[go: up one dir, main page]

WO2021140809A1 - High frequency module and communication device - Google Patents

High frequency module and communication device Download PDF

Info

Publication number
WO2021140809A1
WO2021140809A1 PCT/JP2020/045538 JP2020045538W WO2021140809A1 WO 2021140809 A1 WO2021140809 A1 WO 2021140809A1 JP 2020045538 W JP2020045538 W JP 2020045538W WO 2021140809 A1 WO2021140809 A1 WO 2021140809A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
filter
transmission
circuit
arm resonator
Prior art date
Application number
PCT/JP2020/045538
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 永森
直也 松本
伸也 人見
弘嗣 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021140809A1 publication Critical patent/WO2021140809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa

Definitions

  • the present invention generally relates to a high frequency module and a communication device, and more particularly to a high frequency module including a transmission filter including a ladder type resonant circuit and a communication device including a high frequency module.
  • Patent Document 1 describes a front-end circuit in which a switch is provided between a plurality of duplexers and an antenna, and carrier aggregation is performed by using the plurality of duplexers at the same time.
  • Patent Document 1 supports communication in a specific frequency band when another frequency band exists in the vicinity of the specific frequency band included in the pass band of the transmission filter. There was a problem that it could not be done.
  • the present invention has been made in view of the above points, and an object of the present invention is to be able to change the attenuation pole on the low frequency side in the pass band of the transmission filter and to reduce the size of the high frequency module.
  • the purpose is to provide a high frequency module and a communication device capable of the above.
  • the high frequency module includes an antenna terminal, an input terminal, a first transmission filter, and a first switch.
  • the first transmission filter is provided on a transmission path connecting the antenna terminal and the input terminal.
  • the first switch switches a filter connected to the antenna terminal from a plurality of filters including the first transmission filter.
  • the first transmission filter includes a ladder type resonance circuit, a first circuit, and a second circuit.
  • the ladder type resonator circuit includes a series arm resonator provided on the transmission path and a first parallel arm resonator provided between the transmission path and the ground.
  • the first circuit is connected between the path between the ladder type resonant circuit and the input terminal in the transmission path and the ground.
  • the second circuit is connected to the first parallel arm resonator and the ground, and is connected in series with the first parallel arm resonator.
  • the first circuit includes a second parallel arm resonator and a second switch.
  • the second switch switches between a first state in which the second parallel arm resonator and the path are conducted, and a second state in which the second parallel arm resonator and the path are not conducted.
  • the second circuit includes a capacitor and a third switch.
  • the third switch switches between a first state of conducting the capacitor and the first parallel arm resonator and a second state of conducting the first parallel arm resonator and the ground.
  • the third switch is integrated with the first switch.
  • the high frequency module includes an antenna terminal, an input terminal, a power amplifier, a first transmission filter, and a first switch.
  • the first transmission filter is provided on a transmission path connecting the antenna terminal and the input terminal.
  • the first switch switches the filter connected to the power amplifier from among a plurality of second filters including the first transmission filter.
  • the first transmission filter includes a ladder type resonance circuit, a first circuit, and a second circuit.
  • the ladder type resonator circuit includes a series arm resonator provided on the transmission path and a first parallel arm resonator provided between the transmission path and the ground.
  • the first circuit is connected between the path between the ladder type resonant circuit and the input terminal in the transmission path and the ground.
  • the second circuit is connected to the first parallel arm resonator and the ground, and is connected in series with the first parallel arm resonator.
  • the first circuit includes a second parallel arm resonator and a second switch.
  • the second switch switches between a first state in which the second parallel arm resonator and the path are conducted, and a second state in which the second parallel arm resonator and the path are not conducted.
  • the second circuit includes a capacitor and a third switch.
  • the third switch switches between a first state of conducting the capacitor and the first parallel arm resonator and a second state of conducting the first parallel arm resonator and the ground.
  • the second switch is integrated with the first switch.
  • the high frequency module includes an antenna terminal, an input terminal, and a first transmission filter.
  • the first transmission filter is provided on a transmission path connecting the antenna terminal and the input terminal, and has a pass band including Band 28.
  • the first transmission filter has a ladder type resonant circuit and a first switch.
  • the ladder type resonator circuit includes a series arm resonator provided on the transmission path and a first parallel arm resonator provided between the transmission path and the ground.
  • the first switch is a switch for switching the attenuation band of Band 28 in the first transmission filter.
  • the first switch is a second switch that switches a filter connected to the antenna terminal from a plurality of filters including the first transmission filter, or a plurality of transmission filters including the first transmission filter. It is integrated with a third switch that switches the filter connected to the power amplifier.
  • the communication device includes the high frequency module and a signal processing circuit.
  • the signal processing circuit processes a signal transmitted to the high frequency module.
  • the attenuation pole on the low frequency side in the pass band of the transmission filter can be changed, and the high frequency module can be miniaturized.
  • FIG. 1 is a circuit diagram of a high frequency module according to an embodiment.
  • FIG. 2 is a circuit diagram of a main part of the same high frequency module.
  • FIG. 3 is a schematic view showing the relationship between a plurality of frequency bands to which the same high frequency module is applied.
  • the high frequency module according to the embodiment will be described with reference to the drawings.
  • the ratio of the size and the thickness of each component in the figure does not necessarily reflect the actual dimensional ratio.
  • the high-frequency module 1 includes a power amplifier 2, a plurality of transmission filters 3 (three in the illustrated example), and a plurality of reception filters 4 (two in the illustrated example). It is provided with (two in the illustrated example) low noise amplifier 5. Further, the high frequency module 1 includes a plurality of switches 61, 62, 63 (three in the illustrated example) and a plurality of (five in the illustrated example) external connection terminals 7.
  • the high frequency module 1 is used in, for example, a communication device 9.
  • the communication device 9 is a mobile phone such as a smartphone.
  • the communication device 9 is not limited to a mobile phone, and may be, for example, a wearable terminal such as a smart watch.
  • the high frequency module 1 is a module capable of supporting, for example, a 4G (4th generation mobile communication) standard, a 5G (5th generation mobile communication) standard, and the like.
  • the 4G standard is, for example, a 3GPP LTE standard (LTE: Long Term Evolution).
  • the 5G standard is, for example, 5G NR (New Radio).
  • the high frequency module 1 is a module capable of supporting carrier aggregation and dual connectivity in which signals in a plurality of frequency bands are simultaneously transmitted and received.
  • the high frequency module 1 communicates in a plurality of communication bands. More specifically, the high frequency module 1 transmits each transmission signal of the plurality of communication bands and receives each reception signal of the plurality of communication bands. Specifically, the high frequency module 1 performs communication in the first communication band, communication in the second communication band, and communication in the third communication band. More specifically, the high frequency module 1 transmits the transmission signal of the first communication band and receives the reception signal of the first communication band. Further, the high frequency module 1 transmits a transmission signal of the second communication band and receives a reception signal of the second communication band. Further, the high frequency module 1 transmits a transmission signal of the third communication band and receives a reception signal of the third communication band.
  • the high frequency module 1 has a plurality of (three in the illustrated example) transmission paths T1 for transmitting transmission signals of a plurality of communication bands.
  • the plurality of transmission paths T1 include a first transmission path T11, a second transmission path T12, and a third transmission path T13.
  • the first transmission signal of the first communication band passes through the first transmission path T11
  • the second transmission signal of the second communication band passes through the second transmission path T12
  • the third transmission signal of the third communication band passes through the third transmission path. Pass through T13.
  • the high frequency module 1 has a plurality of (three in the illustrated example) reception paths R1 for receiving reception signals of a plurality of communication bands.
  • the plurality of reception paths R1 include a first reception path R11, a second reception path R12, and a third reception path R13.
  • the first reception signal of the first communication band passes through the first reception path R11
  • the second reception signal of the second communication band passes through the second reception path R12
  • the third reception signal of the third communication band passes through the third reception path. Pass through R13.
  • the transmission signal and reception signal of each communication band are, for example, FDD (Frequency Division Duplex) signals.
  • FDD Frequency Division Duplex
  • FDD is a wireless communication technology that allocates different frequency bands to transmission and reception in wireless communication to perform transmission and reception.
  • the transmission signal and the reception signal are not limited to the FDD signal, and may be a TDD (Time Division Duplex) signal.
  • TDD is a wireless communication technology in which the same frequency band is assigned to transmission and reception in wireless communication, and transmission and reception are switched every hour.
  • the power amplifier 2 shown in FIG. 1 is an amplifier that amplifies the amplitude of a transmission signal.
  • the power amplifier 2 is provided between the input terminal 72 and each transmission filter 3 in the transmission path T1 connecting the antenna terminal 71 described later and the input terminal 72 described later. That is, the power amplifier 2 is provided in the first transmission path T11, the second transmission path T12, and the third transmission path T13.
  • the power amplifier 2 is connected to an external circuit (for example, a signal processing circuit 92) via an input terminal 72. Further, the power amplifier 2 is connected to the switch 61.
  • Each of the plurality of low noise amplifiers 5 shown in FIG. 1 is an amplifier that amplifies the amplitude of the received signal with low noise.
  • Each low noise amplifier 5 is provided between each reception filter 4 and the output terminal 73 in the reception path R1 connecting the antenna terminal 71 and the output terminal 73 described later.
  • Each low noise amplifier 5 is connected to an external circuit (for example, a signal processing circuit 92) via an output terminal 73.
  • the plurality of low noise amplifiers 5 include a first low noise amplifier 51 and a second low noise amplifier 52.
  • the first low noise amplifier 51 is provided in the first reception path R11 and the second reception path R12, and the second low noise amplifier 52 is provided in the third reception path R13.
  • Each of the plurality of transmission filters 3 shown in FIG. 1 is a transmission filter of a communication band through which a transmission signal is passed.
  • Each transmission filter 3 is provided between the power amplifier 2 and the antenna terminal 71 in the transmission path T1. More specifically, each transmission filter 3 is provided between the switch 61 and the switch 62 in the transmission path T1.
  • Each transmission filter 3 passes the transmission signal of the transmission band of the communication band among the high frequency signals amplified by the power amplifier 2.
  • the plurality of transmission filters 3 include a first transmission filter 31, a second transmission filter 32, and a third transmission filter 33.
  • the first transmission filter 31, the second transmission filter 32, and the third transmission filter 33 are provided on the transmission path T1. More specifically, the first transmission filter 31 is provided in the first transmission path T11, the second transmission filter 32 is provided in the second transmission path T12, and the third transmission filter 33 is provided in the third transmission path T13. It is provided in.
  • the transmission path T1 is a transmission path connecting the antenna terminal 71 described later and the input terminal 72 described later.
  • Each of the plurality of reception filters 4 shown in FIG. 1 is a reception filter of a communication band through which a reception signal is passed.
  • Each reception filter 4 is provided between the antenna terminal 71 and each low noise amplifier 5 in the reception path R1 connecting the antenna terminal 71 and the output terminal 73. More specifically, each reception filter 4 is provided between the switch 62 and the switch 63 in the reception path R1. Each reception filter 4 is connected to the low noise amplifier 5 by the reception path R1.
  • Each reception filter 4 passes the reception signal in the reception band of the communication band among the high frequency signals input from the antenna terminal 71.
  • the plurality of reception filters 4 include a reception filter 41 and a reception filter 42.
  • the reception filter 41 is provided on the first reception path R11 and the second reception path R12, and the reception filter 42 is provided on the third reception path R13.
  • the switch switch 61 is a switch for switching the transmission path T1 connected to the power amplifier 2.
  • the switch 61 switches the filter connected to the power amplifier 2 from among the plurality of transmission filters 3 including the first transmission filter 31.
  • the switch 61 has a common terminal 611 and three selection terminals 612 to 614.
  • the common terminal 611 is connected to the power amplifier 2.
  • the selection terminal 612 is connected to the first transmission filter 31.
  • the selection terminal 613 is connected to the second transmission filter 32.
  • the selection terminal 614 is connected to the third transmission filter 33.
  • the switch 61 is a switch capable of simultaneously connecting three selection terminals 612 to 614 to the common terminal 611.
  • the switch 61 is a direct mapping switch capable of one-to-many connection.
  • the switch 61 is, for example, a switch IC (Integrated Circuit).
  • the switch 61 is controlled by, for example, a signal processing circuit 92 described later.
  • the switch 61 switches the connection state between the common terminal 611 and the three selection terminals 612 to 614 according to the control signal from the RF signal processing circuit 93 of the signal processing circuit 92.
  • the switch 62 is a switch for switching the path (transmission path T1, reception path R1) to be connected to the antenna 91 described later.
  • the switch 62 is a switch that switches the filter connected to the antenna terminal 71 from among a plurality of filters (transmission filter 3 and reception filter 4) including the first transmission filter 31.
  • the switch 62 has a common terminal 621 and two selection terminals 622,623.
  • the common terminal 621 is connected to the antenna terminal 71 described later.
  • the selection terminal 622 is connected to the triplexer P1.
  • the selection terminal 623 is connected to the duplexer P2.
  • the triplexer P1 includes a first transmission filter 31, a second transmission filter 32, and a reception filter 41.
  • the duplexer P2 includes a third transmit filter 33 and a receive filter 42.
  • the switch 62 is a switch capable of simultaneously connecting two selection terminals 622 and 623 to the common terminal 621.
  • the switch 62 is a direct mapping switch capable of one-to-many connection.
  • the switch 62 is, for example, a switch IC.
  • the switch 62 is controlled by, for example, a signal processing circuit 92 described later.
  • the switch 62 switches the connection state between the common terminal 621 and the two selection terminals 622 and 623 according to the control signal from the RF signal processing circuit 93 of the signal processing circuit 92.
  • the switch 63 is a switch for switching the reception path R1 connected to the low noise amplifier 5.
  • the switch 63 has two first terminals 631,632 and two second terminals 633,634.
  • the first terminal 631 is connected to the reception filter 41.
  • the first terminal 632 is connected to the reception filter 42.
  • the second terminal 633 is connected to the first low noise amplifier 51.
  • the second terminal 634 is connected to the second low noise amplifier 52.
  • the switch 63 is a switch capable of connecting the second terminal 633 to the first terminal 631. Further, the switch 63 is a switch capable of connecting the second terminal 634 to the first terminal 632.
  • the switch 63 is, for example, a switch IC.
  • the switch 63 is controlled by, for example, a signal processing circuit 92 described later. The switch 63 switches the connection state between the first terminal 631 and the second terminal 633 and the connection state between the first terminal 632 and the second terminal 634 according to the control signal from the RF signal processing circuit 93 of the signal processing circuit 92.
  • the plurality of external connection terminals 7 include an antenna terminal 71, an input terminal 72, and a plurality of (three in the illustrated example) output terminals 73.
  • the antenna terminal 71 is a terminal to which the antenna 91 described later is connected.
  • the input terminal 72 and the plurality of output terminals 73 are connected to a signal processing circuit 92 described later.
  • the input terminal 72 is a terminal at which a high frequency signal (transmission signal) from an external circuit is input to the high frequency module 1.
  • Each of the plurality of output terminals 73 is a terminal on which a high frequency signal (received signal) from the low noise amplifier 5 is output to an external circuit.
  • the plurality of output terminals 73 include a first output terminal 731, a second output terminal 732, and a third output terminal 733.
  • the first transmission filter 31 includes a ladder type resonant circuit 81, inductors L1 and L2, a first attenuation circuit 82 (first circuit), and a second attenuation circuit 83 (second circuit). To be equipped.
  • the first end of the first transmission filter 31 is connected to the switch 61 (see FIG. 1), and the second end of the first transmission filter 31 is connected to the switch 62 (see FIG. 1).
  • the first end of the first transmission filter 31 is an input end to which a high frequency signal (transmission signal) is input, and the second end of the first transmission filter 31 is an output end to which a high frequency signal (transmission signal) is output. is there.
  • the ladder type resonance circuit 81 includes a plurality of series arm resonators SR1 to SR5 (five in the illustrated example), a plurality of parallel arm resonators PR1 to PR4 (four in the illustrated example), and a parallel arm capacitor C1. ..
  • the two parallel arm resonators PR2 and PR3 are connected in parallel.
  • the capacitance of the parallel arm capacitor C1 is fixed.
  • a plurality of series arm resonators SR1 to SR5 are provided on the transmission path T1. More specifically, the plurality of series arm resonators SR1 to SR5 are provided on the first transmission path T11. The plurality of series arm resonators SR1, SR2, SR3, SR4, SR5 are connected in series in this order from the power amplifier 2 side toward the antenna terminal 71.
  • Each of the plurality of parallel arm resonators PR1 to PR4 and the parallel arm capacitor C1 is provided between the first node N1 on the transmission path T1 and the ground. More specifically, each of the plurality of parallel arm resonators PR1 to PR4 and the parallel arm capacitor C1 is provided between the first node N1 on the first transmission path T11 and the ground.
  • the first end of the parallel arm resonator PR1 is connected to the connection line between the series arm resonator SR1 and the series arm resonator SR2, and the second end of the parallel arm resonator PR1 is connected to the ground.
  • the first end of the parallel arm capacitor C1 is connected to the connection line between the series arm resonator SR2 and the series arm resonator SR3, and the second end of the parallel arm capacitor C1 is connected to the ground.
  • the first end of the parallel circuit of the parallel arm resonators PR2 and PR3 is connected to the connection line between the series arm resonator SR3 and the series arm resonator SR4, and the second end of the parallel circuit is connected to the ground.
  • the first end of the parallel arm resonator PR4 is connected to the connection line between the series arm resonator SR4 and the series arm resonator SR5, and the second end of the parallel arm resonator PR4 is connected to the second attenuation circuit 83.
  • the parallel arm resonator PR4 is the closest to the antenna terminal 71 (see FIG. 1) among the plurality of parallel arm resonators PR1 to PR4.
  • the first end of the inductor L1 is connected to the terminal on the antenna terminal 71 (see FIG. 1) side of the series arm resonator SR5, and the second end of the inductor L1 is connected to the ground.
  • the inductor L1 has a function of adjusting the frequency characteristics of the first transmission filter 31 and a matching circuit.
  • the inductor L2 is connected between the first attenuation circuit 82 and the ladder type resonance circuit 81.
  • the inductor L2 is connected in series with the ladder type resonant circuit 81. More specifically, the first end of the inductor L2 is connected to the series arm resonator SR1 of the ladder type resonance circuit 81, and the second end of the inductor L2 is connected to the power amplifier 2 (see FIG. 1). There is.
  • the resonance frequency of the first transmission filter 31 can be extended, so that the pass band of the first transmission filter 31 can be extended.
  • the first attenuation circuit 82 is connected between the second node N2 between the ladder type resonance circuit 81 and the input terminal 72 (see FIG. 1) on the transmission path T1 and the ground.
  • the first attenuation circuit 82 includes a second parallel arm resonator 84 and a second switch 85.
  • the second switch 85 switches between a first state in which the second parallel arm resonator 84 and the second node N2 are conducted, and a second state in which the second parallel arm resonator 84 and the second node N2 are not conducted. ..
  • the second switch 85 has a first terminal 851 and a second terminal 852.
  • the first terminal 851 is connected to a node that connects the second end of the inductor L2 (the side of the inductor L2 opposite to the ladder type resonant circuit 81 side) and the switch 61 (see FIG. 1).
  • the second terminal 852 is connected to the first end of the second parallel arm resonator 84.
  • the first attenuation circuit 82 becomes a trap circuit.
  • the second end of the second parallel arm resonator 84 is connected to the ground.
  • the second end of the inductor L2 is connected to the ground via the second parallel arm resonator 84.
  • the second attenuation circuit 83 is connected to the parallel arm resonator PR4 and the ground, and is connected in series with the parallel arm resonator PR4.
  • the second attenuation circuit 83 is the parallel arm resonator PR4 closest to the end opposite to the side connected to the inductor L2 among the plurality of parallel arm resonators PR1 to PR4 constituting the ladder type resonance circuit 81. It is connected to the.
  • the second attenuation circuit 83 includes a capacitor 86 and a third switch 87.
  • the third switch 87 switches between a first state in which the capacitor 86 and the parallel arm resonator PR4 are conducted, and a second state in which the parallel arm resonator PR4 and the ground are conducted.
  • the third switch 87 includes a common terminal 871 and a selection terminal 872, 873.
  • the common terminal 871 is connected to the parallel arm resonator PR4.
  • the selection terminal 872 is connected to the first end of the capacitor 86.
  • the second end of the capacitor 86 is connected to ground.
  • the selection terminal 873 is connected to the ground.
  • the capacitance of the capacitor 86 is fixed.
  • the second attenuation circuit 83 is a frequency variable circuit that changes the resonance frequency of the parallel arm resonator PR4.
  • the parallel arm resonator PR4 By connecting the selection terminal 872 to the common terminal 871 in the third switch 87, the parallel arm resonator PR4 is connected to the ground via the capacitor 86. By connecting the selection terminal 873 to the common terminal 871 in the third switch 87, the parallel arm resonator PR4 is directly connected to the ground.
  • the filter characteristics can be further improved as compared with the case where the second attenuation circuit is connected to another parallel arm resonator.
  • the third switch 87 of the second attenuation circuit 83 is integrated with the switch 62. That is, the third switch 87 and the switch 62 are mounted in the same chip D1.
  • the chip D1 including the third switch 87 and the switch 62 is one IC chip including a substrate and a functional unit.
  • the substrate has a first surface and a second surface facing each other.
  • the substrate is, for example, a silicon substrate.
  • the functional part is formed on the first surface of the substrate.
  • the functional unit is a portion having a function of the third switch 87 and a function of the switch 62.
  • the functional unit has a function of switching between a first state of conducting the capacitor 86 and the parallel arm resonator PR4 (see FIG. 2) and a second state of conducting the parallel arm resonator PR4 and the ground.
  • the functional unit has a function of switching a filter connected to the antenna terminal 71 from among a plurality of filters (transmission filter 3 and reception filter 4).
  • the capacitor 86 of the second attenuation circuit 83 is also integrated with the switch 62. That is, the capacitor 86 and the switch 62 are mounted in the same chip D1.
  • the chip D1 is composed of the capacitor 86, the third switch 87, and the switch 62.
  • the functional part of the chip D1 further has the function of the capacitor 86.
  • the second switch 85 of the first attenuation circuit 82 is integrated with the switch 61. That is, the second switch 85 and the switch 61 are mounted in the same chip D2.
  • the chip D2 including the second switch 85 and the switch 61 is one IC chip including a substrate and a functional unit.
  • the substrate has a first surface and a second surface facing each other.
  • the substrate is, for example, a silicon substrate.
  • the functional part is formed on the first surface of the substrate.
  • the functional unit is a portion having a function of the second switch 85 and a function of the switch 61. More specifically, the functional unit conducts the first state in which the second parallel arm resonator 84 and the second node N2 (see FIG.
  • the functional unit has a function of switching a filter connected to the power amplifier 2 from among a plurality of transmission filters 3 including the first transmission filter 31.
  • each component of the high-frequency module (5.1) Mounting board The mounting board (not shown) on which each component of the high-frequency module 1 shown in FIG. 1 is arranged is, for example, a printed wiring board or an LTCC. (Low Temperature Co-fired Ceramics) Substrates, etc.
  • the mounting substrate is, for example, a multilayer substrate including a plurality of dielectric layers (not shown) and a plurality of conductor pattern portions (not shown).
  • the plurality of dielectric layers and the plurality of conductor pattern portions are laminated in the thickness direction of the mounting substrate.
  • Each of the plurality of conductor pattern portions is formed in a predetermined pattern.
  • Each of the plurality of conductor pattern portions includes one or a plurality of conductor portions in one plane orthogonal to the thickness direction of the mounting substrate.
  • the material of each conductor pattern portion is, for example, copper.
  • the first main surface and the second main surface (not shown) of the mounting board are separated in the thickness direction of the mounting board and intersect in the thickness direction of the mounting board.
  • the first main surface of the mounting board is, for example, orthogonal to the thickness direction of the mounting board, but may include, for example, the side surface of the conductor portion as a surface not orthogonal to the thickness direction.
  • the second main surface of the mounting substrate is, for example, orthogonal to the thickness direction of the mounting substrate, but may include, for example, a side surface of the conductor portion as a surface not orthogonal to the thickness direction.
  • the first main surface and the second main surface of the mounting substrate may be formed with fine irregularities, concave portions or convex portions.
  • each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of elastic wave resonators.
  • the filter includes, for example, a substrate, a piezoelectric layer, and a plurality of IDT electrodes (Interdigital Transducers).
  • the substrate has a first surface and a second surface.
  • the piezoelectric layer is provided on the first surface of the substrate.
  • the piezoelectric layer is provided on the bass velocity film.
  • the plurality of IDT electrodes are provided on the piezoelectric layer.
  • the bass velocity film is provided directly or indirectly on the substrate. Further, the piezoelectric layer is provided directly or indirectly on the bass velocity film.
  • the sound velocity of the bulk wave propagating is slower than the sound velocity of the bulk wave propagating in the piezoelectric layer.
  • the sound velocity of the bulk wave propagating is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer.
  • the material of the piezoelectric layer is, for example, lithium tantalate.
  • the material of the bass velocity film is, for example, silicon oxide.
  • the substrate is, for example, a silicon substrate.
