WO2021157470A1 - 裁断装置、接合材転写装置および実装装置 - Google Patents
裁断装置、接合材転写装置および実装装置 Download PDFInfo
- Publication number
- WO2021157470A1 WO2021157470A1 PCT/JP2021/003128 JP2021003128W WO2021157470A1 WO 2021157470 A1 WO2021157470 A1 WO 2021157470A1 JP 2021003128 W JP2021003128 W JP 2021003128W WO 2021157470 A1 WO2021157470 A1 WO 2021157470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bonding material
- transfer
- chip component
- cutting
- mounting
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 160
- 238000005520 cutting process Methods 0.000 title claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 description 23
- 239000010419 fine particle Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/20—Adhesives in the form of films or foils characterised by their carriers
- C09J7/21—Paper; Textile fabrics
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/52—Mounting semiconductor bodies in containers
Definitions
- a device for mounting chip parts on a substrate using a bonding material a cutting device, a bonding material transfer device, and a mounting device.
- FIG. 9 shows how the chip components are joined to the substrate using the bonding material, and as shown in FIG. 9A, the chip components are mounted between the chip component C and the substrate S from the state where the bonding material 101 is interposed.
- the resin component of the bonding material 101 is cured, and the chip component C is mounted on the substrate S as shown in FIG. 9B.
- the bonding material 101 is arranged at a plurality of locations on the substrate S as shown in FIG. 11 and then the chip component C is mounted, the heat during heat crimping passes through the substrate S.
- the adjacent (before mounting) bonding material 101 may be heated and adversely affected. Further, when the joining material 101 is to be arranged at another place after mounting the chip component C, the mounted chip component C may become an obstacle.
- FIG. 12 is a diagram illustrating a step of transferring the bonding material 101 to the chip component C.
- the chip component C is arranged on the sheet-shaped transfer material 101 as shown in FIG. 12A, and FIG. 12B ), Then the chip component C is pressed by the transfer tool 32 and then separated as shown in FIG. 12 (c) to tear off the bonding material 101 having a size substantially equal to that of the chip component C and transfer it to the chip component C. You can.
- the bonding material 101 is torn off, it is not always transferred in the same size as the chip component C, and an excess (including metal fine particles) may be generated at the end portion, so that the chip component C is mounted on the substrate. It may adversely affect the quality of the product.
- Cited Document 1 proposes a method of forming a bonding material according to the size of the chip component by screen printing and then transferring the bonding material to the chip component. With this method, it is easy to transfer the bonding material with less edge disorder according to the size of the chip component.
- Cited Document 1 it is necessary to prepare a stencil for each size of the chip part, which is costly and has a problem that it is difficult to handle a wide variety of products.
- the present invention has been made in view of the above problems, and is a cutting device, a bonding material transfer device, and a mounting device for mounting a chip component on a substrate via a bonding material of an appropriate size at a relatively low cost. Is to provide.
- the invention according to claim 1 is It is a cutting device that makes grid-like cuts on the surface of the bonding material layer of the bonding material sheet in which the bonding material is laminated on the surface of the mount. It is a cutting device including a cutting stage that holds the bonding material sheet from the mount side and can move in the in-plane direction, and a straight blade that makes a linear notch on the surface side of the bonding material layer.
- the invention according to claim 2 is the cutting device according to claim 1.
- the straight blade is a cutting device characterized in that the straight blade is machined so that the cross-sectional shape of the tip portion has a pinnacle shape.
- the invention according to claim 3 is the cutting device according to claim 1 or 2.
- the cutting device has a depth of cut of 80% or more of the thickness of the bonding material layer and does not penetrate the mount.
- the invention according to claim 4 is the cutting device according to any one of claims 1 to 3.
- the cutting stage is a cutting device having a function of rotating the joining material sheet in an in-plane direction by 90 degrees or more.
- the invention according to claim 5 A bonding material transfer device that transfers a bonding material to a chip component according to the size of the chip component.
- the cutting device according to any one of claims 1 to 4 and a transfer device for transferring a bonding material from the bonding material sheet to a chip component are provided.
- the transfer device is a bonding material transfer device having a transfer stage that holds the bonding material sheet and can move in the in-plane direction, a transfer tool that holds the chip parts, and an alignment camera.
- the invention according to claim 6 is the bonding material transfer device according to claim 5.
- the transfer stage is a bonding material transfer device that holds the bonding material sheet via a buffer sheet.
- the invention according to claim 7 is the bonding material transfer device according to claim 5 or 6.
- the cutting stage is a bonding material transfer device that also functions as the transfer stage.
- the invention according to claim 8 is A mounting device including the bonding material transfer device according to any one of claims 5 to 7, and a thermocompression bonding device for thermocompression bonding a chip component to which the bonding material has been transferred to a substrate.
- the thermocompression bonding device is a mounting device having a mounting stage that holds the substrate and can move in the in-plane direction, a mounting tool that holds the chip components, and an alignment camera.
- the invention according to claim 9 is the mounting device according to claim 8.
- the transfer tool is a mounting device that also has the function of the mounting tool.
