[go: up one dir, main page]

WO2021166215A1 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
WO2021166215A1
WO2021166215A1 PCT/JP2020/007022 JP2020007022W WO2021166215A1 WO 2021166215 A1 WO2021166215 A1 WO 2021166215A1 JP 2020007022 W JP2020007022 W JP 2020007022W WO 2021166215 A1 WO2021166215 A1 WO 2021166215A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
photodiode
stem
lead pin
submount
Prior art date
Application number
PCT/JP2020/007022
Other languages
French (fr)
Japanese (ja)
Inventor
亮輔 宮越
尚希 小坂
端佳 畑
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/007022 priority Critical patent/WO2021166215A1/en
Priority to JP2020538876A priority patent/JPWO2021166215A1/ja
Priority to TW109146171A priority patent/TW202133517A/en
Publication of WO2021166215A1 publication Critical patent/WO2021166215A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • This application relates to a semiconductor laser device.
  • a semiconductor laser (LD: Laser Diode) is mounted on a high-frequency substrate in order to wire a signal for high-speed modulation.
  • Some high-frequency boards are fixed to a heat-dissipating block vertically provided on a stem provided with lead pins for electrical wiring from the outside.
  • a photodiode (PD: Photo Diode) for monitoring that receives the laser beam leaking from the rear end surface of the LD is often provided.
  • Patent Document 1 an LD is mounted on the side surface of a metal block on a stem via a high-frequency substrate, a monitor light is emitted from the rear end surface of the LD, and the monitor light is mounted in a groove on the upper surface of the stem.
  • a semiconductor laser device that receives light is disclosed.
  • Patent Document 2 discloses a semiconductor laser device having a configuration in which a PD element is provided in a shallow recess having a sloped bottom surface.
  • a bonding wire is directly bonded and wired from the PD element to the lead pin on the side of the PD element away from the high frequency substrate.
  • a bonding wire is directly bonded and wired from the center of the PD element to the lead pin in a direction parallel to the high frequency substrate of the PD element.
  • the groove in which the PD element is arranged in Patent Document 1 and the shallow recess in which the PD element is arranged in Patent Document 2 are provided at a position in contact with the surface of the high frequency substrate or away from the surface of the high frequency substrate.
  • Patent Document 1 and Patent Document 2 do not disclose a PD submount on which a PD element is mounted.
  • the purpose of this application is to obtain a semiconductor laser device having a small stem and easy mounting of a photodiode element.
  • the semiconductor laser device disclosed in the present application has a stem having a lead pin inserted so as to be sealed with an insulating member in a through hole penetrating from the back surface to the front surface, and the side surface is perpendicular to the surface of the stem. From the heat radiating block, a high-frequency substrate on which a semiconductor laser element fixed to the side surface of the heat radiating block and having a rear end surface facing the surface of the stem is mounted, and a high-frequency substrate arranged on the surface of the stem, from the rear end surface of the semiconductor laser element.
  • a photodiode submount to which a photodiode element that receives emitted laser light is fixed is provided, and a side surface of the heat dissipation block is provided on the photodiode submount from a position where the photodiode element is arranged. It has a wire to the lead pin connected to a position shifted in a direction parallel to the lead pin.
  • a semiconductor laser device having a small stem and easy mounting of a photodiode element can be obtained.
  • FIG. 5 is a schematic side sectional view showing another configuration of the semiconductor laser device according to the first embodiment.
  • FIG. 5 is a schematic enlarged top view showing another configuration of the photodiode submount of the semiconductor laser device according to the second embodiment.
  • FIG. 1 is a side sectional view schematically showing the configuration of the semiconductor laser device according to the first embodiment
  • FIG. 2 is a top view.
  • the semiconductor laser device according to the first embodiment includes a stem 1, a heat radiating block 2 on the stem 1 whose side surface is perpendicular to the upper surface of the stem 1, and a high frequency substrate 3 fixed to the side surface of the heat radiating block 2. have.
  • the semiconductor laser element 4 is mounted on the high frequency substrate 3.
  • the photodiode element 6 is mounted via the photodiode submount 5 in the groove 10 formed on the surface of the stem 1 on the side where the heat dissipation block 2 is arranged and whose bottom surface is inclined with respect to the upper surface of the stem 1. ing. Since the electric wiring is introduced from the outside, the stem 1 includes a plurality of lead pins 7, 11 and 12, which are fixed to a plurality of through holes penetrating the front surface from the back surface via an insulating member 8, respectively.
  • the lead pin 7 is a lead pin for electrically connecting the outside and the wiring pattern provided on the photodiode submount 5, and the lead pin 11 and the lead pin 12 are provided on the high frequency substrate 3 on which the external and the semiconductor laser element 4 are mounted.
  • the semiconductor laser element 4 is mounted so that the front end surface faces the vertical upward direction and the rear end surface faces the upper surface direction of the stem 1 in FIG. 1, and signal light is emitted from the front end surface and coupled to a lens (not shown). .. Further, monitor light is emitted from the rear end surface of the semiconductor laser element 4, received by the photodiode element 6, and output as a monitor current from the photodiode element 6.
  • Stem 1 is, for example, an SPCC (cold rolled steel plate) disk, and each lead pin is, for example, an alloy of Ni—Fe.
  • the semiconductor laser element 4 and the high-frequency substrate 3, the photodiode element 6, the photodiode submount 5, the lead pin 11, the lead pin 12, and the high-frequency substrate 3 are each fixed by a brazing material such as solder. Further, the terminals connected to the conductor of the high frequency substrate 3, the surface electrode of the semiconductor laser element 4, and the anode electrode of the photodiode element 6 and the lead pin 7 are connected by a wire 9 such as gold.
  • the stem 1 and the heat radiating block 2 are made of separate members, but both may be made of the same material, and the stem 1 and the heat radiating block 2 may be integrally formed.
  • the stem 1 has a circular plate shape with an outer diameter of ⁇ 5.6 mm, the through hole is ⁇ 0.95 mm, and the lead pin 7 is ⁇ 0.43 mm.
  • the semiconductor laser device 4 has a width of 300 ⁇ m, a length of 200 ⁇ m, and a thickness of 90 ⁇ m, and the photodiode element 6 has a width of 400 ⁇ m, a length of 400 ⁇ m, and a thickness of 150 ⁇ m.
  • the high frequency substrate 3 has a width of 2.6 mm, a length of 1.25 mm, and a thickness of 200 ⁇ m.
  • the photodiode submount 5 needs to be large enough to be balanced when the photodiode element 6 is mounted, and has a thickness of 0.24 mm.
  • the lead pin contains a parasitic inductance, and if the length of the lead pin itself becomes long, it is disadvantageous for high-speed operation.
  • the length is shortened so that the upper end of the lead pin does not protrude much from the upper surface of the stem, and instead, the lower end of the high frequency substrate is lowered to near the upper surface of the stem and bonded. ..
  • the photodiode element and the high-frequency board are separated so that the collet for holding the photodiode element and carrying it to the mounting position does not interfere with the high-frequency board when mounting the photodiode element.
  • a groove 10 is formed on the surface of the stem 1 up to a portion located under the high-frequency substrate 3, and a photodiode element 6 is fixed to the bottom surface of the groove 10.
  • the sub mount 5 is fixed.
  • the distance between the photodiode element 6 and the lower end of the high-frequency substrate 3 can be increased, the collet is less likely to interfere with the high-frequency substrate 3, and the photodiode element 6 is mounted closer to the heat dissipation block 2 side than before. be able to.
  • the distance from the rear end surface of the semiconductor laser element 4 to the photodiode element 6 can be made closer than before, and the photodiode element 6 can efficiently receive the monitor light from the rear end surface of the semiconductor laser element.
  • the configuration of the photodiode submount 5 will be described.
  • the lead pin 7 When the lead pin 7 is arranged away from the photodiode element 6, the outer shape of the stem 1 becomes larger by that amount. In order to reduce the size of the stem 1, the lead pin 7 should be as close to the photodiode element 6 as possible.
  • the space between the surface of the high-frequency substrate and the lead pin 7 facing the surface of the high-frequency substrate is narrow, and the clearance for mounting the photodiode element is small. Becomes smaller.