  • the thickness of the piezoelectric layer is, for example, 3.5 ⁇ or less when the wavelength of the elastic wave determined by the electrode finger period of the IDT electrode is ⁇ .
  • the thickness of the bass sound film is, for example, 2.0 ⁇ or less.
  • the piezoelectric layer may be formed of, for example, lithium tantalate, lithium niobate, zinc oxide, aluminum nitride, or lead zirconate titanate.
  • the bass sound film may contain at least one material selected from the group consisting of silicon oxide, glass, silicon nitride, tantalum oxide, and a compound obtained by adding fluorine, carbon or boron to silicon oxide.
  • the substrate is made of silicon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, sapphire, lithium tantalate, lithium niobate, crystal, alumina, zirconia, cozy light, mulite, steatite, forsterite, magnesia and diamond. It suffices to contain at least one material selected from the group.
  • the filter further includes, for example, a spacer layer and a cover member.
  • the spacer layer and the cover member are provided on the first surface of the substrate.
  • the spacer layer surrounds the plurality of IDT electrodes in a plan view from the thickness direction of the substrate.
  • the spacer layer has a frame shape (rectangular frame shape) in a plan view from the thickness direction of the substrate.
  • the spacer layer has electrical insulation.
  • the material of the spacer layer is, for example, a synthetic resin such as an epoxy resin or a polyimide.
  • the cover member has a flat plate shape.
  • the cover member has a rectangular shape in a plan view from the thickness direction of the substrate, but the cover member is not limited to this, and may be, for example, a square shape.
  • the outer size of the cover member, the outer size of the spacer layer, and the outer size of the cover member are substantially the same in a plan view from the thickness direction of the substrate.
  • the cover member is arranged on the spacer layer so as to face the substrate in the thickness direction of the substrate.
  • the cover member overlaps with the plurality of IDT electrodes in the thickness direction of the substrate and is separated from the plurality of IDT electrodes in the thickness direction of the substrate.
  • the cover member has electrical insulation.
  • the material of the cover member is, for example, a synthetic resin such as an epoxy resin or a polyimide.
  • the filter has a space surrounded by a substrate, a spacer layer, and a cover member. In the filter, the space contains gas.
  • the gas is, for example, air, an inert gas (for example, nitrogen gas) or the like.
  • the plurality of terminals are exposed from the cover member.
  • Each of the plurality of terminals is, for example, a bump.
  • Each bump is, for example, a solder bump.
  • Each bump is not limited to a solder bump, and may be, for example, a gold bump.
  • the filter may include, for example, an adhesion layer interposed between the bass velocity film and the piezoelectric layer.
  • the adhesion layer is made of, for example, a resin (epoxy resin, polyimide resin).
  • the filter may be provided with a dielectric film between the low sound velocity film and the piezoelectric layer, either on the piezoelectric layer or below the low sound velocity film.
  • the filter may include, for example, a hypersonic film interposed between the substrate and the hypersonic film.
  • the hypersonic film is provided directly or indirectly on the substrate.
  • the low sound velocity film is provided directly or indirectly on the high sound velocity film.
  • the piezoelectric layer is provided directly or indirectly on the bass velocity film.
  • the sound velocity of the bulk wave propagating is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer.
  • the sound velocity of the bulk wave propagating is slower than the sound velocity of the bulk wave propagating in the piezoelectric layer.
  • the treble film is made of diamond-like carbon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, zirconia, cordierite, mulite, and steatite. , Various ceramics such as forsterite, magnesia, diamond, or a material containing each of the above materials as a main component, and a material containing a mixture of the above materials as a main component.
  • the piezoelectric substrate may have an adhesion layer, a dielectric film, or the like as a film other than the hypersonic film, the low sound velocity film, and the piezoelectric layer.
  • Each of the plurality of series arm resonators and the plurality of parallel arm resonators is not limited to the above-mentioned elastic wave resonators, and may be, for example, a SAW resonator or a BAW (Bulk Acoustic Wave) resonator.
  • the SAW resonator includes, for example, a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate.
  • the filter has a plurality of IDTs having a one-to-one correspondence with the plurality of series arm resonators on one piezoelectric substrate.
  • the piezoelectric substrate is, for example, a lithium tantalate substrate, a lithium niobate substrate, or the like.
  • the power amplifier 2 shown in FIG. 1 is, for example, a one-chip IC including a substrate and an amplification function unit.
  • the substrate has a first surface and a second surface facing each other.
  • the substrate is, for example, a gallium arsenide substrate.
  • the amplification function unit includes at least one transistor formed on the first surface of the substrate.
  • the amplification function unit is a function unit having a function of amplifying a transmission signal in a predetermined frequency band.
  • the transistor is, for example, an HBT (Heterojunction Bipolar Transistor).
  • HBT Heterojunction Bipolar Transistor
  • the power amplifier 2 may include, for example, a capacitor for cutting DC in addition to the amplification function unit.
  • the power amplifier 2 is flip-chip mounted on the first main surface of the mounting board so that the first surface of the board is, for example, the first main surface side of the mounting board (not shown).
  • the outer peripheral shape of the power amplifier 2 is, for example, a quadrangular shape in a plan view from the thickness direction of the mounting board.
  • Each of the plurality of low noise amplifiers 5 shown in FIG. 1 is, for example, one IC chip including a substrate and an amplification function unit.
  • the substrate has a first surface and a second surface facing each other.
  • the substrate is, for example, a silicon substrate.
  • the amplification function unit is formed on the first surface of the substrate.
  • the amplification function unit is a function unit having a function of amplifying a received signal in a predetermined frequency band.
  • Each low noise amplifier 5 is flip-chip mounted on the first main surface of the mounting board so that the first surface of the board is on the mounting board (not shown) side, for example.
  • the outer peripheral shape of the low noise amplifier 5 is, for example, a quadrangular shape in a plan view from the thickness direction of the mounting board.
  • the communication device 9 includes a high frequency module 1, an antenna 91, and a signal processing circuit 92, as shown in FIG.
  • the antenna 91 is connected to the antenna terminal 71 of the high frequency module 1.
  • the antenna 91 has a transmission function of radiating a transmission signal output from the high frequency module 1 by radio waves, and a reception function of receiving the received signal as radio waves from the outside and outputting it to the high frequency module 1.
  • Examples of the transmission signal include a first transmission signal, a second transmission signal, and a third transmission signal.
  • Examples of the received signal include a first received signal, a second received signal, and a third received signal.
  • the signal processing circuit 92 includes an RF signal processing circuit 93 and a baseband signal processing circuit 94.
  • the signal processing circuit 92 includes a first communication signal (first transmission signal, first reception signal), a second communication signal (second transmission signal, second reception signal), and a third communication signal (third transmission signal, third reception signal). Received signal) is processed.
  • the RF signal processing circuit 93 is, for example, an RFIC (Radio Frequency Integrated Circuit), and performs signal processing on a high frequency signal.
  • the RF signal processing circuit 93 performs signal processing such as up-conversion on the high frequency signal (transmission signal) output from the baseband signal processing circuit 94, and outputs the processed high frequency signal to the high frequency module 1. ..
  • the RF signal processing circuit 93 performs signal processing such as down-conversion on the high-frequency signal (received signal) output from the high-frequency module 1, and outputs the processed high-frequency signal to the baseband signal processing circuit 94. ..
  • the baseband signal processing circuit 94 is, for example, a BBIC (Baseband Integrated Circuit), and performs predetermined signal processing on a transmission signal from the outside of the signal processing circuit 92.
  • the received signal processed by the baseband signal processing circuit 94 is used, for example, as an image signal as an image signal for displaying an image, or as an audio signal for a call.
  • FIG. 3 is a diagram showing the relationship between the frequency bands to which the high frequency module 1 according to the embodiment is applied.
  • "BandA1” corresponds to the first communication frequency band
  • “BandB1” corresponds to the second communication frequency band
  • “BandC1” corresponds to the third communication frequency band.
  • Tx represents a transmission frequency band
  • “Rx” represents a reception frequency band.
  • BandA1 corresponds to the frequency band of "Band28" defined by E-UTRA (LTE).
  • BandB1 corresponds to the frequency band of "Band20” defined by E-UTRA (LTE).
  • Band C1 corresponds to the frequency band of "Band 8" defined by E-UTRA (LTE).
  • the reception filter 41 also serves as a first reception filter having a first pass band and a second reception filter having a second pass band.
  • the first pass band includes Band 28 and the second pass band includes Band 20.
  • the pass band of the first transmission filter 31 includes Band 28.
  • the first transmission filter 31 corresponds to the filter F1
  • the second transmission filter 32 corresponds to the filter F3
  • the third transmission filter 33 corresponds to the filter F3.
  • the reception filter 41 corresponds to the filter F2, and the reception filter 42 corresponds to the filter F5.
  • the transmission frequency band of Band 28A is 703 MHz or more and 733 MHz or less, and the transmission frequency band of Band 28B is 718 MHz or more and 748 MHz or less.
  • the transmission frequency band of Band 28 is 703 MHz or more and 748 MHz or less.
  • the reception frequency band of the Band 28A is 758 MHz or more and 788 MHz or less, and the reception frequency band of the Band 28B is 773 MHz or more and 803 MHz or less.
  • the transmission frequency band of Band 28 is 758 MHz or more and 803 MHz or less.
  • This division of the communication band is because the transmission frequency band of Band 28 overlaps with the broadcasting frequency band of DTV (digital television broadcasting) and is subject to the regulation of spurious emissions.
  • the Band 28A is subject to the regulation of "NS17" spurious emissions in 3GGP2, and the Band 28A cannot be used in the broadcasting area of the DTV signal to which this regulation is applied. Therefore, in this broadcasting area, Band 28B is designated for communication.
  • the communication terminal must pass the transmission signal of the Band 28B with low loss, and at the same time, satisfy the regulation of the spurious emission of "NS17" set in the frequency band of the Band 28A.
  • Band 28A can also be used outside this broadcasting area. That is, the entire frequency band of Band 28 can be used.
  • carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of “BandA1”, the reception frequency band of “BandA1”, and the reception frequency band of “BandB1”. There is a state when doing.
  • a state when carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of "BandB1", the reception frequency band of "BandB1", and the reception frequency band of "BandA1”. There is.
  • a state when carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of "BandA1", the reception frequency band of "BandA1", and the reception frequency band of "BandC1".
  • a state when carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of "BandB1", the reception frequency band of "BandB1", and the reception frequency band of "BandC1".
  • the high frequency module 1 is connected between the signal processing circuit 92 and the antenna 91. Further, the signal processing circuit 92 is connected to the input side of the power amplifier 2 and the output side of the low noise amplifier 5.
  • the transmission frequency band of the first communication frequency band “BandA1”, the reception frequency band of the first communication frequency band “BandA1”, and the reception frequency band of the second communication frequency band “BandB1” are 2 downlinks and 1 uplink.
  • the states of the switches 61 to 63 are determined. That is, the switch 61 connects the common terminal 611 to which the output end of the power amplifier 2 is connected and the selection terminal 612 to which the first transmission filter 31 is connected.
  • the switch 62 connects the selection terminal 622 to which the first transmission filter 31 and the reception filter 41 are connected and the common terminal 621.
  • the switch 63 connects the second terminal 633 to which the first low noise amplifier 51 is connected and the first terminal 631 to which the reception filter 41 is connected.
  • the first transmission filter 31 (filter F1 in FIG. 3) passes a transmission signal in the transmission frequency band of the first communication frequency band "BandA1".
  • the reception filter 41 (filter F2 in FIG. 3) passes both the reception signal in the reception frequency band of the first communication frequency band “BandA1” and the reception signal in the reception frequency band of the second communication frequency band “BandB1”.
  • the switch 63 outputs the output signal of the reception filter 41 to the two low noise amplifiers 5.
  • the received signals output from the two low noise amplifiers 5 are processed by the signal processing circuit 92 as a received signal in the first communication frequency band and a received signal in the second communication frequency band.
  • the reception signal in the first communication frequency band is provided as in the case where individual reception filters are provided to pass the reception signal in the first communication frequency band and the reception signal in the second communication frequency band, respectively. It does not leak to the reception filter of the second communication frequency band, and the reception signal of the second communication frequency band does not leak to the reception filter of the first communication frequency band. Therefore, the attenuation of the received signal in the first communication frequency band and the received signal in the second communication frequency band due to the leakage is suppressed.
  • a distribution circuit 53 is provided in the output section of the first low noise amplifier 51.
  • the first low noise amplifier 51 amplifies a received signal in which a received signal in the first communication frequency band and a received signal in the second communication frequency band are mixed.
  • the amplified received signal is frequency-converted by two down converters and a local signal generator (not shown).
  • the frequency-converted received signal is AD-converted.
  • the received signal is separated into a received signal in the first communication frequency band and a received signal in the second communication frequency band by the digital filter processing by multiplying the window function.
  • the above series of processing is performed in the RF signal processing circuit 93.
  • the signals of the two reception frequency bands are extracted by frequency conversion and digital filtering. it can.
  • the switch 61 When carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of "BandB1", the reception frequency band of "BandB1", and the reception frequency band of "BandA1", the switch 61 performs the second transmission filter 32 (FIG. 3) is selected, and the switch 62 selects the second transmission filter 32 (filter F3 in FIG. 3) and the reception filter 41 (filter F2 in FIG. 3). In the switch 63, the first terminal 631 is connected to the second terminal 633.
  • the switch 61 performs the first transmission filter 31 (FIG. 3 filter F1) is selected, and the switch 62 selects the first transmission filter 31 (filter F1 in FIG. 3), the reception filter 41 (filter F2 in FIG. 3), and the reception filter 42 (filter F5 in FIG. 3).
  • the first terminal 631 is connected to the second terminal 633, and the first terminal 632 is connected to the second terminal 634.
  • the switch 61 performs the second transmission filter 32 (FIG. 3) is selected, and the switch 62 selects the second transmit filter 32 (filter F3 in FIG. 3) and the receive filter 42 (filter F5 in FIG. 3).
  • the first terminal 631 is connected to the second terminal 633, and the first terminal 632 is connected to the second terminal 634.
  • the reception filter 41 (filter F2 in FIG. 3) used when performing carrier aggregation in the reception frequency band of "BandA1" and the reception frequency band of "BandB1” is used as the reception frequency band of "BandA1". It is also used when performing carrier aggregation with the reception frequency band of "BandC1", and is also used when performing carrier aggregation with the reception frequency band of "BandB1" and the reception frequency band of "BandC1". It is not necessary to separately provide a reception filter for "BandA1" and a reception filter for "BandB1". Therefore, it is advantageous in terms of miniaturization and cost reduction.
  • the first transmission filter 31 realizes a filter characteristic in which the entire communication band of the Band 28 is included in the pass band.
  • the first transmission filter 31 realizes a filter characteristic in which the entire communication band of the Band 28A is included in the pass band.
  • this configuration is realized by extending the pass band of the ladder type resonant circuit 81 with the inductor L2.
  • the pass band of the ladder type resonant circuit 81 includes the entire communication band of the Band 28B and a part of the frequency band in the pass band of the Band 28A that does not overlap with the Band 28B.
  • the entire communication band of the Band 28A and the entire communication band of the Band 28B, which cannot be handled by the ladder type resonant circuit 81 alone, can be set within the pass band.
  • the pass band can be extended to a desired frequency bandwidth by the inductor L2 while having a steep attenuation characteristic by the ladder type resonant circuit 81.
  • the first transmission filter 31 realizes an attenuation pole on both the low frequency side and the high frequency side of the pass band.
  • the frequency of the attenuation pole on the low frequency side of the Band 28 is close to the threshold frequency on the low frequency side of the pass band, and the amount of attenuation is large.
  • NS18 which is a target of spurious emission regulation
  • Band28A Band28A
  • the first terminal 851 and the second terminal 852 of the second switch 85 are connected.
  • the inductor L2 is connected to the ground via the second parallel arm resonator 84.
  • the common terminal 871 and the selection terminal 872 in the third switch 87 are connected.
  • the parallel arm resonator PR4 is connected to the ground via the capacitor 86.
  • the first transmission filter 31 realizes a filter characteristic in which the entire communication band of the Band 28B is included in the pass band. Further, the first transmission filter 31 includes at least a part of the frequency band of the Band 28A that does not overlap with the Band 28B in the blocking region, and a desired attenuation amount can be obtained in this frequency band.
  • the attenuation pole frequency of the first attenuation circuit 82 including the second parallel arm resonator 84 is set to a frequency in the vicinity of the frequency band that does not overlap with the Band 28B in the Band 28A.
  • the amount of attenuation in the frequency band that does not overlap with Band 28B in Band 28A can be increased, and the attenuation characteristics on the low frequency side of Band 28B can be steepened.
  • the attenuation pole frequency of the ladder type resonance circuit 81 adjusted by the second attenuation circuit 83 including the capacitor 86 is set within the frequency band that does not overlap with the Band 28B in the Band 28A. As a result, the attenuation characteristic of the Band 28B on the low frequency side can be steepened.
  • NS18 which is a regulated object of spurious emission, can also be satisfied.
  • the steepness of the attenuation pole determined by the capacitor 86 is higher than the steepness of the attenuation pole determined by the second parallel arm resonator 84 including the inductor in the equivalent circuit.
  • the first transmission filter 31 sets the attenuation pole frequency of the capacitor 86 closer to the communication band side of the Band 28B than the attenuation pole frequency of the second parallel arm resonator 84. Therefore, the first transmission filter 31 has a steeper attenuation characteristic on the low frequency side of the pass band, and more reliably satisfies the regulation of spurious emission of NS17 while obtaining a low loss pass characteristic with respect to the Band 28B. Can be done.
  • the first transmission filter 31 has a first attenuation circuit 82 (first circuit) and a second attenuation circuit 83 (second circuit). Further, the third switch 87 of the second attenuation circuit 83 switches the filter connected to the antenna terminal 71 from among the plurality of filters (transmission filter 3 and reception filter 4) including the first transmission filter 31 (third switch 62). It is integrated with 1 switch). That is, the third switch 87 and the switch 62 are mounted in the same chip D1. As a result, the attenuation pole on the low frequency side in the pass band of the first transmission filter 31 can be changed, and the high frequency module 1 can be miniaturized.
  • the capacitor 86 is integrated with the switch 62 together with the third switch 87. That is, the capacitor 86, the third switch 87, and the switch 62 are mounted in the same chip D1. As a result, the high frequency module 1 can be further miniaturized.
  • the first transmission filter 31 has a first attenuation circuit 82 and a second attenuation circuit 83.
  • the second switch 85 of the first attenuation circuit 82 is integrated with the switch 61 for switching the transmission filter connected to the power amplifier 2 from among the plurality of transmission filters 3 including the first transmission filter 31. That is, the second switch 85 and the switch 61 are mounted in the same chip D2. As a result, the attenuation pole on the low frequency side in the pass band of the first transmission filter 31 can be changed, and the high frequency module 1 can be miniaturized.
  • the inductor L2 is provided between the first attenuation circuit 82 and the ladder type resonance circuit 81.
  • the resonance frequency of the first transmission filter 31 can be extended, so that the pass band of the first transmission filter 31 can be extended.
  • the high frequency module 1 according to each of the above modifications also has the same effect as the high frequency module 1 according to the embodiment.
  • the high frequency module (1) includes an antenna terminal (71), an input terminal (72), a first transmission filter (31), and a first switch (switch 62).
  • the first transmission filter (31) is provided on the transmission path (T1) connecting the antenna terminal (71) and the input terminal (72).
  • the first switch switches the filter connected to the antenna terminal (71) from among the plurality of filters including the first transmission filter (31).
  • the first transmission filter (31) includes a ladder type resonance circuit (81), a first circuit (first attenuation circuit 82), and a second circuit (second attenuation circuit 83).
  • the ladder type resonator circuit (81) includes a series arm resonator (SR1 to SR5) and a first parallel arm resonator (parallel arm resonator PR4).
  • the series arm resonators (SR1 to SR5) are provided on the transmission path (T1).
  • the first parallel arm resonator is provided between the transmission path (T1) and the ground.
  • the first circuit is connected between the path between the ladder type resonant circuit (81) and the input terminal (72) in the transmission path (T1) and the ground.
  • the second circuit is connected to the first parallel arm resonator and the ground, and is connected in series with the first parallel arm resonator.
  • the first circuit includes a second parallel arm resonator (84) and a second switch (85).
  • the second switch (85) has a first state in which the second parallel arm resonator (84) and the path are conducted, and a second state in which the second parallel arm resonator (84) and the path are not conducted. To switch.
  • the second circuit includes a capacitor (86) and a third switch (87).
  • the third switch (87) switches between a first state in which the capacitor (86) and the first parallel arm resonator are conducted, and a second state in which the first parallel arm resonator and the ground are conducted.
  • the third switch (87) is integrated with the first switch.
  • the attenuation pole on the low frequency side in the pass band of the first transmission filter (31) can be changed, and the high frequency module (1) can be miniaturized. Can be planned.
  • the capacitor (86) is integrated with the first switch (switch 62).
  • the high frequency module (1) can be further miniaturized.
  • the high frequency module (1) further includes a power amplifier (2) and a fourth switch (switch 61) in the first or second aspect.
  • the fourth switch switches the filter connected to the power amplifier (2) from among the plurality of transmission filters including the first transmission filter (31).
  • the second switch (85) is integrated with the fourth switch.
  • the high frequency module (1) can be further miniaturized.
  • the high frequency module (1) includes an antenna terminal (71), an input terminal (72), a power amplifier (2), a first transmission filter (31), and a first switch (switch 62). And.
  • the first transmission filter (31) is provided on the transmission path (T1) connecting the antenna terminal (71) and the input terminal (72).
  • the first switch switches the filter connected to the power amplifier (2) from among a plurality of second filters including the first transmission filter (31).
  • the first transmission filter (31) includes a ladder type resonance circuit (81), a first circuit (first attenuation circuit 82), and a second circuit (second attenuation circuit 83).
  • the ladder type resonance circuit (81) includes a series arm resonator (SR1 to SR5) provided on the transmission path (T1) and a first parallel circuit provided between the transmission path (T1) and the ground.
  • the arm resonator (including the parallel arm resonator PR4.
  • the first circuit is connected between the path between the ladder type resonator circuit (81) and the input terminal (72) in the transmission path (T1) and the ground.
  • the second circuit is connected to the first parallel arm resonator and the ground, and is connected in series with the first parallel arm resonator.
  • the first circuit is connected to the second parallel arm resonator (84).
  • the second switch (85) includes a first state for conducting the second parallel arm resonator (84) and the path, and a second parallel arm resonator (84).
  • the second circuit includes the capacitor (86) and the third switch (87).
  • the third switch (87) includes the capacitor (86) and the third switch (87).
  • the first state for conducting the 1 parallel arm resonator and the second state for conducting the first parallel arm resonator and the ground are switched.
  • the second switch (85) is the first switch (switch 61). It is one.
  • the attenuation pole on the low frequency side in the pass band of the first transmission filter (31) can be changed, and the high frequency module (1) can be miniaturized. Can be planned.
  • the high frequency module (1) according to the fifth aspect further includes an inductor (L2) in any one of the first to fourth aspects.
  • the inductor (L2) is connected between the first circuit (first attenuation circuit 82) and the ladder type resonance circuit (81).
  • the pass band of the first transmission filter (31) can be extended.
  • the inductor (L2) is connected in series with the ladder type resonant circuit (81).
  • the ladder type resonance circuit (81) includes the first parallel arm resonator (parallel arm resonator PR4). It has a plurality of parallel arm resonators (PR1 to PR4).
  • the first parallel arm resonator (parallel arm resonator PR4) is the closest to the antenna terminal (71) among the plurality of parallel arm resonators (PR1 to PR4).
  • the high frequency module (1) according to the eighth aspect further includes a first reception filter (reception filter 41) and a second reception filter (reception filter 41) in any one of the first to seventh aspects. ..
  • the first receive filter has a first pass band.
  • the second reception filter has a second pass band.
  • the first pass band includes Band 28.
  • the second pass band includes Band 20.
  • the pass band of the first transmission filter (31) includes Band 28.
  • the high frequency module (1) includes an antenna terminal (71), an input terminal (72), and a first transmission filter (31).
  • the first transmission filter (31) is provided on the transmission path (T1) connecting the antenna terminal (71) and the input terminal (72), and has a pass band including the Band 28.
  • the first transmission filter (31) has a ladder type resonance circuit (81) and a first switch (switch 61; switch 62).
  • the ladder type resonance circuit (81) includes a series arm resonator (SR1 to SR5) provided on the transmission path (T1) and a first parallel circuit provided between the transmission path (T1) and the ground. Includes an arm resonator (parallel arm resonator PR4).
  • the first switch is a switch for switching the attenuation band of Band 28 in the first transmission filter (31).
  • the first switch is integrated with the second switch (switch 62) or the third switch (switch 61).
  • the second switch switches the filter connected to the antenna terminal (71) from among the plurality of filters including the first transmission filter (31).
  • the third switch switches the filter connected to the power amplifier (2) from among the plurality of transmission filters (3) including the first transmission filter (31).
  • the attenuation pole on the low frequency side in the pass band of the first transmission filter (31) can be changed, and the high frequency module (1) can be miniaturized. Can be planned.
  • the communication device (9) includes a high frequency module (1) according to any one of the first to ninth aspects and a signal processing circuit (92).
  • the signal processing circuit (92) processes the signal transmitted to the high frequency module (1).
  • the attenuation pole on the low frequency side in the pass band of the first transmission filter (31) can be changed, and the high frequency module The miniaturization of (1) can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

