WO2021167265A1 - Check valve and swash plate compressor including same - Google Patents
Check valve and swash plate compressor including same Download PDFInfo
- Publication number
- WO2021167265A1 WO2021167265A1 PCT/KR2021/001276 KR2021001276W WO2021167265A1 WO 2021167265 A1 WO2021167265 A1 WO 2021167265A1 KR 2021001276 W KR2021001276 W KR 2021001276W WO 2021167265 A1 WO2021167265 A1 WO 2021167265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- opening
- refrigerant
- check valve
- pulsation
- flow
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 131
- 230000010349 pulsation Effects 0.000 claims abstract description 68
- 230000004888 barrier function Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- 230000003111 delayed effect Effects 0.000 claims description 13
- 230000037431 insertion Effects 0.000 abstract 1
- 238000003780 insertion Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 9
- 239000002826 coolant Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/10—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
- F04B27/1009—Distribution members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/10—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/02—Check valves with guided rigid valve members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K27/00—Construction of housing; Use of materials therefor
- F16K27/02—Construction of housing; Use of materials therefor of lift valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K27/00—Construction of housing; Use of materials therefor
- F16K27/02—Construction of housing; Use of materials therefor of lift valves
- F16K27/0209—Check valves or pivoted valves
Definitions
- the present invention relates to a check valve and a swash plate compressor including the same, and more particularly, to a check valve for reducing pulsation by delaying the flow of a refrigerant, and to a swash plate compressor including the same.
- a compressor that compresses a refrigerant in a vehicle cooling system has been developed in various forms.
- a configuration for compressing the refrigerant includes a reciprocating type that performs compression while reciprocating, and a rotary type that performs compression while rotating. There is a rotation type.
- the reciprocating compressor includes a crank type in which the driving force of a driving source is transmitted to a plurality of pistons using a crank, a swash plate type in which a swash plate is installed and a wobble plate type using a wobble plate, and the rotary compressor has a rotating There is a vane rotary type using a rotary shaft and a vane, and a scroll type using an orbiting scroll and a fixed scroll.
- the swash plate compressor there are a fixed capacity type in which the installation angle of the swash plate is fixed, and a variable capacity type in which the discharge capacity can be changed by changing the inclination angle of the swash plate.
- FIG 1 one form of a conventional check valve (1) is disclosed.
- a hook part (2) is provided on one side of the valve body (3), and an inlet (9) through which the refrigerant flows is provided on the central side of the hook part (2) from one side.
- the other side of the valve body (3) is provided with an outlet (4) through which the refrigerant flowing into the inlet (9) is discharged.
- FIG. 2 a state in which the check valve 1 disclosed in FIG. 1 is coupled to the stepped part 6a of the suction port 7 formed on the rear housing 6 of the swash plate compressor by a hook part 2 is disclosed.
- the check valve 1 functions as a suction valve.
- the piston reciprocates according to the movement of the swash plate inside the cylinder bore, and the refrigerant flows into the suction chamber of the rear housing 6 according to the internal pressure of the cylinder bore in order to introduce and compress the refrigerant.
- the check valve 1 is disposed on the suction port 7 to control the flow of the refrigerant.
- the refrigerant flowing in from the suction port 7 flows into the inlet 9 , and flows into the suction chamber 8 through the outlet 4 inside the valve body 3 .
- the structure of the conventional check valve 1 does not significantly decrease the flow rate of the refrigerant therein. Therefore, the delay of the refrigerant flow does not occur smoothly inside the check valve 1 , and the refrigerant flowing in from the inlet 9 is directly discharged to the outlet 4 , and the pulsation reduction effect does not occur. This is one of the causes of noise and vibration of the compressor.
- the present invention has been devised to solve the problems of the related art as described above, and an object of the present invention is to provide a check valve for reducing pulsation by delaying the flow of a refrigerant and a swash plate compressor including the same.
- the present invention for achieving the above objects relates to a check valve, in which a first opening through which refrigerant flows is formed in a central portion of one side, and a hook portion is formed around one side to be fastened to a fastening groove formed in a suction port of the rear housing. and a valve body having a second opening at the other side through which the refrigerant is discharged; and a pulsation reducing means disposed inside the other end of the valve body so that when the refrigerant flows in from the first opening and is discharged through the second opening, the refrigerant flow is delayed to reduce the pulsation of the refrigerant. have.
- the pulsation reducing means is directed toward the first opening from the inside of the other end of the valve body so that the refrigerant flowing in from the first opening collides and the flow is delayed to reduce the pulsation of the refrigerant. It may include; a protrusion block disposed to protrude.
- a flat portion may be formed at the upper end of the protruding block so that the refrigerant flowing in from the first opening collides, the flow is delayed, and is discharged in the direction of the second opening.
- the pulsation reducing means further includes a first depression formed between the second opening and the protrusion block inside the other end of the valve body, and the inside of the first depression is , the incoming refrigerant and the outgoing refrigerant collide with each other to reduce pulsation.
- the first recessed portion may have a curved shape connecting the end of the protruding block and the end of the second opening.
- an auxiliary flow hole through which the refrigerant flowing in from the first opening is additionally discharged is formed at the upper end of the protruding block to compensate for the flow obstruction of the refrigerant generated as the protruding block is formed.
- a plurality of auxiliary flow holes may be formed at the upper end of the protruding block.
- the pulsation reducing means is disposed adjacent to the second opening inside the other end of the valve body so as to reduce the pulsation by interfering with the flow of the refrigerant discharged to the second opening, and a barrier protrusion protruding in the direction of the first opening.
- the barrier protrusion is disposed between the width gap D1 of the second opening, it is possible to prevent the flow of the refrigerant discharged to the second opening to reduce the pulsation.
- the barrier protrusion may have a cylindrical shape.
- a plurality of the second openings are formed on the other side of the valve body, and the pulsation reducing means disperses the flow of refrigerant flowing from the first opening to the second opening to pulsate.
- the guide projection protruding in the direction of the first opening may include.
- a plurality of the guide projections are disposed inside the other end of the valve body, and a pair of guide projections disposed on both sides of one of the plurality of second openings each face the second opening.
- a straight part in the direction; may be formed, and guide the flow of the refrigerant in the direction of the second opening from the central side of the valve body.
- the interval D2 of the pair of straight portions may be disposed within the width interval D1 of the second opening.
- the pulsation reducing means further includes a second depression formed between the second opening and the guide protrusion inside the other end of the valve body, and the inside of the second depression is , the incoming refrigerant and the outgoing refrigerant collide with each other to reduce pulsation.
- the pulsation reducing means is connected to the lower end of the second opening inside the other end of the valve body so that the refrigerant flowing in from the first opening collides and the flow is delayed to reduce the pulsation. and a base block disposed to protrude in the direction of the first opening.
- a rounding part is formed around the outer periphery of the upper end of the base block, and after the refrigerant flowing in from the first opening collides with the upper end of the base block, the second opening along the rounding part The flow may flow.
- the base block has an extension protrusion extending in the direction of the second opening from the center side of the base block; the extension protrusion is formed with the second opening part from the center side of the base block It is possible to guide the flow of refrigerant in the direction.
- the width interval D4 of the extension protrusion may be disposed between the width interval D1 of the second opening.
- the swash plate compressor of the present invention includes a cylinder block having a cylinder bore; a front housing coupled to the front of the cylinder block and forming a crankcase; a rear housing coupled to the rear of the cylinder block and forming a suction chamber and a discharge chamber; and the check valve of claim 1 disposed at the suction port formed in the suction chamber.
- the piston reciprocates inside the cylinder bore according to the movement of the swash plate, and at this time, a pulsation is inevitably generated in the refrigerant flow.
- 1 is a view showing a conventional check valve.
- Figure 2 is a side cross-sectional view showing a state in which the conventional check valve disclosed in Figure 1 is mounted on the rear housing of the swash plate compressor.
- Figure 3 is a side cross-sectional view showing the structure of the present invention swash plate compressor.
- Figure 4 is a view showing a first embodiment of the present invention check valve.
- FIG. 5 is a view showing a state in which the check valve disclosed in FIG. 4 is disposed in the discharge chamber of the rear housing.
- Figure 6 is a view comparing the degree of pulsation between the conventional check valve and the check valve of the present invention.
- Figure 7 is a side cross-sectional view showing a second embodiment of the present invention check valve.
- Figure 8 is a plan view of the check valve disclosed in Figure 7;
- FIG. 9 is a side cross-sectional view showing another form of the second embodiment of the present invention check valve.
- Figure 10 is a side cross-sectional view showing a third embodiment of the check valve of the present invention.
- FIG. 11 is a plan view of the check valve disclosed in FIG.
- FIG. 12 is a side cross-sectional view showing a fourth embodiment of the check valve of the present invention.
- FIG. 13 is a plan view of the check valve disclosed in FIG. 12 .
- Figure 14 is a side cross-sectional view showing a fifth embodiment of the present invention check valve.
- Figure 15 is a plan view of the check valve disclosed in Figure 14.
- a basic form of a swash plate compressor to which the present invention is applied will be described with reference to FIG. 3 .
- the present invention is not necessarily limited to this structure, and the description of the swash plate compressor is effective only within the limits of understanding the present invention.
- the swash plate compressor 10 is provided with a cylinder block 20 that forms a part of the exterior and the skeleton. At this time, a center bore 21 is formed through the center of the cylinder block 20 , and a shaft 94 is rotatably installed in the center bore 21 .
- the cylinder block 20, including the front housing 30 and the rear housing 40 may be referred to as a casing (60).
- a plurality of cylinder bores 22 are formed to pass through the cylinder block 20 so as to radially surround the center bore 21 , and a piston 70 is installed in the cylinder bore 22 to be capable of linear reciprocating motion.
- the piston 70 is formed in a cylindrical shape
- the cylinder bore 22 is a cylindrical space corresponding thereto, and the refrigerant in the cylinder bore 22 is compressed by the reciprocating motion of the piston 70 .
- the cylinder bore 22 and the piston 70 form a compression chamber.
- the front housing 30 is coupled to the front of the cylinder block 20 .
- the front housing 30 has a face opposite to the cylinder block 20 indented to form a crank chamber 31 therein together with the cylinder block 20 .
- a pulley 32 connected to an external power source (not shown) such as an engine is rotatably installed in front of the front housing 30 , and the shaft 94 rotates in association with the rotation of the pulley 32 .
- a rear housing 40 is coupled to the rear of the cylinder block 20 .
- the discharge chamber 41 is formed in the rear housing 40 along a position adjacent to the outer peripheral side edge of the rear housing 40 to selectively communicate with the cylinder bore 22 .
- the suction port 45 is formed on one side of the rear housing 40 , and is connected to the suction chamber 42 disposed in the central portion of the rear housing 40 .
- the present invention is not necessarily limited thereto, and other positions are possible depending on the type of compressor.
- valve plate 50 is interposed between the cylinder block 20 and the rear housing 40 , and the discharge chamber 41 communicates with the cylinder bore 22 through a discharge port formed in the valve plate 50 .
- a rotor 93 is disposed on the outer peripheral surface of the shaft 94 , and the rotor 93 is interlocked with the swash plate 91 by a link 95 , and a shoe 62 provided along the edge of the swash plate 91 . is connected to each piston 70 by the swash plate 91 and the piston 70 is linearly reciprocated within the cylinder bore 22 by the rotation of the swash plate 91 .
- the angle of the swash plate 91 with respect to the shaft 94 is variable so that the refrigerant discharge amount of the compressor 10 can be adjusted.
- the discharge chamber 41 and the crank chamber 31 are communicated.
- the opening degree of the flow path is controlled by a pressure control valve (not shown).
- the conventional swash plate compressor having the above configuration has a so-called radially symmetrical structure in which a plurality of cylinder bores 22 formed in the cylinder block 20 are radially spaced apart from each other with respect to the shaft 94 .
- the check valve 100 is disposed on the suction passage 43 connecting the outside and the suction chamber 42 .
- the check valve 100 allows the refrigerant to flow into the suction chamber 42 from the outside by the pressure formed inside the piston 70 and the cylinder bore 22 according to the movement of the swash plate 61 .
- a relatively uniform pressure is maintained, thereby reducing noise and vibration during operation of the compressor.
- FIG. 4 is a view showing a first embodiment of the check valve 100 according to the present invention
- FIG. 5 is a view showing a state in which the check valve 100 disclosed in FIG. 4 is disposed in the discharge chamber of the rear housing 40
- 6 is a view comparing the degree of pulsation between the conventional check valve 100 and the check valve 100 of the present invention.
- the first embodiment of the check valve 100 according to the present invention has a first opening 120, a hook part 112, a second opening 130, a valve body 110, and pulsation reduction. means 200 may be included.
- the valve body 110 forms the body of the check valve 100, and may be implemented in an overall cylindrical shape.
- the first opening 120 may be disposed in the central portion of one side of the valve body 110 and may be a portion through which the refrigerant flows.