  • the wire 9 for wiring from the lead pin 7 to the photodiode submount 5 is radiated from the position on the photodiode submount 5 where the photodiode element 6 is arranged. It was made to connect at a position shifted in the direction parallel to the side surface of. As a result, the mounting space for the wire can be secured. In this case, the wire 9 for electrical connection to the photodiode element 6 is mounted diagonally, and the wire length may become long. However, the photodiode element 6 is used by applying a direct current. Therefore, the influence of the parasitic inductance contained in the wire 9 can be ignored.
  • the formation of the groove 10 will be described.
  • the stem 1 is processed by using a die press.
  • the mounting variation of the high frequency substrate 3 is about 0.1 mm in the upward direction and about 0.05 mm in the downward direction, and downward. Considering the case of deviation, the depth of the groove 10 should be deep.
  • the groove 10 when the groove 10 is formed close to the lead pin 7, if the groove 10 becomes too deep, the area where the insulating member 8 comes into contact with the stem 1 becomes small, and the airtightness of the stem 1 deteriorates.
  • the length of contact between the insulating member 8 and the stem is AA'.
  • the groove 10 is further deepened as shown in FIG. 4, the length becomes BB', the adhesive area between the insulating member 8 and the stem 1 is small, and it becomes difficult to maintain the airtightness of the stem 1.
  • the length of BB' is preferably longer than 0.8 mm.
  • the processing of the groove as shown in FIG. 5 is more difficult than the processing of the groove as shown in FIGS. In this case, the area of the bottom surface of the groove 10 becomes smaller as the groove 10 becomes deeper. Therefore, it is necessary to reduce the area of the photodiode submount 5, and the wire mounting space on the photodiode submount 5 is reduced, which makes mounting difficult.
  • the photodiode submount 5 is extended in the direction parallel to the side surface of the heat dissipation block 2 to secure the wire mounting space.
  • the total thickness of the photodiode submount 5 and the photodiode element 6 and the depth of the groove 10 do not have to match, and the photodiode element 6 does not have to be completely filled in the groove 10. .. If the thickness of the photodiode submount 5 is 0.24 mm and the thickness of the photodiode element 6 is 0.15 mm, the total thickness is about 0.40 mm.
  • a stem is formed. It is difficult to ensure airtightness.
  • the groove 10 is formed until it penetrates under the high frequency substrate 3. Therefore, the distance between the photodiode element 6 and the high-frequency substrate 3 in the direction directly above can be increased.
  • the inclination of the bottom surface of the groove 10 in FIG. 3 the inclination of the photodiode submount on the high frequency substrate 3 side is set to rise, but as shown in FIG. 6, the inclination is such that the high frequency substrate 3 side is lowered, or in any other direction. It may be tilted.
  • the photodiode element 6 may be tilted so that the laser beam radiated from the rear end surface of the semiconductor laser element 4 is not reflected by the photodiode element 6 and returned to the rear end surface of the semiconductor laser element 4 again. That is, the bottom surface of the groove 10 may be inclined in any direction with respect to the surface perpendicular to the optical axis of the laser beam radiated from the rear end surface of the semiconductor laser element 4. In the case of an inclination such that the high-frequency substrate 3 side shown in FIG. 6 is lowered, the distance between the photodiode submount 5 and the lead pin 7 becomes short, so that the wire length can be shortened, which leads to cost reduction.
  • the reduction in the dimensions of the heat dissipation block 2 and the high frequency substrate 3 in the height direction is about the same as or less than the depth of the groove 10 formed in the stem 1. For example, when the depth of the groove 10 on the high frequency substrate 3 side is 0.2 mm, it is considered possible to reduce the heights of the heat dissipation block 2 and the high frequency substrate 3 by 0.2 mm as well.
  • the size of the heat radiating block 2 and the high frequency substrate 3 can be reduced, so that cost reduction can be expected. Further, since the mounting position of the semiconductor laser element 4 can be brought closer to the upper surface of the stem 1, the amount of monitor light received by the photodiode element 6 can be increased.
  • the wire 9 for wiring from the lead pin 7 is placed on the photodiode submount 5 from the position where the photodiode element 6 is arranged. It is connected at a position shifted in the direction parallel to the side surface of the heat dissipation block. Therefore, even if the lead pin 7 and the photodiode element 6 are brought close to each other in order to reduce the size of the stem 1, the wire 9 can be easily mounted from the lead pin 7. Further, since the photodiode submount 5 to which the photodiode element 6 is fixed is arranged on the bottom surface of the groove 10 that penetrates to the bottom of the high frequency substrate 3, the photodiode submount 5 can be easily mounted.
  • the bottom surface of the groove 10 is inclined with respect to the surface perpendicular to the optical axis of the laser light emitted from the rear end surface of the semiconductor laser element 4, the reflected light from the photodiode element 6 returns to the semiconductor laser element 4. Can be suppressed. Further, since the dimension of the high frequency substrate 3 in the height direction can be reduced by the depth of the groove 10, the area of the high frequency substrate 3 can be reduced and the distance from the semiconductor laser element 4 to the photodiode element 6 can be shortened. The amount of monitor light received by the photodiode element 6 can be increased, and the light receiving efficiency can be increased.
  • FIG. 7 is a side sectional view schematically showing the configuration of the semiconductor laser device according to the second embodiment
  • FIG. 8 is a top view.
  • the semiconductor laser device according to the second embodiment as shown in FIG. 7, there is no groove in the portion where the photodiode submount 5 provided in the first embodiment is mounted.
  • the photodiode submount 5 is mounted in the portion between the lead pin 7 and the heat dissipation block 2, but when the lower end of the high frequency substrate 3 is lowered to near the upper surface of the stem 1, the mounting space of the photodiode submount 5 is large. It becomes smaller.
  • the lead pin 7 and the high frequency substrate 3 be as close as possible.
  • the distance between the lead pin 7 and the high-frequency substrate 3 is set to be about the same as the dimension of the photodiode element 6, the space for connecting the wire 9 to the photodiode submount 5 becomes small, which makes wire mounting difficult.
  • the photodiode submount 5 is arranged on the upper surface of the stem 1 in which the groove is not formed as shown in FIG. 8, the position where the wire 9 from the lead pin 7 is connected is the same as that described in the first embodiment. Is set to a position deviated from the position where the photodiode element 6 is arranged in a direction parallel to the side surface of the heat dissipation block 2, so that wire mounting becomes easy.
  • FIG. 9 is a schematic top view showing an enlarged portion of the photodiode submount 5 and the lead pin 7 which are the main parts of the semiconductor laser device according to the second embodiment.
  • FIG. 10 is a schematic top view showing a photodiode submount 5 having a configuration different from that of FIG.
  • the photodiode submount 5 shown in FIG. 10 is changed in shape from, for example, a square having a size of 0.7 mm ⁇ 0.7 mm shown in FIG. 9 to a thin rectangle having a size of 0.2 mm ⁇ 0.5 mm.
  • the photodiode submount 5 The smaller the photodiode submount 5, the better, as long as the shape satisfies the balance when the photodiode element 6 is mounted and the wire mounting portion can be secured.
  • the wire mounting to the photodiode submount 5 it is considered that the wire can be mounted if there is a space of 0.1 ⁇ 0.1 mm, but in the second embodiment, the photodiode element 6 is mounted on the photodiode submount 5. It is desirable that the sub-mount protrudes by 0.3 mm or more from the side end face of the photodiode element 6 in consideration of the step difference due to riding. Needless to say, the photodiode submount 5 having the shape shown in FIG. 10 can also be applied to the semiconductor laser device according to the first embodiment in which the groove 10 is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This semiconductor laser device is provided with: a stem (1) having a lead pin (7) inserted so as to be sealed by an insulative member (8) in a through hole that penetrates from the reverse to the obverse of the stem; a heat dissipation block (2) having a lateral surface perpendicular to the obverse of the stem (1); a high-frequency substrate (3) that is fixed to the lateral surface of the heat dissipation block (2) and has mounted thereto a semiconductor laser element (4) having a rear end surface opposing the obverse of the stem (1); a photodiode submount (5) that is disposed on the obverse of the stem (1) and that has fixed thereto a photodiode element (6) for receiving a laser beam emitted from the rear end surface of the semiconductor laser element (4); and a wire (9) that is directed to the lead pin (7) and that is connected to a position deviated in a direction parallel to the lateral surface of the heat dissipation block (2) from a position on the photodiode submount (5) where the photodiode element (6) is disposed.