The present invention is capable of changing an attenuation pole on the low-frequency side of a pass band of a transmission filter and downsizes a high-frequency module. A high-frequency module (1) is provided with a first transmission filter (31) and a first switch. The first switch switches to select the filter connected to an antenna terminal (71) from among a plurality of filters including the first transmission filter (31). The first transmission filter (31) has a ladder-type resonance circuit, a first circuit and a second circuit. The ladder-type resonance circuit includes a series arm resonator and a first parallel arm resonator. The first circuit is connected between a path in a transmission path (T1) between the ladder-type resonance circuit and an input terminal (72), and ground. The second circuit is connected to the first parallel arm resonator and to ground and connected in series to the first parallel arm resonator. A third switch (87) of the second circuit is integral with the first switch.

Description

高周波モジュール及び通信装置High frequency module and communication equipment
 本発明は、一般に高周波モジュール及び通信装置に関し、より詳細には、ラダー型共振回路を含む送信フィルタを備える高周波モジュール、及び、高周波モジュールを備える通信装置に関する。 The present invention generally relates to a high frequency module and a communication device, and more particularly to a high frequency module including a transmission filter including a ladder type resonant circuit and a communication device including a high frequency module.
 特許文献1には、複数のデュプレクサとアンテナとの間にスイッチが設けられており、複数のデュプレクサを同時に用いてキャリアアグリゲーションを行うフロントエンド回路が記載されている。 Patent Document 1 describes a front-end circuit in which a switch is provided between a plurality of duplexers and an antenna, and carrier aggregation is performed by using the plurality of duplexers at the same time.
国際公開第2019/176538号International Publication No. 2019/176538
 しかしながら、特許文献1に記載された従来の高周波モジュールでは、送信フィルタの通過帯域に含まれる特定の周波数帯に近接して他の周波数帯が存在する場合、特定の周波数帯の通信に対応することができないという問題があった。 However, the conventional high-frequency module described in Patent Document 1 supports communication in a specific frequency band when another frequency band exists in the vicinity of the specific frequency band included in the pass band of the transmission filter. There was a problem that it could not be done.
 本発明は上記の点に鑑みてなされた発明であり、本発明の目的は、送信フィルタの通過帯域における低周波数側の減衰極を変化させることができ、かつ、高周波モジュールの小型化を図ることができる高周波モジュール及び通信装置を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to be able to change the attenuation pole on the low frequency side in the pass band of the transmission filter and to reduce the size of the high frequency module. The purpose is to provide a high frequency module and a communication device capable of the above.
 本発明の一態様に係る高周波モジュールは、アンテナ端子と、入力端子と、第1送信フィルタと、第1スイッチとを備える。前記第1送信フィルタは、前記アンテナ端子と前記入力端子とを結ぶ送信経路上に設けられている。前記第1スイッチは、前記第1送信フィルタを含む複数のフィルタの中から前記アンテナ端子に接続されるフィルタを切り替える。前記第1送信フィルタは、ラダー型共振回路と、第1回路と、第2回路とを有する。前記ラダー型共振回路は、前記送信経路上に設けられている直列腕共振子、及び、前記送信経路とグランドとの間に設けられている第1並列腕共振子を含む。前記第1回路は、前記送信経路における前記ラダー型共振回路と前記入力端子との間の経路とグランドとの間に接続されている。前記第2回路は、前記第1並列腕共振子とグランドとに接続されており、前記第1並列腕共振子と直列に接続されている。前記第1回路は、第2並列腕共振子と、第2スイッチとを含む。前記第2スイッチは、前記第2並列腕共振子と前記経路とを導通させる第1状態と、前記第2並列腕共振子と前記経路とを導通させない第2状態と、を切り替える。前記第2回路は、キャパシタと、第3スイッチとを含む。前記第3スイッチは、前記キャパシタと前記第1並列腕共振子とを導通させる第1状態と、前記第1並列腕共振子とグランドとを導通させる第2状態と、を切り替える。前記第3スイッチは、前記第1スイッチと一体である。 The high frequency module according to one aspect of the present invention includes an antenna terminal, an input terminal, a first transmission filter, and a first switch. The first transmission filter is provided on a transmission path connecting the antenna terminal and the input terminal. The first switch switches a filter connected to the antenna terminal from a plurality of filters including the first transmission filter. The first transmission filter includes a ladder type resonance circuit, a first circuit, and a second circuit. The ladder type resonator circuit includes a series arm resonator provided on the transmission path and a first parallel arm resonator provided between the transmission path and the ground. The first circuit is connected between the path between the ladder type resonant circuit and the input terminal in the transmission path and the ground. The second circuit is connected to the first parallel arm resonator and the ground, and is connected in series with the first parallel arm resonator. The first circuit includes a second parallel arm resonator and a second switch. The second switch switches between a first state in which the second parallel arm resonator and the path are conducted, and a second state in which the second parallel arm resonator and the path are not conducted. The second circuit includes a capacitor and a third switch. The third switch switches between a first state of conducting the capacitor and the first parallel arm resonator and a second state of conducting the first parallel arm resonator and the ground. The third switch is integrated with the first switch.
 本発明の一態様に係る高周波モジュールは、アンテナ端子と、入力端子と、パワーアンプと、第1送信フィルタと、第1スイッチとを備える。前記第1送信フィルタは、前記アンテナ端子と前記入力端子とを結ぶ送信経路上に設けられている。前記第1スイッチは、前記パワーアンプに接続されるフィルタを、前記第1送信フィルタを含む複数の第2フィルタの中から切り替える。前記第1送信フィルタは、ラダー型共振回路と、第1回路と、第2回路とを有する。前記ラダー型共振回路は、前記送信経路上に設けられている直列腕共振子、及び、前記送信経路とグランドとの間に設けられている第1並列腕共振子を含む。前記第1回路は、前記送信経路における前記ラダー型共振回路と前記入力端子との間の経路とグランドとの間に接続されている。前記第2回路は、前記第1並列腕共振子とグランドとに接続されており、前記第1並列腕共振子と直列に接続されている。前記第1回路は、第2並列腕共振子と、第2スイッチとを含む。前記第2スイッチは、前記第2並列腕共振子と前記経路とを導通させる第1状態と、前記第2並列腕共振子と前記経路とを導通させない第2状態と、を切り替える。前記第2回路は、キャパシタと、第3スイッチとを含む。前記第3スイッチは、前記キャパシタと前記第1並列腕共振子とを導通させる第1状態と、前記第1並列腕共振子とグランドとを導通させる第2状態と、を切り替える。前記第2スイッチは、前記第1スイッチと一体である。 The high frequency module according to one aspect of the present invention includes an antenna terminal, an input terminal, a power amplifier, a first transmission filter, and a first switch. The first transmission filter is provided on a transmission path connecting the antenna terminal and the input terminal. The first switch switches the filter connected to the power amplifier from among a plurality of second filters including the first transmission filter. The first transmission filter includes a ladder type resonance circuit, a first circuit, and a second circuit. The ladder type resonator circuit includes a series arm resonator provided on the transmission path and a first parallel arm resonator provided between the transmission path and the ground. The first circuit is connected between the path between the ladder type resonant circuit and the input terminal in the transmission path and the ground. The second circuit is connected to the first parallel arm resonator and the ground, and is connected in series with the first parallel arm resonator. The first circuit includes a second parallel arm resonator and a second switch. The second switch switches between a first state in which the second parallel arm resonator and the path are conducted, and a second state in which the second parallel arm resonator and the path are not conducted. The second circuit includes a capacitor and a third switch. The third switch switches between a first state of conducting the capacitor and the first parallel arm resonator and a second state of conducting the first parallel arm resonator and the ground. The second switch is integrated with the first switch.
 本発明の一態様に係る高周波モジュールは、アンテナ端子と、入力端子と、第1送信フィルタとを備える。前記第1送信フィルタは、前記アンテナ端子と前記入力端子とを結ぶ送信経路上に設けられており、Band28を含む通過帯域を有する。前記第1送信フィルタは、ラダー型共振回路と、第1スイッチとを有する。前記ラダー型共振回路は、前記送信経路上に設けられている直列腕共振子、及び、前記送信経路とグランドとの間に設けられている第1並列腕共振子を含む。前記第1スイッチは、前記第1送信フィルタにおけるBand28の減衰帯域を切り替えるためのスイッチである。前記第1スイッチは、前記第1送信フィルタを含む複数のフィルタの中から前記アンテナ端子に接続されるフィルタを切り替える第2スイッチ、又は、前記第1送信フィルタを含む複数の送信フィルタの中から前記パワーアンプに接続されるフィルタを切り替える第3スイッチと一体である。 The high frequency module according to one aspect of the present invention includes an antenna terminal, an input terminal, and a first transmission filter. The first transmission filter is provided on a transmission path connecting the antenna terminal and the input terminal, and has a pass band including Band 28. The first transmission filter has a ladder type resonant circuit and a first switch. The ladder type resonator circuit includes a series arm resonator provided on the transmission path and a first parallel arm resonator provided between the transmission path and the ground. The first switch is a switch for switching the attenuation band of Band 28 in the first transmission filter. The first switch is a second switch that switches a filter connected to the antenna terminal from a plurality of filters including the first transmission filter, or a plurality of transmission filters including the first transmission filter. It is integrated with a third switch that switches the filter connected to the power amplifier.
 本発明の一態様に係る通信装置は、前記高周波モジュールと、信号処理回路とを備える。前記信号処理回路は、前記高周波モジュールへ送信される信号を処理する。 The communication device according to one aspect of the present invention includes the high frequency module and a signal processing circuit. The signal processing circuit processes a signal transmitted to the high frequency module.
 本発明の上記態様に係る高周波モジュール及び通信装置によれば、送信フィルタの通過帯域における低周波数側の減衰極を変化させることができ、かつ、高周波モジュールの小型化を図ることができる。 According to the high frequency module and the communication device according to the above aspect of the present invention, the attenuation pole on the low frequency side in the pass band of the transmission filter can be changed, and the high frequency module can be miniaturized.
図1は、実施形態に係る高周波モジュールの回路図である。FIG. 1 is a circuit diagram of a high frequency module according to an embodiment. 図2は、同上の高周波モジュールの要部の回路図である。FIG. 2 is a circuit diagram of a main part of the same high frequency module. 図3は、同上の高周波モジュールが適用される複数の周波数帯の関係を示す概略図である。FIG. 3 is a schematic view showing the relationship between a plurality of frequency bands to which the same high frequency module is applied.
 以下、実施形態に係る高周波モジュールについて、図面を参照して説明する。下記の実施形態等において参照する各図において、図中の各構成要素の大きさや厚さそれぞれの比は、必ずしも実際の寸法比を反映しているとは限らない。 Hereinafter, the high frequency module according to the embodiment will be described with reference to the drawings. In each of the figures referred to in the following embodiments and the like, the ratio of the size and the thickness of each component in the figure does not necessarily reflect the actual dimensional ratio.
 (実施形態)
 (1)高周波モジュール
 実施形態に係る高周波モジュール1の構成について、図面を参照して説明する。
(Embodiment)
(1) High Frequency Module The configuration of the high frequency module 1 according to the embodiment will be described with reference to the drawings.
 実施形態に係る高周波モジュール1は、図1に示すように、パワーアンプ2と、複数(図示例では3つ)の送信フィルタ3と、複数(図示例では2つ)の受信フィルタ4と、複数(図示例では2つ)のローノイズアンプ5とを備える。また、高周波モジュール1は、複数(図示例では3つ)のスイッチ61,62,63と、複数(図示例では5つ)の外部接続端子7とを備える。 As shown in FIG. 1, the high-frequency module 1 according to the embodiment includes a power amplifier 2, a plurality of transmission filters 3 (three in the illustrated example), and a plurality of reception filters 4 (two in the illustrated example). It is provided with (two in the illustrated example) low noise amplifier 5. Further, the high frequency module 1 includes a plurality of switches 61, 62, 63 (three in the illustrated example) and a plurality of (five in the illustrated example) external connection terminals 7.
 高周波モジュール1は、図1に示すように、例えば、通信装置9に用いられる。通信装置9は、例えばスマートフォンのような携帯電話である。なお、通信装置9は、携帯電話であることに限定されず、例えば、スマートウォッチのようなウェアラブル端末等であってもよい。高周波モジュール1は、例えば、4G(第4世代移動通信)規格、5G(第5世代移動通信)規格等に対応可能なモジュールである。4G規格は、例えば、3GPP LTE規格(LTE:Long Term Evolution)である。5G規格は、例えば、5G NR(New Radio)である。高周波モジュール1は、複数の周波数帯域の信号を同時に送受信するキャリアアグリゲーション及びデュアルコネクティビティに対応可能なモジュールである。 As shown in FIG. 1, the high frequency module 1 is used in, for example, a communication device 9. The communication device 9 is a mobile phone such as a smartphone. The communication device 9 is not limited to a mobile phone, and may be, for example, a wearable terminal such as a smart watch. The high frequency module 1 is a module capable of supporting, for example, a 4G (4th generation mobile communication) standard, a 5G (5th generation mobile communication) standard, and the like. The 4G standard is, for example, a 3GPP LTE standard (LTE: Long Term Evolution). The 5G standard is, for example, 5G NR (New Radio). The high frequency module 1 is a module capable of supporting carrier aggregation and dual connectivity in which signals in a plurality of frequency bands are simultaneously transmitted and received.
 高周波モジュール1は、複数の通信バンドの通信を行う。より詳細には、高周波モジュール1は、複数の通信バンドの各々の送信信号を送信し、かつ、複数の通信バンドの各々の受信信号を受信する。具体的には、高周波モジュール1は、第1通信バンドの通信と第2通信バンドの通信と第3通信バンドの通信とを行う。より詳細には、高周波モジュール1は、第1通信バンドの送信信号を送信し、かつ、第1通信バンドの受信信号を受信する。また、高周波モジュール1は、第2通信バンドの送信信号を送信し、かつ、第2通信バンドの受信信号を受信する。さらに、高周波モジュール1は、第3通信バンドの送信信号を送信し、かつ、第3通信バンドの受信信号を受信する。 The high frequency module 1 communicates in a plurality of communication bands. More specifically, the high frequency module 1 transmits each transmission signal of the plurality of communication bands and receives each reception signal of the plurality of communication bands. Specifically, the high frequency module 1 performs communication in the first communication band, communication in the second communication band, and communication in the third communication band. More specifically, the high frequency module 1 transmits the transmission signal of the first communication band and receives the reception signal of the first communication band. Further, the high frequency module 1 transmits a transmission signal of the second communication band and receives a reception signal of the second communication band. Further, the high frequency module 1 transmits a transmission signal of the third communication band and receives a reception signal of the third communication band.
 高周波モジュール1は、複数の通信バンドの送信信号の送信のために複数(図示例では3つ)の送信経路T1を有する。複数の送信経路T1は、第1送信経路T11と、第2送信経路T12と、第3送信経路T13とを含む。第1通信バンドの第1送信信号は第1送信経路T11を通り、第2通信バンドの第2送信信号は第2送信経路T12を通り、第3通信バンドの第3送信信号は第3送信経路T13を通る。 The high frequency module 1 has a plurality of (three in the illustrated example) transmission paths T1 for transmitting transmission signals of a plurality of communication bands. The plurality of transmission paths T1 include a first transmission path T11, a second transmission path T12, and a third transmission path T13. The first transmission signal of the first communication band passes through the first transmission path T11, the second transmission signal of the second communication band passes through the second transmission path T12, and the third transmission signal of the third communication band passes through the third transmission path. Pass through T13.
 高周波モジュール1は、複数の通信バンドの受信信号の受信のために複数(図示例では3つ)の受信経路R1を有する。複数の受信経路R1は、第1受信経路R11と、第2受信経路R12と、第3受信経路R13とを含む。第1通信バンドの第1受信信号は第1受信経路R11を通り、第2通信バンドの第2受信信号は第2受信経路R12を通り、第3通信バンドの第3受信信号は第3受信経路R13を通る。 The high frequency module 1 has a plurality of (three in the illustrated example) reception paths R1 for receiving reception signals of a plurality of communication bands. The plurality of reception paths R1 include a first reception path R11, a second reception path R12, and a third reception path R13. The first reception signal of the first communication band passes through the first reception path R11, the second reception signal of the second communication band passes through the second reception path R12, and the third reception signal of the third communication band passes through the third reception path. Pass through R13.
 各通信バンドの送信信号及び受信信号は、例えば、FDD(Frequency Division Duplex)の信号である。FDDは、無線通信における送信と受信とに異なる周波数帯域を割り当てて、送信及び受信を行う無線通信技術である。なお、送信信号及び受信信号は、FDDの信号に限定されず、TDD(Time Division Duplex)の信号であってもよい。TDDは、無線通信における送信と受信とに同一の周波数帯域を割り当てて、送信と受信とを時間ごとに切り替えて行う無線通信技術である。 The transmission signal and reception signal of each communication band are, for example, FDD (Frequency Division Duplex) signals. FDD is a wireless communication technology that allocates different frequency bands to transmission and reception in wireless communication to perform transmission and reception. The transmission signal and the reception signal are not limited to the FDD signal, and may be a TDD (Time Division Duplex) signal. TDD is a wireless communication technology in which the same frequency band is assigned to transmission and reception in wireless communication, and transmission and reception are switched every hour.
 (2)高周波モジュールの各構成要素
 以下、実施形態に係る高周波モジュール1の各構成要素について、図面を参照して説明する。ここでは、送信信号及び受信信号がFDDの信号である場合について説明する。
(2) Each Component of the High Frequency Module Hereinafter, each component of the high frequency module 1 according to the embodiment will be described with reference to the drawings. Here, a case where the transmission signal and the reception signal are FDD signals will be described.
 (2.1)パワーアンプ
 図1に示すパワーアンプ2は、送信信号の振幅を増幅する増幅器である。パワーアンプ2は、後述のアンテナ端子71と後述の入力端子72とを結ぶ送信経路T1のうち入力端子72と各送信フィルタ3との間に設けられている。つまり、パワーアンプ2は、第1送信経路T11、第2送信経路T12及び第3送信経路T13に設けられている。パワーアンプ2は、入力端子72を介して外部回路(例えば信号処理回路92)に接続されている。また、パワーアンプ2は、スイッチ61に接続されている。
(2.1) Power Amplifier The power amplifier 2 shown in FIG. 1 is an amplifier that amplifies the amplitude of a transmission signal. The power amplifier 2 is provided between the input terminal 72 and each transmission filter 3 in the transmission path T1 connecting the antenna terminal 71 described later and the input terminal 72 described later. That is, the power amplifier 2 is provided in the first transmission path T11, the second transmission path T12, and the third transmission path T13. The power amplifier 2 is connected to an external circuit (for example, a signal processing circuit 92) via an input terminal 72. Further, the power amplifier 2 is connected to the switch 61.
 (2.2)ローノイズアンプ
 図1に示す複数のローノイズアンプ5の各々は、受信信号の振幅を低雑音で増幅させる増幅器である。各ローノイズアンプ5は、アンテナ端子71と後述の出力端子73とを結ぶ受信経路R1のうち各受信フィルタ4と出力端子73との間に設けられている。各ローノイズアンプ5は、出力端子73を介して外部回路(例えば信号処理回路92)に接続される。
(2.2) Low Noise Amplifier Each of the plurality of low noise amplifiers 5 shown in FIG. 1 is an amplifier that amplifies the amplitude of the received signal with low noise. Each low noise amplifier 5 is provided between each reception filter 4 and the output terminal 73 in the reception path R1 connecting the antenna terminal 71 and the output terminal 73 described later. Each low noise amplifier 5 is connected to an external circuit (for example, a signal processing circuit 92) via an output terminal 73.
 複数のローノイズアンプ5は、第1ローノイズアンプ51と、第2ローノイズアンプ52とを含む。第1ローノイズアンプ51は第1受信経路R11及び第2受信経路R12に設けられており、第2ローノイズアンプ52は第3受信経路R13に設けられている。 The plurality of low noise amplifiers 5 include a first low noise amplifier 51 and a second low noise amplifier 52. The first low noise amplifier 51 is provided in the first reception path R11 and the second reception path R12, and the second low noise amplifier 52 is provided in the third reception path R13.
 (2.3)送信フィルタ
 図1に示す複数の送信フィルタ3の各々は、送信信号を通過させる通信バンドの送信フィルタである。各送信フィルタ3は、送信経路T1のうちパワーアンプ2とアンテナ端子71との間に設けられている。より詳細には、各送信フィルタ3は、送信経路T1のうちスイッチ61とスイッチ62との間に設けられている。各送信フィルタ3は、パワーアンプ2で増幅された高周波信号のうち、上記通信バンドの送信帯域の送信信号を通過させる。
(2.3) Transmission filter Each of the plurality of transmission filters 3 shown in FIG. 1 is a transmission filter of a communication band through which a transmission signal is passed. Each transmission filter 3 is provided between the power amplifier 2 and the antenna terminal 71 in the transmission path T1. More specifically, each transmission filter 3 is provided between the switch 61 and the switch 62 in the transmission path T1. Each transmission filter 3 passes the transmission signal of the transmission band of the communication band among the high frequency signals amplified by the power amplifier 2.
 複数の送信フィルタ3は、第1送信フィルタ31と、第2送信フィルタ32と、第3送信フィルタ33とを含む。第1送信フィルタ31、第2送信フィルタ32及び第3送信フィルタ33は、送信経路T1上に設けられている。より詳細には、第1送信フィルタ31は第1送信経路T11に設けられており、第2送信フィルタ32は第2送信経路T12に設けられており、第3送信フィルタ33は第3送信経路T13に設けられている。送信経路T1は、後述のアンテナ端子71と後述の入力端子72とを結ぶ送信経路である。 The plurality of transmission filters 3 include a first transmission filter 31, a second transmission filter 32, and a third transmission filter 33. The first transmission filter 31, the second transmission filter 32, and the third transmission filter 33 are provided on the transmission path T1. More specifically, the first transmission filter 31 is provided in the first transmission path T11, the second transmission filter 32 is provided in the second transmission path T12, and the third transmission filter 33 is provided in the third transmission path T13. It is provided in. The transmission path T1 is a transmission path connecting the antenna terminal 71 described later and the input terminal 72 described later.
 (2.4)受信フィルタ
 図1に示す複数の受信フィルタ4の各々は、受信信号を通過させる通信バンドの受信フィルタである。各受信フィルタ4は、アンテナ端子71と出力端子73とを結ぶ受信経路R1のうちアンテナ端子71と各ローノイズアンプ5との間に設けられている。より詳細には、各受信フィルタ4は、受信経路R1のうちスイッチ62とスイッチ63との間に設けられている。各受信フィルタ4は、受信経路R1によって、ローノイズアンプ5と接続されている。各受信フィルタ4は、アンテナ端子71から入力された高周波信号のうち、上記通信バンドの受信帯域の受信信号を通過させる。
(2.4) Reception filter Each of the plurality of reception filters 4 shown in FIG. 1 is a reception filter of a communication band through which a reception signal is passed. Each reception filter 4 is provided between the antenna terminal 71 and each low noise amplifier 5 in the reception path R1 connecting the antenna terminal 71 and the output terminal 73. More specifically, each reception filter 4 is provided between the switch 62 and the switch 63 in the reception path R1. Each reception filter 4 is connected to the low noise amplifier 5 by the reception path R1. Each reception filter 4 passes the reception signal in the reception band of the communication band among the high frequency signals input from the antenna terminal 71.
 複数の受信フィルタ4は、受信フィルタ41と、受信フィルタ42とを含む。受信フィルタ41は第1受信経路R11及び第2受信経路R12に設けられており、受信フィルタ42は第3受信経路R13に設けられている。 The plurality of reception filters 4 include a reception filter 41 and a reception filter 42. The reception filter 41 is provided on the first reception path R11 and the second reception path R12, and the reception filter 42 is provided on the third reception path R13.
 (2.5)スイッチ
 スイッチ61は、図1に示すように、パワーアンプ2に接続させる送信経路T1を切り替えるスイッチである。言い換えると、スイッチ61は、第1送信フィルタ31を含む複数の送信フィルタ3の中からパワーアンプ2に接続されるフィルタを切り替える。スイッチ61は、共通端子611と、3つの選択端子612~614とを有する。共通端子611は、パワーアンプ2に接続されている。選択端子612は、第1送信フィルタ31に接続されている。選択端子613は、第2送信フィルタ32に接続されている。選択端子614は、第3送信フィルタ33に接続されている。
(2.5) Switch As shown in FIG. 1, the switch switch 61 is a switch for switching the transmission path T1 connected to the power amplifier 2. In other words, the switch 61 switches the filter connected to the power amplifier 2 from among the plurality of transmission filters 3 including the first transmission filter 31. The switch 61 has a common terminal 611 and three selection terminals 612 to 614. The common terminal 611 is connected to the power amplifier 2. The selection terminal 612 is connected to the first transmission filter 31. The selection terminal 613 is connected to the second transmission filter 32. The selection terminal 614 is connected to the third transmission filter 33.
 スイッチ61は、共通端子611に3つの選択端子612~614を同時に接続可能なスイッチである。スイッチ61は、一対多の接続が可能なダイレクトマッピングスイッチである。スイッチ61は、例えば、スイッチIC(Integrated Circuit)である。スイッチ61は、例えば、後述の信号処理回路92によって制御される。スイッチ61は、信号処理回路92のRF信号処理回路93からの制御信号に従って、共通端子611と3つの選択端子612~614との接続状態を切り替える。 The switch 61 is a switch capable of simultaneously connecting three selection terminals 612 to 614 to the common terminal 611. The switch 61 is a direct mapping switch capable of one-to-many connection. The switch 61 is, for example, a switch IC (Integrated Circuit). The switch 61 is controlled by, for example, a signal processing circuit 92 described later. The switch 61 switches the connection state between the common terminal 611 and the three selection terminals 612 to 614 according to the control signal from the RF signal processing circuit 93 of the signal processing circuit 92.
 スイッチ62は、図1に示すように、後述のアンテナ91に接続させる経路(送信経路T1、受信経路R1)を切り替えるスイッチである。言い換えると、スイッチ62は、第1送信フィルタ31を含む複数のフィルタ(送信フィルタ3及び受信フィルタ4)の中からアンテナ端子71に接続されるフィルタを切り替えるスイッチである。スイッチ62は、共通端子621と、2つの選択端子622,623とを有する。共通端子621は、後述のアンテナ端子71に接続されている。選択端子622は、トリプレクサP1に接続されている。選択端子623は、デュプレクサP2に接続されている。トリプレクサP1は、第1送信フィルタ31と、第2送信フィルタ32と、受信フィルタ41とを含む。デュプレクサP2は、第3送信フィルタ33と、受信フィルタ42とを含む。 As shown in FIG. 1, the switch 62 is a switch for switching the path (transmission path T1, reception path R1) to be connected to the antenna 91 described later. In other words, the switch 62 is a switch that switches the filter connected to the antenna terminal 71 from among a plurality of filters (transmission filter 3 and reception filter 4) including the first transmission filter 31. The switch 62 has a common terminal 621 and two selection terminals 622,623. The common terminal 621 is connected to the antenna terminal 71 described later. The selection terminal 622 is connected to the triplexer P1. The selection terminal 623 is connected to the duplexer P2. The triplexer P1 includes a first transmission filter 31, a second transmission filter 32, and a reception filter 41. The duplexer P2 includes a third transmit filter 33 and a receive filter 42.
