonia may be produced by the reaction of an ammonium salt and a base in the system, although ammonia gas may be used.
- ammonia gas may be used.
- the ammonium salt is not particularly limited as long as it quantitatively produces ammonia by reaction with a base, but for example, ammonium trifurate, ammonium hexafluorophosphate, ammonium chloride, ammonium bromide, and ammonium iodide.
- the oxidative decomposition of ammonia may be carried out by using an oxidizing agent containing a one-electron oxidant of triarylamine, or may be carried out under electrochemical oxidation conditions.
- An oxidant containing a one-electron oxidant of triarylamine serves to trap the electrons generated when ammonia is oxidatively decomposed.
- An example of such an oxidizing agent is the formula (2). Examples thereof include the compounds shown in. In formula (2), Ra and R b may be the same or different, and are an alkyl group, a halogen atom or a hydrogen atom.
- alkyl group and the halogen atom examples include the same ones already exemplified. Of these, those in which Ra is a bromine atom and R b is a hydrogen atom are preferable.
- Y is a monovalent anion, and examples thereof include hexachloroantimonate ion, hexafluorophosphate ion, chloride, bromide, iodide, hydroxydo, phosphate ion, sulfonate ion, and trifluoromethanesulfonate ion. Of these, hexachloroantimonate ion is preferable.
- oxidative decomposition of ammonia may be carried out in a solvent.
- the solvent is not particularly limited, and examples thereof include a nitrile solvent, a halogenated hydrocarbon solvent, a ketone solvent, an alcohol solvent, a cyclic ether solvent, a chain ether solvent, and water.
- the nitrile solvent include acetonitrile, propionitrile and the like.
- the halogenated hydrocarbon solvent include methylene chloride and chloroform.
- the ketone solvent include acetone and methyl ethyl ketone.
- the alcohol solvent include methanol and ethanol.
- the cyclic ether solvent include tetrahydrofuran (THF), 1,4-dioxane and the like.
- the chain ether solvent include diethyl ether and the like.
- oxidative decomposition of ammonia proceeds even if the reaction temperature is low.
- the reaction atmosphere may be, for example, an inert atmosphere (Ar atmosphere, etc.) or an atmosphere. Further, it is not necessary to create a pressurized atmosphere, and a normal pressure atmosphere may be used.
- the reaction time is not particularly limited, but is usually set in the range of several tens of minutes to several tens of hours.
- Ammonia-fueled fuel cell using the method for decomposing ammonia in this embodiment will be described.
- FIG. 1 is a cross-sectional view schematically showing the configuration of a fuel cell 100 using ammonia as fuel.
- a fuel cell 100 using ammonia as fuel will be described.
- the fuel cell 100 has an anode catalyst layer 103, a cathode catalyst layer 105, and an electrolyte film 107 sandwiched between both catalyst layers, and the cathode catalyst layer 105 has a gas diffusion layer 101 on the outside, and the anode catalyst layer 103. Has a gas diffusion layer 102 on the outside.
- a device composed of the gas diffusion layer 102, the anode catalyst layer 103, the electrolyte membrane 107, the cathode catalyst layer 105, and the gas diffusion layer 101 is referred to as a membrane electrode assembly (Membrane Electrode Assembly, hereinafter abbreviated as "MEA"). .. In the fuel cell 100, this MEA is usually sandwiched between the separators 109. Further, a component composed of a catalyst layer and a gas diffusion layer is referred to as a gas diffusion electrode (Gas Diffusion Electrode, hereinafter abbreviated as "GDE").
- GDE Gas Diffusion Electrode
- the fuel cell 100 uses an ion exchange resin film or the like as the electrolyte film 107, and reacts with oxygen, electrons, and water at the oxidizing agent electrode of the cathode catalyst layer 105 (O 2 + 4e ⁇ + 4H 2 O ⁇ 4OH ⁇ ).
- the hydroxide ion generated by the above moves through the electrolyte membrane 107 to the fuel electrode, which is the anode catalyst layer 103, and reacts with ammonia at the fuel electrode (2NH 3 ⁇ N 2 + 6e ⁇ + 6H + ) to produce nitrogen. , Generates electrons and protons.
- the ion exchange resin membrane is not particularly limited as long as it can move the hydroxide ions generated at the oxidant electrode to the fuel electrode, and examples thereof include a cation exchange membrane and an anion exchange membrane. .. Of these, an anion exchange membrane is preferable.
- the anion exchange membrane include a solid polymer membrane containing an anion exchange resin having an anion exchange group such as a quaternary ammonium group and a pyridinium group. Of these, an anion exchange membrane is preferable.
- anion exchange membrane examples include FAP, FAP-450, FAA-3, FAS, FAB, AMI-7001, which are anion exchange membranes manufactured by Fumasep, and AMV, AMT, which are anion exchange membranes manufactured by AGC. , DSV, AAV, ASV, ASV-N, AHO, APS4 and the like, of which FAP-450, FAA-3 manufactured by Membrane and ASV-N manufactured by AGC are preferable.
- the anode catalyst layer 103 contains a catalyst component (the above-mentioned salen manganese complex according to the present invention), a catalyst carrier for adsorbing the catalyst component, and an electrolyte.
- the cathode catalyst layer 105 contains a catalyst component, a catalyst carrier for supporting the catalyst component, and an electrolyte.
- a known catalyst can be used without particular limitation.
- Examples of the catalyst component used in the cathode catalyst layer 105 include platinum, gold, silver, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and the like. Examples thereof include metals such as aluminum and alloys thereof, of which platinum is preferable.
- Examples of the catalyst carrier in each of the catalyst layers 103 and 105 include carbon black such as channel black, furnace black, thermal black, acetylene black, and Ketjen black, activated carbon obtained by carbonizing and activating a material containing various carbon atoms, and coke. , Natural graphite, artificial graphite, carbonic materials such as graphitized carbon, metal meshes such as nickel or titanium, metal foams and the like. Of these, carbon black is preferable as the catalyst carrier because it has a high specific surface area and excellent electron conductivity.
- Examples of the electrolyte in each of the catalyst layers 103 and 105 include Fusion FAA-3-SOLUT-10 manufactured by Fumasep, which is an anion exchange ionomer, and A3ver. 2.
- AS-4 (A3 ver.2 and AS-4 are described in, for example, magazine "Hydrogen Energy System", Vo1.35, No.2, 2010, page 9), Nafion (registered trademark, DuPont stock). Fluorophilic sulfonic acid polymers such as Aquivion (registered trademark, manufactured by Solvay Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), etc. Of these, Fusion FAA-3-SOLUT-10 and AS-4 are preferable.
- the separator 109 may be a gas-impermeable conductive member, for example, a carbon plate obtained by compressing carbon to make it gas-impermeable, or a solid metal plate.
- a flow path for supplying ammonia is provided between the separator 109 and the gas diffusion layer 102 on the anode side.
- a gas passage to which oxygen or air is supplied is formed between the separator 109 and the gas diffusion layer 101 on the cathode side.
- Example 1 An attempt was made to oxidatively decompose ammonia using a catalyst, an oxidizing agent, and a base.
- the salen manganese complex (1A) is available from Strem, Tokyo Chemical Industry, etc.
- the salen manganese complex (1B), which is an enantiomer of the salen manganese complex (1A), is Strem, Fujifilm Wako Pure Chemical Industries, Ltd., etc. Available from.
- Example 1 salen manganese complex (1A) (6.4mg, 0.01mmol) and, ammonium triflate as an ammonium salt (501 mg, 3.0 mmol) and, as an oxidizing agent [(p-BrC 6 H 4 ) 3 N ⁇ ] + [SbCl 6 ] - (2a) (735 mg, 0.9 mmol) and 2,4,6-cholidine (0.4 mL, 3.0 mmol) as a base in 5 mL of acetonitrile, 1 After stirring at ⁇ 40 ° C. for 2 hours under an argon atmosphere at atmospheric pressure, the mixture was stirred at room temperature for 4 hours. As a result, 4.3 equivalents (29% yield based on the oxidizing agent) of nitrogen was confirmed.
- Comparative Example 1 As Comparative Example 1, when CV measurement was performed under the same experimental conditions as in Experimental Example 2 except that the salen manganese complex (1a) was not used, the graph shown in Comparative Example 1 in FIG. 2 was obtained, and the steady current was measured. Not observed. From this result, it was confirmed that the oxidative decomposition of ammonia proceeds even under electrochemical oxidation conditions.
- Example 3 In Example 3, salen manganese complex (3A) (7.6mg, 0.01mmol) and, ammonium triflate as an ammonium salt (501 mg, 3.0 mmol) and, as an oxidizing agent [(p-BrC 6 H 4 ) 3 N ⁇ ] + [SbCl 6 ] - (2a) (735 mg, 0.9 mmol) and 2,4,6-cholidine (0.4 mL, 3.0 mmol) as a base in 5 mL of acetonitrile, 1 After stirring at ⁇ 40 ° C. for 2 hours under an ammonium atmosphere at atmospheric pressure, the mixture was stirred at room temperature for 4 hours. As a result, 3.0 equivalents (20% yield based on the oxidizing agent) of nitrogen was confirmed.
- Fuel cell power generation test 1 A power generation test of an ammonia-fueled fuel cell using the salen manganese complex (1A) as a catalyst for the anode catalyst layer was carried out.
- the MEA of the fuel cell was made of GDE on the cathode side, GDE on the anode side, and an electrolyte membrane.
- the GDE on the cathode side was prepared as follows.
- the catalyst ink used in the cathode catalyst layer is an electrode catalyst made of platinum-supported carbon (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., platinum content: 46.5% by weight, product name "TEC10E50E”), deionized water, ethanol (Fujifilm Wako Pure Chemical Industries, Ltd.).
- an anionic conduction ionomer dispersion (Fumion FAA-3-SOLUT-10 (10% by weight & N-methyl-2-pyrrolidone dispersion) manufactured by Fumasep).
- the proportion of anionic conduction ionomers in the catalyst ink was adjusted to be 28% by weight.
- Electrode catalyst, deionized water, ethanol and anionic conduction ionomer dispersion are added in this order to a glass vial, and the obtained dispersion is added to the ultrasonic homogenizer Smart NR-50M manufactured by Microtech Nithion.
- the catalyst ink was prepared by setting the output of ultrasonic waves to 40% and irradiating the particles for 30 minutes.
- a gas diffusion layer which is a carbon paper (“TGP-H-090” manufactured by Toray Industries, Inc. cut into a rectangle of 2.5 cm ⁇ 3 cm) fixed on a hot plate set at 80 ° C. with this catalyst ink. was applied to.