Description

半導体レーザ装置Semiconductor laser device
 本願は、半導体レーザ装置に関する。 This application relates to a semiconductor laser device.
 通信用の半導体レーザ装置は、高速の変調用の信号を配線するため、半導体レーザ(LD:Laser Diode)が高周波基板に実装されている。高周波基板が、外部からの電気配線のためのリードピンが設けられたステム上に垂直に設けられた放熱ブロックに固定される構成のものがある。さらに、LDの出力をモニタするために、LDの後端面から漏れ出すレーザ光を受光するモニタ用のフォトダイオード(PD:Photo Diode)が設けられることが多い。 In the semiconductor laser device for communication, a semiconductor laser (LD: Laser Diode) is mounted on a high-frequency substrate in order to wire a signal for high-speed modulation. Some high-frequency boards are fixed to a heat-dissipating block vertically provided on a stem provided with lead pins for electrical wiring from the outside. Further, in order to monitor the output of the LD, a photodiode (PD: Photo Diode) for monitoring that receives the laser beam leaking from the rear end surface of the LD is often provided.
 特許文献1には、ステム上の金属ブロック側面に、高周波基板を介してLDが実装されており、LDの後端面からモニタ光を出射し、モニタ光をステム上面の溝に実装したPD素子で受光する半導体レーザ装置が開示されている。また、特許文献2には、底面が斜面になっている浅い窪みにPD素子を設けた構成の半導体レーザ装置が開示されている。 In Patent Document 1, an LD is mounted on the side surface of a metal block on a stem via a high-frequency substrate, a monitor light is emitted from the rear end surface of the LD, and the monitor light is mounted in a groove on the upper surface of the stem. A semiconductor laser device that receives light is disclosed. Further, Patent Document 2 discloses a semiconductor laser device having a configuration in which a PD element is provided in a shallow recess having a sloped bottom surface.
特開2000-323779号公報Japanese Unexamined Patent Publication No. 2000-323779 特開2006-310889号公報Japanese Unexamined Patent Publication No. 2006-310889
 例えば、特許文献1の図1および図3では、PD素子からリードピンへは、PD素子の高周波基板から離れた側に直接ボンディングワイヤを接合して配線されている。また、特許文献2の図1では、PD素子からリードピンへは、PD素子の高周波基板と平行な方向における中央から直接ボンディングワイヤを接合して配線されている。また、特許文献1におけるPD素子を配置する溝、および特許文献2におけるPD素子を配置する浅い窪みは、高周波基板の表面に接して、あるいは高周波基板の表面から離れた位置に設けている。 For example, in FIGS. 1 and 3 of Patent Document 1, a bonding wire is directly bonded and wired from the PD element to the lead pin on the side of the PD element away from the high frequency substrate. Further, in FIG. 1 of Patent Document 2, a bonding wire is directly bonded and wired from the center of the PD element to the lead pin in a direction parallel to the high frequency substrate of the PD element. Further, the groove in which the PD element is arranged in Patent Document 1 and the shallow recess in which the PD element is arranged in Patent Document 2 are provided at a position in contact with the surface of the high frequency substrate or away from the surface of the high frequency substrate.
 一方、ステムの面にPD素子を設ける場合、PD素子をPDサブマウントに実装し、リードピンからPD素子へは、PDサブマウントを介して配線される構成が、実装の点から好適である。特許文献1および特許文献2には、PD素子を実装したPDサブマウントの開示はない。 On the other hand, when the PD element is provided on the surface of the stem, it is preferable from the viewpoint of mounting that the PD element is mounted on the PD submount and the lead pin is wired to the PD element via the PD submount. Patent Document 1 and Patent Document 2 do not disclose a PD submount on which a PD element is mounted.
 本願は、ステムが小型でフォトダイオード素子の実装が容易な半導体レーザ装置を得ることを目的とする。 The purpose of this application is to obtain a semiconductor laser device having a small stem and easy mounting of a photodiode element.
 本願に開示される半導体レーザ装置は、裏面から表面に貫通する貫通孔に、絶縁部材で封止されるように挿入されたリードピンを有するステムと、側面が前記ステムの表面に対して垂直である放熱ブロックと、前記放熱ブロックの側面に固定され、後端面が前記ステムの表面に対向する半導体レーザ素子が実装された高周波基板と、前記ステムの表面に配置され、前記半導体レーザ素子の後端面から放射されるレーザ光を受光するフォトダイオード素子が固定されたフォトダイオードサブマウントと、を備え、前記フォトダイオードサブマウント上であって、前記フォトダイオード素子が配置されている位置から前記放熱ブロックの側面に平行な方向にずれた位置に接続された、前記リードピンへのワイヤを有するものである。 The semiconductor laser device disclosed in the present application has a stem having a lead pin inserted so as to be sealed with an insulating member in a through hole penetrating from the back surface to the front surface, and the side surface is perpendicular to the surface of the stem. From the heat radiating block, a high-frequency substrate on which a semiconductor laser element fixed to the side surface of the heat radiating block and having a rear end surface facing the surface of the stem is mounted, and a high-frequency substrate arranged on the surface of the stem, from the rear end surface of the semiconductor laser element. A photodiode submount to which a photodiode element that receives emitted laser light is fixed is provided, and a side surface of the heat dissipation block is provided on the photodiode submount from a position where the photodiode element is arranged. It has a wire to the lead pin connected to a position shifted in a direction parallel to the lead pin.
 本願に開示される半導体レーザ装置によれば、ステムが小型で、フォトダイオード素子の実装が容易な半導体レーザ装置が得られる。 According to the semiconductor laser device disclosed in the present application, a semiconductor laser device having a small stem and easy mounting of a photodiode element can be obtained.
実施の形態1による半導体レーザ装置の構成を示す模式的な側面断面図である。It is a schematic side sectional view which shows the structure of the semiconductor laser apparatus by Embodiment 1. FIG. 実施の形態1による半導体レーザ装置の構成を示す模式的な上面図である。It is a schematic top view which shows the structure of the semiconductor laser apparatus by Embodiment 1. FIG. 実施の形態1による半導体レーザ装置の要部の構成を説明するための模式的な側面断面図である。It is a schematic side sectional view for demonstrating the structure of the main part of the semiconductor laser apparatus according to Embodiment 1. FIG. 実施の形態1による半導体レーザ装置の要部の構成を説明するための第二の模式的な側面断面図である。It is the 2nd schematic side sectional view for demonstrating the structure of the main part of the semiconductor laser apparatus by Embodiment 1. FIG. 実施の形態1による半導体レーザ装置の要部の構成を説明するための第三の模式的な側面断面図である。It is a 3rd schematic side sectional view for demonstrating the structure of the main part of the semiconductor laser apparatus according to Embodiment 1. FIG. 実施の形態1による半導体レーザ装置の別の構成を示す模式的な側面断面図である。FIG. 5 is a schematic side sectional view showing another configuration of the semiconductor laser device according to the first embodiment. 実施の形態2による半導体レーザ装置の構成を示す模式的な側面断面図である。It is a schematic side sectional view which shows the structure of the semiconductor laser apparatus by Embodiment 2. FIG. 実施の形態2による半導体レーザ装置の構成を示す模式的な上面図である。It is a schematic top view which shows the structure of the semiconductor laser apparatus by Embodiment 2. FIG. 実施の形態2による半導体レーザ装置の、フォトダイオードサブマウントの構成を示す模式的な拡大上面図である。It is a schematic enlarged top view which shows the structure of the photodiode submount of the semiconductor laser apparatus by Embodiment 2. FIG. 実施の形態2による半導体レーザ装置の、フォトダイオードサブマウントの別の構成を示す模式的な拡大上面図である。FIG. 5 is a schematic enlarged top view showing another configuration of the photodiode submount of the semiconductor laser device according to the second embodiment.
 本願が開示する各実施の形態による半導体レーザ装置について図面を参照して説明する。同じまたは対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
 図1は実施の形態1による半導体レーザ装置の構成を模式的に示す側面断面図、図2は上面図である。本実施の形態1による半導体レーザ装置は、ステム1と、ステム1上に、側面がステム1の上面に対して垂直となる放熱ブロック2と、放熱ブロック2の側面に固定された高周波基板3とを有している。高周波基板3上には半導体レーザ素子4が実装されている。ステム1の放熱ブロック2が配置されている側の面に形成され、底面がステム1上面に対して斜面になっている溝10に、フォトダイオードサブマウント5を介してフォトダイオード素子6が実装されている。ステム1は、外部から電気配線を導入するため、裏面から表面を貫通する複数の貫通孔にそれぞれ絶縁部材8を介して固定された複数のリードピン7、11、12を備えている。リードピン7は、外部とフォトダイオードサブマウント5に設けられた配線パターンとを電気接続するためのリードピン、リードピン11およびリードピン12は、外部と半導体レーザ素子4が実装されている高周波基板3に設けられた配線パターンとを電気接続するためのリードピンである。このような半導体レーザ装置では、絶縁部材8としては、高周波損失および封止性の観点から低融点ガラスが用いられることが多い。半導体レーザ素子4は、図1において、前端面が垂直上方向、後端面がステム1の上面方向を向くように実装されており、前端面からは信号光が出射され、図示しないレンズに結合する。また半導体レーザ素子4の後端面からはモニタ光が出射されて、フォトダイオード素子6で受光され、フォトダイオード素子6からモニタ電流として出力される。
The semiconductor laser apparatus according to each embodiment disclosed in the present application will be described with reference to the drawings. The same or corresponding components may be designated by the same reference numerals and the description may be omitted.
Embodiment 1.