 スイッチ62は、共通端子621に2つの選択端子622,623を同時に接続可能なスイッチである。スイッチ62は、一対多の接続が可能なダイレクトマッピングスイッチである。スイッチ62は、例えば、スイッチICである。スイッチ62は、例えば、後述の信号処理回路92によって制御される。スイッチ62は、信号処理回路92のRF信号処理回路93からの制御信号に従って、共通端子621と2つの選択端子622,623との接続状態を切り替える。 The switch 62 is a switch capable of simultaneously connecting two selection terminals 622 and 623 to the common terminal 621. The switch 62 is a direct mapping switch capable of one-to-many connection. The switch 62 is, for example, a switch IC. The switch 62 is controlled by, for example, a signal processing circuit 92 described later. The switch 62 switches the connection state between the common terminal 621 and the two selection terminals 622 and 623 according to the control signal from the RF signal processing circuit 93 of the signal processing circuit 92.
 スイッチ63は、図1に示すように、ローノイズアンプ5に接続させる受信経路R1を切り替えるスイッチである。スイッチ63は、2つの第1端子631,632と、2つの第2端子633,634とを有する。第1端子631は、受信フィルタ41に接続されている。第1端子632は、受信フィルタ42に接続されている。第2端子633は、第1ローノイズアンプ51に接続されている。第2端子634は、第2ローノイズアンプ52に接続されている。 As shown in FIG. 1, the switch 63 is a switch for switching the reception path R1 connected to the low noise amplifier 5. The switch 63 has two first terminals 631,632 and two second terminals 633,634. The first terminal 631 is connected to the reception filter 41. The first terminal 632 is connected to the reception filter 42. The second terminal 633 is connected to the first low noise amplifier 51. The second terminal 634 is connected to the second low noise amplifier 52.
 スイッチ63は、第1端子631に第2端子633を接続可能なスイッチである。また、スイッチ63は、第1端子632に第2端子634を接続可能なスイッチである。スイッチ63は、例えば、スイッチICである。スイッチ63は、例えば、後述の信号処理回路92によって制御される。スイッチ63は、信号処理回路92のRF信号処理回路93からの制御信号に従って、第1端子631と第2端子633との接続状態及び第1端子632と第2端子634との接続状態を切り替える。 The switch 63 is a switch capable of connecting the second terminal 633 to the first terminal 631. Further, the switch 63 is a switch capable of connecting the second terminal 634 to the first terminal 632. The switch 63 is, for example, a switch IC. The switch 63 is controlled by, for example, a signal processing circuit 92 described later. The switch 63 switches the connection state between the first terminal 631 and the second terminal 633 and the connection state between the first terminal 632 and the second terminal 634 according to the control signal from the RF signal processing circuit 93 of the signal processing circuit 92.
 (2.6)外部接続端子
 複数の外部接続端子7は、図1に示すように、アンテナ端子71と、入力端子72と、複数(図示例では3つ)の出力端子73とを含む。アンテナ端子71は、後述のアンテナ91が接続される端子である。入力端子72及び複数の出力端子73は、後述の信号処理回路92に接続される。入力端子72は、外部回路からの高周波信号(送信信号)が高周波モジュール1に入力される端子である。複数の出力端子73の各々は、ローノイズアンプ5からの高周波信号(受信信号)が外部回路へ出力される端子である。複数の出力端子73は、第1出力端子731と、第2出力端子732と、第3出力端子733とを含む。
(2.6) External Connection Terminals As shown in FIG. 1, the plurality of external connection terminals 7 include an antenna terminal 71, an input terminal 72, and a plurality of (three in the illustrated example) output terminals 73. The antenna terminal 71 is a terminal to which the antenna 91 described later is connected. The input terminal 72 and the plurality of output terminals 73 are connected to a signal processing circuit 92 described later. The input terminal 72 is a terminal at which a high frequency signal (transmission signal) from an external circuit is input to the high frequency module 1. Each of the plurality of output terminals 73 is a terminal on which a high frequency signal (received signal) from the low noise amplifier 5 is output to an external circuit. The plurality of output terminals 73 include a first output terminal 731, a second output terminal 732, and a third output terminal 733.
 (3)第1送信フィルタの詳細
 次に、第1送信フィルタ31の詳細について、図面を参照して説明する。
(3) Details of First Transmission Filter Next, details of the first transmission filter 31 will be described with reference to the drawings.
 第1送信フィルタ31は、図2に示すように、ラダー型共振回路81と、インダクタL1,L2と、第1減衰回路82(第1回路)と、第2減衰回路83(第2回路)とを備える。第1送信フィルタ31の第1端はスイッチ61(図1参照)に接続されており、第1送信フィルタ31の第2端は、スイッチ62(図1参照)に接続されている。第1送信フィルタ31の第1端は、高周波信号(送信信号)が入力される入力端であり、第1送信フィルタ31の第2端は、高周波信号(送信信号)が出力される出力端である。 As shown in FIG. 2, the first transmission filter 31 includes a ladder type resonant circuit 81, inductors L1 and L2, a first attenuation circuit 82 (first circuit), and a second attenuation circuit 83 (second circuit). To be equipped. The first end of the first transmission filter 31 is connected to the switch 61 (see FIG. 1), and the second end of the first transmission filter 31 is connected to the switch 62 (see FIG. 1). The first end of the first transmission filter 31 is an input end to which a high frequency signal (transmission signal) is input, and the second end of the first transmission filter 31 is an output end to which a high frequency signal (transmission signal) is output. is there.
 ラダー型共振回路81は、複数(図示例では5つ)の直列腕共振子SR1~SR5と、複数(図示例では4つ)の並列腕共振子PR1~PR4と、並列腕キャパシタC1とを含む。2つの並列腕共振子PR2,PR3は、並列接続されている。並列腕キャパシタC1のキャパシタンスは固定である。 The ladder type resonance circuit 81 includes a plurality of series arm resonators SR1 to SR5 (five in the illustrated example), a plurality of parallel arm resonators PR1 to PR4 (four in the illustrated example), and a parallel arm capacitor C1. .. The two parallel arm resonators PR2 and PR3 are connected in parallel. The capacitance of the parallel arm capacitor C1 is fixed.
 複数の直列腕共振子SR1~SR5は、送信経路T1上に設けられている。より詳細には、複数の直列腕共振子SR1~SR5は、第1送信経路T11上に設けられている。複数の直列腕共振子SR1,SR2,SR3,SR4,SR5は、パワーアンプ2側からアンテナ端子71に向かって、この順に直列接続されている。 A plurality of series arm resonators SR1 to SR5 are provided on the transmission path T1. More specifically, the plurality of series arm resonators SR1 to SR5 are provided on the first transmission path T11. The plurality of series arm resonators SR1, SR2, SR3, SR4, SR5 are connected in series in this order from the power amplifier 2 side toward the antenna terminal 71.
 複数の並列腕共振子PR1~PR4及び並列腕キャパシタC1の各々は、送信経路T1上の第1ノードN1とグランドとの間に設けられている。より詳細には、複数の並列腕共振子PR1~PR4及び並列腕キャパシタC1の各々は、第1送信経路T11上の第1ノードN1とグランドとの間に設けられている。並列腕共振子PR1の第1端は、直列腕共振子SR1と直列腕共振子SR2との接続ラインに接続されており、並列腕共振子PR1の第2端は、グランドに接続されている。並列腕キャパシタC1の第1端は、直列腕共振子SR2と直列腕共振子SR3との接続ラインに接続されており、並列腕キャパシタC1の第2端は、グランドに接続されている。並列腕共振子PR2,PR3の並列回路の第1端は、直列腕共振子SR3と直列腕共振子SR4との接続ラインに接続されており、上記並列回路の第2端は、グランドに接続されている。並列腕共振子PR4の第1端は、直列腕共振子SR4と直列腕共振子SR5との接続ラインに接続されており、並列腕共振子PR4の第2端は、第2減衰回路83に接続されている。並列腕共振子PR4は、複数の並列腕共振子PR1~PR4の中でアンテナ端子71(図1参照)に最も近い。 Each of the plurality of parallel arm resonators PR1 to PR4 and the parallel arm capacitor C1 is provided between the first node N1 on the transmission path T1 and the ground. More specifically, each of the plurality of parallel arm resonators PR1 to PR4 and the parallel arm capacitor C1 is provided between the first node N1 on the first transmission path T11 and the ground. The first end of the parallel arm resonator PR1 is connected to the connection line between the series arm resonator SR1 and the series arm resonator SR2, and the second end of the parallel arm resonator PR1 is connected to the ground. The first end of the parallel arm capacitor C1 is connected to the connection line between the series arm resonator SR2 and the series arm resonator SR3, and the second end of the parallel arm capacitor C1 is connected to the ground. The first end of the parallel circuit of the parallel arm resonators PR2 and PR3 is connected to the connection line between the series arm resonator SR3 and the series arm resonator SR4, and the second end of the parallel circuit is connected to the ground. ing. The first end of the parallel arm resonator PR4 is connected to the connection line between the series arm resonator SR4 and the series arm resonator SR5, and the second end of the parallel arm resonator PR4 is connected to the second attenuation circuit 83. Has been done. The parallel arm resonator PR4 is the closest to the antenna terminal 71 (see FIG. 1) among the plurality of parallel arm resonators PR1 to PR4.
 インダクタL1の第1端は、直列腕共振子SR5におけるアンテナ端子71(図1参照)側の端子に接続され、インダクタL1の第2端は、グランドに接続されている。インダクタL1は、第1送信フィルタ31の周波数特性の調整と整合回路との機能を有する。 The first end of the inductor L1 is connected to the terminal on the antenna terminal 71 (see FIG. 1) side of the series arm resonator SR5, and the second end of the inductor L1 is connected to the ground. The inductor L1 has a function of adjusting the frequency characteristics of the first transmission filter 31 and a matching circuit.
 インダクタL2は、第1減衰回路82とラダー型共振回路81との間に接続されている。インダクタL2は、ラダー型共振回路81と直列に接続されている。より詳細には、インダクタL2の第1端は、ラダー型共振回路81の直列腕共振子SR1に接続されており、インダクタL2の第2端は、パワーアンプ2(図1参照)に接続されている。インダクタL2が設けられていることにより、第1送信フィルタ31の共振周波数を伸長することができるので、第1送信フィルタ31の通過帯域を延ばすことができる。 The inductor L2 is connected between the first attenuation circuit 82 and the ladder type resonance circuit 81. The inductor L2 is connected in series with the ladder type resonant circuit 81. More specifically, the first end of the inductor L2 is connected to the series arm resonator SR1 of the ladder type resonance circuit 81, and the second end of the inductor L2 is connected to the power amplifier 2 (see FIG. 1). There is. By providing the inductor L2, the resonance frequency of the first transmission filter 31 can be extended, so that the pass band of the first transmission filter 31 can be extended.
 第1減衰回路82は、送信経路T1上におけるラダー型共振回路81と入力端子72(図1参照)との間の第2ノードN2とグランドとの間に接続されている。第1減衰回路82は、第2並列腕共振子84と、第2スイッチ85とを含む。 The first attenuation circuit 82 is connected between the second node N2 between the ladder type resonance circuit 81 and the input terminal 72 (see FIG. 1) on the transmission path T1 and the ground. The first attenuation circuit 82 includes a second parallel arm resonator 84 and a second switch 85.
 第2スイッチ85は、第2並列腕共振子84と第2ノードN2とを導通させる第1状態と、第2並列腕共振子84と第2ノードN2とを導通させない第2状態と、を切り替える。 The second switch 85 switches between a first state in which the second parallel arm resonator 84 and the second node N2 are conducted, and a second state in which the second parallel arm resonator 84 and the second node N2 are not conducted. ..
 第2スイッチ85は、第1端子851と、第2端子852とを有する。第1端子851は、インダクタL2の第2端(インダクタL2におけるラダー型共振回路81側と反対側)とスイッチ61(図1参照)とを接続するノードに接続されている。第2端子852は、第2並列腕共振子84の第1端に接続されている。第2端子852が第2並列腕共振子84の第1端に接続された場合に、第1減衰回路82はトラップ回路となる。第2並列腕共振子84の第2端はグランドに接続されている。 The second switch 85 has a first terminal 851 and a second terminal 852. The first terminal 851 is connected to a node that connects the second end of the inductor L2 (the side of the inductor L2 opposite to the ladder type resonant circuit 81 side) and the switch 61 (see FIG. 1). The second terminal 852 is connected to the first end of the second parallel arm resonator 84. When the second terminal 852 is connected to the first end of the second parallel arm resonator 84, the first attenuation circuit 82 becomes a trap circuit. The second end of the second parallel arm resonator 84 is connected to the ground.
 第2スイッチ85において第2端子852が第1端子851に接続されることによって、インダクタL2の第2端は、第2並列腕共振子84を介してグランドに接続される。 By connecting the second terminal 852 to the first terminal 851 in the second switch 85, the second end of the inductor L2 is connected to the ground via the second parallel arm resonator 84.
 第2減衰回路83は、並列腕共振子PR4とグランドとに接続されており、並列腕共振子PR4と直列に接続されている。言い換えれば、第2減衰回路83は、ラダー型共振回路81を構成する複数の並列腕共振子PR1~PR4のうち、インダクタL2に接続する側と反対側の端部に最も近い並列腕共振子PR4に接続されている。第2減衰回路83は、キャパシタ86と、第3スイッチ87とを備える。 The second attenuation circuit 83 is connected to the parallel arm resonator PR4 and the ground, and is connected in series with the parallel arm resonator PR4. In other words, the second attenuation circuit 83 is the parallel arm resonator PR4 closest to the end opposite to the side connected to the inductor L2 among the plurality of parallel arm resonators PR1 to PR4 constituting the ladder type resonance circuit 81. It is connected to the. The second attenuation circuit 83 includes a capacitor 86 and a third switch 87.
 第3スイッチ87は、キャパシタ86と並列腕共振子PR4とを導通させる第1状態と、並列腕共振子PR4とグランドとを導通させる第2状態と、を切り替える。 The third switch 87 switches between a first state in which the capacitor 86 and the parallel arm resonator PR4 are conducted, and a second state in which the parallel arm resonator PR4 and the ground are conducted.
 第3スイッチ87は、共通端子871、選択端子872,873を備える。共通端子871は、並列腕共振子PR4に接続されている。選択端子872は、キャパシタ86の第1端に接続されている。キャパシタ86の第2端はグランドに接続されている。選択端子873は、グランドに接続されている。キャパシタ86のキャパシタンスは固定である。第2減衰回路83は、並列腕共振子PR4の共振周波数を可変させる周波数可変回路である。 The third switch 87 includes a common terminal 871 and a selection terminal 872, 873. The common terminal 871 is connected to the parallel arm resonator PR4. The selection terminal 872 is connected to the first end of the capacitor 86. The second end of the capacitor 86 is connected to ground. The selection terminal 873 is connected to the ground. The capacitance of the capacitor 86 is fixed. The second attenuation circuit 83 is a frequency variable circuit that changes the resonance frequency of the parallel arm resonator PR4.
 第3スイッチ87において選択端子872が共通端子871に接続されることによって、並列腕共振子PR4は、キャパシタ86を介してグランドに接続されている。第3スイッチ87において選択端子873が共通端子871に接続されることによって、並列腕共振子PR4は、グランドに直接接続される。 By connecting the selection terminal 872 to the common terminal 871 in the third switch 87, the parallel arm resonator PR4 is connected to the ground via the capacitor 86. By connecting the selection terminal 873 to the common terminal 871 in the third switch 87, the parallel arm resonator PR4 is directly connected to the ground.
 この位置に第2減衰回路83が接続されることによって、他の並列腕共振子に第2減衰回路が接続される場合よりも、フィルタ特性をより向上することができる。実施形態の構成を用いることによって、通信バンドBand28の低周波数側の周波数帯域の減衰量を確保し、テレビジョン放送への影響をより確実に抑制することができる。 By connecting the second attenuation circuit 83 at this position, the filter characteristics can be further improved as compared with the case where the second attenuation circuit is connected to another parallel arm resonator. By using the configuration of the embodiment, it is possible to secure the attenuation of the frequency band on the low frequency side of the communication band Band 28 and suppress the influence on the television broadcasting more reliably.
 (4)第1送信フィルタの配置関係
 第1送信フィルタ31において、図1に示すように、第2減衰回路83の第3スイッチ87は、スイッチ62と一体である。つまり、第3スイッチ87とスイッチ62とが同一のチップD1内に実装されている。第3スイッチ87とスイッチ62とを含むチップD1は、基板と機能部とを備える1つのICチップである。基板は、互いに対向する第1面及び第2面を有する。基板は、例えば、シリコン基板である。機能部は、基板の第1面に形成されている。機能部は、第3スイッチ87の機能とスイッチ62の機能とを有する部分である。より詳細には、機能部は、キャパシタ86と並列腕共振子PR4(図2参照)とを導通させる第1状態と、並列腕共振子PR4とグランドとを導通させる第2状態と、を切り替える機能を有する。また、機能部は、複数のフィルタ(送信フィルタ3及び受信フィルタ4)の中からアンテナ端子71に接続されるフィルタを切り替える機能を有する。
(4) Arrangement Relationship of First Transmission Filter In the first transmission filter 31, as shown in FIG. 1, the third switch 87 of the second attenuation circuit 83 is integrated with the switch 62. That is, the third switch 87 and the switch 62 are mounted in the same chip D1. The chip D1 including the third switch 87 and the switch 62 is one IC chip including a substrate and a functional unit. The substrate has a first surface and a second surface facing each other. The substrate is, for example, a silicon substrate. The functional part is formed on the first surface of the substrate. The functional unit is a portion having a function of the third switch 87 and a function of the switch 62. More specifically, the functional unit has a function of switching between a first state of conducting the capacitor 86 and the parallel arm resonator PR4 (see FIG. 2) and a second state of conducting the parallel arm resonator PR4 and the ground. Has. Further, the functional unit has a function of switching a filter connected to the antenna terminal 71 from among a plurality of filters (transmission filter 3 and reception filter 4).
 また、第2減衰回路83のキャパシタ86も、スイッチ62と一体である。つまり、キャパシタ86とスイッチ62とが同一のチップD1内に実装されている。図1の例では、キャパシタ86と第3スイッチ87とスイッチ62とでチップD1が構成されている。チップD1の機能部は、キャパシタ86の機能を更に有する。 The capacitor 86 of the second attenuation circuit 83 is also integrated with the switch 62. That is, the capacitor 86 and the switch 62 are mounted in the same chip D1. In the example of FIG. 1, the chip D1 is composed of the capacitor 86, the third switch 87, and the switch 62. The functional part of the chip D1 further has the function of the capacitor 86.
 ところで、第1送信フィルタ31において、図1に示すように、第1減衰回路82の第2スイッチ85は、スイッチ61と一体である。つまり、第2スイッチ85とスイッチ61とが同一のチップD2内に実装されている。第2スイッチ85とスイッチ61とを含むチップD2は、基板と機能部とを備える1つのICチップである。基板は、互いに対向する第1面及び第2面を有する。基板は、例えば、シリコン基板である。機能部は、基板の第1面に形成されている。機能部は、第2スイッチ85の機能とスイッチ61の機能とを有する部分である。より詳細には、機能部は、第2並列腕共振子84と第2ノードN2(図2参照)とを導通させる第1状態と、第2並列腕共振子84と第2ノードN2とを導通させない第2状態と、を切り替える機能を有する。また、機能部は、第1送信フィルタ31を含む複数の送信フィルタ3の中からパワーアンプ2に接続されるフィルタを切り替える機能を有する。 By the way, in the first transmission filter 31, as shown in FIG. 1, the second switch 85 of the first attenuation circuit 82 is integrated with the switch 61. That is, the second switch 85 and the switch 61 are mounted in the same chip D2. The chip D2 including the second switch 85 and the switch 61 is one IC chip including a substrate and a functional unit. The substrate has a first surface and a second surface facing each other. The substrate is, for example, a silicon substrate. The functional part is formed on the first surface of the substrate. The functional unit is a portion having a function of the second switch 85 and a function of the switch 61. More specifically, the functional unit conducts the first state in which the second parallel arm resonator 84 and the second node N2 (see FIG. 2) are conducted, and the second parallel arm resonator 84 and the second node N2. It has a function to switch between the second state and the second state. Further, the functional unit has a function of switching a filter connected to the power amplifier 2 from among a plurality of transmission filters 3 including the first transmission filter 31.
 (5)高周波モジュールの各構成要素の詳細構造
 (5.1)実装基板
 図1に示す高周波モジュール1の各部品が配置されている実装基板(図示せず)は、例えば、プリント配線板、LTCC(Low Temperature Co-fired Ceramics)基板等である。ここにおいて、実装基板は、例えば、複数の誘電体層(図示せず)及び複数の導体パターン部(図示せず)を含む多層基板である。複数の誘電体層及び複数の導体パターン部は、実装基板の厚さ方向において積層されている。複数の導体パターン部は、それぞれ所定パターンに形成されている。複数の導体パターン部の各々は、実装基板の厚さ方向に直交する一平面内において1つ又は複数の導体部を含む。各導体パターン部の材料は、例えば、銅である。
(5) Detailed structure of each component of the high-frequency module (5.1) Mounting board The mounting board (not shown) on which each component of the high-frequency module 1 shown in FIG. 1 is arranged is, for example, a printed wiring board or an LTCC. (Low Temperature Co-fired Ceramics) Substrates, etc. Here, the mounting substrate is, for example, a multilayer substrate including a plurality of dielectric layers (not shown) and a plurality of conductor pattern portions (not shown). The plurality of dielectric layers and the plurality of conductor pattern portions are laminated in the thickness direction of the mounting substrate. Each of the plurality of conductor pattern portions is formed in a predetermined pattern. Each of the plurality of conductor pattern portions includes one or a plurality of conductor portions in one plane orthogonal to the thickness direction of the mounting substrate. The material of each conductor pattern portion is, for example, copper.
 実装基板の第1主面及び第2主面(図示せず)は、実装基板の厚さ方向において離れており、実装基板の厚さ方向に交差する。実装基板における第1主面は、例えば、実装基板の厚さ方向に直交しているが、例えば、厚さ方向に直交しない面として導体部の側面等を含んでいてもよい。また、実装基板における第2主面は、例えば、実装基板の厚さ方向に直交しているが、例えば、厚さ方向に直交しない面として、導体部の側面等を含んでいてもよい。また、実装基板の第1主面及び第2主面は、微細な凹凸又は凹部又は凸部が形成されていてもよい。 The first main surface and the second main surface (not shown) of the mounting board are separated in the thickness direction of the mounting board and intersect in the thickness direction of the mounting board. The first main surface of the mounting board is, for example, orthogonal to the thickness direction of the mounting board, but may include, for example, the side surface of the conductor portion as a surface not orthogonal to the thickness direction. Further, the second main surface of the mounting substrate is, for example, orthogonal to the thickness direction of the mounting substrate, but may include, for example, a side surface of the conductor portion as a surface not orthogonal to the thickness direction. Further, the first main surface and the second main surface of the mounting substrate may be formed with fine irregularities, concave portions or convex portions.
 (5.2)フィルタ
 複数の送信フィルタ3及び複数の受信フィルタ4の詳細な構造について説明する。以下の説明では、複数の送信フィルタ3及び複数の受信フィルタ4を区別せずにフィルタとする。
(5.2) Filter The detailed structure of the plurality of transmission filters 3 and the plurality of reception filters 4 will be described. In the following description, the plurality of transmission filters 3 and the plurality of reception filters 4 are used as filters without distinction.
 フィルタでは、例えば、複数の直列腕共振子及び複数の並列腕共振子の各々が弾性波共振子により構成されている。この場合、フィルタは、例えば、基板と、圧電体層と、複数のIDT電極(Interdigital Transducer)とを備える。基板は、第1面及び第2面を有する。圧電体層は、基板の第1面に設けられている。圧電体層は、低音速膜上に設けられている。複数のIDT電極は、圧電体層上に設けられている。ここにおいて、低音速膜は、基板上に直接的又は間接的に設けられている。また、圧電体層は、低音速膜上に直接的又は間接的に設けられている。低音速膜では、圧電体層を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である。基板では、圧電体層を伝搬する弾性波の音速より伝搬するバルク波の音速が高速である。圧電体層の材料は、例えば、リチウムタンタレートである。低音速膜の材料は、例えば、酸化ケイ素である。基板は、例えば、シリコン基板である。圧電体層の厚さは、例えば、IDT電極の電極指周期で定まる弾性波の波長をλとしたときに、3.5λ以下である。低音速膜の厚さは、例えば、2.0λ以下である。 In the filter, for example, each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of elastic wave resonators. In this case, the filter includes, for example, a substrate, a piezoelectric layer, and a plurality of IDT electrodes (Interdigital Transducers). The substrate has a first surface and a second surface. The piezoelectric layer is provided on the first surface of the substrate. The piezoelectric layer is provided on the bass velocity film. The plurality of IDT electrodes are provided on the piezoelectric layer. Here, the bass velocity film is provided directly or indirectly on the substrate. Further, the piezoelectric layer is provided directly or indirectly on the bass velocity film. In the low sound velocity film, the sound velocity of the bulk wave propagating is slower than the sound velocity of the bulk wave propagating in the piezoelectric layer. On the substrate, the sound velocity of the bulk wave propagating is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer. The material of the piezoelectric layer is, for example, lithium tantalate. The material of the bass velocity film is, for example, silicon oxide. The substrate is, for example, a silicon substrate. The thickness of the piezoelectric layer is, for example, 3.5λ or less when the wavelength of the elastic wave determined by the electrode finger period of the IDT electrode is λ. The thickness of the bass sound film is, for example, 2.0λ or less.
 圧電体層は、例えば、リチウムタンタレート、リチウムニオベイト、酸化亜鉛、窒化アルミニウム、又は、チタン酸ジルコン酸鉛のいずれかにより形成されていればよい。また、低音速膜は、酸化ケイ素、ガラス、酸窒化ケイ素、酸化タンタル、酸化ケイ素にフッ素又は炭素又はホウ素を加えた化合物からなる群から選択される少なくとも1種の材料を含んでいればよい。また、基板は、シリコン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、サファイア、リチウムタンタレート、リチウムニオベイト、水晶、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト、マグネシア及びダイヤモンドからなる群から選択される少なくとも1種の材料を含んでいればよい。 The piezoelectric layer may be formed of, for example, lithium tantalate, lithium niobate, zinc oxide, aluminum nitride, or lead zirconate titanate. Further, the bass sound film may contain at least one material selected from the group consisting of silicon oxide, glass, silicon nitride, tantalum oxide, and a compound obtained by adding fluorine, carbon or boron to silicon oxide. The substrate is made of silicon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, sapphire, lithium tantalate, lithium niobate, crystal, alumina, zirconia, cozy light, mulite, steatite, forsterite, magnesia and diamond. It suffices to contain at least one material selected from the group.
 フィルタは、例えば、スペーサ層と、カバー部材とを更に備える。スペーサ層及びカバー部材は、基板の第1面に設けられている。スペーサ層は、基板の厚さ方向からの平面視で、複数のIDT電極を囲んでいる。基板の厚さ方向からの平面視で、スペーサ層は枠状(矩形枠状)である。スペーサ層は、電気絶縁性を有する。スペーサ層の材料は、例えば、エポキシ樹脂、ポリイミド等の合成樹脂である。カバー部材は、平板状である。基板の厚さ方向からの平面視で、カバー部材は、長方形状であるが、これに限らず、例えば、正方形状であってもよい。フィルタでは、基板の厚さ方向からの平面視で、カバー部材の外形サイズと、スペーサ層の外形サイズと、カバー部材の外形サイズと、が略同じである。カバー部材は、基板の厚さ方向において基板に対向するようにスペーサ層に配置されている。カバー部材は、基板の厚さ方向において複数のIDT電極と重複し、かつ、基板の厚さ方向において複数のIDT電極から離れている。カバー部材は、電気絶縁性を有する。カバー部材の材料は、例えば、エポキシ樹脂、ポリイミド等の合成樹脂である。フィルタは、基板とスペーサ層とカバー部材とで囲まれた空間を有する。フィルタでは、空間には、気体が入っている。気体は、例えば、空気、不活性ガス(例えば、窒素ガス)等である。複数の端子は、カバー部材から露出している。複数の端子の各々は、例えば、バンプである。各バンプは、例えば、はんだバンプである。各バンプは、はんだバンプに限らず、例えば金バンプであってもよい。 The filter further includes, for example, a spacer layer and a cover member. The spacer layer and the cover member are provided on the first surface of the substrate. The spacer layer surrounds the plurality of IDT electrodes in a plan view from the thickness direction of the substrate. The spacer layer has a frame shape (rectangular frame shape) in a plan view from the thickness direction of the substrate. The spacer layer has electrical insulation. The material of the spacer layer is, for example, a synthetic resin such as an epoxy resin or a polyimide. The cover member has a flat plate shape. The cover member has a rectangular shape in a plan view from the thickness direction of the substrate, but the cover member is not limited to this, and may be, for example, a square shape. In the filter, the outer size of the cover member, the outer size of the spacer layer, and the outer size of the cover member are substantially the same in a plan view from the thickness direction of the substrate. The cover member is arranged on the spacer layer so as to face the substrate in the thickness direction of the substrate. The cover member overlaps with the plurality of IDT electrodes in the thickness direction of the substrate and is separated from the plurality of IDT electrodes in the thickness direction of the substrate. The cover member has electrical insulation. The material of the cover member is, for example, a synthetic resin such as an epoxy resin or a polyimide. The filter has a space surrounded by a substrate, a spacer layer, and a cover member. In the filter, the space contains gas. The gas is, for example, air, an inert gas (for example, nitrogen gas) or the like. The plurality of terminals are exposed from the cover member. Each of the plurality of terminals is, for example, a bump. Each bump is, for example, a solder bump. Each bump is not limited to a solder bump, and may be, for example, a gold bump.