- the second opening 130 may be disposed along the periphery of the other side of the valve body 110 , and may be a portion through which the refrigerant introduced from the first opening 120 is discharged.
- the hook part 112 may be disposed along the circumference of one side of the valve body 110 , and may be coupled to the coupling groove 45a formed in the suction port 45 of the rear housing 40 .
- the pulsation reducing means 200 delays the flow of the refrigerant to reduce the pulsation of the refrigerant when the refrigerant is introduced from the first opening 120 and discharged to the second opening 130, the valve body ( 110) may be disposed inside the other end.
- the pulsation reducing means 200 is the other of the valve body 110 so that the refrigerant flowing in from the first opening 120 collides and the flow is delayed to reduce the pulsation of the refrigerant. It may include a protrusion block 210 disposed to protrude in the direction of the first opening 120 from the inside of the end.
- a flat portion 213 for allowing the refrigerant flowing in from the first opening 120 to collide and flow is delayed and to be discharged in the direction of the second opening 130 is formed.
- the protruding block 210 is disposed, and the refrigerant flowing in through the first opening 120 collides with the upper portion of the protruding block 210 indicated by the X region. It is distributed along the outer circumference of the protrusion block 210 .
- the refrigerant collides with the protruding block 210 and causes a delay in the flow in the process of detouring in the outer circumferential direction. That is, the flow rate of the refrigerant is lowered, and as the time remaining inside the check valve 100 increases, the pulsation of the refrigerant is reduced.
- the pulsation reducing means 200 is a first depression formed between the second opening 130 and the protruding block 210 inside the other end of the valve body 110 . It may be configured to further include a part 211 .
- the flow rate of the refrigerant is reduced through collision inside the check valve 100 through the configuration of the protrusion block 210 and the first depression 211 in which the flat portion 213 is formed. to achieve the effect of reducing pulsation.
- the first recessed portion 211 may have a curved shape connecting the end of the protruding block 210 and the end of the second opening 130 . This is by connecting the end of the protruding block 210 and the end of the second opening 130 in a curved shape, so that the refrigerant with a reduced flow rate by offsetting the first recessed portion 211 smoothly flows through the second opening 130 . in order to be released into
- the flow of the coolant is delayed, and the flow rate of the coolant is reduced, which means that the coolant inside the check valve 100 is The remaining time is increased, and ultimately, the pulsation of the refrigerant is reduced.
- the pulsating pressure was measured to be 0.0248 bar, and in the case of the check valve (B) of the present invention, the pulsating pressure was measured to be 0.0214 bar. About 13% of the pulsation pressure was reduced.
- the check valve (B) of the present invention reduces the flow rate of the refrigerant compared to the conventional check valve (A), thereby deriving the effect of reducing the pulsation of the refrigerant as a whole.
- Figure 7 is a side cross-sectional view showing a second embodiment of the check valve 100 of the present invention
- Figure 8 is a plan view of the check valve 100 disclosed in Figure 7
- Figure 9 is the check valve 100 of the present invention. It is a side cross-sectional view showing another form of the second embodiment.
- the structure of the second embodiment of the check valve 100 according to the present invention can be confirmed.
- the first opening 120 , the second opening 130 , the hook portion 112 , the valve body 110 , the protruding block 210 , and the first depression In addition to the part 211 , it may further include an auxiliary flow hole 215 .
- first opening 120 the second opening 130 , the hook part 112 , the valve body 110 , the protruding block 210 , and the first recessed part 211 are the same as those of the first embodiment. Therefore, the following description will be omitted.
- the auxiliary flow hole 215 may be formed at the upper end of the protrusion block 210 .
- the auxiliary flow hole 215 allows the refrigerant flowing in from the first opening 120 to be additionally discharged to the suction chamber 42 so as to compensate for the flow obstruction of the refrigerant generated as the protrusion block 210 is formed. may be provided for.
- auxiliary flow hole 215 As the auxiliary flow hole 215 is formed, a portion of the refrigerant introduced from the first opening 120 is directly introduced into the suction chamber 42 through the auxiliary flow hole 215 , and the It is possible to compensate to some extent a change in the amount of refrigerant supplied due to a decrease in the flow rate in the protruding block 210 and the first recessed portion 211 .
- auxiliary flow hole 215 shows a form in which one auxiliary flow hole 215 is formed with a relatively large diameter, and in FIG. 9 , a plurality of auxiliary flow holes 215 are formed at the upper end of the protruding block 210 with a relatively small attack.
- the form formed in is disclosed.
- the position, size, and number of the auxiliary flow holes 215 may be changed according to design specifications.
- Figure 10 is a side cross-sectional view showing a third embodiment of the check valve 100 of the present invention
- Figure 11 is a plan view of the check valve 100 disclosed in Figure 10.
- the description of the first opening 120, the second opening 130, the hook part 112, and the valve body 110 in the third embodiment of the check valve 100 according to the present invention is the same as that of the first embodiment. The description will be omitted.
- the pulsation reducing means 200 which is different from the first embodiment will be described.
- the pulsation reducing means 200 may include a barrier protrusion 220 .
- the barrier protrusion 220 is disposed adjacent to the second opening 130 inside the other end of the valve body 110 so as to reduce pulsation by obstructing the flow of the refrigerant discharged to the second opening 130 . and may be formed to protrude in the direction of the first opening 120 .
- the barrier protrusion 220 may be implemented in a cylindrical shape, and as four second openings 130 are formed along the periphery of the other side of the valve body 110 , 4
- the barrier protrusions 220 may be disposed adjacent to the second opening 130 , respectively.
- the shape of the barrier protrusion 220 is not limited to a cylindrical shape.
- the refrigerant flowing in from the first opening 120 is prevented from flowing when passing through the barrier protrusion 220 . , and enters in the direction of the second opening 130 .
- the barrier protrusion 220 is disposed between the width gaps D1 of the second opening 130 , and prevents the flow of refrigerant discharged to the second opening 130 and reduces pulsation. function to do.
- the barrier protrusion 220 may be formed to have a width smaller than the width D1 of the second opening 130 .
- the barrier protrusion 220 is disposed in the center of the width gap D1 of the second opening 130 to be balanced in the left and right direction of the second opening 130 when the refrigerant is discharged to the second opening 130 . It may be desirable to induce a negative flow obstruction.
- the refrigerant bypasses the barrier protrusion 220 and is discharged into the suction chamber 42 through the second opening 130 as shown by the arrow indicating the flow direction of the refrigerant.
- the flow rate of the refrigerant is lowered due to the flow obstruction by the barrier protrusion 220 , and the time remaining inside the check valve 100 increases, resulting in an effect of reducing the pulsation of the refrigerant. .
- Figure 12 is a side cross-sectional view showing a fourth embodiment of the check valve 100 according to the present invention
- Figure 13 is a plan view of the check valve 100 disclosed in Figure 12.
- the description of the first opening 120, the second opening 130, the hook part 112, and the valve body 110 in the fourth embodiment of the check valve 100 according to the present invention is the same as that of the first embodiment. The description will be omitted.
- the pulsation reducing means 200 which is different from the first embodiment will be described.
- the pulsation reducing means 200 distributes the flow of the refrigerant flowing from the first opening 120 to the second opening 130 to reduce pulsation.
- a guide protrusion 230 protruding in the direction of the first opening 120 .
- a plurality of guide protrusions 230 may be disposed inside the other end of the valve body 110 .
- a pair of guide protrusions 230 disposed on both sides of one of the plurality of second openings 130 may each have a straight portion 231 formed in a direction facing the second opening 130 .
- the pair of straight portions 231 guide the flow of the refrigerant from the central side of the valve body 110 in the direction of the second opening 130 .
- the interval D2 between the pair of straight portions 231 may be disposed within the width interval D1 of the second opening 130 . This is to allow the refrigerant guided by the pair of straight parts 231 to be smoothly discharged to the second opening 130 .
- the plurality of guide protrusions 230 are disposed between the plurality of second openings 130 and collide with the refrigerant flowing in from the first opening 120 to reduce the flow rate of the refrigerant and reduce the pulsation of the refrigerant.
- the refrigerant discharge flow to the second opening 130 is compensated, for example, such as the auxiliary flow hole 215 in the first embodiment, so that the refrigerant supply can be compensated for by the amount of the refrigerant flow hindered, the straight part ( 231) was formed.
- the refrigerant collides with the guide protrusion 230 and is guided along the straight line portion 231 while bypassing the guide protrusion 230 as shown in the arrow indicating the flow direction of the refrigerant disclosed in FIG. It is discharged to the suction chamber 42 through.
- the flow rate of the refrigerant is lowered due to the flow obstruction by the guide protrusion 230 , and the time remaining inside the check valve 100 increases, resulting in an effect of reducing the pulsation of the refrigerant. .
- the refrigerant flow is guided to the second opening 130 to compensate for the refrigerant supply.
- the pulsation reducing means 200 further includes a second recessed part 233 formed between the second opening 130 and the guide protrusion 230 inside the other end of the valve body 110 . can do. Similar to the function of the first recessed part 211 of the first embodiment, in the second recessed part 233, the incoming and outgoing coolant collide with each other to reduce pulsation.
- the flow rate of the refrigerant is reduced through collision within the check valve 100 through the configuration of the guide protrusion 230, the straight part 231 and the second recessed part 233. It is to achieve the effect of reducing the pulsation, guiding the flow of the refrigerant and compensating the flow of the refrigerant according to the reduction in the flow rate of the refrigerant.
- Figure 14 is a side cross-sectional view showing a fifth embodiment of the check valve 100 of the present invention
- Figure 15 is a plan view of the check valve 100 disclosed in Figure 14.
- the description of the first opening 120, the second opening 130, the hook part 112, and the valve body 110 in the fifth embodiment of the check valve 100 according to the present invention is the same as that of the first embodiment. The description will be omitted.
- the pulsation reducing means 200 which is different from the first embodiment will be described.
- the pulsation reducing means 200 may be configured to include a base block 240 and an extension protrusion 245 .
- the base block 240 has the lower end of the second opening 130 inside the other end of the valve body 110 so that the refrigerant flowing in from the first opening 120 collides and the flow is delayed to reduce pulsation. may be connected to and protrude in the direction of the first opening 120 .
- a rounding part 241 is formed around the outer periphery of the upper end of the base block 240, and after the refrigerant flowing in from the first opening 120 collides with the upper end of the base block 240, the rounding part ( 241), the flow may be configured to flow in the direction of the second opening 130 .
- the upper central portion of the base block 240 is flat, so that the refrigerant flowing in from the first opening 120 collides and the flow is delayed.
- the base block 240 is disposed, and the refrigerant flowing in through the first opening 120 collides at the upper center of the base block 240 to collide with the base block ( 240) will be distributed along the outer perimeter.
- the flow is gently induced along the rounding part 241 , it enters in the direction of the second opening 130 , and is discharged into the suction chamber 42 .
- the refrigerant collides with the base block 240 and causes a delay in the flow in the process of detouring in the outer circumferential direction. That is, the flow rate of the refrigerant is lowered, and as the time remaining inside the check valve 100 increases, the pulsation of the refrigerant is reduced.
- the extension protrusion 245 may be formed by extending in the direction of the second opening 130 from the central side of the base block 240 .
- the extension protrusion 245 may perform a function of guiding the flow of the refrigerant in the direction of the second opening 130 from the central side of the base block 240 .
- the width gap D4 of the extension protrusion 245 may be disposed between the width gap D1 of the second opening 130 . Accordingly, the refrigerant guided in the direction of the second opening 130 along the rounding portion 241 of the base block 240 is guided to the second opening 130 by the extension protrusion 245 .
- the pulsation is reduced by reducing the flow rate of the refrigerant through collision inside the check valve 100 through the configuration of the base block 240 and the extension protrusion 245 , and the flow of the refrigerant and to achieve the effect of compensating for the refrigerant flow according to the reduction of the refrigerant flow rate.
- the present invention relates to a check valve and a swash plate compressor, and has industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Check Valves (AREA)
- Compressor (AREA)
Abstract
The present invention relates to a check valve and a swash plate compressor including same, and can comprise: a valve body having, in the center of one side portion thereof, a first opening in through which a refrigerant flows, having, on the circumference of the one side portion thereof, a hook part bound to an insertion groove formed in a suction chamber of a rear housing, and having, on the other side portion thereof, a second opening through which the refrigerant is discharged; and a pulsation-reducing means disposed inside the other end portion of the valve body so as to delay the flow of the refrigerant and thus reduce pulsation, when the refrigerant flows in from the first opening to be discharged through the second opening.
Description
본 발명은 체크밸브 및 이를 포함하는 사판식 압축기에 관한 것으로, 보다 상세하게는 냉매의 유동을 지연시켜 맥동을 저감하는 체크밸브 및 이를 포함하는 사판식 압축기에 관한 것이다. The present invention relates to a check valve and a swash plate compressor including the same, and more particularly, to a check valve for reducing pulsation by delaying the flow of a refrigerant, and to a swash plate compressor including the same.