FIG. 1 is a side sectional view schematically showing the configuration of the semiconductor laser device according to the first embodiment, and FIG. 2 is a top view. The semiconductor laser device according to the first embodiment includes a stem 1, a heat radiating block 2 on the stem 1 whose side surface is perpendicular to the upper surface of the stem 1, and a high frequency substrate 3 fixed to the side surface of the heat radiating block 2. have. The semiconductor laser element 4 is mounted on the high frequency substrate 3. The photodiode element 6 is mounted via the photodiode submount 5 in the groove 10 formed on the surface of the stem 1 on the side where the heat dissipation block 2 is arranged and whose bottom surface is inclined with respect to the upper surface of the stem 1. ing. Since the electric wiring is introduced from the outside, the stem 1 includes a plurality of lead pins 7, 11 and 12, which are fixed to a plurality of through holes penetrating the front surface from the back surface via an insulating member 8, respectively. The lead pin 7 is a lead pin for electrically connecting the outside and the wiring pattern provided on the photodiode submount 5, and the lead pin 11 and the lead pin 12 are provided on the high frequency substrate 3 on which the external and the semiconductor laser element 4 are mounted. It is a lead pin for electrically connecting the wiring pattern. In such a semiconductor laser device, low melting point glass is often used as the insulating member 8 from the viewpoint of high frequency loss and sealing property. The semiconductor laser element 4 is mounted so that the front end surface faces the vertical upward direction and the rear end surface faces the upper surface direction of the stem 1 in FIG. 1, and signal light is emitted from the front end surface and coupled to a lens (not shown). .. Further, monitor light is emitted from the rear end surface of the semiconductor laser element 4, received by the photodiode element 6, and output as a monitor current from the photodiode element 6.
 ステム1は例えばSPCC(冷間圧延鋼版)の円板であり、各リードピンは例えばNi-Feの合金である。半導体レーザ素子4と高周波基板3、フォトダイオード素子6とフォトダイオードサブマウント5、リードピン11およびリードピン12と高周波基板3はそれぞれハンダ等のろう材により固定されている。また、高周波基板3の導体と半導体レーザ素子4の表面電極、およびフォトダイオード素子6のアノード電極に接続されている端子とリードピン7は金等のワイヤ9により接続されている。図1では、ステム1と放熱ブロック2は別部材で構成されているが、両者は同一の材料でも良く、ステム1と放熱ブロック2が一体で形成されていても良い。 Stem 1 is, for example, an SPCC (cold rolled steel plate) disk, and each lead pin is, for example, an alloy of Ni—Fe. The semiconductor laser element 4 and the high-frequency substrate 3, the photodiode element 6, the photodiode submount 5, the lead pin 11, the lead pin 12, and the high-frequency substrate 3 are each fixed by a brazing material such as solder. Further, the terminals connected to the conductor of the high frequency substrate 3, the surface electrode of the semiconductor laser element 4, and the anode electrode of the photodiode element 6 and the lead pin 7 are connected by a wire 9 such as gold. In FIG. 1, the stem 1 and the heat radiating block 2 are made of separate members, but both may be made of the same material, and the stem 1 and the heat radiating block 2 may be integrally formed.
 部材寸法の一例を記載する。ステム1は外径がφ5.6mmの円形板状であり、貫通孔はφ0.95mm、リードピン7はφ0.43mmである。半導体レーザ素子4は幅300μm、長さ200μm、厚さ90μmであり、フォトダイオード素子6は幅400μm、長さ400μm、厚さ150μmである。高周波基板3は、幅2.6mm、長さ1.25mm、厚さ200μmである。フォトダイオードサブマウント5は、フォトダイオード素子6が実装された際にバランスが取れる程度に大きいものが必要であり、厚さは0.24mmである。 Describe an example of member dimensions. The stem 1 has a circular plate shape with an outer diameter of φ5.6 mm, the through hole is φ0.95 mm, and the lead pin 7 is φ0.43 mm. The semiconductor laser device 4 has a width of 300 μm, a length of 200 μm, and a thickness of 90 μm, and the photodiode element 6 has a width of 400 μm, a length of 400 μm, and a thickness of 150 μm. The high frequency substrate 3 has a width of 2.6 mm, a length of 1.25 mm, and a thickness of 200 μm. The photodiode submount 5 needs to be large enough to be balanced when the photodiode element 6 is mounted, and has a thickness of 0.24 mm.
 半導体レーザ装置には高速動作が求められる。リードピンには寄生インダクタンスが含まれており、リードピン自身の長さが長くなると高速動作には不利である。リードピンの長さを短くするため、従来は、リードピン上端がステム上面からあまり出ない程度に長さを短くし、代わりに高周波基板の下端をステム上面近くまで下げて接着する構造が一般的である。高周波基板の下端がステム上面近くにある場合、フォトダイオード素子を実装する際にフォトダイオード素子を保持して実装位置まで運ぶためのコレットが高周波基板と干渉しないよう、フォトダイオード素子と高周波基板との距離を離さざるを得ない。したがってフォトダイオード素子と半導体レーザ素子の距離が遠くなり、フォトダイオード素子位置での半導体レーザ素子後端面からのモニタ光が弱く、効率良く受光できない。実施の形態1の半導体レーザ装置は、ステム1の表面に高周波基板3の下に位置する部分まで入り込んだ溝10を形成して、この溝10の底面にフォトダイオード素子6が固定されたフォトダイオードサブマウント5を固定している。これにより、フォトダイオード素子6と高周波基板3の下端との距離を離すことができ、コレットが高周波基板3と干渉し難く、フォトダイオード素子6を、従来よりも放熱ブロック2側に近づけて実装することができる。これにより、例えば半導体レーザ素子4の後端面からフォトダイオード素子6までの距離を従来よりも近づけることができ、フォトダイオード素子6が半導体レーザ素子の後端面からのモニタ光を効率よく受光できる。 High-speed operation is required for semiconductor laser devices. The lead pin contains a parasitic inductance, and if the length of the lead pin itself becomes long, it is disadvantageous for high-speed operation. In order to shorten the length of the lead pin, conventionally, the length is shortened so that the upper end of the lead pin does not protrude much from the upper surface of the stem, and instead, the lower end of the high frequency substrate is lowered to near the upper surface of the stem and bonded. .. When the lower end of the high-frequency board is near the upper surface of the stem, the photodiode element and the high-frequency board are separated so that the collet for holding the photodiode element and carrying it to the mounting position does not interfere with the high-frequency board when mounting the photodiode element. I have no choice but to keep a distance. Therefore, the distance between the photodiode element and the semiconductor laser element becomes long, and the monitor light from the rear end surface of the semiconductor laser element at the position of the photodiode element is weak and cannot receive light efficiently. In the semiconductor laser apparatus of the first embodiment, a groove 10 is formed on the surface of the stem 1 up to a portion located under the high-frequency substrate 3, and a photodiode element 6 is fixed to the bottom surface of the groove 10. The sub mount 5 is fixed. As a result, the distance between the photodiode element 6 and the lower end of the high-frequency substrate 3 can be increased, the collet is less likely to interfere with the high-frequency substrate 3, and the photodiode element 6 is mounted closer to the heat dissipation block 2 side than before. be able to. Thereby, for example, the distance from the rear end surface of the semiconductor laser element 4 to the photodiode element 6 can be made closer than before, and the photodiode element 6 can efficiently receive the monitor light from the rear end surface of the semiconductor laser element.
 フォトダイオードサブマウント5の構成について説明する。リードピン7をフォトダイオード素子6から離して配置すると、その分ステム1の外形が大きくなる。ステム1の小型化のため、リードピン7はできるだけフォトダイオード素子6に近づけたい。従来の半導体レーザ装置のように高周波基板の下端がステム上面まで近づいている場合、高周波基板表面と、高周波基板表面に向かい合うリードピン7との間のスペースが狭く、フォトダイオード素子を実装するためのクリアランスが小さくなる。このため、フォトダイオードサブマウントの面積を縮小する必要があり、リードピンからフォトダイオードサブマウントへのワイヤの実装が困難である。本実施の形態1による半導体レーザ装置では、リードピン7からフォトダイオードサブマウント5への配線のワイヤ9を、フォトダイオードサブマウント5上であって、フォトダイオード素子6が配置されている位置から放熱ブロックの側面に平行な方向にずれた位置で接続するようにした。これによりワイヤの実装スペースを確保することができる。この場合、フォトダイオード素子6への電気接続のためのワイヤ9は斜めに実装することになり、ワイヤ長が長くなってしまうこともあるが、フォトダイオード素子6は直流電流を印加して使用するため、ワイヤ9に含まれる寄生インダクタンスの影響は無視できる。 The configuration of the photodiode submount 5 will be described. When the lead pin 7 is arranged away from the photodiode element 6, the outer shape of the stem 1 becomes larger by that amount. In order to reduce the size of the stem 1, the lead pin 7 should be as close to the photodiode element 6 as possible. When the lower end of the high-frequency substrate is close to the upper surface of the stem as in a conventional semiconductor laser device, the space between the surface of the high-frequency substrate and the lead pin 7 facing the surface of the high-frequency substrate is narrow, and the clearance for mounting the photodiode element is small. Becomes smaller. Therefore, it is necessary to reduce the area of the photodiode submount, and it is difficult to mount the wire from the lead pin to the photodiode submount. In the semiconductor laser apparatus according to the first embodiment, the wire 9 for wiring from the lead pin 7 to the photodiode submount 5 is radiated from the position on the photodiode submount 5 where the photodiode element 6 is arranged. It was made to connect at a position shifted in the direction parallel to the side surface of. As a result, the mounting space for the wire can be secured. In this case, the wire 9 for electrical connection to the photodiode element 6 is mounted diagonally, and the wire length may become long. However, the photodiode element 6 is used by applying a direct current. Therefore, the influence of the parasitic inductance contained in the wire 9 can be ignored.