 フィルタは、例えば低音速膜と圧電体層との間に介在する密着層を含んでいてもよい。密着層は、例えば、樹脂(エポキシ樹脂、ポリイミド樹脂)からなる。また、フィルタは、低音速膜と圧電体層との間、圧電体層上、又は低音速膜下のいずれかに誘電体膜を備えていてもよい。 The filter may include, for example, an adhesion layer interposed between the bass velocity film and the piezoelectric layer. The adhesion layer is made of, for example, a resin (epoxy resin, polyimide resin). Further, the filter may be provided with a dielectric film between the low sound velocity film and the piezoelectric layer, either on the piezoelectric layer or below the low sound velocity film.
 また、フィルタは、例えば、基板と低音速膜との間に介在する高音速膜を備えていてもよい。ここにおいて、高音速膜は、基板上に直接的又は間接的に設けられている。低音速膜は、高音速膜上に直接的又は間接的に設けられている。圧電体層は、低音速膜上に直接的又は間接的に設けられている。高音速膜では、圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である。低音速膜では、圧電体層を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である。 Further, the filter may include, for example, a hypersonic film interposed between the substrate and the hypersonic film. Here, the hypersonic film is provided directly or indirectly on the substrate. The low sound velocity film is provided directly or indirectly on the high sound velocity film. The piezoelectric layer is provided directly or indirectly on the bass velocity film. In the hypersonic film, the sound velocity of the bulk wave propagating is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer. In the low sound velocity film, the sound velocity of the bulk wave propagating is slower than the sound velocity of the bulk wave propagating in the piezoelectric layer.
 高音速膜は、ダイヤモンドライクカーボン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、リチウムタンタレート、リチウムニオベイト、水晶等の圧電体、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、マグネシア、ダイヤモンド、又は、上記各材料を主成分とする材料、上記各材料の混合物を主成分とする材料からなる。 The treble film is made of diamond-like carbon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, zirconia, cordierite, mulite, and steatite. , Various ceramics such as forsterite, magnesia, diamond, or a material containing each of the above materials as a main component, and a material containing a mixture of the above materials as a main component.
 高音速膜の厚さに関しては、弾性波を圧電体層及び低音速膜に閉じ込める機能を高音速膜が有するため、高音速膜の厚さは厚いほど望ましい。圧電体基板は、高音速膜、低音速膜及び圧電体層以外の他の膜として密着層、誘電体膜等を有していてもよい。 Regarding the thickness of the treble membrane, the thicker the treble membrane is, the more desirable it is because the treble membrane has the function of confining elastic waves in the piezoelectric layer and the bass membrane. The piezoelectric substrate may have an adhesion layer, a dielectric film, or the like as a film other than the hypersonic film, the low sound velocity film, and the piezoelectric layer.
 複数の直列腕共振子及び複数の並列腕共振子の各々は、上記の弾性波共振子に限らず、例えば、SAW共振子又はBAW(Bulk Acoustic Wave)共振子であってもよい。ここにおいて、SAW共振子は、例えば、圧電体基板と、圧電体基板上に設けられているIDT電極と、を含む。フィルタは、複数の直列腕共振子及び複数の並列腕共振子の各々をSAW共振子により構成する場合、1つの圧電体基板上に、複数の直列腕共振子に一対一に対応する複数のIDT電極と、複数の並列腕共振子に一対一に対応する複数のIDT電極と、を有している。圧電体基板は、例えば、リチウムタンタレート基板、リチウムニオベイト基板等である。 Each of the plurality of series arm resonators and the plurality of parallel arm resonators is not limited to the above-mentioned elastic wave resonators, and may be, for example, a SAW resonator or a BAW (Bulk Acoustic Wave) resonator. Here, the SAW resonator includes, for example, a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate. When each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of SAW resonators, the filter has a plurality of IDTs having a one-to-one correspondence with the plurality of series arm resonators on one piezoelectric substrate. It has an electrode and a plurality of IDT electrodes having a one-to-one correspondence with a plurality of parallel arm resonators. The piezoelectric substrate is, for example, a lithium tantalate substrate, a lithium niobate substrate, or the like.
 (5.3)パワーアンプ
 図1に示すパワーアンプ2は、例えば、基板と増幅機能部とを備える1チップのICである。基板は、互いに対向する第1面及び第2面を有する。基板は、例えば、ガリウム砒素基板である。増幅機能部は、基板の第1面に形成された少なくとも1つのトランジスタを含む。増幅機能部は、所定の周波数帯域の送信信号を増幅する機能を有する機能部である。トランジスタは、例えば、HBT(Heterojunction Bipolar Transistor)である。パワーアンプ2では、コントローラ(図示せず)からの電源電圧がHBTのコレクタ-エミッタ間に印加される。パワーアンプ2は、増幅機能部に加えて、例えば、直流カット用のキャパシタを含んでいてもよい。パワーアンプ2は、例えば、基板の第1面が実装基板(図示せず)の第1主面側となるように実装基板の第1主面にフリップチップ実装されている。実装基板の厚さ方向からの平面視で、パワーアンプ2の外周形状は、例えば四角形状である。
(5.3) Power Amplifier The power amplifier 2 shown in FIG. 1 is, for example, a one-chip IC including a substrate and an amplification function unit. The substrate has a first surface and a second surface facing each other. The substrate is, for example, a gallium arsenide substrate. The amplification function unit includes at least one transistor formed on the first surface of the substrate. The amplification function unit is a function unit having a function of amplifying a transmission signal in a predetermined frequency band. The transistor is, for example, an HBT (Heterojunction Bipolar Transistor). In the power amplifier 2, the power supply voltage from the controller (not shown) is applied between the collector and the emitter of the HBT. The power amplifier 2 may include, for example, a capacitor for cutting DC in addition to the amplification function unit. The power amplifier 2 is flip-chip mounted on the first main surface of the mounting board so that the first surface of the board is, for example, the first main surface side of the mounting board (not shown). The outer peripheral shape of the power amplifier 2 is, for example, a quadrangular shape in a plan view from the thickness direction of the mounting board.
 (5.4)ローノイズアンプ
 図1に示す複数のローノイズアンプ5の各々は、例えば、基板と増幅機能部とを備える1つのICチップである。基板は、互いに対向する第1面及び第2面を有する。基板は、例えば、シリコン基板である。増幅機能部は、基板の第1面に形成されている。増幅機能部は、所定の周波数帯域の受信信号を増幅する機能を有する機能部である。各ローノイズアンプ5は、例えば、基板の第1面が実装基板(図示せず)側となるように実装基板の第1主面にフリップチップ実装されている。実装基板の厚さ方向からの平面視で、ローノイズアンプ5の外周形状は、例えば四角形状である。
(5.4) Low Noise Amplifier Each of the plurality of low noise amplifiers 5 shown in FIG. 1 is, for example, one IC chip including a substrate and an amplification function unit. The substrate has a first surface and a second surface facing each other. The substrate is, for example, a silicon substrate. The amplification function unit is formed on the first surface of the substrate. The amplification function unit is a function unit having a function of amplifying a received signal in a predetermined frequency band. Each low noise amplifier 5 is flip-chip mounted on the first main surface of the mounting board so that the first surface of the board is on the mounting board (not shown) side, for example. The outer peripheral shape of the low noise amplifier 5 is, for example, a quadrangular shape in a plan view from the thickness direction of the mounting board.
 (6)通信装置
 実施形態に係る通信装置9は、図1に示すように、高周波モジュール1と、アンテナ91と、信号処理回路92とを備える。
(6) Communication device The communication device 9 according to the embodiment includes a high frequency module 1, an antenna 91, and a signal processing circuit 92, as shown in FIG.
 (6.1)アンテナ
 アンテナ91は、高周波モジュール1のアンテナ端子71に接続されている。アンテナ91は、高周波モジュール1から出力された送信信号を電波にて放射する送信機能と、受信信号を電波として外部から受信して高周波モジュール1へ出力する受信機能とを有する。送信信号の例としては、第1送信信号、第2送信信号及び第3送信信号が挙げられる。受信信号の例としては、第1受信信号、第2受信信号及び第3受信信号が挙げられる。
(6.1) Antenna The antenna 91 is connected to the antenna terminal 71 of the high frequency module 1. The antenna 91 has a transmission function of radiating a transmission signal output from the high frequency module 1 by radio waves, and a reception function of receiving the received signal as radio waves from the outside and outputting it to the high frequency module 1. Examples of the transmission signal include a first transmission signal, a second transmission signal, and a third transmission signal. Examples of the received signal include a first received signal, a second received signal, and a third received signal.
 (6.2)信号処理回路
 信号処理回路92は、RF信号処理回路93と、ベースバンド信号処理回路94とを含む。信号処理回路92は、第1通信信号(第1送信信号、第1受信信号)、第2通信信号(第2送信信号、第2受信信号)、第3通信信号(第3送信信号、第3受信信号)を処理する。
(6.2) Signal processing circuit The signal processing circuit 92 includes an RF signal processing circuit 93 and a baseband signal processing circuit 94. The signal processing circuit 92 includes a first communication signal (first transmission signal, first reception signal), a second communication signal (second transmission signal, second reception signal), and a third communication signal (third transmission signal, third reception signal). Received signal) is processed.
 (6.2.1)RF信号処理回路
 RF信号処理回路93は、例えばRFIC(Radio Frequency Integrated Circuit)であり、高周波信号に対する信号処理を行う。RF信号処理回路93は、ベースバンド信号処理回路94から出力された高周波信号(送信信号)に対してアップコンバート等の信号処理を行い、信号処理が行われた高周波信号を高周波モジュール1に出力する。RF信号処理回路93は、高周波モジュール1から出力された高周波信号(受信信号)に対してダウンコンバート等の信号処理を行い、信号処理が行われた高周波信号をベースバンド信号処理回路94に出力する。
(6.2.1) RF signal processing circuit The RF signal processing circuit 93 is, for example, an RFIC (Radio Frequency Integrated Circuit), and performs signal processing on a high frequency signal. The RF signal processing circuit 93 performs signal processing such as up-conversion on the high frequency signal (transmission signal) output from the baseband signal processing circuit 94, and outputs the processed high frequency signal to the high frequency module 1. .. The RF signal processing circuit 93 performs signal processing such as down-conversion on the high-frequency signal (received signal) output from the high-frequency module 1, and outputs the processed high-frequency signal to the baseband signal processing circuit 94. ..
 (6.2.2)ベースバンド信号処理回路
 ベースバンド信号処理回路94は、例えばBBIC(Baseband Integrated Circuit)であり、信号処理回路92の外部からの送信信号に対する所定の信号処理を行う。ベースバンド信号処理回路94で処理された受信信号は、例えば、画像信号として画像表示のための画像信号として使用され、又は、通話のための音声信号として使用される。
(6.2.2) Baseband Signal Processing Circuit The baseband signal processing circuit 94 is, for example, a BBIC (Baseband Integrated Circuit), and performs predetermined signal processing on a transmission signal from the outside of the signal processing circuit 92. The received signal processed by the baseband signal processing circuit 94 is used, for example, as an image signal as an image signal for displaying an image, or as an audio signal for a call.
 (7)高周波モジュール及び通信装置の動作
 以下、実施形態に係る高周波モジュール1及び通信装置9の動作について、図面を参照して説明する。
(7) Operation of High Frequency Module and Communication Device Hereinafter, the operation of the high frequency module 1 and the communication device 9 according to the embodiment will be described with reference to the drawings.
 図3は、実施形態に係る高周波モジュール1が適用される周波数帯の関係を示す図である。図3において、「BandA1」は第1通信周波数帯に相当し、「BandB1」は第2通信周波数帯に相当する。また、「BandC1」は第3通信周波数帯に相当する。各通信周波数帯において、「Tx」は送信周波数帯を表しており、「Rx」は受信周波数帯を表している。 FIG. 3 is a diagram showing the relationship between the frequency bands to which the high frequency module 1 according to the embodiment is applied. In FIG. 3, "BandA1" corresponds to the first communication frequency band, and "BandB1" corresponds to the second communication frequency band. Further, "BandC1" corresponds to the third communication frequency band. In each communication frequency band, "Tx" represents a transmission frequency band and "Rx" represents a reception frequency band.
 「BandA1」は、E-UTRA(LTE)で規定されている「Band28」の周波数帯に対応する。「BandB1」は、E-UTRA(LTE)で規定されている「Band20」の周波数帯に対応する。「BandC1」は、E-UTRA(LTE)で規定されている「Band8」の周波数帯に対応する。 "BandA1" corresponds to the frequency band of "Band28" defined by E-UTRA (LTE). "BandB1" corresponds to the frequency band of "Band20" defined by E-UTRA (LTE). "Band C1" corresponds to the frequency band of "Band 8" defined by E-UTRA (LTE).
 受信フィルタ41は、第1通過帯域を有する第1受信フィルタと、第2通過帯域を有する第2受信フィルタとを兼用する。第1通過帯域は、Band28を含み、第2通過帯域は、Band20を含む。第1送信フィルタ31の通過帯域は、Band28を含む。なお、第1送信フィルタ31はフィルタF1に対応し、第2送信フィルタ32はフィルタF3に対応し、第3送信フィルタ33はフィルタF3に対応する。受信フィルタ41はフィルタF2に対応し、受信フィルタ42はフィルタF5に対応する。 The reception filter 41 also serves as a first reception filter having a first pass band and a second reception filter having a second pass band. The first pass band includes Band 28 and the second pass band includes Band 20. The pass band of the first transmission filter 31 includes Band 28. The first transmission filter 31 corresponds to the filter F1, the second transmission filter 32 corresponds to the filter F3, and the third transmission filter 33 corresponds to the filter F3. The reception filter 41 corresponds to the filter F2, and the reception filter 42 corresponds to the filter F5.
 Band28Aの送信周波数帯域は、703MHz以上733MHz以下であり、Band28Bの送信周波数帯域は、718MHz以上748MHz以下である。そして、Band28の送信周波数帯域は、703MHz以上748MHz以下である。Band28Aの受信周波数帯域は、758MHz以上788MHz以下であり、Band28Bの受信周波数帯域は、773MHz以上803MHz以下である。そして、Band28の送信周波数帯域は、758MHz以上803MHz以下である。 The transmission frequency band of Band 28A is 703 MHz or more and 733 MHz or less, and the transmission frequency band of Band 28B is 718 MHz or more and 748 MHz or less. The transmission frequency band of Band 28 is 703 MHz or more and 748 MHz or less. The reception frequency band of the Band 28A is 758 MHz or more and 788 MHz or less, and the reception frequency band of the Band 28B is 773 MHz or more and 803 MHz or less. The transmission frequency band of Band 28 is 758 MHz or more and 803 MHz or less.
 このような通信バンドの分割は、Band28の送信周波数帯域が、DTV(デジタルテレビジョン放送)の放送周波数帯域と重なっており、スプリアスエミッションの規制対象となっているからである。具体的には、Band28Aは、3GGP2における「NS17」のスプリアスエミッションの規制対象であり、この規制が適用されるDTV信号の放送地域では、Band28Aを使用することができない。したがって、この放送地域では、Band28Bが通信用に指定される。この場合、通信端末は、Band28Bの送信信号を低損失で通過させると同時に、Band28Aの周波数帯域に設定された「NS17」のスプリアスエミッションの規制を満足しなければならない。 This division of the communication band is because the transmission frequency band of Band 28 overlaps with the broadcasting frequency band of DTV (digital television broadcasting) and is subject to the regulation of spurious emissions. Specifically, the Band 28A is subject to the regulation of "NS17" spurious emissions in 3GGP2, and the Band 28A cannot be used in the broadcasting area of the DTV signal to which this regulation is applied. Therefore, in this broadcasting area, Band 28B is designated for communication. In this case, the communication terminal must pass the transmission signal of the Band 28B with low loss, and at the same time, satisfy the regulation of the spurious emission of "NS17" set in the frequency band of the Band 28A.
 一方、この放送地域以外では、Band28Aも使用することができる。すなわち、Band28の全周波数帯域を利用することができる。 On the other hand, Band 28A can also be used outside this broadcasting area. That is, the entire frequency band of Band 28 can be used.
 図3において、使用状態の第1例としては、「BandA1」の送信周波数帯と、「BandA1」の受信周波数帯と、「BandB1」の受信周波数帯とで2ダウンリンク1アップリンクのキャリアアグリゲーションを行うときの状態がある。使用状態の第2例としては、「BandB1」の送信周波数帯と、「BandB1」の受信周波数帯と、「BandA1」の受信周波数帯とで2ダウンリンク1アップリンクのキャリアアグリゲーションを行うときの状態がある。使用状態の第3例としては、「BandA1」の送信周波数帯と、「BandA1」の受信周波数帯と、「BandC1」の受信周波数帯とで2ダウンリンク1アップリンクのキャリアアグリゲーションを行うときの状態がある。使用状態の第4例としては、「BandB1」の送信周波数帯と、「BandB1」の受信周波数帯と、「BandC1」の受信周波数帯とで2ダウンリンク1アップリンクのキャリアアグリゲーションを行うときの状態がある。 In FIG. 3, as a first example of the usage state, carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of “BandA1”, the reception frequency band of “BandA1”, and the reception frequency band of “BandB1”. There is a state when doing. As a second example of the usage state, a state when carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of "BandB1", the reception frequency band of "BandB1", and the reception frequency band of "BandA1". There is. As a third example of the usage state, a state when carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of "BandA1", the reception frequency band of "BandA1", and the reception frequency band of "BandC1". There is. As a fourth example of the usage state, a state when carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of "BandB1", the reception frequency band of "BandB1", and the reception frequency band of "BandC1". There is.
 高周波モジュール1は、上述したように、信号処理回路92とアンテナ91との間に接続されている。また、信号処理回路92は、パワーアンプ2の入力側及びローノイズアンプ5の出力側に接続されている。 As described above, the high frequency module 1 is connected between the signal processing circuit 92 and the antenna 91. Further, the signal processing circuit 92 is connected to the input side of the power amplifier 2 and the output side of the low noise amplifier 5.
 図3において、第1通信周波数帯「BandA1」の送信周波数帯と第1通信周波数帯「BandA1」の受信周波数帯と第2通信周波数帯「BandB1」の受信周波数帯とで2ダウンリンク1アップリンクのキャリアアグリゲーションを行うとき、スイッチ61~63の状態が定められる。つまり、スイッチ61は、パワーアンプ2の出力端が繋がる共通端子611と第1送信フィルタ31が繋がる選択端子612とを接続する。スイッチ62は、第1送信フィルタ31及び受信フィルタ41が繋がる選択端子622と共通端子621とを接続する。スイッチ63は、第1ローノイズアンプ51が繋がる第2端子633と受信フィルタ41が繋がる第1端子631とを接続する。 In FIG. 3, the transmission frequency band of the first communication frequency band “BandA1”, the reception frequency band of the first communication frequency band “BandA1”, and the reception frequency band of the second communication frequency band “BandB1” are 2 downlinks and 1 uplink. When the carrier aggregation of the above is performed, the states of the switches 61 to 63 are determined. That is, the switch 61 connects the common terminal 611 to which the output end of the power amplifier 2 is connected and the selection terminal 612 to which the first transmission filter 31 is connected. The switch 62 connects the selection terminal 622 to which the first transmission filter 31 and the reception filter 41 are connected and the common terminal 621. The switch 63 connects the second terminal 633 to which the first low noise amplifier 51 is connected and the first terminal 631 to which the reception filter 41 is connected.
 第1送信フィルタ31(図3のフィルタF1)は、第1通信周波数帯「BandA1」の送信周波数帯の送信信号を通過させる。受信フィルタ41(図3のフィルタF2)は、第1通信周波数帯「BandA1」の受信周波数帯の受信信号と第2通信周波数帯「BandB1」の受信周波数帯の受信信号とを共に通過させる。 The first transmission filter 31 (filter F1 in FIG. 3) passes a transmission signal in the transmission frequency band of the first communication frequency band "BandA1". The reception filter 41 (filter F2 in FIG. 3) passes both the reception signal in the reception frequency band of the first communication frequency band “BandA1” and the reception signal in the reception frequency band of the second communication frequency band “BandB1”.
 スイッチ63は、受信フィルタ41の出力信号を2つのローノイズアンプ5へ出力する。2つのローノイズアンプ5から出力される受信信号は、信号処理回路92で、第1通信周波数帯の受信信号及び第2通信周波数帯の受信信号として処理される。 The switch 63 outputs the output signal of the reception filter 41 to the two low noise amplifiers 5. The received signals output from the two low noise amplifiers 5 are processed by the signal processing circuit 92 as a received signal in the first communication frequency band and a received signal in the second communication frequency band.
 本実施形態によれば、第1通信周波数帯の受信信号と第2通信周波数帯の受信信号とをそれぞれ通過させる個別の受信フィルタが設けられる場合のように、第1通信周波数帯の受信信号が第2通信周波数帯の受信フィルタへ漏洩することや、第2通信周波数帯の受信信号が第1通信周波数帯の受信フィルタへ漏洩することがない。したがって、第1通信周波数帯の受信信号及び第2通信周波数帯の受信信号の、上記漏洩による減衰が抑制される。 According to the present embodiment, the reception signal in the first communication frequency band is provided as in the case where individual reception filters are provided to pass the reception signal in the first communication frequency band and the reception signal in the second communication frequency band, respectively. It does not leak to the reception filter of the second communication frequency band, and the reception signal of the second communication frequency band does not leak to the reception filter of the first communication frequency band. Therefore, the attenuation of the received signal in the first communication frequency band and the received signal in the second communication frequency band due to the leakage is suppressed.
 次に、第1ローノイズアンプ51の出力信号から2つの受信周波数帯の受信信号を分離する部分の構成について示す。 Next, the configuration of the portion that separates the reception signals of the two reception frequency bands from the output signal of the first low noise amplifier 51 will be shown.
 図1に示すように、第1ローノイズアンプ51の出力部には、分配回路53が設けられている。第1ローノイズアンプ51は、第1通信周波数帯の受信信号と第2通信周波数帯の受信信号の混在する受信信号を増幅する。増幅された受信信号は、2つのダウンコンバータとローカル信号発生器(図示せず)で周波数変換される。周波数変換された受信信号はAD変換される。窓関数の乗算によるデジタルフィルタ処理によって、上記受信信号は、第1通信周波数帯の受信信号と第2通信周波数帯の受信信号とに分離される。上記一連の処理はRF信号処理回路93内で行われる。 As shown in FIG. 1, a distribution circuit 53 is provided in the output section of the first low noise amplifier 51. The first low noise amplifier 51 amplifies a received signal in which a received signal in the first communication frequency band and a received signal in the second communication frequency band are mixed. The amplified received signal is frequency-converted by two down converters and a local signal generator (not shown). The frequency-converted received signal is AD-converted. The received signal is separated into a received signal in the first communication frequency band and a received signal in the second communication frequency band by the digital filter processing by multiplying the window function. The above series of processing is performed in the RF signal processing circuit 93.
 上記のように、アナログ信号の段階では第1通信周波数帯の受信信号と第2通信周波数帯の受信信号とが混在していても、周波数変換及びデジタルフィルタリングによって2つの受信周波数帯の信号を抽出できる。 As described above, even if the reception signal of the first communication frequency band and the reception signal of the second communication frequency band are mixed at the analog signal stage, the signals of the two reception frequency bands are extracted by frequency conversion and digital filtering. it can.
 なお、「BandB1」の送信周波数帯と「BandB1」の受信周波数帯と「BandA1」の受信周波数帯とで2ダウンリンク1アップリンクのキャリアアグリゲーションを行うとき、スイッチ61が第2送信フィルタ32(図3のフィルタF3)を選択し、スイッチ62が第2送信フィルタ32(図3のフィルタF3)及び受信フィルタ41(図3のフィルタF2)を選択する。スイッチ63では、第1端子631が第2端子633に接続される。 When carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of "BandB1", the reception frequency band of "BandB1", and the reception frequency band of "BandA1", the switch 61 performs the second transmission filter 32 (FIG. 3) is selected, and the switch 62 selects the second transmission filter 32 (filter F3 in FIG. 3) and the reception filter 41 (filter F2 in FIG. 3). In the switch 63, the first terminal 631 is connected to the second terminal 633.
 また、「BandA1」の送信周波数帯と「BandA1」の受信周波数帯と「BandC1」の受信周波数帯とで2ダウンリンク1アップリンクのキャリアアグリゲーションを行うとき、スイッチ61が第1送信フィルタ31(図3のフィルタF1)を選択し、スイッチ62が第1送信フィルタ31(図3のフィルタF1)、受信フィルタ41(図3のフィルタF2)及び受信フィルタ42(図3のフィルタF5)を選択する。スイッチ63では、第1端子631が第2端子633に接続され、第1端子632が第2端子634に接続される。 Further, when carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of "BandA1", the reception frequency band of "BandA1", and the reception frequency band of "BandC1", the switch 61 performs the first transmission filter 31 (FIG. 3 filter F1) is selected, and the switch 62 selects the first transmission filter 31 (filter F1 in FIG. 3), the reception filter 41 (filter F2 in FIG. 3), and the reception filter 42 (filter F5 in FIG. 3). In the switch 63, the first terminal 631 is connected to the second terminal 633, and the first terminal 632 is connected to the second terminal 634.
 また、「BandB1」の送信周波数帯と「BandB1」の受信周波数帯と「BandC1」の受信周波数帯とで2ダウンリンク1アップリンクのキャリアアグリゲーションを行うとき、スイッチ61が第2送信フィルタ32(図3のフィルタF3)を選択し、スイッチ62が第2送信フィルタ32(図3のフィルタF3)及び受信フィルタ42(図3のフィルタF5)を選択する。スイッチ63では、第1端子631が第2端子633に接続され、第1端子632が第2端子634に接続される。 Further, when carrier aggregation of 2 downlinks and 1 uplink is performed between the transmission frequency band of "BandB1", the reception frequency band of "BandB1", and the reception frequency band of "BandC1", the switch 61 performs the second transmission filter 32 (FIG. 3) is selected, and the switch 62 selects the second transmit filter 32 (filter F3 in FIG. 3) and the receive filter 42 (filter F5 in FIG. 3). In the switch 63, the first terminal 631 is connected to the second terminal 633, and the first terminal 632 is connected to the second terminal 634.
 本実施形態では、「BandA1」の受信周波数帯と「BandB1」の受信周波数帯とでキャリアアグリゲーションを行うときに使用する受信フィルタ41(図3のフィルタF2)を、「BandA1」の受信周波数帯と「BandC1」の受信周波数帯とでキャリアアグリゲーションを行うときにも使用し、かつ、「BandB1」の受信周波数帯と「BandC1」の受信周波数帯とでキャリアアグリゲーションを行うときにも使用するので、「BandA1」用の受信フィルタ及び「BandB1」用の受信フィルタを個別に設ける必要がない。このため、小型化、低コスト化の点で有利である。 In the present embodiment, the reception filter 41 (filter F2 in FIG. 3) used when performing carrier aggregation in the reception frequency band of "BandA1" and the reception frequency band of "BandB1" is used as the reception frequency band of "BandA1". It is also used when performing carrier aggregation with the reception frequency band of "BandC1", and is also used when performing carrier aggregation with the reception frequency band of "BandB1" and the reception frequency band of "BandC1". It is not necessary to separately provide a reception filter for "BandA1" and a reception filter for "BandB1". Therefore, it is advantageous in terms of miniaturization and cost reduction.