- the coating amount is such that the amount of platinum per 1 cm 2 of the coated surface is 1 mg, and the cathode side GDE composed of the cathode catalyst layer and the gas diffusion layer (the platinum catalyst (7.5 mg) is included on the GDE). ) was prepared.
- the ratio of anionic conduction ionomers in the above-mentioned catalyst ink will be described.
- the proportion (% by weight) of the anion conductive ionomer calculated from the following formula was set to 28% by weight.
- the anion conductive ionomer is abbreviated as "ionomer”.
- Ratio of ionomer [Ionomer solids (weight) / [Electrode catalyst (weight) + Ionomer solids (weight)]] x 100 Specifically, when a 10 wt% anion conductive ionomer dispersion was used, the amount of the electrode catalyst was 100.0 mg, the amount of the anionic ionomer dispersion was 389.0 mg, and the amount of deionized water was 0.6 mL. , The amount of ethanol was set to 5.1 mL.
- the GDE on the anode side was prepared as follows.
- the catalyst ink used in the anode catalyst layer is salene manganese complex (1A) (46.5 mg), carbon black (53.5 mg, manufactured by Lion, Ketjen Black, product name "EC300J”), deionized water, ethanol (Fuji). It was prepared using Film Wako Pure Chemical Industries, Ltd.) and an anion conducting ionomer dispersion liquid [Fumion FAA-3-SOLUT-10 (10% by weight & N-methyl-2-pyrrolidone dispersion) manufactured by Fumasep].
- the proportion of anionic conduction ionomers in the catalyst ink was adjusted to be 28% by weight.
- Salen manganese complex, carbon black, deionized water, ethanol and anionic conduction ionomer dispersion are added in this order to a glass vial, and the obtained dispersion is added to an ultrasonic homogenizer manufactured by Microtech Nithione.
- a catalyst ink was prepared by irradiating ultrasonic waves at an output of 40% for 30 minutes using a Smart NR-50M.
- a gas diffusion layer which is a carbon paper (“TGP-H-090” manufactured by Toray Industries, Inc. cut into a rectangle of 2.5 cm ⁇ 3 cm) fixed on a hot plate set at 80 ° C. with this catalyst ink. was applied to.
- the coating amount is such that the amount of the salene manganese complex per 1 cm 2 of the coated surface is 1 mg, and the GDE on the anode side composed of the anode catalyst layer and the gas diffusion layer (7.5 mg of the salene manganese complex (7.5 mg) on the GDE). ) Is included).
- the ratio of anionic conduction ionomers in the above-mentioned catalyst ink will be described.
- the proportion (% by weight) of the anion conductive ionomer calculated from the following formula was set to 28% by weight.
- the anion conductive ionomer is abbreviated as "ionomer”.
- Ratio of ionomer [Ionomer solids (weight) / [manganese complex (weight) + carbon black (weight) + ionomer solids (weight)]] x 100 Specifically, when a dispersion of 10% by weight of anion conducting ionomer was used, the amount of the dispersion of salen manganese complex (46.5 mg), carbon black (53.5 mg), and anion conducting ionomer was 389.0 mg. The amount of deionized water was set to 0.6 mL and the amount of ethanol was set to 5.1 mL.
- the MEA was prepared by combining the GDE on the anode side, the electrolyte membrane, and the GDE on the cathode side in this order.
- the MEA is placed in a single cell (manufactured by Nissan Chemical Co., Ltd., fuel cell) having a rectangular electrode area of 2.5 cm ⁇ 3 cm, and the power generation test of the fuel cell is performed by an electrochemical measurement system (manufactured by Princeton Applied Research Co., Ltd.). , VersaSTAT4), and the current density and voltage were measured.
- the open circuit voltage (Open Circuit Voltage, hereinafter abbreviated as "OCV" was measured.
- OCV Open Circuit Voltage
- the OCV of a single cell was 0.46V.
- the results of current density and voltage are shown in Table 1. Twice
- Example 5 Fuel cell power generation test 2
- a power generation test of a fuel cell using ammonia as a fuel was carried out in the same manner as in Example 4 except that ASV-N (thickness 100 ⁇ m) manufactured by AGC was used as the electrolyte membrane.
- the OCV of the single cell was 0.11V.
- the results of current density and voltage are shown in Table 2.
- the salen manganese complex used in the oxidative decomposition method of ammonia according to the present invention can be used for decomposition of ammonia, and further can be used as a catalyst in the anode catalyst layer of a fuel cell using ammonia as fuel.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Catalysts (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
This ammonia decomposition method is a method for obtaining nitrogen, protons, and electrons by oxidative decomposition of ammonia in the presence of a base, using as a catalyst a salen-manganese complex in which manganese is used as a base metal. The present invention furthermore provides a fuel cell in which ammonia is used as a fuel, whereby electricity can be generated under mild conditions through use of the ammonia decomposition method of the present invention.
Description
本発明は、アンモニアの分解方法とその利活用による燃料電池に関する。
The present invention relates to a method for decomposing ammonia and a fuel cell by utilizing the method.
アンモニアは、持続可能な社会に向けたエネルギーキャリアとして望ましい候補であり、取り扱いやすさ、高エネルギー密度、カーボンニュートラルなどの利点を複数もっている(非特許文献1)。近年、アンモニアからエネルギーを抽出するために、遷移金属錯体を用いたアンモニアから窒素への触媒的酸化反応の報告例がある(非特許文献2~4)。アンモニアを燃料とする燃料電池は、例えば、水酸化カリウムを溶融した電解質を用いるアンモニア燃料電池、アルカリ型燃料電池の燃料としてアンモニアを燃料とする燃料電池等の報告例がある(非特許文献5~9)。
Ammonia is a desirable candidate as an energy carrier for a sustainable society, and has multiple advantages such as ease of handling, high energy density, and carbon neutrality (Non-Patent Document 1). In recent years, there have been reports of catalytic oxidation reactions from ammonia to nitrogen using transition metal complexes to extract energy from ammonia (Non-Patent Documents 2 to 4). As the fuel cell using ammonia as a fuel, for example, there are reports of an ammonia fuel cell using an electrolyte in which potassium hydroxide is melted, a fuel cell using ammonia as a fuel for an alkaline fuel cell, and the like (Non-Patent Documents 5 to 5). 9).
上述した報告例は、遷移金属錯体であるルテニウムを用いている点が課題であり、エネルギーキャリアとしてのアンモニアの利活用の観点より、大量に触媒を供給できる卑金属によるアンモニアから窒素への触媒的酸化反応を実現できる金属錯体が望まれていた。また、上述した燃料電池の報告例は、燃料電池のアノード触媒において、白金、マンガン等の金属の単体又は合金を、カーボン、アルミナ、無機物等に固定した固体触媒を用いたアンモニアを燃料とする燃料電池が開示されたものであり、高温や大きな過電圧を必要とする課題があった。
The problem with the above-mentioned reported example is that it uses ruthenium, which is a transition metal complex. From the viewpoint of utilizing ammonia as an energy carrier, catalytic oxidation of ammonia to nitrogen by a base metal that can supply a large amount of catalyst. A metal complex capable of realizing the reaction has been desired. Further, in the above-mentioned reported example of the fuel cell, in the anode catalyst of the fuel cell, a fuel using ammonia as a fuel using a solid catalyst in which a single metal such as platinum or manganese or an alloy is fixed to carbon, alumina, an inorganic substance or the like. The battery was disclosed, and there was a problem that a high temperature and a large overvoltage were required.
本発明は、上述した課題を解決するためになされたものであり、貴金属の使用を回避して、卑金属の錯体を利用してアンモニアを分解し、窒素分子と電子とプロトンとを取り出すことを主目的とする。さらに、サレンマンガン錯体によるアンモニア分解方法の利活用に関する観点より、燃料電池のアノードにて、これまでの固体触媒又は金属粒子触媒を用いることなく、本発明に関わる分子性のサレンマンガン錯体を用いて、温和な条件でアンモニアを燃料とする燃料電池の発電を具現化することを目的とする。
The present invention has been made to solve the above-mentioned problems, and mainly avoids the use of noble metals, decomposes ammonia by using a complex of a base metal, and extracts nitrogen molecules, electrons, and protons. The purpose. Further, from the viewpoint of utilization of the ammonia decomposition method using the salen manganese complex, the molecular salen manganese complex according to the present invention is used at the anode of the fuel cell without using the conventional solid catalyst or metal particle catalyst. The purpose is to embody the power generation of fuel cells that use ammonia as fuel under mild conditions.
上述した目的を達成するために、本発明者らは、不斉エポキシ化反応等の有機合成に用いられているサレンマンガン錯体に着目して、塩基の存在下でアンモニアを酸化分解したところ、効率よく窒素とプロトンと電子が得られることを見出し、さらには、サレンマンガン錯体によるアンモニア分解方法の利活用に関する観点より、サレンマンガン錯体によるアンモニアの酸化分解法が燃料電池のアノード触媒層にて燃料電池の触媒として機能することも見出し、本発明を完成するに至った。
In order to achieve the above-mentioned object, the present inventors focused on the salene manganese complex used for organic synthesis such as asymmetric epoxidation reaction, and oxidatively decomposed ammonia in the presence of a base. It was found that nitrogen, protons and electrons can be obtained well, and from the viewpoint of utilization of the ammonia decomposition method using the salen manganese complex, the oxidative decomposition method of ammonia using the salen manganese complex is used in the anode catalyst layer of the fuel cell. We have also found that it functions as a catalyst for the above, and have completed the present invention.
即ち、本発明のアンモニアの分解方法は、サレンマンガン錯体及び塩基の存在下、アンモニアを酸化分解して窒素とプロトンと電子を得るアンモニアの分解方法であって、前記サレンマンガン錯体は、式(1a)、式(1b)又は式(1c)
(式中、R1及びR2は同じであっても異なっていてもよいC1~C4アルキル基を表し、Xは、1価のアニオン、軸配位子又はハロゲン原子である。)で示される錯体である。
That is, the method for decomposing ammonia of the present invention is a method for decomposing ammonia by oxidatively decomposing ammonia in the presence of a salene manganese complex and a base to obtain nitrogen, protons and electrons. ), Equation (1b) or Equation (1c)
(In the formula, R 1 and R 2 represent C1-C4 alkyl groups which may be the same or different, and X is a monovalent anion, axial ligand or halogen atom). It is a complex.
本発明のアンモニアの分解方法によれば、貴金属錯体でないサレンマンガン錯体及び塩基の存在下、アンモニアを酸化分解して窒素とプロトンと電子を得ることができ、アンモニアを安価に分解することができ、アンモニアの大量分解を可能にする。さらに本発明のアンモニアの分解方法を利用した温和な条件でのアンモニアを燃料とする燃料電池の発電を提供する。
According to the method for decomposing ammonia of the present invention, ammonia can be oxidatively decomposed in the presence of a salene manganese complex that is not a noble metal complex and a base to obtain nitrogen, protons and electrons, and ammonia can be decomposed at low cost. Allows mass decomposition of ammonia. Further, the present invention provides power generation of a fuel cell using ammonia as a fuel under mild conditions using the method for decomposing ammonia.