 溝10の形成について説明する。ステム1上に溝10を形成する際は金型プレスを用いてステム1を加工する。溝10は深ければ深いほど高周波基板3下端とフォトダイオード素子6の距離を離すことができ、実装時の干渉を抑制できる。高周波基板3の下端をステム1上面から0.1mm程度離して実装するためには、高周波基板3の実装ばらつきは上方向に0.1mm、下方向に0.05mm程度と想定でき、下方向にズレた場合を考慮すると溝10の深さは深い方が良い。一方で、溝10をリードピン7近くまで形成する場合、溝10が深くなりすぎると、絶縁部材8がステム1と接する面積が小さくなってしまい、ステム1の気密性が低下してしまう。例えば図3のような溝10の深さの場合、絶縁部材8とステムの接する長さはA-A‘である。図4に示すようにさらに溝10を深くすると、B-B’の長さになってしまって、絶縁部材8とステム1の接着面積が小さく、ステム1の気密性を保つことが難しくなる。具体的には、例えば図3に示すステム1の厚みを1.2mmとすると、B-B‘の長さは0.8mmよりも長いことが好ましい。図3と同じ溝の深さを得るために、図5のように加工することが考えられる。図5では、C-C’の長さはA-A‘と同等であるため、絶縁部材8とステム1の接着面積を保ちつつ、溝10の深さを深くすることが可能である。一方で、図5のような溝の加工は、図3、図4のような溝の加工よりも難しく、さらに、図5のように絶縁部材8とステム1との接着面積を確保しながら掘り下げる場合、溝10が深くなるに伴い溝10の底面の面積が狭くなっていく。そのため、フォトダイオードサブマウント5の面積を縮小する必要があり、フォトダイオードサブマウント5上のワイヤ実装スペースが少なくなり、実装が困難になる。そこで、本実施の形態1では上述の通り、フォトダイオードサブマウント5を放熱ブロック2の側面と平行な方向に延ばして、ワイヤの実装スペースを確保している。溝10の深さについては、フォトダイオードサブマウント5とフォトダイオード素子6の厚さの合計と溝10の深さが一致しなくても良く、フォトダイオード素子6が溝10に埋まりきる必要は無い。フォトダイオードサブマウント5の厚さが0.24mm、フォトダイオード素子6が0.15mmとすると合計で凡そ0.40mmの厚さになり、フォトダイオード素子6を埋めきるための溝を形成すると、ステムの気密性確保が困難である。 The formation of the groove 10 will be described. When forming the groove 10 on the stem 1, the stem 1 is processed by using a die press. The deeper the groove 10, the greater the distance between the lower end of the high-frequency substrate 3 and the photodiode element 6, and the more interference can be suppressed during mounting. In order to mount the high frequency substrate 3 at a distance of about 0.1 mm from the upper surface of the stem 1, it can be assumed that the mounting variation of the high frequency substrate 3 is about 0.1 mm in the upward direction and about 0.05 mm in the downward direction, and downward. Considering the case of deviation, the depth of the groove 10 should be deep. On the other hand, when the groove 10 is formed close to the lead pin 7, if the groove 10 becomes too deep, the area where the insulating member 8 comes into contact with the stem 1 becomes small, and the airtightness of the stem 1 deteriorates. For example, in the case of the depth of the groove 10 as shown in FIG. 3, the length of contact between the insulating member 8 and the stem is AA'. If the groove 10 is further deepened as shown in FIG. 4, the length becomes BB', the adhesive area between the insulating member 8 and the stem 1 is small, and it becomes difficult to maintain the airtightness of the stem 1. Specifically, for example, assuming that the thickness of the stem 1 shown in FIG. 3 is 1.2 mm, the length of BB'is preferably longer than 0.8 mm. In order to obtain the same groove depth as in FIG. 3, it is conceivable to process as shown in FIG. In FIG. 5, since the length of CC'is the same as that of AA', it is possible to increase the depth of the groove 10 while maintaining the adhesive area between the insulating member 8 and the stem 1. On the other hand, the processing of the groove as shown in FIG. 5 is more difficult than the processing of the groove as shown in FIGS. In this case, the area of the bottom surface of the groove 10 becomes smaller as the groove 10 becomes deeper. Therefore, it is necessary to reduce the area of the photodiode submount 5, and the wire mounting space on the photodiode submount 5 is reduced, which makes mounting difficult. Therefore, in the first embodiment, as described above, the photodiode submount 5 is extended in the direction parallel to the side surface of the heat dissipation block 2 to secure the wire mounting space. Regarding the depth of the groove 10, the total thickness of the photodiode submount 5 and the photodiode element 6 and the depth of the groove 10 do not have to match, and the photodiode element 6 does not have to be completely filled in the groove 10. .. If the thickness of the photodiode submount 5 is 0.24 mm and the thickness of the photodiode element 6 is 0.15 mm, the total thickness is about 0.40 mm. When a groove for filling the photodiode element 6 is formed, a stem is formed. It is difficult to ensure airtightness.
 本実施の形態1による半導体レーザ装置では、溝10を高周波基板3の下まで入り込むまで形成している。したがって、フォトダイオード素子6と高周波基板3との直上方向の距離を離すことができる。溝10の底面の傾斜については、図3ではフォトダイオードサブマウントの高周波基板3側が上がる傾斜としたが、図6のように高周波基板3側が下がるような傾斜、あるいは、その他どのような方向に傾けた傾斜でも良い。半導体レーザ素子4の後端面から放射されるレーザ光がフォトダイオード素子6で反射されて再び半導体レーザ素子4の後端面に戻らないようにフォトダイオード素子6を傾斜させればよい。すなわち、溝10の底面は、半導体レーザ素子4の後端面から放射されるレーザ光の光軸に垂直な面に対していずれかの方向に傾斜していればよい。図6で示した高周波基板3側が下がるような傾斜の場合、フォトダイオードサブマウント5とリードピン7との距離が近くなるため、ワイヤ長を短くでき、原価低減に繋がる。また、高周波基板3の下端と溝10の底面の距離を離すことができるため、実装性が向上するといった利点がある。一方、特許文献1および特許文献2に記載の構造は、溝が高周波基板の下まで入り込んでいないため、フォトダイオード素子6と高周波基板3とのステム上面に対する垂直方向の距離を離すことができず、実装時の干渉低減は困難である。 In the semiconductor laser device according to the first embodiment, the groove 10 is formed until it penetrates under the high frequency substrate 3. Therefore, the distance between the photodiode element 6 and the high-frequency substrate 3 in the direction directly above can be increased. Regarding the inclination of the bottom surface of the groove 10, in FIG. 3, the inclination of the photodiode submount on the high frequency substrate 3 side is set to rise, but as shown in FIG. 6, the inclination is such that the high frequency substrate 3 side is lowered, or in any other direction. It may be tilted. The photodiode element 6 may be tilted so that the laser beam radiated from the rear end surface of the semiconductor laser element 4 is not reflected by the photodiode element 6 and returned to the rear end surface of the semiconductor laser element 4 again. That is, the bottom surface of the groove 10 may be inclined in any direction with respect to the surface perpendicular to the optical axis of the laser beam radiated from the rear end surface of the semiconductor laser element 4. In the case of an inclination such that the high-frequency substrate 3 side shown in FIG. 6 is lowered, the distance between the photodiode submount 5 and the lead pin 7 becomes short, so that the wire length can be shortened, which leads to cost reduction. Further, since the lower end of the high frequency substrate 3 and the bottom surface of the groove 10 can be separated from each other, there is an advantage that the mountability is improved. On the other hand, in the structures described in Patent Document 1 and Patent Document 2, since the groove does not penetrate under the high frequency substrate, the distance between the photodiode element 6 and the high frequency substrate 3 in the vertical direction with respect to the upper surface of the stem cannot be separated. , It is difficult to reduce interference during mounting.
 さらに、溝10を掘った分、放熱ブロック2、高周波基板3の高さ方向の寸法を縮小し、半導体レーザ素子4の実装位置を下げることで、フォトダイオード素子6に受光される光の量を増やすことができる。また、部材の縮小により原価低減が見込まれる。ここで、半導体レーザ素子4実装時の干渉を考慮すると、放熱ブロック2および高周波基板3の高さ方向の寸法の縮小はステム1に形成する溝10の深さと同程度か少なくするのが好ましい。例えば、高周波基板3側の溝10の深さが0.2mmの場合、放熱ブロック2および高周波基板3の高さを同じく0.2mm縮小することが可能と考えられる。 Further, by digging the groove 10, the dimensions of the heat dissipation block 2 and the high frequency substrate 3 in the height direction are reduced, and the mounting position of the semiconductor laser element 4 is lowered, so that the amount of light received by the photodiode element 6 can be reduced. Can be increased. In addition, cost reduction is expected due to the reduction of parts. Here, considering the interference when the semiconductor laser element 4 is mounted, it is preferable that the reduction in the dimensions of the heat dissipation block 2 and the high frequency substrate 3 in the height direction is about the same as or less than the depth of the groove 10 formed in the stem 1. For example, when the depth of the groove 10 on the high frequency substrate 3 side is 0.2 mm, it is considered possible to reduce the heights of the heat dissipation block 2 and the high frequency substrate 3 by 0.2 mm as well.
