WO2021131966A1 - Aln laminate board - Google Patents
Aln laminate board Download PDFInfo
- Publication number
- WO2021131966A1 WO2021131966A1 PCT/JP2020/046971 JP2020046971W WO2021131966A1 WO 2021131966 A1 WO2021131966 A1 WO 2021131966A1 JP 2020046971 W JP2020046971 W JP 2020046971W WO 2021131966 A1 WO2021131966 A1 WO 2021131966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aln
- metal component
- layer
- single crystal
- containing region
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 153
- 239000002184 metal Substances 0.000 claims abstract description 153
- 239000013078 crystal Substances 0.000 claims abstract description 95
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052733 gallium Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 186
- 150000004767 nitrides Chemical class 0.000 description 35
- 239000004065 semiconductor Substances 0.000 description 31
- 239000000758 substrate Substances 0.000 description 16
- 239000002346 layers by function Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 239000002923 metal particle Substances 0.000 description 13
- 238000005498 polishing Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000002131 composite material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000002411 adverse Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 101700004678 SLIT3 Proteins 0.000 description 1
- 102100027339 Slit homolog 3 protein Human genes 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000005092 sublimation method Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
Definitions
- the technique disclosed in the present specification relates to a laminated plate in which an AlN single crystal layer and an AlN polycrystalline layer are laminated.
- Non-Patent Document 1 discloses a method for manufacturing an ultraviolet light emitting device manufactured on an AlN single crystal plate.
- a functional layer of an ultraviolet light emitting device is formed on an AlN single crystal plate. After the functional layer is formed on the AlN single crystal plate, the AlN single crystal plate is thinned by mechanical polishing in order to improve the ultraviolet light transmittance.
- the ultraviolet light emitting device described in Non-Patent Document 1 uses an AlN single crystal plate as a substrate.
- a thick substrate is used to prevent damage to the substrate.
- an AlN polycrystalline plate is used as a support substrate on the AlN single crystal plate.
- a laminated board in which the boards are laminated may be used as a handling substrate for manufacturing an ultraviolet light emitting device. Therefore, after forming a functional layer on the surface of the laminated plate on the AlN single crystal plate side, the AlN polycrystalline plate is removed by mechanical polishing. However, if the AlN polycrystalline plate is thinned by mechanical polishing, the functional layer may be affected during mechanical polishing.
- This specification discloses a technique for easily thinning a laminated plate in a laminated plate in which an AlN single crystal layer and an AlN polycrystalline layer are laminated.
- the laminate disclosed in the present specification is in contact with the AlN polycrystalline layer, the AlN single crystal layer formed on the AlN polycrystalline layer, and the interface portion between the AlN single crystal layer and the AlN polycrystalline layer. It includes a metal component-containing region in which a plurality of metal components are dispersed and introduced.
- the laminated board a plurality of metal components are dispersed and introduced at the interface portion between the AlN single crystal layer and the AlN polycrystalline layer. Therefore, for example, by irradiating the laminated board with a laser to sublimate (vaporize) the metal component-containing region, fine cracks can be generated in the metal component-containing region and the laminated board can be thinned. That is, the AlN polycrystalline layer can be removed from the laminated plate by a method other than mechanical polishing such as laser lift-off. Therefore, the AlN polycrystalline layer can be easily removed, and the influence on the functional layer of the ultraviolet light emitting device or the like when the AlN polycrystalline layer is removed can be reduced.
- FIG. 1 The schematic diagram of the ultraviolet light emitting device produced using the laminated board which concerns on Examples 1 to 3.
- FIG. 2 The schematic diagram of the laminated board which concerns on Example 2.
- the schematic diagram of the laminated board which concerns on Example 3. FIG.
- the laminate disclosed in the present specification is a laminate of an AlN single crystal layer and an AlN polycrystalline layer.
- Single crystal AlN for example, compared to sapphire is a Al x Ga y N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1) or the same close nitride semiconductor and the lattice constant of such. Therefore, the AlN single crystal layer of the laminated plate disclosed in the present specification is useful as a growth substrate for an ultraviolet light emitting device (UV LED) having a nitride semiconductor as a functional layer.
- UV LED ultraviolet light emitting device
- AlN single crystal plate for example as compared to sapphire, Al x Ga y N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1) nitride semiconductor and thermal expansion coefficient, such as are close or the same. Therefore, it is useful as a handling substrate when manufacturing an ultraviolet light emitting device.
- AlN single crystal plate When only an AlN single crystal plate is used as a handling substrate when manufacturing an ultraviolet light emitting device, it is necessary to use a thick AlN single crystal plate in order to secure strength, but a thick AlN single crystal plate is used. It is expensive.
- the laminate disclosed in the present specification is provided with an AlN polycrystalline layer on the back surface side of the AlN single crystal layer (the side on which the functional layer of the ultraviolet light emitting device is not provided).
- the AlN polycrystalline layer can be obtained (or manufactured) at a relatively low cost. Therefore, by laminating the AlN single crystal layer and the AlN polycrystalline layer, a high-strength growth substrate having a relatively close lattice constant to that of the nitride semiconductor can be realized without using an expensive thick AlN single crystal plate. be able to.
- the laminated board disclosed in the present specification has a metal component-containing region in which the metal component is dispersed and introduced at the interface portion between the AlN single crystal layer and the AlN polycrystalline layer. Therefore, for example, after the ultraviolet light emitting device is formed on the AlN single crystal layer of the laminated plate, the laminated plate is irradiated with a laser from the AlN polycrystalline layer side so that the metal component in the metal component-containing region absorbs the laser. , The back surface side (the AlN polycrystalline layer side on which the functional layer of the ultraviolet light emitting device is not provided) can be lifted off from the metal component-containing region.
- the manufacturing time of the ultraviolet light emitting device can be shortened. That is, even when the ultraviolet light emitting device is manufactured using the thick laminated plate, it is possible to suppress an increase in the time required for manufacturing the ultraviolet light emitting device. Further, the thinning of the laminated plate by laser lift-off can reduce the force (vibration) applied to the functional layer of the ultraviolet light emitting device as compared with the thinning by mechanical polishing, and the influence on the functional layer can be reduced. Can be done.
- the metal component-containing region can be distinguished from the portion other than the metal component-containing region by observing the laminated board using an SEM or the like.
- the laminated board disclosed in the present specification is not particularly limited, but may have a thickness (distance between the front and back surfaces including the AlN single crystal layer and the AlN polycrystalline layer) of 0.5 to 10.0 mm.
- the metal component-containing region may be provided at a portion in contact with the interface between the AlN single crystal layer and the AlN polycrystalline layer. That is, the metal component-containing region may be provided in the AlN single crystal layer, may be provided in the AlN polycrystalline layer, or may be provided across both the AlN single crystal layer and the AlN polycrystalline layer. It may be provided.
- the thickness of the metal component-containing region may be, for example, 0.1 ⁇ m or more and 5.0 ⁇ m or less. That is, the metal component-containing region is locally provided in the thickness direction from the front surface to the back surface of the laminated board.
- the thickness of the metal component-containing region is 0.1 ⁇ m or more, when the laminated plate is irradiated with the laser, the metal component sufficiently absorbs the laser, the metal component is sublimated, and fine particles are contained in the metal component-containing region. Cracks can be generated and the AlN polycrystalline layer can be lifted off.
- the laminated plate can be suitably laser lifted off without adversely affecting the ultraviolet light emitting device.
- the thickness of the metal component-containing region may be 0.2 ⁇ m or more, 0.3 ⁇ m or more, 0.5 ⁇ m or more, 0.7 ⁇ m or more, and 1.0 ⁇ m. It may be the above, and may be 1.5 ⁇ m or more.
- the thickness of the metal component-containing region may be 4.5 ⁇ m or less, 4.0 ⁇ m or less, 3.5 ⁇ m or less, or 3.0 ⁇ m or less.
- the distance between adjacent metal components in the metal component-containing region may be 1 ⁇ m or more and 300 ⁇ m or less.
- the gap between the metal components may be 1 ⁇ m or more and 300 ⁇ m or less. According to such a configuration, if it is 1 ⁇ m or more, it is possible to suppress an adverse effect on the ultraviolet light emitting device due to cracks generated in the metal component-containing region. Further, if the thickness is 300 ⁇ m or less, cracks generated in the metal component-containing region are connected, and the back surface side of the AlN single crystal plate can be reliably separated by laser lift-off.
- the "adjacent metal components” mean metal components adjacent to each other in a direction (substantially parallel) along the end face in the thickness direction of the AlN polycrystalline layer.
- the distance between adjacent metal components may be 2 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, and 25 ⁇ m or more. Further, the distance between the metal components in the metal component-containing region may be 275 ⁇ m or less, 250 ⁇ m or less, 200 ⁇ m or less, 150 ⁇ m or less, or 100 ⁇ m or less. ..
- the metal component-containing region may contain at least one metal component selected from Al, Ga, Cu, Fe, Mo, Ni, Ta, and Ti, and the metal component may be contained. At least one of the above may be contained as a main component.
- a main component containing at least one of the metal components means that the metal component-containing region contains 50% by weight or more of the metal component.
- the metal component in the metal component-containing region may be, for example, a simple substance metal, an alloy containing the metal component, an oxide containing the metal component, a composite oxide, or a nitride. , Composite nitride, and composite oxynitride.
- the metal component-containing region may particularly contain at least one metal component selected from Al, Ga, Cu, and Ni.
- the above-mentioned metal component material is relatively easily available, and in particular, it easily absorbs laser light, so that it can be suitably laser lifted off.
- the metal component may be in the form of particles.
- the metal component particles containing the metal component
- the metal component may have an aspect ratio of more than 1 and 10 or less.
- the metal component may exist in the metal component-containing region so that the long side is along the first surface (or the first surface and the second surface) (substantially parallel).
- the long side of the metal component may be arranged so as to form an angle of less than 20 degrees with respect to the first surface.
- the metal component can be easily introduced into the AlN single crystal plate.
- the aspect ratio may be 0.5 or more, 1.0 or more, 1.5 or more, or 2.0 or more. Further, the aspect ratio may be 8 or less, 7 or less, 5 or less, or 3 or less.
- the Young's modulus of the metal component-containing region becomes smaller than the Young's modulus of the AlN single crystal layer and the AlN polycrystalline layer. Therefore, if a metal component-containing region is provided at the interface between the AlN single crystal layer and the AlN polycrystalline layer, the strain caused by the difference in thermal expansion coefficient between the AlN single crystal layer and the AlN polycrystalline layer can be alleviated. Can be done. Therefore, during heat treatment or the like, the force applied from the AlN polycrystalline layer to the AlN single crystal layer can be reduced based on the difference in the coefficient of thermal expansion between the AlN single crystal layer and the AlN polycrystalline layer. As a result, it is possible to reduce the occurrence of warpage and cracks in the AlN single crystal layer.