- the present invention it is possible to easily obtain a bonding material according to the size of a chip component with high accuracy, and it is possible to improve the mounting quality at a relatively low cost.
- FIG. 1 It is a figure which shows the structure of the bonding material transfer apparatus which concerns on embodiment of this invention. It relates to the cutting apparatus which concerns on embodiment of this invention, it is (a) the figure which shows the cross section of the blade suitable as a straight blade, (b) is the cross-sectional view which shows the state of making a cut in a joint material sheet. (C) It is sectional drawing explaining the depth of cut. It is a flow figure explaining the cutting process and the transfer process which concerns on embodiment of this invention. The movement of the cutting device according to the embodiment of the present invention will be described. It is a figure which shows the state which inserts (c) the state before making a second cut, and (d) the state which made a predetermined number of cuts in the direction of one side.
- a state of the joining material sheet rotated 90 degrees in the direction (c) a state of making a notch in the joining material sheet rotated 90 degrees in the in-plane direction with a straight blade, and (d) a state in which a grid-like notch is formed in the joining material sheet. It is a figure which shows the state.
- Another embodiment of the present invention will be described, wherein (a) a state in which a predetermined cut in the one-side direction of the joining material sheet is completed, and (b) a straight blade is used after the predetermined cut in the one-side direction is completed. It is a figure which shows the state which was rotated 90 degrees in the in-plane direction.
- thermocompression bonding apparatus A state in which a chip component is mounted on a substrate using a bonding material is described, and is a diagram showing (a) a state before thermocompression bonding and (b) a state after thermocompression bonding.
- a different method using a joining material is described, and is a diagram showing (a) an example of arranging the joining material on a substrate, and (b) an example of arranging the joining material on a chip component. It is a figure which shows the mounting process in the state that the bonding material is arranged on the substrate. The process of transferring the sheet-shaped joint material to the chip parts is explained. (A) The chip parts are placed on the joint material, (b) The chip parts are pressed against the joint material, and (c) The joint material. It is a figure explaining the state which separates a chip part while tearing off.
- FIG. 1 is a diagram showing a configuration of a bonding material transfer device 1 according to an embodiment of the present invention.
- the joining material transfer device 1 cuts the joining material 101 of the joining material sheet 10 to an appropriate size and then transfers it to the chip component C, and includes the cutting device 2 and the transfer device 3.
- the joining material sheet 10 is a bonding material 101 laminated on the mount 100.
- the mount 100 is a base sheet on which the bonding material 101 is laminated on the surface, and it is desirable that the mount 100 has a mold releasability with respect to the bonding material 101.
- the thickness of the mount 100 varies depending on the thickness and composition of the bonding layer 101, but is about 20 ⁇ m to 200 ⁇ m.
- the bonding material 101 is a resin in which submicron-sized metal fine particles are dispersed, and has a thickness of about 10 ⁇ m to 100 ⁇ m.
- silver or copper is used as the metal fine particles, and the weight of the metal fine particles in the entire bonding material is usually 90% or more.
- the cutting device 2 makes a grid-like notch on the surface of the joining material 101 of the joining material sheet 10, and includes a cutting stage 21 and a straight blade 22 as components.
- the cutting stage 21 has a function of holding the joining material sheet 10 on the surface on the backing sheet 100 side and moving the joining material sheet 10 in the in-plane direction (X direction, Y direction). Further, it is desirable that the cutting stage 21 has a function of rotating the joining material sheet 10 on the same surface (rotation about the Z direction as an axis).
- the straight blade 22 makes a linear notch from the surface of the joining material 101.
- a notch can be formed with high precision, and a pinnacle shape obtained by cutting as shown in FIG. 2 (a) (so-called Pinnacle (registered trademark) shape) is desirable.
- FIG. 2B shows a state in which a straight blade 22 having a cross section as shown in FIG. 2A is used to make a notch from the surface of the joining material 101.
- the cutting device 2 has a driving means for allowing at least one of the cutting stage 21 and the straight blade 22 to move in the vertical direction (Z direction), and the cutting stage 21 and the straight blade 22. It also has control means for measuring and controlling the distance of 22. Therefore, it is also possible to control the cutting depth as shown in FIG. 2 (c).
- the transfer device 3 transfers the bonding material 101 from the bonding material sheet 10 having a grid-like notch in the bonding material 101 to the chip component C by the cutting device 2.
- the alignment camera 33 is a component.
- the transfer stage 31 has a function of holding the joining material sheet 10 on the surface on the backing sheet 100 side and moving the joining material sheet 10 in the in-plane direction (X direction, Y direction). Further, it is desirable that the transfer stage 31 has a function of adjusting the angle of the joining material sheet 10 on the same surface (rotation angle about the Z direction). Further, when the transfer stage 31 holds the bonding material sheet 10, the buffer sheet 34 may be used.
- the cutting stage 21 may also serve as the transfer stage 31.
- the transfer tool 32 has a function of holding the chip component C, moves the chip component C picked up from the chip tray or the like onto the transfer stage 31, and moves the chip component C to which the bonding material 101 is transferred to the next process.