 このように、実施の形態1による半導体レーザ装置によれば、放熱ブロック2および高周波基板3のサイズを縮小できるため、原価低減が期待できる。また、半導体レーザ素子4の実装位置をステム1上面に近づけることができるため、フォトダイオード素子6で受光するモニタ光の光量を増やすことができる。 As described above, according to the semiconductor laser apparatus according to the first embodiment, the size of the heat radiating block 2 and the high frequency substrate 3 can be reduced, so that cost reduction can be expected. Further, since the mounting position of the semiconductor laser element 4 can be brought closer to the upper surface of the stem 1, the amount of monitor light received by the photodiode element 6 can be increased.
 以上説明したように、本実施の形態1による半導体レーザ装置は、リードピン7からの配線のためのワイヤ9を、フォトダイオードサブマウント5上であって、フォトダイオード素子6が配置されている位置から放熱ブロックの側面に平行な方向にずれた位置に接続するようにした。このため、ステム1を小型にするためにリードピン7とフォトダイオード素子6を近づけてもリードピン7からのワイヤ9の実装が容易である。また、高周波基板3の下まで入り込んでいる溝10の底面に、フォトダイオード素子6が固定されたフォトダイオードサブマウント5を配置するようにしたので、フォトダイオードサブマウント5の実装が容易にできる。さらに、溝10の底面を、半導体レーザ素子4の後端面から放射されるレーザ光の光軸に垂直な面に対して傾斜させたため、フォトダイオード素子6からの反射光が半導体レーザ素子4に戻ることを抑制できる。また、溝10の深さだけ高周波基板3の高さ方向の寸法を小さくできるため、高周波基板3の面積を小さくできるとともに、半導体レーザ素子4からフォトダイオード素子6までの距離を近づけることができるので、フォトダイオード素子6で受光するモニタ光の光量を増やすことができ、受光効率を高くすることができる。 As described above, in the semiconductor laser device according to the first embodiment, the wire 9 for wiring from the lead pin 7 is placed on the photodiode submount 5 from the position where the photodiode element 6 is arranged. It is connected at a position shifted in the direction parallel to the side surface of the heat dissipation block. Therefore, even if the lead pin 7 and the photodiode element 6 are brought close to each other in order to reduce the size of the stem 1, the wire 9 can be easily mounted from the lead pin 7. Further, since the photodiode submount 5 to which the photodiode element 6 is fixed is arranged on the bottom surface of the groove 10 that penetrates to the bottom of the high frequency substrate 3, the photodiode submount 5 can be easily mounted. Further, since the bottom surface of the groove 10 is inclined with respect to the surface perpendicular to the optical axis of the laser light emitted from the rear end surface of the semiconductor laser element 4, the reflected light from the photodiode element 6 returns to the semiconductor laser element 4. Can be suppressed. Further, since the dimension of the high frequency substrate 3 in the height direction can be reduced by the depth of the groove 10, the area of the high frequency substrate 3 can be reduced and the distance from the semiconductor laser element 4 to the photodiode element 6 can be shortened. The amount of monitor light received by the photodiode element 6 can be increased, and the light receiving efficiency can be increased.
実施の形態2.
 図7は、実施の形態2による半導体レーザ装置の構成を模式的に示す側面断面図、図8は上面図である。本実施の形態2による半導体レーザ装置では、図7に示すように、実施の形態1で設けていたフォトダイオードサブマウント5を実装する部分の溝が無い。通常、フォトダイオードサブマウント5はリードピン7から放熱ブロック2までの間の部分に実装されるが、高周波基板3下端がステム1上面近くまで下がっている場合は、フォトダイオードサブマウント5の実装スペースが小さくなる。ステム1の寸法をできるだけ小さくするためには、リードピン7と高周波基板3との間をできるだけ近づけたい。リードピン7と高周波基板3との間の距離をフォトダイオード素子6の寸法と同じ程度にする場合、フォトダイオードサブマウント5にワイヤ9を接続するスペースが小さくなりワイヤ実装が困難である。図8のように、溝が形成されていないステム1の上面にフォトダイオードサブマウント5を配置した場合においても、実施の形態1で説明したのと同様、リードピン7からのワイヤ9を接続する位置を、フォトダイオード素子6が配置されている位置から放熱ブロック2の側面に平行な方向にずれた位置とすることで、ワイヤ実装が容易になる。
Embodiment 2.
FIG. 7 is a side sectional view schematically showing the configuration of the semiconductor laser device according to the second embodiment, and FIG. 8 is a top view. In the semiconductor laser device according to the second embodiment, as shown in FIG. 7, there is no groove in the portion where the photodiode submount 5 provided in the first embodiment is mounted. Normally, the photodiode submount 5 is mounted in the portion between the lead pin 7 and the heat dissipation block 2, but when the lower end of the high frequency substrate 3 is lowered to near the upper surface of the stem 1, the mounting space of the photodiode submount 5 is large. It becomes smaller. In order to make the size of the stem 1 as small as possible, it is desired that the lead pin 7 and the high frequency substrate 3 be as close as possible. When the distance between the lead pin 7 and the high-frequency substrate 3 is set to be about the same as the dimension of the photodiode element 6, the space for connecting the wire 9 to the photodiode submount 5 becomes small, which makes wire mounting difficult. Even when the photodiode submount 5 is arranged on the upper surface of the stem 1 in which the groove is not formed as shown in FIG. 8, the position where the wire 9 from the lead pin 7 is connected is the same as that described in the first embodiment. Is set to a position deviated from the position where the photodiode element 6 is arranged in a direction parallel to the side surface of the heat dissipation block 2, so that wire mounting becomes easy.
 図9は、実施の形態2による半導体レーザ装置の要部であるフォトダイオードサブマウント5とリードピン7の部分を拡大して示す模式的な上面図である。図10は、図9とは別の構成のフォトダイオードサブマウント5を示す模式的な上面図である。図10に示すフォトダイオードサブマウント5は、例えば、図9に示す0.7mm×0.7mmの大きさの正方形から、0.2mm×0.5mmの細い長方形に形状を変えている。このように、フォトダイオードサブマウント5の面積を約1/5に縮小することにより、部材の原価低減が見込まれる。フォトダイオード素子6を実装した際にバランスが取れること、ワイヤ実装部分を確保できること、を満たす形状であれば、フォトダイオードサブマウント5は小さければ小さいほど良い。フォトダイオードサブマウント5へのワイヤ実装に関しては、0.1×0.1mmのスペースがあればワイヤ実装が可能と考えられるが、本実施の形態2ではフォトダイオード素子6がフォトダイオードサブマウント5に乗ることでの段差を考慮し、フォトダイオード素子6側面端面から0.3mm以上サブマウントがはみ出していることが望ましい。なお、図10のような形状のフォトダイオードサブマウント5は、溝10を設けた実施の形態1による半導体レーザ装置にも適用可能であることは言うまでもない。 FIG. 9 is a schematic top view showing an enlarged portion of the photodiode submount 5 and the lead pin 7 which are the main parts of the semiconductor laser device according to the second embodiment. FIG. 10 is a schematic top view showing a photodiode submount 5 having a configuration different from that of FIG. The photodiode submount 5 shown in FIG. 10 is changed in shape from, for example, a square having a size of 0.7 mm × 0.7 mm shown in FIG. 9 to a thin rectangle having a size of 0.2 mm × 0.5 mm. By reducing the area of the photodiode submount 5 to about 1/5 in this way, it is expected that the cost of the member will be reduced. The smaller the photodiode submount 5, the better, as long as the shape satisfies the balance when the photodiode element 6 is mounted and the wire mounting portion can be secured. Regarding the wire mounting to the photodiode submount 5, it is considered that the wire can be mounted if there is a space of 0.1 × 0.1 mm, but in the second embodiment, the photodiode element 6 is mounted on the photodiode submount 5. It is desirable that the sub-mount protrudes by 0.3 mm or more from the side end face of the photodiode element 6 in consideration of the step difference due to riding. Needless to say, the photodiode submount 5 having the shape shown in FIG. 10 can also be applied to the semiconductor laser device according to the first embodiment in which the groove 10 is provided.
 本願には、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although various exemplary embodiments and examples are described in the present application, the various features, embodiments, and functions described in one or more embodiments are of particular embodiments. It is not limited to application, but can be applied to embodiments alone or in various combinations. Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 1 ステム、2 放熱ブロック、3 高周波基板、4 半導体レーザ素子、5 フォトダイオードサブマウント、6 フォトダイオード素子、7 リードピン、8 絶縁部材、9 ワイヤ、10 溝 1 stem, 2 heat dissipation block, 3 high frequency substrate, 4 semiconductor laser element, 5 photodiode submount, 6 photodiode element, 7 lead pin, 8 insulation member, 9 wire, 10 groove

