[go: up one dir, main page]

WO2021171920A1 - コンデンサ - Google Patents

コンデンサ Download PDF

Info

Publication number
WO2021171920A1
WO2021171920A1 PCT/JP2021/003582 JP2021003582W WO2021171920A1 WO 2021171920 A1 WO2021171920 A1 WO 2021171920A1 JP 2021003582 W JP2021003582 W JP 2021003582W WO 2021171920 A1 WO2021171920 A1 WO 2021171920A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal particles
crystal
particle
capacitor
additive element
Prior art date
Application number
PCT/JP2021/003582
Other languages
English (en)
French (fr)
Inventor
麻衣子 永吉
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/799,092 priority Critical patent/US20230082288A1/en
Priority to JP2022503199A priority patent/JP7365488B2/ja
Priority to EP21760508.8A priority patent/EP4113552A4/en
Priority to KR1020227027623A priority patent/KR20220121886A/ko
Priority to CN202180015195.5A priority patent/CN115210832A/zh
Publication of WO2021171920A1 publication Critical patent/WO2021171920A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/783Bimodal, multi-modal or multi-fractional
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Definitions

  • This disclosure relates to a multilayer capacitor.
  • Patent Document 1 An example of the prior art is described in Patent Document 1.
  • the capacitors of the present disclosure include a laminate in which dielectric layers and internal electrode layers are alternately laminated, and A capacitor located on the surface of the laminate and having an external electrode electrically connected to the internal electrode layer.
  • the dielectric layer is composed of a plurality of crystal particles containing barium titanate and an additive element.
  • the plurality of crystal particles include a first crystal particle and a second crystal particle having a particle size larger than that of the first crystal particle.
  • the composition is such that the additive element content of the second crystal particles is higher than the additive element content of the first crystal particles.
  • the capacitor having the basic configuration of the present disclosure which is one of the electronic components mounted on the electronic device, is required to have a high capacitance and various characteristics to be improved.
  • the multilayer ceramic capacitor described in Patent Document 1 is a dielectric layer composed of two types of particles having different average particle diameters, and high capacitance is achieved by satisfying a specific relationship between the average particle diameters of the dielectric layers.
  • the capacitance, withstand voltage and DC bias characteristics are improved.
  • capacitors disclosed in the present disclosure will be described with reference to the drawings.
  • the capacitors of the present disclosure are not limited to the specific embodiments described below.
  • the capacitors of the present disclosure include various aspects as long as they are in line with the spirit or scope of the general concept defined by the appended claims.
  • FIG. 1 is an external perspective view of the capacitor.
  • FIG. 2 is a cross-sectional view taken along the cutting plane line of FIG.
  • the capacitor 100 shown as an example of the embodiment of the present disclosure includes a laminate 1 and an external electrode 3 located on the surface thereof.
  • the laminated body 1 has a dielectric layer 5 and an internal electrode layer 7, and the dielectric layer 5 and the internal electrode layer 7 are alternately laminated in a plurality of layers.
  • the laminated body 1 of the present embodiment has, for example, a rectangular parallelepiped shape, and the dielectric layer 5 and the internal electrode layer 7 are both rectangular in a plan view when viewed from the stacking direction.
  • the number of layers of the dielectric layer 5 and the internal electrode layer 7 is simplified to several layers, but the number of layers of the dielectric layer 5 and the internal electrode layer 7 reaches, for example, several hundred layers. It may be the number of layers.
  • FIG. 3 is an enlarged schematic view of the cross section of the dielectric layer.
  • the dielectric layer 5 is composed of a plurality of crystal particles 6 containing barium titanate and an additive element.
  • the plurality of crystal particles 6 include a first crystal particle 6A and a second crystal particle 6B having a particle size larger than that of the first crystal particle 6A.
  • the crystal particles 6 are crystal particles containing barium titanate as a main component and contain an additive element.
  • the main component is the component contained most in the crystal particles 6.
  • barium titanate as a main component means that the crystal particles 6 contain a larger amount of titanium and barium than other components.
  • the additive element is one or more elements selected from, for example, dysprosium (Dy), magnesium (Mg), calcium (Ca), manganese (Mn) and silica (Si).
  • the additive element is present in the crystal particles 6 by diffusing into the barium titanate crystal, for example.
  • the plurality of crystal particles 6 include a small-diameter first crystal particle 6A and a large-diameter second crystal particle 6B, where the particle size of the first crystal particle 6A is d1 and the particle size of the second crystal particle 6B.
  • d2 0.13 ⁇ m ⁇ d1 ⁇ 0.30 ⁇ m, and 0.30 ⁇ m ⁇ d2 ⁇ 0.50 ⁇ m.
  • the method for measuring the particle size of the crystal particles 6 can be measured by image analysis of an electron micrograph of a cross section of the dielectric layer 5.
  • the crystal particles 6 constituting the dielectric layer 5 may include crystal particles having a particle size of less than 0.13 ⁇ m and crystal particles having a particle size of 0.50 ⁇ m or more.
  • the additive element content of the second crystal particles 6B is assumed to be higher than the additive element content of the first crystal particles 6A.
  • the relative permittivity of the dielectric layer 5 can be increased, and a desired capacitance can be obtained as the capacitor 100.
  • crystal particles having a relatively large particle size such as the second crystal particles 6B are present, the ratio of the grain boundaries in the unit volume of the dielectric layer 5 is small, and the capacitor characteristics are likely to be deteriorated. Deterioration of capacitor characteristics is said to be caused by the movement of oxygen vacancies between the internal electrode layers 7.
  • the capacitor characteristic in this embodiment is, for example, a DC voltage characteristic under high temperature conditions.