- the transfer device 3 has a driving means that enables at least one of the transfer stage 31 and the transfer tool 32 to move in the vertical direction (Z direction), and the transfer stage 31 and the transfer tool 32. It is desirable to also have a control means for measuring and controlling the distance. By doing so, it is possible to avoid applying excessive pressure when the chip component C is brought into close contact with the bonding material 101.
- step ST01 of FIG. 3 will be described with reference to FIG. Step ST01 is performed by the cutting device 2, and in FIG. 4, the cutting stage 21 holding the mount 100 side is omitted.
- FIG. 4 shows how the straight blade 22 makes linear cuts at predetermined intervals.
- the straight blade 22 is arranged at a predetermined position on the joining material 101 in order to make the first cut on one end side.
- the straight blade 22 is pushed from the surface of the joint material 101 to make a notch SL.
- the depth of the notch SL is It is desirable that the thickness is in the range of the thickness of the joining material 101 ⁇ 0.8 ⁇ the depth of the notch SL ⁇ the thickness of the joining material 101 + the thickness of the mount 101 ⁇ 0.5.
- the mount 100 is cut when the bonding material 101 is transferred to the chip component C, and the chip component C is cut. It may be transferred with the mount 101 attached, which is not preferable.
- the distance between the cutting stage 21 and the straight blade 22 is widened, and the state is as shown in FIG. 4 (c).
- the notch SL is inserted to the other end side of the joining material 101 (FIG. 4 (d)).
- the cutting stage 21 that can move in the XY direction may be moved in the X direction, but the straight blade 22 may have a function of moving in the X direction.
- the predetermined distance between the notch SLs is substantially equal to the length of one side of the chip component C that transfers the bonding material 101.
- step ST2 the pattern of the cut SL is made into a grid pattern by making the cut SL in the direction perpendicular to the direction of the cut SL made in step ST01.
- step ST02 of the present embodiment first, as shown in FIG. 5A, the joining sheet 10 is rotated 90 degrees in the in-plane direction (rotation axis in the Z direction) to bring it into the state shown in FIG. 5B. Therefore, the cutting stage 21 has a function of rotating the joining material sheet 10 at least 90 degrees in the in-plane direction. After that, the cut SL is made in parallel with a predetermined interval from one end side as shown in FIG. 5 (c) to the other end side as shown in FIG. 5 (d).
- this embodiment is a method of rotating the cutting stage 21, but as another embodiment, as shown in FIGS. 6A to 6B, the straight blade 22 is moved in the in-plane direction of the joining material 101.
- a method of rotating 90 degrees may be used.
- step ST03 as a preparatory step for the transfer step, a bonding sheet 10 having a bonding material 101 having a grid-like notch is arranged on the transfer stage 31. At this time, it is desirable to interpose the buffer sheet 34 between the bonding sheet 10 (mounting sheet 100) and the transfer stage 31. Although the cutting sheet 21 can be used as the transfer stage 31, it is preferable to sandwich the cushioning sheet 34 with the bonding sheet 10 before entering the transfer step.
- step ST11 As a preparatory step for the transfer process, it is necessary for the transfer tool 32 to separately hold the chip component C from the chip tray or the like (step ST11). After these preparations are completed, the transfer material 101 is transferred to the chip component C by the transfer device 3.
- step ST21 as shown in FIG. 7A, the alignment camera 33 is used to align the chip component C and the joining member 101 in a state where they are separated from each other.
- the transfer stage 31 and the transfer tool 32 were formed by making notches SL in a grid pattern (the relative positional relationship between the rectangular bonding material 101 having substantially the same size as the chip component C and the chip component C was grasped. Is relatively moved in the XY in-plane direction, and a rectangular joining member 101 is arranged directly below the chip component C (FIG. 7 (b)).
- step ST22 the transfer tool 32 and the transfer stage 31 are moved relative to each other in the Z direction to be brought close to each other, and then the chip component C is pressed against the bonding material 101 (FIG. 7 (c)).
- the cushioning sheet 34 is arranged under the bonding material sheet 10, a strong adhesion force is generated between the chip component C and the bonding material 101 without damaging the chip component C by pressing.
- the transfer tool 32 and the transfer stage are separated in the Z direction as step ST23, as shown in FIG. 7 (d).
- the rectangular joining material 101 is transferred to the chip component C.
- the bonding material 101 having a shape corresponding to the size of various chip parts C is obtained by the cutting device 2 having a relatively simple structure and can be obtained with high quality. Further, in addition to being a device having a relatively simple structure, by forming grid-like notches in the sheet-shaped joining material 101, the utilization efficiency of the joining material 101 is improved, and the joining material transfer process can be performed at low cost. You can.
- the bonding material transfer device 1 of the present embodiment may be combined with the thermocompression bonding device 4 having a function of thermocompression bonding the chip component C to the substrate S as shown in FIG. 8 to form a mounting device.
- the thermocompression bonding device 4 of FIG. 8 has a mounting stage 41 that holds the substrate S and can move in the in-plane direction, and a mounting tool that holds the chip component C and thermocompression-bonds to the substrate S on the mounting stage 41.