100 燃料電池
101 カソード側のガス拡散層
102 アノード側のガス拡散層
103 アノード触媒層
105 カソード触媒層
107 電解質膜
109 セパレータ 100Fuel cell 101 Cathode side gas diffusion layer 102 Anode side gas diffusion layer 103 Anode catalyst layer 105 Cathode catalyst layer 107 Electrolyte film 109 Separator
101 カソード側のガス拡散層
102 アノード側のガス拡散層
103 アノード触媒層
105 カソード触媒層
107 電解質膜
109 セパレータ 100
本明細書における「n」はノルマルを、「s」はセカンダリーを、「t」はターシャリーを、「o」はオルトを、「m」はメタを、「p」はパラを、「tBu」はターシャリーブチル基を表す。本明細書における(R)及び(S)は、中心性キラリティーが存在するキラルな分子の立体配置を表示するものであり、「*」で示された炭素原子の立体配置は(R)又は(S)を表す。
In the present specification, "n" is normal, "s" is secondary, "t" is tertiary, "o" is ortho, "m" is meta, "p" is para, and " t Bu". Represents a tertiary butyl group. In the present specification, (R) and (S) indicate the molecular configuration of a chiral molecule in which central chirality exists, and the configuration of carbon atoms indicated by “*” is (R) or. Represents (S).
本発明のアンモニアの分解方法とその利活用による燃料電池の好適な実施形態を以下に示す。
The method for decomposing ammonia of the present invention and a suitable embodiment of the fuel cell by utilizing the method are shown below. Twice
本実施形態のアンモニアの分解方法において用いる触媒は、式(1a)、式(1b)又は式(1c)
(式中、R1及びR2は同じであっても異なっていてもよいC1~C4アルキル基を表し、Xは1価のアニオン又はハロゲン原子を表す。)で示されるサレンマンガン錯体である。C1~C4アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等が具体例として挙げられ、t-ブチル基が好ましい。1価のアニオンとしては、例えば、ヘキサフルオロホスファートイオン、ヘキサクロロアンチモナートイオン、トリフルオロメタンスルホナートイオン、テトラフルオロボラートイオン、ホスフェートイオン、スルホナートイオン、ヒドロキシドなどが挙げられる。ハロゲン原子としては、クロリド、ブロミド、ヨージドが挙げられる。式(1a)の錯体と式(1b)の錯体とは、エナンチオマーの関係にある。式(1c)の錯体は、*で示された炭素原子の立体配置は(R)又は(S)であることから、(R)と(R)の場合は、式(1a)と同じであり、(R)と(S)の場合は、メソ体の錯体であり、(S)と(S)の場合は、式(1b)と同じであり、さらには、上記の単一であってもよいし、これらの混合物でもよい。
The catalyst used in the method for decomposing ammonia of the present embodiment is of formula (1a), formula (1b) or formula (1c).
(In the formula, R 1 and R 2 represent C1 to C4 alkyl groups which may be the same or different, and X represents a monovalent anion or halogen atom). Specific examples of the C1 to C4 alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group and the like. -Butyl groups are preferred. Examples of the monovalent anion include hexafluorophosphate ion, hexachloroantimonate ion, trifluoromethanesulfonate ion, tetrafluoroborate ion, phosphate ion, sulfonate ion, and hydroxydone. Examples of the halogen atom include chloride, bromide and iodide. The complex of formula (1a) and the complex of formula (1b) have an enantiomeric relationship. The complex of the formula (1c) has the same configuration as the formula (1a) in the cases of (R) and (R) because the configuration of the carbon atom represented by * is (R) or (S). , (R) and (S) are meso-form complexes, and (S) and (S) are the same as in formula (1b), and even if they are single as described above. It may be a mixture thereof.
本実施形態のアンモニアの分解方法において、好ましいサレンマンガン錯体は、式(1A)又は式(1B)
並びに
式(4A)又は式(4B)
(式中、Zは、1価のアニオン、軸配位子又はハロゲン原子である。例えば、Zは、ヘキサクロロアンチモナートイオン、ヘキサフルオロホスファートイオン、クロリド、ブロミド、ヨージド、ヒドロキシド、ホスフェートイオン、スルホナートイオン、トリフルオロメタンスルホナートイオン等が挙げられ、このうちヘキサフルオロホスファートイオンが好ましい。)
で示される錯体である。 In the method for decomposing ammonia of the present embodiment, the preferred salene manganese complex is the formula (1A) or the formula (1B).
And formula (4A) or formula (4B)
(In the formula, Z is a monovalent anion, axial ligand or halogen atom. For example, Z is hexachloroantimonate ion, hexafluorophosphate ion, chloride, bromide, iodide, hydroxide, phosphate ion, Examples thereof include sulfonate ion and trifluoromethanesulfonate ion, of which hexafluorophosphate ion is preferable.)
It is a complex represented by.
式(4A)又は式(4B)
で示される錯体である。 In the method for decomposing ammonia of the present embodiment, the preferred salene manganese complex is the formula (1A) or the formula (1B).
It is a complex represented by.
本実施形態のアンモニアの分解方法において、塩基は、アンモニアが酸化分解したときに生じるプロトンをトラップする役割を果たす。塩基としては、こうした役割を果たすものであれば特に限定するものではないが、例えばピリジン誘導体が好ましい。ピリジン誘導体としては、ピリジンのほか、2位から6位までの少なくとも1つに置換基を有するピリジンが挙げられる。置換基としては、特に限定するものではないが、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、アリール基、ハロゲン原子などが挙げられる。アルキル基(ジアルキルアミノ基中のアルキル基を含む)、アルコキシ基、アリール基、ハロゲン原子としては、既に例示したものと同じものが挙げられる。ピリジン誘導体の具体例として、ピリジン、2,6-ルチジン、2,4,6-コリジン、4-ジメチルアミノピリジン(DMAP)などが挙げられるが、このうち2,4,6-コリジンが好ましい。なお、アンモニアを系内でアンモニウム塩と塩基との反応により生成する場合、塩基はこの反応にも用いられる。
In the method for decomposing ammonia of the present embodiment, the base plays a role of trapping the protons generated when ammonia is oxidatively decomposed. The base is not particularly limited as long as it plays such a role, but for example, a pyridine derivative is preferable. Examples of the pyridine derivative include pyridine and pyridine having at least one substituent from the 2-position to the 6-position. The substituent is not particularly limited, and examples thereof include an alkyl group, a dialkylamino group, an alkoxy group, an aryl group, and a halogen atom. Examples of the alkyl group (including the alkyl group in the dialkylamino group), the alkoxy group, the aryl group, and the halogen atom include the same as those already exemplified. Specific examples of the pyridine derivative include pyridine, 2,6-lutidine, 2,4,6-cholidine, 4-dimethylaminopyridine (DMAP), and the like, of which 2,4,6-cholidine is preferable. When ammonia is produced by the reaction of an ammonium salt with a base in the system, the base is also used in this reaction.
本実施形態のアンモニアの分解方法において、アンモニアは、アンモニアガスを用いてもよいが、系内でアンモニウム塩と塩基との反応により生成させてもよい。アンモニアを定量する必要がある場合には、後者のようにアンモニアを系内で生成するのが好ましい。アンモニウム塩としては、塩基との反応によりアンモニアを定量的に生成するものであれば特に限定するものではないが、例えば、アンモニウムトリフラート、アンモニウムヘキサフルオロホスファート、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、アンモニウムヒドロキシド、酢酸アンモニウム、硫酸アンモニウム、リン酸アンモニウムなどが挙げられる。このうちアンモニウムトリフラートが好ましい
In the method for decomposing ammonia of the present embodiment, ammonia may be produced by the reaction of an ammonium salt and a base in the system, although ammonia gas may be used. When it is necessary to quantify ammonia, it is preferable to generate ammonia in the system as in the latter case. The ammonium salt is not particularly limited as long as it quantitatively produces ammonia by reaction with a base, but for example, ammonium trifurate, ammonium hexafluorophosphate, ammonium chloride, ammonium bromide, and ammonium iodide. , Ammonium hydroxide, ammonium acetate, ammonium sulfate, ammonium phosphate and the like. Of these, ammonium triflate is preferred.
本実施形態のアンモニアの分解方法において、アンモニアの酸化分解は、トリアリールアミンの一電子酸化体を含む酸化剤を用いることにより行ってもよいし、電気化学的酸化条件により行ってもよい。トリアリールアミンの一電子酸化体を含む酸化剤は、アンモニアが酸化分解したときに生じる電子をトラップする役割を果たす。こうした酸化剤の一例としては式(2)
に示す化合物が挙げられる。式(2)中、Ra,Rbは、同じでも異なっていてもよく、アルキル基、ハロゲン原子又は水素原子である。アルキル基やハロゲン原子としては、既に例示したものと同じものが挙げられる。このうちRaが臭素原子でRbが水素原子であるものが好ましい。Yは1価のアニオンであり、例えば、ヘキサクロロアンチモナートイオン、ヘキサフルオロホスファートイオン、クロリド、ブロミド、ヨージド、ヒドロキシド、ホスフェートイオン、スルホナートイオン、トリフルオロメタンスルホナートイオンなどが挙げられる。このうちヘキサクロロアンチモナートイオンが好ましい。
In the method for decomposing ammonia of the present embodiment, the oxidative decomposition of ammonia may be carried out by using an oxidizing agent containing a one-electron oxidant of triarylamine, or may be carried out under electrochemical oxidation conditions. An oxidant containing a one-electron oxidant of triarylamine serves to trap the electrons generated when ammonia is oxidatively decomposed. An example of such an oxidizing agent is the formula (2).
Examples thereof include the compounds shown in. In formula (2), Ra and R b may be the same or different, and are an alkyl group, a halogen atom or a hydrogen atom. Examples of the alkyl group and the halogen atom include the same ones already exemplified. Of these, those in which Ra is a bromine atom and R b is a hydrogen atom are preferable. Y is a monovalent anion, and examples thereof include hexachloroantimonate ion, hexafluorophosphate ion, chloride, bromide, iodide, hydroxydo, phosphate ion, sulfonate ion, and trifluoromethanesulfonate ion. Of these, hexachloroantimonate ion is preferable.