- Example 1 Hereinafter, the laminated board 10 according to the embodiment will be described.
- the laminated board 10 is used as a handling substrate for manufacturing the ultraviolet light emitting device 1. Therefore, before explaining the laminated plate 10 in detail, the ultraviolet light emitting device 1 using the laminated plate 10 as a handling substrate will be briefly described.
- the ultraviolet light emitting device 1 is an ultraviolet light emitting diode (UV LED), and includes an AlN single crystal layer 12, an n-type nitride semiconductor layer 2, a p-type nitride semiconductor layer 3, and a light emitting layer 4.
- the n-type nitride semiconductor layer 2 is provided on the surface of the AlN single crystal layer 12.
- the light emitting layer 4 is provided on a part of the surface of the n-type nitride semiconductor layer 2 (on the right side in FIG. 1). Therefore, the surface of the n-type nitride semiconductor layer 2 is partially provided with the light emitting layer 4, and the other parts are exposed.
- a p-type nitride semiconductor layer 3 is provided on the surface of the light emitting layer 4.
- the light emitting layer 4 is provided between the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3. Electrodes (not shown) are provided on the surface of the p-type nitride semiconductor layer 3 and the exposed portion of the surface of the n-type nitride semiconductor layer 2, respectively.
- the n-type nitride semiconductor layer 2 may actually be formed of a plurality of layers, and the p-type nitride semiconductor layer 3 may be formed of a plurality of layers.
- the light emitting layer 4 may be formed of a plurality of layers.
- each layer of the n-type nitride semiconductor layer 2, each layer of the p-type nitride semiconductor layer 3, and each layer of the light emitting layer 4 can be appropriately selected according to the application of the ultraviolet light emitting device 1.
- the n-type nitride semiconductor layer 2 is formed on the surface of the laminated plate 10 of this embodiment (specifically, the surface of the AlN single crystal layer 12).
- the light emitting layer 4 is formed on the surface of the formed n-type nitride semiconductor layer 2, and the p-type nitride semiconductor layer 3 is formed on the surface of the formed light emitting layer 4.
- a part of the light emitting layer 4 and the p-type nitride semiconductor layer 3 is removed to expose a part of the surface of the n-type nitride semiconductor layer 2.
- the nitride semiconductor layers 2, 3 and 4 are formed on the surface of the laminated plate 10 (the surface of the AlN single crystal layer 12). Further, in order to facilitate the film formation and processing of the n-type nitride semiconductor layer 2, the p-type nitride semiconductor layer 3, and the light emitting layer 4, a thick laminate is used as a handling substrate when manufacturing the ultraviolet light emitting device 1. The plate 10 is used.
- the laminated plate 10 since the AlN single crystal layer 12 and the AlN polycrystalline layer 14 are laminated on the laminated plate 10, if the laminated plate 10 is used as it is as the substrate of the ultraviolet light emitting device 1, the AlN polycrystalline layer 14 emits light ( Ultraviolet light) becomes difficult to pass through the laminated plate 10. Therefore, after the n-type nitride semiconductor layer 2, the p-type nitride semiconductor layer 3, and the light emitting layer 4 are formed, the laminated plate 10 is thinned to a required thickness. That is, the AlN polycrystalline layer 14 which is an unnecessary portion is removed from the laminated plate 10 so that only the AlN single crystal layer 12 required as a substrate is left.
- the n-type nitride semiconductor layer 2, the p-type nitride semiconductor layer 3, and the light emitting layer 4 may be collectively referred to as a “functional layer”.
- the laminated board 10 includes an AlN single crystal layer 12 and an AlN polycrystalline layer 14.
- the AlN single crystal layer 12 is composed of the single crystal AlN.
- the AlN polycrystalline layer 14 is composed of polycrystalline AlN.
- single crystal AlN and polycrystalline AlN are defined as follows. Counting time under the conditions of voltage 40 kV, current 40 mA, collimator diameter 0.5 mm, anti-scattering slit 3 mm, ⁇ step width 0.01 ° using XRD device (D8-DISCOVER manufactured by Bruker-AXS) using CuK ⁇ wire. The XRC profile of the (002) plane of the AlN single crystal layer is measured in 1 second.
- Both the AlN single crystal layer 12 and the AlN polycrystalline layer 14 can be formed by, for example, a sublimation method.
- the method for forming the AlN single crystal layer 12 and the AlN polycrystal layer 14 is not particularly limited, and the AlN single crystal layer 12 and the AlN polycrystal layer 14 are, for example, a CVD method, an HVPE method, an MBE method, or sputtering.
- Use other methods such as vapor phase film formation method such as method, liquid phase film formation method such as hydrothermal method and Na flux method, and room temperature bonding in which single crystal AlN and multicrystal AlN are bonded by surface activation method. Can also be formed.
- the laminated board 10 includes a metal component-containing region 16 provided between the front surface 20 and the back surface 22.
- the metal component-containing region 16 is arranged at the interface portion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14 (hereinafter, also simply referred to as “intersection portion”), and in this embodiment, the metal component-containing region 16 is arranged.
- the metal component-containing region 16 is arranged so as to straddle both the AlN single crystal layer 12 and the AlN polycrystalline layer 14 in the interface portion.
- the ultraviolet light emitting device 1 is manufactured by using the laminated plate 10 as the handling substrate in the laminated plate 10, the surface on which the functional layer is formed (that is, the AlN single crystal layer 12 in the thickness direction) is formed.
- the exposed surface is referred to as the front surface 20, and the surface on the opposite side thereof (that is, the exposed surface of the AlN polycrystalline layer 14 in the thickness direction) is referred to as the back surface 22.
- the metal component-containing region 16 is locally provided in the thickness direction of the laminated plate 10, and is provided substantially parallel to the back surface 14.
- the metal component-containing region 16 is arranged across both the AlN single crystal layer 12 and the AlN polycrystalline layer 14 at the interface between the AlN single crystal layer 12 and the AlN polycrystalline layer 14.
- a plurality of metal particles are dispersed and introduced in the AlN single crystal layer 12 and the AlN polycrystalline layer 14.
- the metal particles in the metal component-containing region 16 have an aspect ratio of more than 1 and adjusted to 10 or less, and their long sides are arranged along the front surface 12 and the back surface 14. Further, the metal particles are arranged at intervals so that the distance between the adjacent metal components is 1 ⁇ m to 300 ⁇ m.
- the method of introducing metal particles (metal components) is not particularly limited.
- the metal component-containing region 16 can be formed by mixing a raw material containing a metal component with a raw material (solid raw material or raw material gas) forming the AlN single crystal layer 12.
- a raw material solid raw material or raw material gas
- the metal components are made into the AlN single crystal layer 12 and the AlN polycrystalline layer 14.
- the metal component-containing region 16 can also be formed by diffusing the layer 14 in the vicinity of the interface portion.
- the metal particles are simple substances selected from Al, Ga, Cu, Fe, Mo, Ni, Ta, and Ti.
- the metal component-containing region 16 contains at least one of the above metal components as a main component.
- the metal particles may be an alloy containing the metal element, an oxide or a composite oxide containing the metal element, or a nitride or a composite nitride containing the metal component. It may be a composite oxynitride containing the above-mentioned metal component.
- the impurity metal component-containing region 16 prevents the laser light from passing from the front surface 20 to the back surface 22 (or from the back surface 22 to the front surface 20) of the laminated plate 10 due to the introduction of the metal component. That is, specifically, when the ultraviolet laser beam is irradiated from the back surface 22 of the laminated plate 10, the metal particles in the metal component-containing region 16 absorb the ultraviolet laser beam. As a result, the metal component of the metal component-containing region 16 is sublimated (vaporized), fine cracks are generated in the metal component-containing region 16, and the AlN polycrystalline layer 14 can be removed (lifted off). As the metal particles introduced into the metal component-containing region 16, those that easily absorb the laser beam are selected. Specifically, metal particles having a wavelength of 245 nm to 1200 nm, which are easily absorbed, are introduced into the metal component-containing region 16.
- Table 1 below shows an example of a metal that easily absorbs light having a wavelength of 245 nm to 1200 nm.
- the metals shown in Table 1 (Al, Ga, Cu, Fe, Mo, Ni, Ta, Ti) preferably absorb laser light having a wavelength of 245 nm to 1200 nm.
- Table 1 shows the absorbance of the metal with respect to light having wavelengths of 400 nm and 800 nm.
- the metals shown in Table 1 (Al, Ga, Cr, Cu, Fe, Mo, Ni, Ta, Ti) absorb light having a wavelength of 245 nm to 1200 nm well.
- the metal particles containing these elements absorb and vaporize the laser beam when irradiated with the laser beam having a wavelength of 245 nm to 1200 nm. Since the metal component-containing region 16 is provided substantially parallel to the back surface 22 of the laminated plate 10, the laminated plate 10 is separated at a portion (that is, an interface portion) in which metal particles containing the above elements are introduced. .. Therefore, the laminated plate 10 in which the metal particles containing at least one of the above elements are introduced into the interface portion is thinned in the metal component-containing region 16 (that is, the interface portion) by laser lift-off. Thereby, the AlN polycrystalline layer 14 can be separated from the laminated board 10.
- the laminated plate 10 separates substantially the entire AlN polycrystalline layer 14. Therefore, the time for mechanical polishing after the laser lift-off can be shortened.
- the metal component-containing region 16 alleviates the strain caused by the difference in the coefficient of thermal expansion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14 at the interface portion. can do.
- the single crystal AlN constituting the AlN single crystal layer 12 and the polycrystalline AlN constituting the AlN polycrystalline layer 14 have relatively close coefficients of thermal expansion, but are slightly different from each other. Therefore, in the heat treatment step when manufacturing the ultraviolet light emitting device 1, the AlN single crystal layer 12 (the portion where the metal component-containing region 16 is not provided) and the AlN polycrystalline layer 14 (the portion where the metal component-containing region 16 is not provided) are not provided.
- the laminated board 10 of this embodiment includes a metal component-containing region 16 at an interface portion.
- the Young's modulus of the metal component-containing region 16 is smaller than the Young's modulus of the AlN single crystal layer 12 and the AlN polycrystalline layer 14. Therefore, the metal component-containing region 16 can alleviate the strain caused by the difference in the coefficient of thermal expansion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14 at the interface portion.
- the adverse effect on the functional layer of the ultraviolet light emitting device 1 can be reduced. Can be done.
- the thickness L1 of the laminated board 10 is adjusted to 0.5 mm to 10.0 mm, and the thickness L2 of the metal component-containing region 16 is adjusted to 0.1 ⁇ m to 5.0 ⁇ m. ing.
- the thickness L1 of the laminated plate 10 is the length between the front surface 20 and the back surface 22, and indicates the length in the direction perpendicular to the front surface 20 and the back surface 22.