 実施形態に係る第1送信フィルタ31は、Band28の通信帯域の全域が通過帯域に含まれるフィルタ特性を実現する。言い換えれば、第1送信フィルタ31は、Band28Aの通信帯域の全域が通過帯域に含まれるフィルタ特性を実現する。この構成は、具体的には、ラダー型共振回路81の通過帯域をインダクタL2によって伸長することによって実現される。例えば、ラダー型共振回路81の通過帯域は、Band28Bの通信帯域の全域と、Band28Aの通過帯域におけるBand28Bに重ならない周波数帯域の一部を含む。そして、インダクタL2を用いることによって、ラダー型共振回路81のみでは対応できなかったBand28Aの通信帯域の全域及びBand28Bの通信帯域の全域を通過帯域内とすることができる。これにより、ラダー型共振回路81による急峻な減衰特性を有しながら、インダクタL2によって通過帯域を所望の周波数帯域幅まで伸ばすことできる。 The first transmission filter 31 according to the embodiment realizes a filter characteristic in which the entire communication band of the Band 28 is included in the pass band. In other words, the first transmission filter 31 realizes a filter characteristic in which the entire communication band of the Band 28A is included in the pass band. Specifically, this configuration is realized by extending the pass band of the ladder type resonant circuit 81 with the inductor L2. For example, the pass band of the ladder type resonant circuit 81 includes the entire communication band of the Band 28B and a part of the frequency band in the pass band of the Band 28A that does not overlap with the Band 28B. Then, by using the inductor L2, the entire communication band of the Band 28A and the entire communication band of the Band 28B, which cannot be handled by the ladder type resonant circuit 81 alone, can be set within the pass band. As a result, the pass band can be extended to a desired frequency bandwidth by the inductor L2 while having a steep attenuation characteristic by the ladder type resonant circuit 81.
 さらに、第1送信フィルタ31は、通過帯域の低周波数側と高周波数側の両方に減衰極を実現している。Band28の低周波数側の減衰極の周波数は、通過帯域の低周波数側の閾値周波数に近く、減衰量が大きい。これにより、Band28(Band28A)の低周波数側に、スプリアスエミッションの規制対象であるNS18が設定されていても、この規制を満足することができる。 Further, the first transmission filter 31 realizes an attenuation pole on both the low frequency side and the high frequency side of the pass band. The frequency of the attenuation pole on the low frequency side of the Band 28 is close to the threshold frequency on the low frequency side of the pass band, and the amount of attenuation is large. As a result, even if NS18, which is a target of spurious emission regulation, is set on the low frequency side of Band28 (Band28A), this regulation can be satisfied.
 したがって、第3スイッチ87の第2状態を選択することによって、Band28又はBand28Aを用いた通信を低損失で実現し、スプリアスエミッションの規制も満足することができる。 Therefore, by selecting the second state of the third switch 87, communication using the Band 28 or the Band 28A can be realized with low loss, and the regulation of spurious emissions can be satisfied.
 第2スイッチ85における第1端子851と第2端子852とが接続される。これにより、インダクタL2は、第2並列腕共振子84を介してグランドに接続される。また、第3スイッチ87における共通端子871と選択端子872とが接続されている。これにより、並列腕共振子PR4は、キャパシタ86を介してグランドに接続される。 The first terminal 851 and the second terminal 852 of the second switch 85 are connected. As a result, the inductor L2 is connected to the ground via the second parallel arm resonator 84. Further, the common terminal 871 and the selection terminal 872 in the third switch 87 are connected. As a result, the parallel arm resonator PR4 is connected to the ground via the capacitor 86.
 この回路構成によって、第1送信フィルタ31は、Band28Bの通信帯域の全域が通過帯域に含まれるフィルタ特性を実現する。さらに、第1送信フィルタ31は、Band28AにおけるBand28Bに重ならない周波数帯域の少なくとも一部を阻止域に含み、この周波数帯域において所望の減衰量を得ることができる。 With this circuit configuration, the first transmission filter 31 realizes a filter characteristic in which the entire communication band of the Band 28B is included in the pass band. Further, the first transmission filter 31 includes at least a part of the frequency band of the Band 28A that does not overlap with the Band 28B in the blocking region, and a desired attenuation amount can be obtained in this frequency band.
 この際、第2並列腕共振子84を含む第1減衰回路82の減衰極周波数は、Band28AにおけるBand28Bに重ならない周波数帯域の近傍の周波数に設定されている。これにより、Band28AにおけるBand28Bに重ならない周波数帯域の減衰量を大きくすることができ、Band28Bの低周波数側の減衰特性を急峻にすることができる。 At this time, the attenuation pole frequency of the first attenuation circuit 82 including the second parallel arm resonator 84 is set to a frequency in the vicinity of the frequency band that does not overlap with the Band 28B in the Band 28A. As a result, the amount of attenuation in the frequency band that does not overlap with Band 28B in Band 28A can be increased, and the attenuation characteristics on the low frequency side of Band 28B can be steepened.
 さらに、キャパシタ86を含む第2減衰回路83によって調整されるラダー型共振回路81の減衰極周波数は、Band28AにおけるBand28Bに重ならない周波数帯域内に設定されている。これにより、Band28Bの低周波数側の減衰特性を急峻にすることができる。 Further, the attenuation pole frequency of the ladder type resonance circuit 81 adjusted by the second attenuation circuit 83 including the capacitor 86 is set within the frequency band that does not overlap with the Band 28B in the Band 28A. As a result, the attenuation characteristic of the Band 28B on the low frequency side can be steepened.
 したがって、Band28Bの低周波数側に、スプリアスエミッションの規制対象であるNS17が設定されていても、この規制を満足することができる。 Therefore, even if NS17, which is a target of spurious emission regulation, is set on the low frequency side of Band 28B, this regulation can be satisfied.
 また、インダクタL2によってラダー型共振回路81の共振点を、NS17の周波数帯域とNS18の周波数帯域との間までシフトさせることによって、スプリアスエミッションの規制対象であるNS18も満足することができる。 Further, by shifting the resonance point of the ladder type resonance circuit 81 between the frequency band of NS17 and the frequency band of NS18 by the inductor L2, NS18, which is a regulated object of spurious emission, can also be satisfied.
 キャパシタ86によって決まる減衰極の急峻性は、等価回路的にインダクタを含む第2並列腕共振子84によって決まる減衰極の急峻性よりも高くなる。第1送信フィルタ31は、キャパシタ86による減衰極周波数を、第2並列腕共振子84による減衰極周波数よりも、Band28Bの通信帯域側に設定する。したがって、第1送信フィルタ31は、通過帯域の低周波数側の減衰特性がより急峻になり、Band28Bに対して低損失な通過特性を得ながら、NS17のスプリアスエミッションの規制をより確実に満足することができる。 The steepness of the attenuation pole determined by the capacitor 86 is higher than the steepness of the attenuation pole determined by the second parallel arm resonator 84 including the inductor in the equivalent circuit. The first transmission filter 31 sets the attenuation pole frequency of the capacitor 86 closer to the communication band side of the Band 28B than the attenuation pole frequency of the second parallel arm resonator 84. Therefore, the first transmission filter 31 has a steeper attenuation characteristic on the low frequency side of the pass band, and more reliably satisfies the regulation of spurious emission of NS17 while obtaining a low loss pass characteristic with respect to the Band 28B. Can be done.
 このように、本実施形態の構成を用いることによって、部分的に通信帯域が重なるBand28AとBand28Bとのいずれを選択しても、それぞれに低損失な通過特性を実現し、かつ、それぞれの阻止域に設定されたスプリアスエミッションの規制を満足することができる。 In this way, by using the configuration of the present embodiment, regardless of which of Band 28A and Band 28B whose communication bands partially overlap is selected, low-loss pass characteristics are realized for each, and each blocking area is achieved. It is possible to satisfy the spurious emission regulations set in.
 (8)効果
 実施形態に係る高周波モジュール1では、第1送信フィルタ31が第1減衰回路82(第1回路)及び第2減衰回路83(第2回路)を有する。さらに、第2減衰回路83の第3スイッチ87が、第1送信フィルタ31を含む複数のフィルタ(送信フィルタ3及び受信フィルタ4)の中からアンテナ端子71に接続されるフィルタを切り替えるスイッチ62(第1スイッチ)と一体である。つまり、第3スイッチ87とスイッチ62とが同一のチップD1内に実装されている。これにより、第1送信フィルタ31の通過帯域における低周波数側の減衰極を変化させることができ、かつ、高周波モジュール1の小型化を図ることができる。
(8) Effect In the high frequency module 1 according to the embodiment, the first transmission filter 31 has a first attenuation circuit 82 (first circuit) and a second attenuation circuit 83 (second circuit). Further, the third switch 87 of the second attenuation circuit 83 switches the filter connected to the antenna terminal 71 from among the plurality of filters (transmission filter 3 and reception filter 4) including the first transmission filter 31 (third switch 62). It is integrated with 1 switch). That is, the third switch 87 and the switch 62 are mounted in the same chip D1. As a result, the attenuation pole on the low frequency side in the pass band of the first transmission filter 31 can be changed, and the high frequency module 1 can be miniaturized.
 実施形態に係る高周波モジュール1では、第3スイッチ87と共にキャパシタ86がスイッチ62と一体である。つまり、キャパシタ86と第3スイッチ87とスイッチ62とが同一のチップD1内に実装されている。これにより、高周波モジュール1の更なる小型化を図ることができる。 In the high frequency module 1 according to the embodiment, the capacitor 86 is integrated with the switch 62 together with the third switch 87. That is, the capacitor 86, the third switch 87, and the switch 62 are mounted in the same chip D1. As a result, the high frequency module 1 can be further miniaturized.
 実施形態に係る高周波モジュール1では、第1送信フィルタ31が第1減衰回路82及び第2減衰回路83を有する。さらに、第1減衰回路82の第2スイッチ85が、第1送信フィルタ31を含む複数の送信フィルタ3の中からパワーアンプ2に接続される送信フィルタを切り替えるスイッチ61と一体である。つまり、第2スイッチ85とスイッチ61とが同一のチップD2内に実装されている。これにより、第1送信フィルタ31の通過帯域における低周波数側の減衰極を変化させることができ、かつ、高周波モジュール1の小型化を図ることができる。 In the high frequency module 1 according to the embodiment, the first transmission filter 31 has a first attenuation circuit 82 and a second attenuation circuit 83. Further, the second switch 85 of the first attenuation circuit 82 is integrated with the switch 61 for switching the transmission filter connected to the power amplifier 2 from among the plurality of transmission filters 3 including the first transmission filter 31. That is, the second switch 85 and the switch 61 are mounted in the same chip D2. As a result, the attenuation pole on the low frequency side in the pass band of the first transmission filter 31 can be changed, and the high frequency module 1 can be miniaturized.
 実施形態に係る高周波モジュール1では、第1減衰回路82とラダー型共振回路81との間にインダクタL2が設けられている。これにより、第1送信フィルタ31の共振周波数を伸長することができるので、第1送信フィルタ31の通過帯域を延ばすことができる。 In the high frequency module 1 according to the embodiment, the inductor L2 is provided between the first attenuation circuit 82 and the ladder type resonance circuit 81. As a result, the resonance frequency of the first transmission filter 31 can be extended, so that the pass band of the first transmission filter 31 can be extended.
 (9)変形例
 以下、実施形態の変形例について説明する。
(9) Modification Example Hereinafter, a modification of the embodiment will be described.
 上記の各変形例に係る高周波モジュール1においても、実施形態に係る高周波モジュール1と同様の効果を奏する。 The high frequency module 1 according to each of the above modifications also has the same effect as the high frequency module 1 according to the embodiment.
 以上説明した実施形態及び変形例は、本発明の様々な実施形態及び変形例の一部に過ぎない。また、実施形態及び変形例は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。 The embodiments and modifications described above are only a part of various embodiments and modifications of the present invention. Further, the embodiments and modifications can be variously changed according to the design and the like as long as the object of the present invention can be achieved.
 (態様)
 本明細書には、以下の態様が開示されている。
(Aspect)
The following aspects are disclosed herein.
 第1の態様に係る高周波モジュール(1)は、アンテナ端子(71)と、入力端子(72)と、第1送信フィルタ(31)と、第1スイッチ(スイッチ62)とを備える。第1送信フィルタ(31)は、アンテナ端子(71)と入力端子(72)とを結ぶ送信経路(T1)上に設けられている。第1スイッチは、第1送信フィルタ(31)を含む複数のフィルタの中からアンテナ端子(71)に接続されるフィルタを切り替える。第1送信フィルタ(31)は、ラダー型共振回路(81)と、第1回路(第1減衰回路82)と、第2回路(第2減衰回路83)とを有する。ラダー型共振回路(81)は、直列腕共振子(SR1~SR5)及び第1並列腕共振子(並列腕共振子PR4)を含む。直列腕共振子(SR1~SR5)は、送信経路(T1)上に設けられている。第1並列腕共振子は、送信経路(T1)とグランドとの間に設けられている。第1回路は、送信経路(T1)におけるラダー型共振回路(81)と入力端子(72)との間の経路とグランドとの間に接続されている。第2回路は、第1並列腕共振子とグランドとに接続されており、第1並列腕共振子と直列に接続されている。第1回路は、第2並列腕共振子(84)と、第2スイッチ(85)とを含む。第2スイッチ(85)は、第2並列腕共振子(84)と上記経路とを導通させる第1状態と、第2並列腕共振子(84)と上記経路とを導通させない第2状態と、を切り替える。第2回路は、キャパシタ(86)と、第3スイッチ(87)とを含む。第3スイッチ(87)は、キャパシタ(86)と第1並列腕共振子とを導通させる第1状態と、第1並列腕共振子とグランドとを導通させる第2状態と、を切り替える。第3スイッチ(87)は、第1スイッチと一体である。 The high frequency module (1) according to the first aspect includes an antenna terminal (71), an input terminal (72), a first transmission filter (31), and a first switch (switch 62). The first transmission filter (31) is provided on the transmission path (T1) connecting the antenna terminal (71) and the input terminal (72). The first switch switches the filter connected to the antenna terminal (71) from among the plurality of filters including the first transmission filter (31). The first transmission filter (31) includes a ladder type resonance circuit (81), a first circuit (first attenuation circuit 82), and a second circuit (second attenuation circuit 83). The ladder type resonator circuit (81) includes a series arm resonator (SR1 to SR5) and a first parallel arm resonator (parallel arm resonator PR4). The series arm resonators (SR1 to SR5) are provided on the transmission path (T1). The first parallel arm resonator is provided between the transmission path (T1) and the ground. The first circuit is connected between the path between the ladder type resonant circuit (81) and the input terminal (72) in the transmission path (T1) and the ground. The second circuit is connected to the first parallel arm resonator and the ground, and is connected in series with the first parallel arm resonator. The first circuit includes a second parallel arm resonator (84) and a second switch (85). The second switch (85) has a first state in which the second parallel arm resonator (84) and the path are conducted, and a second state in which the second parallel arm resonator (84) and the path are not conducted. To switch. The second circuit includes a capacitor (86) and a third switch (87). The third switch (87) switches between a first state in which the capacitor (86) and the first parallel arm resonator are conducted, and a second state in which the first parallel arm resonator and the ground are conducted. The third switch (87) is integrated with the first switch.
 第1の態様に係る高周波モジュール(1)によれば、第1送信フィルタ(31)の通過帯域における低周波数側の減衰極を変化させることができ、かつ、高周波モジュール(1)の小型化を図ることができる。 According to the high frequency module (1) according to the first aspect, the attenuation pole on the low frequency side in the pass band of the first transmission filter (31) can be changed, and the high frequency module (1) can be miniaturized. Can be planned.
 第2の態様に係る高周波モジュール(1)では、第1の態様において、キャパシタ(86)は、第1スイッチ(スイッチ62)と一体である。 In the high frequency module (1) according to the second aspect, in the first aspect, the capacitor (86) is integrated with the first switch (switch 62).
 第2の態様に係る高周波モジュール(1)によれば、高周波モジュール(1)の更なる小型化を図ることができる。 According to the high frequency module (1) according to the second aspect, the high frequency module (1) can be further miniaturized.
 第3の態様に係る高周波モジュール(1)は、第1又は2の態様において、パワーアンプ(2)と、第4スイッチ(スイッチ61)とを更に備える。第4スイッチは、第1送信フィルタ(31)を含む複数の送信フィルタの中からパワーアンプ(2)に接続されるフィルタを切り替える。第2スイッチ(85)は、第4スイッチと一体である。 The high frequency module (1) according to the third aspect further includes a power amplifier (2) and a fourth switch (switch 61) in the first or second aspect. The fourth switch switches the filter connected to the power amplifier (2) from among the plurality of transmission filters including the first transmission filter (31). The second switch (85) is integrated with the fourth switch.
 第3の態様に係る高周波モジュール(1)によれば、高周波モジュール(1)の更なる小型化を図ることができる。 According to the high frequency module (1) according to the third aspect, the high frequency module (1) can be further miniaturized.
 第4の態様に係る高周波モジュール(1)は、アンテナ端子(71)と、入力端子(72)と、パワーアンプ(2)と、第1送信フィルタ(31)と、第1スイッチ(スイッチ62)とを備える。第1送信フィルタ(31)は、アンテナ端子(71)と入力端子(72)とを結ぶ送信経路(T1)上に設けられている。第1スイッチは、パワーアンプ(2)に接続されるフィルタを、第1送信フィルタ(31)を含む複数の第2フィルタの中から切り替える。第1送信フィルタ(31)は、ラダー型共振回路(81)と、第1回路(第1減衰回路82)と、第2回路(第2減衰回路83)とを有する。ラダー型共振回路(81)は、送信経路(T1)上に設けられている直列腕共振子(SR1~SR5)、及び、送信経路(T1)とグランドとの間に設けられている第1並列腕共振子(並列腕共振子PR4を含む。第1回路は、送信経路(T1)におけるラダー型共振回路(81)と入力端子(72)との間の経路とグランドとの間に接続されている。第2回路は、第1並列腕共振子とグランドとに接続されており、第1並列腕共振子と直列に接続されている。第1回路は、第2並列腕共振子(84)と、第2スイッチ(85)とを含む。第2スイッチ(85)は、第2並列腕共振子(84)と上記経路とを導通させる第1状態と、第2並列腕共振子(84)と上記経路とを導通させない第2状態と、を切り替える。第2回路は、キャパシタ(86)と、第3スイッチ(87)とを含む。第3スイッチ(87)は、キャパシタ(86)と第1並列腕共振子とを導通させる第1状態と、第1並列腕共振子とグランドとを導通させる第2状態と、を切り替える。第2スイッチ(85)は、第1スイッチ(スイッチ61)と一体である。 The high frequency module (1) according to the fourth aspect includes an antenna terminal (71), an input terminal (72), a power amplifier (2), a first transmission filter (31), and a first switch (switch 62). And. The first transmission filter (31) is provided on the transmission path (T1) connecting the antenna terminal (71) and the input terminal (72). The first switch switches the filter connected to the power amplifier (2) from among a plurality of second filters including the first transmission filter (31). The first transmission filter (31) includes a ladder type resonance circuit (81), a first circuit (first attenuation circuit 82), and a second circuit (second attenuation circuit 83). The ladder type resonance circuit (81) includes a series arm resonator (SR1 to SR5) provided on the transmission path (T1) and a first parallel circuit provided between the transmission path (T1) and the ground. The arm resonator (including the parallel arm resonator PR4. The first circuit is connected between the path between the ladder type resonator circuit (81) and the input terminal (72) in the transmission path (T1) and the ground. The second circuit is connected to the first parallel arm resonator and the ground, and is connected in series with the first parallel arm resonator. The first circuit is connected to the second parallel arm resonator (84). The second switch (85) includes a first state for conducting the second parallel arm resonator (84) and the path, and a second parallel arm resonator (84). The second circuit includes the capacitor (86) and the third switch (87). The third switch (87) includes the capacitor (86) and the third switch (87). The first state for conducting the 1 parallel arm resonator and the second state for conducting the first parallel arm resonator and the ground are switched. The second switch (85) is the first switch (switch 61). It is one.
 第4の態様に係る高周波モジュール(1)によれば、第1送信フィルタ(31)の通過帯域における低周波数側の減衰極を変化させることができ、かつ、高周波モジュール(1)の小型化を図ることができる。 According to the high frequency module (1) according to the fourth aspect, the attenuation pole on the low frequency side in the pass band of the first transmission filter (31) can be changed, and the high frequency module (1) can be miniaturized. Can be planned.
 第5の態様に係る高周波モジュール(1)は、第1~4の態様のいずれか1つにおいて、インダクタ(L2)を更に備える。インダクタ(L2)は、第1回路(第1減衰回路82)とラダー型共振回路(81)との間に接続されている。 The high frequency module (1) according to the fifth aspect further includes an inductor (L2) in any one of the first to fourth aspects. The inductor (L2) is connected between the first circuit (first attenuation circuit 82) and the ladder type resonance circuit (81).
 第5の態様に係る高周波モジュール(1)によれば、第1送信フィルタ(31)の共振周波数を伸長することができるので、第1送信フィルタ(31)の通過帯域を延ばすことができる。 According to the high frequency module (1) according to the fifth aspect, since the resonance frequency of the first transmission filter (31) can be extended, the pass band of the first transmission filter (31) can be extended.
 第6の態様に係る高周波モジュール(1)では、第5の態様において、インダクタ(L2)は、ラダー型共振回路(81)と直列に接続されている。 In the high frequency module (1) according to the sixth aspect, in the fifth aspect, the inductor (L2) is connected in series with the ladder type resonant circuit (81).
 第7の態様に係る高周波モジュール(1)では、第1~6の態様のいずれか1つにおいて、ラダー型共振回路(81)は、第1並列腕共振子(並列腕共振子PR4)を含む複数の並列腕共振子(PR1~PR4)を有する。第1並列腕共振子(並列腕共振子PR4)は、複数の並列腕共振子(PR1~PR4)の中でアンテナ端子(71)に最も近い。 In the high frequency module (1) according to the seventh aspect, in any one of the first to sixth aspects, the ladder type resonance circuit (81) includes the first parallel arm resonator (parallel arm resonator PR4). It has a plurality of parallel arm resonators (PR1 to PR4). The first parallel arm resonator (parallel arm resonator PR4) is the closest to the antenna terminal (71) among the plurality of parallel arm resonators (PR1 to PR4).
 第8の態様に係る高周波モジュール(1)は、第1~7の態様のいずれか1つにおいて、第1受信フィルタ(受信フィルタ41)と、第2受信フィルタ(受信フィルタ41)とを更に備える。第1受信フィルタは、第1通過帯域を有する。第2受信フィルタは、第2通過帯域を有する。第1通過帯域は、Band28を含む。第2通過帯域は、Band20を含む。第1送信フィルタ(31)の通過帯域は、Band28を含む。 The high frequency module (1) according to the eighth aspect further includes a first reception filter (reception filter 41) and a second reception filter (reception filter 41) in any one of the first to seventh aspects. .. The first receive filter has a first pass band. The second reception filter has a second pass band. The first pass band includes Band 28. The second pass band includes Band 20. The pass band of the first transmission filter (31) includes Band 28.
 第9の態様に係る高周波モジュール(1)は、アンテナ端子(71)と、入力端子(72)と、第1送信フィルタ(31)とを備える。第1送信フィルタ(31)は、アンテナ端子(71)と入力端子(72)とを結ぶ送信経路(T1)上に設けられており、Band28を含む通過帯域を有する。第1送信フィルタ(31)は、ラダー型共振回路(81)と、第1スイッチ(スイッチ61;スイッチ62)とを有する。ラダー型共振回路(81)は、送信経路(T1)上に設けられている直列腕共振子(SR1~SR5)、及び、送信経路(T1)とグランドとの間に設けられている第1並列腕共振子(並列腕共振子PR4)を含む。第1スイッチは、第1送信フィルタ(31)におけるBand28の減衰帯域を切り替えるためのスイッチである。第1スイッチは、第2スイッチ(スイッチ62)又は第3スイッチ(スイッチ61)と一体である。第2スイッチは、第1送信フィルタ(31)を含む複数のフィルタの中からアンテナ端子(71)に接続されるフィルタを切り替える。第3スイッチは、第1送信フィルタ(31)を含む複数の送信フィルタ(3)の中からパワーアンプ(2)に接続されるフィルタを切り替える。 The high frequency module (1) according to the ninth aspect includes an antenna terminal (71), an input terminal (72), and a first transmission filter (31). The first transmission filter (31) is provided on the transmission path (T1) connecting the antenna terminal (71) and the input terminal (72), and has a pass band including the Band 28. The first transmission filter (31) has a ladder type resonance circuit (81) and a first switch (switch 61; switch 62). The ladder type resonance circuit (81) includes a series arm resonator (SR1 to SR5) provided on the transmission path (T1) and a first parallel circuit provided between the transmission path (T1) and the ground. Includes an arm resonator (parallel arm resonator PR4). The first switch is a switch for switching the attenuation band of Band 28 in the first transmission filter (31). The first switch is integrated with the second switch (switch 62) or the third switch (switch 61). The second switch switches the filter connected to the antenna terminal (71) from among the plurality of filters including the first transmission filter (31). The third switch switches the filter connected to the power amplifier (2) from among the plurality of transmission filters (3) including the first transmission filter (31).
 第9の態様に係る高周波モジュール(1)によれば、第1送信フィルタ(31)の通過帯域における低周波数側の減衰極を変化させることができ、かつ、高周波モジュール(1)の小型化を図ることができる。 According to the high frequency module (1) according to the ninth aspect, the attenuation pole on the low frequency side in the pass band of the first transmission filter (31) can be changed, and the high frequency module (1) can be miniaturized. Can be planned.
 第10の態様に係る通信装置(9)は、第1~9の態様のいずれか1つの高周波モジュール(1)と、信号処理回路(92)とを備える。信号処理回路(92)は、高周波モジュール(1)へ送信される信号を処理する。 The communication device (9) according to the tenth aspect includes a high frequency module (1) according to any one of the first to ninth aspects and a signal processing circuit (92). The signal processing circuit (92) processes the signal transmitted to the high frequency module (1).
 第10の態様に係る通信装置(9)によれば、高周波モジュール(1)において、第1送信フィルタ(31)の通過帯域における低周波数側の減衰極を変化させることができ、かつ、高周波モジュール(1)の小型化を図ることができる。 According to the communication device (9) according to the tenth aspect, in the high frequency module (1), the attenuation pole on the low frequency side in the pass band of the first transmission filter (31) can be changed, and the high frequency module The miniaturization of (1) can be achieved.
 1 高周波モジュール
 2 パワーアンプ
 3 送信フィルタ
 31 第1送信フィルタ
 32 第2送信フィルタ
 33 第3送信フィルタ
 4,41,42 受信フィルタ
 5 ローノイズアンプ
 51 第1ローノイズアンプ
 52 第2ローノイズアンプ
 53 分配回路
 61 スイッチ
 611 共通端子
 612,613,614 選択端子
 62 スイッチ
 621 共通端子
 622,623 選択端子
 63 スイッチ
 631,632 第1端子
 633,634 第2端子
 7 外部接続端子
 71 アンテナ端子
 72 入力端子
 73 出力端子
 731 第1出力端子
 732 第2出力端子
 733 第3出力端子
 81 ラダー型共振回路
 82 第1減衰回路(第1回路)
 83 第2減衰回路(第2回路)
 84 第2並列腕共振子
 85 第2スイッチ
 851 第1端子
 852 第2端子
 86 キャパシタ
 87 第3スイッチ
 871 共通端子
 872,873 選択端子
 9 通信装置
 91 アンテナ
 92 信号処理回路
 93 RF信号処理回路
 94 ベースバンド信号処理回路
 F1,F2,F3,F4,F5 フィルタ
 C1 並列腕キャパシタ
 L1,L2 インダクタ
 D1,D2 チップ
 P1 トリプレクサ
 P2 デュプレクサ
 PR1,PR2,PR3,PR4 並列腕共振子
 SR1,SR2,SR3,SR4,SR5 直列腕共振子
 T1 送信経路
 T11 第1送信経路
 T12 第2送信経路
 T13 第3送信経路
 R1 受信経路
 R11 第1受信経路
 R12 第2受信経路
 R13 第3受信経路
1 High frequency module 2 Power amplifier 3 Transmission filter 31 1st transmission filter 32 2nd transmission filter 33 3rd transmission filter 4,41,42 Reception filter 5 Low noise amplifier 51 1st low noise amplifier 52 2nd low noise amplifier 53 Distribution circuit 61 Switch 611 Common terminal 612,613,614 Selection terminal 62 Switch 621 Common terminal 622,623 Selection terminal 63 Switch 631,632 1st terminal 633,634 2nd terminal 7 External connection terminal 71 Antenna terminal 72 Input terminal 73 Output terminal 731 1st output Terminal 732 2nd output terminal 733 3rd output terminal 81 Ladder type resonant circuit 82 1st attenuation circuit (1st circuit)
83 Second attenuation circuit (second circuit)
84 2nd parallel arm resonator 85 2nd switch 851 1st terminal 852 2nd terminal 86 Capacitor 87 3rd switch 871 Common terminal 872, 873 Selection terminal 9 Communication device 91 Antenna 92 Signal processing circuit 93 RF signal processing circuit 94 Base band Signal processing circuit F1, F2, F3, F4, F5 Filter C1 Parallel arm capacitor L1, L2 Inductor D1, D2 Chip P1 Triplexer P2 Duplexer PR1, PR2, PR3, PR4 Parallel arm resonator SR1, SR2, SR3, SR4, SR5 series Arm resonator T1 transmission path T11 1st transmission path T12 2nd transmission path T13 3rd transmission path R1 reception path R11 1st reception path R12 2nd reception path R13 3rd reception path