일반적으로 차량용 냉각시스템에서 냉매를 압축시키는 역할을 하는 압축기는 다양한 형태로 개발되어 왔으며, 이와 같은 압축기에는 냉매를 압축하는 구성이 왕복운동을 하면서 압축을 수행하는 왕복식과, 회전운동을 하면서 압축을 수행하는 회전식이 있다. In general, a compressor that compresses a refrigerant in a vehicle cooling system has been developed in various forms. In such a compressor, a configuration for compressing the refrigerant includes a reciprocating type that performs compression while reciprocating, and a rotary type that performs compression while rotating. There is a rotation type.
여기서, 왕복식 압축기에는 구동원의 구동력을, 크랭크를 사용하여 복수개의 피스톤으로 전달하는 크랭크식과, 사판이 설치된 회전축으로 전달하는 사판식, 및 워블 플레이트를 사용하는 워블 플레이트식이 있고, 회전식 압축기에는 회전하는 로터리축과 베인을 사용하는 베인로터리식, 및 선회 스크롤과 고정 스크롤을 사용하는 스크롤식이 있다.Here, the reciprocating compressor includes a crank type in which the driving force of a driving source is transmitted to a plurality of pistons using a crank, a swash plate type in which a swash plate is installed and a wobble plate type using a wobble plate, and the rotary compressor has a rotating There is a vane rotary type using a rotary shaft and a vane, and a scroll type using an orbiting scroll and a fixed scroll.
사판식 압축기로는 사판의 설치각도가 고정된 고정 용량형 타입과, 사판의 경사각을 변화시켜 토출 용량을 변화시킬 수 있는 가변 용량형 타입이 있다.As the swash plate compressor, there are a fixed capacity type in which the installation angle of the swash plate is fixed, and a variable capacity type in which the discharge capacity can be changed by changing the inclination angle of the swash plate.
도 1에는 종래 체크밸브(1)의 일 형태가 개시되어 있다. 종래 체크밸브(1)에서 밸브바디(3)의 일측에는 후크부(2)가 마련되어 있고, 일측에서 후크부(2)의 중앙측에는 냉매가 유입되는 유입구(9)가 마련되어 있다. 그리고 밸브바디(3)의 타측에는 유입구(9)로 유입된 냉매가 배출되는 유출구(4)가 마련되어 있다. In Figure 1, one form of a conventional check valve (1) is disclosed. In the conventional check valve (1), a hook part (2) is provided on one side of the valve body (3), and an inlet (9) through which the refrigerant flows is provided on the central side of the hook part (2) from one side. And the other side of the valve body (3) is provided with an outlet (4) through which the refrigerant flowing into the inlet (9) is discharged.
도 2에는 도 1에 개시된 체크밸브(1)가 사판식 압축기의 후방하우징(6)상에 형성된 흡입구(7)의 단턱부(6a)에 후크부(2)로 결합되어 배치된 상태가 개시되어 있다. 이 경우 체크밸브(1)는 흡입밸브(suction valve)의 기능을 하게 된다.In FIG. 2, a state in which the check valve 1 disclosed in FIG. 1 is coupled to the stepped part 6a of the suction port 7 formed on the rear housing 6 of the swash plate compressor by a hook part 2 is disclosed. have. In this case, the check valve 1 functions as a suction valve.
실린더보어의 내부에서 사판의 움직임에 따라 피스톤은 왕복운동을 하며 냉매를 유입하여 압축시키기 위해, 실린더보어의 내부 압력에 따라 후방하우징(6)의 흡입실로 냉매가 유입된다. The piston reciprocates according to the movement of the swash plate inside the cylinder bore, and the refrigerant flows into the suction chamber of the rear housing 6 according to the internal pressure of the cylinder bore in order to introduce and compress the refrigerant.
이때 흡입구(7)상에 체크밸브(1)를 배치하여 냉매의 흐름을 조절하게 된다. At this time, the check valve 1 is disposed on the suction port 7 to control the flow of the refrigerant.
즉 흡입구(7)에서 유입되는 냉매는 유입구(9)로 유입되고, 밸브바디(3)의 내부에서 유출구(4)를 통해 흡입실(8)로 유입되게 된다. That is, the refrigerant flowing in from the suction port 7 flows into the inlet 9 , and flows into the suction chamber 8 through the outlet 4 inside the valve body 3 .
종래 체크밸브(1)의 구조는 그 내부에서 냉매의 유속 저하가 크게 발생하지 않는다. 따라서 체크밸브(1)의 내부에서는 냉매 유동의 지연이 원활히 발생하지 않아, 유입구(9)에서 유입된 냉매가 유출구(4)로 바로 배출되게 되고, 맥동 저감 효과는 발생하지 않는다. 이는 압축기의 소음, 진동 등을 유발하는 원인 중의 하나가 된다. The structure of the conventional check valve 1 does not significantly decrease the flow rate of the refrigerant therein. Therefore, the delay of the refrigerant flow does not occur smoothly inside the check valve 1 , and the refrigerant flowing in from the inlet 9 is directly discharged to the outlet 4 , and the pulsation reduction effect does not occur. This is one of the causes of noise and vibration of the compressor.
본 발명은 상기와 같이 관련 기술분야의 과제를 해결하기 위하여 안출된 것으로, 본 발명의 목적은 냉매의 유동을 지연시켜 맥동을 저감하는 체크밸브 및 이를 포함하는 사판식 압축기를 제공하는 데에 있다.The present invention has been devised to solve the problems of the related art as described above, and an object of the present invention is to provide a check valve for reducing pulsation by delaying the flow of a refrigerant and a swash plate compressor including the same.
상기와 같은 목적들을 달성하기 위한 본 발명은 체크밸브에 관한 것으로, 일측의 중앙부에는 냉매가 유입되는 제1 개구부가 형성되고, 일측의 둘레에는 후방하우징의 흡입구에 형성된 결착홈에 결착되는 후크부가 형성되며, 타측에는 냉매가 배출되는 제2 개구부가 형성된 밸브바디; 및 냉매가 상기 제1 개구부에서 유입되어 상기 제2 개구부로 배출될 때, 냉매의 흐름을 지연시켜 냉매의 맥동이 저감되도록, 상기 밸브바디의 타단부 내측에 배치되는 맥동저감수단;을 포함할 수 있다. The present invention for achieving the above objects relates to a check valve, in which a first opening through which refrigerant flows is formed in a central portion of one side, and a hook portion is formed around one side to be fastened to a fastening groove formed in a suction port of the rear housing. and a valve body having a second opening at the other side through which the refrigerant is discharged; and a pulsation reducing means disposed inside the other end of the valve body so that when the refrigerant flows in from the first opening and is discharged through the second opening, the refrigerant flow is delayed to reduce the pulsation of the refrigerant. have.
또한, 본 발명의 실시예에서는 상기 맥동저감수단은, 상기 제1 개구부에서 유입되는 냉매가 충돌하며 흐름이 지연되어 냉매의 맥동이 저감되도록, 상기 밸브바디의 타단부 내측에서 상기 제1 개구부 방향으로 돌출되게 배치되는 돌출블록;을 포함할 수 있다. In addition, in the embodiment of the present invention, the pulsation reducing means is directed toward the first opening from the inside of the other end of the valve body so that the refrigerant flowing in from the first opening collides and the flow is delayed to reduce the pulsation of the refrigerant. It may include; a protrusion block disposed to protrude.
또한, 본 발명의 실시예에서는 상기 돌출블록의 상단부에는, 상기 제1 개구부에서 유입되는 냉매가 충돌하며 흐름이 지연되며 상기 제2 개구부 방향으로 배출될 수 있도록 하는 평탄부;가 형성될 수 있다. In addition, in an embodiment of the present invention, a flat portion may be formed at the upper end of the protruding block so that the refrigerant flowing in from the first opening collides, the flow is delayed, and is discharged in the direction of the second opening.
또한, 본 발명의 실시예에서는 상기 맥동저감수단은, 상기 밸브바디의 타단부 내측에서 상기 제2 개구부와 상기 돌출블록 사이에 형성되는 제1 함몰부;를 더 포함하고, 상기 제1 함몰부의 내부에서는, 유입되는 냉매와 유출되는 냉매가 서로 충돌하며 맥동을 저감할 수 있다. In addition, in an embodiment of the present invention, the pulsation reducing means further includes a first depression formed between the second opening and the protrusion block inside the other end of the valve body, and the inside of the first depression is , the incoming refrigerant and the outgoing refrigerant collide with each other to reduce pulsation.
또한, 본 발명의 실시예에서는 상기 제1 함몰부는, 상기 돌출블록의 끝단부와 상기 제2 개구부의 끝단부를 잇는 곡선 형상일 수 있다. In addition, in the embodiment of the present invention, the first recessed portion may have a curved shape connecting the end of the protruding block and the end of the second opening.
또한, 본 발명의 실시예에서는 상기 돌출블록의 상단부에는, 상기 돌출블록이 형성됨에 따라 발생되는 냉매의 유동방해를 보상하도록, 상기 제1 개구부에서 유입되는 냉매가 추가적으로 배출되는 보조유동홀;이 형성될 수 있다. In addition, in an embodiment of the present invention, an auxiliary flow hole through which the refrigerant flowing in from the first opening is additionally discharged is formed at the upper end of the protruding block to compensate for the flow obstruction of the refrigerant generated as the protruding block is formed. can be
또한, 본 발명의 실시예에서는 상기 보조유동홀은, 상기 돌출블록의 상단부에 복수개가 형성될 수 있다.In addition, in the embodiment of the present invention, a plurality of auxiliary flow holes may be formed at the upper end of the protruding block.
또한, 본 발명의 실시예에서는 상기 맥동저감수단은, 상기 제2 개구부로 배출되는 냉매의 흐름을 방해하여 맥동이 저감되도록, 상기 밸브바디의 타단부 내측에서 상기 제2 개구부에 인접하여 배치되고, 상기 제1 개구부 방향으로 돌출된 배리어돌기;를 포함할 수 있다. In addition, in the embodiment of the present invention, the pulsation reducing means is disposed adjacent to the second opening inside the other end of the valve body so as to reduce the pulsation by interfering with the flow of the refrigerant discharged to the second opening, and a barrier protrusion protruding in the direction of the first opening.
또한, 본 발명의 실시예에서는 상기 배리어돌기는, 상기 제2 개구부의 폭 간격(D1) 사이에 배치되며, 상기 제2 개구부로 배출되는 냉매의 흐름을 방해하며 맥동을 저감할 수 있다. In addition, in the embodiment of the present invention, the barrier protrusion is disposed between the width gap D1 of the second opening, it is possible to prevent the flow of the refrigerant discharged to the second opening to reduce the pulsation.
또한, 본 발명의 실시예에서는 상기 배리어돌기는 원기둥 형상일 수 있다. In addition, in an embodiment of the present invention, the barrier protrusion may have a cylindrical shape.
또한, 본 발명의 실시예에서는 상기 제2 개구부는 상기 밸브바디의 타측부에 복수개가 형성되고, 상기 맥동저감수단은, 상기 제1 개구부에서 상기 제2 개구부로 유동하는 냉매의 흐름을 분산시켜 맥동이 저감되도록, 상기 밸브바디의 타단부 내측에서 상기 복수개의 제2 개구부들 사이에 배치되고, 상기 제1 개구부 방향으로 돌출된 가이드돌기;를 포함할 수 있다. In addition, in the embodiment of the present invention, a plurality of the second openings are formed on the other side of the valve body, and the pulsation reducing means disperses the flow of refrigerant flowing from the first opening to the second opening to pulsate. To reduce this, it is disposed between the plurality of second openings inside the other end of the valve body, the guide projection protruding in the direction of the first opening; may include.
또한, 본 발명의 실시예에서는 상기 가이드돌기는 상기 밸브바디의 타단부 내측에 복수개가 배치되고, 복수개의 제2 개구부 중 하나의 양측에 배치되는 한 쌍의 가이드돌기는 각각 제2 개구부를 바라보는 방향으로 직선부;가 형성되며, 상기 밸브바디의 중앙측에서 상기 제2 개구부 방향으로 냉매의 흐름을 가이드할 수 있다. In addition, in the embodiment of the present invention, a plurality of the guide projections are disposed inside the other end of the valve body, and a pair of guide projections disposed on both sides of one of the plurality of second openings each face the second opening. A straight part in the direction; may be formed, and guide the flow of the refrigerant in the direction of the second opening from the central side of the valve body.
또한, 본 발명의 실시예에서는 상기 한 쌍의 직선부의 간격(D2)은, 상기 제2 개구부의 폭 간격(D1) 내에 배치될 수 있다. Also, in the embodiment of the present invention, the interval D2 of the pair of straight portions may be disposed within the width interval D1 of the second opening.