  • the additive element content of the second crystal particles 6B is higher than the additive content of the first crystal particles 6A, that is, the highest additive element content among the plurality of first crystal particles 6A and the plurality of first crystal particles 6A.
  • the content of the second crystal particle 6B which is the smallest is larger.
  • the additive element content of the first crystal particles 6A and the second crystal particles 6B was determined by using a transmission electron microscope (EDX-TEM) equipped with an elemental analysis device for the crystal particles existing in the cross section of the dielectric layer 5. It is measured by performing elemental analysis. The measurement point is 100 nm from the grain boundary, and the concentration (atomic%) of each additive element is measured.
  • the additive element content of the first crystal particles 6A and the second crystal particles 6B can be obtained by calculating the sum of the concentrations of each element.
  • the ratio of the second crystal particles 6B in the dielectric layer 5 for example, in the cross section of the dielectric layer 5, the ratio of the area occupied by the second crystal particles 6B per unit area should be 4% or more and 18% or less. Just do it.
  • the ratio of the area occupied by the second crystal particles 6B can be measured, for example, as follows. In the capacitor 100, the total area of a predetermined cross section (longitudinal cross section of an arbitrary dielectric layer 5 or the like) is S0, and the total cross-sectional area of the second crystal particles 6B included in the cross section is S2.
  • the cross-sectional area of the second crystal particle 6B can be measured by image analysis of an electron micrograph in the same manner as the measurement of the particle size.
  • the area ratio A2 (S2 / S0) ⁇ 100 [%] of the second crystal particles 6B.
  • the number of the second crystal particles 6B connected to each other may be 2 or less.
  • the larger the number of the second crystal particles 6B in a row the more the second crystal particles 6B are unevenly present.
  • the first crystal particles 6A are small and the ratio of grain boundaries is locally small.
  • the number of the second crystal particles 6B connected to each other is set to 2 or less, in other words, the number of the second crystal particles 6B connected to each other is set to 2 or less, so that deterioration of the characteristics is suppressed and the reliability of the capacitor is suppressed.
  • the sex can be further improved.
  • the first crystal particles 6A and the second crystal particles 6B are small-diameter particles having a particle size of less than 0.3 ⁇ m and large-diameter particles having a particle size of 0.3 ⁇ m or more. If the particle size of the crystal particles 6 in the dielectric layer 5 varies widely, the capacitor characteristics tend to vary, and there is a possibility that the characteristics may be significantly reduced. In order to reduce the variation in particle size, when the arithmetic mean particle size of the first crystal particle 6A is D1 and the arithmetic mean particle size of the second crystal particle 6B is D2, 2D1 ⁇ D2 ⁇ 3D1 may be set. ..
  • the arithmetic mean particle diameters D1 and D2 can be measured by image analysis of an electron micrograph of a cross section of the dielectric layer 5 in the same manner as the measurement of the particle diameters d1 and d2.
  • the arithmetic mean value of the particle size may be calculated for the crystal particles belonging to the first crystal particle 6A, and the arithmetic mean value of the particle size may be calculated for the crystal particles belonging to the second crystal particle 6B. If the arithmetic mean particle size D1 and D2 are 2D1 ⁇ D2, the particle size of the first crystal particle 6A and the second crystal particle 6B is appropriately different, and if D2 ⁇ 3D1, the particle size varies. It is kept small. This makes it possible to reduce variations in capacitor characteristics.
  • the internal electrode layer 7 is made of a metal material, and for example, nickel (Ni), copper (Cu), palladium (Pd), silver (Ag) and the like can be used. Also. Alloys containing these metallic materials can also be used.
  • the external electrode 3 the same metal material as the internal electrode layer 7 can be used.
  • the second crystal particles 6B have a core-shell structure, and the configurations other than the second crystal particles 6B are the same as the configurations of the above-described embodiment, and thus detailed description thereof will be omitted.
  • FIG. 4 is an enlarged schematic view of the second crystal particles of the present embodiment.
  • the core-shell structure is a structure in which one crystal particle has a core portion and a shell portion.
  • the core portion 6B1 is composed of barium titanate crystals
  • the shell portion 6B2 surrounds the core portion 6B1 and is a region in which the additive element is diffused in the barium titanate crystals. be.
  • the core-shell structure can be confirmed by an electron micrograph of a cross section of the dielectric layer 5.
  • a striped pattern showing a domain structure is observed in the core portion 6B1 composed of barium titanate crystals, but this striped pattern is not observed in the shell portion 6B2.
  • Additive elements are diffused in the shell portion 6B2, and the movement resistance of oxygen vacancies is large as in the grain boundaries, deterioration of characteristics can be suppressed, and the reliability of the capacitor can be further improved.
  • the thickness of the shell portion 6B2 may be, for example, 0.05 ⁇ m to 0.13 ⁇ m.
  • a method for manufacturing the capacitor of the present disclosure will be described.
  • a laminate is manufactured.
  • the raw material powder containing barium titanate as the main component two types having different Ba / Ti ratios are used. Further, the average particle size of the raw material powder having a large Ba / Ti ratio is made smaller than the particle size of the raw material powder having a small Ba / Ti ratio.
  • the raw material powder of barium titanate and additive elements is mixed with a dispersant or the like in a solvent to obtain a slurry.
  • a green sheet is prepared from the slurry by the doctor blade method.
  • a metal paste containing a metal material such as nickel as a main component is prepared.