- the thickness L1 of the laminated plate 10 is the length from the exposed surface of the AlN single crystal layer 12 to the exposed surface of the AlN polycrystalline layer 14 via the interface portion.
- the thickness L2 of the metal component-containing region 16 also indicates the length in the direction perpendicular to the front surface 20 and the back surface 22.
- the metal particles (metal component) reliably absorb the laser beam (the laser beam does not pass through the metal component-containing region 16), and the metal component.
- the effect of generating fine cracks in the content region 16 can be obtained. That is, the laser lift-off can be performed in the metal component-containing region 16.
- the thickness L2 by setting the thickness L2 to 0.1 ⁇ m or more, the effect of reducing the defect (deterioration of the AlN single crystal layer 12) caused by the difference in the coefficient of thermal expansion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14 can be further reduced. You can definitely get it.
- the thickness L2 to 5.0 ⁇ m or less, the generation of cracks due to the irradiation of the laser beam can be contained within the metal component-containing region 16. Therefore, it is possible to suppress an adverse effect on the ultraviolet light emitting device.
- Example 2 In Example 1 above, the metal component-containing region 16 is arranged in both the AlN single crystal layer 12 and the AlN polycrystalline layer 14, but is not limited to such a configuration.
- the metal component-containing region may be arranged at the interface between the AlN single crystal layer 12 and the AlN polycrystalline layer 14.
- the impurity region 116 is arranged in the AlN single crystal layer 12. It may have been done.
- the metal component-containing region 116 is different from the metal component-containing region 16 of Example 1, and the other configurations are substantially the same. Therefore, the description of the same configuration as that of the laminated board 10 of the first embodiment will be omitted.
- the metal component-containing region 116 of the laminated board 110 is arranged in the AlN single crystal layer 12. That is, the metal component is introduced into the AlN single crystal layer 12 at the interface portion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14. Since the type of the metal component introduced into the metal component-containing region 116 and the thickness L2 of the metal component-containing region 116 are the same as those of the metal component-containing region 16 of Example 1, detailed description thereof will be omitted. ..
- the laminated plate 110 is separated in the metal component-containing region 116 by laser lift-off. That is, since the metal component-containing region 116 is arranged in the AlN single crystal layer 12 at the interface portion, the entire AlN polycrystalline layer 14 is separated from the laminated plate 110 by laser lift-off. Therefore, the AlN polycrystalline layer 14 can be suitably separated from the laminated plate 10 by laser lift-off. Further, the metal component-containing region 116 reduces the defect (deterioration of the AlN single crystal layer 12) caused by the difference in the coefficient of thermal expansion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14.
- the metal component-containing region may be arranged at the interface between the AlN single crystal layer 12 and the AlN polycrystalline layer 14.
- the metal component-containing region 216 is the AlN polycrystalline layer. It may be arranged in 14.
- the metal component-containing region 216 is different from the metal component-containing region 16 of Example 1, and the other configurations are substantially the same. Therefore, the description of the same configuration as that of the laminated board 10 of the first embodiment will be omitted.
- the metal component-containing region 216 of the laminated board 210 is arranged in the AlN polycrystalline layer 14. That is, the metal component is introduced into the AlN polycrystalline layer 14 at the interface between the AlN single crystal layer 12 and the AlN polycrystalline layer 14. Since the type of the metal component introduced into the metal component-containing region 216 and the thickness L2 of the metal component-containing region 116 are the same as those of the metal component-containing region 16 of Example 1, detailed description thereof will be omitted. ..
- the laminated plate 210 is separated in the metal component-containing region 216 by laser lift-off. That is, even if the metal component-containing region 216 is provided in the AlN polycrystalline layer 14, the metal component-containing region 216 is arranged in contact with the interface portion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14.
- the laminated plate 110 is separated at the interface portion by laser lift-off. Therefore, since the AlN polycrystalline layer 14 is substantially removed by the laser lift-off, the mechanical polishing time can be significantly shortened as compared with the conventional method of thinning only by mechanical polishing.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
Abstract
This laminate board is provided with an AlN polycrystalline layer, an AlN single-crystal layer formed on the AlN polycrystalline layer, and a metal component-containing region which contacts the area of interface between the AlN polycrystalline layer and the AlN single-crystal layer and in which multiple metal components are introduced in a dispersed manner.
Description
本明細書に開示する技術は、AlN単結晶層とAlN多結晶層とが積層する積層板に関する。
The technique disclosed in the present specification relates to a laminated plate in which an AlN single crystal layer and an AlN polycrystalline layer are laminated.
紫外発光デバイスの基板として、AlN単結晶板が用いられることがある。例えば、非特許文献1には、AlN単結晶板上に作製される紫外発光デバイスの製造方法が開示されている。非特許文献1では、AlN単結晶板上に紫外発光デバイスの機能層が成膜される。AlN単結晶板上に機能層が成膜された後、紫外光透過率を向上させるために、AlN単結晶板は、機械研磨により薄膜化される。
An AlN single crystal plate may be used as a substrate for an ultraviolet light emitting device. For example, Non-Patent Document 1 discloses a method for manufacturing an ultraviolet light emitting device manufactured on an AlN single crystal plate. In Non-Patent Document 1, a functional layer of an ultraviolet light emitting device is formed on an AlN single crystal plate. After the functional layer is formed on the AlN single crystal plate, the AlN single crystal plate is thinned by mechanical polishing in order to improve the ultraviolet light transmittance.
非特許文献1に記載される紫外発光デバイスでは、AlN単結晶板を基板として用いている。紫外発光デバイスの機能層を成膜する工程では基板の破損を防ぐために肉厚の基板が用いられるが、肉厚のAlN単結晶板は高価なため、AlN単結晶板にサポート基板としてAlN多結晶板を貼り合わせた積層板が、紫外発光デバイスを作製するためのハンドリング基板として用いられることがある。そのため、積層板のAlN単結晶板側の表面上に機能層を成膜した後、機械研磨によりAlN多結晶板は除去される。しかしながら、AlN多結晶板を機械研磨で薄膜化すると、機械研磨の際に機能層に影響が生じることがある。よって、従来は、AlN多結晶板を機械研磨で薄膜化する際は、機能層に影響が及ぶことを抑制するため、慎重に機械研磨を行うことが必要である。その結果、紫外発光デバイスを製造するために要する時間が増大する。そのため、容易に薄膜化可能な積層板が必要とされている。
The ultraviolet light emitting device described in Non-Patent Document 1 uses an AlN single crystal plate as a substrate. In the process of forming the functional layer of the ultraviolet light emitting device, a thick substrate is used to prevent damage to the substrate. However, since a thick AlN single crystal plate is expensive, an AlN polycrystalline plate is used as a support substrate on the AlN single crystal plate. A laminated board in which the boards are laminated may be used as a handling substrate for manufacturing an ultraviolet light emitting device. Therefore, after forming a functional layer on the surface of the laminated plate on the AlN single crystal plate side, the AlN polycrystalline plate is removed by mechanical polishing. However, if the AlN polycrystalline plate is thinned by mechanical polishing, the functional layer may be affected during mechanical polishing. Therefore, conventionally, when thinning an AlN polycrystalline plate by mechanical polishing, it is necessary to carefully perform mechanical polishing in order to suppress the influence on the functional layer. As a result, the time required to manufacture the ultraviolet light emitting device increases. Therefore, there is a need for a laminated plate that can be easily thinned.
本明細書は、AlN単結晶層とAlN多結晶層とが積層する積層板において、積層板を容易に薄膜化するための技術を開示する。
This specification discloses a technique for easily thinning a laminated plate in a laminated plate in which an AlN single crystal layer and an AlN polycrystalline layer are laminated.
本明細書に開示する積層板は、AlN多結晶層と、AlN多結晶層上に形成されているAlN単結晶層と、AlN単結晶層とAlN多結晶層との界面部分に接しており、金属成分が複数分散して導入されている金属成分含有領域と、を備える。
The laminate disclosed in the present specification is in contact with the AlN polycrystalline layer, the AlN single crystal layer formed on the AlN polycrystalline layer, and the interface portion between the AlN single crystal layer and the AlN polycrystalline layer. It includes a metal component-containing region in which a plurality of metal components are dispersed and introduced.
上記の積層板は、AlN単結晶層とAlN多結晶層との界面部分に金属成分が複数分散して導入されている。そのため、例えば、積層板にレーザ照射し、金属成分含有領域を昇華(気化)させることにより、金属成分含有領域内に微細なクラックを発生させ、積層板を薄膜化することができる。すなわち、上記積層板は、レーザリフトオフ等の機械研磨以外の方法で、AlN多結晶層を除去することができる。そのため、AlN多結晶層を容易に除去できると共に、AlN多結晶層を除去する際に紫外発光デバイス等の機能層に与える影響を低減することができる。
In the above-mentioned laminated board, a plurality of metal components are dispersed and introduced at the interface portion between the AlN single crystal layer and the AlN polycrystalline layer. Therefore, for example, by irradiating the laminated board with a laser to sublimate (vaporize) the metal component-containing region, fine cracks can be generated in the metal component-containing region and the laminated board can be thinned. That is, the AlN polycrystalline layer can be removed from the laminated plate by a method other than mechanical polishing such as laser lift-off. Therefore, the AlN polycrystalline layer can be easily removed, and the influence on the functional layer of the ultraviolet light emitting device or the like when the AlN polycrystalline layer is removed can be reduced.
以下に説明する実施例の主要な特徴を列記しておく。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。
The main features of the examples described below are listed. It should be noted that the technical elements described below are independent technical elements and exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. Absent.