- the configuration includes the 42 and the alignment camera 43
- the transfer tool 32 may have the function of the mounting tool 42
- the alignment camera 33 of the transfer device 3 functions as the alignment camera 43 of the thermocompression bonding device 4. You may have.
- the description so far has assumed a mounting form in which face-up mounting is performed using a bonding material in which metal fine particles are dispersed, but the present invention has a face that joins the electrode surface of the chip component C and the electrode surface of the substrate. It can also be applied to down mounting. That is, with respect to the insulating film NCF and the anisotropic conductive film ACF, the shape corresponding to the size of the chip component C can be easily obtained with high accuracy, which can be useful for improving the mounting quality.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Die Bonding (AREA)
- Wire Bonding (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Adhesive Tapes (AREA)
Abstract
適切なサイズの接合材を介してチップ部品を基板に実装することを比較的安価に行うための、裁断装置、接合材転写装置および実装装置を提供すること。具体的には、台紙表面に接合材が積層された接合材シートを台紙側から保持して面内方向に移動可能な裁断ステージと、前記接合材層表面側に直線状の切れ込みを入れる直線刃とを備えた裁断装置を提供するとともに、チップ部品にチップ部品のサイズに合わせた接合材を転写する接合材転写装置と、前記裁断装置と前記接合材転写装置を備えた実装装置を提供する。
Description
接合材を用いてチップ部品を基板に実装する装置に関し、裁断装置、接合材転写装置および実装装置に関する。
半導体チップ等のチップ部品をフェイスアップで基板に実装する形態において、チップ部品使用時の過熱を避けるため、チップ部品と基板の接合に用いる接合材の伝熱性が重要視される。このため、伝熱性に優れた金属微粒子を樹脂成分に分散した接合材が用いられることが多い。
接合材を用いてチップ部品を基板に接合する様子を示したのが図9であり、図9(a)のように、チップ部品Cと基板Sの間に接合材101を介した状態から実装ツール42でチップ部品Cを基板S側に加熱圧着することにより、接合材101の樹脂成分が硬化して、図9(b)のように、チップ部品Cは基板Sに実装される。ところで、近年では、金属超微粒子を用いることで、比較的低温で伝熱性に優れた焼結体が得られる接合材も開発されている。
接合材を用いた実装を行うのに際して、図10(a)のように接合材101を基板Sに配置してからチップ部品Cを実装する手法と、図10(b)のような接合材101が付着しているチップ部品Cを基板Sに実装する手法がある。
図10(a)の手法の場合、図11のように基板Sの複数箇所に接合材101を配置してからチップ部品Cの実装を行おうとすると、加熱圧着時の熱が基板Sを経由して隣接する(実装前の)接合材101を加熱して悪影響を及ぼすことがある。また、チップ部品Cを実装後に他の箇所に接合材101を配置しようとした場合、実装済みのチップ部品Cが障害になることもある。
一方、図10(b)のようにチップ部品Cに接合材101を付着させる手法の場合、ウェハ段階で接合材101を全面形成した後にダイシングする手法が考えられるが、金属微粒子が分散された接合材をダイシング工程で切断するのは困難である。そこで、接合材101をチップ部品Cに転写させる手法が検討されている。
図12は、接合材101をチップ部品Cに転写する工程を説明する図であり、図12(a)のようにシート状の転写材101上にチップ部品Cを配置して、図12(b)のように転写ツール32でチップ部品Cを押し付けてから、図12(c)のように離すことで、チップ部品Cとほぼ等しいサイズの接合材101を引きちぎってチップ部品Cに転写することが出来る。
ただし、接合材101を引きちぎる際に、必ずしもチップ部品Cと同サイズで転写されるとは限らず、更に端部に(金属微粒子を含む)余分が生じることもあり、チップ部品Cを基板に実装する際の品質に悪影響を及ぼすこともある。
このような問題点に対して、引用文献1では、チップ部品のサイズに合わせた接合材をスクリーン印刷で形成してからチップ部品に転写する方法が提案されている。この方法であれば、チップ部品のサイズに応じて端部乱れも少ない接合材を転写することが容易である。
ただし、引用文献1の方法ではチップ部品のサイズ毎に孔版を準備する必要があり、コスト高であり、多品種対応が困難という問題点もある。