本実施形態のアンモニアの分解方法において、アンモニアの酸化分解を溶媒中で行ってもよい。溶媒としては、特に限定するものではないが、ニトリル系溶媒、ハロゲン化炭化水素系溶媒、ケトン系溶媒、アルコール系溶媒、環状エーテル系溶媒、鎖状エーテル系溶媒、水などが挙げられる。ニトリル系溶媒としては、例えばアセトニトリルやプロピオニトリルなどが挙げられる。ハロゲン化炭化水素系溶媒としては、例えば塩化メチレンやクロロホルムなどが挙げられる。ケトン系溶媒としては、例えばアセトンやメチルエチルケトンなどが挙げられる。アルコール系溶媒としては、例えばメタノールやエタノールなどが挙げられる。環状エーテル系溶媒としては、例えばテトラヒドロフラン(THF)や1,4-ジオキサンなどが挙げられる。鎖状エーテル系溶媒としては、例えばジエチルエーテルなどが挙げられる。
In the method for decomposing ammonia of the present embodiment, oxidative decomposition of ammonia may be carried out in a solvent. The solvent is not particularly limited, and examples thereof include a nitrile solvent, a halogenated hydrocarbon solvent, a ketone solvent, an alcohol solvent, a cyclic ether solvent, a chain ether solvent, and water. Examples of the nitrile solvent include acetonitrile, propionitrile and the like. Examples of the halogenated hydrocarbon solvent include methylene chloride and chloroform. Examples of the ketone solvent include acetone and methyl ethyl ketone. Examples of the alcohol solvent include methanol and ethanol. Examples of the cyclic ether solvent include tetrahydrofuran (THF), 1,4-dioxane and the like. Examples of the chain ether solvent include diethyl ether and the like.
本実施形態のアンモニアの分解方法では、反応温度は低温であってもアンモニアの酸化分解は進行する。例えば、-80℃~60℃が好ましく、-50℃~30℃がより好ましい。反応雰囲気は、例えば、不活性雰囲気(Ar雰囲気など)でもよいし、大気でもよい。また、加圧雰囲気にする必要はなく、常圧雰囲気でよい。反応時間は、特に限定するものではないが、通常は数10分~数10時間の範囲で設定すればよい。
In the method for decomposing ammonia of the present embodiment, oxidative decomposition of ammonia proceeds even if the reaction temperature is low. For example, −80 ° C. to 60 ° C. is preferable, and −50 ° C. to 30 ° C. is more preferable. The reaction atmosphere may be, for example, an inert atmosphere (Ar atmosphere, etc.) or an atmosphere. Further, it is not necessary to create a pressurized atmosphere, and a normal pressure atmosphere may be used. The reaction time is not particularly limited, but is usually set in the range of several tens of minutes to several tens of hours.
本実施形態のアンモニアの分解方法において、アンモニアの酸化分解の反応機構は、下記のスキームに示すように進行するものと推量される。
In the method for decomposing ammonia of the present embodiment, it is presumed that the reaction mechanism of oxidative decomposition of ammonia proceeds as shown in the scheme below.
以上の反応機構より、式(1A)で示されるサレンマンガン錯体、及び式(3A+)で示されるサレンマンガン錯体のカチオンは、触媒として機能する。
From the above reaction mechanism, the cations of the salen manganese complex represented by the formula (1A) and the salen manganese complex represented by the formula (3A +) function as catalysts.
本実施形態のアンモニアの分解方法を利用した、アンモニアを燃料とする燃料電池について説明する。
Ammonia-fueled fuel cell using the method for decomposing ammonia in this embodiment will be described.
<アンモニアを燃料とする燃料電池>
図1はアンモニアを燃料とする燃料電池100の構成を模式的に示す断面図である。アンモニアを燃料とする燃料電池100について説明する。燃料電池100は、アノード触媒層103、カソード触媒層105及び両触媒層に挟持された電解質膜107を有し、カソード触媒層105は外側にガス拡散層101を有しており、アノード触媒層103は外側にガス拡散層102を有している。これらのガス拡散層102、アノード触媒層103、電解質膜107、カソード触媒層105及びガス拡散層101より構成されるデバイスを、膜電極接合体(Membrane Electrode Assembly、以下「MEA」と略称する)という。燃料電池100は、通常、このMEAがセパレータ109に挟持されている。更に、触媒層及びガス拡散層からなる構成物を、ガス拡散電極(Gas Diffusion Electrode、以下「GDE」と略称する)という。 <Ammonia-fueled fuel cell>
FIG. 1 is a cross-sectional view schematically showing the configuration of afuel cell 100 using ammonia as fuel. A fuel cell 100 using ammonia as fuel will be described. The fuel cell 100 has an anode catalyst layer 103, a cathode catalyst layer 105, and an electrolyte film 107 sandwiched between both catalyst layers, and the cathode catalyst layer 105 has a gas diffusion layer 101 on the outside, and the anode catalyst layer 103. Has a gas diffusion layer 102 on the outside. A device composed of the gas diffusion layer 102, the anode catalyst layer 103, the electrolyte membrane 107, the cathode catalyst layer 105, and the gas diffusion layer 101 is referred to as a membrane electrode assembly (Membrane Electrode Assembly, hereinafter abbreviated as "MEA"). .. In the fuel cell 100, this MEA is usually sandwiched between the separators 109. Further, a component composed of a catalyst layer and a gas diffusion layer is referred to as a gas diffusion electrode (Gas Diffusion Electrode, hereinafter abbreviated as "GDE").
図1はアンモニアを燃料とする燃料電池100の構成を模式的に示す断面図である。アンモニアを燃料とする燃料電池100について説明する。燃料電池100は、アノード触媒層103、カソード触媒層105及び両触媒層に挟持された電解質膜107を有し、カソード触媒層105は外側にガス拡散層101を有しており、アノード触媒層103は外側にガス拡散層102を有している。これらのガス拡散層102、アノード触媒層103、電解質膜107、カソード触媒層105及びガス拡散層101より構成されるデバイスを、膜電極接合体(Membrane Electrode Assembly、以下「MEA」と略称する)という。燃料電池100は、通常、このMEAがセパレータ109に挟持されている。更に、触媒層及びガス拡散層からなる構成物を、ガス拡散電極(Gas Diffusion Electrode、以下「GDE」と略称する)という。 <Ammonia-fueled fuel cell>
FIG. 1 is a cross-sectional view schematically showing the configuration of a
燃料電池100は、電解質膜107として、イオン交換樹脂膜等を用いて、カソード触媒層105である酸化剤極において、酸素、電子及び水との反応(O2+4e-+4H2O→4OH-)により生成した水酸化物イオンが、電解質膜107を通ってアノード触媒層103である燃料極へと移動し、燃料極においてアンモニアを反応させることで(2NH3→N2+6e-+6H+)、窒素、電子及びプロトンを生成させる。イオン交換樹脂膜としては、酸化剤極で生成した水酸化物イオンを燃料極へと移動させることができるものであれば、特に限定されないが、例えば、カチオン交換膜、アニオン交換膜等が挙げられる。このうちアニオン交換膜が好ましい。アニオン交換膜としては、例えば、第四級アンモニウム基、ピリジニウム基などのアニオン交換基を有するアニオン交換樹脂を含有する固体高分子膜が挙げられる。このうちアニオン交換膜が好ましい。アニオン交換膜の具体例としては、例えば、Fumasep社製のアニオン交換膜であるFAP、FAP-450、FAA-3、FAS、FAB、AMI-7001、AGC社製のアニオン交換膜であるAMV、AMT、DSV、AAV、ASV、ASV-N、AHO、APS4等が挙げられ、このうちFumasep社製のFAP-450、FAA-3及びAGC社製のASV-Nが好ましい。
The fuel cell 100 uses an ion exchange resin film or the like as the electrolyte film 107, and reacts with oxygen, electrons, and water at the oxidizing agent electrode of the cathode catalyst layer 105 (O 2 + 4e − + 4H 2 O → 4OH − ). The hydroxide ion generated by the above moves through the electrolyte membrane 107 to the fuel electrode, which is the anode catalyst layer 103, and reacts with ammonia at the fuel electrode (2NH 3 → N 2 + 6e − + 6H + ) to produce nitrogen. , Generates electrons and protons. The ion exchange resin membrane is not particularly limited as long as it can move the hydroxide ions generated at the oxidant electrode to the fuel electrode, and examples thereof include a cation exchange membrane and an anion exchange membrane. .. Of these, an anion exchange membrane is preferable. Examples of the anion exchange membrane include a solid polymer membrane containing an anion exchange resin having an anion exchange group such as a quaternary ammonium group and a pyridinium group. Of these, an anion exchange membrane is preferable. Specific examples of the anion exchange membrane include FAP, FAP-450, FAA-3, FAS, FAB, AMI-7001, which are anion exchange membranes manufactured by Fumasep, and AMV, AMT, which are anion exchange membranes manufactured by AGC. , DSV, AAV, ASV, ASV-N, AHO, APS4 and the like, of which FAP-450, FAA-3 manufactured by Membrane and ASV-N manufactured by AGC are preferable.
アノード触媒層103は、触媒成分(上述した本発明に関わるサレンマンガン錯体)、触媒成分を吸着するための触媒担体及び電解質を含んでいる。一方、カソード触媒層105は、触媒成分、触媒成分を担持するための触媒担体及び電解質を含む。カソード触媒層105における触媒成分としては、特に制限なく公知の触媒を使用することができる。カソード触媒層105に用いられる触媒成分としては、例えば、白金、金、銀、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属およびこれらの合金などが挙げられ、このうち白金が好ましい。
The anode catalyst layer 103 contains a catalyst component (the above-mentioned salen manganese complex according to the present invention), a catalyst carrier for adsorbing the catalyst component, and an electrolyte. On the other hand, the cathode catalyst layer 105 contains a catalyst component, a catalyst carrier for supporting the catalyst component, and an electrolyte. As the catalyst component in the cathode catalyst layer 105, a known catalyst can be used without particular limitation. Examples of the catalyst component used in the cathode catalyst layer 105 include platinum, gold, silver, ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and the like. Examples thereof include metals such as aluminum and alloys thereof, of which platinum is preferable.
各触媒層103,105における触媒担体としては、例えば、チャンネルブラック、ファーネスブラック、サーマルブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、種々の炭素原子を含む材料を炭化し賦活処理した活性炭、コークス、天然黒鉛、人造黒鉛、グラファイト化カーボンなどの炭素質材料、ニッケル又はチタン等の金属メッシュ、金属発泡体等が挙げられる。このうち、比表面積が高く電子伝導性に優れることから、触媒担体としては、カーボンブラックが好ましい。
Examples of the catalyst carrier in each of the catalyst layers 103 and 105 include carbon black such as channel black, furnace black, thermal black, acetylene black, and Ketjen black, activated carbon obtained by carbonizing and activating a material containing various carbon atoms, and coke. , Natural graphite, artificial graphite, carbonic materials such as graphitized carbon, metal meshes such as nickel or titanium, metal foams and the like. Of these, carbon black is preferable as the catalyst carrier because it has a high specific surface area and excellent electron conductivity.