本明細書に開示する積層板は、AlN単結晶層とAlN多結晶層の積層体である。単結晶AlNは、例えばサファイアと比較して、AlxGayN(0≦x≦1,0<y≦1)等の窒化物半導体と格子定数が近い若しくは同じである。そのため、本明細書に開示する積層板のAlN単結晶層は、窒化物半導体を機能層として有する紫外発光デバイス(UV LED)の成長基板として有用である。また、AlN単結晶板は、例えばサファイアと比較して、AlxGayN(0≦x≦1,0<y≦1)等の窒化物半導体と熱膨張係数が近い若しくは同じである。そのため、紫外発光デバイスを作製する際のハンドリング基板として有用である。なお、紫外発光デバイスを作製する際のハンドリング基板としてAlN単結晶板のみを用いる場合、強度を確保するために肉厚のAlN単結晶板を用いる必要があるが、肉厚のAlN単結晶板は高価である。本明細書に開示する積層板は、AlN単結晶層の裏面側(紫外発光デバイスの機能層が設けられない側)にAlN多結晶層が設けられている。AlN多結晶層は、比較的安価に入手(あるいは、製造)することができる。そのため、AlN単結晶層とAlN多結晶層を積層することによって、高価な肉厚のAlN単結晶板を用いることなく、窒化物半導体と比較的格子定数が近く、高強度の成長基板を実現することができる。
The laminate disclosed in the present specification is a laminate of an AlN single crystal layer and an AlN polycrystalline layer. Single crystal AlN, for example, compared to sapphire is a Al x Ga y N (0 ≦ x ≦ 1,0 <y ≦ 1) or the same close nitride semiconductor and the lattice constant of such. Therefore, the AlN single crystal layer of the laminated plate disclosed in the present specification is useful as a growth substrate for an ultraviolet light emitting device (UV LED) having a nitride semiconductor as a functional layer. Further, AlN single crystal plate, for example as compared to sapphire, Al x Ga y N (0 ≦ x ≦ 1,0 <y ≦ 1) nitride semiconductor and thermal expansion coefficient, such as are close or the same. Therefore, it is useful as a handling substrate when manufacturing an ultraviolet light emitting device. When only an AlN single crystal plate is used as a handling substrate when manufacturing an ultraviolet light emitting device, it is necessary to use a thick AlN single crystal plate in order to secure strength, but a thick AlN single crystal plate is used. It is expensive. The laminate disclosed in the present specification is provided with an AlN polycrystalline layer on the back surface side of the AlN single crystal layer (the side on which the functional layer of the ultraviolet light emitting device is not provided). The AlN polycrystalline layer can be obtained (or manufactured) at a relatively low cost. Therefore, by laminating the AlN single crystal layer and the AlN polycrystalline layer, a high-strength growth substrate having a relatively close lattice constant to that of the nitride semiconductor can be realized without using an expensive thick AlN single crystal plate. be able to.
また、本明細書に開示する積層板は、AlN単結晶層とAlN多結晶層との界面部分に、金属成分が分散して導入されている金属成分含有領域を有する。そのため、例えば、積層板のAlN単結晶層上に紫外発光デバイスを作製した後に、AlN多結晶層側から積層板にレーザを照射することにより、金属成分含有領域内の金属成分にレーザを吸収させ、金属成分含有領域よりも裏面側(紫外発光デバイスの機能層が設けられていないAlN多結晶層側)をリフトオフすることができる。リフトオフされる(除去される)積層板の厚さに依らず短時間で積層板を薄膜化できるので、紫外発光デバイスの製造時間を短縮することができる。すなわち、肉厚の積層板を用いて紫外発光デバイスを作製した場合であっても、紫外発光デバイスを製造するために要する時間が増大することを抑制することができる。また、レーザリフトオフによる積層板の薄膜化は、機械研磨による薄膜化と比較して、紫外発光デバイスの機能層に加わる力(振動)を低減することができ、機能層に与える影響を低減することができる。なお、金属成分含有領域は、積層板をSEM等を用いて観察することによって金属成分含有領域以外の部分と区別することができる。なお、本明細書に開示する積層板は、特に限定されないが、厚さ(AlN単結晶層とAlN多結晶層を含む表裏面の距離)が0.5~10.0mmであってよい。なお、金属成分含有領域は、AlN単結晶層とAlN多結晶層との界面に接触する部分に設けられていればよい。すなわち、金属成分含有領域は、AlN単結晶層内に設けられていてもよく、AlN多結晶層内に設けられていてもよく、あるいは、AlN単結晶層とAlN多結晶層の双方に跨って設けられていてもよい。
Further, the laminated board disclosed in the present specification has a metal component-containing region in which the metal component is dispersed and introduced at the interface portion between the AlN single crystal layer and the AlN polycrystalline layer. Therefore, for example, after the ultraviolet light emitting device is formed on the AlN single crystal layer of the laminated plate, the laminated plate is irradiated with a laser from the AlN polycrystalline layer side so that the metal component in the metal component-containing region absorbs the laser. , The back surface side (the AlN polycrystalline layer side on which the functional layer of the ultraviolet light emitting device is not provided) can be lifted off from the metal component-containing region. Since the laminated board can be thinned in a short time regardless of the thickness of the laminated board that is lifted off (removed), the manufacturing time of the ultraviolet light emitting device can be shortened. That is, even when the ultraviolet light emitting device is manufactured using the thick laminated plate, it is possible to suppress an increase in the time required for manufacturing the ultraviolet light emitting device. Further, the thinning of the laminated plate by laser lift-off can reduce the force (vibration) applied to the functional layer of the ultraviolet light emitting device as compared with the thinning by mechanical polishing, and the influence on the functional layer can be reduced. Can be done. The metal component-containing region can be distinguished from the portion other than the metal component-containing region by observing the laminated board using an SEM or the like. The laminated board disclosed in the present specification is not particularly limited, but may have a thickness (distance between the front and back surfaces including the AlN single crystal layer and the AlN polycrystalline layer) of 0.5 to 10.0 mm. The metal component-containing region may be provided at a portion in contact with the interface between the AlN single crystal layer and the AlN polycrystalline layer. That is, the metal component-containing region may be provided in the AlN single crystal layer, may be provided in the AlN polycrystalline layer, or may be provided across both the AlN single crystal layer and the AlN polycrystalline layer. It may be provided.
本明細書に開示する積層板では、金属成分含有領域の厚さは、例えば、0.1μm以上、かつ、5.0μm以下であってもよい。すなわち、積層板の表面から裏面から至る厚さ方向において、金属成分含有領域は局所的に設けられている。金属成分含有領域の厚さが0.1μm以上であれば、積層板にレーザを照射した際に、金属成分が十分にレーザを吸収し、金属成分が昇華し、金属成分含有領域内に微細なクラックを発生させ、AlN多結晶層をリフトオフすることができる。また、5.0μm以下であれば、金属成分含有領域に発生するクラックが金属成分含有領域以外の部分に伸びることを抑制することができ(クラックを金属成分含有領域内に収まり易くすることができ)、紫外発光デバイスへの悪影響無く、積層板を好適にレーザリフトオフすることができる。なお、金属成分含有領域の厚さは、0.2μm以上であってよく、0.3μm以上であってよく、0.5μm以上であってよく、0.7μm以上であってよく、1.0μm以上であってよく、1.5μm以上であってもよい。また、金属成分含有領域の厚さは、4.5μm以下であってよく、4.0μm以下であってよく、3.5μm以下であってよく、3.0μm以下であってもよい。
In the laminated board disclosed in the present specification, the thickness of the metal component-containing region may be, for example, 0.1 μm or more and 5.0 μm or less. That is, the metal component-containing region is locally provided in the thickness direction from the front surface to the back surface of the laminated board. When the thickness of the metal component-containing region is 0.1 μm or more, when the laminated plate is irradiated with the laser, the metal component sufficiently absorbs the laser, the metal component is sublimated, and fine particles are contained in the metal component-containing region. Cracks can be generated and the AlN polycrystalline layer can be lifted off. Further, if it is 5.0 μm or less, it is possible to suppress the cracks generated in the metal component-containing region from extending to a portion other than the metal component-containing region (the cracks can be easily contained in the metal component-containing region). ), The laminated plate can be suitably laser lifted off without adversely affecting the ultraviolet light emitting device. The thickness of the metal component-containing region may be 0.2 μm or more, 0.3 μm or more, 0.5 μm or more, 0.7 μm or more, and 1.0 μm. It may be the above, and may be 1.5 μm or more. The thickness of the metal component-containing region may be 4.5 μm or less, 4.0 μm or less, 3.5 μm or less, or 3.0 μm or less.
本明細書に開示する積層板では、金属成分含有領域内において、隣り合う金属成分間の距離は、1μm以上、かつ、300μm以下であってもよい。換言すると、金属成分間の隙間が、1μm以上、かつ、300μm以下であってもよい。このような構成によると、1μm以上であれば、金属成分含有領域に発生するクラックによる紫外発光デバイスへの悪影響を抑制することができる。また、300μm以下であれば、金属成分含有領域に発生するクラックが連結し、レーザリフトオフによりAlN単結晶板の裏面側を確実に分離することができる。なお、「隣り合う金属成分」とは、AlN多結晶層の厚み方向の端面に沿った(略平行)な方向で隣り合う金属成分のことを意味する。隣り合う金属成分間の距離は、2μm以上であってよく、5μm以上であってよく、10μm以上であってよく、20μm以上であってよく、25μm以上であってもよい。また、金属成分含有領域内の金属成分間の距離は、275μm以下であってよく、250μm以下であってよく、200μm以下であってよく、150μm以下であってよく、100μm以下であってもよい。
In the laminated board disclosed in the present specification, the distance between adjacent metal components in the metal component-containing region may be 1 μm or more and 300 μm or less. In other words, the gap between the metal components may be 1 μm or more and 300 μm or less. According to such a configuration, if it is 1 μm or more, it is possible to suppress an adverse effect on the ultraviolet light emitting device due to cracks generated in the metal component-containing region. Further, if the thickness is 300 μm or less, cracks generated in the metal component-containing region are connected, and the back surface side of the AlN single crystal plate can be reliably separated by laser lift-off. The "adjacent metal components" mean metal components adjacent to each other in a direction (substantially parallel) along the end face in the thickness direction of the AlN polycrystalline layer. The distance between adjacent metal components may be 2 μm or more, 5 μm or more, 10 μm or more, 20 μm or more, and 25 μm or more. Further, the distance between the metal components in the metal component-containing region may be 275 μm or less, 250 μm or less, 200 μm or less, 150 μm or less, or 100 μm or less. ..
本明細書に開示する積層板では、金属成分含有領域は、Al、Ga、Cu、Fe、Mo、Ni、Ta、Tiから選択される少なくとも1つの金属成分を含有してもよく、上記金属成分の少なくとも1つを主成分として含有してもよい。また、「金属成分の少なくとも1つを主成分」とは、金属成分含有領域に、上記金属成分が50重量%以上含まれることを意味する。これらの元素は、所定の範囲の波長の光、具体的には245~1200nmの光を吸収する性能が高く、レーザ光が吸収されやすい。そのため、このような構成によると、積層板を好適にレーザリフトオフすることができる。なお、金属成分含有領域内における金属成分は、例えば、単体金属であってもよいし、上記金属成分を含む合金であってもよいし、上記金属成分を含む酸化物、複合酸化物、窒化物、複合窒化物、及び、複合酸窒化物であってもよい。
In the laminated board disclosed in the present specification, the metal component-containing region may contain at least one metal component selected from Al, Ga, Cu, Fe, Mo, Ni, Ta, and Ti, and the metal component may be contained. At least one of the above may be contained as a main component. Further, "a main component containing at least one of the metal components" means that the metal component-containing region contains 50% by weight or more of the metal component. These elements have a high ability to absorb light having a wavelength in a predetermined range, specifically, light having a wavelength of 245 to 1200 nm, and are easily absorbed by laser light. Therefore, according to such a configuration, the laminated board can be suitably laser lifted off. The metal component in the metal component-containing region may be, for example, a simple substance metal, an alloy containing the metal component, an oxide containing the metal component, a composite oxide, or a nitride. , Composite nitride, and composite oxynitride.