本発明は上記問題に鑑みてなされたものであり、適切なサイズの接合材を介してチップ部品を基板に実装することを比較的安価に行うための、裁断装置、接合材転写装置および実装装置を提供することである。
上記課題を解決するために、請求項1に記載の発明は、
台紙表面に接合材が積層された接合材シートの接合材層表面に格子状の切れ込みを入れる裁断装置であって、
前記接合材シートを台紙側から保持して面内方向に移動可能な裁断ステージと、前記接合材層表面側に直線状の切れ込みを入れる直線刃とを備えた裁断装置である。
台紙表面に接合材が積層された接合材シートの接合材層表面に格子状の切れ込みを入れる裁断装置であって、
前記接合材シートを台紙側から保持して面内方向に移動可能な裁断ステージと、前記接合材層表面側に直線状の切れ込みを入れる直線刃とを備えた裁断装置である。
請求項2に記載の発明は、請求項1に記載の裁断装置であって、
前記直線刃は先端部の断面形状が小尖塔形状となるように切削加工されたものであることを特徴とする裁断装置である。
前記直線刃は先端部の断面形状が小尖塔形状となるように切削加工されたものであることを特徴とする裁断装置である。
請求項3に記載の発明は、請求項1または請求項2に記載の裁断装置であって、
前記切れ込みの深さが接合材層厚みの80%以上であって、前記台紙を貫通しない範囲である裁断装置である。
前記切れ込みの深さが接合材層厚みの80%以上であって、前記台紙を貫通しない範囲である裁断装置である。
請求項4に記載の発明は、請求項1から請求項3のいずれかに記載の裁断装置であって、
前記裁断ステージが前記接合材シートを面内方向に90度以上回転させる機能を有する裁断装置である。
前記裁断ステージが前記接合材シートを面内方向に90度以上回転させる機能を有する裁断装置である。
請求項5に記載の発明は、
チップ部品にチップ部品のサイズに合わせた接合材を転写する接合材転写装置であって、
請求項1から請求項4の何れかに記載の裁断装置と、前記接合材シートからチップ部品に接合材を転写する転写装置とを備え、
前記転写装置は、前記接合材シートを保持して面内方向に移動可能な転写ステージと、前記チップ部品を保持する転写ツールと、アライメントカメラとを有する接合材転写装置である。
チップ部品にチップ部品のサイズに合わせた接合材を転写する接合材転写装置であって、
請求項1から請求項4の何れかに記載の裁断装置と、前記接合材シートからチップ部品に接合材を転写する転写装置とを備え、
前記転写装置は、前記接合材シートを保持して面内方向に移動可能な転写ステージと、前記チップ部品を保持する転写ツールと、アライメントカメラとを有する接合材転写装置である。
請求項6に記載の発明は、請求項5に記載の接合材転写装置であって、
前記転写ステージが緩衝シートを介して前記接合材シートを保持する接合材転写装置である。
前記転写ステージが緩衝シートを介して前記接合材シートを保持する接合材転写装置である。
請求項7に記載の発明は、請求項5または請求項6に記載の接合材転写装置であって、
前記裁断ステージが前記転写ステージの機能も兼ねる接合材転写装置である。
前記裁断ステージが前記転写ステージの機能も兼ねる接合材転写装置である。
請求項8に記載の発明は、
請求項5から請求項7の何れかに記載の接合材転写装置と、接合材が転写されたチップ部品を基板に熱圧着する熱圧着装置とを備えた実装装置であって、
前記熱圧着装置は、前記基板を保持して面内方向に移動可能な実装ステージと、前記チップ部品を保持す実装ツールと、アライメントカメラとを有する実装装置である。
請求項5から請求項7の何れかに記載の接合材転写装置と、接合材が転写されたチップ部品を基板に熱圧着する熱圧着装置とを備えた実装装置であって、
前記熱圧着装置は、前記基板を保持して面内方向に移動可能な実装ステージと、前記チップ部品を保持す実装ツールと、アライメントカメラとを有する実装装置である。
請求項9に記載の発明は、請求項8に記載の実装装置であって、
前記転写ツールが前記実装ツールの機能も兼ねる実装装置である。
前記転写ツールが前記実装ツールの機能も兼ねる実装装置である。
本発明により、チップ部品のサイズに応じた接合材を高精度かつ容易に得ることが出来、比較的安価に実装品質を高めることができる。
本発明の実施形態について、図面を用いて説明する。図1は本発明の実施形態に係る接合材転写装置1の構成を示す図である。接合材転写装置1は、接合材シート10の接合材101を適正なサイズに裁断してからチップ部品Cに転写するものであり、裁断装置2と転写装置3を備えている。
ここで、接合材シート10は台紙100上に接合材101が積層されたものである。台紙100は表面上に接合材101を積層する基台シートであり、接合材101に対して離型性を有していることが望ましい。台紙100の厚みは、接合層101の厚みや組成に応じて異なるが20μmから200μm程度である。また、接合材101は樹脂中にサブミクロンサイズの金属微粒子が分散されたもので厚みは10μmから100μm程度である。また、金属微粒子としては銀や銅が用いられ、接合材全体に占める金属微粒子の重量は通常90%以上である。
裁断装置2は、接合材シート10の接合材101表面に格子状の切れ込みを入れるものであり、裁断ステージ21と直線刃22を構成要素とする。
裁断ステージ21は接合材シート10を台紙100側の面で保持するとともに、接合材シート10を面内方向(X方向、Y方向)に移動する機能を有している。更に、裁断ステージ21は、接合材シート10を同一面上で回転(Z方向を軸とする回転)する機能を有していることが望ましい。
直線刃22は、接合材101表面から直線状の切れ込みを入れるものである。直線刃22としては、高精度な切れ込みが形成できるものが望ましく、図2(a)に断面形状を示すような小尖塔形状を切削加工で得たもの(いわゆるピナクル(登録商標)形状)が望ましいが、これに限定されるものではない。図2(a)のような断面の直線刃22で接合材101の表面から切れ込みを入れる様子を示したのが図2(b)である。
なお、図1には示していないが、裁断装置2は、裁断ステージ21と直線刃22の少なくとも一方を上下方向(Z方向)に移動可能とする駆動手段を有するとともに、裁断ステージ21と直線刃22の距離を計測して制御する制御手段も有している。このため、図2(c)に示すように切り込み深さを制御することも可能である。図2(c)において、切り込み深さ(DP1、DP2、DP3)と、接合材101の厚み、接合材シート10の厚み(台紙100の厚み+接合材101の厚み)の関係は、
0<DP1<DP2=接合材101の厚み<DP3<接合材シート10の厚み
のようになる。
0<DP1<DP2=接合材101の厚み<DP3<接合材シート10の厚み
のようになる。
転写装置3は、裁断装置2で接合材101に格子状の切れ込みの入った、接合材シート10から接合材101をチップ部品Cに転写するものであり、転写ステージ31と、転写ツール32と、アライメントカメラ33を構成要素とする。
転写ステージ31は接合材シート10を台紙100側の面で保持するとともに、接合材シート10を面内方向(X方向、Y方向)に移動する機能を有している。更に、転写ステージ31は、接合材シート10を同一面上で角度調整(Z方向を軸とする回転角)する機能を有していることが望ましい。また、転写ステージ31が接合材シート10を保持するのに際し、緩衝シート34を介してもよい。
裁断ステージ21が転写ステージ31を兼ねる構成としてもよい。
転写ツール32はチップ部品Cを保持する機能を有しており、チップトレイ等からピックアップしたチップ部品Cを転写ステージ31上に移動させ、接合材101が転写されたチップ部品Cを次工程に移動する機能を有している。
図1には示していないが、転写装置3は、転写ステージ31と転写ツール32の少なくとも一方を上下方向(Z方向)に移動可能とする駆動手段を有するとともに、転写ステージ31と転写ツール32の距離を計測して制御する制御手段も有していることが望ましい。このようにすることで、チップ部品Cを接合材101に密着させる際に過剰な圧力が加わることを避けることができる。
以下、図3の工程フロー図および、図4から図7を用いて、図1の接合材転写装置1が、チップ部品Cに適正サイズで端面乱れのない転写材101を転写する工程について説明する。
まず、図3のステップST01を図4を用いて説明する。ステップST01は、裁断装置2によって行われるものであり、図4では台紙100側を保持する裁断ステージ21を省いている。
図4は、直線刃22により、所定間隔を空けて直線状の切り込みを入れていく様子を示している。まず、図4(a)では、一端側に最初の切り込みを入れるために、接合材101上の所定位置上に直線刃22を配置した状態である。この後、接合材101の面に対して垂直に、裁断ステージ21と直線刃22の間隔を狭めてから、直線刃22を接合材101表面から押し込んで切れ込みSLを入れる。ここで、切れ込みSLの深さは、
接合材101の厚み×0.8≦切れ込みSLの深さ≦接合材101の厚み+台紙101の厚み×0.5 の範囲にあることが望ましい。切れ込みSLの深さが接合材101の0.8倍より浅い場合は、チップ部品Cに接合材101を転写する際に、転写不良を生じることがある。また、切れ込みSLの深さが、接合材の厚み+台紙100の厚み×0.5倍を超えると、チップ部品Cに接合材101を転写する際に、台紙100が切断され、チップ部品Cに台紙101が付着した状態で転写されることがあり、好ましくない。
接合材101の厚み×0.8≦切れ込みSLの深さ≦接合材101の厚み+台紙101の厚み×0.5 の範囲にあることが望ましい。切れ込みSLの深さが接合材101の0.8倍より浅い場合は、チップ部品Cに接合材101を転写する際に、転写不良を生じることがある。また、切れ込みSLの深さが、接合材の厚み+台紙100の厚み×0.5倍を超えると、チップ部品Cに接合材101を転写する際に、台紙100が切断され、チップ部品Cに台紙101が付着した状態で転写されることがあり、好ましくない。
切れ込みSLを入れた後、裁断ステージ21と直線刃22の間隔を広げ、図4(c)のような状態となる。その後、切れ込みSL同士が並行で所定の間隔となる位置で図4(a)から図4(c)のような動作を続けることで、接合材101の他端側まで切れ込みSLが入れられる(図4(d))。所定の間隔を設けるのに際して、XY方向に移動可能な裁断ステージ21をX方向に移動させても良いが、直線刃22がX方向に移動する機能を有していてもよい。
ところで、切れ込みSL同士の所定の間隔は、接合材101を転写するチップ部品Cの一辺の長さと略等しくする。
図4(d)のように一方向の切れ込みSLが接合材101に所定間隔で所定数入れた後に、図3のステップST02に移行する。ステップST2は、ステップST01で入れた切れ目SLの方向と直角方向に切れ込みSLを入れることで、切れ込みSLのパターンを格子状にするものである。
本実施形態のステップST02では、まず、図5(a)のように接合シート10を面内方向(Z方向を回転軸)に90度回転させて図5(b)の状態にする。このため、裁断ステージ21は、接合材シート10を面内方向に少なくとも90度回転させる機能を有している。この後は、図5(c)のように一端側から、図5(d)のように他端側まで所定間隔を空けて平行に切れ込みSLを入れる。
ところで、本実施形態は裁断ステージ21を回転させる方式であるが、別の実施形態として、図6(a)から図6(b)に示すように直線刃22を接合材101の面内方向に90度回転させる方式としてもよい。
ステップST02で接合材101に格子状の切れ込みSLを入れた後は転写工程に移る。まず、ステップST03は転写工程の準備段階として、格子状の切れ込みの入った接合材101を有する接合シート10を転写ステージ31に配置する。この際、接合シート10(の台紙100)と転写ステージ31の間に緩衝シート34を介在させることが望ましい。なお、裁断シート21を転写ステージ31として用いることも可能であるが、転写工程に入る前に、接合シート10との間に緩衝シート34を挟みこむのが好ましい。