또한, 본 발명의 실시예에서는 상기 맥동저감수단은, 상기 밸브바디의 타단부 내측에서 상기 제2 개구부와 상기 가이드돌기 사이에 형성되는 제2 함몰부;를 더 포함하고, 상기 제2 함몰부의 내부에서는, 유입되는 냉매와 유출되는 냉매가 서로 충돌하며 맥동을 저감할 수 있다. In addition, in an embodiment of the present invention, the pulsation reducing means further includes a second depression formed between the second opening and the guide protrusion inside the other end of the valve body, and the inside of the second depression is , the incoming refrigerant and the outgoing refrigerant collide with each other to reduce pulsation.
또한, 본 발명의 실시예에서는 상기 맥동저감수단은, 상기 제1 개구부에서 유입되는 냉매가 충돌하며 흐름이 지연되어 맥동이 저감되도록, 상기 밸브바디의 타단부 내측에서 상기 제2 개구부의 하단부에 연결되고, 상기 제1 개구부 방향으로 돌출되게 배치되는 베이스블록;을 포함할 수 있다.In addition, in the embodiment of the present invention, the pulsation reducing means is connected to the lower end of the second opening inside the other end of the valve body so that the refrigerant flowing in from the first opening collides and the flow is delayed to reduce the pulsation. and a base block disposed to protrude in the direction of the first opening.
또한, 본 발명의 실시예에서는 상기 베이스블록의 상단부 외측 둘레에는 라운딩부가 형성되고, 상기 제1 개구부에서 유입되는 냉매는 상기 베이스블록의 상단부에 충돌한 후에, 상기 라운딩부를 따라 상기 제2 개구부 방향으로 흐름이 유동될 수 있다. In addition, in an embodiment of the present invention, a rounding part is formed around the outer periphery of the upper end of the base block, and after the refrigerant flowing in from the first opening collides with the upper end of the base block, the second opening along the rounding part The flow may flow.
또한, 본 발명의 실시예에서는 상기 베이스블록에는, 상기 베이스블록의 중앙측에서 상기 제2 개구부 방향으로 신장되는 신장돌기;가 형성되고, 상기 신장돌기는 상기 베이스블록의 중앙측에서 상기 제2 개구부 방향으로 냉매의 흐름을 가이드할 수 있다. In addition, in the embodiment of the present invention, the base block has an extension protrusion extending in the direction of the second opening from the center side of the base block; the extension protrusion is formed with the second opening part from the center side of the base block It is possible to guide the flow of refrigerant in the direction.
또한, 본 발명의 실시예에서는 상기 신장돌기의 폭 간격(D4)은 상기 제2 개구부의 폭 간격(D1) 사이에 배치될 수 있다.In addition, in the embodiment of the present invention, the width interval D4 of the extension protrusion may be disposed between the width interval D1 of the second opening.
본 발명인 사판식 압축기는, 실린더 보어가 형성된 실린더 블록; 상기 실린더 블록의 전방에 결합되며 크랭크실을 형성하는 전방하우징; 상기 실린더 블록의 후방에 결합되며 흡입실 및 토출실을 형성하는 후방하우징; 및 상기 흡입실에 형성된 흡입구에 배치되는 제1항의 체크밸브;를 포함할 수 있다. The swash plate compressor of the present invention includes a cylinder block having a cylinder bore; a front housing coupled to the front of the cylinder block and forming a crankcase; a rear housing coupled to the rear of the cylinder block and forming a suction chamber and a discharge chamber; and the check valve of claim 1 disposed at the suction port formed in the suction chamber.
본 발명에 따르면, 사판의 움직임에 따라 실린더보어의 내부를 피스톤이 왕복운동을 하고, 이때 필연적으로 냉매 유동에 맥동이 발생되는데, 이러한 맥동 현상을 체크밸브의 내부에서 냉매의 유동 지연을 통하여 저감할 수 있게 된다. According to the present invention, the piston reciprocates inside the cylinder bore according to the movement of the swash plate, and at this time, a pulsation is inevitably generated in the refrigerant flow. be able to
이는 궁극적으로 사판식 압축기의 진동 및 소음을 저감할 수 있어, 품질 향상에 기여할 수 있다. This can ultimately reduce vibration and noise of the swash plate compressor, thereby contributing to quality improvement.
도 1은 종래 체크밸브를 나타낸 도면.1 is a view showing a conventional check valve.
도 2는 도 1에 개시된 종래 체크밸브가 사판식 압축기의 후방하우징에 장착된 상태를 나타낸 측단면도.Figure 2 is a side cross-sectional view showing a state in which the conventional check valve disclosed in Figure 1 is mounted on the rear housing of the swash plate compressor.
도 3은 본 발명인 사판식 압축기의 구조를 나타낸 측단면도.Figure 3 is a side cross-sectional view showing the structure of the present invention swash plate compressor.
도 4는 본 발명인 체크밸브의 제1 실시예를 나타낸 도면.Figure 4 is a view showing a first embodiment of the present invention check valve.
도 5는 도 4에 개시된 체크밸브가 후방하우징의 토출실에 배치된 상태를 나타낸 도면.5 is a view showing a state in which the check valve disclosed in FIG. 4 is disposed in the discharge chamber of the rear housing.
도 6은 종래 체크밸브와 본 발명의 체크밸브간의 맥동 정도를 비교한 도면.Figure 6 is a view comparing the degree of pulsation between the conventional check valve and the check valve of the present invention.
도 7은 본 발명인 체크밸브의 제2 실시예를 나타낸 측단면도.Figure 7 is a side cross-sectional view showing a second embodiment of the present invention check valve.
도 8은 도 7에 개시된 체크밸브에 대한 평면도.Figure 8 is a plan view of the check valve disclosed in Figure 7;
도 9는 본 발명인 체크밸브의 제2 실시예의 다른 형태를 나타낸 측단면도.9 is a side cross-sectional view showing another form of the second embodiment of the present invention check valve.
도 10은 본 발명인 체크밸브의 제3 실시예를 나타낸 측단면도.Figure 10 is a side cross-sectional view showing a third embodiment of the check valve of the present invention.
도 11은 도 10에 개시된 체크밸브에 대한 평면도.11 is a plan view of the check valve disclosed in FIG.
도 12는 본 발명인 체크밸브의 제4 실시예를 나타낸 측단면도.12 is a side cross-sectional view showing a fourth embodiment of the check valve of the present invention.
도 13은 도 12에 개시된 체크밸브에 대한 평면도.13 is a plan view of the check valve disclosed in FIG. 12 .
도 14는 본 발명인 체크밸브의 제5 실시예를 나타낸 측단면도.Figure 14 is a side cross-sectional view showing a fifth embodiment of the present invention check valve.
도 15는 도 14에 개시된 체크밸브에 대한 평면도.Figure 15 is a plan view of the check valve disclosed in Figure 14.
이하, 첨부된 도면을 참고하여 본 발명에 따른 체크밸브 및 이를 포함하는 사판식 압축기의 바람직한 실시예들을 상세히 설명하도록 한다. Hereinafter, preferred embodiments of the check valve and the swash plate compressor including the same according to the present invention will be described in detail with reference to the accompanying drawings.
우선 도 3을 참고하여 본 발명이 적용되는 사판식 압축기의 기본 형태에 대해 설명하도록 한다. 다만 본 발명이 반드시 이러한 구조에 한정되어 적용되는 것은 아니며, 사판식 압축기에 대한 설명은 본 발명을 이해하는 한도내에서만 유효하다.First, a basic form of a swash plate compressor to which the present invention is applied will be described with reference to FIG. 3 . However, the present invention is not necessarily limited to this structure, and the description of the swash plate compressor is effective only within the limits of understanding the present invention.
도 3을 참고하면, 사판식 압축기(10)에는 외관과 골격의 일부를 형성하는 실린더 블럭(20)이 구비된다. 이때, 실린더 블럭(20)의 중앙을 관통하여 센터 보어(21)가 형성되며, 이 센터 보어(21)에는 샤프트(94)가 회전 가능하게 설치된다.Referring to FIG. 3 , the swash plate compressor 10 is provided with a cylinder block 20 that forms a part of the exterior and the skeleton. At this time, a center bore 21 is formed through the center of the cylinder block 20 , and a shaft 94 is rotatably installed in the center bore 21 .
실린더 블럭(20), 전방하우징(30) 및 후방하우징(40)을 포함하여 케이싱(60)으로 지칭될 수 있다. The cylinder block 20, including the front housing 30 and the rear housing 40 may be referred to as a casing (60).
센터 보어(21)를 방사상으로 둘러싸도록 복수의 실린더 보어(22)가 실린더 블럭(20)을 관통하여 형성되며, 실린더 보어(22)의 내부에는 피스톤(70)이 직선 왕복 운동 가능하게 설치된다. 이때, 피스톤(70)은 원기둥 형상으로 형성되고, 실린더 보어(22)는 이에 대응되는 원통형의 공간이며, 피스톤(70)의 왕복 운동에 의해 실린더 보어(22) 내의 냉매가 압축된다. 실린더 보어(22)와 피스톤(70)은 압축실을 형성한다. A plurality of cylinder bores 22 are formed to pass through the cylinder block 20 so as to radially surround the center bore 21 , and a piston 70 is installed in the cylinder bore 22 to be capable of linear reciprocating motion. At this time, the piston 70 is formed in a cylindrical shape, the cylinder bore 22 is a cylindrical space corresponding thereto, and the refrigerant in the cylinder bore 22 is compressed by the reciprocating motion of the piston 70 . The cylinder bore 22 and the piston 70 form a compression chamber.
실린더 블럭(20)의 전방에 전방하우징(30)이 결합된다. 전방하우징(30)은 실린더 블럭(20)과의 대향면이 요입되어 실린더 블럭(20)과 함께 내부에 크랭크실(31)을 형성한다.The front housing 30 is coupled to the front of the cylinder block 20 . The front housing 30 has a face opposite to the cylinder block 20 indented to form a crank chamber 31 therein together with the cylinder block 20 .
전방하우징(30)의 전방에는 엔진 등 외부 동력원(미도시)과 연결되는 풀리(32)가 회전 가능하게 설치되며, 풀리(32)의 회전에 연동하여 샤프트(94)가 회전하게 된다.A pulley 32 connected to an external power source (not shown) such as an engine is rotatably installed in front of the front housing 30 , and the shaft 94 rotates in association with the rotation of the pulley 32 .
실린더 블럭(20)의 후방에는 후방하우징(40)이 결합된다. 이때, 후방하우징(40)에는 실린더 보어(22)와 선택적으로 연통되게, 후방하우징(40)의 외주 측 가장자리에 인접한 위치를 따라 토출실(41)이 형성된다. A rear housing 40 is coupled to the rear of the cylinder block 20 . At this time, the discharge chamber 41 is formed in the rear housing 40 along a position adjacent to the outer peripheral side edge of the rear housing 40 to selectively communicate with the cylinder bore 22 .
그리고 흡입구(45)는 후방하우징(40)의 일측에 형성되고, 후방하우징(40)의 중앙측 부위에 배치되는 흡입실(42)과 연결된다. 다만 반드시 이에 한정되는 것은 아니고, 압축기의 종류에 따라 다른 위치도 가능하다. In addition, the suction port 45 is formed on one side of the rear housing 40 , and is connected to the suction chamber 42 disposed in the central portion of the rear housing 40 . However, the present invention is not necessarily limited thereto, and other positions are possible depending on the type of compressor.
이때, 실린더 블럭(20)과 후방하우징(40) 사이에는 밸브플레이트(50)가 개재되며, 토출실(41)은 밸브플레이트(50)에 형성되는 토출구를 통해 실린더 보어(22)와 연통된다.At this time, the valve plate 50 is interposed between the cylinder block 20 and the rear housing 40 , and the discharge chamber 41 communicates with the cylinder bore 22 through a discharge port formed in the valve plate 50 .
또한, 샤프트(94)에는 로터(93)가 외주면에 배치되고, 로터(93)는 링크(95)에 의해 사판(91)과 연동되며, 사판(91)의 테두리를 따라 구비되는 슈(62)에 의해 각각의 피스톤(70)과 연결되고, 사판(91)의 회전에 의해 피스톤(70)은 실린더 보어(22) 내에서 직선 왕복 운동하게 된다. In addition, a rotor 93 is disposed on the outer peripheral surface of the shaft 94 , and the rotor 93 is interlocked with the swash plate 91 by a link 95 , and a shoe 62 provided along the edge of the swash plate 91 . is connected to each piston 70 by the swash plate 91 and the piston 70 is linearly reciprocated within the cylinder bore 22 by the rotation of the swash plate 91 .
이때, 압축기(10)의 냉매 토출량이 조절될 수 있도록, 샤프트(94)에 대한 사판(91)의 각도가 가변될 수 있게 설치되는데 이를 위해, 토출실(41)과 크랭크실(31)을 연통하는 유로의 개도가 압력조절밸브(미도시)에 의해 조절된다.At this time, the angle of the swash plate 91 with respect to the shaft 94 is variable so that the refrigerant discharge amount of the compressor 10 can be adjusted. To this end, the discharge chamber 41 and the crank chamber 31 are communicated. The opening degree of the flow path is controlled by a pressure control valve (not shown).