本明細書に開示する積層板では、金属成分含有領域は、特に、Al、Ga、Cu、Niから選択される少なくとも1つの金属成分を含有してもよい。上記の金属成分の材料は、比較的容易に入手可能であり、また、特にレーザ光を吸収し易いため、好適にレーザリフトオフすることができる。
In the laminated board disclosed in the present specification, the metal component-containing region may particularly contain at least one metal component selected from Al, Ga, Cu, and Ni. The above-mentioned metal component material is relatively easily available, and in particular, it easily absorbs laser light, so that it can be suitably laser lifted off.
本明細書に開示する積層板では、金属成分は、粒子状の形態を成していてよい。この場合、金属成分(金属成分を含む粒子)は、アスペクト比が1より大きく、かつ、10以下であってもよい。この場合、金属成分は、金属成分含有領域内において、長辺が第一面(または、第一面及び第二面)に沿うように(略平行に)存在していてよい。具体的には、金属成分の長辺が、第一面に対して20度未満の角度を成すように配置されていてよい。金属成分のアスペクト比が1より大きければ、第一面に沿った面の面積が十分に大きくなり、レーザの吸収効率が向上し、レーザリフトオフを効率よく行うことができると共に、金属成分含有領域に発生するクラックが第一面(または、第一面及び第二面)と略平行に沿って発生し易くなるため、紫外発光デバイスへの悪影響を抑制できる。また、アスペクト比が10以下であれば、AlN単結晶板内に金属成分を容易に導入することができる。なお、アスペクト比は、0.5以上であってよく、1.0以上であってよく、1.5以上であってよく、2.0以上であってもよい。また、アスペクト比は、8以下であってよく、7以下であってよく、5以下であってよく、3以下であってもよい。
In the laminated board disclosed in the present specification, the metal component may be in the form of particles. In this case, the metal component (particles containing the metal component) may have an aspect ratio of more than 1 and 10 or less. In this case, the metal component may exist in the metal component-containing region so that the long side is along the first surface (or the first surface and the second surface) (substantially parallel). Specifically, the long side of the metal component may be arranged so as to form an angle of less than 20 degrees with respect to the first surface. When the aspect ratio of the metal component is larger than 1, the area of the surface along the first surface becomes sufficiently large, the absorption efficiency of the laser is improved, the laser lift-off can be performed efficiently, and the metal component-containing region is formed. Since the cracks that are generated are likely to occur along substantially parallel to the first surface (or the first surface and the second surface), the adverse effect on the ultraviolet light emitting device can be suppressed. Further, when the aspect ratio is 10 or less, the metal component can be easily introduced into the AlN single crystal plate. The aspect ratio may be 0.5 or more, 1.0 or more, 1.5 or more, or 2.0 or more. Further, the aspect ratio may be 8 or less, 7 or less, 5 or less, or 3 or less.
また、金属成分含有領域に上記金属成分を含む材料を導入すると、金属成分含有領域のヤング率は、AlN単結晶層及びAlN多結晶層のヤング率より小さくなる。そのため、AlN単結晶層とAlN多結晶層との界面部分に金属成分含有領域が設けられていると、AlN単結晶層とAlN多結晶層の熱膨張係数の差に起因する歪みを緩和することができる。そのため、熱処理等の際、AlN単結晶層とAlN多結晶層の熱膨張係数の差に基づいてAlN多結晶層からAlN単結晶層に加わる力を低減することができる。その結果、AlN単結晶層に反りやクラックが発生することを低減することができる。
Further, when the material containing the metal component is introduced into the metal component-containing region, the Young's modulus of the metal component-containing region becomes smaller than the Young's modulus of the AlN single crystal layer and the AlN polycrystalline layer. Therefore, if a metal component-containing region is provided at the interface between the AlN single crystal layer and the AlN polycrystalline layer, the strain caused by the difference in thermal expansion coefficient between the AlN single crystal layer and the AlN polycrystalline layer can be alleviated. Can be done. Therefore, during heat treatment or the like, the force applied from the AlN polycrystalline layer to the AlN single crystal layer can be reduced based on the difference in the coefficient of thermal expansion between the AlN single crystal layer and the AlN polycrystalline layer. As a result, it is possible to reduce the occurrence of warpage and cracks in the AlN single crystal layer.
(実施例1)
以下、実施例に係る積層板10について説明する。積層板10は、紫外発光デバイス1を作製するためのハンドリング基板として用いられる。そこで、積層板10について詳細に説明する前に、積層板10をハンドリング基板として用いる紫外発光デバイス1について簡単に説明する。 (Example 1)
Hereinafter, thelaminated board 10 according to the embodiment will be described. The laminated board 10 is used as a handling substrate for manufacturing the ultraviolet light emitting device 1. Therefore, before explaining the laminated plate 10 in detail, the ultraviolet light emitting device 1 using the laminated plate 10 as a handling substrate will be briefly described.
以下、実施例に係る積層板10について説明する。積層板10は、紫外発光デバイス1を作製するためのハンドリング基板として用いられる。そこで、積層板10について詳細に説明する前に、積層板10をハンドリング基板として用いる紫外発光デバイス1について簡単に説明する。 (Example 1)
Hereinafter, the
紫外発光デバイス1は、紫外発光ダイオード(UV LED)であり、AlN単結晶層12とn型窒化物半導体層2とp型窒化物半導体層3と発光層4を備えている。n型窒化物半導体層2は、AlN単結晶層12の表面に設けられている。発光層4は、n型窒化物半導体層2の表面のうちの一部(図1では右側)に設けられている。したがって、n型窒化物半導体層2の表面は、一部に発光層4が設けられ、その他の部分は露出している。発光層4の表面には、p型窒化物半導体層3が設けられている。すなわち、発光層4は、n型窒化物半導体層2とp型窒化物半導体層3の間に設けられる。p型窒化物半導体層3の表面と、n型窒化物半導体層2の表面の露出している部分には、図示しない電極がそれぞれ設けられている。なお、図示は省略するが、実際には、n型窒化物半導体層2は、複数の層により形成されていてもよく、p型窒化物半導体層3は、複数の層により形成されていてもよく、発光層4は、複数の層により形成されていてもよい。n型窒化物半導体層2の各層とp型窒化物半導体層3の各層と発光層4の各層の材料及び層数は、紫外発光デバイス1の用途に応じて適宜選択することができる。
The ultraviolet light emitting device 1 is an ultraviolet light emitting diode (UV LED), and includes an AlN single crystal layer 12, an n-type nitride semiconductor layer 2, a p-type nitride semiconductor layer 3, and a light emitting layer 4. The n-type nitride semiconductor layer 2 is provided on the surface of the AlN single crystal layer 12. The light emitting layer 4 is provided on a part of the surface of the n-type nitride semiconductor layer 2 (on the right side in FIG. 1). Therefore, the surface of the n-type nitride semiconductor layer 2 is partially provided with the light emitting layer 4, and the other parts are exposed. A p-type nitride semiconductor layer 3 is provided on the surface of the light emitting layer 4. That is, the light emitting layer 4 is provided between the n-type nitride semiconductor layer 2 and the p-type nitride semiconductor layer 3. Electrodes (not shown) are provided on the surface of the p-type nitride semiconductor layer 3 and the exposed portion of the surface of the n-type nitride semiconductor layer 2, respectively. Although not shown, the n-type nitride semiconductor layer 2 may actually be formed of a plurality of layers, and the p-type nitride semiconductor layer 3 may be formed of a plurality of layers. Often, the light emitting layer 4 may be formed of a plurality of layers. The material and the number of each layer of the n-type nitride semiconductor layer 2, each layer of the p-type nitride semiconductor layer 3, and each layer of the light emitting layer 4 can be appropriately selected according to the application of the ultraviolet light emitting device 1.
紫外発光デバイス1を作製する際には、まず、本実施例の積層板10の表面(詳細には、AlN単結晶層12の表面)にn型窒化物半導体層2が成膜される。次いで、成膜されたn型窒化物半導体層2の表面に発光層4が成膜され、成膜された発光層4の表面にp型窒化物半導体層3が成膜される。その後、発光層4及びp型窒化物半導体層3の一部を除去し、n型窒化物半導体層2の表面の一部を露出させる。良質な窒化物半導体層2、3、4を成膜するため、積層板10の表面(AlN単結晶層12の表面)に窒化物半導体層2、3、4を成膜する。また、n型窒化物半導体層2とp型窒化物半導体層3と発光層4の成膜及び加工をし易くするために、紫外発光デバイス1を作製する際のハンドリング基板として、肉厚の積層板10が用いられる。一方、積層板10には、AlN単結晶層12とAlN多結晶層14が積層されているため、紫外発光デバイス1の基板として、積層板10をそのまま用いると、AlN多結晶層14により発光(紫外光)が積層板10を透過し難くなる。そのため、n型窒化物半導体層2とp型窒化物半導体層3と発光層4の成膜後、積層板10は、必要な厚みに薄膜化される。すなわち、積層板10は、基板として必要なAlN単結晶層12のみが残されるように、不要な部分であるAlN多結晶層14が除去される。以下では、n型窒化物半導体層2とp型窒化物半導体層3と発光層4をまとめて「機能層」と称することがある。
When producing the ultraviolet light emitting device 1, first, the n-type nitride semiconductor layer 2 is formed on the surface of the laminated plate 10 of this embodiment (specifically, the surface of the AlN single crystal layer 12). Next, the light emitting layer 4 is formed on the surface of the formed n-type nitride semiconductor layer 2, and the p-type nitride semiconductor layer 3 is formed on the surface of the formed light emitting layer 4. After that, a part of the light emitting layer 4 and the p-type nitride semiconductor layer 3 is removed to expose a part of the surface of the n-type nitride semiconductor layer 2. In order to form high-quality nitride semiconductor layers 2, 3 and 4, the nitride semiconductor layers 2, 3 and 4 are formed on the surface of the laminated plate 10 (the surface of the AlN single crystal layer 12). Further, in order to facilitate the film formation and processing of the n-type nitride semiconductor layer 2, the p-type nitride semiconductor layer 3, and the light emitting layer 4, a thick laminate is used as a handling substrate when manufacturing the ultraviolet light emitting device 1. The plate 10 is used. On the other hand, since the AlN single crystal layer 12 and the AlN polycrystalline layer 14 are laminated on the laminated plate 10, if the laminated plate 10 is used as it is as the substrate of the ultraviolet light emitting device 1, the AlN polycrystalline layer 14 emits light ( Ultraviolet light) becomes difficult to pass through the laminated plate 10. Therefore, after the n-type nitride semiconductor layer 2, the p-type nitride semiconductor layer 3, and the light emitting layer 4 are formed, the laminated plate 10 is thinned to a required thickness. That is, the AlN polycrystalline layer 14 which is an unnecessary portion is removed from the laminated plate 10 so that only the AlN single crystal layer 12 required as a substrate is left. Hereinafter, the n-type nitride semiconductor layer 2, the p-type nitride semiconductor layer 3, and the light emitting layer 4 may be collectively referred to as a “functional layer”.