転写工程の準備段階として、別に、転写ツール32がチップトレイ等からチップ部品Cを保持しておく必要がある(ステップST11)。これらの準備が完了した後に、転写装置3によるチップ部品Cへの接合材101の転写が進められる。
ステップST21では、図7(a)に示すように、アライメントカメラ33を用いて、チップ部品Cと接合部材101が離れた状態で位置合わせを行う。位置合わせに際しては、格子状に切れ込みSLを入れることによって形成された(チップ部品Cと略同サイズの長方形の接合材101とチップ部品Cの相対位置関係を把握し、転写ステージ31と転写ツール32をXY面内方向に相対移動させ、チップ部品Cの直下に長方形の接合材101が配置する(図7(b))。
この後、ステップST22として、転写ツール32と転写ステージ31をZ方向に相対移動して接近させてから、接合材101にチップ部品Cを押し付ける(図7(c))。この際、緩衝シート34を接合材シート10の下に配置しておけば、チップ部品Cが押圧で破損することなく、チップ部品Cと接合材101の間で強い密着力が生じる。
このように、チップ部品Cと接合材101の間で強い密着力が生じた状態で、ステップST23として、転写ツール32と転写ステージをZ方向に引き離すことにより、図7(d)のように、長方形の接合材101はチップ部品Cに転写される。
以上のように、本実施形態の接合材転写装置1では、比較的単純な構成の裁断装置2により、種々なチップ部品Cのサイズに応じた形状の接合材101がられ高品質で得られる。また、比較的単純な構成な装置であることに加えて、格子状の切れ込みをシート状の接合材101に形成することで、接合材101の利用効率も上がり、接合材転写工程を低コストで行える。
ステップST23で得た、接合材101が(適正サイズで)転写されたチップ部品Cを基板Sの所定位置に熱圧着することにより(ステップST3)、チップ部品Cの基板Sへの実装は完了する。このため、本実施形態の接合材転写装置1と、図8に示すような、チップ部品Cを基板Sに熱圧着する機能を有する熱圧着装置4と組み合わせて実装装置としてもよい。ここで、図8の熱圧着装置4は、基板Sを保持して面内方向に移動可能な実装ステージ41と、チップ部品Cを保持して実装ステージ41上の基板Sに熱圧着する実装ツール42とアライメントカメラ43とを備えた構成であるが、転写ツール32が実装ツール42の機能を有していてもよく、転写装置3のアライメントカメラ33が熱圧着装置4のアライメントカメラ43の機能を有していてもよい。
以上、ここまでの記載において、金属微粒子が分散された接合材を用いてフェイスアップ実装を行う実装形態を前提としていたが、本発明はチップ部品Cの電極面と基板の電極面を接合するフェイスダウン実装にも適用できるものである。すなわち、絶縁性フィルムNCFや異方導電性フィルムACFについても、チップ部品Cのサイズに応じた形状を高精度かつ容易に得ることが出来、実装品質の向上に役立てることができる。
1 接合材転写装置
2 裁断装置
3 転写装置
4 加熱圧着装置
10 接合材シート
21 裁断ステージ
22 直線刃
31 転写ステージ
32 転写ツール
33 アライメントカメラ
34 緩衝シート
41 実装ステージ
42 実装ツール
43 アライメントカメラ
100 台紙
101 接合材
C チップ部品
S 基板
SL 切れ込み
2 裁断装置
3 転写装置
4 加熱圧着装置
10 接合材シート
21 裁断ステージ
22 直線刃
31 転写ステージ
32 転写ツール
33 アライメントカメラ
34 緩衝シート
41 実装ステージ
42 実装ツール
43 アライメントカメラ
100 台紙
101 接合材
C チップ部品
S 基板
SL 切れ込み
Claims (9)
- 台紙表面に接合材が積層された接合材シートの接合材層表面に格子状の切れ込みを入れる裁断装置であって、
前記接合材シートを台紙側から保持して面内方向に移動可能な裁断ステージと、
前記接合材層表面側に直線状の切れ込みを入れる直線刃とを備えた裁断装置。 - 請求項1に記載の裁断装置であって、前記直線刃は先端部の断面形状が小尖塔形状となるように切削加工されたものであることを特徴とする裁断装置。
- 請求項1または請求項2に記載の裁断装置であって、前記切れ込みの深さが接合材層厚みの80%以上であって、前記台紙を切断しない範囲である裁断装置。
- 請求項1から請求項3のいずれかに記載の裁断装置であって、前記裁断ステージが前記接合材シートを面内方向に90度以上回転させる機能を有する裁断装置。
- チップ部品にチップ部品のサイズに合わせた接合材を転写する接合材転写装置であって、
請求項1から請求項4の何れかに記載の裁断装置と、
前記接合材シートからチップ部品に接合材を転写する転写装置とを備え、
前記転写装置は、前記接合材シートを保持して面内方向に移動可能な転写ステージと、
前記チップ部品を保持する転写ツールと、アライメントカメラとを有する接合材転写装置。 - 請求項5に記載の接合材転写装置であって、前記転写ステージが緩衝シートを介して前記接合材シートを保持する接合材転写装置。
- 請求項5または請求項6に記載の接合材転写装置であって、前記裁断ステージが前記転写ステージの機能も兼ねる接合材転写装置。
- 請求項5から請求項7の何れかに記載の接合材転写装置と、接合材が転写されたチップ部品を基板に熱圧着する熱圧着装置とを備えた実装装置であって、
前記熱圧着装置は、前記基板を保持して面内方向に移動可能な実装ステージと、前記チップ部品を保持す実装ツールと、アライメントカメラとを有する実装装置。 - 請求項8に記載の実装装置であって、前記転写ツールが前記実装ツールの機能も兼ねる実装装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-018395 | 2020-02-06 | ||