Claims (10)

  1.  アンテナ端子と、
     入力端子と、
     前記アンテナ端子と前記入力端子とを結ぶ送信経路上に設けられている第1送信フィルタと、
     前記第1送信フィルタを含む複数のフィルタの中から前記アンテナ端子に接続されるフィルタを切り替える第1スイッチと、を備え、
     前記第1送信フィルタは、
      前記送信経路上に設けられている直列腕共振子、及び、前記送信経路とグランドとの間に設けられている第1並列腕共振子を含むラダー型共振回路と、
      前記送信経路における前記ラダー型共振回路と前記入力端子との間の経路とグランドとの間に接続されている第1回路と、
      前記第1並列腕共振子とグランドとに接続されており、前記第1並列腕共振子と直列に接続されている第2回路と、を有し、
     前記第1回路は、
      第2並列腕共振子と、
      前記第2並列腕共振子と前記経路とを導通させる第1状態と、前記第2並列腕共振子と前記経路とを導通させない第2状態と、を切り替える第2スイッチと、を含み、
     前記第2回路は、
      キャパシタと、
      前記キャパシタと前記第1並列腕共振子とを導通させる第1状態と、前記第1並列腕共振子とグランドとを導通させる第2状態と、を切り替える第3スイッチと、を含み、
     前記第3スイッチは、前記第1スイッチと一体である、
     高周波モジュール。
    With the antenna terminal
    Input terminal and
    A first transmission filter provided on a transmission path connecting the antenna terminal and the input terminal,
    A first switch for switching a filter connected to the antenna terminal from a plurality of filters including the first transmission filter is provided.
    The first transmission filter is
    A ladder type resonator circuit including a series arm resonator provided on the transmission path and a first parallel arm resonator provided between the transmission path and the ground.
    The first circuit connected between the path between the ladder type resonant circuit and the input terminal in the transmission path and the ground, and
    It has a second circuit connected to the first parallel arm resonator and ground, and connected in series with the first parallel arm resonator.
    The first circuit is
    With the second parallel arm resonator,
    A second switch for switching between a first state in which the second parallel arm resonator and the path are conducted and a second state in which the second parallel arm resonator and the path are not conducted is included.
    The second circuit is
    Capacitors and
    A third switch for switching between a first state in which the capacitor and the first parallel arm resonator are conducted and a second state in which the first parallel arm resonator and the ground are conducted is included.
    The third switch is integrated with the first switch.
    High frequency module.
  2.  前記キャパシタは、前記第1スイッチと一体である、
     請求項1に記載の高周波モジュール。
    The capacitor is integrated with the first switch.
    The high frequency module according to claim 1.
  3.  パワーアンプと、
     前記第1送信フィルタを含む複数の送信フィルタの中から前記パワーアンプに接続されるフィルタを切り替える第4スイッチと、を更に備え、
     前記第2スイッチは、前記第4スイッチと一体である、
     請求項1又は2に記載の高周波モジュール。
    With a power amplifier
    A fourth switch for switching a filter connected to the power amplifier from a plurality of transmission filters including the first transmission filter is further provided.
    The second switch is integrated with the fourth switch.
    The high frequency module according to claim 1 or 2.
  4.  アンテナ端子と、
     入力端子と、
     パワーアンプと、
     前記アンテナ端子と前記入力端子とを結ぶ送信経路上に設けられている第1送信フィルタと、
     前記パワーアンプに接続されるフィルタを、前記第1送信フィルタを含む複数の第2フィルタの中から切り替える第1スイッチと、を備え、
     前記第1送信フィルタは、
      前記送信経路上に設けられている直列腕共振子、及び、前記送信経路とグランドとの間に設けられている第1並列腕共振子を含むラダー型共振回路と、
      前記送信経路における前記ラダー型共振回路と前記入力端子との間の経路とグランドとの間に接続されている第1回路と、
      前記第1並列腕共振子とグランドとに接続されており、前記第1並列腕共振子と直列に接続されている第2回路と、を有し、
     前記第1回路は、
      第2並列腕共振子と、
      前記第2並列腕共振子と前記経路とを導通させる第1状態と、前記第2並列腕共振子と前記経路とを導通させない第2状態と、を切り替える第2スイッチと、を含み、
     前記第2回路は、
      キャパシタと、
      前記キャパシタと前記第1並列腕共振子とを導通させる第1状態と、前記第1並列腕共振子とグランドとを導通させる第2状態と、を切り替える第3スイッチと、を含み、
     前記第2スイッチは、前記第1スイッチと一体である、
     高周波モジュール。
    With the antenna terminal
    Input terminal and
    With a power amplifier
    A first transmission filter provided on a transmission path connecting the antenna terminal and the input terminal,
    A first switch for switching a filter connected to the power amplifier from a plurality of second filters including the first transmission filter is provided.
    The first transmission filter is
    A ladder type resonator circuit including a series arm resonator provided on the transmission path and a first parallel arm resonator provided between the transmission path and the ground.
    The first circuit connected between the path between the ladder type resonant circuit and the input terminal in the transmission path and the ground, and
    It has a second circuit connected to the first parallel arm resonator and ground, and connected in series with the first parallel arm resonator.
    The first circuit is
    With the second parallel arm resonator,
    A second switch for switching between a first state in which the second parallel arm resonator and the path are conducted and a second state in which the second parallel arm resonator and the path are not conducted is included.
    The second circuit is
    Capacitors and
    A third switch for switching between a first state in which the capacitor and the first parallel arm resonator are conducted and a second state in which the first parallel arm resonator and the ground are conducted is included.
    The second switch is integrated with the first switch.
    High frequency module.
  5.  前記第1回路と前記ラダー型共振回路との間に接続されているインダクタを更に備える、
     請求項1~4のいずれか1項に記載の高周波モジュール。
    Further comprising an inductor connected between the first circuit and the ladder type resonant circuit.
    The high frequency module according to any one of claims 1 to 4.
  6.  前記インダクタは、前記ラダー型共振回路と直列に接続されている、
     請求項5に記載の高周波モジュール。
    The inductor is connected in series with the ladder type resonant circuit.
    The high frequency module according to claim 5.
  7.  前記ラダー型共振回路は、前記第1並列腕共振子を含む複数の並列腕共振子を有し、
     前記第1並列腕共振子は、前記複数の並列腕共振子の中で前記アンテナ端子に最も近い、
     請求項1~6のいずれか1項に記載の高周波モジュール。
    The ladder type resonator circuit has a plurality of parallel arm resonators including the first parallel arm resonator.
    The first parallel arm resonator is the closest to the antenna terminal among the plurality of parallel arm resonators.
    The high frequency module according to any one of claims 1 to 6.
  8.  第1通過帯域を有する第1受信フィルタと、
     第2通過帯域を有する第2受信フィルタと、を更に備え、
     前記第1通過帯域は、Band28を含み、
     前記第2通過帯域は、Band20を含み、
     前記第1送信フィルタの通過帯域は、Band28を含む、
     請求項1~7のいずれか1項に記載の高周波モジュール。
    The first receive filter having the first pass band and
    Further provided with a second receive filter having a second pass band,
    The first pass band includes Band 28.
    The second pass band includes Band 20 and includes.
    The pass band of the first transmission filter includes Band 28.
    The high frequency module according to any one of claims 1 to 7.
  9.  アンテナ端子と、
     入力端子と、
     前記アンテナ端子と前記入力端子とを結ぶ送信経路上に設けられており、Band28を含む通過帯域を有する第1送信フィルタと、を備え、
     前記第1送信フィルタは、
      前記送信経路上に設けられている直列腕共振子、及び、前記送信経路とグランドとの間に設けられている第1並列腕共振子を含むラダー型共振回路と、
      前記第1送信フィルタにおけるBand28の減衰帯域を切り替えるための第1スイッチと、を有し、
     前記第1スイッチは、前記第1送信フィルタを含む複数のフィルタの中から前記アンテナ端子に接続されるフィルタを切り替える第2スイッチ、又は、前記第1送信フィルタを含む複数の送信フィルタの中からパワーアンプに接続されるフィルタを切り替える第3スイッチと一体である、
     高周波モジュール。
    With the antenna terminal
    Input terminal and
    A first transmission filter provided on a transmission path connecting the antenna terminal and the input terminal and having a pass band including Band 28 is provided.
    The first transmission filter is
    A ladder type resonator circuit including a series arm resonator provided on the transmission path and a first parallel arm resonator provided between the transmission path and the ground.
    It has a first switch for switching the attenuation band of Band 28 in the first transmission filter, and has.
    The first switch is a second switch that switches a filter connected to the antenna terminal from a plurality of filters including the first transmission filter, or a power from a plurality of transmission filters including the first transmission filter. It is integrated with the third switch that switches the filter connected to the amplifier.
    High frequency module.
  10.  請求項1~9のいずれか1項に記載の高周波モジュールと、
     前記高周波モジュールへ送信される信号を処理する信号処理回路と、を備える、
     通信装置。
    The high frequency module according to any one of claims 1 to 9, and the high frequency module.
    A signal processing circuit for processing a signal transmitted to the high frequency module is provided.
    Communication device.
PCT/JP2020/045538 2020-01-10 2020-12-07 High frequency module and communication device WO2021140809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-003176 2020-01-10
JP2020003176 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021140809A1 true WO2021140809A1 (en) 2021-07-15