상기와 같은 구성의 종래 사판식 압축기는 실린더 블럭(20)에 형성된 다수의 실린더 보어(22)가 샤프트(94)를 중심으로 방사상으로 이격되게 배치되는 이른 바 방사 대칭의 구조를 이루고 있다. The conventional swash plate compressor having the above configuration has a so-called radially symmetrical structure in which a plurality of cylinder bores 22 formed in the cylinder block 20 are radially spaced apart from each other with respect to the shaft 94 .
상기와 같은 구조를 통해 사판(91)이 회전하게 되면, 복수의 피스톤(70)이 운동을 하게 되어 냉매를 압축하고, 유압에 의해 밸브도어가 개방되면서 밸브플레이트(50)의 토출구를 통해 토출실(41)로 압축된 냉매를 밀어 내게 된다When the swash plate 91 rotates through the structure as described above, the plurality of pistons 70 move to compress the refrigerant, and as the valve door is opened by hydraulic pressure, the discharge chamber through the discharge port of the valve plate 50 (41) pushes the compressed refrigerant
여기서 외부와 흡입실(42)을 연결하는 흡입통로(43)상에는 체크밸브(100)가 배치되어 있다. 체크밸브(100)는 사판(61)의 움직임에 따라 피스톤(70)과 실린더 보어(22)의 내부가 형성하는 압력에 의해 외부에서 냉매가 흡입실(42)로 유입되도록 한다. 상기 체크밸브(100)는 냉매가 유입될 때, 비교적 균일한 압력이 유지되도록 하여 압축기 작동시 소음 및 진동을 완화하는 효과를 발생시키게 된다.Here, the check valve 100 is disposed on the suction passage 43 connecting the outside and the suction chamber 42 . The check valve 100 allows the refrigerant to flow into the suction chamber 42 from the outside by the pressure formed inside the piston 70 and the cylinder bore 22 according to the movement of the swash plate 61 . When the refrigerant is introduced into the check valve 100, a relatively uniform pressure is maintained, thereby reducing noise and vibration during operation of the compressor.
도 4는 본 발명인 체크밸브(100)의 제1 실시예를 나타낸 도면이고, 도 5는 도 4에 개시된 체크밸브(100)가 후방하우징(40)의 토출실에 배치된 상태를 나타낸 도면이며, 도 6은 종래 체크밸브(100)와 본 발명의 체크밸브(100)간의 맥동 정도를 비교한 도면이다. 4 is a view showing a first embodiment of the check valve 100 according to the present invention, and FIG. 5 is a view showing a state in which the check valve 100 disclosed in FIG. 4 is disposed in the discharge chamber of the rear housing 40, 6 is a view comparing the degree of pulsation between the conventional check valve 100 and the check valve 100 of the present invention.
도 4 및 도 5를 참고하면, 본 발명인 체크밸브(100)의 제1 실시예는 제1 개구부(120), 후크부(112), 제2 개구부(130), 밸브바디(110) 및 맥동저감수단(200)을 포함하여 구성될 수 있다.4 and 5, the first embodiment of the check valve 100 according to the present invention has a first opening 120, a hook part 112, a second opening 130, a valve body 110, and pulsation reduction. means 200 may be included.
상기 밸브바디(110)는 체크밸브(100)의 몸체를 형성하고, 전반적으로 원통형상으로 구현될 수 있다. The valve body 110 forms the body of the check valve 100, and may be implemented in an overall cylindrical shape.
상기 제1 개구부(120)는 상기 밸브바디(110) 일측의 중앙부에 배치되고 냉매가 유입되는 부위일 수 있다. 그리고 상기 제2 개구부(130)는 상기 밸브바디(110)의 타측 둘레를 따라 배치되고, 상기 제1 개구부(120)에서 유입된 냉매가 배출되는 부위일 수 있다. The first opening 120 may be disposed in the central portion of one side of the valve body 110 and may be a portion through which the refrigerant flows. In addition, the second opening 130 may be disposed along the periphery of the other side of the valve body 110 , and may be a portion through which the refrigerant introduced from the first opening 120 is discharged.
상기 후크부(112)는 상기 밸브바디(110)의 일측 둘레를 따라 배치될 수 있으며, 후방하우징(40)의 흡입구(45)에 형성된 결착홈(45a)에 결착될 수 있다. The hook part 112 may be disposed along the circumference of one side of the valve body 110 , and may be coupled to the coupling groove 45a formed in the suction port 45 of the rear housing 40 .
다음 상기 맥동저감수단(200)은 냉매가 상기 제1 개구부(120)에서 유입되어 상기 제2 개구부(130)로 배출될 때, 냉매의 흐름을 지연시켜 냉매의 맥동이 저감되도록, 상기 밸브바디(110)의 타단부 내측에 배치될 수 있다. Then, the pulsation reducing means 200 delays the flow of the refrigerant to reduce the pulsation of the refrigerant when the refrigerant is introduced from the first opening 120 and discharged to the second opening 130, the valve body ( 110) may be disposed inside the other end.
본 발명의 제1 실시예에서 상기 맥동저감수단(200)은, 상기 제1 개구부(120)에서 유입되는 냉매가 충돌하며 흐름이 지연되어 냉매의 맥동이 저감되도록, 상기 밸브바디(110)의 타단부 내측에서 상기 제1 개구부(120) 방향으로 돌출되게 배치되는 돌출블록(210)을 포함할 수 있다. In the first embodiment of the present invention, the pulsation reducing means 200 is the other of the valve body 110 so that the refrigerant flowing in from the first opening 120 collides and the flow is delayed to reduce the pulsation of the refrigerant. It may include a protrusion block 210 disposed to protrude in the direction of the first opening 120 from the inside of the end.
상기 돌출블록(210)의 상단부에는, 상기 제1 개구부(120)에서 유입되는 냉매가 충돌하며 흐름이 지연되며 상기 제2 개구부(130) 방향으로 배출될 수 있도록 하는 평탄부(213)가 형성될 수 있다. At the upper end of the protruding block 210 , a flat portion 213 for allowing the refrigerant flowing in from the first opening 120 to collide and flow is delayed and to be discharged in the direction of the second opening 130 is formed. can
도 5를 참고하면, 상기 돌출블록(210)이 배치된 상태를 확인할 수 있으며, 상기 제1 개구부(120)를 통해 유입되는 냉매는 X 영역이 나타내는 상기 돌출블록(210)의 상부에서 충돌하여 상기 돌출블록(210)의 외측 둘레를 따라 분산되게 된다. Referring to FIG. 5 , it can be seen that the protruding block 210 is disposed, and the refrigerant flowing in through the first opening 120 collides with the upper portion of the protruding block 210 indicated by the X region. It is distributed along the outer circumference of the protrusion block 210 .
그리고 상기 제2 개구부(130) 방향으로 진입하여 흡입실(42)로 유입되게 된다. Then, it enters in the direction of the second opening 130 and flows into the suction chamber 42 .
이때 냉매는 상기 돌출블록(210)에 충돌하여 외측 둘레방향으로 우회하는 과정에서 흐름에 지연이 발생하게 된다. 즉 냉매의 유속은 저하되고, 체크밸브(100)의 내부에 잔류되는 시간이 길어짐에 따라 냉매의 맥동은 저감되게 된다. At this time, the refrigerant collides with the protruding block 210 and causes a delay in the flow in the process of detouring in the outer circumferential direction. That is, the flow rate of the refrigerant is lowered, and as the time remaining inside the check valve 100 increases, the pulsation of the refrigerant is reduced.
다르게 표현하면, 제1 개구부(120)에서 유입된 냉매가 제2 개구부(130)로 유출되는 시간이 길어지게 됨에 따라, 체크밸브(100)를 통과하는 동안 자연스럽게 지연효과로 냉매의 맥동이 저감되게 된다. In other words, as the time for the refrigerant flowing in from the first opening 120 to flow out into the second opening 130 becomes longer, the pulsation of the refrigerant is naturally reduced due to the delay effect while passing through the check valve 100 . do.
또한 본 발명의 제1 실시예에서 상기 맥동저감수단(200)은, 상기 밸브바디(110)의 타단부 내측에서 상기 제2 개구부(130)와 상기 돌출블록(210) 사이에 형성되는 제1 함몰부(211)를 더 포함하여 구성될 수 있다. In addition, in the first embodiment of the present invention, the pulsation reducing means 200 is a first depression formed between the second opening 130 and the protruding block 210 inside the other end of the valve body 110 . It may be configured to further include a part 211 .
상기 제1 함몰부(211)의 내부에서는, 상기 제1 함몰부(211)로 유입되는 냉매와 상기 제1 함몰부(211)에서 유출되는 냉매간에 서로 충돌이 발생하며, 냉매의 유속이 저감되게 되고 맥동이 저감되는 효과를 얻을 수 있다. Inside the first recessed part 211 , a collision occurs between the refrigerant flowing into the first recessed part 211 and the refrigerant flowing out of the first recessed part 211 , and the flow rate of the coolant is reduced. and a pulsation reduction effect can be obtained.
즉 본 발명의 제1 실시예에서는 상기 평탄부(213)가 형성된 돌출블록(210) 및 제1 함몰부(211)의 구성을 통해 체크밸브(100)의 내부에서 충돌을 통해 냉매의 유속을 저감시켜 맥동을 저감하는 효과를 달성하는 것이다. That is, in the first embodiment of the present invention, the flow rate of the refrigerant is reduced through collision inside the check valve 100 through the configuration of the protrusion block 210 and the first depression 211 in which the flat portion 213 is formed. to achieve the effect of reducing pulsation.
여기서 상기 제1 함몰부(211)는, 상기 돌출블록(210)의 끝단부와 상기 제2 개구부(130)의 끝단부를 잇는 곡선 형상일 수 있다. 이는 상기 돌출블록(210)의 끝단부와 상기 제2 개구부(130)의 끝단부를 곡선 형상으로 연결함으로써, 제1 함몰부(211)에서 상쇄되어 유속이 저감된 냉매가 부드럽게 제2 개구부(130)로 배출될 수 있도록 하기 위함이다. Here, the first recessed portion 211 may have a curved shape connecting the end of the protruding block 210 and the end of the second opening 130 . This is by connecting the end of the protruding block 210 and the end of the second opening 130 in a curved shape, so that the refrigerant with a reduced flow rate by offsetting the first recessed portion 211 smoothly flows through the second opening 130 . in order to be released into
상기 평탄부(213)가 형성된 돌출블록(210) 및 제1 함몰부(211)를 형성함으로써, 냉매의 유동이 지연되어, 냉매의 유속이 감소하였고, 이는 체크밸브(100)의 내부에서 냉매가 잔류되는 시간이 증가하게 되어, 궁극적으로는 냉매의 맥동이 저감되는 것이다. By forming the protruding block 210 and the first recessed portion 211 having the flat portion 213 formed therein, the flow of the coolant is delayed, and the flow rate of the coolant is reduced, which means that the coolant inside the check valve 100 is The remaining time is increased, and ultimately, the pulsation of the refrigerant is reduced.
다음 도 6을 참고하면, 종래 체크밸브(A)와 본 발명의 체크밸브(B)간의 흡입포트에서의 맥동 압력을 비교한 실험데이터가 개시되어 있다. Next, referring to FIG. 6, experimental data comparing the pulsating pressure at the suction port between the conventional check valve (A) and the check valve (B) of the present invention is disclosed.
종래 체크밸브(A)의 경우에는 맥동 압력이 0.0248 bar 로 측정되었으며, 본 발명의 체크밸브(B)의 경우에는 맥동 압력이 0.0214 bar 로 측정되었다. 대략 13% 정도의 맥동 압력 감소 결과가 도출되었다. In the case of the conventional check valve (A), the pulsating pressure was measured to be 0.0248 bar, and in the case of the check valve (B) of the present invention, the pulsating pressure was measured to be 0.0214 bar. About 13% of the pulsation pressure was reduced.
즉 맥동 압력 감소 결과를 통해 알 수 있듯이, 종래 체크밸브(A)에 비해 본 발명의 체크밸브(B)가 냉매의 유속을 저감시킴으로써, 전반적으로 냉매의 맥동을 저감하는 효과를 도출하고 있음을 확인할 수 있다. That is, as can be seen from the result of reducing the pulsation pressure, it is confirmed that the check valve (B) of the present invention reduces the flow rate of the refrigerant compared to the conventional check valve (A), thereby deriving the effect of reducing the pulsation of the refrigerant as a whole. can
한편, 도 7은 본 발명인 체크밸브(100)의 제2 실시예를 나타낸 측단면도이고, 도 8은 도 7에 개시된 체크밸브(100)에 대한 평면도이며, 도 9는 본 발명인 체크밸브(100)의 제2 실시예의 다른 형태를 나타낸 측단면도이다. On the other hand, Figure 7 is a side cross-sectional view showing a second embodiment of the check valve 100 of the present invention, Figure 8 is a plan view of the check valve 100 disclosed in Figure 7, Figure 9 is the check valve 100 of the present invention. It is a side cross-sectional view showing another form of the second embodiment.