図2に示すように、積層板10は、AlN単結晶層12とAlN多結晶層14を備えている。AlN単結晶層12は、単結晶AlNにより構成されている。AlN多結晶層14は、多結晶AlNにより構成されている。本実施例では、例えば、単結晶AlNと多結晶AlNは以下のように規定する。XRD装置(Bruker-AXS製D8-DISCOVER)を用い、CuKα線を用いて電圧40kV、電流40mA、コリメータ径0.5mm、アンチスキャッタリングスリット3mm、ωステップ幅0.01°の条件下、計数時間1秒でAlN単結晶層の(002)面のXRCプロファイルを測定する。そして、得られたXRCプロファイルに基づく半値幅を利用して測定を行い、測定値が10000arcsec未満であるものを単結晶AlNと称し、測定値が10000arcsec以上であるものを多結晶AlNと称する。AlN単結晶層12及びAlN多結晶層14はいずれも、例えば、昇華法により形成することができる。なお、AlN単結晶層12及びAlN多結晶層14の形成方法は特に限定されるものではなく、AlN単結晶層12及びAlN多結晶層14は、例えば、CVD法、HVPE法、MBE法、スパッタリング法等の気相成膜法、水熱法、Naフラックス法等の液相成膜法、単結晶AlNと多結晶AlNを表面活性化法を用いて接合する常温接合等の他の方法を用いて形成することもできる。
As shown in FIG. 2, the laminated board 10 includes an AlN single crystal layer 12 and an AlN polycrystalline layer 14. The AlN single crystal layer 12 is composed of the single crystal AlN. The AlN polycrystalline layer 14 is composed of polycrystalline AlN. In this embodiment, for example, single crystal AlN and polycrystalline AlN are defined as follows. Counting time under the conditions of voltage 40 kV, current 40 mA, collimator diameter 0.5 mm, anti-scattering slit 3 mm, ω step width 0.01 ° using XRD device (D8-DISCOVER manufactured by Bruker-AXS) using CuKα wire. The XRC profile of the (002) plane of the AlN single crystal layer is measured in 1 second. Then, the measurement is performed using the half-value width based on the obtained XRC profile, and the measured value of less than 10,000 arcsec is referred to as single crystal AlN, and the measured value of 10,000 arcsec or more is referred to as polycrystalline AlN. Both the AlN single crystal layer 12 and the AlN polycrystalline layer 14 can be formed by, for example, a sublimation method. The method for forming the AlN single crystal layer 12 and the AlN polycrystal layer 14 is not particularly limited, and the AlN single crystal layer 12 and the AlN polycrystal layer 14 are, for example, a CVD method, an HVPE method, an MBE method, or sputtering. Use other methods such as vapor phase film formation method such as method, liquid phase film formation method such as hydrothermal method and Na flux method, and room temperature bonding in which single crystal AlN and multicrystal AlN are bonded by surface activation method. Can also be formed.
また、積層板10は、表面20と裏面22の間に設けられる金属成分含有領域16を備えている。具体的には、金属成分含有領域16は、AlN単結晶層12とAlN多結晶層14との間の界面部分(以下、単に「界面部分」ともいう)に配置されており、本実施例では、金属成分含有領域16は、界面部分のうちAlN単結晶層12とAlN多結晶層14の両方に跨って配置されている。なお、本実施例では、積層板10において、ハンドリング基板として積層板10を用いて紫外発光デバイス1を作製する際に、機能層が成膜される面(すなわち、厚み方向におけるAlN単結晶層12の露出面)を表面20といい、その反対側の面(すなわち、厚み方向におけるAlN多結晶層14の露出面)を裏面22という。金属成分含有領域16は、積層板10の厚み方向において局所的に設けられており、裏面14に略平行に設けられている。
Further, the laminated board 10 includes a metal component-containing region 16 provided between the front surface 20 and the back surface 22. Specifically, the metal component-containing region 16 is arranged at the interface portion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14 (hereinafter, also simply referred to as “intersection portion”), and in this embodiment, the metal component-containing region 16 is arranged. The metal component-containing region 16 is arranged so as to straddle both the AlN single crystal layer 12 and the AlN polycrystalline layer 14 in the interface portion. In this embodiment, when the ultraviolet light emitting device 1 is manufactured by using the laminated plate 10 as the handling substrate in the laminated plate 10, the surface on which the functional layer is formed (that is, the AlN single crystal layer 12 in the thickness direction) is formed. The exposed surface) is referred to as the front surface 20, and the surface on the opposite side thereof (that is, the exposed surface of the AlN polycrystalline layer 14 in the thickness direction) is referred to as the back surface 22. The metal component-containing region 16 is locally provided in the thickness direction of the laminated plate 10, and is provided substantially parallel to the back surface 14.
金属成分含有領域16は、AlN単結晶層12とAlN多結晶層14の界面において、AlN単結晶層12とAlN多結晶層14の両方に跨って配置されている。金属成分含有領域16では、AlN単結晶層12とAlN多結晶層14内に複数の金属粒子が分散して導入されている。具体的には、金属成分含有領域16における金属粒子は、アスペクト比が1より大きく、かつ、10以下に調整されており、長辺が表面12及び裏面14に沿うように配置されている。また、各金属粒子は、隣り合う金属成分間の距離が1μmから300μmとなるように、間隔を空けて配置されている。なお、金属粒子(金属成分)の導入方法は特に限定されない。例えば、AlN単結晶層12を形成する原料(固体原料又は原料ガス)に金属成分を含む原料を混入させることにより金属成分含有領域16を形成することができる。あるいは、AlN多結晶層14の表面に金属成分を含む原料を付着させ、AlN多結晶層14の表面にAlN単結晶層12を形成することによって、金属成分をAlN単結晶層12とAlN多結晶層14の界面部分の近傍に拡散させことによっても金属成分含有領域16を形成することができる。また、金属粒子は、Al、Ga、Cu、Fe、Mo、Ni、Ta、Tiから選択される単体金属である。金属成分含有領域16は、上記金属成分の少なくとも1つを主成分として含有している。なお、金属粒子は、上記金属元素を含む合金であってもよいし、上記金属元素を含む酸化物や複合酸化物であってもよいし、上記金属成分を含む窒化物や複合窒化物であってもよいし、上記金属成分を含む複合酸窒化物であってもよい。
The metal component-containing region 16 is arranged across both the AlN single crystal layer 12 and the AlN polycrystalline layer 14 at the interface between the AlN single crystal layer 12 and the AlN polycrystalline layer 14. In the metal component-containing region 16, a plurality of metal particles are dispersed and introduced in the AlN single crystal layer 12 and the AlN polycrystalline layer 14. Specifically, the metal particles in the metal component-containing region 16 have an aspect ratio of more than 1 and adjusted to 10 or less, and their long sides are arranged along the front surface 12 and the back surface 14. Further, the metal particles are arranged at intervals so that the distance between the adjacent metal components is 1 μm to 300 μm. The method of introducing metal particles (metal components) is not particularly limited. For example, the metal component-containing region 16 can be formed by mixing a raw material containing a metal component with a raw material (solid raw material or raw material gas) forming the AlN single crystal layer 12. Alternatively, by adhering a raw material containing a metal component to the surface of the AlN polycrystalline layer 14 and forming the AlN single crystal layer 12 on the surface of the AlN polycrystalline layer 14, the metal components are made into the AlN single crystal layer 12 and the AlN polycrystalline layer 14. The metal component-containing region 16 can also be formed by diffusing the layer 14 in the vicinity of the interface portion. The metal particles are simple substances selected from Al, Ga, Cu, Fe, Mo, Ni, Ta, and Ti. The metal component-containing region 16 contains at least one of the above metal components as a main component. The metal particles may be an alloy containing the metal element, an oxide or a composite oxide containing the metal element, or a nitride or a composite nitride containing the metal component. It may be a composite oxynitride containing the above-mentioned metal component.
不純物金属成分含有領域16は、金属成分が導入されていることによりレーザ光が積層板10の表面20から裏面22(あるいは、裏面22から表面20)に透過することを阻害する。すなわち、具体的には、積層板10の裏面22から紫外レーザ光を照射すると、金属成分含有領域16の金属粒子が紫外レーザ光を吸収する。その結果、金属成分含有領域16の金属成分が昇華(気化)し、金属成分含有領域16内に微細なクラックを発生させ、AlN多結晶層14を除去(リフトオフ)することができる。なお、金属成分含有領域16に導入される金属粒子は、レーザ光を吸収しやすいものが選択される。具体的には、金属成分含有領域16には、245nm~1200nmの波長の光を吸収しやすい金属粒子が導入される。
The impurity metal component-containing region 16 prevents the laser light from passing from the front surface 20 to the back surface 22 (or from the back surface 22 to the front surface 20) of the laminated plate 10 due to the introduction of the metal component. That is, specifically, when the ultraviolet laser beam is irradiated from the back surface 22 of the laminated plate 10, the metal particles in the metal component-containing region 16 absorb the ultraviolet laser beam. As a result, the metal component of the metal component-containing region 16 is sublimated (vaporized), fine cracks are generated in the metal component-containing region 16, and the AlN polycrystalline layer 14 can be removed (lifted off). As the metal particles introduced into the metal component-containing region 16, those that easily absorb the laser beam are selected. Specifically, metal particles having a wavelength of 245 nm to 1200 nm, which are easily absorbed, are introduced into the metal component-containing region 16.