Family

ID=76788584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045538 WO2021140809A1 (en) 2020-01-10 2020-12-07 High frequency module and communication device

Country Status (1)

Country Link
WO (1) WO2021140809A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122628A (en) * 2013-12-24 2015-07-02 株式会社村田製作所 Switching circuit and semiconductor module
JP2017028699A (en) * 2015-07-22 2017-02-02 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Transmitter system, high frequency module and radio equipment
WO2017170071A1 (en) * 2016-03-31 2017-10-05 株式会社村田製作所 Variable-frequency filter, rf front end circuit, and communication terminal
WO2018061950A1 (en) * 2016-09-29 2018-04-05 株式会社村田製作所 Acoustic wave filter device, multiplexer, high-frequency front end circuit, and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122628A (en) * 2013-12-24 2015-07-02 株式会社村田製作所 Switching circuit and semiconductor module
JP2017028699A (en) * 2015-07-22 2017-02-02 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Transmitter system, high frequency module and radio equipment
WO2017170071A1 (en) * 2016-03-31 2017-10-05 株式会社村田製作所 Variable-frequency filter, rf front end circuit, and communication terminal
WO2018061950A1 (en) * 2016-09-29 2018-04-05 株式会社村田製作所 Acoustic wave filter device, multiplexer, high-frequency front end circuit, and communication device

Similar Documents

Publication Publication Date Title
US10873352B2 (en) Radio-frequency module and communication apparatus
WO2021006021A1 (en) High-frequency module and communication device
US12046808B2 (en) Radio-frequency module and communication device
CN213585766U (en) High-frequency module and communication device
CN115485980B (en) High frequency module and communication device
CN114342073A (en) High-frequency module and communication device
WO2021124691A1 (en) High-frequency module and communication device
CN114731170B (en) High-frequency module and communication device
CN213213453U (en) High-frequency module and communication device
WO2021251217A1 (en) High frequency module and communication device
US11881879B2 (en) Radio-frequency module and communication device
US12074619B2 (en) Radio frequency module and communication device
WO2022145247A1 (en) High-frequency module and communication device
WO2021006080A1 (en) High frequency module and communication device
US12107616B2 (en) High frequency module and communication apparatus
WO2021140809A1 (en) High frequency module and communication device
US11936355B2 (en) Radio frequency circuit, radio frequency module, and communication device
WO2022230682A1 (en) High frequency module and communication device
WO2021215536A1 (en) High-frequency module and communication device
US11368177B2 (en) Radio frequency module and communication device
WO2022145412A1 (en) High frequency module and communication apparatus
CN115039345B (en) High-frequency module and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP