WO2021153351A1 - 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 - Google Patents
炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2021153351A1 WO2021153351A1 PCT/JP2021/001693 JP2021001693W WO2021153351A1 WO 2021153351 A1 WO2021153351 A1 WO 2021153351A1 JP 2021001693 W JP2021001693 W JP 2021001693W WO 2021153351 A1 WO2021153351 A1 WO 2021153351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon carbide
- main surface
- carbide epitaxial
- substrate
- surface density
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/186—Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02428—Structure
- H01L21/0243—Surface structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/031—Manufacture or treatment of IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/50—Physical imperfections
- H10D62/53—Physical imperfections the imperfections being within the semiconductor body
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
Definitions
- the present disclosure relates to a method for manufacturing a silicon carbide epitaxial substrate and a silicon carbide semiconductor device.
- This application claims priority based on Japanese Patent Application No. 2020-012522, which is a Japanese patent application filed on January 29, 2020. All the contents of the Japanese patent application are incorporated herein by reference.
- Patent Document 1 discloses a method for epitaxially growing silicon carbide, characterized in that the number of double shockley type laminated defects is 5 cm-2 or less.
- the silicon carbide epitaxial substrate according to the present disclosure includes a silicon carbide substrate and a silicon carbide epitaxial layer.
- the silicon carbide epitaxial layer is on a silicon carbide substrate.
- the silicon carbide epitaxial layer includes a boundary surface in contact with the silicon carbide substrate and a main surface opposite to the boundary surface.
- the main surface has an outer peripheral edge, an outer peripheral region within 5 mm from the outer peripheral edge, and a central region surrounded by the outer peripheral region.
- the surface density of the double shockley type laminated defects in the outer peripheral region is the first surface density and the surface density of the double shockley type laminated defects in the central region is the second surface density
- the first surface density is the second surface density. It is more than 5 times.
- the second surface density is 0.2 cm- 2 or more.
- the surface density of single shockley type laminated defects in the outer peripheral region is 0.5 cm- 2 or less.
- FIG. 1 is a schematic plan view showing the configuration of the silicon carbide epitaxial substrate according to the present embodiment.
- FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG.
- FIG. 3 is an enlarged plan schematic view showing a state in which the outer peripheral region is measured by the photoluminescence method.
- FIG. 4 is an enlarged plan schematic view showing a state in which the central region is measured by the photoluminescence method.
- FIG. 5 is a schematic plan view showing a state in which the first main surface is observed.
- FIG. 6 is a schematic view showing the shape of the first main surface when bow has a negative value.
- FIG. 7 is a schematic view showing the shape of the first main surface when bow has a positive value.
- FIG. 1 is a schematic plan view showing the configuration of the silicon carbide epitaxial substrate according to the present embodiment.
- FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG.
- FIG. 3 is an enlarged
- FIG. 8 is a flowchart showing an outline of a method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
- FIG. 9 is a schematic cross-sectional view showing the first step of the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
- FIG. 10 is a schematic cross-sectional view showing an ion implantation step of the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
- FIG. 11 is a schematic cross-sectional view showing a hydrogen treatment step of the method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
- FIG. 12 is a flowchart showing an outline of a method for manufacturing a silicon carbide semiconductor device according to the present embodiment.
- FIG. 13 is a schematic cross-sectional view showing an ion implantation step of the method for manufacturing a silicon carbide semiconductor device according to the present embodiment.
- FIG. 14 is a schematic cross-sectional view showing an oxide film forming step of the method for manufacturing a silicon carbide semiconductor device according to the present embodiment.
- FIG. 15 is a schematic cross-sectional view showing the configuration of the silicon carbide semiconductor device according to the present embodiment.
- FIG. 16 is a diagram showing changes in bow before and after epitaxial growth.
- An object of the present disclosure is to provide a method for manufacturing a silicon carbide epitaxial substrate and a silicon carbide semiconductor device capable of improving reliability.
- An object of the present disclosure is to provide a method for manufacturing a silicon carbide epitaxial substrate and a silicon carbide semiconductor device capable of improving reliability.
- the silicon carbide epitaxial substrate 100 includes a silicon carbide substrate 10 and a silicon carbide epitaxial layer 20.
- the silicon carbide epitaxial layer 20 is on the silicon carbide substrate 10.
- the silicon carbide epitaxial layer 20 includes a boundary surface 11 in contact with the silicon carbide substrate 10 and a main surface 1 on the opposite side of the boundary surface 11.
- the main surface 1 has an outer peripheral edge 5, an outer peripheral region 31 within 5 mm from the outer peripheral edge 5, and a central region 32 surrounded by the outer peripheral region 31.
- the surface density of the double shock ray type laminated defect 7 in the outer peripheral region 31 is the first surface density
- the surface density of the double shock ray type laminated defect 7 in the central region 32 is the second surface density
- the first surface density is the first. It is more than 5 times the two-sided density.
- the second surface density is 0.2 cm- 2 or more.
- the surface density of the single shockley type laminated defect 8 in the outer peripheral region 31 is 0.5 cm- 2 or less.
- the bow that quantitatively defines the amount of warpage of the main surface 1 may be a negative value.
- the second surface density may be 1.0 cm- 2 or less.
- the first surface density may be 2.0 cm- 2 or more.
- the manufacturing method of the silicon carbide semiconductor device 300 according to the present disclosure includes the following steps.
- the silicon carbide epitaxial substrate 100 according to any one of (1) to (4) above is prepared.
- the silicon carbide epitaxial substrate 100 is processed.
- FIG. 1 is a schematic plan view showing the configuration of the silicon carbide epitaxial substrate according to the present embodiment.
- FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG.
- the silicon carbide epitaxial substrate 100 according to the present embodiment has a silicon carbide substrate 10 and a silicon carbide epitaxial layer 20.
- the silicon carbide epitaxial layer 20 is on the silicon carbide substrate 10.
- the silicon carbide epitaxial layer 20 is in contact with the silicon carbide substrate 10.
- the silicon carbide epitaxial layer 20 constitutes the surface (first main surface 1) of the silicon carbide epitaxial substrate 100.
- the silicon carbide substrate 10 constitutes the back surface (second main surface 12) of the silicon carbide epitaxial substrate 100.
- the silicon carbide epitaxial layer 20 has a main surface (first main surface 1) and a boundary surface 11.
- the boundary surface 11 is on the opposite side of the first main surface 1.
- the boundary surface 11 is in contact with the silicon carbide substrate 10.
- the first main surface 1 includes an outer peripheral edge 5, an outer peripheral region 31, and a central region 32.
- the outer peripheral region 31 is a region within 5 mm from the outer peripheral edge 5. As shown in FIG. 1, the outer peripheral region 31 is annular when viewed in the thickness direction of the silicon carbide epitaxial layer 20.
- the central region 32 is surrounded by the outer peripheral region 31.
- the central region 32 includes the center 6 of the first main surface 1.
- the thickness direction of the silicon carbide epitaxial layer 20 means that the silicon carbide epitaxial substrate 100 is arranged on the flat surface so that the back surface (second main surface 12) of the silicon carbide epitaxial substrate 100 is in contact with the flat surface. If so, the direction is perpendicular to the flat surface.
- the outer peripheral edge 5 has, for example, an orientation flat 3 and an arc-shaped portion 4.
- the orientation flat 3 extends along the first direction 101. As shown in FIG. 1, the orientation flat 3 is linear when viewed in the thickness direction of the silicon carbide epitaxial layer 20.
- the arcuate portion 4 is connected to the orientation flat 3.
- the arcuate portion 4 has an arcuate shape when viewed in the thickness direction of the silicon carbide epitaxial layer 20.
- the center 6 of the first main surface 1 is located at the center of the circle including the arcuate portion 4 when viewed in the thickness direction of the silicon carbide epitaxial layer 20.
- the first main surface 1 when viewed in the thickness direction of the silicon carbide epitaxial layer 20, the first main surface 1 extends along each of the first direction 101 and the second direction 102.
- the first direction 101 is a direction perpendicular to the second direction 102.
- the first direction 101 is, for example, the ⁇ 11-20> direction.
- the first direction 101 may be, for example, the [11-20] direction.
- the first direction 101 may be a direction in which the ⁇ 11-20> direction is projected onto the first main surface 1. From another point of view, the first direction 101 may be a direction including, for example, a ⁇ 11-20> direction component.
- the second direction 102 is, for example, the ⁇ 1-100> direction.
- the second direction 102 may be, for example, the [1-100] direction.
- the second direction 102 may be, for example, a direction in which the ⁇ 1-100> direction is projected onto the first main surface 1. From another point of view, the second direction 102 may be a direction including, for example, a ⁇ 1-100> direction component.
- the first main surface 1 may be a surface inclined with respect to the ⁇ 0001 ⁇ surface.
- the inclination angle (off angle) with respect to the ⁇ 0001 ⁇ surface is, for example, 2 ° or more and 6 ° or less.
- the inclination direction (off direction) of the first main surface 1 is, for example, the ⁇ 11-20> direction.
- the maximum diameter W (diameter) of the first main surface 1 is not particularly limited, but is, for example, 4 inches.
- the maximum diameter W may be 4 inches or more, or 6 inches or more.
- the upper limit of the maximum diameter W is not particularly limited.
- the maximum diameter W may be, for example, 8 inches or less.
- 2 inches means 50 mm or 50.8 mm (25.4 mm / inch x 2 inches).
- 3 inches means 75 mm or 76.2 mm (25.4 mm / inch x 3 inches).
- 4 inches means 100 mm or 101.6 mm (25.4 mm / inch x 4 inches).
- 5 inches means 125 mm or 127.0 mm (25.4 mm / inch x 5 inches).
- 6 inches means 150 mm or 152.4 mm (25.4 mm / inch x 6 inches).
- 8 inches means 200 mm or 203.2 mm (25.4 mm / inch x 8 inches).
- the silicon carbide substrate 10 has a second main surface 12 and a third main surface 13.
- the third main surface 13 is on the opposite side of the second main surface 12.
- the second main surface 12 is the back surface of the silicon carbide epitaxial substrate 100.
- the second main surface 12 is separated from the silicon carbide epitaxial layer 20.
- the third main surface 13 is in contact with the silicon carbide epitaxial layer 20.
- the polytype of silicon carbide constituting the silicon carbide substrate 10 is, for example, 4H.
- the polytype of silicon carbide constituting the silicon carbide epitaxial layer 20 is, for example, 4H.
- the silicon carbide substrate 10 contains n-type impurities such as nitrogen (N).
- the conductive type of the silicon carbide substrate 10 is, for example, n type.
- the thickness of the silicon carbide substrate 10 is, for example, 350 ⁇ m or more and 500 ⁇ m or less.
- the silicon carbide epitaxial layer 20 contains n-type impurities such as nitrogen.
- the conductive type of the silicon carbide epitaxial layer 20 is, for example, n type.
- the concentration of n-type impurities contained in the silicon carbide epitaxial layer 20 may be lower than the concentration of n-type impurities contained in the silicon carbide substrate 10.
- FIG. 3 is an enlarged plan schematic view showing a state in which the outer peripheral region 31 is measured by the photoluminescence method.
- a double shockley type lamination defect 7 exists in the outer peripheral region 31 of the silicon carbide epitaxial layer 20.
- the surface density of the double shockley type laminated defect 7 in the outer peripheral region 31 is the first surface density.
- the first surface density may be, for example, 2.0 pieces cm- 2 or more, or 4.0 pieces cm- 2 or more.
- the first surface density is a value obtained by dividing the total number of double shockley type laminated defects 7 existing in the outer peripheral region 31 by the area of the outer peripheral region 31.
- the outer peripheral region 31 of the silicon carbide epitaxial layer 20 may or may not have a single shockley type lamination defect 8.
- the surface density (third surface density) of the single shockley type laminated defect 8 in the outer peripheral region 31 is, for example, 0.5 cm- 2 or less.
- the third surface density is a value obtained by dividing the total number of single shockley type laminated defects 8 existing in the outer peripheral region 31 by the area of the outer peripheral region 31.
- FIG. 4 is an enlarged plan schematic view showing a state in which the central region 32 is measured by the photoluminescence method.
- a double shockley type lamination defect 7 exists in the central region 32 of the silicon carbide epitaxial layer 20.
- the surface density of the double shockley type laminated defect 7 in the central region 32 is the second surface density.
- the second surface density is 0.2 cm- 2 or more.
- the second surface density may be 0.4 pieces cm- 2 or more, or 0.6 pieces cm- 2 or more.
- the second surface density may be, for example, 1.0 cm- 2 or less, or 0.8 cm- 2 or less.
- the second surface density is a value obtained by dividing the total number of double shockley type laminated defects 7 existing in the central region 32 by the area of the central region 32.
- the first surface density is 5 times or more the second surface density.
- the first surface density may be 7 times or more of the second surface density, or may be 10 times or more.
- the central region 32 of the silicon carbide epitaxial layer 20 may or may not have a single shockley type lamination defect 8.
- the surface density (fourth surface density) of the single shockley type laminated defect 8 in the central region 32 is 0.5 cm- 2 or less.
- the fourth surface density may be, for example, 0.3 pieces cm- 2 or less, or 0.1 pieces cm- 2 or less. It is desirable that there is no single shockley type stacking defect 8 in the central region 32.
- the fourth surface density is a value obtained by dividing the total number of single shockley type laminated defects 8 existing in the central region 32 by the area of the central region 32.
- a photoluminescence imaging device (model number: PLI-200) manufactured by Photon Design Co., Ltd. is used.
- the region under test of the silicon carbide epitaxial substrate 100 is irradiated with excitation light
- photoluminescence light is observed from the region under measurement.
- the excitation light source for example, a mercury xenon lamp is used.
- the excitation light from the light source passes through the bandpass filter (313 nm) on the irradiation side and then irradiates the area to be measured.
- photoluminescence light is emitted from the area to be measured.
- the photoluminescence light passes through a bandpass filter on the light receiving side and then reaches a light receiving element such as a camera. As described above, the photoluminescence image of the area to be measured is taken.
- the emission wavelength of the single shockley type stacking defect 8 is around 420 nm.
- the emission wavelength of the double shockley type stacking defect 7 is around 510 nm. Therefore, each stacking defect can be identified by changing the wavelength of the bandpass filter on the light receiving side. Specifically, by setting the wavelength of the bandpass filter on the light receiving side to 420 nm, the single shockley type stacking defect 8 can be observed. By setting the wavelength of the bandpass filter on the light receiving side to 510 nm, the double shockley type stacking defect 7 can be observed. In the observed photoluminescence image, each of the single shockley type stacking defect 8 and the double shockley type stacking defect 7 emits darker light than the surrounding region.
- a photoluminescence image of the entire first main surface 1 is taken.
- the area of one visual field of the photoluminescence image is, for example, 2.6 mm ⁇ 2.6 mm.
- the first main surface 1 is composed of an outer peripheral region 31 and a central region 32. In the acquired photoluminescence image, the number of each of the single shockley type stacking defect 8 and the double shockley type stacking defect 7 is specified.
- the amount of warpage of the first main surface 1 of the silicon carbide epitaxial substrate 100 can be measured by, for example, a Flatmaster manufactured by Tropel.
- the silicon carbide epitaxial substrate 100 is arranged on a flat surface. With the second main surface 12 arranged on the flat surface, the first main surface 1 on the opposite side of the second main surface 12 is observed.
- FIG. 5 is a schematic plan view showing a state in which the first main surface 1 is observed.
- the three-point reference surface 94 of the first main surface 1 is determined.
- the three-point reference plane 94 is a virtual plane including three points (fifth position 95, sixth position 96, and seventh position 97) on the boundary line between the central region 32 and the outer peripheral region 31.
- the triangle formed by connecting the fifth position 95, the sixth position 96, and the seventh position 97 is an equilateral triangle.
- the center of the first main surface 1 coincides with the center of the equilateral triangle when viewed in the thickness direction of the silicon carbide epitaxial substrate 100.
- FIG. 6 is a schematic view showing the shape of the first main surface 1 when bow has a negative value.
- FIG. 7 is a schematic view showing the shape of the first main surface 1 when bow has a positive value.
- first distance 154 the distance between the highest position 92 of the first main surface 1 and the 3-point reference surface 94 as seen from the 3-point reference surface 94 in the direction perpendicular to the 3-point reference surface 94.
- second distance 155 as seen from the three-point reference surface 94 is the warp.
- the distance between the position 91 of the center 6 of the first main surface 1 and the three-point reference surface 94 in the direction perpendicular to the three-point reference surface 94 is bow.
- the bow of the first main surface 1 is, for example, a negative value.
- the bow of the first main surface 1 may be, for example, ⁇ 20 ⁇ m or less, or ⁇ 40 ⁇ m or less.
- the lower limit of the bow of the first main surface 1 is not particularly limited, but may be, for example, ⁇ 80 ⁇ m or more.
- the warp of the first main surface 1 is, for example, 60 ⁇ m or less.
- the warp of the first main surface 1 may be, for example, 50 ⁇ m or less, or 40 ⁇ m or less.
- the lower limit of the warp of the first main surface 1 is not particularly limited, but may be, for example, 10 ⁇ m or more.
- FIG. 8 is a flowchart showing an outline of a method for manufacturing a silicon carbide epitaxial substrate according to the present embodiment.
- the method for manufacturing the silicon carbide epitaxial substrate 100 according to the present embodiment includes a silicon carbide substrate preparation step (S1), a silicon carbide substrate polishing step (S2), and an ion injection step (S3). It mainly has a hydrogen treatment step (S4) and an epitaxial growth step (S5).
- the silicon carbide substrate preparation step (S1) is carried out.
- a polytype 4H silicon carbide single crystal is produced by a sublimation method.
- the silicon carbide substrate 10 is prepared by slicing the silicon carbide single crystal with, for example, a wire saw.
- the silicon carbide substrate 10 contains n-type impurities such as nitrogen.
- the conductive type of the silicon carbide substrate 10 is, for example, n type.
- the silicon carbide substrate 10 has a third main surface 13 and a second main surface 12 on the opposite side of the third main surface 13.
- the third main surface 13 is, for example, a surface inclined in the off direction by an off angle with respect to the ⁇ 0001 ⁇ surface.
- the off angle is, for example, 2 ° or more and 6 ° or less.
- the off direction is, for example, the ⁇ 11-20> direction.
- the maximum diameter of the third main surface 13 of the silicon carbide substrate 10 is, for example, 150 mm.
- the silicon carbide substrate polishing step (S2) is carried out. Specifically, first, a mechanical polishing process is carried out. In the mechanical polishing step, mechanical polishing is performed on the third main surface 13 of the silicon carbide substrate 10. Specifically, the silicon carbide substrate 10 is held by the polishing head so that the third main surface 13 faces the surface plate. A slurry containing abrasive grains is supplied between the surface plate and the third main surface 13. The abrasive grains are, for example, diamond abrasive grains. The second main surface 12 is also mechanically polished in the same manner as the third main surface 13.
- a chemical mechanical polishing step is carried out.
- chemical mechanical polishing is performed on the third main surface 13 of the silicon carbide substrate 10.
- the silicon carbide substrate 10 is held by the polishing head so that the third main surface 13 of the silicon carbide substrate 10 faces the polishing pad provided on the surface plate.
- the polishing cloth is, for example, Supreme manufactured by Nitta Haas.
- An abrasive is supplied between the polishing pad and the third main surface 13.
- the abrasive is, for example, DSC-0902 manufactured by Fujimi Incorporated.
- the processing pressure surface pressure
- the rotation speed of the surface plate is, for example, 60 rpm.
- the rotation speed of the polishing head is, for example, 60 rpm.
- the second main surface 12 is also chemically mechanically polished in the same manner as the third main surface 13. When the third main surface 13 is polished, basal plane dislocations (not shown) formed due to processing damage on the third main surface 13 occur.
- the ion implantation step (S3) is carried out. Specifically, two-step ion implantation is performed on the entire surface of the third main surface 13.
- a parallel ion implantation device IMPHEAT
- the ionic species is, for example, aluminum ion (Al + ).
- the temperature of the silicon carbide substrate 10 is, for example, room temperature.
- the energy is set to 530 keV and the dose amount is set to 2.8 ⁇ 10 14 cm- 2 .
- the energy is set to 280 keV and the dose amount is set to 2.0 ⁇ 10 14 cm- 2 .
- ion implantation is performed on the third main surface 13 using the above conditions.
- the direction of the arrow shown in FIG. 10 is the ion implantation direction.
- the silicon carbide substrate 10 is curved in a concave shape. Specifically, when the silicon carbide substrate 10 is arranged on the flat surface so that the second main surface 12 of the silicon carbide substrate 10 is in contact with the flat surface, the vicinity of the center of the second main surface 12 is in contact with the flat surface. Moreover, the silicon carbide substrate 10 is curved so that the outer edge of the second main surface 12 is separated from the flat surface.
- the third main surface 13 is substantially curved along the shape of the second main surface 12. That is, the bow of the third main surface 13 has a negative value.
- the hydrogen treatment step (S4) is carried out.
- the third main surface 13 is hydrogenated while the silicon carbide substrate 10 is heated.
- the silicon carbide substrate 10 is arranged in the chamber.
- the temperature of the silicon carbide substrate 10 is raised to about 1630 ° C.
- hydrogen gas is introduced into the chamber.
- the flow rate of hydrogen gas is adjusted to be, for example, 100 slm.
- the silicon carbide substrate 10 is etched on the third main surface 13 (see FIG. 11).
- a part of the basal plane dislocations formed on the third main surface 13 is removed.
- the bow of the third main surface 13 can be changed by partially relaxing the distortion of the silicon carbide substrate 10 by the etching, the silicon carbide substrate 10 has the third main surface 13 even after the hydrogen treatment step. bow is a negative value.
- the epitaxial growth step (S5) is carried out.
- the chamber is first heated to, for example, about 1630 ° C.
- a mixed gas containing, for example, silane, propane, ammonia and hydrogen is introduced into the chamber.
- the flow rate of the silane gas is adjusted to be, for example, 115 sccm.
- the flow rate of propane gas is adjusted to be, for example, 57.6 sccm.
- the flow rate of ammonia gas is adjusted to for example a 2.5 ⁇ 10 -2 sccm.
- the flow rate of hydrogen gas is adjusted to be 100 slm.
- the silicon carbide epitaxial layer 20 is formed by epitaxial growth on the third main surface 13 of the silicon carbide substrate 10.
- the silicon carbide substrate 10 becomes a high temperature of about 1600 ° C.
- stress is concentrated from the outer periphery of the third main surface 13 toward the center. From another point of view, the stress is high near the center of the third main surface 13 and is low near the outer periphery of the third main surface 13.
- FIG. 10 when the silicon carbide substrate 10 is curved in a concave shape at a high temperature, stress is released from the center of the third main surface 13 toward the outer circumference. From another point of view, the stress is low near the center of the third main surface 13 and high near the outer periphery of the third main surface 13. In the region where the stress is high, the double shockley type lamination defect 7 is likely to occur in the silicon carbide epitaxial layer 20.
- epitaxial growth is performed in a state where the bow of the third main surface 13 of the silicon carbide substrate 10 has a negative value.
- epitaxial growth is performed in a state where the bow of the third main surface 13 is, for example, ⁇ 20 ⁇ m or less. Will be.
- the bow of the third main surface 13 may be, for example, ⁇ 40 ⁇ m or less, or -60 ⁇ m or less.
- the stress becomes low near the center of the third main surface 13, and the stress becomes high near the outer periphery of the third main surface 13.
- a large number of double shockley type stacking defects 7 occur in the vicinity of the outer periphery where the stress is high.
- the silicon carbide epitaxial substrate 100 according to the present embodiment is manufactured (see FIG. 2).
- FIG. 12 is a flowchart showing an outline of a method for manufacturing a silicon carbide semiconductor device according to the present embodiment.
- the method for manufacturing a silicon carbide semiconductor device according to the present embodiment mainly includes an epitaxial substrate preparation step (S10: FIG. 12) and a substrate processing step (S20: FIG. 12).
- the epitaxial substrate preparation step (S10: FIG. 12) is carried out.
- the silicon carbide epitaxial substrate 100 is prepared by the method for manufacturing the silicon carbide epitaxial substrate 100 described above (see FIG. 2).
- the substrate processing step (S20: FIG. 12) is carried out.
- a silicon carbide semiconductor device is manufactured by processing the silicon carbide epitaxial substrate 100.
- “Processing” includes, for example, various processes such as ion implantation, heat treatment, etching, oxide film formation, electrode formation, and dicing. That is, the substrate processing step may include processing of at least one of ion implantation, heat treatment, etching, oxide film formation, electrode formation and dicing.
- the substrate processing step (S20: FIG. 12) includes, for example, an ion implantation step (S21: FIG. 12), an oxide film forming step (S22: FIG. 12), an electrode forming step (S23: FIG. 12), and a dicing step (S24: FIG. 12). )including.
- the ion implantation step (S21: FIG. 12) is carried out.
- a p-type impurity such as aluminum (Al) is injected into the first main surface 1 on which a mask having an opening (not shown) is formed.
- the body region 132 having the p-type conductive type is formed.
- an n-type impurity such as phosphorus (P) is injected into a predetermined position in the body region 132.
- the source region 133 having an n-type conductive type is formed.
- a p-type impurity such as aluminum is injected into a predetermined position in the source region 133.
- a contact region 134 having a p-type conductive type is formed (see FIG. 13).
- the portion other than the body region 132, the source region 133, and the contact region 134 becomes the drift region 131.
- the source region 133 is separated from the drift region 131 by the body region 132.
- Ion implantation may be performed by heating the silicon carbide epitaxial substrate 100 to about 300 ° C. or higher and 600 ° C. or lower.
- activation annealing is performed on the silicon carbide epitaxial substrate 100.
- impurities injected into the silicon carbide epitaxial layer 20 are activated, and carriers are generated in each region.
- the atmosphere of activation annealing is, for example, an argon (Ar) atmosphere.
- the temperature of activation annealing is, for example, about 1800 ° C.
- the activation annealing time is, for example, about 30 minutes.
- the oxide film forming step (S22: FIG. 12) is carried out.
- an oxide film 136 is formed on the first main surface 1 (see FIG. 14).
- the oxide film 136 is composed of, for example, silicon dioxide or the like.
- the oxide film 136 functions as a gate insulating film.
- the temperature of the thermal oxidation treatment is, for example, about 1300 ° C.
- the time of the thermal oxidation treatment is, for example, about 30 minutes.
- heat treatment may be further performed in a nitrogen atmosphere.
- heat treatment is performed at about 1100 ° C. for about 1 hour in an atmosphere of nitric oxide.
- the heat treatment is performed in an argon atmosphere.
- heat treatment is performed in an argon atmosphere at 1100 ° C. or higher and 1500 ° C. or lower for about 1 hour.
- the electrode forming step (S23: FIG. 12) is carried out.
- the gate electrode 141 is formed on the oxide film 136.
- the gate electrode 141 is formed by, for example, a CVD (Chemical Vapor Deposition) method.
- the gate electrode 141 is made of, for example, conductive polysilicon or the like.
- the gate electrode 141 is formed at a position facing the source region 133 and the body region 132.
- an interlayer insulating film 137 covering the gate electrode 141 is formed.
- the interlayer insulating film 137 is formed by, for example, a CVD method.
- the interlayer insulating film 137 is made of, for example, silicon dioxide or the like.
- the interlayer insulating film 137 is formed so as to be in contact with the gate electrode 141 and the oxide film 136.
- a part of the oxide film 136 and the interlayer insulating film 137 is removed by etching. As a result, the source region 133 and the contact region 134 are exposed from the oxide film 136.
- the source electrode 142 is formed in the exposed portion by, for example, a sputtering method.
- the source electrode 142 is made of, for example, titanium, aluminum, silicon, or the like.
- the source electrode 142 and the silicon carbide epitaxial substrate 100 are heated at a temperature of, for example, 900 ° C. or higher and 1100 ° C. or lower. As a result, the source electrode 142 and the silicon carbide epitaxial substrate 100 come into ohmic contact.
- the wiring layer 138 is formed so as to be in contact with the source electrode 142.
- the wiring layer 138 is made of a material containing, for example, aluminum.
- the drain electrode 143 is formed on the second main surface 12.
- the drain electrode 143 is composed of, for example, an alloy containing nickel and silicon (for example, NiSi).
- the dicing step (S24: FIG. 12) is carried out.
- the silicon carbide epitaxial substrate 100 is divided into a plurality of semiconductor chips by dicing along the dicing line. From the above, the silicon carbide semiconductor device 300 is manufactured (see FIG. 15).
- the manufacturing method according to the present disclosure is not limited to this.
- the manufacturing method according to the present disclosure can be applied to silicon carbide semiconductor devices such as trench-type MOSFETs, IGBTs (Insulated Gate Bipolar Transistors), SBDs (Schottky Barrier Diodes), thyristors, GTOs (Gate Turn Off thyristors), and PN diodes.
- silicon carbide semiconductor devices such as trench-type MOSFETs, IGBTs (Insulated Gate Bipolar Transistors), SBDs (Schottky Barrier Diodes), thyristors, GTOs (Gate Turn Off thyristors), and PN diodes.
- the basal plane complete dislocation is decomposed into two basal plane partial dislocations and exists.
- the stacking defect existing between the two basal plane dislocations is called a Shockley-type stacking defect.
- Shockley-type stacking defects are classified into four types of stacking defects according to the difference in the stacking structure. Specifically, the Shockley type stacking defect is classified into a single shockley type stacking defect, a double shockley type stacking defect, a triple shockley type stacking defect, and a quadruple shockley type stacking defect.
- Each of the four stacking defects has a different emission wavelength. Therefore, these laminated defects can be identified by using the photoluminescence method.
- the double shockley type lamination defect 7 is desirable to be reduced in consideration of the long-term reliability of the silicon carbide semiconductor device, but the influence on the reliability deterioration is not so large as compared with the single shockley type lamination defect 8. Therefore, even if the double shockley type lamination defect 7 remains to some extent on the silicon carbide epitaxial substrate 100, the influence on the reliability deterioration is not so remarkable.
- the inventors have devised to reduce the single shockley type stacking defect 8 by positively increasing the double shockley type stacking defect 7.
- stress is concentrated from the outer circumference of the main surface (upper surface) toward the center. From another point of view, the stress is high near the center of the main surface and low near the outer periphery of the main surface.
- FIG. 10 when the silicon carbide substrate 10 is curved in a concave shape at a high temperature, stress is released from the center of the main surface toward the outer circumference. From another point of view, the stress is low near the center of the main surface and high near the outer periphery of the main surface.
- the double shockley type lamination defect 7 is likely to occur in the silicon carbide epitaxial layer 20. Further, if the region of the normal polytype 4H is converted into the double shockley type stacking defect 7, the region is not converted into the single shockley type stacking defect 8.
- the outer peripheral region of the main surface 1 of the silicon carbide epitaxial layer 20 is formed.
- the stress at 31 was made higher than the stress at the central region 32 of the main surface 1.
- the double shockley type stacking defect 7 was positively formed in the outer peripheral region 31.
- the surface density of the double shockley type laminated defect 7 in the outer peripheral region 31 is defined as the first surface density and the surface density of the double shockley type laminated defect 7 in the central region 32 is defined as the second surface density.
- the first surface density was 5 times or more the second surface density. This makes it possible to reduce the probability that the single shockley type stacking defect 8 will be formed in the outer peripheral region 31.
- the surface density of the single shockley type laminated defect 8 in the outer peripheral region 31 is 0.5 cm- 2 or less.
- the surface density (second surface density) of the double shockley type laminated defects 7 in the central region 32 is 0.2 cm- 2 or more.
- sample preparation Next, an embodiment will be described.
- two silicon carbide substrates 10 having different bow values on the third main surface 13 were prepared.
- the value of bow of the third main surface 13 of Sample 1 was -63.1 ⁇ m.
- the value of bow of the third main surface 13 of the sample 2 was +15.9 ⁇ m.
- the value of the bow is a value after the ion implantation step (S3) and before the hydrogen treatment step (S4).
- a hydrogen treatment step (S4) was carried out on the third main surface 13 of the silicon carbide substrate 10.
- the silicon carbide epitaxial layer 20 was formed on the third main surface 13 by epitaxial growth.
- the third main surface 13 was a Si (silicon) surface. That is, the silicon carbide epitaxial layer 20 was grown on the Si surface.
- the silicon carbide epitaxial substrate 100 according to each of Sample 1 and Sample 2 was manufactured.
- the surface density (first surface density) of the double shockley type laminated defect 7 in the outer peripheral region 31 of the first main surface 1 of the silicon carbide epitaxial substrate 100 was measured.
- the surface density (second surface density) of the double shockley type stacking defect 7 in the central region 32 was measured.
- the surface density (third surface density) of the single shockley type laminated defect 8 in the outer peripheral region 31 was measured.
- the method for measuring the stacking defect is as described above.
- Table 1 shows the results of the first surface density, the second surface density, the first surface density / the second surface density, and the third surface density in the silicon carbide epitaxial substrate 100 according to each of the samples 1 and 2. ..
- the areal density (third surface density) of the single shock ray type lamination defect was determined as compared with the silicon carbide epitaxial substrate 100 according to sample 2. It was confirmed that it can be significantly reduced.
- the numerical values of the experiment are 1st areal density 2.2cm -2 , 2nd areal density 0.3cm -2 , 1st areal density / 2nd areal density 7.3, 3rd areal density 0.3cm -2 .
- the effects of the invention can be obtained even with the values of first surface density 1.0 cm -2 , second surface density 0.2 cm -2 , first surface density / second surface density 5.0, and third surface density 0.5 cm -2. Play.
- a plurality of silicon carbide substrates 10 having different bow values on the third main surface 13 were prepared.
- the value of the bow is a value after the ion implantation step (S3) and before the hydrogen treatment step (S4).
- a hydrogen treatment step (S4) was carried out on the third main surface 13 of the silicon carbide substrate 10.
- the silicon carbide epitaxial layer 20 was formed by epitaxial growth on the third main surface 13 of the silicon carbide substrate 10.
- the thickness of the silicon carbide epitaxial layer 20 was 10 ⁇ m.
- the bow of the first main surface 1 of the silicon carbide epitaxial layer 20 was measured.
- FIG. 16 is a diagram showing changes in bow before and after epitaxial growth.
- the horizontal axis of FIG. 16 is the bow of the third main surface 13 of the silicon carbide substrate 10 before epitaxial growth (before hydrogen treatment).
- the vertical axis of FIG. 16 is the bow of the first main surface 1 of the silicon carbide epitaxial layer 20 after the epitaxial growth.
- the bow of the third main surface 13 before epitaxial growth is, for example, in the range of more than -80 ⁇ m and less than 40 ⁇ m.
- the bow of the first main surface 1 after epitaxial growth is, for example, in the range of more than ⁇ 50 ⁇ m and less than 50 ⁇ m. As shown in FIG. 16, it was confirmed that the bow of the first main surface 1 after the epitaxial growth was 15.6 ⁇ m larger than the bow of the third main surface 13 before the epitaxial growth.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
炭化珪素エピタキシャル基板は、炭化珪素基板と、炭化珪素エピタキシャル層とを有している。炭化珪素エピタキシャル層は、炭化珪素基板上にある。炭化珪素エピタキシャル層は、炭化珪素基板に接する境界面と、境界面と反対側の主面とを含んでいる。主面は、外周縁と、外周縁から5mm以内の外周領域と、外周領域に取り囲まれた中央領域とを有している。外周領域におけるダブルショックレー型積層欠陥の面密度を第1面密度とし、中央領域におけるダブルショックレー型積層欠陥の面密度を第2面密度とした場合、第1面密度は第2面密度の5倍以上である。第2面密度は、0.2個cm-2以上である。外周領域におけるシングルショックレー型積層欠陥の面密度は、0.5個cm-2以下である。
Description
本開示は、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法に関する。本出願は、2020年1月29日に出願した日本特許出願である特願2020-012522号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
特開2018-162178号公報(特許文献1)には、ダブルショックレー型積層欠陥を5個cm-2以下とすることを特徴とする炭化珪素のエピタキシャル成長方法が開示されている。
本開示に係る炭化珪素エピタキシャル基板は、炭化珪素基板と、炭化珪素エピタキシャル層とを備えている。炭化珪素エピタキシャル層は、炭化珪素基板上にある。炭化珪素エピタキシャル層は、炭化珪素基板に接する境界面と、境界面と反対側の主面とを含んでいる。主面は、外周縁と、外周縁から5mm以内の外周領域と、外周領域に取り囲まれた中央領域とを有している。外周領域におけるダブルショックレー型積層欠陥の面密度を第1面密度とし、中央領域におけるダブルショックレー型積層欠陥の面密度を第2面密度とした場合、第1面密度は第2面密度の5倍以上である。第2面密度は、0.2個cm-2以上である。外周領域におけるシングルショックレー型積層欠陥の面密度は、0.5個cm-2以下である。
[本開示が解決しようとする課題]
本開示の目的は、信頼性を向上可能な炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法を提供することである。
[本開示の効果]
本開示によれば、信頼性を向上可能な炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法を提供することができる。
本開示の目的は、信頼性を向上可能な炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法を提供することである。
[本開示の効果]
本開示によれば、信頼性を向上可能な炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法を提供することができる。
[本開示の実施形態の概要]
まず本開示の実施形態の概要について説明する。本明細書の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。結晶学上の指数が負であることは、通常、数字の上に”-”(バー)を付すことによって表現されるが、本明細書では数字の前に負の符号を付すことによって結晶学上の負の指数を表現する。
まず本開示の実施形態の概要について説明する。本明細書の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。結晶学上の指数が負であることは、通常、数字の上に”-”(バー)を付すことによって表現されるが、本明細書では数字の前に負の符号を付すことによって結晶学上の負の指数を表現する。
(1)本開示に係る炭化珪素エピタキシャル基板100は、炭化珪素基板10と、炭化珪素エピタキシャル層20とを備えている。炭化珪素エピタキシャル層20は、炭化珪素基板10上にある。炭化珪素エピタキシャル層20は、炭化珪素基板10に接する境界面11と、境界面11と反対側の主面1とを含んでいる。主面1は、外周縁5と、外周縁5から5mm以内の外周領域31と、外周領域31に取り囲まれた中央領域32とを有している。外周領域31におけるダブルショックレー型積層欠陥7の面密度を第1面密度とし、中央領域32におけるダブルショックレー型積層欠陥7の面密度を第2面密度とした場合、第1面密度は第2面密度の5倍以上である。第2面密度は、0.2個cm-2以上である。外周領域31におけるシングルショックレー型積層欠陥8の面密度は、0.5個cm-2以下である。
(2)上記(1)に係る炭化珪素エピタキシャル基板100において、主面1の反り量を定量的に規定したbowは、負の値であってもよい。
(3)上記(1)または(2)に係る炭化珪素エピタキシャル基板100において、第2面密度は、1.0個cm-2以下であってもよい。
(4)上記(1)~(3)のいずれかに係る炭化珪素エピタキシャル基板100において、第1面密度は、2.0個cm-2以上であってもよい。
(5)本開示に係る炭化珪素半導体装置300の製造方法は以下の工程を備えている。上記(1)~(4)のいずれかに記載の炭化珪素エピタキシャル基板100が準備される。炭化珪素エピタキシャル基板100が加工される。
[本開示の実施形態の詳細]
以下、本開示の実施形態の詳細について説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
以下、本開示の実施形態の詳細について説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
(炭化珪素エピタキシャル基板)
図1は、本実施形態に係る炭化珪素エピタキシャル基板の構成を示す平面模式図である。図2は、図1のII-II線に沿った断面模式図である。図1および図2に示されるように、本実施形態に係る炭化珪素エピタキシャル基板100は、炭化珪素基板10と、炭化珪素エピタキシャル層20とを有している。炭化珪素エピタキシャル層20は、炭化珪素基板10上にある。炭化珪素エピタキシャル層20は、炭化珪素基板10に接している。炭化珪素エピタキシャル層20は、炭化珪素エピタキシャル基板100の表面(第1主面1)を構成する。炭化珪素基板10は、炭化珪素エピタキシャル基板100の裏面(第2主面12)を構成する。
図1は、本実施形態に係る炭化珪素エピタキシャル基板の構成を示す平面模式図である。図2は、図1のII-II線に沿った断面模式図である。図1および図2に示されるように、本実施形態に係る炭化珪素エピタキシャル基板100は、炭化珪素基板10と、炭化珪素エピタキシャル層20とを有している。炭化珪素エピタキシャル層20は、炭化珪素基板10上にある。炭化珪素エピタキシャル層20は、炭化珪素基板10に接している。炭化珪素エピタキシャル層20は、炭化珪素エピタキシャル基板100の表面(第1主面1)を構成する。炭化珪素基板10は、炭化珪素エピタキシャル基板100の裏面(第2主面12)を構成する。
炭化珪素エピタキシャル層20は、主面(第1主面1)と、境界面11とを有している。境界面11は、第1主面1の反対側にある。境界面11は、炭化珪素基板10に接している。第1主面1は、外周縁5と、外周領域31と、中央領域32とを含んでいる。外周領域31は、外周縁5から5mm以内の領域である。図1に示されるように、炭化珪素エピタキシャル層20の厚み方向に見て、外周領域31は、環状である。中央領域32は、外周領域31に取り囲まれている。中央領域32は、第1主面1の中心6を含んでいる。なお本明細書において、炭化珪素エピタキシャル層20の厚み方向とは、炭化珪素エピタキシャル基板100の裏面(第2主面12)が平坦面に接するように、炭化珪素エピタキシャル基板100を平坦面上に配置した場合、平坦面に対して垂直な方向である。
外周縁5は、たとえばオリエンテーションフラット3と、円弧状部4とを有している。オリエンテーションフラット3は、第1方向101に沿って延在している。図1に示されるように、オリエンテーションフラット3は、炭化珪素エピタキシャル層20の厚み方向に見て、直線状である。円弧状部4は、オリエンテーションフラット3に連なっている。円弧状部4は、炭化珪素エピタキシャル層20の厚み方向に見て、円弧状である。第1主面1の中心6は、炭化珪素エピタキシャル層20の厚み方向に見て、円弧状部4を含む円の中心に位置している。
図1に示されるように、炭化珪素エピタキシャル層20の厚み方向に見て、第1主面1は、第1方向101および第2方向102の各々に沿って延在している。炭化珪素エピタキシャル層20の厚み方向に見て、第1方向101は、第2方向102に対して垂直な方向である。
第1方向101は、たとえば<11-20>方向である。第1方向101は、たとえば[11-20]方向であってもよい。第1方向101は、<11-20>方向を第1主面1に射影した方向であってもよい。別の観点から言えば、第1方向101は、たとえば<11-20>方向成分を含む方向であってもよい。
第2方向102は、たとえば<1-100>方向である。第2方向102は、たとえば[1-100]方向であってもよい。第2方向102は、たとえば<1-100>方向を第1主面1に射影した方向であってもよい。別の観点から言えば、第2方向102は、たとえば<1-100>方向成分を含む方向であってもよい。
第1主面1は、{0001}面に対して傾斜した面であってもよい。第1主面1は、{0001}面に対して傾斜している場合、{0001}面に対する傾斜角(オフ角)は、たとえば2°以上6°以下である。第1主面1が{0001}面に対して傾斜している場合、第1主面1の傾斜方向(オフ方向)は、たとえば<11-20>方向である。
図1に示されるように、第1主面1の最大径W(直径)は、特に限定されないが、たとえば4インチである。最大径Wは、4インチ以上でもよいし、6インチ以上でもよい。最大径Wの上限は、特に限定されない。最大径Wは、たとえば8インチ以下であってもよい。
なお本明細書において、2インチは、50 mm又は50.8 mm(25.4 mm/inch × 2 inch)のことである。3インチは、75 mm又は76.2 mm(25.4 mm/inch × 3 inch)のことである。4インチは、100 mm又は101.6 mm(25.4 mm/inch × 4 inch)のことである。5インチは、125 mm又は127.0 mm(25.4 mm/inch × 5 inch)のことである。6インチは、150 mm又は152.4 mm(25.4 mm/inch × 6 inch)のことである。8インチは、200 mm又は203.2 mm(25.4 mm/inch × 8 inch)のことである。
図2に示されるように、炭化珪素基板10は、第2主面12と、第3主面13とを有している。第3主面13は、第2主面12の反対側にある。第2主面12は、炭化珪素エピタキシャル基板100の裏面である。第2主面12は、炭化珪素エピタキシャル層20から離間している。第3主面13は、炭化珪素エピタキシャル層20に接している。炭化珪素基板10を構成する炭化珪素のポリタイプは、たとえば4Hである。同様に、炭化珪素エピタキシャル層20を構成する炭化珪素のポリタイプは、たとえば4Hである。
炭化珪素基板10は、たとえば窒素(N)などのn型不純物を含んでいる。炭化珪素基板10の導電型は、たとえばn型である。炭化珪素基板10の厚みは、たとえば350μm以上500μm以下である。炭化珪素エピタキシャル層20は、たとえば窒素などのn型不純物を含んでいる。炭化珪素エピタキシャル層20の導電型は、たとえばn型である。炭化珪素エピタキシャル層20が含むn型不純物の濃度は、炭化珪素基板10が含むn型不純物の濃度より低くてもよい。
図3は、フォトルミネッセンス法で外周領域31を測定した状態を示す拡大平面模式図である。図3に示されるように、炭化珪素エピタキシャル層20の外周領域31にはダブルショックレー型積層欠陥7が存在している。外周領域31におけるダブルショックレー型積層欠陥7の面密度は、第1面密度である。第1面密度は、たとえば2.0個cm-2以上であってもよいし、4.0個cm-2以上であってもよい。第1面密度は、外周領域31に存在するダブルショックレー型積層欠陥7の総数を外周領域31の面積で除した値である。
図3に示されるように、炭化珪素エピタキシャル層20の外周領域31には、シングルショックレー型積層欠陥8があってもよいし、なくてもよい。外周領域31におけるシングルショックレー型積層欠陥8の面密度(第3面密度)は、たとえば0.5個cm-2以下である。第3面密度は、外周領域31に存在するシングルショックレー型積層欠陥8の総数を外周領域31の面積で除した値である。
図4は、フォトルミネッセンス法で中央領域32を測定した状態を示す拡大平面模式図である。図4に示されるように、炭化珪素エピタキシャル層20の中央領域32にはダブルショックレー型積層欠陥7が存在している。中央領域32におけるダブルショックレー型積層欠陥7の面密度は、第2面密度である。第2面密度は、0.2個cm-2以上である。第2面密度は、0.4個cm-2以上であってもよいし、0.6個cm-2以上であってもよい。第2面密度は、たとえば1.0個cm-2以下であってもよいし、0.8個cm-2以下であってもよい。第2面密度は、中央領域32に存在するダブルショックレー型積層欠陥7の総数を中央領域32の面積で除した値である。
第1面密度は第2面密度の5倍以上である。第1面密度は第2面密度の7倍以上であってもよいし、10倍以上であってもよい。炭化珪素エピタキシャル層20の中央領域32には、シングルショックレー型積層欠陥8があってもよいし、なくてもよい。中央領域32におけるシングルショックレー型積層欠陥8の面密度(第4面密度)は、0.5個cm-2以下である。第4面密度は、たとえば0.3個cm-2以下であってもよいし、0.1個cm-2以下であってもよい。中央領域32において、シングルショックレー型積層欠陥8がないことが望ましい。第4面密度は、中央領域32に存在するシングルショックレー型積層欠陥8の総数を中央領域32の面積で除した値である。
(積層欠陥の面密度の測定方法)
次に、シングルショックレー型積層欠陥8およびダブルショックレー型積層欠陥7の各々の面密度の測定方法について説明する。
次に、シングルショックレー型積層欠陥8およびダブルショックレー型積層欠陥7の各々の面密度の測定方法について説明する。
シングルショックレー型積層欠陥8およびダブルショックレー型積層欠陥7の各々の観察には、たとえば株式会社フォトンデザイン社製のフォトルミネッセンスイメージング装置(型番:PLI-200)が用いられる。炭化珪素エピタキシャル基板100の被測定領域に対して励起光が照射されると、被測定領域からフォトルミネッセンス光が観測される。励起光源としては、たとえば水銀キセノンランプが使用される。光源からの励起光は、照射側のバンドパスフィルター(313nm)を通過した後、被測定領域に照射される。これにより、被測定領域からフォトルミネッセンス光が放出される。フォトルミネッセンス光は、受光側のバンドパスフィルターを通過した後、カメラ等の受光素子に到達する。以上のように、被測定領域のフォトルミネッセンス画像が撮影される。
シングルショックレー型積層欠陥8の発光波長は、420nm付近である。一方、ダブルショックレー型積層欠陥7の発光波長は、510nm付近である。そのため、受光側のバンドパスフィルターの波長を変更することにより、各積層欠陥を識別することができる。具体的には、受光側のバンドパスフィルターの波長を420nmとすることにより、シングルショックレー型積層欠陥8を観察することができる。受光側のバンドパスフィルターの波長を510nmとすることにより、ダブルショックレー型積層欠陥7を観察することができる。観察されたフォトルミネッセンス画像において、シングルショックレー型積層欠陥8およびダブルショックレー型積層欠陥7の各々は周囲の領域に比べて暗く発光している。
炭化珪素エピタキシャル層20の第1主面1と平行な方向に炭化珪素エピタキシャル基板100を移動させながら、第1主面1全体のフォトルミネッセンス画像が撮影される。フォトルミネッセンス画像の1つ視野の面積は、たとえば2.6mm×2.6mmである。第1主面1は、外周領域31と中央領域32とにより構成されている。取得されたフォトルミネッセンス画像において、シングルショックレー型積層欠陥8およびダブルショックレー型積層欠陥7の各々の数が特定される。
(反り量)
次に、炭化珪素エピタキシャル基板100の第1主面1の反り量の測定方法について説明する。第1主面1の反り量は、たとえばTropel社製のFlatmasterにより測定することができる。まず、炭化珪素エピタキシャル基板100が平坦面上に配置される。第2主面12が平坦面上に配置された状態で、第2主面12と反対側の第1主面1が観察される。
次に、炭化珪素エピタキシャル基板100の第1主面1の反り量の測定方法について説明する。第1主面1の反り量は、たとえばTropel社製のFlatmasterにより測定することができる。まず、炭化珪素エピタキシャル基板100が平坦面上に配置される。第2主面12が平坦面上に配置された状態で、第2主面12と反対側の第1主面1が観察される。
図5は、第1主面1を観察した状態を示す平面模式図である。図5に示されるように、第1主面1の3点基準面94が決定される。3点基準面94とは、中央領域32と外周領域31との境界線上の3点(第5位置95、第6位置96および第7位置97)を含む仮想平面である。第5位置95、第6位置96および第7位置97を繋ぐことにより構成される三角形は、正三角形である。図5に示されるように、炭化珪素エピタキシャル基板100の厚み方向に見て、第1主面1の中心は、正三角形の中心と一致する。
反り量を定量化する指標としては、bowおよびwarpがある。図6は、bowが負の値となる場合における第1主面1の形状を示す模式図である。図7は、bowが正の値となる場合における第1主面1の形状を示す模式図である。図6および図7に示されるように、3点基準面94と垂直な方向において、3点基準面94から見た第1主面1の最高位置92と3点基準面94との間の距離(第1距離154)と、3点基準面94から見た第1主面1の最低位置93と3点基準面94との間の距離(第2距離155)との合計がwarpである。3点基準面94と垂直な方向において、第1主面1の中心6の位置91と3点基準面94との間の距離がbowである。
図6に示されるように、第1主面1の中心6の位置91が3点基準面94よりも低い場合、bowは負の値となる。図7に示されるように、第1主面1の中心6の位置91が3点基準面94よりも高い場合、bowは正の値となる。本明細書においては、bowが負の値となる場合(図6参照)、第1主面1は凹状であるとする。反対に、bowが正の値となる場合(図7参照)、第1主面1は凸状であるとする。
本実施形態に係る炭化珪素エピタキシャル基板100において、第1主面1のbowは、たとえば負の値である。第1主面1のbowは、たとえば-20μm以下であってもよいし、-40μm以下であってもよい。第1主面1のbowの下限は、特に限定されないが、たとえば-80μm以上であってもよい。
本実施形態に係る炭化珪素エピタキシャル基板100において、第1主面1のwarpは、たとえば60μm以下である。第1主面1のwarpは、たとえば50μm以下であってもよいし、40μm以下であってもよい。第1主面1のwarpの下限は、特に限定されないが、たとえば10μm以上であってもよい。
(炭化珪素エピタキシャル基板の製造方法)
次に、本実施形態に係る炭化珪素エピタキシャル基板100の製造方法について説明する。
次に、本実施形態に係る炭化珪素エピタキシャル基板100の製造方法について説明する。
図8は、本実施形態に係る炭化珪素エピタキシャル基板の製造方法の概略を示すフローチャートである。図8に示されるように、本実施形態に係る炭化珪素エピタキシャル基板100の製造方法は、炭化珪素基板準備工程(S1)と、炭化珪素基板研磨工程(S2)と、イオン注入工程(S3)と、水素処理工程(S4)と、エピタキシャル成長工程(S5)とを主に有している。
炭化珪素基板準備工程(S1)が実施される。たとえば昇華法により、ポリタイプ4Hの炭化珪素単結晶が製造される。次に、たとえばワイヤーソーによって、炭化珪素単結晶をスライスすることにより、炭化珪素基板10が準備される。炭化珪素基板10は、たとえば窒素などのn型不純物を含んでいる。炭化珪素基板10の導電型は、たとえばn型である。
図9に示されるように、炭化珪素基板10は、第3主面13と、第3主面13の反対側にある第2主面12とを有する。第3主面13は、たとえば{0001}面に対してオフ角だけオフ方向に傾斜した面である。オフ角は、たとえば2°以上6°以下である。オフ方向は、たとえば<11-20>方向である。炭化珪素基板10の第3主面13の最大径は、たとえば150mmである。
次に、炭化珪素基板研磨工程(S2)が実施される。具体的には、まず機械研磨工程が実施される。機械研磨工程においては、炭化珪素基板10の第3主面13に対して機械研磨が行われる。具体的には、第3主面13が定盤に対向するように炭化珪素基板10が研磨ヘッドに保持される。定盤と第3主面13との間に砥粒を含むスラリーが供給される。砥粒は、たとえばダイヤモンド砥粒である。第2主面12に対しても第3主面13と同様に機械研磨が行われる。
次に、化学的機械研磨工程が実施される。化学的機械研磨工程においては、炭化珪素基板10の第3主面13に対して化学的機械研磨が行われる。具体的には、炭化珪素基板10の第3主面13が定盤に設けられた研磨布と対向するように炭化珪素基板10が研磨ヘッドに保持される。研磨布は、たとえばニッタハース製のsupremeである。研磨布と第3主面13との間に研磨剤が供給される。研磨剤は、たとえばフジミインコーポレーテッド製のDSC-0902である。加工圧(面圧)は、たとえば400g/cm2である。定盤の回転数は、たとえば60rpmである。研磨ヘッドの回転数は、たとえば60rpmである。第2主面12に対しても第3主面13と同様に化学的機械研磨が行われる。第3主面13に対して研磨加工が行われることにより、第3主面13において加工ダメージにより形成された基底面転位(図示せず)が発生する。
次に、イオン注入工程(S3)が実施される。具体的には、第3主面13の全面に対して2段階のイオン注入が実施される。イオン注入には、たとえば日新イオン機器株式会社製のパラレルイオン注入装置(IMPHEAT)が用いられる。イオン種は、たとえばアルミニウムイオン(Al+)である。炭化珪素基板10の温度は、たとえば室温である。第1回目のイオン注入工程においては、たとえば、エネルギーが530keVとされ、かつドーズ量が2.8×1014cm-2とされる。第2回目のイオン注入工程においては、たとえば、エネルギーが280keVとされ、かつドーズ量が2.0×1014cm-2とされる。
図10に示されるように、上記の条件を用いて第3主面13に対してイオン注入が行われる。図10に示されている矢印の方向は、イオン注入方向である。これにより、炭化珪素基板10は凹状に湾曲する。具体的には、炭化珪素基板10の第2主面12が平坦面に接するように炭化珪素基板10を平坦面上に配置した場合に、第2主面12の中央付近が平坦面に接し、かつ第2主面12の外縁が平坦面から離間するように炭化珪素基板10は湾曲している。第3主面13は、概ね第2主面12の形状に沿って湾曲している。つまり、第3主面13のbowは、負の値となっている。
次に、水素処理工程(S4)が実施される。水素処理工程(S4)においては、炭化珪素基板10が加熱された状態で、第3主面13に対して水素処理が実施される。具体的には、炭化珪素基板10が、チャンバ内に配置される。次に、炭化珪素基板10が1630℃程度に昇温される。次に、チャンバに対して水素ガスが導入される。水素ガスの流量は、たとえば100slmとなるように調整される。これにより、第3主面13において、炭化珪素基板10がエッチングされる(図11参照)。結果として、第3主面13に形成されていた基底面転位の一部が除去される。また、上記エッチングにより炭化珪素基板10の歪みが部分的に緩和されることで第3主面13のbowは変化し得るが、上記炭化珪素基板10では水素処理工程後も第3主面13のbowは負の値となっている。
次に、エピタキシャル成長工程(S5)が実施される。エピタキシャル成長工程(S5)においては、まずチャンバが、たとえば1630℃程度に昇温される。次に、たとえばシランとプロパンとアンモニアと水素とを含む混合ガスがチャンバに導入される。具体的には、シランガスの流量は、たとえば115sccmとなるように調整される。プロパンガスの流量は、たとえば57.6sccmとなるように調整される。アンモニアガスの流量は、たとえば2.5×10-2sccmとなるように調整される。水素ガスの流量は、100slmとなるように調整される。チャンバに混合ガスを導入することにより、炭化珪素基板10の第3主面13上に炭化珪素エピタキシャル層20がエピタキシャル成長により形成される。
エピタキシャル成長工程(S5)において炭化珪素基板10が1600℃程度の高温になる。高温下において炭化珪素基板10が凸状に湾曲していると、第3主面13の外周から中心に向かって応力が集中する。別の観点から言えば、第3主面13の中心付近においては応力が高くなり、第3主面13の外周付近においては応力が低くなる。反対に、図10に示されるように、高温下において炭化珪素基板10が凹状に湾曲していると、第3主面13の中心から外周に向かって応力が解放される。別の観点から言えば、第3主面13の中心付近においては応力が低くなり、第3主面13の外周付近においては応力が高くなる。応力が高い領域においては、炭化珪素エピタキシャル層20にダブルショックレー型積層欠陥7が発生しやすくなる。
本実施形態に係る炭化珪素エピタキシャル基板100の製造方法においては、炭化珪素基板10の第3主面13のbowが負の値となる状態でエピタキシャル成長が行われる。具体的には、イオン注入工程(S3)後であってかつ水素処理工程(S4)前における炭化珪素基板10において、第3主面13のbowが、たとえば-20μm以下である状態でエピタキシャル成長が行われる。第3主面13のbowは、たとえば-40μm以下であってもよいし、-60μm以下であってもよい。これにより、第3主面13の中心付近においては応力が低くなり、第3主面13の外周付近においては応力が高くなる。結果として、応力が高い外周付近においては、多数のダブルショックレー型積層欠陥7が発生する。以上により、本実施形態に係る炭化珪素エピタキシャル基板100が製造される(図2参照)。
(炭化珪素半導体装置の製造方法)
次に、本実施形態に係る炭化珪素半導体装置300の製造方法について説明する。
次に、本実施形態に係る炭化珪素半導体装置300の製造方法について説明する。
図12は、本実施形態に係る炭化珪素半導体装置の製造方法の概略を示すフローチャートである。図12に示されるように、本実施形態に係る炭化珪素半導体装置の製造方法は、エピタキシャル基板準備工程(S10:図12)と、基板加工工程(S20:図12)とを主に有する。
まず、エピタキシャル基板準備工程(S10:図12)が実施される。具体的には、前述した炭化珪素エピタキシャル基板100の製造方法によって、炭化珪素エピタキシャル基板100が準備される(図2参照)。
次に、基板加工工程(S20:図12)が実施される。具体的には、炭化珪素エピタキシャル基板100を加工することにより、炭化珪素半導体装置が製造される。「加工」には、たとえば、イオン注入、熱処理、エッチング、酸化膜形成、電極形成、ダイシング等の各種加工が含まれる。すなわち基板加工工程は、イオン注入、熱処理、エッチング、酸化膜形成、電極形成およびダイシングのうち、少なくともいずれかの加工を含むものであってもよい。
以下では、炭化珪素半導体装置の一例としてのMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の製造方法を説明する。基板加工工程(S20:図12)は、たとえばイオン注入工程(S21:図12)、酸化膜形成工程(S22:図12)、電極形成工程(S23:図12)およびダイシング工程(S24:図12)を含む。
まず、イオン注入工程(S21:図12)が実施される。開口部を有するマスク(図示せず)が形成された第1主面1に対して、たとえばアルミニウム(Al)等のp型不純物が注入される。これにより、p型の導電型を有するボディ領域132が形成される。次に、ボディ領域132内の所定位置に、たとえばリン(P)等のn型不純物が注入される。これにより、n型の導電型を有するソース領域133が形成される。次に、アルミニウム等のp型不純物がソース領域133内の所定位置に注入される。これにより、p型の導電型を有するコンタクト領域134が形成される(図13参照)。
炭化珪素エピタキシャル層20において、ボディ領域132、ソース領域133およびコンタクト領域134以外の部分は、ドリフト領域131となる。ソース領域133は、ボディ領域132によってドリフト領域131から隔てられている。イオン注入は、炭化珪素エピタキシャル基板100を300℃以上600℃以下程度に加熱して行われてもよい。イオン注入の後、炭化珪素エピタキシャル基板100に対して活性化アニールが行われる。活性化アニールにより、炭化珪素エピタキシャル層20に注入された不純物が活性化し、各領域においてキャリアが生成される。活性化アニールの雰囲気は、たとえばアルゴン(Ar)雰囲気である。活性化アニールの温度は、たとえば1800℃程度である。活性化アニールの時間は、たとえば30分程度である。
次に、酸化膜形成工程(S22:図12)が実施される。たとえば炭化珪素エピタキシャル基板100が酸素を含む雰囲気中において加熱されることにより、第1主面1において酸化膜136が形成される(図14参照)。酸化膜136は、たとえば二酸化珪素等から構成される。酸化膜136は、ゲート絶縁膜として機能する。熱酸化処理の温度は、たとえば1300℃程度である。熱酸化処理の時間は、たとえば30分程度である。
酸化膜136が形成された後、さらに窒素雰囲気中で熱処理が行なわれてもよい。たとえば、一酸化窒素の雰囲気中、1100℃程度で1時間程度、熱処理が実施される。さらにその後、アルゴン雰囲気中で熱処理が行なわれる。たとえば、アルゴン雰囲気中、1100℃以上1500℃以下程度で、1時間程度、熱処理が行われる。
次に、電極形成工程(S23:図12)が実施される。具体的には、ゲート電極141は、酸化膜136上に形成される。ゲート電極141は、たとえばCVD(Chemical Vapor Deposition)法により形成される。ゲート電極141は、たとえば導電性を有するポリシリコン等から構成される。ゲート電極141は、ソース領域133およびボディ領域132に対面する位置に形成される。
次に、ゲート電極141を覆う層間絶縁膜137が形成される。層間絶縁膜137は、たとえばCVD法により形成される。層間絶縁膜137は、たとえば二酸化珪素等から構成される。層間絶縁膜137は、ゲート電極141と酸化膜136とに接するように形成される。次に、酸化膜136および層間絶縁膜137の一部がエッチングによって除去される。これにより、ソース領域133およびコンタクト領域134が、酸化膜136から露出する。
次に、たとえばスパッタリング法により当該露出部にソース電極142が形成される。ソース電極142は、たとえばチタン、アルミニウムおよびシリコン等から構成される。ソース電極142が形成された後、ソース電極142と炭化珪素エピタキシャル基板100が、たとえば900℃以上1100℃以下程度の温度で加熱される。これにより、ソース電極142と炭化珪素エピタキシャル基板100とがオーミック接触するようになる。次に、ソース電極142に接するように、配線層138が形成される。配線層138は、たとえばアルミニウムを含む材料から構成される。次に、第2主面12にドレイン電極143が形成される。ドレイン電極143は、たとえばニッケルおよびシリコンを含む合金(たとえばNiSi等)から構成される。
次に、ダイシング工程(S24:図12)が実施される。たとえば炭化珪素エピタキシャル基板100がダイシングラインに沿ってダイシングされることにより、炭化珪素エピタキシャル基板100が複数の半導体チップに分割される。以上より、炭化珪素半導体装置300が製造される(図15参照)。
なお上記において、平面型MOSFETを例示して、本開示に係る炭化珪素半導体装置の製造方法を説明したが、本開示に係る製造方法はこれに限定されない。本開示に係る製造方法は、たとえばトレンチ型MOSFET、IGBT(Insulated Gate Bipolar Transistor)、SBD(Schottky Barrier Diode)、サイリスタ、GTO(Gate Turn Off thyristor)、PNダイオード等の炭化珪素半導体装置に適用可能である。
次に、本実施形態に係る炭化珪素エピタキシャル基板100および炭化珪素半導体装置300の製造方法の作用効果について説明する。
たとえばポリタイプ4Hの炭化珪素においては、基底面完全転位は、2本の基底面部分転位に分解して存在している。2本の基底面部分転位の間に存在する積層欠陥は、ショックレー型積層欠陥と呼ばれている。ショックレー型積層欠陥は、積層構造の違いにより、4種類の積層欠陥に分類される。具体的には、ショックレー型積層欠陥は、シングルショックレー型積層欠陥、ダブルショックレー型積層欠陥、トリプルショックレー型積層欠陥、クアドラプルショックレー型積層欠陥とに分類される。4種類の積層欠陥の各々は、異なる発光波長を有している。そのため、フォトルミネッセンス法を用いることにより、これらの積層欠陥を識別することができる。
シングルショックレー型積層欠陥8の面密度が高い場合には、炭化珪素半導体装置の電流リークが発生しやすくなり、信頼性が著しく劣化する。一方、ダブルショックレー型積層欠陥7は、炭化珪素半導体装置の長期信頼性を考慮すると低減することが望ましいが、シングルショックレー型積層欠陥8と比較すると信頼性劣化に対する影響はそれほど大きくない。そのため、炭化珪素エピタキシャル基板100にダブルショックレー型積層欠陥7がある程度残存していても、信頼性劣化に対する影響はそれほど顕著ではない。
発明者らは、鋭意検討の結果、ダブルショックレー型積層欠陥7を積極的に増加させることにより、シングルショックレー型積層欠陥8を低減させることを考え出した。高温下において炭化珪素基板10が凸状に湾曲していると、主面(上面)の外周から中心に向かって応力が集中する。別の観点から言えば、主面の中心付近においては応力が高くなり、主面の外周付近においては応力が低くなる。反対に、図10に示されるように、高温下において炭化珪素基板10が凹状に湾曲していると、主面の中心から外周に向かって応力が解放される。別の観点から言えば、主面の中心付近においては応力が低くなり、主面の外周付近においては応力が高くなる。応力が高い領域においては、炭化珪素エピタキシャル層20にダブルショックレー型積層欠陥7が発生しやすくなる。また正常なポリタイプ4Hの領域が、ダブルショックレー型積層欠陥7に転換すれば、当該領域はシングルショックレー型積層欠陥8には転換しない。
具体的には、炭化珪素基板10を高温下においてある程度凹状に湾曲させた状態で炭化珪素基板10上に炭化珪素エピタキシャル層20を形成することにより、炭化珪素エピタキシャル層20の主面1の外周領域31における応力を主面1の中央領域32における応力よりも高くした。これにより、外周領域31において積極的にダブルショックレー型積層欠陥7を形成した。さらに具体的には、外周領域31におけるダブルショックレー型積層欠陥7の面密度を第1面密度とし、中央領域32におけるダブルショックレー型積層欠陥7の面密度を第2面密度とした場合、第1面密度は第2面密度の5倍以上とした。これにより、外周領域31においてシングルショックレー型積層欠陥8が形成される確率を低減することができる。具体的には、外周領域31におけるシングルショックレー型積層欠陥8の面密度は、0.5個cm-2以下である。
また本実施形態に係る炭化珪素エピタキシャル基板100によれば、中央領域32におけるダブルショックレー型積層欠陥7の面密度(第2面密度)は、0.2個cm-2以上である。中央領域32においてもダブルショックレー型積層欠陥7を積極的に増加させることにより、中央領域32においてシングルショックレー型積層欠陥8が形成される確率を低減することができる。
(サンプル準備)
次に、実施例について説明する。前述した炭化珪素エピタキシャル基板100の製造方法に従い、まず、第3主面13のbowの値が異なる2枚の炭化珪素基板10を準備した。サンプル1の第3主面13のbowの値は、-63.1μmであった。サンプル2の第3主面13のbowの値は、+15.9μmであった。当該bowの値は、イオン注入工程(S3)後であってかつ水素処理工程(S4)前における値である。次に、炭化珪素基板10の第3主面13に対して水素処理工程(S4)を実施した。次に、第3主面13上に炭化珪素エピタキシャル層20をエピタキシャル成長により形成した。第3主面13は、Si(シリコン)面とした。つまり、Si面に炭化珪素エピタキシャル層20を成長した。以上により、サンプル1およびサンプル2の各々に係る炭化珪素エピタキシャル基板100を製造した。
次に、実施例について説明する。前述した炭化珪素エピタキシャル基板100の製造方法に従い、まず、第3主面13のbowの値が異なる2枚の炭化珪素基板10を準備した。サンプル1の第3主面13のbowの値は、-63.1μmであった。サンプル2の第3主面13のbowの値は、+15.9μmであった。当該bowの値は、イオン注入工程(S3)後であってかつ水素処理工程(S4)前における値である。次に、炭化珪素基板10の第3主面13に対して水素処理工程(S4)を実施した。次に、第3主面13上に炭化珪素エピタキシャル層20をエピタキシャル成長により形成した。第3主面13は、Si(シリコン)面とした。つまり、Si面に炭化珪素エピタキシャル層20を成長した。以上により、サンプル1およびサンプル2の各々に係る炭化珪素エピタキシャル基板100を製造した。
(実験方法)
次に、炭化珪素エピタキシャル基板100の第1主面1の外周領域31におけるダブルショックレー型積層欠陥7の面密度(第1面密度)を測定した。同様に、中央領域32におけるダブルショックレー型積層欠陥7の面密度(第2面密度)を測定した。同様に、外周領域31におけるシングルショックレー型積層欠陥8の面密度(第3面密度)を測定した。上記積層欠陥の測定方法は、上述の通りである。
次に、炭化珪素エピタキシャル基板100の第1主面1の外周領域31におけるダブルショックレー型積層欠陥7の面密度(第1面密度)を測定した。同様に、中央領域32におけるダブルショックレー型積層欠陥7の面密度(第2面密度)を測定した。同様に、外周領域31におけるシングルショックレー型積層欠陥8の面密度(第3面密度)を測定した。上記積層欠陥の測定方法は、上述の通りである。
表1は、サンプル1およびサンプル2の各々に係る炭化珪素エピタキシャル基板100における、第1面密度、第2面密度、第1面密度/第2面密度および第3面密度の結果を示している。表1に示されるように、サンプル2に係る炭化珪素エピタキシャル基板100と比較して、サンプル1に係る炭化珪素エピタキシャル基板100においては、シングルショックレー型積層欠陥の面密度(第3面密度)を大幅に低減可能であることが確認された。実験の数値は第1面密度2.2cm-2、第2面密度0.3cm-2、第1面密度/第2面密度7.3、第3面密度0.3cm-2であるが、第1面密度1.0cm-2、第2面密度0.2cm-2、第1面密度/第2面密度5.0、第3面密度0.5cm-2の数値でも、発明の効果を奏する。
次に、エピタキシャル成長前後におけるbowの変化について説明する。まず、第3主面13のbowの値が異なる複数の炭化珪素基板10を準備した。当該bowの値は、イオン注入工程(S3)後であってかつ水素処理工程(S4)前における値である。次に、炭化珪素基板10の第3主面13に対して水素処理工程(S4)を実施した。次に、炭化珪素基板10の第3主面13上に炭化珪素エピタキシャル層20をエピタキシャル成長により形成した。炭化珪素エピタキシャル層20の厚みは、10μmとした。次に、炭化珪素エピタキシャル層20の第1主面1のbowを測定した。
図16は、エピタキシャル成長前後におけるbowの変化を示す図である。図16の横軸は、エピタキシャル成長前(水素処理前)の炭化珪素基板10の第3主面13のbowである。図16の縦軸は、エピタキシャル成長後の炭化珪素エピタキシャル層20の第1主面1のbowである。エピタキシャル成長前の第3主面13のbowは、たとえば-80μm超40μm未満の範囲である。エピタキシャル成長後の第1主面1のbowは、たとえば-50μm超50μm未満の範囲である。図16に示されるように、エピタキシャル成長後の第1主面1のbowは、エピタキシャル成長前の第3主面13のbowよりも15.6μm大きくなることが確認された。
今回開示された実施形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 主面(第1主面)、3 オリエンテーションフラット、4 円弧状部、5 外周縁、6 中心、7 ダブルショックレー型積層欠陥、8 シングルショックレー型積層欠陥、10 炭化珪素基板、11 境界面、12 第2主面、13 第3主面、20 炭化珪素エピタキシャル層、31 外周領域、32 中央領域、91 位置、92 最高位置、93 最低位置、94 点基準面、95 第5位置、96 第6位置、97 第7位置、100 炭化珪素エピタキシャル基板、101 第1方向、102 第2方向、131 ドリフト領域、132 ボディ領域、133 ソース領域、134 コンタクト領域、136 酸化膜、137 層間絶縁膜、138 配線層、141 ゲート電極、142 ソース電極、143 ドレイン電極、154 第1距離、155 第2距離、300 炭化珪素半導体装置、W 最大径。
Claims (5)
- 炭化珪素基板と、
前記炭化珪素基板上にある炭化珪素エピタキシャル層とを備え、
前記炭化珪素エピタキシャル層は、前記炭化珪素基板に接する境界面と、前記境界面と反対側の主面とを含み、
前記主面は、外周縁と、前記外周縁から5mm以内の外周領域と、前記外周領域に取り囲まれた中央領域とを有し、
前記外周領域におけるダブルショックレー型積層欠陥の面密度を第1面密度とし、前記中央領域におけるダブルショックレー型積層欠陥の面密度を第2面密度とした場合、前記第1面密度は前記第2面密度の5倍以上であり、
前記第2面密度は、0.2個cm-2以上であり、
前記外周領域におけるシングルショックレー型積層欠陥の面密度は、0.5個cm-2以下である、炭化珪素エピタキシャル基板。 - 前記主面の反り量を定量的に規定したbowは、負の値である、請求項1に記載の炭化珪素エピタキシャル基板。
- 前記第2面密度は、1.0個cm-2以下である、請求項1または請求項2に記載の炭化珪素エピタキシャル基板。
- 前記第1面密度は、2.0個cm-2以上である、請求項1から請求項3のいずれか1項に記載の炭化珪素エピタキシャル基板。
- 請求項1から請求項4のいずれか1項に記載の炭化珪素エピタキシャル基板を準備する工程と、
前記炭化珪素エピタキシャル基板を加工する工程と、を備える、炭化珪素半導体装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/793,399 US20230059737A1 (en) | 2020-01-29 | 2021-01-19 | Silicon carbide epitaxial substrate and method of manufacturing silicon carbide semiconductor device |
JP2021574657A JP7632313B2 (ja) | 2020-01-29 | 2021-01-19 | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 |
CN202180010974.6A CN115003866B (zh) | 2020-01-29 | 2021-01-19 | 碳化硅外延衬底及碳化硅半导体器件的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020012522 | 2020-01-29 | ||
JP2020-012522 | 2020-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021153351A1 true WO2021153351A1 (ja) | 2021-08-05 |
Family
ID=77078544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/001693 WO2021153351A1 (ja) | 2020-01-29 | 2021-01-19 | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230059737A1 (ja) |
JP (1) | JP7632313B2 (ja) |
CN (1) | CN115003866B (ja) |
WO (1) | WO2021153351A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102564487B1 (ko) * | 2021-10-08 | 2023-08-07 | 주식회사 에타맥스 | 단일 입사광 기반 광루미네선스를 이용한 실리콘카바이드 기판의 결함분류 장비 및 그를 이용한 결함분류 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009035095A1 (ja) * | 2007-09-12 | 2009-03-19 | Showa Denko K.K. | エピタキシャルSiC単結晶基板及びエピタキシャルSiC単結晶基板の製造方法 |
JP2018052749A (ja) * | 2016-09-26 | 2018-04-05 | 国立研究開発法人産業技術総合研究所 | n型SiC単結晶基板及びその製造方法、並びにSiCエピタキシャルウェハ |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4964672B2 (ja) * | 2007-05-23 | 2012-07-04 | 新日本製鐵株式会社 | 低抵抗率炭化珪素単結晶基板 |
US7915143B2 (en) * | 2008-04-30 | 2011-03-29 | The United States Of America As Represented By The Secretary Of The Navy | Method of mediating forward voltage drift in a SiC device |
JP5304713B2 (ja) * | 2010-04-07 | 2013-10-02 | 新日鐵住金株式会社 | 炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、及び薄膜エピタキシャルウェハ |
JP5961357B2 (ja) * | 2011-09-09 | 2016-08-02 | 昭和電工株式会社 | SiCエピタキシャルウェハ及びその製造方法 |
JP6244826B2 (ja) * | 2013-11-01 | 2017-12-13 | 住友金属鉱山株式会社 | 炭化珪素基板、炭化珪素基板製造方法、半導体素子 |
JP2016132604A (ja) * | 2015-01-21 | 2016-07-25 | 住友電気工業株式会社 | 炭化珪素基板および炭化珪素基板の製造方法 |
JP6690282B2 (ja) * | 2016-02-15 | 2020-04-28 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 |
JP2017108179A (ja) | 2017-03-08 | 2017-06-15 | 住友電気工業株式会社 | 炭化珪素単結晶基板、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 |
JP6824088B2 (ja) | 2017-03-24 | 2021-02-03 | 昭和電工株式会社 | 炭化珪素のエピタキシャル成長方法 |
JP7415558B2 (ja) * | 2017-09-01 | 2024-01-17 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 |
-
2021
- 2021-01-19 WO PCT/JP2021/001693 patent/WO2021153351A1/ja active Application Filing
- 2021-01-19 JP JP2021574657A patent/JP7632313B2/ja active Active
- 2021-01-19 CN CN202180010974.6A patent/CN115003866B/zh active Active
- 2021-01-19 US US17/793,399 patent/US20230059737A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009035095A1 (ja) * | 2007-09-12 | 2009-03-19 | Showa Denko K.K. | エピタキシャルSiC単結晶基板及びエピタキシャルSiC単結晶基板の製造方法 |
JP2018052749A (ja) * | 2016-09-26 | 2018-04-05 | 国立研究開発法人産業技術総合研究所 | n型SiC単結晶基板及びその製造方法、並びにSiCエピタキシャルウェハ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021153351A1 (ja) | 2021-08-05 |
CN115003866B (zh) | 2024-05-03 |
CN115003866A (zh) | 2022-09-02 |
JP7632313B2 (ja) | 2025-02-19 |
US20230059737A1 (en) | 2023-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102959709B (zh) | 制造碳化硅衬底的方法和制造半导体器件的方法 | |
JPWO2017090285A1 (ja) | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
JP7070437B2 (ja) | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
WO2018142668A1 (ja) | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
JP7632313B2 (ja) | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
JP7415558B2 (ja) | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
JP2017050446A (ja) | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
CN108369893B (zh) | 碳化硅单晶衬底、碳化硅外延衬底及制造碳化硅半导体器件的方法 | |
JP2017108179A (ja) | 炭化珪素単結晶基板、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
JP6930640B2 (ja) | 炭化珪素単結晶基板、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
JP7310805B2 (ja) | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
JP7400715B2 (ja) | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
WO2017183301A1 (ja) | 炭化珪素半導体装置 | |
JP6590116B2 (ja) | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
CN113272480B (zh) | 碳化硅再生基板和碳化硅半导体装置的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21748114 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021574657 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21748114 Country of ref document: EP Kind code of ref document: A1 |