  • a metal paste is printed on the surface of the green sheet to prepare a green sheet with the metal paste.
  • a green sheet with a metal paste is laminated and fired to obtain a laminate.
  • metal pastes for external electrodes are applied to both ends of the laminate and baked at a temperature of 800 ° C. to form external electrodes.
  • the metal paste for the external electrode one to which Cu powder and glass are added is used.
  • the plating layer may be provided on the surface of the external electrode with a single plating layer or may be provided with a plurality of plating layers.
  • Example 2 As the raw material powder of barium titanate, those having a Ba / Ti ratio of 1.006 (raw material 1) and those having a Ba / Ti ratio of 1.000 (raw material 2) were used. The average particle size of the raw material 1 and the raw material 2 was 0.15 ⁇ m and 0.3 ⁇ m, respectively.
  • additive elements diprosium and magnesium were added as Dy 2 O 3 and Mg 2 CO 3 , respectively.
  • the wet-mixed powder was put into a mixed solvent of toluene and alcohol in which polyvinyl butyral resin was dissolved, and wet-mixed using a zirconia ball having a diameter of 5 mm to prepare a ceramic rally, which was molded by the doctor blade method.
  • a ceramic green sheet having a thickness of about 3 ⁇ m was prepared on the film.
  • Nickel powder was used as the metal of the metal paste for forming the internal electrode layer.
  • Ethyl cellulose was used as the resin for preparing the metal paste.
  • As the solvent a dihydroterpineol solvent and a butyl cellosolve were mixed and used.
  • a metal paste was printed on the prepared ceramic green sheet to prepare a green sheet with the metal paste.
  • 200 layers of the prepared green sheet with metal paste were laminated, and ceramic green sheets were laminated as cover layers on the upper surface side and the lower surface side, respectively, to prepare a base laminate.
  • the base laminate was cut to prepare a molded body of the laminate.
  • the molded body of the laminated body was fired to prepare a laminated body.
  • the temperature was raised to 900 ° C./h in hydrogen-nitrogen, and the maximum temperature was set to 1190 ° C.
  • a resistance heating type firing furnace was used for this firing.
  • the laminate was subjected to a reoxidation treatment.
  • the conditions for the reoxidation treatment were set to a maximum temperature of 1000 ° C. and a holding time of 5 hours in a nitrogen atmosphere.
  • the size of the laminate was 1.0 mm ⁇ 0.5 mm ⁇ 0.5 mm.
  • the average thickness of the dielectric layer was 1.8 ⁇ m.
  • the average thickness of the internal electrode layer was 0.7 ⁇ m.
  • the design value of the capacitance of the produced capacitor was set to 1 ⁇ F.
  • external electrode paste was applied to both ends of the laminate and baked at a temperature of 800 ° C. to form an external electrode.
  • the external electrode paste one to which Cu powder and glass were added was used. Then, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially formed on the surface of the external electrode to obtain a capacitor.
  • Capacitor characteristics were evaluated by high temperature load life (HALT).
  • HALT high temperature load life
  • the test conditions were set to a DC voltage of 45 V
  • the environmental temperature was set to 170 ° C.
  • the time when the failure probability reached 50% was determined as the mean time between failures (MTTF).
  • MTTF mean time between failures
  • the shape parameter (m value) in the Weibull plot was obtained.
  • the MTTF indicates that the longer the life, the longer the life, and the larger the m value, the smaller the variation in the life.
  • the MTTF may be 15 hours or more and the m value may be 3 or more.
  • Example 1 the mixing ratio of the raw material 1 (small particle size) and the raw material 2 (large particle size) was changed.
  • the raw material mixing ratio was the same as in Example 3, and the arithmetic mean particle size D1 of the first crystal particles 6A and the arithmetic mean particle size D2 of the second crystal particles 6B were different.
  • Comparative Example 1 only the raw material 1 is used, and the raw material 2 is not used.
  • Comparative Example 2 only the raw material 2 is used, and the raw material 1 is not used.
  • the evaluation results are shown in Table 1.
  • the raw material mixing ratio in Table 1 shows the ratio of the raw material 2 when the total amount of the raw material 1 and the raw material 2 is 100.
  • Comparative Example 1 and Comparative Example 2 when the crystal particles are only small-diameter particles or only large-diameter particles, the lifetime is short and the lifetime variation is large. As can be seen from Comparative Example 3, if the particle size of the small-diameter particles is too small, the life variation is large. On the other hand, in Examples 1 to 8, the life is long and the life variation is small. Further, Examples 2 to 5 in which the area ratio of the second crystal particles is 4% or more and 18% or less are capacitors having a life of 20 hours or more, an m value of 4 or more, and excellent reliability. It turns out that there is. In Examples 1 and 6, the area ratio was out of the range, and the result was inferior to Examples 2 to 5.
  • the average particle diameters of the first crystal particles 6A and the second crystal particles 6B are out of the range of 2D1 ⁇ D2 ⁇ 3D1, and the lifetime is sufficiently long, but the m value is about 3. Yes, there was some variation. It was confirmed that the second crystal particles of Examples 1 to 8 had a core-shell structure.
  • the capacitors of the present disclosure include a laminate in which dielectric layers and internal electrode layers are alternately laminated, and A capacitor located on the surface of the laminate and having an external electrode electrically connected to the internal electrode layer.
  • the dielectric layer is composed of a plurality of crystal particles containing barium titanate and an additive element.
  • the plurality of crystal particles include a first crystal particle and a second crystal particle having a particle size larger than that of the first crystal particle.
  • the composition is such that the additive element content of the second crystal particles is higher than the additive element content of the first crystal particles.
  • the capacitor of the present disclosure deterioration of characteristics can be suppressed and the reliability of the capacitor can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