各触媒層103,105における電解質としては、例えば、アニオン交換イオノマーであるFumasep社製のFumion FAA-3-SOLUT-10、アニオン伝導イオノマーであるトクヤマ社製のA3ver.2、AS-4(A3ver.2及びAS-4は、例えば雑誌「水素エネルギーシステム」、Vo1.35、No.2、2010年、9ページに記載がある。)、ナフィオン(登録商標、デュポン株式会社製)、アクイヴィオン(登録商標、ソルベイ株式会社製)、フレミオン(登録商標、旭硝子株式会社製)、アシプレックス(登録商標、旭化成株式会社製)等のフッ素系スルホン酸ポリマー等が挙げられ、このうちFumion FAA-3-SOLUT-10及びAS-4が好ましい。
Examples of the electrolyte in each of the catalyst layers 103 and 105 include Fusion FAA-3-SOLUT-10 manufactured by Fumasep, which is an anion exchange ionomer, and A3ver. 2. AS-4 (A3 ver.2 and AS-4 are described in, for example, magazine "Hydrogen Energy System", Vo1.35, No.2, 2010, page 9), Nafion (registered trademark, DuPont stock). Fluorophilic sulfonic acid polymers such as Aquivion (registered trademark, manufactured by Solvay Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), etc. Of these, Fusion FAA-3-SOLUT-10 and AS-4 are preferable.
セパレータ109としては、ガス不透過の導電性部材であればよく、例えばカーボンを圧縮してガス不透過としたカーボン板であってもよいし、ソリッドな金属板であってもよい。セパレータ109とアノード側のガス拡散層102との間には、アンモニアが供給される流路が設けられている。セパレータ109とカソード側のガス拡散層101との間には、酸素又は空気が供給されるガス通路が形成されている。
The separator 109 may be a gas-impermeable conductive member, for example, a carbon plate obtained by compressing carbon to make it gas-impermeable, or a solid metal plate. A flow path for supplying ammonia is provided between the separator 109 and the gas diffusion layer 102 on the anode side. A gas passage to which oxygen or air is supplied is formed between the separator 109 and the gas diffusion layer 101 on the cathode side.
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various embodiments as long as it belongs to the technical scope of the present invention.
以下に、本発明の実施例について説明する。なお、以下の実施例は本発明を何ら限定するものではない。
Hereinafter, examples of the present invention will be described. The following examples do not limit the present invention in any way.
[実験例1]
触媒、酸化剤、塩基を用い、アンモニアの酸化分解を試みた。サレンマンガン錯体(1A)は、Strem社、東京化成工業社等から入手可能であり、サレンマンガン錯体(1A)のエナンチオマーであるサレンマンガン錯体(1B)は、Strem社、富士フイルム和光純薬社等から入手できる。
[Experimental Example 1]
An attempt was made to oxidatively decompose ammonia using a catalyst, an oxidizing agent, and a base. The salen manganese complex (1A) is available from Strem, Tokyo Chemical Industry, etc., and the salen manganese complex (1B), which is an enantiomer of the salen manganese complex (1A), is Strem, Fujifilm Wako Pure Chemical Industries, Ltd., etc. Available from.
触媒、酸化剤、塩基を用い、アンモニアの酸化分解を試みた。サレンマンガン錯体(1A)は、Strem社、東京化成工業社等から入手可能であり、サレンマンガン錯体(1A)のエナンチオマーであるサレンマンガン錯体(1B)は、Strem社、富士フイルム和光純薬社等から入手できる。
An attempt was made to oxidatively decompose ammonia using a catalyst, an oxidizing agent, and a base. The salen manganese complex (1A) is available from Strem, Tokyo Chemical Industry, etc., and the salen manganese complex (1B), which is an enantiomer of the salen manganese complex (1A), is Strem, Fujifilm Wako Pure Chemical Industries, Ltd., etc. Available from.
実験例1では、サレンマンガン錯体(1A)(6.4mg、0.01mmol)と、アンモニウム塩としてのアンモニウムトリフラート(501mg、3.0mmol)と、酸化剤としての[(p-BrC6H4)3N・]+[SbCl6]-(2a)(735mg、0.9mmol)と、塩基としての2,4,6-コリジン(0.4mL、3.0mmol)とを、5mLのアセトニトリル中、1気圧のアルゴン雰囲気下、-40℃で2時間攪拌した後、室温で4時間攪拌した。その結果、4.3当量(酸化剤基準で収率29%)の窒素が確認された。
In Example 1, salen manganese complex (1A) (6.4mg, 0.01mmol) and, ammonium triflate as an ammonium salt (501 mg, 3.0 mmol) and, as an oxidizing agent [(p-BrC 6 H 4 ) 3 N · ] + [SbCl 6 ] - (2a) (735 mg, 0.9 mmol) and 2,4,6-cholidine (0.4 mL, 3.0 mmol) as a base in 5 mL of acetonitrile, 1 After stirring at −40 ° C. for 2 hours under an argon atmosphere at atmospheric pressure, the mixture was stirred at room temperature for 4 hours. As a result, 4.3 equivalents (29% yield based on the oxidizing agent) of nitrogen was confirmed.
[実験例2]
実験例2では、電気化学的酸化条件でのアンモニアの分解について知見を得るため、サイクリックボルタンメトリ(CV)測定を行った。すなわち、ガラス状炭素(Glassy Carbon)電極を作用電極とし、テトラブチルアンモニウムヘキサフルオロホスファートを支持電解質として用いて、アセトニトリル10mL中、サレンマンガン錯体(1a)(0.01mmol、1mM)、アンモニア(0.15mmol)の存在下、スキャン速度1mV/sにてCV測定を行った。得られた電流-電位曲線のグラフを図2に示す。このグラフから、アンモニアの酸化分解における定常電流が確認された。その値は80μAであった。 [Experimental Example 2]
In Experimental Example 2, cyclic voltammetry (CV) measurement was performed in order to obtain knowledge about the decomposition of ammonia under electrochemical oxidation conditions. That is, using a glassy carbon electrode as a working electrode and tetrabutylammonium hexafluorophosphate as a supporting electrolyte, salene manganese complex (1a) (0.01 mmol, 1 mM) and ammonia (0) were used in 10 mL of acetonitrile. CV measurement was performed at a scanning rate of 1 mV / s in the presence of .15 mmol). The graph of the obtained current-potential curve is shown in FIG. From this graph, the steady current in the oxidative decomposition of ammonia was confirmed. The value was 80 μA.
実験例2では、電気化学的酸化条件でのアンモニアの分解について知見を得るため、サイクリックボルタンメトリ(CV)測定を行った。すなわち、ガラス状炭素(Glassy Carbon)電極を作用電極とし、テトラブチルアンモニウムヘキサフルオロホスファートを支持電解質として用いて、アセトニトリル10mL中、サレンマンガン錯体(1a)(0.01mmol、1mM)、アンモニア(0.15mmol)の存在下、スキャン速度1mV/sにてCV測定を行った。得られた電流-電位曲線のグラフを図2に示す。このグラフから、アンモニアの酸化分解における定常電流が確認された。その値は80μAであった。 [Experimental Example 2]
In Experimental Example 2, cyclic voltammetry (CV) measurement was performed in order to obtain knowledge about the decomposition of ammonia under electrochemical oxidation conditions. That is, using a glassy carbon electrode as a working electrode and tetrabutylammonium hexafluorophosphate as a supporting electrolyte, salene manganese complex (1a) (0.01 mmol, 1 mM) and ammonia (0) were used in 10 mL of acetonitrile. CV measurement was performed at a scanning rate of 1 mV / s in the presence of .15 mmol). The graph of the obtained current-potential curve is shown in FIG. From this graph, the steady current in the oxidative decomposition of ammonia was confirmed. The value was 80 μA.
[比較例1]
比較例1として、サレンマンガン錯体(1a)を使わないこと以外は、実験例2と同じ実験条件にてCV測定を行ったところ、図2の比較例1に示すグラフが得られ、定常電流は観測されなかった。この結果により、アンモニアの酸化分解は電気化学的酸化条件においても進行することが確認できた。 [Comparative Example 1]
As Comparative Example 1, when CV measurement was performed under the same experimental conditions as in Experimental Example 2 except that the salen manganese complex (1a) was not used, the graph shown in Comparative Example 1 in FIG. 2 was obtained, and the steady current was measured. Not observed. From this result, it was confirmed that the oxidative decomposition of ammonia proceeds even under electrochemical oxidation conditions.
比較例1として、サレンマンガン錯体(1a)を使わないこと以外は、実験例2と同じ実験条件にてCV測定を行ったところ、図2の比較例1に示すグラフが得られ、定常電流は観測されなかった。この結果により、アンモニアの酸化分解は電気化学的酸化条件においても進行することが確認できた。 [Comparative Example 1]
As Comparative Example 1, when CV measurement was performed under the same experimental conditions as in Experimental Example 2 except that the salen manganese complex (1a) was not used, the graph shown in Comparative Example 1 in FIG. 2 was obtained, and the steady current was measured. Not observed. From this result, it was confirmed that the oxidative decomposition of ammonia proceeds even under electrochemical oxidation conditions.
[合成例1]
下記式にしたがって、サレンマンガン錯体(3A)
を合成した。サレンマンガン錯体(1A)(63.5mg、0.1mmol)を、ヘキサフルオロリン酸アンモニウム(163mg、1mmol)を加えたメタノール(10mL)中で攪拌することで、サレンマンガン錯体(3A)を粗物で取り出した。続いて、サレンマンガン錯体(3A)(74.4mg、0.10mmol)をアンモニア-メタノール溶液(2mol/L、2mL)中において、10分攪拌した。次に、-30℃で再結晶することにより、サレンマンガン錯体(3A)を結晶性固体として得た(27.6mg,収率36%)。サレンマンガン錯体(3A)のスペクトルデータは以下のとおりである。
Magnetic susceptibility(Evans’ Method):
μeff=4.8 μB in CDCl3 at 298K.
Anal.calcd. for C36H55F6O2N3PMn(3A):
C,56.76;H,7.28;N,5.52.
Found:
C,56.80;H,7.31;N,5.12.