以下表1に、245nm~1200nmの波長の光を吸収しやすい金属の一例を示す。表1に示す金属(Al、Ga、Cu、Fe、Mo、Ni、Ta、Ti)は、245nm~1200nmの波長のレーザ光を好適に吸収する。表1には、400nm及び800nmの波長の光に対する上記金属の吸光度を示す。表1に示す金属(Al、Ga、Cr、Cu、Fe、Mo、Ni、Ta、Ti)は、245nm~1200nmの波長の光をよく吸収する。そのため、これらの元素を含む金属粒子は、245nm~1200nmの波長のレーザ光が照射されると、レーザ光を吸収して気化する。金属成分含有領域16は、積層板10の裏面22に略平行に設けられているため、積層板10は、上記の元素を含む金属粒子が導入された部分(すなわち、界面部分)で分離される。したがって、上記の元素の少なくとも1つを含む金属粒子が界面部分に導入された積層板10は、レーザリフトオフにより金属成分含有領域16(すなわち、界面部分)で薄膜化される。それにより、積層板10からAlN多結晶層14を分離することができる。また、金属成分含有領域16は、界面部分のAlN単結晶層12とAlN多結晶層14の両方に配置されているため、積層板10は、AlN多結晶層14の略全体を分離する。そのため、レーザリフトオフ後の機械研磨の時間を短縮することができる。
Table 1 below shows an example of a metal that easily absorbs light having a wavelength of 245 nm to 1200 nm. The metals shown in Table 1 (Al, Ga, Cu, Fe, Mo, Ni, Ta, Ti) preferably absorb laser light having a wavelength of 245 nm to 1200 nm. Table 1 shows the absorbance of the metal with respect to light having wavelengths of 400 nm and 800 nm. The metals shown in Table 1 (Al, Ga, Cr, Cu, Fe, Mo, Ni, Ta, Ti) absorb light having a wavelength of 245 nm to 1200 nm well. Therefore, the metal particles containing these elements absorb and vaporize the laser beam when irradiated with the laser beam having a wavelength of 245 nm to 1200 nm. Since the metal component-containing region 16 is provided substantially parallel to the back surface 22 of the laminated plate 10, the laminated plate 10 is separated at a portion (that is, an interface portion) in which metal particles containing the above elements are introduced. .. Therefore, the laminated plate 10 in which the metal particles containing at least one of the above elements are introduced into the interface portion is thinned in the metal component-containing region 16 (that is, the interface portion) by laser lift-off. Thereby, the AlN polycrystalline layer 14 can be separated from the laminated board 10. Further, since the metal component-containing region 16 is arranged in both the AlN single crystal layer 12 and the AlN polycrystalline layer 14 at the interface portion, the laminated plate 10 separates substantially the entire AlN polycrystalline layer 14. Therefore, the time for mechanical polishing after the laser lift-off can be shortened.
また、金属成分含有領域16に上記元素が導入されていると、金属成分含有領域16が、界面部分におけるAlN単結晶層12とAlN多結晶層14の熱膨張係数の差に起因する歪みを緩和することができる。AlN単結晶層12を構成する単結晶AlNと、AlN多結晶層14を構成する多結晶AlNとは、熱膨張係数が比較的近いものの、僅かに異なっている。そのため、紫外発光デバイス1を作製する際の熱処理工程において、AlN単結晶層12(金属成分含有領域16が設けられていない部分)とAlN多結晶層14(金属成分含有領域16が設けられていない部分)の変形量(伸び量)に差が生じる。金属成分含有領域16が設けられていない場合、AlN単結晶層12とAlN多結晶層14の界面部分に歪みが生じ、AlN単結晶層12に反りやクラック等の劣化が生じることがある。本実施例の積層板10は、界面部分に金属成分含有領域16を備えている。金属成分含有領域16のヤング率は、AlN単結晶層12及びAlN多結晶層14のヤング率より小さい。そのため、金属成分含有領域16により界面部分におけるAlN単結晶層12とAlN多結晶層14の熱膨張係数の差に起因する歪みを緩和することができる。AlN単結晶層12の劣化を抑制することができ、良質なAlN単結晶層12の表面に紫外発光デバイス1を形成することができるので、紫外発光デバイス1の機能層に与える悪影響を低減することができる。
Further, when the above element is introduced into the metal component-containing region 16, the metal component-containing region 16 alleviates the strain caused by the difference in the coefficient of thermal expansion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14 at the interface portion. can do. The single crystal AlN constituting the AlN single crystal layer 12 and the polycrystalline AlN constituting the AlN polycrystalline layer 14 have relatively close coefficients of thermal expansion, but are slightly different from each other. Therefore, in the heat treatment step when manufacturing the ultraviolet light emitting device 1, the AlN single crystal layer 12 (the portion where the metal component-containing region 16 is not provided) and the AlN polycrystalline layer 14 (the portion where the metal component-containing region 16 is not provided) are not provided. There is a difference in the amount of deformation (elongation amount) of the part). When the metal component-containing region 16 is not provided, the interface portion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14 may be distorted, and the AlN single crystal layer 12 may be warped or deteriorated such as cracks. The laminated board 10 of this embodiment includes a metal component-containing region 16 at an interface portion. The Young's modulus of the metal component-containing region 16 is smaller than the Young's modulus of the AlN single crystal layer 12 and the AlN polycrystalline layer 14. Therefore, the metal component-containing region 16 can alleviate the strain caused by the difference in the coefficient of thermal expansion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14 at the interface portion. Since the deterioration of the AlN single crystal layer 12 can be suppressed and the ultraviolet light emitting device 1 can be formed on the surface of the high quality AlN single crystal layer 12, the adverse effect on the functional layer of the ultraviolet light emitting device 1 can be reduced. Can be done.
本実施例では、例えば、積層板10の厚さL1は、0.5mm~10.0mmに調整されており、金属成分含有領域16の厚さL2は、0.1μm~5.0μmに調整されている。積層板10の厚さL1とは、表面20と裏面22との間の長さであり、表面20と裏面22に対して垂直な方向の長さを示す。別言すると、積層板10の厚さL1は、AlN単結晶層12の露出面から界面部分を介してAlN多結晶層14の露出面までの長さである。また、金属成分含有領域16の厚さL2も、表面20と裏面22に対して垂直な方向の長さを示す。金属成分含有領域16の厚さL2を0.1μm以上にすることによって、金属粒子(金属成分)がレーザ光を確実に吸収し(レーザ光が金属成分含有領域16を透過せず)、金属成分含有領域16に微細なクラックを発生させる効果を得ることができる。すなわち、金属成分含有領域16においてレーザリフトオフすることができる。また、厚さL2を0.1μm以上にすることによって、AlN単結晶層12とAlN多結晶層14の熱膨張係数の差によって生じる不具合(AlN単結晶層12の劣化)を低減する効果をより確実に得ることができる。また、厚さL2を5.0μm以下にすることによって、レーザ光の照射によるクラックの生成を金属成分含有領域16内に収めることができる。そのため、紫外発光デバイスへの悪影響を抑制することができる。
In this embodiment, for example, the thickness L1 of the laminated board 10 is adjusted to 0.5 mm to 10.0 mm, and the thickness L2 of the metal component-containing region 16 is adjusted to 0.1 μm to 5.0 μm. ing. The thickness L1 of the laminated plate 10 is the length between the front surface 20 and the back surface 22, and indicates the length in the direction perpendicular to the front surface 20 and the back surface 22. In other words, the thickness L1 of the laminated plate 10 is the length from the exposed surface of the AlN single crystal layer 12 to the exposed surface of the AlN polycrystalline layer 14 via the interface portion. Further, the thickness L2 of the metal component-containing region 16 also indicates the length in the direction perpendicular to the front surface 20 and the back surface 22. By setting the thickness L2 of the metal component-containing region 16 to 0.1 μm or more, the metal particles (metal component) reliably absorb the laser beam (the laser beam does not pass through the metal component-containing region 16), and the metal component. The effect of generating fine cracks in the content region 16 can be obtained. That is, the laser lift-off can be performed in the metal component-containing region 16. Further, by setting the thickness L2 to 0.1 μm or more, the effect of reducing the defect (deterioration of the AlN single crystal layer 12) caused by the difference in the coefficient of thermal expansion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14 can be further reduced. You can definitely get it. Further, by setting the thickness L2 to 5.0 μm or less, the generation of cracks due to the irradiation of the laser beam can be contained within the metal component-containing region 16. Therefore, it is possible to suppress an adverse effect on the ultraviolet light emitting device.
(実施例2)
上記の実施例1では、金属成分含有領域16は、AlN単結晶層12とAlN多結晶層14の両方に配置されていたが、このような構成に限定されない。金属成分含有領域は、AlN単結晶層12とAlN多結晶層14の界面部分に配置されていればよく、例えば、図3に示すように、不純物領域116は、AlN単結晶層12内に配置されていてもよい。なお、本実施例では、金属成分含有領域116が実施例1の金属成分含有領域16と相違しており、その他の構成は略同一となっている。そこで、実施例1の積層板10と同一の構成については、その説明を省略する。 (Example 2)
In Example 1 above, the metal component-containingregion 16 is arranged in both the AlN single crystal layer 12 and the AlN polycrystalline layer 14, but is not limited to such a configuration. The metal component-containing region may be arranged at the interface between the AlN single crystal layer 12 and the AlN polycrystalline layer 14. For example, as shown in FIG. 3, the impurity region 116 is arranged in the AlN single crystal layer 12. It may have been done. In this example, the metal component-containing region 116 is different from the metal component-containing region 16 of Example 1, and the other configurations are substantially the same. Therefore, the description of the same configuration as that of the laminated board 10 of the first embodiment will be omitted.
上記の実施例1では、金属成分含有領域16は、AlN単結晶層12とAlN多結晶層14の両方に配置されていたが、このような構成に限定されない。金属成分含有領域は、AlN単結晶層12とAlN多結晶層14の界面部分に配置されていればよく、例えば、図3に示すように、不純物領域116は、AlN単結晶層12内に配置されていてもよい。なお、本実施例では、金属成分含有領域116が実施例1の金属成分含有領域16と相違しており、その他の構成は略同一となっている。そこで、実施例1の積層板10と同一の構成については、その説明を省略する。 (Example 2)
In Example 1 above, the metal component-containing
図3に示すように、積層板110の金属成分含有領域116は、AlN単結晶層12に配置されている。すなわち、金属成分は、AlN単結晶層12とAlN多結晶層14の界面部分において、AlN単結晶層12に導入されている。なお、金属成分含有領域116に導入される金属成分の種類や、金属成分含有領域116の厚さL2については、実施例1の金属成分含有領域16と同一であるため、詳細な説明は省略する。
As shown in FIG. 3, the metal component-containing region 116 of the laminated board 110 is arranged in the AlN single crystal layer 12. That is, the metal component is introduced into the AlN single crystal layer 12 at the interface portion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14. Since the type of the metal component introduced into the metal component-containing region 116 and the thickness L2 of the metal component-containing region 116 are the same as those of the metal component-containing region 16 of Example 1, detailed description thereof will be omitted. ..
本実施例においても、積層板110は、レーザリフトオフにより金属成分含有領域116で分離される。すなわち、金属成分含有領域116は、界面部分において、AlN単結晶層12に配置されているため、積層板110は、レーザリフトオフによりAlN多結晶層14の全体が分離される。そのため、レーザリフトオフにより積層板10からAlN多結晶層14を好適に分離することができる。また、金属成分含有領域116が、AlN単結晶層12とAlN多結晶層14の熱膨張係数の差によって生じる不具合(AlN単結晶層12の劣化)を低減する。
Also in this embodiment, the laminated plate 110 is separated in the metal component-containing region 116 by laser lift-off. That is, since the metal component-containing region 116 is arranged in the AlN single crystal layer 12 at the interface portion, the entire AlN polycrystalline layer 14 is separated from the laminated plate 110 by laser lift-off. Therefore, the AlN polycrystalline layer 14 can be suitably separated from the laminated plate 10 by laser lift-off. Further, the metal component-containing region 116 reduces the defect (deterioration of the AlN single crystal layer 12) caused by the difference in the coefficient of thermal expansion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14.