コンデンサは、積層体と、その表面に位置する外部電極とを備える。積層体は、誘電体層と内部電極層とを有しており、誘電体層と内部電極層とは交互に複数層積層されている。複数の結晶粒子は、小径の第1結晶粒子と、大径の第2結晶粒子とを含んでおり、第1結晶粒子の粒子径をd1とし、第2結晶粒子の粒子径をd2としたとき、0.13μm≦d1<0.30μmであり、0.30≦d2<0.50μmである。第2結晶粒子の添加物元素含有量を、第1結晶粒子の添加物元素含有量より多くする。

Description

コンデンサ
 本開示は、積層型のコンデンサに関する。
 従来技術の一例は、特許文献1に記載されている。
特開2005-243890号公報
 本開示のコンデンサは、誘電体層と内部電極層とが交互に積層された積層体と、
 前記積層体の表面に位置し、前記内部電極層に電気的に接続された外部電極と、を有するコンデンサであって、
 前記誘電体層は、チタン酸バリウムと添加物元素とを含む複数の結晶粒子で構成されており、
 前記複数の結晶粒子は、第1結晶粒子と、前記第1結晶粒子より粒子径が大きい第2結晶粒子とを含み、
 前記第1結晶粒子の粒子径をd1とし、前記第2結晶粒子の粒子径をd2としたとき、0.13μm≦d1<0.30μmであり、0.30μm≦d2<0.50μmであり、
 前記第2結晶粒子の添加物元素含有量が、前記第1結晶粒子の添加物元素含有量より多い構成である。
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
コンデンサの外観斜視図である。 図1の切断面線における断面図である。 誘電体層断面の拡大模式図である。 第2結晶粒子の拡大模式図である。
 電子機器に搭載される電子部品の1つである本開示の基礎となる構成のコンデンサには、高い静電容量が求められるとともに、種々の特性向上が望まれている。
 例えば、特許文献1記載の積層セラミックコンデンサは、平均粒径が異なる2種類の粒子で構成された誘電体層であって、それぞれの平均粒径が特定の関係を満足することで、高い静電容量と、耐電圧性およびDCバイアス特性を向上させている。
 以下、本開示のコンデンサについて、図面を基に説明する。なお、本開示のコンデンサは、以下に記述する特定の実施形態に限定されるものではない。本開示のコンデンサは、添付の特許請求の範囲によって定義される総括的な概念の精神または範囲に沿ったものであれば、様々な態様を含むものとなる。
 図1は、コンデンサの外観斜視図である。図2は、図1の切断面線における断面図である。本開示の実施形態の一例として示すコンデンサ100は、積層体1と、その表面に位置する外部電極3とを備える。積層体1は、誘電体層5と内部電極層7とを有しており、誘電体層5と内部電極層7とは交互に複数層積層されている。本実施形態の積層体1は、例えば、直方体形状であって、誘電体層5と内部電極層7とは、積層方向から見た平面視において、いずれも矩形状である。内部電極層7は、一辺が積層体1の側面に露出しており、外部電極3が、この側面を覆うことによって内部電極層7と外部電極3とが電気的に接続される。図2では、誘電体層5と内部電極層7との積層数を数層に簡略して描いているが、誘電体層5および内部電極層7の積層数は、例えば、数百層に及ぶ積層数であってもよい。
 図3は、誘電体層断面の拡大模式図である。誘電体層5は、チタン酸バリウムと添加物元素とを含む複数の結晶粒子6で構成されている。複数の結晶粒子6は、第1結晶粒子6Aと、第1結晶粒子6Aより粒子径が大きい第2結晶粒子6Bとを含む。結晶粒子6は、チタン酸バリウムを主成分とする結晶粒子であって、添加物元素を含む。ここで、主成分とは、結晶粒子6中に最も多く含まれている成分のことである。チタン酸バリウムを主成分とするとは、結晶粒子6中にチタンおよびバリウムの含有量が他の成分よりも多く含まれている状態のことである。
 添加物元素は、例えば、ジスプロシウム(Dy)、マグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)およびシリカ(Si)から選ばれる1種以上の元素である。添加物元素は、例えば、チタン酸バリウム結晶に拡散して結晶粒子6中に存在している。
 複数の結晶粒子6は、小径の第1結晶粒子6Aと、大径の第2結晶粒子6Bとを含んでおり、第1結晶粒子6Aの粒子径をd1とし、第2結晶粒子6Bの粒子径をd2としたとき、0.13μm≦d1<0.30μmであり、0.30μm≦d2<0.50μmである。結晶粒子6の粒子径の測定方法については、誘電体層5の断面の電子顕微鏡写真を画像解析することで測定することができる。例えば、断面の電子顕微鏡写真において、結晶粒子6が200~300個含まれる領域を指定し、既存の画像解析プログラムを用いて、領域内に含まれる各結晶粒子6の輪郭を抽出して断面積を求める。得られた断面積に基づいて、各結晶粒子6の円相当直径を算出し、粒子径とする。なお、誘電体層5を構成する結晶粒子6には、粒子径が0.13μm未満の結晶粒子、粒子径が0.50μm以上の結晶粒子が含まれていてもよい。
 このような第1結晶粒子6Aおよび第2結晶粒子6Bにおいて、第2結晶粒子6Bの添加物元素含有量が、第1結晶粒子6Aの添加物元素含有量より多いものとしている。第2結晶粒子6Bのような比較的粒子径が大きい結晶粒子を用いることによって、誘電体層5の比誘電率を高めることができ、コンデンサ100として所望の静電容量を得ることができる。一方で、第2結晶粒子6Bのような比較的粒子径が大きい結晶粒子が存在すると、誘電体層5の単位体積における粒界の割合が小さく、コンデンサ特性の劣化が生じやすい。コンデンサ特性の劣化は、内部電極層7間で酸素空孔が移動することによって生じるとされている。結晶粒子6内は、酸素空孔が移動し易く、粒界は、酸素空孔の移動抵抗が大きいので、粒界の割合が小さいほど特性劣化が生じ易くなる。第2結晶粒子6Bの添加物元素含有量を第1結晶粒子6Aより多くすることで、第2結晶粒子6B内における酸素空孔の移動抵抗が大きくなり、特性の劣化を抑制してコンデンサの信頼性を向上させることができる。本実施形態におけるコンデンサ特性は、例えば、高温条件下における直流電圧特性である。