JP2020018395A JP2021125572A (ja) | 2020-02-06 | 2020-02-06 | 裁断装置、接合材転写装置および実装装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021157470A1 true WO2021157470A1 (ja) | 2021-08-12 |
Family
ID=77200616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/003128 WO2021157470A1 (ja) | 2020-02-06 | 2021-01-29 | 裁断装置、接合材転写装置および実装装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021125572A (ja) |
WO (1) | WO2021157470A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009194135A (ja) * | 2008-02-14 | 2009-08-27 | Disco Abrasive Syst Ltd | ダイボンディング方法及びダイボンダ |
JP2018127518A (ja) * | 2017-02-07 | 2018-08-16 | 古河電気工業株式会社 | 接着シートおよびその製造方法 |
-
2020
- 2020-02-06 JP JP2020018395A patent/JP2021125572A/ja active Pending
-
2021
- 2021-01-29 WO PCT/JP2021/003128 patent/WO2021157470A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009194135A (ja) * | 2008-02-14 | 2009-08-27 | Disco Abrasive Syst Ltd | ダイボンディング方法及びダイボンダ |
JP2018127518A (ja) * | 2017-02-07 | 2018-08-16 | 古河電気工業株式会社 | 接着シートおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021125572A (ja) | 2021-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7743964B2 (en) | Bonding apparatus and bonding method | |
JP3512225B2 (ja) | 多層配線基板の製造方法 | |
JP4762317B2 (ja) | インモールドのチップ取り付け | |
JP2006032590A (ja) | 回路基板の接続構造体とその製造方法 | |
US10181460B2 (en) | Method for manufacturing semiconductor device, semiconductor mounting device, and memory device manufactured by method for manufacturing semiconductor device | |
JPH1051152A (ja) | 可撓性ラミナをアライメント・ピン上に積み重ねる方法及び装置 | |
JP5062844B2 (ja) | セラミックス積層体の製造方法 | |
WO2021157470A1 (ja) | 裁断装置、接合材転写装置および実装装置 | |
US6559523B2 (en) | Device for attaching a semiconductor chip to a chip carrier | |
JP6643198B2 (ja) | 半導体装置の製造方法および製造装置 | |
JP6402364B2 (ja) | 部品実装ラインおよび部品実装方法 | |
JP2006148154A (ja) | 接着シート及び半導体装置の製造方法 | |
JP2010153645A (ja) | 積層半導体装置の製造方法 | |
JP4075646B2 (ja) | 積層セラミック電子部品の製造方法 | |
JP6863767B2 (ja) | 実装装置および実装方法 | |
JP2007281415A (ja) | 接着シート | |
EP3772088A3 (en) | Method for die attach using planarized die-attach preforms | |
KR101883912B1 (ko) | 반도체 칩의 제조 방법 | |
JPH08320498A (ja) | 液晶表示パネルの端子接続構造 | |
CN111113904A (zh) | Acf贴附治具及方法 | |
JP2005166936A (ja) | ダイ成形方法 | |
CN100383929C (zh) | 一种半导体处理制程 | |
WO2016125763A1 (ja) | 実装装置および実装方法 | |
TW457654B (en) | Method for die attach | |
JP2025072811A (ja) | 被加工物の加工準備方法、及び、加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21750152 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21750152 Country of ref document: EP Kind code of ref document: A1 |