ESI-TOF-MS(MeOH): 616.5 (m/z). [Synthesis Example 1]
Salen manganese complex (3A) according to the following formula
Was synthesized. By stirring the salen manganese complex (1A) (63.5 mg, 0.1 mmol) in methanol (10 mL) containing ammonium hexafluorophosphate (163 mg, 1 mmol), the salen manganese complex (3A) is crude. I took it out with. Subsequently, the salen manganese complex (3A) (74.4 mg, 0.10 mmol) was stirred in an ammonia-methanol solution (2 mol / L, 2 mL) for 10 minutes. Next, the salene manganese complex (3A) was obtained as a crystalline solid by recrystallization at −30 ° C. (27.6 mg, yield 36%). The spectral data of the salen manganese complex (3A) is as follows.
Magnetic susceptibility (Evans' Method):
μ eff = 4.8 μ B in CDCl 3 at 298K.
Anal. calcd. for C 36 H 55 F 6 O 2 N 3 PMn (3A):
C, 56.76; H, 7.28; N, 5.52.
Found:
C, 56.80; H, 7.31; N, 5.12.
ESI-TOF-MS (MeOH): 616.5 (m / z).
下記式にしたがって、サレンマンガン錯体(3A)
Magnetic susceptibility(Evans’ Method):
μeff=4.8 μB in CDCl3 at 298K.
Anal.calcd. for C36H55F6O2N3PMn(3A):
C,56.76;H,7.28;N,5.52.
Found:
C,56.80;H,7.31;N,5.12.
ESI-TOF-MS(MeOH): 616.5 (m/z). [Synthesis Example 1]
Salen manganese complex (3A) according to the following formula
Magnetic susceptibility (Evans' Method):
μ eff = 4.8 μ B in CDCl 3 at 298K.
Anal. calcd. for C 36 H 55 F 6 O 2 N 3 PMn (3A):
C, 56.76; H, 7.28; N, 5.52.
Found:
C, 56.80; H, 7.31; N, 5.12.
ESI-TOF-MS (MeOH): 616.5 (m / z).
[実験例3]
実験例3では、サレンマンガン錯体(3A)(7.6mg、0.01mmol)と、アンモニウム塩としてのアンモニウムトリフラート(501mg、3.0mmol)と、酸化剤としての[(p-BrC6H4)3N・]+[SbCl6]-(2a)(735mg、0.9mmol)と、塩基としての2,4,6-コリジン(0.4mL、3.0mmol)とを、5mLのアセトニトリル中、1気圧のアルゴン雰囲気下、-40℃で2時間攪拌した後、室温で4時間攪拌した。その結果、3.0当量(酸化剤基準で収率20%)の窒素が確認された。 [Experimental Example 3]
In Example 3, salen manganese complex (3A) (7.6mg, 0.01mmol) and, ammonium triflate as an ammonium salt (501 mg, 3.0 mmol) and, as an oxidizing agent [(p-BrC 6 H 4 ) 3 N · ] + [SbCl 6 ] - (2a) (735 mg, 0.9 mmol) and 2,4,6-cholidine (0.4 mL, 3.0 mmol) as a base in 5 mL of acetonitrile, 1 After stirring at −40 ° C. for 2 hours under an ammonium atmosphere at atmospheric pressure, the mixture was stirred at room temperature for 4 hours. As a result, 3.0 equivalents (20% yield based on the oxidizing agent) of nitrogen was confirmed.
実験例3では、サレンマンガン錯体(3A)(7.6mg、0.01mmol)と、アンモニウム塩としてのアンモニウムトリフラート(501mg、3.0mmol)と、酸化剤としての[(p-BrC6H4)3N・]+[SbCl6]-(2a)(735mg、0.9mmol)と、塩基としての2,4,6-コリジン(0.4mL、3.0mmol)とを、5mLのアセトニトリル中、1気圧のアルゴン雰囲気下、-40℃で2時間攪拌した後、室温で4時間攪拌した。その結果、3.0当量(酸化剤基準で収率20%)の窒素が確認された。 [Experimental Example 3]
In Example 3, salen manganese complex (3A) (7.6mg, 0.01mmol) and, ammonium triflate as an ammonium salt (501 mg, 3.0 mmol) and, as an oxidizing agent [(p-BrC 6 H 4 ) 3 N · ] + [SbCl 6 ] - (2a) (735 mg, 0.9 mmol) and 2,4,6-cholidine (0.4 mL, 3.0 mmol) as a base in 5 mL of acetonitrile, 1 After stirring at −40 ° C. for 2 hours under an ammonium atmosphere at atmospheric pressure, the mixture was stirred at room temperature for 4 hours. As a result, 3.0 equivalents (20% yield based on the oxidizing agent) of nitrogen was confirmed.
[実施例4]燃料電池の発電試験1
サレンマンガン錯体(1A)をアノード触媒層の触媒として用いた、アンモニアを燃料とする燃料電池の発電試験を行った。燃料電池のMEAは、カソード側のGDE、アノード側のGDE及び電解質膜により作製した。 [Example 4] Fuel cell power generation test 1
A power generation test of an ammonia-fueled fuel cell using the salen manganese complex (1A) as a catalyst for the anode catalyst layer was carried out. The MEA of the fuel cell was made of GDE on the cathode side, GDE on the anode side, and an electrolyte membrane.
サレンマンガン錯体(1A)をアノード触媒層の触媒として用いた、アンモニアを燃料とする燃料電池の発電試験を行った。燃料電池のMEAは、カソード側のGDE、アノード側のGDE及び電解質膜により作製した。 [Example 4] Fuel cell power generation test 1
A power generation test of an ammonia-fueled fuel cell using the salen manganese complex (1A) as a catalyst for the anode catalyst layer was carried out. The MEA of the fuel cell was made of GDE on the cathode side, GDE on the anode side, and an electrolyte membrane.
カソード側のGDEは、以下のように作製した。カソード触媒層にて用いる触媒インクは、白金担持カーボンである電極触媒(田中貴金属工業社製、白金含有量:46.5重量%、品名「TEC10E50E」)、脱イオン水、エタノール(富士フイルム和光純薬社製)及び、アニオン伝導イオノマー分散液[Fumasep社製のFumion FAA-3-SOLUT-10(10重量&のN-メチル-2-ピロリドン分散液)]を用いて調製した。ここでは、触媒インク中のアニオン伝導イオノマーの割合は、28重量%になるように調製した。ガラス製のバイアル瓶に、電極触媒、脱イオン水、エタノールおよびアニオン伝導イオノマー分散液を、この順序で加えて、得られた分散溶液を、マイクロテック・ニチオン社製の超音波ホモジナイザーSmurt NR-50Mを用いて超音波を出力40%に設定して30分間照射することで、触媒インクを調製した。次に、この触媒インクを、80℃に設定したホットプレートに固定したカーボンペーパー(東レ社製の「TGP-H-090」を2.5cm×3cmの長方形にカットしたもの)であるガス拡散層に塗布した。塗布量は、塗布した面1cm2あたりの白金量が1mgとなるようにして、カソード触媒層及びガス拡散層からなるカソード側のGDE(該GDE上には白金触媒(7.5mg)が含まれる)を作製した。
The GDE on the cathode side was prepared as follows. The catalyst ink used in the cathode catalyst layer is an electrode catalyst made of platinum-supported carbon (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., platinum content: 46.5% by weight, product name "TEC10E50E"), deionized water, ethanol (Fujifilm Wako Pure Chemical Industries, Ltd.). Prepared using an anionic conduction ionomer dispersion (Fumion FAA-3-SOLUT-10 (10% by weight & N-methyl-2-pyrrolidone dispersion) manufactured by Fumasep). Here, the proportion of anionic conduction ionomers in the catalyst ink was adjusted to be 28% by weight. Electrode catalyst, deionized water, ethanol and anionic conduction ionomer dispersion are added in this order to a glass vial, and the obtained dispersion is added to the ultrasonic homogenizer Smart NR-50M manufactured by Microtech Nithion. The catalyst ink was prepared by setting the output of ultrasonic waves to 40% and irradiating the particles for 30 minutes. Next, a gas diffusion layer which is a carbon paper (“TGP-H-090” manufactured by Toray Industries, Inc. cut into a rectangle of 2.5 cm × 3 cm) fixed on a hot plate set at 80 ° C. with this catalyst ink. Was applied to. The coating amount is such that the amount of platinum per 1 cm 2 of the coated surface is 1 mg, and the cathode side GDE composed of the cathode catalyst layer and the gas diffusion layer (the platinum catalyst (7.5 mg) is included on the GDE). ) Was prepared.
上述の触媒インク中のアニオン伝導イオノマーの割合について説明する。触媒インクの調製では、下記式から算出されるアニオン伝導イオノマーの割合(重量%)を28重量%となるようにした。なお、式中、アニオン伝導イオノマーを「イオノマー」と略記した。
イオノマーの割合(重量%)=
[イオノマーの固形分(重量)/〔電極触媒(重量)+イオノマーの固形分(重量)〕]×100
具体的には10重量%のアニオン伝導イオノマーの分散液を用いた場合、電極触媒の量を100.0mg、アニオン伝導イオノマーの分散液の量を389.0mg、脱イオン水の量を0.6mL、エタノールの量を5.1mLと設定した。 The ratio of anionic conduction ionomers in the above-mentioned catalyst ink will be described. In the preparation of the catalyst ink, the proportion (% by weight) of the anion conductive ionomer calculated from the following formula was set to 28% by weight. In the formula, the anion conductive ionomer is abbreviated as "ionomer".
Ratio of ionomer (% by weight) =
[Ionomer solids (weight) / [Electrode catalyst (weight) + Ionomer solids (weight)]] x 100
Specifically, when a 10 wt% anion conductive ionomer dispersion was used, the amount of the electrode catalyst was 100.0 mg, the amount of the anionic ionomer dispersion was 389.0 mg, and the amount of deionized water was 0.6 mL. , The amount of ethanol was set to 5.1 mL.
イオノマーの割合(重量%)=
[イオノマーの固形分(重量)/〔電極触媒(重量)+イオノマーの固形分(重量)〕]×100
具体的には10重量%のアニオン伝導イオノマーの分散液を用いた場合、電極触媒の量を100.0mg、アニオン伝導イオノマーの分散液の量を389.0mg、脱イオン水の量を0.6mL、エタノールの量を5.1mLと設定した。 The ratio of anionic conduction ionomers in the above-mentioned catalyst ink will be described. In the preparation of the catalyst ink, the proportion (% by weight) of the anion conductive ionomer calculated from the following formula was set to 28% by weight. In the formula, the anion conductive ionomer is abbreviated as "ionomer".
Ratio of ionomer (% by weight) =
[Ionomer solids (weight) / [Electrode catalyst (weight) + Ionomer solids (weight)]] x 100
Specifically, when a 10 wt% anion conductive ionomer dispersion was used, the amount of the electrode catalyst was 100.0 mg, the amount of the anionic ionomer dispersion was 389.0 mg, and the amount of deionized water was 0.6 mL. , The amount of ethanol was set to 5.1 mL.