 第2結晶粒子6Bの添加物元素含有量が、第1結晶粒子6Aの添加物含有量より多いとは、複数の第1結晶粒子6Aのうちで最も多い添加物元素含有量と、複数の第2結晶粒子6Bのうちで最も少ない添加物元素含有量とを比較したとき、第2結晶粒子6Bの最も少ない添含有量の方が多い場合を言う。
 第1結晶粒子6Aおよび第2結晶粒子6Bの添加物元素含有量は、誘電体層5の断面に存在する結晶粒子に対して、元素分析機器を付設した透過電子顕微鏡(EDX-TEM)を用いて元素分析を行うことで測定する。測定箇所は、粒界から100nmとし、添加物元素ごとの濃度(atomic%)を測定する。第1結晶粒子6Aおよび第2結晶粒子6Bの添加物元素含有量は、元素ごとの濃度の総和を算出することで得られる。
 また、誘電体層5における第2結晶粒子6Bの割合については、例えば、誘電体層5の断面において、単位面積あたりの第2結晶粒子6Bが占める面積の割合を4%以上18%以下とすればよい。第2結晶粒子6Bが占める面積の割合は、例えば、次のようにして測定できる。コンデンサ100において、予め定める断面(任意の誘電体層5の縦断面など)の全面積をS0とし、当該断面に含まれる第2結晶粒子6Bの断面積の総和をS2とする。第2結晶粒子6Bの断面積は、粒子径の測定と同様に電子顕微鏡写真を画像解析することで測定できる。これらの面積を用いて、第2結晶粒子6Bの面積割合A2=(S2/S0)×100[%]で算出することができる。第2結晶粒子6Bの面積割合を上記の範囲内とすることで、特性の劣化を抑制してコンデンサの信頼性をさらに向上させることができる。なお、第2結晶粒子6Bの面積割合が上記の範囲外であっても、特性劣化の抑制効果が弱いものの実用上、問題は無い。
 さらに、誘電体層5における第2結晶粒子6Bの存在位置については、例えば、誘電体層5の断面において、第2結晶粒子6B同士が連なる個数が2個以下であればよい。第2結晶粒子6Bが連なる個数が多いほど、第2結晶粒子6Bが偏って存在していることとなる。第2結晶粒子6Bが偏って存在しているところでは、第1結晶粒子6Aは少なく、粒界の割合が局所的に小さくなる。第2結晶粒子6B同士が連なる個数を2個以下とする、言い換えると、第2結晶粒子6B同士が3個以上は連なることがないようにすることで、特性の劣化を抑制してコンデンサの信頼性をさらに向上させることができる。
 第1結晶粒子6Aおよび第2結晶粒子6Bは、上記のとおり、粒子径が0.3μm未満の小径粒子および粒子径が0.3μm以上の大径粒子である。誘電体層5における結晶粒子6の粒子径のばらつきが大きいと、コンデンサ特性にばらつきが生じ易くなり、特性が大きく低下するようなものが発生するおそれがある。粒子径のばらつきを小さくするためには、第1結晶粒子6Aの算術平均粒子径をD1とし、第2結晶粒子6Bの算術平均粒子径をD2としたとき、2D1≦D2<3D1とすればよい。算術平均粒子径D1,D2は、粒子径d1,d2の測定と同様に、誘電体層5の断面の電子顕微鏡写真を画像解析することで測定できる。第1結晶粒子6Aに属する結晶粒子に対して粒子径の算術平均値を算出し、第2結晶粒子6Bに属する結晶粒子に対して粒子径の算術平均値を算出すればよい。算術平均粒子径D1,D2が、2D1≦D2であれば、第1結晶粒子6Aおよび第2結晶粒子6Bの粒子径は、適度に差があり、D2<3D1であれば、粒子径のばらつきが小さく抑えられている。これにより、コンデンサ特性のばらつきを低減させることができる。
 内部電極層7は、金属材料で構成されており、例えば、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)および銀(Ag)などを用いることができる。また。これらの金属材料を含む合金を用いることもできる。外部電極3も内部電極層7と同様の金属材料を用いることができる。
 本開示のコンデンサの他の実施形態について説明する。本実施形態は、第2結晶粒子6Bがコアシェル構造を有しており、第2結晶粒子6B以外の構成は、前述の実施形態の構成と同じであるので、詳細な説明は省略する。図4は、本実施形態の第2結晶粒子の拡大模式図である。コアシェル構造は、一つの結晶粒子がコア部とシェル部とを有する構造である。本実施形態の第2結晶粒子6Bにおいて、コア部6B1は、チタン酸バリウム結晶で構成されており、シェル部6B2は、コア部6B1を取り囲み、チタン酸バリウム結晶に添加物元素が拡散した領域である。コアシェル構造は、誘電体層5の断面の電子顕微鏡写真によって確認できる。チタン酸バリウム結晶で構成されるコア部6B1は、ドメイン構造を示す縞模様が観察されるが、シェル部6B2には、この縞模様が観察されない。シェル部6B2には、添加物元素が拡散されており、粒界と同様に酸素空孔の移動抵抗が大きく、特性の劣化を抑制してコンデンサの信頼性をさらに向上させることができる。第2結晶粒子6Bでは、シェル部6B2の厚さが、例えば、0.05μm~0.13μmであればよい。
 次に、本開示のコンデンサの製造方法について説明する。まず、積層体を製造する。チタン酸バリウムを主成分とする原料粉末として、Ba/Ti比が異なる2種類を用いる。また、Ba/Ti比が大きい原料粉末の平均粒子径を、Ba/Ti比が小さい原料粉末の粒子径より小さくする。添加物元素となるジスプロシウム(Dy)、マグネシウム(Mg)およびカルシウム(Ca)は、それぞれDy、MgCO、ガラス粉末(例えば、SiO=55mol%、BaO=20mol%、CaO=15mol%、Li=10mol%の組成を有するもの)として添加する。チタン酸バリウムおよび添加物元素の原料粉末と、分散剤などを溶媒中で混合し、スラリーを得る。スラリーからドクターブレード法によってグリーンシートを作製する。一方、ニッケルなどの金属材料を主成分とする金属ペーストを準備する。グリーンシート表面に金属ペーストを印刷し、金属ペースト付きグリーンシートを作製する。金属ペースト付きグリーンシートを積層し、焼成して積層体を得る。積層体をバレル研磨した後、積層体の両端部に外部電極用の金属ペーストを塗布し、800℃の温度にて焼き付けを行って外部電極を形成する。外部電極用の金属ペーストは、Cu粉末およびガラスを添加したものを用いる。その後、電解バレル機を用いて、この外部電極の表面に順にNiめっき層及びSnめっき層を形成してコンデンサを得る。また、めっき層は、外部電極の表面上に、単一のめっき層で設けても、また、複数のめっき層で設けてもよい。