Claims (4)

  1.  裏面から表面に貫通する貫通孔に、絶縁部材で封止されるように挿入されたリードピンを有するステムと、
     側面が前記ステムの表面に対して垂直である放熱ブロックと、
     前記放熱ブロックの側面に固定され、後端面が前記ステムの表面に対向する半導体レーザ素子が実装された高周波基板と、
     前記ステムの表面に配置され、前記半導体レーザ素子の後端面から放射されるレーザ光を受光するフォトダイオード素子が固定されたフォトダイオードサブマウントと、
    を備え、
     前記フォトダイオードサブマウント上であって、前記フォトダイオード素子が配置されている位置から前記放熱ブロックの側面に平行な方向にずれた位置に接続された、前記リードピンへのワイヤを有する半導体レーザ装置。
    A stem having a lead pin inserted so as to be sealed with an insulating member in a through hole penetrating from the back surface to the front surface.
    A heat dissipation block whose sides are perpendicular to the surface of the stem,
    A high-frequency substrate fixed to the side surface of the heat dissipation block and mounted with a semiconductor laser element whose rear end surface faces the surface of the stem.
    A photodiode submount arranged on the surface of the stem and fixed with a photodiode element that receives laser light radiated from the rear end surface of the semiconductor laser element.
    With
    A semiconductor laser diode device having a wire to a lead pin connected to a position on the photodiode submount that is displaced in a direction parallel to the side surface of the heat dissipation block from a position where the photodiode element is arranged.
  2.  前記フォトダイオードサブマウントは、前記ステムの表面に形成された溝の底面に固定された請求項1に記載の半導体レーザ装置。 The semiconductor laser device according to claim 1, wherein the photodiode submount is fixed to the bottom surface of a groove formed on the surface of the stem.
  3.  前記溝が、前記高周波基板の下まで入り込んでいる請求項2に記載の半導体レーザ装置。 The semiconductor laser device according to claim 2, wherein the groove penetrates under the high-frequency substrate.
  4.  前記溝の底面は、前記半導体レーザ素子の後端面から放射されるレーザ光の光軸に垂直な面に対して傾斜している請求項2または3に記載の半導体レーザ装置。 The semiconductor laser device according to claim 2 or 3, wherein the bottom surface of the groove is inclined with respect to a surface perpendicular to the optical axis of the laser beam radiated from the rear end surface of the semiconductor laser element.
PCT/JP2020/007022 2020-02-21 2020-02-21 Semiconductor laser device WO2021166215A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/007022 WO2021166215A1 (en) 2020-02-21 2020-02-21 Semiconductor laser device
JP2020538876A JPWO2021166215A1 (en) 2020-02-21 2020-02-21
TW109146171A TW202133517A (en) 2020-02-21 2020-12-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007022 WO2021166215A1 (en) 2020-02-21 2020-02-21 Semiconductor laser device