도 7 내지 도 9을 참고하면, 본 발명인 체크밸브(100)의 제2 실시예 구조를 확인할 수 있다. 본 발명인 체크밸브(100)의 제2 실시예에서는 상술한 제1 개구부(120), 제2 개구부(130), 후크부(112), 밸브바디(110), 돌출블록(210), 제1 함몰부(211) 이외에 보조유동홀(215)을 더 포함할 수 있다. 7 to 9, the structure of the second embodiment of the check valve 100 according to the present invention can be confirmed. In the second embodiment of the check valve 100 according to the present invention, the first opening 120 , the second opening 130 , the hook portion 112 , the valve body 110 , the protruding block 210 , and the first depression In addition to the part 211 , it may further include an auxiliary flow hole 215 .
상기 제1 개구부(120), 제2 개구부(130), 후크부(112), 밸브바디(110), 돌출블록(210) 및 제1 함몰부(211)에 대한 설명은 제1 실시예와 동일하므로 이하 설명은 생략하도록 한다. The descriptions of the first opening 120 , the second opening 130 , the hook part 112 , the valve body 110 , the protruding block 210 , and the first recessed part 211 are the same as those of the first embodiment. Therefore, the following description will be omitted.
상기 보조유동홀(215)은 상기 돌출블록(210)의 상단부에 형성될 수 있다. 이러한 상기 보조유동홀(215)은 상기 돌출블록(210)이 형성됨에 따라 발생되는 냉매의 유동방해를 보상하도록, 상기 제1 개구부(120)에서 유입되는 냉매가 추가적으로 흡입실(42)로 배출될 수 있도록 제공될 수 있다. The auxiliary flow hole 215 may be formed at the upper end of the protrusion block 210 . The auxiliary flow hole 215 allows the refrigerant flowing in from the first opening 120 to be additionally discharged to the suction chamber 42 so as to compensate for the flow obstruction of the refrigerant generated as the protrusion block 210 is formed. may be provided for.
도 7을 참고하면, 상기 보조유동홀(215)이 형성됨에 따라 제1 개구부(120)에서 유입된 냉매의 일부는 상기 보조유동홀(215)을 통해 곧바로 흡입실(42)로 유입되며, 상기 돌출블록(210)과 상기 제1 함몰부(211)에서의 유속 저감에 따른 냉매 공급량 변화를 어느정도 보상할 수 있게 된다.Referring to FIG. 7 , as the auxiliary flow hole 215 is formed, a portion of the refrigerant introduced from the first opening 120 is directly introduced into the suction chamber 42 through the auxiliary flow hole 215 , and the It is possible to compensate to some extent a change in the amount of refrigerant supplied due to a decrease in the flow rate in the protruding block 210 and the first recessed portion 211 .
도 8에는 상기 보조유동홀(215)이 비교적 큰 직경으로 하나가 형성되는 형태가 개시되어 있고, 도 9에는 상기 보조유동홀(215)이 비교적 작은 진격으로 복수개가 상기 돌출블록(210)의 상단부에 형성되는 형태가 개시되어 있다. 상기 보조유동홀(215)의 위치, 크기 및 개수는 설계사양에 따라 변경될 수 있다. 8 shows a form in which one auxiliary flow hole 215 is formed with a relatively large diameter, and in FIG. 9 , a plurality of auxiliary flow holes 215 are formed at the upper end of the protruding block 210 with a relatively small attack. The form formed in is disclosed. The position, size, and number of the auxiliary flow holes 215 may be changed according to design specifications.
한편, 도 10는 본 발명인 체크밸브(100)의 제3 실시예를 나타낸 측단면도이고, 도 11은 도 10에 개시된 체크밸브(100)에 대한 평면도이다.On the other hand, Figure 10 is a side cross-sectional view showing a third embodiment of the check valve 100 of the present invention, Figure 11 is a plan view of the check valve 100 disclosed in Figure 10.
본 발명인 체크밸브(100)의 제3 실시예에서 제1 개구부(120), 제2 개구부(130), 후크부(112), 밸브바디(110)에 대한 설명은 제1 실시예와 동일하므로 이하 설명은 생략하도록 한다. 이하에서는 제1 실시예와 차이를 보이는 맥동저감수단(200)에 대해 설명하도록 한다. The description of the first opening 120, the second opening 130, the hook part 112, and the valve body 110 in the third embodiment of the check valve 100 according to the present invention is the same as that of the first embodiment. The description will be omitted. Hereinafter, the pulsation reducing means 200 which is different from the first embodiment will be described.
도 10 및 도 11를 참고하면, 본 발명인 체크밸브(100)의 제3 실시예에서 맥동저감수단(200)은 배리어돌기(220)를 포함하여 구성될 수 있다. 10 and 11 , in the third embodiment of the check valve 100 according to the present invention, the pulsation reducing means 200 may include a barrier protrusion 220 .
상기 배리어돌기(220)는 상기 제2 개구부(130)로 배출되는 냉매의 흐름을 방해하여 맥동이 저감되도록, 상기 밸브바디(110)의 타단부 내측에서 상기 제2 개구부(130)에 인접하여 배치되고, 상기 제1 개구부(120) 방향으로 돌출되게 형성될 수 있다. The barrier protrusion 220 is disposed adjacent to the second opening 130 inside the other end of the valve body 110 so as to reduce pulsation by obstructing the flow of the refrigerant discharged to the second opening 130 . and may be formed to protrude in the direction of the first opening 120 .
도 10을 참고하면, 본 발명의 실시예에서는 상기 배리어돌기(220)는 원기둥 형상으로 구현될 수 있으며, 밸브바디(110)의 타측 둘레를 따라 4개의 제2 개구부(130)가 형성됨에 따라 4개의 배리어돌기(220)가 각각 제2 개구부(130)에 인접하여 배치될 수 있다. 물론 상기 배리어돌기(220)의 형상은 원기둥 형상으로 한정되는 것은 아니다. Referring to FIG. 10 , in the embodiment of the present invention, the barrier protrusion 220 may be implemented in a cylindrical shape, and as four second openings 130 are formed along the periphery of the other side of the valve body 110 , 4 The barrier protrusions 220 may be disposed adjacent to the second opening 130 , respectively. Of course, the shape of the barrier protrusion 220 is not limited to a cylindrical shape.
상기 배리어돌기(220)가 제2 개구부(130)에 인접하여 배치되어 있음에 따라 제1 개구부(120)에서 유입되는 냉매는 상기 배리어돌기(220)를 통과할 때, 그 유동에 방해를 받게 되어, 우회하며 제2 개구부(130) 방향으로 진입하게 된다. As the barrier protrusion 220 is disposed adjacent to the second opening 130 , the refrigerant flowing in from the first opening 120 is prevented from flowing when passing through the barrier protrusion 220 . , and enters in the direction of the second opening 130 .
도 11을 참고하면, 상기 배리어돌기(220)는 상기 제2 개구부(130)의 폭 간격(D1) 사이에 배치되며, 상기 제2 개구부(130)로 배출되는 냉매의 흐름을 방해하며 맥동을 저감하는 기능을 하게 된다. Referring to FIG. 11 , the barrier protrusion 220 is disposed between the width gaps D1 of the second opening 130 , and prevents the flow of refrigerant discharged to the second opening 130 and reduces pulsation. function to do.
여기서 상기 배리어돌기(220)는 상기 제2 개구부(130)의 폭 간격(D1) 보다는 작은 폭으로 형성될 수 있다.Here, the barrier protrusion 220 may be formed to have a width smaller than the width D1 of the second opening 130 .
그리고 상기 배리어돌기(220)는 상기 제2 개구부(130)의 폭 간격(D1) 중앙부에 배치되는 것이 냉매가 제2 개구부(130)로 배출될 때, 제2 개구부(130)의 좌우 방향에서 균형적인 유동방해를 유도하기 위해 바람직할 수 있다. In addition, the barrier protrusion 220 is disposed in the center of the width gap D1 of the second opening 130 to be balanced in the left and right direction of the second opening 130 when the refrigerant is discharged to the second opening 130 . It may be desirable to induce a negative flow obstruction.
도 11에 개시된 냉매의 유동 방향을 나타내는 화살표와 같이 냉매는 상기 배리어돌기(220)를 우회하며 제2 개구부(130)를 통해 흡입실(42)로 배출되게 된다. 11 , the refrigerant bypasses the barrier protrusion 220 and is discharged into the suction chamber 42 through the second opening 130 as shown by the arrow indicating the flow direction of the refrigerant.
이러한 상기 배리어돌기(220)에 의한 유동방해로 냉매의 유속이 저하되고, 체크밸브(100)의 내부에 잔류되는 시간이 증가하여, 결과적으로는 냉매의 맥동을 저감하는 효과를 도출할 수 있게 된다. The flow rate of the refrigerant is lowered due to the flow obstruction by the barrier protrusion 220 , and the time remaining inside the check valve 100 increases, resulting in an effect of reducing the pulsation of the refrigerant. .
한편, 도 12는 본 발명인 체크밸브(100)의 제4 실시예를 나타낸 측단면도이고, 도 13는 도 12에 개시된 체크밸브(100)에 대한 평면도이다. On the other hand, Figure 12 is a side cross-sectional view showing a fourth embodiment of the check valve 100 according to the present invention, Figure 13 is a plan view of the check valve 100 disclosed in Figure 12.
본 발명인 체크밸브(100)의 제4 실시예에서 제1 개구부(120), 제2 개구부(130), 후크부(112), 밸브바디(110)에 대한 설명은 제1 실시예와 동일하므로 이하 설명은 생략하도록 한다. 이하에서는 제1 실시예와 차이를 보이는 맥동저감수단(200)에 대해 설명하도록 한다. The description of the first opening 120, the second opening 130, the hook part 112, and the valve body 110 in the fourth embodiment of the check valve 100 according to the present invention is the same as that of the first embodiment. The description will be omitted. Hereinafter, the pulsation reducing means 200 which is different from the first embodiment will be described.
본 발명의 제4 실시예에서 상기 맥동저감수단(200)은 상기 제1 개구부(120)에서 상기 제2 개구부(130)로 유동하는 냉매의 흐름을 분산시켜 맥동이 저감되도록, 상기 밸브바디(110)의 타단부 내측에서 상기 복수개의 제2 개구부(130)들 사이에 배치되고, 상기 제1 개구부(120) 방향으로 돌출된 가이드돌기(230)를 포함하여 구성될 수 있다. In the fourth embodiment of the present invention, the pulsation reducing means 200 distributes the flow of the refrigerant flowing from the first opening 120 to the second opening 130 to reduce pulsation. ) disposed between the plurality of second openings 130 inside the other end thereof, and may include a guide protrusion 230 protruding in the direction of the first opening 120 .
도 13을 참고하면, 상기 가이드돌기(230)는 상기 밸브바디(110)의 타단부 내측에 복수개가 배치될 수 있다. Referring to FIG. 13 , a plurality of guide protrusions 230 may be disposed inside the other end of the valve body 110 .
그리고 복수개의 제2 개구부(130) 중 하나의 양측에 배치되는 한 쌍의 가이드돌기(230)는 각각 제2 개구부(130)를 바라보는 방향으로 직선부(231)가 형성될 수 있으며, 이러한 한 쌍의 직선부(231)는 상기 밸브바디(110)의 중앙측에서 상기 제2 개구부(130) 방향으로 냉매의 흐름을 가이드하게 된다. In addition, a pair of guide protrusions 230 disposed on both sides of one of the plurality of second openings 130 may each have a straight portion 231 formed in a direction facing the second opening 130 . The pair of straight portions 231 guide the flow of the refrigerant from the central side of the valve body 110 in the direction of the second opening 130 .
이때 상기 한 쌍의 직선부(231)의 간격(D2)은, 상기 제2 개구부(130)의 폭 간격(D1) 내에 배치될 수 있다. 이는 한 쌍의 직선부(231)에 의해 안내되는 냉매가 제2 개구부(130)로 원활하게 배출될 수 있도록 하기 위함이다. In this case, the interval D2 between the pair of straight portions 231 may be disposed within the width interval D1 of the second opening 130 . This is to allow the refrigerant guided by the pair of straight parts 231 to be smoothly discharged to the second opening 130 .
즉 상기 복수개의 가이드돌기(230)는 상기 복수개의 제2 개구부(130)들 사이에 배치되며, 제1 개구부(120)에서 유입되는 냉매와 충돌하며 냉매의 유속을 저감시키고, 냉매의 맥동을 저감하게 된다. That is, the plurality of guide protrusions 230 are disposed between the plurality of second openings 130 and collide with the refrigerant flowing in from the first opening 120 to reduce the flow rate of the refrigerant and reduce the pulsation of the refrigerant. will do
그리고 제2 개구부(130)로의 냉매 배출 흐름은 보상되도록, 예를 들어 제1 실시예에서의 보조유동홀(215)과 같이, 방해된 냉매 흐름만큼 냉매 공급이 보상될 수 있도록, 상기 직선부(231)를 형성한 것이다. And the refrigerant discharge flow to the second opening 130 is compensated, for example, such as the auxiliary flow hole 215 in the first embodiment, so that the refrigerant supply can be compensated for by the amount of the refrigerant flow hindered, the straight part ( 231) was formed.