 (実施例)
 チタン酸バリウムの原料粉末には、Ba/Ti比が1.006のもの(原料1)とBa/Ti比が1.000のもの(原料2)を用いた。原料1および原料2の平均粒子径は、それぞれ0.15μmおよび0.3μmとした。添加物元素には、ジプロシウムとマグネシウムとをそれぞれDy、MgCOとして添加した。その他の添加剤として、炭酸カルシウム粉末(CaCO)、炭酸マンガン粉末(MnCO)およびガラス粉末(SiO=55mol%、BaO=20mol%、CaO=15mol%、Li=10mol%の組成を有するもの)を用いた。これらを直径5mmのジルコニアボールを用いて、溶媒としてトルエンとアルコールとからなる混合溶媒を添加し湿式混合した。
 次に、湿式混合した粉末を、ポリビニルブチラール樹脂を溶解させたトルエンおよびアルコールの混合溶媒中に投入し、直径5mmのジルコニアボールを用いて湿式混合してセラミックスラリを調製し、ドクターブレード法により成形用フィルム上に厚さが約3μmのセラミックグリーンシートを作製した。
 内部電極層を形成するための金属ペーストの金属としてニッケル粉末を用いた。金属ペーストを調製するための樹脂としてはエチルセルロースを用いた。溶媒としてはジヒドロターピネオール系溶媒とブチルセロソルブとを混合して用いた。
 次に、作製したセラミックグリーンシートに金属ペーストを印刷して金属ペースト付きグリーンシートを作製した。次に、作製した金属ペースト付きグリーンシートを200層積層し、上面側および下面側にカバー層としてセラミックグリーンシートをそれぞれ重ねて母体積層体を作製した。この後、母体積層体を切断して積層体の成形体を作製した。
 次に、積層体の成形体を焼成して積層体を作製した。本焼成は、水素-窒素中、昇温速度を900℃/hとし、最高温度を1190℃に設定した条件で焼成した。この焼成には抵抗加熱方式の焼成炉を用いた。続いて、積層体に対して再酸化処理を行った。再酸化処理の条件は、窒素雰囲気中、最高温度を1000℃に設定し、保持時間を5時間とした。積層体のサイズは、1.0mm×0.5mm×0.5mmであった。誘電体層の平均厚みは1.8μmであった。内部電極層の平均厚みは0.7μmであった。作製したコンデンサの静電容量の設計値は1μFに設定した。
 次に、積層体をバレル研磨した後、積層体の両端部に外部電極ペーストを塗布し、800℃の温度にて焼き付けを行って外部電極を形成した。外部電極ペーストは、Cu粉末およびガラスを添加したものを用いた。その後、電解バレル機を用いて、この外部電極の表面に順にNiめっきおよびSnめっきを形成してコンデンサを得た。
 コンデンサ特性は、高温負荷寿命(HALT)によって評価した。高温負荷寿命は、試験条件を直流電圧45V、環境温度を170℃に設定し、故障確率が50%に達したときの時間を平均故障時間(MTTF)として求めた。また、ワイブルプロットにおける形状パラメータ(m値)を求めた。MTTFは、長時間であるほど寿命が長く、m値が大きいほど寿命のばらつきが小さいことを示す。MTTFが、15時間以上であって、m値が3以上であればよい。
 実施例1~6は、原料1(小粒径)と原料2(大粒径)の混合比を変えたものである。実施例7,8は、原料混合比を実施例3と同じとし、第1結晶粒子6Aの算術平均粒子径D1と、第2結晶粒子6Bの算術平均粒子径D2を異ならせた。実施例7は、D2=1.8D1であり、実施例8は、D2=3.2D1であった。比較例1は、原料1のみを用い、原料2は用いていない。比較例2は、原料2のみを用い、原料1は用いていない。評価結果を表1に示す。表1における原料混合比は、原料1と原料2の全量を100としたときの原料2の割合を示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1および比較例2からわかるように、結晶粒子として、小径粒子のみまたは大径粒子のみである場合は、寿命が短く、寿命ばらつきも大きい。比較例3からわかるように、小径粒子の粒子径が小さ過ぎると、寿命ばらつきが大きい。これに対して、実施例1~8は、いずれも寿命が長く、寿命ばらつきも小さい。また、第2結晶粒子の面積割合が、4%以上18%以下である実施例2~5は、寿命が、20時間以上であり、m値も4以上であり、信頼性に優れたコンデンサであることがわかる。実施例1,6は、面積割合が範囲外であり、実施例2~5より劣る結果となった。実施例7,8は、第1結晶粒子6Aおよび第2結晶粒子6Bの平均粒子径が、2D1≦D2<3D1の範囲外となっており、寿命は十分に長いが、m値がおよそ3であり、ややばらつきが見られた。なお、実施例1~8の第2結晶粒子は、コアシェル構造を有していることが確認できた。
 本開示は次の実施の形態が可能である。
 本開示のコンデンサは、誘電体層と内部電極層とが交互に積層された積層体と、
 前記積層体の表面に位置し、前記内部電極層に電気的に接続された外部電極と、を有するコンデンサであって、
 前記誘電体層は、チタン酸バリウムと添加物元素とを含む複数の結晶粒子で構成されており、
 前記複数の結晶粒子は、第1結晶粒子と、前記第1結晶粒子より粒子径が大きい第2結晶粒子とを含み、
 前記第1結晶粒子の粒子径をd1とし、前記第2結晶粒子の粒子径をd2としたとき、0.13μm≦d1<0.30μmであり、0.30μm≦d2<0.50μmであり、
 前記第2結晶粒子の添加物元素含有量が、前記第1結晶粒子の添加物元素含有量より多い構成である。
 本開示のコンデンサによれば、特性の劣化を抑制してコンデンサの信頼性を向上させることができる。
 以上、本開示の実施形態について詳細に説明したが、また、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。上記各実施形態をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。
 1   積層体
 3   外部電極
 5   誘電体層
 6   結晶粒子
 6A  第1結晶粒子
 6B  第2結晶粒子
 7   内部電極層
 6B1 コア部
 6B2 シェル部
 100 コンデンサ