(実施例3)
また、金属成分含有領域は、AlN単結晶層12とAlN多結晶層14の界面部分に配置されていればよく、例えば、図4に示すように、金属成分含有領域216は、AlN多結晶層14内に配置されていてもよい。なお、本実施例では、金属成分含有領域216が実施例1の金属成分含有領域16と相違しており、その他の構成は略同一となっている。そこで、実施例1の積層板10と同一の構成については、その説明を省略する。 (Example 3)
Further, the metal component-containing region may be arranged at the interface between the AlNsingle crystal layer 12 and the AlN polycrystalline layer 14. For example, as shown in FIG. 4, the metal component-containing region 216 is the AlN polycrystalline layer. It may be arranged in 14. In this example, the metal component-containing region 216 is different from the metal component-containing region 16 of Example 1, and the other configurations are substantially the same. Therefore, the description of the same configuration as that of the laminated board 10 of the first embodiment will be omitted.
また、金属成分含有領域は、AlN単結晶層12とAlN多結晶層14の界面部分に配置されていればよく、例えば、図4に示すように、金属成分含有領域216は、AlN多結晶層14内に配置されていてもよい。なお、本実施例では、金属成分含有領域216が実施例1の金属成分含有領域16と相違しており、その他の構成は略同一となっている。そこで、実施例1の積層板10と同一の構成については、その説明を省略する。 (Example 3)
Further, the metal component-containing region may be arranged at the interface between the AlN
図4に示すように、積層板210の金属成分含有領域216は、AlN多結晶層14内に配置されている。すなわち、金属成分は、AlN単結晶層12とAlN多結晶層14の界面部分において、AlN多結晶層14内に導入されている。なお、金属成分含有領域216に導入される金属成分の種類や、金属成分含有領域116の厚さL2については、実施例1の金属成分含有領域16と同一であるため、詳細な説明は省略する。
As shown in FIG. 4, the metal component-containing region 216 of the laminated board 210 is arranged in the AlN polycrystalline layer 14. That is, the metal component is introduced into the AlN polycrystalline layer 14 at the interface between the AlN single crystal layer 12 and the AlN polycrystalline layer 14. Since the type of the metal component introduced into the metal component-containing region 216 and the thickness L2 of the metal component-containing region 116 are the same as those of the metal component-containing region 16 of Example 1, detailed description thereof will be omitted. ..
本実施例においても、金属成分含有領域216が、AlN単結晶層12とAlN多結晶層14の熱膨張係数の差によって生じる不具合を低減することができる。また、積層板210は、レーザリフトオフにより金属成分含有領域216で分離される。すなわち、金属成分含有領域216がAlN多結晶層14内に設けられていても、金属成分含有領域216がAlN単結晶層12とAlN多結晶層14の界面部分に接して配置されているため、積層板110は、レーザリフトオフにより界面部分で分離される。そのため、レーザリフトオフによりAlN多結晶層14がほぼ除去されているので、機械研磨のみで薄肉化する従来の手法と比較して機械研磨の時間を大幅に短縮することができる。
Also in this embodiment, it is possible to reduce the problem that the metal component-containing region 216 is caused by the difference in the coefficient of thermal expansion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14. Further, the laminated plate 210 is separated in the metal component-containing region 216 by laser lift-off. That is, even if the metal component-containing region 216 is provided in the AlN polycrystalline layer 14, the metal component-containing region 216 is arranged in contact with the interface portion between the AlN single crystal layer 12 and the AlN polycrystalline layer 14. The laminated plate 110 is separated at the interface portion by laser lift-off. Therefore, since the AlN polycrystalline layer 14 is substantially removed by the laser lift-off, the mechanical polishing time can be significantly shortened as compared with the conventional method of thinning only by mechanical polishing.
以上、本明細書に開示の技術の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。
The specific examples of the disclosed technology have been described in detail in the present specification, but these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above. In addition, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing.
Claims (6)
- AlN多結晶層と、
前記AlN多結晶層上に形成されているAlN単結晶層と、
前記AlN単結晶層と前記AlN多結晶層との界面部分に接しており、金属成分が複数分散して導入されている金属成分含有領域と、を備える、積層板。 AlN polycrystalline layer and
The AlN single crystal layer formed on the AlN polycrystalline layer and
A laminated board including a metal component-containing region which is in contact with an interface portion between the AlN single crystal layer and the AlN polycrystalline layer and in which a plurality of metal components are dispersed and introduced. - 前記金属成分含有領域の厚さは、0.1μm以上、かつ、5.0μm以下である、請求項1に記載の積層板。 The laminated board according to claim 1, wherein the thickness of the metal component-containing region is 0.1 μm or more and 5.0 μm or less.
- 前記金属成分含有領域内において、隣り合う前記金属成分間の距離は、1μm以上、かつ、300μm以下である、請求項1又は2に記載の積層板。 The laminated board according to claim 1 or 2, wherein the distance between adjacent metal components in the metal component-containing region is 1 μm or more and 300 μm or less.
- 前記金属成分は、アスペクト比が1より大きく、かつ、10以下であるとともに、長辺が前記AlN多結晶層の厚み方向端面に沿うように存在している、請求項1~3のいずれか一項に記載の積層板。 Any one of claims 1 to 3, wherein the metal component has an aspect ratio of more than 1, 10 or less, and a long side existing along the end face in the thickness direction of the AlN polycrystalline layer. Laminated plate according to the item.
- 前記金属成分含有領域は、Al、Ga、Cu、Fe、Mo、Ni、Ta、Tiから選択される少なくとも1つの金属成分を含有する、請求項1~4のいずれか一項に記載の積層板。 The laminate according to any one of claims 1 to 4, wherein the metal component-containing region contains at least one metal component selected from Al, Ga, Cu, Fe, Mo, Ni, Ta, and Ti. ..
- 前記金属成分含有領域は、Al、Ga,Cu、Niから選択される少なくとも1つの金属成分を含有する、請求項5に記載の積層板。 The laminated board according to claim 5, wherein the metal component-containing region contains at least one metal component selected from Al, Ga, Cu, and Ni.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021567341A JP7620571B2 (en) | 2019-12-23 | 2020-12-16 | AlN laminate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019231909 | 2019-12-23 | ||
JP2019-231909 | 2019-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021131966A1 true WO2021131966A1 (en) | 2021-07-01 |
Family
ID=76575910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/046971 WO2021131966A1 (en) | 2019-12-23 | 2020-12-16 | Aln laminate board |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7620571B2 (en) |
WO (1) | WO2021131966A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009018975A (en) * | 2007-07-13 | 2009-01-29 | Ngk Insulators Ltd | Manufacturing method of nonpolar plane group iii nitride single crystal |
JP2011020900A (en) * | 2009-07-16 | 2011-02-03 | Tokuyama Corp | Method for producing laminate having aluminum nitride single crystal layer, laminate produced by the method, method for producing aluminum nitride single crystal substrate using the laminate, and aluminum nitride single crystal substrate |
JP2015040136A (en) * | 2013-08-20 | 2015-03-02 | 住友電気工業株式会社 | Method for manufacturing group III nitride film and method for manufacturing group III nitride semiconductor device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2860248B1 (en) * | 2003-09-26 | 2006-02-17 | Centre Nat Rech Scient | PROCESS FOR PRODUCING AUTOMATED SUBSTRATES OF ELEMENT III NITRIDES BY HETERO-EPITAXIA ON A SACRIFICIAL LAYER |
-
2020
- 2020-12-16 WO PCT/JP2020/046971 patent/WO2021131966A1/en active Application Filing
- 2020-12-16 JP JP2021567341A patent/JP7620571B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009018975A (en) * | 2007-07-13 | 2009-01-29 | Ngk Insulators Ltd | Manufacturing method of nonpolar plane group iii nitride single crystal |
JP2011020900A (en) * | 2009-07-16 | 2011-02-03 | Tokuyama Corp | Method for producing laminate having aluminum nitride single crystal layer, laminate produced by the method, method for producing aluminum nitride single crystal substrate using the laminate, and aluminum nitride single crystal substrate |
JP2015040136A (en) * | 2013-08-20 | 2015-03-02 | 住友電気工業株式会社 | Method for manufacturing group III nitride film and method for manufacturing group III nitride semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021131966A1 (en) | 2021-07-01 |
JP7620571B2 (en) | 2025-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102792420B (en) | Manufacture method and the manufacturing method of the manufacture method of single crystalline substrate, single crystalline substrate, the single crystalline substrate with multilayer film | |
CN112038222B (en) | Method for producing group III nitride semiconductor | |
JP6772711B2 (en) | Semiconductor laminated structures and semiconductor devices | |
CN102770940A (en) | Single crystal substrate with multilayer film, method for manufacturing single crystal substrate with multilayer film, and device manufacturing method | |
TW201820548A (en) | Group III nitride composite substrate, manufacturing method thereof, group III nitride semiconductor device and manufacturing method thereof | |
WO2014125688A1 (en) | Group iii-nitride composite substrate and method of producing same, layered group iii-nitride composite substrate, as well as group iii-nitride semiconductor device and method of producing same | |
JP6098048B2 (en) | Manufacturing method of semiconductor device | |
JP4748074B2 (en) | Power module substrate, manufacturing method thereof, power module | |
Aida et al. | Reduction of bowing in GaN-on-sapphire and GaN-on-silicon substrates by stress implantation by internally focused laser processing | |
WO2021215466A1 (en) | Bonded substrate | |
WO2021131966A1 (en) | Aln laminate board | |
JP7620570B2 (en) | AlN single crystal plate | |
JP5838965B2 (en) | Method for manufacturing light emitting device | |
EP2045374A2 (en) | Method of manufacturing a GaN substrate and a GaN epitaxial wafer | |
JP7700051B2 (en) | AlN laminate | |
JP2009132618A (en) | Nitride crystal substrate, nitride crystal substrate with epi layer, and semiconductor device | |
WO2016002157A1 (en) | Semiconductor device | |
WO2021200861A1 (en) | Bonded substrate | |
KR20140127155A (en) | Semiconductor device and method of manufacturing semiconductor device | |
TW201232623A (en) | Method for making gallium nitride substrate | |
JP6146041B2 (en) | Group III nitride composite substrate, laminated group III nitride composite substrate, group III nitride semiconductor device, and manufacturing method thereof | |
TW201251112A (en) | Semiconductor layer system having a semipolar or m-planar group iii nitride layer and semiconductor component based thereon | |
JP2007005726A (en) | Compound semiconductor wafer and its manufacturing method | |
JP2014011280A (en) | Dicing method of semiconductor wafer and manufacturing method of semiconductor device | |
JP2012054563A (en) | Nitride crystal and method for manufacturing nitride crystal substrate with epitaxial layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20906807 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021567341 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20906807 Country of ref document: EP Kind code of ref document: A1 |