アノード側のGDEは、以下のようにして作製した。アノード触媒層にて用いる触媒インクは、サレンマンガン錯体(1A)(46.5mg)、カーボンブラック(53.5mg、ライオン社製、ケッチェンブラック、品名「EC300J」)、脱イオン水、エタノール(富士フイルム和光純薬社製)、およびアニオン伝導イオノマー分散液[Fumasep社製のFumion FAA-3-SOLUT-10(10重量&のN-メチル-2-ピロリドン分散液)]を用いて調製した。ここでは、触媒インク中のアニオン伝導イオノマーの割合は、28重量%になるように調製した。ガラス製のバイアル瓶に、サレンマンガン錯体、カーボンブラック、脱イオン水、エタノールおよびアニオン伝導イオノマー分散液を、この順序で加えて、得られた分散溶液を、マイクロテック・ニチオン社製の超音波ホモジナイザーSmurt NR-50Mを用いて超音波を出力40%に設定して30分間照射することで、触媒インクを調製した。次に、この触媒インクを、80℃に設定したホットプレートに固定したカーボンペーパー(東レ社製の「TGP-H-090」を2.5cm×3cmの長方形にカットしたもの)であるガス拡散層に塗布した。塗布量は、塗布した面1cm2あたりのサレンマンガン錯体の量が1mgとなるようにして、アノード触媒層及びガス拡散層からなるアノード側のGDE(該GDE上にはサレンマンガン錯体(7.5mg)が含まれる)を作製した。
The GDE on the anode side was prepared as follows. The catalyst ink used in the anode catalyst layer is salene manganese complex (1A) (46.5 mg), carbon black (53.5 mg, manufactured by Lion, Ketjen Black, product name "EC300J"), deionized water, ethanol (Fuji). It was prepared using Film Wako Pure Chemical Industries, Ltd.) and an anion conducting ionomer dispersion liquid [Fumion FAA-3-SOLUT-10 (10% by weight & N-methyl-2-pyrrolidone dispersion) manufactured by Fumasep]. Here, the proportion of anionic conduction ionomers in the catalyst ink was adjusted to be 28% by weight. Salen manganese complex, carbon black, deionized water, ethanol and anionic conduction ionomer dispersion are added in this order to a glass vial, and the obtained dispersion is added to an ultrasonic homogenizer manufactured by Microtech Nithione. A catalyst ink was prepared by irradiating ultrasonic waves at an output of 40% for 30 minutes using a Smart NR-50M. Next, a gas diffusion layer which is a carbon paper (“TGP-H-090” manufactured by Toray Industries, Inc. cut into a rectangle of 2.5 cm × 3 cm) fixed on a hot plate set at 80 ° C. with this catalyst ink. Was applied to. The coating amount is such that the amount of the salene manganese complex per 1 cm 2 of the coated surface is 1 mg, and the GDE on the anode side composed of the anode catalyst layer and the gas diffusion layer (7.5 mg of the salene manganese complex (7.5 mg) on the GDE). ) Is included).
上述の触媒インク中のアニオン伝導イオノマーの割合について説明する。触媒インクの調製では、下記式から算出されるアニオン伝導イオノマーの割合(重量%)を28重量%となるようにした。なお、式中、アニオン伝導イオノマーを「イオノマー」と略記した。
イオノマーの割合(重量%)=
[イオノマーの固形分(重量)/〔マンガン錯体(重量)+カーボンブラック(重量)+イオノマーの固形分(重量)〕]×100
具体的には、10重量%のアニオン伝導イオノマーの分散液を用いた場合、サレンマンガン錯体(46.5mg)、カーボンブラック(53.5mg)、アニオン伝導イオノマーの分散液の量を389.0mg、脱イオン水の量を0.6mL、エタノールの量を5.1mLと設定した。 The ratio of anionic conduction ionomers in the above-mentioned catalyst ink will be described. In the preparation of the catalyst ink, the proportion (% by weight) of the anion conductive ionomer calculated from the following formula was set to 28% by weight. In the formula, the anion conductive ionomer is abbreviated as "ionomer".
Ratio of ionomer (% by weight) =
[Ionomer solids (weight) / [manganese complex (weight) + carbon black (weight) + ionomer solids (weight)]] x 100
Specifically, when a dispersion of 10% by weight of anion conducting ionomer was used, the amount of the dispersion of salen manganese complex (46.5 mg), carbon black (53.5 mg), and anion conducting ionomer was 389.0 mg. The amount of deionized water was set to 0.6 mL and the amount of ethanol was set to 5.1 mL.
イオノマーの割合(重量%)=
[イオノマーの固形分(重量)/〔マンガン錯体(重量)+カーボンブラック(重量)+イオノマーの固形分(重量)〕]×100
具体的には、10重量%のアニオン伝導イオノマーの分散液を用いた場合、サレンマンガン錯体(46.5mg)、カーボンブラック(53.5mg)、アニオン伝導イオノマーの分散液の量を389.0mg、脱イオン水の量を0.6mL、エタノールの量を5.1mLと設定した。 The ratio of anionic conduction ionomers in the above-mentioned catalyst ink will be described. In the preparation of the catalyst ink, the proportion (% by weight) of the anion conductive ionomer calculated from the following formula was set to 28% by weight. In the formula, the anion conductive ionomer is abbreviated as "ionomer".
Ratio of ionomer (% by weight) =
[Ionomer solids (weight) / [manganese complex (weight) + carbon black (weight) + ionomer solids (weight)]] x 100
Specifically, when a dispersion of 10% by weight of anion conducting ionomer was used, the amount of the dispersion of salen manganese complex (46.5 mg), carbon black (53.5 mg), and anion conducting ionomer was 389.0 mg. The amount of deionized water was set to 0.6 mL and the amount of ethanol was set to 5.1 mL.
電解質膜としては、Fumasep社製のFAA-3(膜厚50μm)を用いた。
As the electrolyte membrane, FAA-3 (thickness 50 μm) manufactured by Fumasep was used.
アノード側のGDE、電解質膜、カソード側のGDEを、この順番にて組み合わせてMEAを作製した。そのMEAを、2.5cm×3cmの長方形の電極面積を有する単セル(日産化学社製、燃料電池セル)に配置して、燃料電池の発電試験を、電気化学測定システム(プリンストンアプライドリサーチ社製、VersaSTAT4)を用いて行い電流密度と電圧とを測定した。また、開回路電圧(Open Circuit Voltage、以下「OCV」と略称する。)を測定した。なお、OCVは、単セルに電圧または電流を印加していない状態の電位である。発電試験の条件は以下の通りである。
MEA was prepared by combining the GDE on the anode side, the electrolyte membrane, and the GDE on the cathode side in this order. The MEA is placed in a single cell (manufactured by Nissan Chemical Co., Ltd., fuel cell) having a rectangular electrode area of 2.5 cm × 3 cm, and the power generation test of the fuel cell is performed by an electrochemical measurement system (manufactured by Princeton Applied Research Co., Ltd.). , VersaSTAT4), and the current density and voltage were measured. In addition, the open circuit voltage (Open Circuit Voltage, hereinafter abbreviated as "OCV") was measured. The OCV is a potential in a state where no voltage or current is applied to the single cell. The conditions for the power generation test are as follows.
<発電試験条件>
単セル温度:25~28℃(室温)
アノード側の燃料供給:アノード側燃料溶液(7mL)を一括で供給
カソード側の燃料供給:酸素を充填した実験用風船を供給口に装着して供給
なお、アノード側燃料溶液には、スクリュー管にアンモニウムトリフラート(1.00g,6.0mmol)、脱イオン水(10mL)及び2,4,6-コリジン(0.80mL,6.0mmol)を加えて調製したアノード側燃料溶液を用いた。 <Power generation test conditions>
Single cell temperature: 25-28 ° C (room temperature)
Fuel supply on the anode side: Supply fuel solution on the anode side (7 mL) in a lump. Fuel supply on the cathode side: Supply by attaching an oxygen-filled experimental balloon to the supply port. An anode-side fuel solution prepared by adding ammonium trifurate (1.00 g, 6.0 mmol), deionized water (10 mL) and 2,4,6-cholidine (0.80 mL, 6.0 mmol) was used.
単セル温度:25~28℃(室温)
アノード側の燃料供給:アノード側燃料溶液(7mL)を一括で供給
カソード側の燃料供給:酸素を充填した実験用風船を供給口に装着して供給
なお、アノード側燃料溶液には、スクリュー管にアンモニウムトリフラート(1.00g,6.0mmol)、脱イオン水(10mL)及び2,4,6-コリジン(0.80mL,6.0mmol)を加えて調製したアノード側燃料溶液を用いた。 <Power generation test conditions>
Single cell temperature: 25-28 ° C (room temperature)
Fuel supply on the anode side: Supply fuel solution on the anode side (7 mL) in a lump. Fuel supply on the cathode side: Supply by attaching an oxygen-filled experimental balloon to the supply port. An anode-side fuel solution prepared by adding ammonium trifurate (1.00 g, 6.0 mmol), deionized water (10 mL) and 2,4,6-cholidine (0.80 mL, 6.0 mmol) was used.
単セルのOCVは0.46Vであった。電流密度及び電圧の結果を表1に示す。
The OCV of a single cell was 0.46V. The results of current density and voltage are shown in Table 1. Twice
[実施例5]燃料電池の発電試験2
ここでは、電解質膜として、AGC社製のASV-N(膜厚100μm)を用いた以外は、実施例4と同様にして、アンモニアを燃料とする燃料電池の発電試験を行った。単セルのOCVは0.11Vであった。電流密度及び電圧の結果を表2に示す。 [Example 5] Fuel cell power generation test 2
Here, a power generation test of a fuel cell using ammonia as a fuel was carried out in the same manner as in Example 4 except that ASV-N (thickness 100 μm) manufactured by AGC was used as the electrolyte membrane. The OCV of the single cell was 0.11V. The results of current density and voltage are shown in Table 2.
ここでは、電解質膜として、AGC社製のASV-N(膜厚100μm)を用いた以外は、実施例4と同様にして、アンモニアを燃料とする燃料電池の発電試験を行った。単セルのOCVは0.11Vであった。電流密度及び電圧の結果を表2に示す。 [Example 5] Fuel cell power generation test 2
Here, a power generation test of a fuel cell using ammonia as a fuel was carried out in the same manner as in Example 4 except that ASV-N (
本発明に関わるアンモニアの酸化分解法に用いるサレンマンガン錯体は、アンモニアの分解に利用可能であり、更には、アンモニアを燃料とする燃料電池のアノード触媒層にて触媒として利用可能である。
The salen manganese complex used in the oxidative decomposition method of ammonia according to the present invention can be used for decomposition of ammonia, and further can be used as a catalyst in the anode catalyst layer of a fuel cell using ammonia as fuel.