Claims (6)

  1.  誘電体層と内部電極層とが交互に積層された積層体と、
     前記積層体の表面に位置し、前記内部電極層に電気的に接続された外部電極と、を有するコンデンサであって、
     前記誘電体層は、チタン酸バリウムと添加物元素とを含む複数の結晶粒子で構成されており、
     前記複数の結晶粒子は、第1結晶粒子と、前記第1結晶粒子より粒子径が大きい第2結晶粒子とを含み、
     前記第1結晶粒子の粒子径をd1とし、前記第2結晶粒子の粒子径をd2としたとき、0.13μm≦d1<0.30μmであり、0.30μm≦d2<0.50μmであり、
     前記第2結晶粒子の添加物元素含有量が、前記第1結晶粒子の添加物元素含有量より多いコンデンサ。
  2.  前記誘電体層の断面における、単位面積あたりの前記第2結晶粒子が占める面積の割合が、4%以上18%以下である、請求項1記載のコンデンサ。
  3.  前記誘電体層の断面における、前記第2結晶粒子同士が連なる個数が2個以下である、請求項1または2記載のコンデンサ。
  4.  前記第2結晶粒子は、チタン酸バリウム結晶で構成されるコア部と、前記コア部を取り囲み、チタン酸バリウム結晶に添加物元素が拡散したシェル部と、を含むコアシェル構造を有する、請求項1~3のいずれか1つに記載のコンデンサ。
  5.  前記第1結晶粒子の算術平均粒子径をD1とし、前記第2結晶粒子の算術平均粒子径をD2としたとき、2D1≦D2<3D1である、請求項1~4のいずれか1つに記載のコンデンサ。
  6.  前記添加物元素が、ジスプロシウム、マグネシウムおよびカルシウムから選ばれる1種以上である、請求項1~5のいずれか1つに記載のコンデンサ。
PCT/JP2021/003582 2020-02-27 2021-02-01 コンデンサ WO2021171920A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/799,092 US20230082288A1 (en) 2020-02-27 2021-02-01 Capacitor
JP2022503199A JP7365488B2 (ja) 2020-02-27 2021-02-01 コンデンサ
EP21760508.8A EP4113552A4 (en) 2020-02-27 2021-02-01 CAPACITOR
KR1020227027623A KR20220121886A (ko) 2020-02-27 2021-02-01 콘덴서
CN202180015195.5A CN115210832A (zh) 2020-02-27 2021-02-01 电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-031925 2020-02-27
JP2020031925 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021171920A1 true WO2021171920A1 (ja) 2021-09-02

Family

ID=77491366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003582 WO2021171920A1 (ja) 2020-02-27 2021-02-01 コンデンサ

Country Status (6)