Publications (1)

Publication Number Publication Date
WO2021166215A1 true WO2021166215A1 (en) 2021-08-26

Family

ID=77390544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007022 WO2021166215A1 (en) 2020-02-21 2020-02-21 Semiconductor laser device

Country Status (3)

Country Link
JP (1) JPWO2021166215A1 (en)
TW (1) TW202133517A (en)
WO (1) WO2021166215A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248409A1 (en) * 2022-06-23 2023-12-28 三菱電機株式会社 Light-receiving module and manufacturing method therefor
WO2024204687A1 (en) * 2023-03-29 2024-10-03 日本電信電話株式会社 Optical transmission module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232684A (en) * 1996-02-26 1997-09-05 Sanyo Electric Co Ltd Semiconductor laser
JP2005340517A (en) * 2004-05-27 2005-12-08 Sumitomo Electric Ind Ltd Laser module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3239056B2 (en) * 1995-11-29 2001-12-17 シャープ株式会社 Semiconductor laser device
US6868104B2 (en) * 2001-09-06 2005-03-15 Finisar Corporation Compact laser package with integrated temperature control
KR100526504B1 (en) * 2003-06-04 2005-11-08 삼성전자주식회사 Optical module and fabrication method thereof
JP2006351610A (en) * 2005-06-13 2006-12-28 Sumitomo Electric Ind Ltd Optical module
JP2007121610A (en) * 2005-10-27 2007-05-17 Mitsubishi Electric Corp Method for manufacturing product having optical system, product, and intermediate product of product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232684A (en) * 1996-02-26 1997-09-05 Sanyo Electric Co Ltd Semiconductor laser
JP2005340517A (en) * 2004-05-27 2005-12-08 Sumitomo Electric Ind Ltd Laser module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248409A1 (en) * 2022-06-23 2023-12-28 三菱電機株式会社 Light-receiving module and manufacturing method therefor
WO2024204687A1 (en) * 2023-03-29 2024-10-03 日本電信電話株式会社 Optical transmission module

Also Published As

Publication number Publication date
JPWO2021166215A1 (en) 2021-08-26
TW202133517A (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US10819084B2 (en) TO-CAN packaged laser and optical module
JP4113442B2 (en) Semiconductor laser, manufacturing method thereof, and optical pickup device
JP2011018800A (en) Semiconductor laser device
JP2018085489A (en) Electronic device assembly
WO2021166215A1 (en) Semiconductor laser device
JPWO2009130743A1 (en) Optical element package, semiconductor light emitting device and lighting device
WO2005048421A1 (en) Semiconductor laser apparatus
JP6225834B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6958772B1 (en) Semiconductor device
US20100018047A1 (en) Surface mount package
US11349278B2 (en) Stem for semiconductor package, and semiconductor package
US12113330B2 (en) Semiconductor laser device
JP2004335584A (en) Semiconductor package
US7192201B2 (en) Optical transmitting module having a de-coupling inductor therein
US5907185A (en) Ceramic terminal block, hermetic sealed package, and complex semiconductor device
JP2006237103A (en) Thermal conduction member and electronic device
KR102814390B1 (en) Optical semiconductor devices
US11955769B2 (en) Optical element mounting package, electronic device, and electronic module
JP2019075460A (en) Semiconductor light emitting element and semiconductor light emitting device
JP4951691B2 (en) Optical transmission module and optical communication device using the same
JP6485518B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2001007352A (en) Optical-electrical mixedly mounted module
JP2001077262A (en) Semiconductor device
JP2018018995A (en) Optical module
JP7246590B1 (en) Semiconductor laser light source device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020538876

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919970

Country of ref document: EP

Kind code of ref document: A1