Claims (16)
- サレンマンガン錯体及び塩基の存在下、アンモニアを酸化分解して窒素とプロトンと電子を得るアンモニアの分解方法であって、前記サレンマンガン錯体は、式(1a)、式(1b)又は式(1c)
で示される錯体である、
アンモニアの分解方法。 A method for decomposing ammonia in which ammonia is oxidatively decomposed to obtain nitrogen, protons and electrons in the presence of a salen manganese complex and a base.
Is a complex represented by,
Ammonia decomposition method. - 前記アンモニアは、系内でアンモニウム塩と塩基との反応により生成させる、請求項1又は2に記載のアンモニアの分解方法。 The method for decomposing ammonia according to claim 1 or 2, wherein the ammonia is produced by a reaction between an ammonium salt and a base in the system.
- 前記塩基は、2位から6位までの少なくとも1つに置換基を有するピリジンである、請求項1乃至請求項3のいずれか1項に記載のアンモニアの分解方法。 The method for decomposing ammonia according to any one of claims 1 to 3, wherein the base is pyridine having a substituent at at least one of the 2-position to the 6-position.
- 前記塩基は、2,4,6-コリジンである、請求項4に記載のアンモニアの分解方法。 The method for decomposing ammonia according to claim 4, wherein the base is 2,4,6-colysine.
- 前記酸化分解は、トリアリールアミンの一電子酸化体を含む酸化剤を用いることにより行う、請求項1乃至請求項5のいずれか1項に記載のアンモニアの分解方法。 The method for decomposing ammonia according to any one of claims 1 to 5, wherein the oxidative decomposition is carried out by using an oxidizing agent containing a one-electron oxidant of triarylamine.
- 前記酸化分解は、反応温度-80℃~60℃で行う、請求項1乃至請求項6のいずれか1項に記載のアンモニアの分解方法。 The method for decomposing ammonia according to any one of claims 1 to 6, wherein the oxidative decomposition is carried out at a reaction temperature of −80 ° C. to 60 ° C.
- サレンマンガン錯体及び塩基の存在下、アンモニアを酸化分解して窒素とプロトンと電子を得るアンモニアの分解方法を利用したアンモニアを含む燃料を使用する燃料電池であって、前記サレンマンガン錯体は、式(1a)、式(1b)又は式(1c)
で示される錯体である、
アンモニア燃料電池。 A fuel cell using a fuel containing ammonia using a method for decomposing ammonia to obtain nitrogen, protons and electrons by oxidatively decomposing ammonia in the presence of a salen manganese complex and a base, wherein the salen manganese complex has the formula ( 1a), formula (1b) or formula (1c)
Is a complex represented by,
Ammonia fuel cell. - 前記アンモニアは、系内でアンモニウム塩と塩基との反応により生成させる、請求項8又は請求項9に記載のアンモニア燃料電池。 The ammonia fuel cell according to claim 8 or 9, wherein the ammonia is generated by a reaction between an ammonium salt and a base in the system.
- 前記塩基は、2位から6位までの少なくとも1つに置換基を有するピリジンである、請求項8乃至請求項10のいずれか1項に記載のアンモニア燃料電池。 The ammonia fuel cell according to any one of claims 8 to 10, wherein the base is pyridine having a substituent at at least one of the 2-position to the 6-position.
- 前記塩基は、2,4,6-コリジンである、請求項11に記載のアンモニアの分解方法。 The method for decomposing ammonia according to claim 11, wherein the base is 2,4,6-colysine.
- 前記酸化分解は、トリアリールアミンの一電子酸化体を含む酸化剤を用いることにより行う、請求項8乃至請求項12のいずれか1項に記載のアンモニア燃料電池。 The ammonia fuel cell according to any one of claims 8 to 12, wherein the oxidative decomposition is carried out by using an oxidizing agent containing a one-electron oxidant of triarylamine.
- 前記酸化分解は、反応温度-80℃~60℃で行う、請求項8乃至請求項13のいずれか1項に記載のアンモニア燃料電池。 The ammonia fuel cell according to any one of claims 8 to 13, wherein the oxidative decomposition is carried out at a reaction temperature of −80 ° C. to 60 ° C.
- Zは、ヘキサフルオロホスファートイオンである請求項15に記載の錯体。 The complex according to claim 15, wherein Z is a hexafluorophosphate ion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022504430A JPWO2021177359A1 (en) | 2020-03-04 | 2021-03-03 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020037299 | 2020-03-04 | ||
JP2020-037299 | 2020-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021177359A1 true WO2021177359A1 (en) | 2021-09-10 |
Family
ID=77612661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/008228 WO2021177359A1 (en) | 2020-03-04 | 2021-03-03 | Ammonia decomposition method and fuel cell using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021177359A1 (en) |
WO (1) | WO2021177359A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11764381B2 (en) | 2021-08-17 | 2023-09-19 | Amogy Inc. | Systems and methods for processing hydrogen |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002284758A (en) * | 2001-03-26 | 2002-10-03 | Japan Science & Technology Corp | Method for producing amino compound using salen manganese complex as catalyst |
JP2014196231A (en) * | 2013-03-08 | 2014-10-16 | 富士フイルム株式会社 | Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst |
WO2016035705A1 (en) * | 2014-09-01 | 2016-03-10 | 富士フイルム株式会社 | Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst |
JP2016067964A (en) * | 2014-09-26 | 2016-05-09 | 国立大学法人京都大学 | Oxidation catalyst composition and fuel cell using the same |
JP2016102037A (en) * | 2014-11-28 | 2016-06-02 | 富士フイルム株式会社 | Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst |
-
2021
- 2021-03-03 JP JP2022504430A patent/JPWO2021177359A1/ja active Pending
- 2021-03-03 WO PCT/JP2021/008228 patent/WO2021177359A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002284758A (en) * | 2001-03-26 | 2002-10-03 | Japan Science & Technology Corp | Method for producing amino compound using salen manganese complex as catalyst |
JP2014196231A (en) * | 2013-03-08 | 2014-10-16 | 富士フイルム株式会社 | Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst |
WO2016035705A1 (en) * | 2014-09-01 | 2016-03-10 | 富士フイルム株式会社 | Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst |
JP2016067964A (en) * | 2014-09-26 | 2016-05-09 | 国立大学法人京都大学 | Oxidation catalyst composition and fuel cell using the same |
JP2016102037A (en) * | 2014-11-28 | 2016-06-02 | 富士フイルム株式会社 | Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst |
Non-Patent Citations (1)
Title |
---|
GANLEY, JASON C.: "An intermediate-temperature direct ammonia fuel cell with a molten alkaline hydroxide electrolyte", JOURNAL OF POWER SOURCES, vol. 178, no. 1, 5 December 2007 (2007-12-05), pages 44 - 47, XP022479714 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11994061B2 (en) | 2021-05-14 | 2024-05-28 | Amogy Inc. | Methods for reforming ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US12000333B2 (en) | 2021-05-14 | 2024-06-04 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11994062B2 (en) | 2021-05-14 | 2024-05-28 | AMOGY, Inc. | Systems and methods for processing ammonia |
US12097482B2 (en) | 2021-06-11 | 2024-09-24 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11764381B2 (en) | 2021-08-17 | 2023-09-19 | Amogy Inc. | Systems and methods for processing hydrogen |
US11769893B2 (en) | 2021-08-17 | 2023-09-26 | Amogy Inc. | Systems and methods for processing hydrogen |
US11843149B2 (en) | 2021-08-17 | 2023-12-12 | Amogy Inc. | Systems and methods for processing hydrogen |
US11840447B1 (en) | 2022-10-06 | 2023-12-12 | Amogy Inc. | Systems and methods of processing ammonia |
US11975968B2 (en) | 2022-10-06 | 2024-05-07 | AMOGY, Inc. | Systems and methods of processing ammonia |
US11912574B1 (en) | 2022-10-06 | 2024-02-27 | Amogy Inc. | Methods for reforming ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021177359A1 (en) | 2021-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021177359A1 (en) | Ammonia decomposition method and fuel cell using same | |
JP7460089B2 (en) | ammonia fuel cell | |
US8071503B2 (en) | Catalyst | |
Baglio et al. | Investigation of bimetallic Pt–M/C as DMFC cathode catalysts | |
Mustain et al. | CoPdx oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells | |
US8652704B2 (en) | Direct alcohol fuel cell with cathode catalyst layer containing silver and method for producing the same | |
EP1771903B1 (en) | Ruthenium-rhodium alloy electrode catalyst and fuel cell comprising the same | |
KR101624641B1 (en) | Electrode catalyst for fuel cell, manufacturing method thereof, membrane electrode assembly and fuel cell including the same | |
EP0390157B1 (en) | Electrolysis cell and method of use | |
Yi et al. | Cost‐efficient photovoltaic‐water electrolysis over Ultrathin nanosheets of cobalt/iron–molybdenum oxides for potential large‐scale hydrogen production | |
JP2007273340A (en) | High durability electrode catalyst for fuel cell and fuel cell using the electrode catalyst | |
Fujiwara et al. | Direct polymer electrolyte fuel cells using L-ascorbic acid as a fuel | |
US20100248086A1 (en) | Method of Evaluating the Performance of Fuel Cell Cathode Catalysts, Corresponding Cathode Catalysts and Fuel Cell | |
James et al. | Ruthenium-tin oxide/carbon supported platinum catalysts for electrochemical oxidation of ethanol in direct ethanol fuel cells | |
TW201217411A (en) | Polymer composite modified product | |
Cremers et al. | Developments for improved direct methanol fuel cell stacks for portable power | |
US20040053098A1 (en) | Electrochemical cell | |
JP2008218397A (en) | Fuel cell | |
Johnston et al. | Se-modified Ru nanoparticles as ORR catalysts–Part 1: Synthesis and analysis by RRDE and in PEFCs | |
Chetty et al. | Dimethoxymethane and trimethoxymethane as alternative fuels for fuel cells | |
KR20240071508A (en) | Platinum-yittrium-cobalt high-efficiency oxygen reduction reaction catalyst for polymer electrolyte membrane fuel cell and method of manufacturing same | |
US3649365A (en) | Method of forming a catalyst catalyst coated powder and electrode | |
US10193162B2 (en) | Electrode catalyst and method for producing the same | |
JP2001126738A (en) | Method for preparing electrode for fuel cell and direct methanol fuel cell using the same | |
Youn et al. | Carbon-supported PtPb intermetallic compounds for electrooxidation of methyl formate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21764264 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022504430 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21764264 Country of ref document: EP Kind code of ref document: A1 |