Country Link
US (1) US20230082288A1 (ja)
EP (1) EP4113552A4 (ja)
JP (1) JP7365488B2 (ja)
KR (1) KR20220121886A (ja)
CN (1) CN115210832A (ja)
WO (1) WO2021171920A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024171939A1 (ja) * 2023-02-14 2024-08-22 太陽誘電株式会社 誘電体磁器組成物および積層セラミック電子部品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033070A (ja) * 2003-07-09 2005-02-03 Tdk Corp 積層セラミックコンデンサおよびその製造方法
JP2005243890A (ja) 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサとその製造方法
JP2008010530A (ja) * 2006-06-28 2008-01-17 Kyocera Corp 積層セラミックコンデンサおよびその製法
WO2013089269A1 (ja) * 2011-12-17 2013-06-20 京セラ株式会社 コンデンサ
JP2013197492A (ja) * 2012-03-22 2013-09-30 Kyocera Corp セラミックコンデンサ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367479B2 (ja) * 1999-08-19 2003-01-14 株式会社村田製作所 誘電体セラミックおよび積層セラミック電子部品
CN1178240C (zh) * 2000-02-03 2004-12-01 太阳诱电株式会社 叠层陶瓷电容器及其制造方法
JP2002080276A (ja) * 2000-06-30 2002-03-19 Taiyo Yuden Co Ltd 誘電体磁器組成物及び磁器コンデンサ
JP2003176180A (ja) * 2001-12-10 2003-06-24 Murata Mfg Co Ltd 誘電体セラミック原料粉末の製造方法および誘電体セラミック原料粉末
JP4809152B2 (ja) * 2005-09-28 2011-11-09 京セラ株式会社 積層セラミックコンデンサ
JP2007153631A (ja) * 2005-11-30 2007-06-21 Tdk Corp 誘電体磁器組成物、電子部品および積層セラミックコンデンサ
WO2008132902A1 (ja) * 2007-04-20 2008-11-06 Kyocera Corporation 誘電体磁器および積層セラミックコンデンサ
JP4992918B2 (ja) * 2009-01-30 2012-08-08 株式会社村田製作所 誘電体セラミックおよび積層セラミックコンデンサ
JP2010232248A (ja) * 2009-03-26 2010-10-14 Murata Mfg Co Ltd 積層セラミックコンデンサ
JP5578882B2 (ja) * 2010-02-25 2014-08-27 京セラ株式会社 積層セラミックコンデンサ
JP5246185B2 (ja) * 2010-03-11 2013-07-24 株式会社村田製作所 誘電体セラミック、及び積層セラミックコンデンサ
US8908353B2 (en) * 2011-03-04 2014-12-09 Taiyo Yuden Co., Ltd. Laminated ceramic capacitor
DE102011053740A1 (de) * 2011-09-19 2013-03-21 Gühring Ohg Verfahren zur Herstellung eines Hartstoff-Körpers, zugehöriges sintermetallurgisches Pulver und daraus herstellbarer Hartstoff-Rohling und Hartstoffkörper
JP5450696B2 (ja) * 2012-03-07 2014-03-26 太陽誘電株式会社 積層セラミックコンデンサ
JP5668037B2 (ja) * 2012-09-27 2015-02-12 太陽誘電株式会社 積層セラミックコンデンサ及びその製造方法
JP6034136B2 (ja) * 2012-10-31 2016-11-30 京セラ株式会社 コンデンサ
KR101709814B1 (ko) * 2012-11-15 2017-02-23 삼성전기주식회사 유전체 조성물 및 이의 제조방법
WO2017073621A1 (ja) * 2015-10-28 2017-05-04 京セラ株式会社 コンデンサ
JP6696266B2 (ja) * 2016-03-30 2020-05-20 Tdk株式会社 誘電体磁器組成物および積層セラミックコンデンサ
JP6919236B2 (ja) * 2017-03-09 2021-08-18 Tdk株式会社 圧電組成物及び圧電素子
JP6913614B2 (ja) * 2017-11-24 2021-08-04 京セラ株式会社 コンデンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033070A (ja) * 2003-07-09 2005-02-03 Tdk Corp 積層セラミックコンデンサおよびその製造方法
JP2005243890A (ja) 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサとその製造方法
JP2008010530A (ja) * 2006-06-28 2008-01-17 Kyocera Corp 積層セラミックコンデンサおよびその製法
WO2013089269A1 (ja) * 2011-12-17 2013-06-20 京セラ株式会社 コンデンサ
JP2013197492A (ja) * 2012-03-22 2013-09-30 Kyocera Corp セラミックコンデンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113552A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024171939A1 (ja) * 2023-02-14 2024-08-22 太陽誘電株式会社 誘電体磁器組成物および積層セラミック電子部品

Also Published As

Publication number Publication date
EP4113552A4 (en) 2024-08-21
KR20220121886A (ko) 2022-09-01
EP4113552A1 (en) 2023-01-04
JPWO2021171920A1 (ja) 2021-09-02
US20230082288A1 (en) 2023-03-16
CN115210832A (zh) 2022-10-18
JP7365488B2 (ja) 2023-10-19

Similar Documents

Publication Publication Date Title
JP5046700B2 (ja) 誘電体磁器および積層セラミックコンデンサ
JP4776913B2 (ja) 積層型セラミックコンデンサ及びその製造方法
KR100533580B1 (ko) 유전체 세라믹 및 그 제조방법, 적층 세라믹 콘덴서
US9978524B2 (en) Multilayer ceramic capacitor and manufacturing method therefor
JP4782598B2 (ja) 積層セラミックコンデンサ
EP0817216B1 (en) Dielectric ceramic composition and monolothic ceramic capacitor using same
JP4345071B2 (ja) 積層セラミックコンデンサ、及び該積層セラミックコンデンサの製造方法
US6828266B1 (en) X7R dielectric composition
KR102584977B1 (ko) 세라믹 전자 부품 및 그 제조 방법
US20070074806A1 (en) Production method of multilayer ceramic electronic device
JP5121311B2 (ja) 誘電体磁器および積層セラミックコンデンサ
EP1820784A1 (en) Electronic device, dielectric ceramic composition and the production method
EP1536438A2 (en) Multilayer ceramic capacitor
JP5354867B2 (ja) 誘電体磁器および積層セラミックコンデンサ
KR100651019B1 (ko) 유전체 자기 조성물 및 전자 부품
JP5046699B2 (ja) 誘電体磁器および積層セラミックコンデンサ
KR100859058B1 (ko) 적층형 전자 부품 및 그 제조 방법
JP4771818B2 (ja) 積層セラミックコンデンサ
WO2021171920A1 (ja) コンデンサ
JP2008227093A (ja) 積層型電子部品の製造方法
US12142432B2 (en) Multilayer capacitor
JP2021068734A (ja) セラミック電子部品およびその製造方法
JP4114434B2 (ja) 誘電体セラミックおよびこれを用いた積層セラミックコンデンサ
KR102754411B1 (ko) 적층형 커패시터
JP4376508B2 (ja) 誘電体磁器組成物および電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503199

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227027623

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021760508

Country of ref document: EP

Effective date: 20220927