결국 상기 가이드돌기(230)에 충돌하여 도 13에 개시된 냉매의 유동 방향을 나타내는 화살표와 같이 냉매는 상기 가이드돌기(230)를 우회하며 직선부(231)를 따라 안내되며 제2 개구부(130)를 통해 흡입실(42)로 배출되게 된다. As a result, the refrigerant collides with the guide protrusion 230 and is guided along the straight line portion 231 while bypassing the guide protrusion 230 as shown in the arrow indicating the flow direction of the refrigerant disclosed in FIG. It is discharged to the suction chamber 42 through.
이러한 상기 가이드돌기(230)에 의한 유동방해로 냉매의 유속이 저하되고, 체크밸브(100)의 내부에 잔류되는 시간이 증가하여, 결과적으로는 냉매의 맥동을 저감하는 효과를 도출할 수 있게 된다. The flow rate of the refrigerant is lowered due to the flow obstruction by the guide protrusion 230 , and the time remaining inside the check valve 100 increases, resulting in an effect of reducing the pulsation of the refrigerant. .
또한 한 쌍의 직선부(231)가 형성함으로써, 제2 개구부(130)로의 냉매 유동을 가이드하여 냉매 공급을 보상하게 된다. In addition, by forming a pair of straight portions 231 , the refrigerant flow is guided to the second opening 130 to compensate for the refrigerant supply.
다음으로 상기 맥동저감수단(200)은, 상기 밸브바디(110)의 타단부 내측에서 상기 제2 개구부(130)와 상기 가이드돌기(230) 사이에 형성되는 제2 함몰부(233)를 더 포함할 수 있다. 이러한 상기 제2 함몰부(233)의 내부에서는, 제1 실시예의 제1 함몰부(211)의 기능과 유사하게 유입되는 냉매와 유출되는 냉매가 서로 충돌하며 맥동을 저감하게 된다. Next, the pulsation reducing means 200 further includes a second recessed part 233 formed between the second opening 130 and the guide protrusion 230 inside the other end of the valve body 110 . can do. Similar to the function of the first recessed part 211 of the first embodiment, in the second recessed part 233, the incoming and outgoing coolant collide with each other to reduce pulsation.
즉 본 발명의 제4 실시예에서는 상기 가이드돌기(230), 직선부(231) 및 제2 함몰부(233)의 구성을 통해 체크밸브(100)의 내부에서 충돌을 통해 냉매의 유속을 저감시켜 맥동을 저감함과 동시에, 냉매의 유동을 가이드하며 냉매 유속 저감에 따른 냉매 유동을 보상하는 효과를 달성하는 것이다. That is, in the fourth embodiment of the present invention, the flow rate of the refrigerant is reduced through collision within the check valve 100 through the configuration of the guide protrusion 230, the straight part 231 and the second recessed part 233. It is to achieve the effect of reducing the pulsation, guiding the flow of the refrigerant and compensating the flow of the refrigerant according to the reduction in the flow rate of the refrigerant.
한편, 도 14은 본 발명인 체크밸브(100)의 제5 실시예를 나타낸 측단면도이고, 도 15은 도 14에 개시된 체크밸브(100)에 대한 평면도이다. On the other hand, Figure 14 is a side cross-sectional view showing a fifth embodiment of the check valve 100 of the present invention, Figure 15 is a plan view of the check valve 100 disclosed in Figure 14.
본 발명인 체크밸브(100)의 제5 실시예에서 제1 개구부(120), 제2 개구부(130), 후크부(112), 밸브바디(110)에 대한 설명은 제1 실시예와 동일하므로 이하 설명은 생략하도록 한다. 이하에서는 제1 실시예와 차이를 보이는 맥동저감수단(200)에 대해 설명하도록 한다. The description of the first opening 120, the second opening 130, the hook part 112, and the valve body 110 in the fifth embodiment of the check valve 100 according to the present invention is the same as that of the first embodiment. The description will be omitted. Hereinafter, the pulsation reducing means 200 which is different from the first embodiment will be described.
본 발명의 제5 실시예에서 상기 맥동저감수단(200)은 베이스블록(240) 및 신장돌기(245)를 포함하여 구성될 수 있다. In the fifth embodiment of the present invention, the pulsation reducing means 200 may be configured to include a base block 240 and an extension protrusion 245 .
상기 베이스블록(240)은 상기 제1 개구부(120)에서 유입되는 냉매가 충돌하며 흐름이 지연되어 맥동이 저감되도록, 상기 밸브바디(110)의 타단부 내측에서 상기 제2 개구부(130)의 하단부에 연결되고, 상기 제1 개구부(120) 방향으로 돌출되게 배치될 수 있다. The base block 240 has the lower end of the second opening 130 inside the other end of the valve body 110 so that the refrigerant flowing in from the first opening 120 collides and the flow is delayed to reduce pulsation. may be connected to and protrude in the direction of the first opening 120 .
이때 상기 베이스블록(240)의 상단부 외측 둘레에는 라운딩부(241)가 형성되고, 상기 제1 개구부(120)에서 유입되는 냉매는 상기 베이스블록(240)의 상단부에 충돌한 후에, 상기 라운딩부(241)를 따라 상기 제2 개구부(130) 방향으로 흐름이 유동되도록 구성될 수 있다. At this time, a rounding part 241 is formed around the outer periphery of the upper end of the base block 240, and after the refrigerant flowing in from the first opening 120 collides with the upper end of the base block 240, the rounding part ( 241), the flow may be configured to flow in the direction of the second opening 130 .
상기 베이스블록(240)의 상단 중앙부는 평탄하게 되어 있어, 상기 제1 개구부(120)에서 유입되는 냉매가 충돌하며 흐름이 지연되도록 한다. The upper central portion of the base block 240 is flat, so that the refrigerant flowing in from the first opening 120 collides and the flow is delayed.
도 14을 참고하면, 상기 베이스블록(240)이 배치된 상태를 확인할 수 있으며, 상기 제1 개구부(120)를 통해 유입되는 냉매는 상기 베이스블록(240)의 상단 중앙부에서 충돌하여 상기 베이스블록(240)의 외측 둘레를 따라 분산되게 된다. Referring to FIG. 14 , it can be seen that the base block 240 is disposed, and the refrigerant flowing in through the first opening 120 collides at the upper center of the base block 240 to collide with the base block ( 240) will be distributed along the outer perimeter.
그리고 상기 라운딩부(241)를 따라 부드럽게 흐름이 유도되며, 상기 제2 개구부(130) 방향으로 진입하여 흡입실(42)로 배출되게 된다. Then, the flow is gently induced along the rounding part 241 , it enters in the direction of the second opening 130 , and is discharged into the suction chamber 42 .
이때 냉매는 상기 베이스블록(240)에 충돌하여 외측 둘레방향으로 우회하는 과정에서 흐름에 지연이 발생하게 된다. 즉 냉매의 유속은 저하되고, 체크밸브(100)의 내부에 잔류되는 시간이 길어짐에 따라 냉매의 맥동은 저감되게 된다. At this time, the refrigerant collides with the base block 240 and causes a delay in the flow in the process of detouring in the outer circumferential direction. That is, the flow rate of the refrigerant is lowered, and as the time remaining inside the check valve 100 increases, the pulsation of the refrigerant is reduced.
다음 상기 신장돌기(245)는 상기 베이스블록(240)의 중앙측에서 상기 제2 개구부(130) 방향으로 신장되며 형성될 수 있다. 상기 신장돌기(245)는 상기 베이스블록(240)의 중앙측에서 상기 제2 개구부(130) 방향으로 냉매의 흐름을 가이드하는 기능을 수행할 수 있다. Next, the extension protrusion 245 may be formed by extending in the direction of the second opening 130 from the central side of the base block 240 . The extension protrusion 245 may perform a function of guiding the flow of the refrigerant in the direction of the second opening 130 from the central side of the base block 240 .
이러한 상기 신장돌기(245)의 폭 간격(D4)은 상기 제2 개구부(130)의 폭 간격(D1) 사이에 배치될 수 있다. 이에 따라 베이스블록(240)의 라운딩부(241)를 따라 제2 개구부(130) 방향으로 유도되는 냉매는 상기 신장돌기(245)에 의해 제2 개구부(130)로 안내되게 된다. The width gap D4 of the extension protrusion 245 may be disposed between the width gap D1 of the second opening 130 . Accordingly, the refrigerant guided in the direction of the second opening 130 along the rounding portion 241 of the base block 240 is guided to the second opening 130 by the extension protrusion 245 .
즉 본 발명의 제5 실시예에서는 상기 베이스블록(240) 및 신장돌기(245)의 구성을 통해 체크밸브(100)의 내부에서 충돌을 통해 냉매의 유속을 저감시켜 맥동을 저감하고, 냉매의 유동을 가이드하며 냉매 유속 저감에 따른 냉매 유동을 보상하는 효과를 달성하는 것이다. That is, in the fifth embodiment of the present invention, the pulsation is reduced by reducing the flow rate of the refrigerant through collision inside the check valve 100 through the configuration of the base block 240 and the extension protrusion 245 , and the flow of the refrigerant and to achieve the effect of compensating for the refrigerant flow according to the reduction of the refrigerant flow rate.
이상의 사항은 체크밸브 및 이를 포함하는 사판식 압축기의 특정한 실시예를 나타낸 것에 불과하다.The above is merely showing a specific embodiment of the check valve and the swash plate compressor including the same.
따라서 이하의 청구범위에 기재된 본 발명의 취지를 벗어나지 않는 한도내에서 본 발명이 다양한 형태로 치환, 변형될 수 있음을 당해 기술분야에서 통상의 지식을 가진 자는 용이하게 파악할 수 있다는 점을 밝혀 두고자 한다.Therefore, within the limits that do not depart from the spirit of the present invention described in the following claims, the present invention can be substituted and modified in various forms, so that those of ordinary skill in the art can easily grasp that do.
본 발명은 체크밸브 및 사판식 압축기에 관한 것으로 산업상 이용 가능성이 있다. The present invention relates to a check valve and a swash plate compressor, and has industrial applicability.
Claims (19)
- 일측의 중앙부에는 냉매가 유입되는 제1 개구부가 형성되고, 일측의 둘레에는 후방하우징의 흡입구에 형성된 결착홈에 결착되는 후크부가 형성되며, 타측에는 냉매가 배출되는 제2 개구부가 형성된 밸브바디; 및A valve body having a first opening through which the refrigerant flows in is formed in a central portion of one side, a hook portion fastened to a fastening groove formed in a suction port of the rear housing around one side is formed, and a second opening through which the refrigerant is discharged is formed on the other side thereof; and냉매가 상기 제1 개구부에서 유입되어 상기 제2 개구부로 배출될 때, 냉매의 흐름을 지연시켜 냉매의 맥동이 저감되도록, 상기 밸브바디의 타단부 내측에 배치되는 맥동저감수단;a pulsation reducing means disposed inside the other end of the valve body so that when the refrigerant flows in from the first opening and is discharged through the second opening, the refrigerant flow is delayed to reduce the pulsation of the refrigerant;을 포함하는 체크밸브.A check valve comprising a.
- 제1항에 있어서,According to claim 1,상기 맥동저감수단은,The pulsation reducing means,상기 제1 개구부에서 유입되는 냉매가 충돌하며 흐름이 지연되어 냉매의 맥동이 저감되도록, The refrigerant flowing in from the first opening collides and the flow is delayed so that the pulsation of the refrigerant is reduced,상기 밸브바디의 타단부 내측에서 상기 제1 개구부 방향으로 돌출되게 배치되는 돌출블록;을 포함하는 것을 특징으로 하는 체크밸브.A check valve comprising a; a protrusion block disposed to protrude in the direction of the first opening from the inside of the other end of the valve body.
- 제2항에 있어서,3. The method of claim 2,상기 돌출블록의 상단부에는, At the upper end of the protrusion block,상기 제1 개구부에서 유입되는 냉매가 충돌하며 흐름이 지연되며 상기 제2 개구부 방향으로 배출될 수 있도록 하는 평탄부;가 형성된 것을 특징으로 하는 체크밸브.The check valve, characterized in that the refrigerant flowing in from the first opening collides, and the flow is delayed, and a flat part is formed so as to be discharged in the direction of the second opening.
- 제3항에 있어서,4. The method of claim 3,상기 맥동저감수단은, The pulsation reducing means,상기 밸브바디의 타단부 내측에서 상기 제2 개구부와 상기 돌출블록 사이에 형성되는 제1 함몰부;를 더 포함하고, Further comprising; a first depression formed between the second opening and the protrusion block inside the other end of the valve body;상기 제1 함몰부의 내부에서는, 유입되는 냉매와 유출되는 냉매가 서로 충돌하며 맥동을 저감하는 것을 특징으로 하는 체크밸브.Inside the first recessed portion, the incoming refrigerant and the outgoing refrigerant collide with each other and check valve, characterized in that to reduce the pulsation.
- 제4항에 있어서,5. The method of claim 4,상기 제1 함몰부는, 상기 돌출블록의 끝단부와 상기 제2 개구부의 끝단부를 잇는 곡선 형상인 것을 특징으로 하는 체크밸브.The first recessed portion, Check valve, characterized in that the curved shape connecting the end of the protrusion block and the end of the second opening.
- 제3항에 있어서,4. The method of claim 3,상기 돌출블록의 상단부에는, At the upper end of the protrusion block,상기 돌출블록이 형성됨에 따라 발생되는 냉매의 유동방해를 보상하도록,To compensate for the flow obstruction of the refrigerant generated as the protrusion block is formed,상기 제1 개구부에서 유입되는 냉매가 추가적으로 배출되는 보조유동홀;이 형성되는 것을 특징으로 하는 체크밸브.and an auxiliary flow hole through which the refrigerant flowing in from the first opening is additionally discharged.
- 제6항에 있어서,7. The method of claim 6,상기 보조유동홀은, 상기 돌출블록의 상단부에 복수개가 형성되는 것을 특징으로 하는 체크밸브.The auxiliary flow hole, a check valve, characterized in that a plurality is formed at the upper end of the protrusion block.
- 제1항에 있어서,According to claim 1,상기 맥동저감수단은,The pulsation reducing means,상기 제2 개구부로 배출되는 냉매의 흐름을 방해하여 맥동이 저감되도록,To reduce the pulsation by obstructing the flow of the refrigerant discharged to the second opening,상기 밸브바디의 타단부 내측에서 상기 제2 개구부에 인접하여 배치되고, 상기 제1 개구부 방향으로 돌출된 배리어돌기;를 포함하는 것을 특징으로 하는 체크밸브.and a barrier protrusion disposed adjacent to the second opening inside the other end of the valve body and protruding in the direction of the first opening.
- 제8항에 있어서,9. The method of claim 8,상기 배리어돌기는,The barrier protrusion,상기 제2 개구부의 폭 간격(D1) 사이에 배치되며, 상기 제2 개구부로 배출되는 냉매의 흐름을 방해하며 맥동을 저감하는 것을 특징으로 하는 체크밸브.It is disposed between the width gap (D1) of the second opening, the check valve, characterized in that it prevents the flow of the refrigerant discharged to the second opening and reduces pulsation.
- 제8항에 있어서,9. The method of claim 8,상기 배리어돌기는 원기둥 형상인 것을 특징으로 하는 체크밸브.The barrier protrusion is a check valve, characterized in that the cylindrical shape.
- 제1항에 있어서,According to claim 1,상기 제2 개구부는 상기 밸브바디의 타측부에 복수개가 형성되고,A plurality of the second openings are formed on the other side of the valve body,상기 맥동저감수단은,The pulsation reducing means,상기 제1 개구부에서 상기 제2 개구부로 유동하는 냉매의 흐름을 분산시켜 맥동이 저감되도록,Dispersing the flow of the refrigerant flowing from the first opening to the second opening to reduce pulsation,상기 밸브바디의 타단부 내측에서 상기 복수개의 제2 개구부들 사이에 배치되고, 상기 제1 개구부 방향으로 돌출된 가이드돌기;를 포함하는 것을 특징으로 하는 체크밸브.and a guide projection disposed between the plurality of second openings inside the other end of the valve body and protruding in the direction of the first opening.
- 제11항에 있어서,12. The method of claim 11,상기 가이드돌기는 상기 밸브바디의 타단부 내측에 복수개가 배치되고, A plurality of the guide projections are disposed inside the other end of the valve body,복수개의 제2 개구부 중 하나의 양측에 배치되는 한 쌍의 가이드돌기는 각각 제2 개구부를 바라보는 방향으로 직선부;가 형성되며, A pair of guide protrusions disposed on both sides of one of the plurality of second openings is formed with a straight portion in a direction facing the second opening, respectively,상기 밸브바디의 중앙측에서 상기 제2 개구부 방향으로 냉매의 흐름을 가이드하는 것을 특징으로 하는 체크밸브.Check valve, characterized in that for guiding the flow of the refrigerant in the direction of the second opening from the central side of the valve body.
- 제12항에 있어서,13. The method of claim 12,상기 한 쌍의 직선부의 간격(D2)은, 상기 제2 개구부의 폭 간격(D1) 내에 배치되는 것을 특징으로 하는 체크밸브.A gap (D2) of the pair of straight parts is a check valve, characterized in that it is disposed within a width gap (D1) of the second opening.
- 제11항에 있어서,12. The method of claim 11,상기 맥동저감수단은, The pulsation reducing means,상기 밸브바디의 타단부 내측에서 상기 제2 개구부와 상기 가이드돌기 사이에 형성되는 제2 함몰부;를 더 포함하고, Further comprising; a second depression formed between the second opening and the guide protrusion inside the other end of the valve body;상기 제2 함몰부의 내부에서는, 유입되는 냉매와 유출되는 냉매가 서로 충돌하며 맥동을 저감하는 것을 특징으로 하는 체크밸브.Check valve, characterized in that in the inside of the second recessed portion, the incoming refrigerant and the outgoing refrigerant collide with each other to reduce pulsation.
- 제1항에 있어서,According to claim 1,상기 맥동저감수단은,The pulsation reducing means,상기 제1 개구부에서 유입되는 냉매가 충돌하며 흐름이 지연되어 맥동이 저감되도록, so that the refrigerant flowing in from the first opening collides and the flow is delayed to reduce pulsation,상기 밸브바디의 타단부 내측에서 상기 제2 개구부의 하단부에 연결되고, 상기 제1 개구부 방향으로 돌출되게 배치되는 베이스블록;을 포함하는 것을 특징으로 하는 체크밸브.and a base block connected to the lower end of the second opening inside the other end of the valve body and disposed to protrude in the direction of the first opening.
- 제15항에 있어서,16. The method of claim 15,상기 베이스블록의 상단부 외측 둘레에는 라운딩부가 형성되고, A rounding part is formed around the outer periphery of the upper end of the base block,상기 제1 개구부에서 유입되는 냉매는 상기 베이스블록의 상단부에 충돌한 후에, 상기 라운딩부를 따라 상기 제2 개구부 방향으로 흐름이 유동되는 것을 특징으로 하는 체크밸브.After the refrigerant flowing in from the first opening collides with the upper end of the base block, the check valve, characterized in that the flow flows in the direction of the second opening along the rounding portion.
- 제16항에 있어서,17. The method of claim 16,상기 베이스블록에는, In the base block,상기 베이스블록의 중앙측에서 상기 제2 개구부 방향으로 신장되는 신장돌기;가 형성되고,An extension protrusion extending in the direction of the second opening from the central side of the base block is formed,상기 신장돌기는 상기 베이스블록의 중앙측에서 상기 제2 개구부 방향으로 냉매의 흐름을 가이드하는 것을 특징으로 하는 체크밸브.The extension protrusion is a check valve, characterized in that for guiding the flow of the refrigerant in the direction of the second opening from the center side of the base block.
- 제17항에 있어서,18. The method of claim 17,상기 신장돌기의 폭 간격(D4)은 상기 제2 개구부의 폭 간격(D1) 사이에 배치되는 것을 특징으로 하는 체크밸브.The width gap (D4) of the extension protrusion is a check valve, characterized in that it is disposed between the width gap (D1) of the second opening.
- 실린더 보어가 형성된 실린더 블록;a cylinder block having a cylinder bore;상기 실린더 블록의 전방에 결합되며 크랭크실을 형성하는 전방하우징;a front housing coupled to the front of the cylinder block and forming a crankcase;상기 실린더 블록의 후방에 결합되며 흡입실 및 토출실을 형성하는 후방하우징; 및 a rear housing coupled to the rear of the cylinder block and forming a suction chamber and a discharge chamber; and상기 흡입실에 형성된 흡입구에 배치되는 제1항의 체크밸브;The check valve of claim 1 disposed in the suction port formed in the suction chamber;를 포함하는 사판식 압축기.A swash plate compressor comprising a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180015250.0A CN115135878B (en) | 2020-02-19 | 2021-02-01 | Check valve and swash plate type compressor including the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200020135A KR102717005B1 (en) | 2020-02-19 | 2020-02-19 | Check valve and swash plate type compressor |
KR10-2020-0020135 | 2020-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021167265A1 true WO2021167265A1 (en) | 2021-08-26 |
Family
ID=77391048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/001276 WO2021167265A1 (en) | 2020-02-19 | 2021-02-01 | Check valve and swash plate compressor including same |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102717005B1 (en) |
CN (1) | CN115135878B (en) |
WO (1) | WO2021167265A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05288186A (en) * | 1992-04-06 | 1993-11-02 | Zexel Corp | Inlet valve for compressor |
US20080107544A1 (en) * | 2006-11-03 | 2008-05-08 | Sokichi Hibino | Suction throttle valve of a compressor |
KR101194431B1 (en) * | 2007-10-19 | 2012-10-24 | 산덴 가부시키가이샤 | Variable capacity compressor |
KR20140104300A (en) * | 2013-02-20 | 2014-08-28 | 한라비스테온공조 주식회사 | Intake checking valve |
KR20170043235A (en) * | 2015-10-13 | 2017-04-21 | 한온시스템 주식회사 | Suction damping device of compressor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1250873C (en) * | 2001-12-27 | 2006-04-12 | 株式会社丰田自动织机 | Compressor |
KR101165947B1 (en) * | 2006-05-01 | 2012-07-18 | 한라공조주식회사 | Variable capacity type swash plate type compressor |
KR101452568B1 (en) * | 2012-02-13 | 2014-10-21 | 한라비스테온공조 주식회사 | swash plate type variable capacity compressor |
KR101852448B1 (en) * | 2012-10-26 | 2018-04-27 | 한온시스템 주식회사 | Swash plate type compressor |
KR101766508B1 (en) * | 2013-01-23 | 2017-08-08 | 한온시스템 주식회사 | Swash plate type compressor |
-
2020
- 2020-02-19 KR KR1020200020135A patent/KR102717005B1/en active Active
-
2021
- 2021-02-01 CN CN202180015250.0A patent/CN115135878B/en active Active
- 2021-02-01 WO PCT/KR2021/001276 patent/WO2021167265A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05288186A (en) * | 1992-04-06 | 1993-11-02 | Zexel Corp | Inlet valve for compressor |
US20080107544A1 (en) * | 2006-11-03 | 2008-05-08 | Sokichi Hibino | Suction throttle valve of a compressor |
KR101194431B1 (en) * | 2007-10-19 | 2012-10-24 | 산덴 가부시키가이샤 | Variable capacity compressor |
KR20140104300A (en) * | 2013-02-20 | 2014-08-28 | 한라비스테온공조 주식회사 | Intake checking valve |
KR20170043235A (en) * | 2015-10-13 | 2017-04-21 | 한온시스템 주식회사 | Suction damping device of compressor |
Also Published As
Publication number | Publication date |
---|---|
KR102717005B1 (en) | 2024-10-15 |
CN115135878B (en) | 2024-07-19 |
CN115135878A (en) | 2022-09-30 |
KR20210105536A (en) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016167409A1 (en) | Electric compressor | |
WO2021167265A1 (en) | Check valve and swash plate compressor including same | |
WO2021015439A1 (en) | Scroll compressor | |
WO2021015429A1 (en) | Scroll compressor | |
KR910001694B1 (en) | Suction gas guide mechanism of swash plate compressor | |
WO2018174449A1 (en) | Hermetic compressor | |
WO2017164539A1 (en) | Compressor | |
WO2021241911A1 (en) | Swash plate compressor | |
WO2010058998A2 (en) | Swash plate compressor with rotary valve | |
WO2020153705A1 (en) | Swash plate type compressor | |
WO2023054855A1 (en) | Scroll compressor | |
WO2020138863A1 (en) | Swash plate-type compressor | |
WO2015129961A1 (en) | Vane rotary compressor | |
WO2018151538A1 (en) | Electric compressor | |
WO2021020858A1 (en) | Scroll compressor | |
WO2018151528A1 (en) | Swash plate type compressor | |
WO2020004821A1 (en) | Suction damping case | |
WO2024071547A1 (en) | Scroll compressor | |
WO2012108671A2 (en) | Valve plate assembly of compressor | |
WO2021261911A1 (en) | Motor | |
WO2024080466A1 (en) | Electric compressor | |
WO2018106003A2 (en) | Engine oil pump | |
WO2023171921A1 (en) | Air-conditioning system for a vehicle | |
WO2024080686A1 (en) | Scroll compressor | |
WO2023191316A1 (en) | Electric compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21758009 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21758009 Country of ref document: EP Kind code of ref document: A1 |